Vector bundles and connections

Kim A. Frøyshov

1 Vector bundles

In the following, let $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Smooth manifolds are assumed to be second countable. For a smooth manifold M we denote by $\mathcal{D}(M, \mathbb{K})$ the ring of smooth functions $M \rightarrow \mathbb{K}$, and we set $\mathcal{D}(M):=\mathcal{D}(M, \mathbb{R})$.

By definition, a smooth \mathbb{K}-vector bundle of rank r over a smooth manifold M consists of

- a smooth manifold E called the total space of the bundle,
- a smooth map $\pi: E \rightarrow M$ called the projection,
- for each $p \in M$ a \mathbb{K}-vector space structure on the fibre $E_{p}:=\pi^{-1}(p)$, such that the axiom of local triviality holds: For each $p \in M$ there should exist an open neighbourhood U of p and a diffeomorphism $\Phi: U \times \mathbb{K}^{r} \rightarrow$ $\pi^{-1} U$ such that
- $\pi \circ \Phi(q, v)=q$ for all $(q, v) \in U \times \mathbb{K}^{r}$,
- for each $q \in U$ the map

$$
\Phi_{q}: \mathbb{K}^{r} \rightarrow E_{q}, \quad v \mapsto \Phi(q, v)
$$

is a linear isomorphism.
Such a diffeomorphism Φ is called a local trivialization of E. If $r=1$ then E is called a (real or complex) line bundle over M.

Examples (i) The product bundle

$$
M \times V \rightarrow M, \quad(q, v) \mapsto q,
$$

where V is any finite-dimensional \mathbb{K}-vector space.
(ii) The tangent bundle $T M \rightarrow M$.
(iii) If $\pi: E \rightarrow M$ is a vector bundle and $N \subset M$ a submanifold, then $\left.E\right|_{N}:=\pi^{-1} N$ is a vector bundle over N.
(iv) More generally, if $\pi: E \rightarrow M$ is a vector bundle and $f: N \rightarrow M$ a smooth map, then

$$
f^{*} E:=\{(q, v) \in N \times E \mid f(q)=\pi(v)\}
$$

is a vector bundle over N called the pull-back of E by f.
(v) To any vector space V we can associate its dual vector space V^{*}. This construction can also be applied fibrewise to vector bundles. Namely, if $\pi_{E}: E \rightarrow M$ is a vector bundle then

$$
E^{*}:=\bigcup_{p \in M}\{p\} \times E_{p}^{*}
$$

has a unique structure of a vector bundle over M such that the projection is given by

$$
\pi_{E^{*}}: E^{*} \rightarrow M, \quad(p, v) \mapsto p
$$

and such that for any local trivialization $\Phi: U \times \mathbb{K}^{r} \rightarrow\left(\pi_{E}\right)^{-1} U$ of E the map

$$
U \times\left(\mathbb{K}^{r}\right)^{*} \rightarrow\left(\pi_{E^{*}}\right)^{-1} U, \quad(p, \xi) \mapsto \xi \circ \Phi_{p}^{-1}
$$

is a local trivialization of E^{*}, where we agree that $\left(\mathbb{K}^{r}\right)^{*}$ can be canonically identified with \mathbb{K}^{r}. The bundle E^{*} is called the dual bundle of E. In the case $E=T M$ the dual bundle $T^{*} M$ is called the cotangent bundle of M.
(vi) For any pair (V, W) of \mathbb{K}-vector spaces let $\operatorname{Hom}(V, W)$ denote the vector space of all linear maps $V \rightarrow W$. Applying this construction fibrewise to a pair $\left(E, E^{\prime}\right)$ of vector bundles over a manifold M yields a vector bundle $\operatorname{Hom}\left(E, E^{\prime}\right) \rightarrow M$ whose fibre over $p \in M$ is

$$
\operatorname{Hom}\left(E, E^{\prime}\right)_{p}=\operatorname{Hom}\left(E_{p}, E_{p}^{\prime}\right)
$$

In the case $E^{\prime}=E$ we obtain the endomorphism bundle $\operatorname{End}(E):=$ $\operatorname{Hom}(E, E)$.

Let $E \rightarrow M$ be a vector bundle of rank r. By a subbundle of E of rank s we mean a subset $E^{\prime} \subset E$ such that for every point $p \in M$ there exist a local trivialization $\Phi: U \times \mathbb{K}^{r} \rightarrow \pi^{-1} U$ of E around p and an s-dimensional linear subspace $V \subset \mathbb{K}^{r}$ such that

$$
\Phi(U \times V)=\pi^{-1} U \cap E^{\prime}
$$

Then E^{\prime} is in a natural way a vector bundle over M.

Example If $N \subset M$ is a submanifold then the tangent bundle $T N$ is a subbundle of $\left.T M\right|_{N}$.

By a section of a vector bundle $\pi: E \rightarrow M$ we mean a smooth map $s: M \rightarrow E$ such that $\pi \circ s=\operatorname{Id}_{M}$. The vector space $\Gamma(E)$ of all sections of E is a module over the ring $\mathcal{D}(M, \mathbb{K})$. Addition in $\Gamma(E)$ and multiplication by functions are defined pointwise by

$$
\begin{aligned}
(s+t)(p) & :=s(p)+t(p), \\
(f s)(p) & :=f(p) s(p)
\end{aligned}
$$

for $s, t \in \Gamma(E)$ and $f \in \mathcal{D}(M, \mathbb{K})$.
By definition, a vector field on M is a section of $T M$. We denote by $\mathcal{X}(M)=\Gamma(T M)$ the $\mathcal{D}(M)$-module of all vector fields on M.

Let $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M^{\prime}$ be \mathbb{K}-vector bundles and $f: M \rightarrow M^{\prime}$ a map. A smooth map $F: E \rightarrow E^{\prime}$ is called a bundle homomorphism over f if F maps each fibre E_{p} linearly into $E_{f(p)}^{\prime}$. (This implies that f is smooth.) If in addition $M=M^{\prime}$ and f is the identity map then F is called a bundle homomorphism. A bundle homomorphism $F: E \rightarrow E^{\prime}$ which is also a diffeomorphism is called a bundle isomorphism. A vector bundle is called trivial if it is isomorphic to a product bundle.

Examples (i) If $f: M \rightarrow M^{\prime}$ is a smooth map between manifolds then the tangent map $T f: T M \rightarrow T M^{\prime}$ is a bundle homomorphism over f.
(ii) If $\pi: E \rightarrow M$ is a vector bundle and $f: N \rightarrow M$ a smooth map then there is a canonical bundle homomorphism

$$
f^{*} E \rightarrow E
$$

obtained by restricting the projection $N \times E \rightarrow E$ to $f^{*} E$.
(iii) Let $E=M \times \mathbb{K}^{r}$ and $E=M \times \mathbb{K}^{s}$ be product bundles over M. Then a bundle homomorphism $E \rightarrow E^{\prime}$ has the form

$$
M \times \mathbb{K}^{r} \rightarrow M \times \mathbb{K}^{s}, \quad(p, v) \mapsto(p, \alpha(p) v)
$$

for some smooth map α from M into the space $M(s \times r, \mathbb{K})$ of $s \times r$ matrices with entries in \mathbb{K}.

Let $E \rightarrow M$ be a \mathbb{K}-bundle of rank r and let $U \subset M$ be an open subset. By a frame for E over U we mean an r-tuple $\left(s_{1}, \ldots, s_{r}\right)$ of sections of $\left.E\right|_{U}$
such that $\left(s_{1}(p), \ldots, s_{r}(p)\right)$ is a basis for E_{p} for all $p \in U$. If $U=M$ then $\left(s_{1}, \ldots, s_{r}\right)$ is called a global frame. In that case the map

$$
M \times \mathbb{K}^{r} \rightarrow E, \quad(p, v) \mapsto \sum_{j=1}^{r} v^{j} s_{j}(p)
$$

is a bijective bundle homomorphism and therefore an isomorphism. Conversely, such an isomorphism clearly gives rise to a global frame.

2 Connections

Given a section s of a vector bundle $E \rightarrow M$ and a vector field X on M we would like to have some kind of derivative $\nabla_{X} s$ of s with respect to X. This derivative should be a new section of E. Because there is no canonical isomorphism between the fibres of E at two different points, we are unable to define a canonical derivative of this kind. Instead, we will formulate some properties that we would like such a derivative to have.

By a connection (or covariant derivative) in a \mathbb{K}-vector bundle $E \rightarrow$ M we mean a map

$$
\nabla: \mathcal{X}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, s) \mapsto \nabla_{X} s
$$

such that for all $X, Y \in \mathcal{X}(M), s, t \in \Gamma(E)$, and $f \in \mathcal{D}(M, \mathbb{K})$ one has
(i) $\nabla_{X+Y}(s)=\nabla_{X} s+\nabla_{Y} s$,
(ii) $\nabla_{f X}(s)=f \nabla_{X} s$,
(iii) $\nabla_{X}(s+t)=\nabla_{X} s+\nabla_{X} t$,
(iv) $\nabla_{X}(f s)=(X f) s+f \nabla_{X} s$.

Note that if f is constant, say $f \equiv \alpha$, then $X f=0$, so (iv) gives

$$
\nabla_{X}(\alpha s)=\alpha \nabla_{X} s
$$

A section s is called covariantly constant, or parallel, if $\nabla_{X} s=0$ for all vector fields X.

Example A product bundle $E=M \times V \rightarrow M$ has a canonical connection ∇ called the product connection. To define this, note that to any function $h: M \rightarrow V$ we can associate a section \tilde{h} of E given by

$$
\tilde{h}(p)=(p, h(p)),
$$

and any section of E has this form. Now define $\nabla_{X} \tilde{h}$ to be the section corresponding to the function $X h$, i.e.

$$
\nabla_{X} \tilde{h}:=\widetilde{X h} .
$$

Theorem 2.1 Any vector bundle $E \rightarrow M$ admits a connection ∇.
Proof. Choose an open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of M such that $\left.E\right|_{U_{\alpha}}$ is trivial for each α. Choose a partition of unity $\left\{g_{\alpha}\right\}$ subordinate to this cover. By the example above, each bundle $\left.E\right|_{U_{\alpha}}$ admits a connection ∇^{α}. Now define, for any section s of E and vector field X on M,

$$
\nabla_{X} s:=\sum_{\alpha} g_{\alpha} \nabla_{X}^{\alpha}(s),
$$

where $\nabla_{X}^{\alpha}(s)$, defined initially on U_{α}, is extended trivially to all of M. Then ∇ clearly satisfies the first three axioms for a connection. To verify the fourth one, let $f \in \mathcal{D}(M, \mathbb{K})$. Then

$$
\begin{aligned}
\nabla_{X}(f s) & =\sum_{\alpha} g_{\alpha}\left(X f \cdot s+f \nabla_{X}^{\alpha}(s)\right) \\
& =X f \cdot s+f \sum_{\alpha} g_{\alpha} \nabla_{X}^{\alpha}(s) \\
& =X f \cdot s+f \nabla_{X}(s) .
\end{aligned}
$$

For an arbitrary connection ∇ we will now investigate the dependence of $\nabla_{X} s$ on the two variables X and s, beginning with s.

Proposition 2.1 Let ∇ be a connection in $E \rightarrow M$ and X a vector field on M. Then ∇_{X} is a local operator, i.e. if a section s of E vanishes on an open subset $U \subset M$ then ∇_{X} s vanishes on U, too.

Proof. Suppose $\left.s\right|_{U}=0$ and let $p \in U$. Choose a smooth real function f on M which is supported in U and satisfies $f(p)=1$. Then $f s=0$, so

$$
0=\nabla_{X}(f s)=X f \cdot s+f \nabla_{X} s
$$

Evaluating this equation at p gives $\left(\nabla_{X} s\right)(p)=0$.
Proposition 2.2 Let E, E^{\prime} be \mathbb{K}-vector bundles over M and

$$
A: \Gamma(E) \rightarrow \Gamma\left(E^{\prime}\right)
$$

a $\mathcal{D}(M, \mathbb{K})$-linear map. Then there exists a unique bundle homomorphism $a: E \rightarrow E^{\prime}$ such that $A s=$ as for all $s \in \Gamma(E)$.

Explicitly, the assumption on A is that

$$
A(s+t)=A s+A t, \quad A(f s)=f A s
$$

for all $s, t \in \Gamma(E)$ and $f \in \mathcal{D}(M, \mathbb{K})$. The main point in the proposition is that $(A s)(p)$ depends only on the value of s at p.

Proof of proposition. Uniqueness follows from the fact that for any $p \in M$ and $v \in E_{p}$ there exists a section s of E with $s(p)=v$. To prove existence of a, let $p \in M$ and $v \in E_{p}$. Choose a section s of E with $s(p)=v$ and define

$$
a v:=(A s)(p) .
$$

To show that $a v$ is independent of the choice of s it suffices to verify that if t is any section of E with $t(p)=0$ then $(A t)(p)=0$. Let r be the rank of E. Choose sections s_{1}, \ldots, s_{r} of E which are linearly independent at every point in some neighbourhood U of p. Choose a smooth real function f on M which is supported in U and satisfies $f(p)=1$. Then

$$
f t=\sum_{j} g^{j} s_{j}
$$

for some uniquely determined \mathbb{K}-valued functions g^{1}, \ldots, g^{r} on M that vanish outside U. Clearly, $g^{j}(p)=0$. Applying A to both sides of the above equation we obtain

$$
f A t=\sum_{j} g^{j} A s_{j},
$$

and evaluating both sides of this equation at p gives $(A t)(p)=0$ as required.

Corollary 2.1 Let ∇ be a connection in $E \rightarrow M$ and $s \in \Gamma(E)$, $p \in M$. If X, Y are vector fields on M satisfying $X_{p}=Y_{p}$ then $\left(\nabla_{X} s\right)(p)=\left(\nabla_{Y} s\right)(p)$.

Proof. This follows from the proposition because for given s the map

$$
X \mapsto \nabla_{X} s
$$

is $\mathcal{D}(M)$-linear.
The corollary allows us to define $\nabla_{v} s$ for any tangent vector $v \in T_{p} M$. Namely, choose any vector field X with $X_{p}=v$ and set

$$
\nabla_{v} s:=\left(\nabla_{X} s\right)(p) .
$$

Proposition 2.3 Let $E_{1}, \ldots, E_{m}, E^{\prime}$ be \mathbb{K}-vector bundles over M and

$$
B: \Gamma\left(E_{1}\right) \times \cdots \times \Gamma\left(E_{m}\right) \rightarrow \Gamma\left(E^{\prime}\right)
$$

a $\mathcal{D}(M, \mathbb{K})$-multilinear map. Then there exists for each $p \in M a \mathbb{K}$ multilinear map

$$
B_{p}:\left(E_{1}\right)_{p} \times \cdots \times\left(E_{m}\right)_{p} \rightarrow E_{p}^{\prime}
$$

such that if $s_{j} \in \Gamma\left(E_{j}\right), j=1, \ldots, m$ then

$$
\begin{equation*}
B\left(s_{1}, \ldots, s_{m}\right)(p)=B_{p}\left(s_{1}(p), \ldots, s_{m}(p)\right) \tag{1}
\end{equation*}
$$

Proof. If at least one of the sections s_{j} vanishes at p then, by Proposition 2.2, $B\left(s_{1}, \ldots, s_{m}\right)$ also vanishes at p. By repeated application of this we see that if for each j we are given a pair of sections s_{j}, t_{j} of E_{j} with the same value at p then

$$
B\left(s_{1}, \ldots, s_{m}\right)(p)=B\left(t_{1}, \ldots, t_{m}\right)(p)
$$

We can now define B_{p} by (1).
Proposition 2.4 Let $E \rightarrow M$ be a \mathbb{K}-vector bundle.
(i) If ∇, ∇^{\prime} are connections in E then there exists a unique bundle homomorphism $a: T M \rightarrow E n d_{\mathbb{K}}(E)$ such that for all vector fields X on M and sections s of E one has

$$
\nabla_{X}^{\prime} s-\nabla_{X} s=a(X) \cdot s
$$

(ii) If ∇ is any connection in E and $a: T M \rightarrow E n d_{\mathbb{K}}(E)$ a bundle homomorphism then there is a connection ∇^{\prime} in E given by

$$
\nabla_{X}^{\prime} s=\nabla_{X} s+a(X) \cdot s
$$

Proof. The second statement is easily verified. To prove the first one, set

$$
B: \mathcal{X}(X) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, s) \mapsto \nabla_{X}^{\prime} s-\nabla_{X} s
$$

First assume $\mathbb{K}=\mathbb{R}$. It is easy to see that B is $\mathcal{D}(M)$-bilinear, so by Proposition 2.2 it is given by a collection of bilinear maps

$$
T_{p} M \times E_{p} \rightarrow E_{p}, \quad p \in M
$$

or equivalently, by a collection of linear maps

$$
T_{p} M \rightarrow \operatorname{End}\left(E_{p}\right)
$$

Together, these maps make up the desired bundle homomorphism a. If $\mathbb{K}=\mathbb{C}$ just observe that a takes values in $\operatorname{End}_{\mathbb{C}}(E)$.

Example Let $E \rightarrow M$ be a trivial vector bundle and $\left(s_{1}, \ldots, s_{r}\right)$ a global frame for E. Then there is a 1-1 correspondence between connections in E and $r \times r$ matrices $\omega=\left(\omega_{j}^{i}\right)$ of \mathbb{K}-valued 1 -forms on M specified by the formula

$$
\begin{equation*}
\nabla_{X} s_{j}=\sum_{i=1}^{r} \omega_{j}^{i}(X) s_{i} \tag{2}
\end{equation*}
$$

for vector fields X on M. To deduce this from the proposition, let ∇^{0} be the product connection in E given by $\nabla_{X} s_{j}=0$. Then any other connection in E has the form $\nabla^{0}+a$, where in this case a is given by an $r \times r$ matrix of 1 -forms.

Note that ω can be thought of as a matrix-valued 1 -form on M. We call ω the connection form of ∇ with respect to the given global frame.

3 Pull-back connections

Let $\pi: E \rightarrow M$ be a vector bundle and $f: \tilde{M} \rightarrow M$ a smooth map. By a section of E along f we mean a smooth map $t: \tilde{M} \rightarrow E$ such that $\pi \circ t=f$. We will usually identify such a map t with the corresponding section \tilde{s} of the pull-back bundle $f^{*} E$ given by $\tilde{s}(p)=(p, t(p))$. Note that if s is a section of E then $f^{*} s:=s \circ f$ is a section of E along f.

Proposition 3.1 Let ∇ be a connection in $E \rightarrow M$ and $f: \tilde{M} \rightarrow M$ a smooth map. Then there exists a unique connection $\tilde{\nabla}=f^{*} \nabla$ in $\tilde{E}:=f^{*} E$ such that for all $s \in \Gamma(E), p \in \tilde{M}$, and $v \in T_{p} \tilde{M}$ we have

$$
\begin{equation*}
\tilde{\nabla}_{v}\left(f^{*} s\right)=\nabla_{f_{*} v}(s) \quad \text { in } \tilde{E}_{p}=E_{f(p)} \tag{3}
\end{equation*}
$$

where $f_{*}: T_{p} \tilde{M} \rightarrow T_{f(p)} M$ is the tangent map of f.
Proof. Uniqueness follows from the fact that if $\left\{s_{j}\right\}$ is a frame for E over an open set $U \subset M$ then $\left\{f^{*} s_{j}\right\}$ is a frame for \tilde{E} over $f^{-1} U$. We prove existence in three steps.
(i) First suppose \tilde{M} is an open subset of M and f the inclusion map, so that \tilde{E} is just the restriction of E to \tilde{M}. In this case the existence of $\tilde{\nabla}$ follows from Proposition 2.1 and Corollary 2.1.
(ii) Next we consider the case when E is trivial. Let $\left(s_{1}, \ldots, s_{r}\right)$ be a global frame for E and $\left(\omega_{j}^{i}\right)$ the matrix of 1 -forms on M with

$$
\nabla_{Y} s_{j}=\sum_{i} \omega_{j}^{i}(Y) s_{i}
$$

for vector fields Y on M. Set $\tilde{s}_{j}:=f^{*} s_{j}$ and $\tilde{\omega}_{j}^{i}:=f^{*} \omega_{j}^{i}$, and let $\tilde{\nabla}$ be the unique connection in \tilde{E} such that

$$
\tilde{\nabla}_{X} \tilde{s}_{j}=\sum_{i} \tilde{\omega}_{j}^{i}(X) \tilde{s}_{i}
$$

for vector fields X on \tilde{M}. We now verify that $\tilde{\nabla}$ satisfies (3). Let $p \in \tilde{M}, v \in$ $T_{p} \tilde{M}$, and $s \in \Gamma(E)$. Then $s=\sum_{j} h^{j} s_{j}$ for some functions $h^{j} \in \mathcal{D}(M, \mathbb{K})$. Set $q:=f(p), w:=f_{*} v$, and $g^{j}:=h^{j} \circ f$. Then $f^{*} s=\sum_{j} g^{j} \tilde{s}_{j}$, and

$$
\tilde{\nabla}_{v} \tilde{s}_{j}=\sum_{i} \tilde{\omega}_{j}^{i}(v) \tilde{s}_{i}(p)=\sum_{i} \omega_{j}^{i}(w) s_{i}(q)=\nabla_{w} s_{j}
$$

So

$$
\begin{aligned}
\tilde{\nabla}_{v}\left(f^{*} s\right) & =\sum_{j}\left[v\left(g^{j}\right) \cdot \tilde{s}_{j}(p)+g^{j}(p) \cdot \tilde{\nabla}_{v} \tilde{s}_{j}\right] \\
& =\sum_{j}\left[w\left(h^{j}\right) \cdot s_{j}(q)+h^{j}(q) \cdot \nabla_{w} s_{j}\right] \\
& =\nabla_{w} s
\end{aligned}
$$

(iii) In the general case, choose an open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of M such that $\left.E\right|_{U_{\alpha}}$ is trivial for each α. Set $\tilde{U}_{\alpha}:=f^{-1} U_{\alpha}$. By case (ii), we have a pullback connection $\tilde{\nabla}^{\alpha}$ in $\left.\tilde{E}\right|_{\tilde{U}_{\alpha}}$. By uniqueness, $\tilde{\nabla}^{\alpha}$ and $\tilde{\nabla}^{\beta}$ restrict to the same connection on $\tilde{U}_{\alpha} \cap \tilde{U}_{\beta}$ for each $\alpha, \beta \in I$. Hence, the connections $\tilde{\nabla}^{\alpha}$ patch together to give the desired connection in \tilde{E}.

Example Let $E \rightarrow M$ be a \mathbb{K}-vector bundle with connection ∇ and

$$
\gamma: I \rightarrow M, \quad t \mapsto \gamma(t)
$$

a smooth path in M, where $I \subset \mathbb{R}$ is an interval. Proposition 3.1 provides a \mathbb{K}-linear operator $\frac{D}{d t}:=\left(\gamma^{*} \nabla\right)_{\frac{d}{d t}}$ acting on sections of E along γ with the follwing properties.

- For all smooth functions $f: I \rightarrow \mathbb{K}$ and sections σ of E along γ one has

$$
\frac{D}{d t}(f \sigma)=\frac{d f}{d t} \cdot \sigma+f \cdot \frac{D \sigma}{d t} .
$$

- If $\sigma=f^{*} s$ is the pull-back of a section s of E then

$$
\frac{D \sigma}{d t}=\nabla_{\frac{d \gamma}{d t}}(s) .
$$

4 Holonomy

Proposition 4.1 Let $E \rightarrow M$ be a \mathbb{K}-vector bundle with connection ∇, and let $\gamma: I \rightarrow M$ be a smooth curve. Let $t_{0} \in I$ and $v \in E_{\gamma\left(t_{0}\right)}$. Then there exists a unique parallel section σ of E along γ such that $\sigma\left(t_{0}\right)=v$.

Here, σ is called parallel if $\frac{D \sigma}{d t}=0$.
Proof. It is a simple exercise to show that any vector bundle over an interval is trivial. Hence, there exists a global frame $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ of the pullback bundle $\gamma^{*} E$. In terms of this frame, the operator $\frac{D}{d t}$ is given by an $r \times r$ matrix $\left(c_{j}^{i}\right)$ of functions $I \rightarrow \mathbb{K}$ such that

$$
\frac{D \sigma_{j}}{d t}=\sum_{i} c_{j}^{i} \sigma_{i} .
$$

We are therefore seeking smooth \mathbb{K}-valued functions f^{1}, \ldots, f^{r} on the interval I with specified values at t_{0} such that

$$
\begin{aligned}
0 & =\frac{D}{d t} \sum_{j} f^{j} \sigma_{j}=\sum_{j}\left(\frac{d f^{j}}{d t} \cdot \sigma_{j}+f^{j} \sum_{i} c_{j}^{i} \sigma_{i}\right) \\
& =\sum_{i}\left(\frac{d f^{i}}{d t}+\sum_{j} c_{j}^{i} f^{j}\right) \sigma_{i}
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
\frac{d f^{i}}{d t}+\sum_{j} c_{j}^{i} f^{j}=0, \quad i=1, \ldots, r . \tag{4}
\end{equation*}
$$

Because this is a linear system of ordinary differential equations, it has a unique solution with given values at t_{0}.

The proposition allows us to define for any $a, b \in I$ the holonomy map, or parallel transport,

$$
\operatorname{Hol}_{a}^{b}:=\operatorname{Hol}_{a}^{b}(\nabla, \gamma): E_{\gamma(a)} \stackrel{\approx}{\rightrightarrows} E_{\gamma(b)}
$$

of ∇ along γ. This is the linear isomorphism characterized by the property that if σ is any parallel section of E along γ then

$$
\operatorname{Hol}_{a}^{b}(\sigma(a))=\sigma(b)
$$

Clearly, if $a, b, c \in I$ then

$$
\operatorname{Hol}_{a}^{c}=\operatorname{Hol}_{b}^{c} \circ \operatorname{Hol}_{a}^{b}
$$

We can exploit this property to define $\operatorname{Hol}_{a}^{b}$ even if γ is only piecewise smooth. Namely, if

$$
a=a_{0}<a_{1}<\cdots<a_{n}=b
$$

and $\gamma_{\left[a_{i-1}, a_{i}\right]}$ is smooth for $i=1, \ldots, n$ we define $\operatorname{Hol}_{a}^{b}$ to be the composite of the holonomies along each subinterval, i.e.

$$
\begin{equation*}
\operatorname{Hol}_{a}^{b}:=\operatorname{Hol}_{a_{n-1}}^{a_{n}} \circ \cdots \circ \operatorname{Hol}_{a_{1}}^{a_{2}} \circ \operatorname{Hol}_{a_{0}}^{a_{1}} \tag{5}
\end{equation*}
$$

The following property expresses a connection in terms of its holonomy.
Proposition 4.2 Let ∇ be a connection in a vector bundle $E \rightarrow M$ and s a section of E. Let $\gamma:(-\epsilon, \epsilon) \rightarrow M$ be a smooth curve, where $\epsilon>0$. For $-\epsilon<t<\epsilon$ set

$$
h_{t}:=\operatorname{Hol}_{t}^{0}(\nabla, \gamma): E_{\gamma(t)} \rightarrow E_{\gamma(0)}
$$

Then

$$
\nabla_{\gamma^{\prime}(0)}(s)=\left.\frac{d}{d t}\right|_{0} h_{t}(s(\gamma(t)))
$$

Note that $t \mapsto h_{t}(s(\gamma(t)))$ is a curve in the finite-dimensional vector space $E_{\gamma(0)}$, and we are differentiating this curve at 0 in the usual sense.

Proof. Let $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ be a global frame for $\gamma^{*} E$ consisting of parallel sections. Then $\gamma^{*} s=\sum_{j} f^{j} \sigma_{j}$ for some functions $f^{j}:(-\epsilon, \epsilon) \rightarrow \mathbb{K}$. Now,

$$
h_{t}(s(\gamma(t)))=\sum_{j} f^{j}(t) \cdot \sigma_{j}(0)
$$

and

$$
\nabla_{\gamma^{\prime}(0)}(s)=\frac{D \gamma^{*} s}{d t}(0)=\sum_{j}\left(f^{j}\right)^{\prime}(0) \cdot \sigma_{j}(0)=\left.\frac{d}{d t}\right|_{0} h_{t}(s(\gamma(t)))
$$

5 Curvature

The curvature $F=F^{\nabla}$ of a connection ∇ in a \mathbb{K}-vector bundle $E \rightarrow M$ associates to any pair X, Y of vector fields on M the map $\Gamma(E) \rightarrow \Gamma(E)$ given by

$$
F(X, Y) s:=\nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s
$$

If $F(X, Y)=0$ for all X, Y then ∇ is called flat. We will sometimes use the notation

$$
\left[\nabla_{X}, \nabla_{Y}\right]:=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}
$$

Example Let ∇ be the product connection in $E:=M \times \mathbb{K}^{r} \rightarrow M$. Identifying sections of E with functions $h: M \rightarrow \mathbb{K}^{r}$ we have $\nabla_{X} h=X h$, so

$$
\nabla_{X} \nabla_{Y} h-\nabla_{Y} \nabla_{X} h=X Y h-Y X h=[X, Y] h=\nabla_{[X, Y]} h
$$

Therefore, the product connection is flat.
Proposition 5.1 Let ∇ be a connection in a vector bundle $E \rightarrow M$. Then The map

$$
\mathcal{X}(M) \times \mathcal{X}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, Y, s) \mapsto F(X, Y) s
$$

is $\mathcal{D}(M, \mathbb{K})$-multilinear. Hence, F defines for each $p \in M$ a skew-symmetric bilinear map

$$
F_{p}: T_{p} M \times T_{p} M \rightarrow E n d_{\mathbb{K}}\left(E_{p}\right)
$$

Proof. We prove linearity in X (and hence in Y because of the skewsymmetry), leaving the linearity in s as an exercise for the reader.

Let $g \in \mathcal{D}(M, \mathbb{K})$. Then

$$
[g X, Y]=g[X, Y]-(Y g) X
$$

so

$$
\begin{aligned}
F(g X, Y) & =\nabla_{g X} \nabla_{Y} s-\nabla_{Y} \nabla_{g X} s-\nabla_{[g X, Y]} s \\
& =g \nabla_{X} \nabla_{Y} s-\left[(Y g) \nabla_{X} s+g \nabla_{Y} \nabla_{X} s\right]-\left[g \nabla_{[X, Y]} s-(Y g) \nabla_{X} s\right] \\
& =g F(X, Y) s .
\end{aligned}
$$

It follows from the proposition that if E is trivial and $\left(s_{1}, \ldots, s_{r}\right)$ is a global frame for E then there is an $r \times r$ matrix $\left(\Omega_{j}^{i}\right)$ of 2 -forms on M, called the curvature form of ∇ with respect to the given frame, such that for all vector fields X, Y on M one has

$$
F(X, Y) s_{j}=\sum_{i} \Omega_{j}^{i}(X, Y) s_{i} .
$$

Theorem 5.1 Let ∇ be a connection in a trivial vector bundle $E \rightarrow M$, and let $\left(s_{1}, \ldots, s_{r}\right)$ be a global frame for E. Let $\omega=\left(\omega_{j}^{i}\right)$ and $\Omega=\left(\Omega_{j}^{i}\right)$ be the corresponding connection form and curvature form of ∇, respectively. Then for all i, k one has

$$
\Omega_{k}^{i}=d \omega_{k}^{i}+\sum_{j} \omega_{j}^{i} \wedge \omega_{k}^{j}
$$

In matrix notation,

$$
\Omega=d \omega+\omega \wedge \omega
$$

Proof. Recall that for any 1 -forms α, β on M one has

$$
\begin{aligned}
(\alpha \wedge \beta)(X, Y) & =\alpha(X) \beta(Y)-\alpha(Y) \beta(X) \\
(d \alpha)(X, Y) & =X(\alpha(Y))-Y(\alpha(X))-\alpha([X, Y])
\end{aligned}
$$

Now

$$
\begin{aligned}
\nabla_{X} \nabla_{Y} s_{k} & =\sum_{j} \nabla_{X}\left(\omega_{k}^{j}(Y) s_{j}\right) \\
& =\sum_{j}\left(X\left(\omega_{k}^{j}(Y) \cdot s_{j}+\omega_{k}^{j}(Y) \sum_{i} \omega_{j}^{i}(X) s_{i}\right)\right. \\
& =\sum_{i}\left(X\left(\omega_{k}^{i}(Y)+\sum_{j} \omega_{j}^{i}(X) \omega_{k}^{j}(Y)\right) s_{i},\right.
\end{aligned}
$$

and of course there is a similar formula with X, Y switched. Combining this with

$$
\nabla_{[X, Y]} s_{k}=\sum_{i} \omega_{k}^{i}([X, Y]) s_{i}
$$

we obtain

$$
F(X, Y) s_{k}=\sum_{i}\left(d \omega_{k}^{i}+\sum_{j} \omega_{j}^{i} \wedge \omega_{k}^{j}\right)(X, Y) \cdot s_{i}
$$

Corollary 5.1 In the situation of the theorem, let $f: \tilde{M} \rightarrow M$ be a smooth map and $\left(\tilde{\Omega}_{j}^{i}\right)$ the curvature form of the pull-back connection $f^{*} \nabla$ with respect to the global frame $\left(f^{*} s_{j}\right)$ for $f^{*} E$. Then

$$
\tilde{\Omega}_{j}^{i}=f^{*} \Omega_{j}^{i} .
$$

6 Orthogonal connections

By a Euclidean metric on a real vector bundle $E \rightarrow M$ we mean a choice of scalar product $\langle\cdot, \cdot\rangle$ on each fibre E_{p} such that for every pair s, t of sections of E the function

$$
M \rightarrow \mathbb{R}, \quad p \mapsto\langle s(p), t(p)\rangle
$$

is smooth. A real vector bundle equipped with a Euclidean metric is called a Euclidean vector bundle.

Example The product bundle $M \times \mathbb{R}^{k} \rightarrow M$ where each fibre has the standard Euclidean metric.

Theorem 6.1 Every real vector bundle admits a Euclidean metric.
Proof. Glue together local Euclidean metrics using a partition of unity.
Let $E \rightarrow M$ be a Euclidean vector bundle of rank k. By an orthonormal frame for E over an open set $U \subset M$ we mean a k-tuple $\left(s_{1}, \ldots, s_{k}\right)$ of sections of $\left.E\right|_{U}$ such that $\left(s_{1}(p), \ldots, s_{k}(p)\right)$ is an orthonormal basis for E_{p} for every $p \in U$. Note that the Gram-Schmidt process applied pointwise to an arbitrary frame for E over U yields an orthonormal frame.

Let $E \rightarrow M$ be a real vector bundle equipped with a connection ∇ as well as a Euclidean metric. Then ∇ is called orthogonal, or compatible with the Euclidean metric, if for all sections s, t of E and vector fields X on M one has

$$
X\langle s, t\rangle=\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle .
$$

Example If each fibre of a product bundle $E=M \times \mathbb{R}^{k} \rightarrow M$ has the same scalar product, then the product connection in E is orthogonal.

Theorem 6.2 Every Euclidean vector bundle admits an orthogonal connection.

Proof. This is proved just as Theorem 2.1.
For any finite-dimensional Euclidean space V let so (V) denote the Lie algebra of skew-symmetric linear endomorphisms of V. If $E \rightarrow M$ is a Euclidean vector bundle then we can apply this construction fibrewise to obtain a subbundle

$$
\operatorname{so}(E):=\bigcup_{p \in M} \operatorname{so}\left(E_{p}\right)
$$

of the endomorphism bundle $\operatorname{End}(E)$.

Proposition 6.1 Let ∇ be an orthogonal connection in a Euclidean vector bundle $E \rightarrow M$, and $a: T M \rightarrow E n d(E)$ a bundle homomorphism. Then the connection $\nabla+a$ is orthogonal if and only if a takes values in so (E).

Proof. Set $\nabla^{\prime}:=\nabla+a$. Then for any vector field X on M and sections s, t of E one has

$$
\left\langle\nabla_{X}^{\prime} s, t\right\rangle+\left\langle s, \nabla_{X}^{\prime} t\right\rangle=X\langle s, t\rangle+\langle a(X) s, t\rangle+\langle s, a(X) t\rangle
$$

From this the proposition follows immediately.
Theorem 6.3 Let $E \rightarrow M$ be a real vector bundle equipped with both a connection ∇ and a Euclidean metric. Then the following are equivalent.
(i) ∇ is orthogonal.
(ii) For every piecewise smooth curve $\gamma:[a, b] \rightarrow M$ the holonomy $E_{\gamma(a)} \rightarrow$ $E_{\gamma(b)}$ of ∇ along γ is an orthogonal linear map.

Proof. Suppose ∇ is orthogonal and let $\gamma:[a, b] \rightarrow M$ be a piecewise smooth curve. We will show that the holonomy of ∇ along γ is orthogonal. Because of the composition law (5) for the holonomy we may assume γ is smooth. We may in fact also assume E is trivial, since for any sufficiently fine partion of the interval $[a, b]$ the image of each subinterval under γ will be contained in an open subset of M over which E is trivial.

Let $\left(\omega_{j}^{i}\right)$ be the connection form of ∇ with respect to a global frame $\left(s_{1}, \ldots, s_{k}\right)$ for E. Then

$$
\begin{aligned}
0 & =X\left\langle s_{i}, s_{j}\right\rangle \\
& =\left\langle\nabla_{X} s_{i}, s_{j}\right\rangle+\left\langle s_{i}, \nabla_{X} s_{j}\right\rangle \\
& =\left\langle\sum_{k} \omega_{i}^{k}(X) s_{k}, s_{j}\right\rangle+\left\langle s_{i}, \sum_{k} \omega_{j}^{k}(X) s_{k}\right\rangle \\
& =\omega_{i}^{j}(X)+\omega_{j}^{i}(X)
\end{aligned}
$$

so that $\omega_{j}^{i}=-\omega_{i}^{j}$. Now let σ be a parallel section of E along γ. We will show that the pointwise norm $|\sigma|$ is a constant function on $[a, b]$, which implies that the holonomy of ∇ along γ is orthogonal. Since $\left(\gamma^{*} s_{i}\right)$ is a global orthonormal frame for $\gamma^{*} E$ we have $\sigma=\sum_{i} f^{i} \gamma^{*} s_{i}$ for some real-valued functions f^{i} on the interval $[a, b]$, and

$$
|\sigma|^{2}=\sum_{i}\left(f^{i}\right)^{2}
$$

Let c_{j}^{i} be the functions given by $\gamma^{*} \omega_{j}^{i}=c_{j}^{i} d t$. Equation (4) now yields

$$
\frac{d}{d t}|\sigma(t)|^{2}=2 \sum_{i} f^{i} \cdot \frac{d f^{i}}{d t}=-2 \sum_{i j} f^{i} f^{j} c_{j}^{i}=0
$$

by the skew-symmetry of the matrix $\left(c_{j}^{i}\right)$. Hence, σ has constant length as claimed.

To prove the reverse implication in the proposition, suppose (ii) holds and let s_{1}, s_{2} be a pair of sections of E and X a vector field on M. Given a point $p \in M$ we can find $\epsilon>0$ and a smooth curve

$$
\gamma:(-\epsilon, \epsilon) \rightarrow M
$$

such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=X_{p}$. For $-\epsilon<t<\epsilon$ let

$$
h_{t}=\operatorname{Hol}_{t}^{0}(\nabla, \gamma): E_{\gamma(t)} \rightarrow E_{p}
$$

be the holonomy of ∇, which is orthogonal by assumption. Using Proposition 4.2 we obtain

$$
\begin{aligned}
X_{p}\left\langle s_{1}, s_{2}\right\rangle & =\left.\frac{d}{d t}\right|_{0}\left\langle s_{1}(\gamma(t)), s_{2}(\gamma(t))\right\rangle \\
& =\left.\frac{d}{d t}\right|_{0}\left\langle h_{t} s_{1}(\gamma(t)), h_{t} s_{2}(\gamma(t))\right\rangle \\
& =\left\langle\left.\frac{d}{d t}\right|_{0} h_{t} s_{1}(\gamma(t)), s_{2}(p)\right\rangle+\left\langle s_{1}(p),\left.\frac{d}{d t}\right|_{0} h_{t} s_{2}(\gamma(t))\right\rangle \\
& =\left\langle\nabla_{X} s_{1}, s_{2}\right\rangle_{p}+\left\langle s_{1}, \nabla_{X} s_{2}\right\rangle_{p}
\end{aligned}
$$

which shows that ∇ is orthogonal.
Proposition 6.2 Let ∇ be an orthogonal connection in a Euclidean vector bundle $E \rightarrow M$ and F the curvature of ∇. Then $F(X, Y)$ is a section of so (E) for all vector fields X, Y on M.

Proof. For any sections s, t of E we have

$$
X Y\langle s, t\rangle=\left\langle\nabla_{X} \nabla_{Y} s, t\right\rangle+\left\langle\nabla_{Y} s, \nabla_{X} t\right\rangle+\left\langle\nabla_{X} s, \nabla_{Y} t\right\rangle+\left\langle s, \nabla_{X} \nabla_{Y} t\right\rangle .
$$

Combining this with the corresponding equality with X and Y interchanged we obtain

$$
\begin{aligned}
\left\langle\left[\nabla_{X}, \nabla_{Y}\right] s, t\right\rangle+\left\langle s,\left[\nabla_{X}, \nabla_{Y}\right] t\right\rangle & =[X, Y]\langle s, t\rangle \\
& =\left\langle\nabla_{[X, Y]} s, t\right\rangle+\left\langle s, \nabla_{[X, Y]} t\right\rangle .
\end{aligned}
$$

Therefore,

$$
\langle F(X, Y) s, t\rangle+\langle s, F(X, Y) t\rangle=0
$$

