Vector bundles and connections

Kim A. Frøyshov

1 Vector bundles

In the following, let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Smooth manifolds are assumed to be second countable. For a smooth manifold M we denote by $\mathcal{D}(M,\mathbb{K})$ the ring of smooth functions $M \to \mathbb{K}$, and we set $\mathcal{D}(M) := \mathcal{D}(M,\mathbb{R})$.

By definition, a **smooth** \mathbb{K} -vector bundle of rank r over a smooth manifold M consists of

- a smooth manifold E called the **total space** of the bundle,
- a smooth map $\pi: E \to M$ called the **projection**,
- for each $p \in M$ a K-vector space structure on the fibre $E_p := \pi^{-1}(p)$,

such that the axiom of **local triviality** holds: For each $p \in M$ there should exist an open neighbourhood U of p and a diffeomorphism $\Phi: U \times \mathbb{K}^r \to \pi^{-1}U$ such that

- $\pi \circ \Phi(q, v) = q$ for all $(q, v) \in U \times \mathbb{K}^r$,
- for each $q \in U$ the map

$$\Phi_q: \mathbb{K}^r \to E_q, \quad v \mapsto \Phi(q, v)$$

is a linear isomorphism.

Such a diffeomorphism Φ is called a **local trivialization** of E. If r=1 then E is called a (real or complex) **line bundle** over M.

Examples (i) The product bundle

$$M \times V \to M$$
, $(q, v) \mapsto q$,

where V is any finite-dimensional \mathbb{K} -vector space.

(ii) The tangent bundle $TM \to M$.

- (iii) If $\pi: E \to M$ is a vector bundle and $N \subset M$ a submanifold, then $E|_N := \pi^{-1}N$ is a vector bundle over N.
- (iv) More generally, if $\pi: E \to M$ is a vector bundle and $f: N \to M$ a smooth map, then

$$f^*E := \{(q, v) \in N \times E \mid f(q) = \pi(v)\}$$

is a vector bundle over N called the **pull-back** of E by f.

(v) To any vector space V we can associate its dual vector space V^* . This construction can also be applied fibrewise to vector bundles. Namely, if $\pi_E: E \to M$ is a vector bundle then

$$E^* := \bigcup_{p \in M} \{p\} \times E_p^*$$

has a unique structure of a vector bundle over M such that the projection is given by

$$\pi_{E^*}: E^* \to M, \quad (p, v) \mapsto p$$

and such that for any local trivialization $\Phi: U \times \mathbb{K}^r \to (\pi_E)^{-1}U$ of E the map

$$U \times (\mathbb{K}^r)^* \to (\pi_{E^*})^{-1}U, \quad (p,\xi) \mapsto \xi \circ \Phi_p^{-1}$$

is a local trivialization of E^* , where we agree that $(\mathbb{K}^r)^*$ can be canonically identified with \mathbb{K}^r . The bundle E^* is called the **dual bundle** of E. In the case E = TM the dual bundle T^*M is called the **cotangent bundle** of M.

(vi) For any pair (V,W) of \mathbb{K} -vector spaces let $\operatorname{Hom}(V,W)$ denote the vector space of all linear maps $V \to W$. Applying this construction fibrewise to a pair (E,E') of vector bundles over a manifold M yields a vector bundle $\operatorname{Hom}(E,E') \to M$ whose fibre over $p \in M$ is

$$\operatorname{Hom}(E, E')_p = \operatorname{Hom}(E_p, E'_p).$$

In the case E' = E we obtain the **endomorphism bundle** $\operatorname{End}(E) := \operatorname{Hom}(E, E)$.

Let $E \to M$ be a vector bundle of rank r. By a **subbundle** of E of rank s we mean a subset $E' \subset E$ such that for every point $p \in M$ there exist a local trivialization $\Phi: U \times \mathbb{K}^r \to \pi^{-1}U$ of E around p and an s-dimensional linear subspace $V \subset \mathbb{K}^r$ such that

$$\Phi(U \times V) = \pi^{-1}U \cap E'.$$

Then E' is in a natural way a vector bundle over M.

Example If $N \subset M$ is a submanifold then the tangent bundle TN is a subbundle of $TM|_N$.

By a **section** of a vector bundle $\pi: E \to M$ we mean a smooth map $s: M \to E$ such that $\pi \circ s = \mathrm{Id}_M$. The vector space $\Gamma(E)$ of all sections of E is a module over the ring $\mathcal{D}(M, \mathbb{K})$. Addition in $\Gamma(E)$ and multiplication by functions are defined pointwise by

$$(s+t)(p) := s(p) + t(p),$$

$$(fs)(p) := f(p) s(p)$$

for $s, t \in \Gamma(E)$ and $f \in \mathcal{D}(M, \mathbb{K})$.

By definition, a **vector field** on M is a section of TM. We denote by $\mathcal{X}(M) = \Gamma(TM)$ the $\mathcal{D}(M)$ -module of all vector fields on M.

Let $\pi: E \to M$ and $\pi': E' \to M'$ be \mathbb{K} -vector bundles and $f: M \to M'$ a map. A smooth map $F: E \to E'$ is called a **bundle homomorphism** over f if F maps each fibre E_p linearly into $E'_{f(p)}$. (This implies that f is smooth.) If in addition M = M' and f is the identity map then F is called a **bundle homomorphism.** A bundle homomorphism $F: E \to E'$ which is also a diffeomorphism is called a **bundle isomorphism**. A vector bundle is called **trivial** if it is isomorphic to a product bundle.

Examples (i) If $f: M \to M'$ is a smooth map between manifolds then the tangent map $Tf: TM \to TM'$ is a bundle homomorphism over f.

(ii) If $\pi: E \to M$ is a vector bundle and $f: N \to M$ a smooth map then there is a canonical bundle homomorphism

$$f^*E \to E$$

obtained by restricting the projection $N \times E \to E$ to f^*E .

(iii) Let $E=M\times \mathbb{K}^r$ and $E=M\times \mathbb{K}^s$ be product bundles over M. Then a bundle homomorphism $E\to E'$ has the form

$$M \times \mathbb{K}^r \to M \times \mathbb{K}^s$$
, $(p, v) \mapsto (p, \alpha(p)v)$

for some smooth map α from M into the space $M(s \times r, \mathbb{K})$ of $s \times r$ matrices with entries in \mathbb{K} .

Let $E \to M$ be a \mathbb{K} -bundle of rank r and let $U \subset M$ be an open subset. By a **frame** for E over U we mean an r-tuple (s_1, \ldots, s_r) of sections of $E|_U$ such that $(s_1(p), \ldots, s_r(p))$ is a basis for E_p for all $p \in U$. If U = M then (s_1, \ldots, s_r) is called a **global frame**. In that case the map

$$M \times \mathbb{K}^r \to E, \quad (p, v) \mapsto \sum_{j=1}^r v^j s_j(p)$$

is a bijective bundle homomorphism and therefore an isomorphism. Conversely, such an isomorphism clearly gives rise to a global frame.

2 Connections

Given a section s of a vector bundle $E \to M$ and a vector field X on M we would like to have some kind of derivative $\nabla_X s$ of s with respect to X. This derivative should be a new section of E. Because there is no canonical isomorphism between the fibres of E at two different points, we are unable to define a canonical derivative of this kind. Instead, we will formulate some properties that we would like such a derivative to have.

By a connection (or covariant derivative) in a \mathbb{K} -vector bundle $E \to M$ we mean a map

$$\nabla: \mathcal{X}(M) \times \Gamma(E) \to \Gamma(E), \quad (X,s) \mapsto \nabla_X s$$

such that for all $X, Y \in \mathcal{X}(M)$, $s, t \in \Gamma(E)$, and $f \in \mathcal{D}(M, \mathbb{K})$ one has

- (i) $\nabla_{X+Y}(s) = \nabla_X s + \nabla_Y s$,
- (ii) $\nabla_{fX}(s) = f\nabla_X s$,
- (iii) $\nabla_X(s+t) = \nabla_X s + \nabla_X t$,
- (iv) $\nabla_X(fs) = (Xf)s + f\nabla_X s$.

Note that if f is constant, say $f \equiv \alpha$, then Xf = 0, so (iv) gives

$$\nabla_X(\alpha s) = \alpha \nabla_X s.$$

A section s is called **covariantly constant**, or **parallel**, if $\nabla_X s = 0$ for all vector fields X.

Example A product bundle $E = M \times V \to M$ has a canonical connection ∇ called the **product connection**. To define this, note that to any function $h: M \to V$ we can associate a section \tilde{h} of E given by

$$\tilde{h}(p) = (p, h(p)),$$

and any section of E has this form. Now define $\nabla_X \tilde{h}$ to be the section corresponding to the function Xh, i.e.

$$\nabla_X \tilde{h} := \widetilde{Xh}.$$

Theorem 2.1 Any vector bundle $E \to M$ admits a connection ∇ .

Proof. Choose an open cover $\{U_{\alpha}\}_{{\alpha}\in I}$ of M such that $E|_{U_{\alpha}}$ is trivial for each α . Choose a partition of unity $\{g_{\alpha}\}$ subordinate to this cover. By the example above, each bundle $E|_{U_{\alpha}}$ admits a connection ∇^{α} . Now define, for any section s of E and vector field S on S,

$$\nabla_X s := \sum_{\alpha} g_{\alpha} \nabla_X^{\alpha}(s),$$

where $\nabla_X^{\alpha}(s)$, defined initially on U_{α} , is extended trivially to all of M. Then ∇ clearly satisfies the first three axioms for a connection. To verify the fourth one, let $f \in \mathcal{D}(M, \mathbb{K})$. Then

$$\nabla_X(fs) = \sum_{\alpha} g_{\alpha}(Xf \cdot s + f\nabla_X^{\alpha}(s))$$
$$= Xf \cdot s + f\sum_{\alpha} g_{\alpha}\nabla_X^{\alpha}(s)$$
$$= Xf \cdot s + f\nabla_X(s). \quad \Box$$

For an arbitrary connection ∇ we will now investigate the dependence of $\nabla_X s$ on the two variables X and s, beginning with s.

Proposition 2.1 Let ∇ be a connection in $E \to M$ and X a vector field on M. Then ∇_X is a **local operator**, i.e. if a section s of E vanishes on an open subset $U \subset M$ then $\nabla_X s$ vanishes on U, too.

Proof. Suppose $s|_{U}=0$ and let $p \in U$. Choose a smooth real function f on M which is supported in U and satisfies f(p)=1. Then fs=0, so

$$0 = \nabla_X(fs) = Xf \cdot s + f\nabla_X s.$$

Evaluating this equation at p gives $(\nabla_X s)(p) = 0$.

Proposition 2.2 Let E, E' be \mathbb{K} -vector bundles over M and

$$A:\Gamma(E)\to\Gamma(E')$$

a $\mathcal{D}(M, \mathbb{K})$ -linear map. Then there exists a unique bundle homomorphism $a: E \to E'$ such that As = as for all $s \in \Gamma(E)$.

Explicitly, the assumption on A is that

$$A(s+t) = As + At, \quad A(fs) = fAs$$

for all $s, t \in \Gamma(E)$ and $f \in \mathcal{D}(M, \mathbb{K})$. The main point in the proposition is that (As)(p) depends only on the value of s at p.

Proof of proposition. Uniqueness follows from the fact that for any $p \in M$ and $v \in E_p$ there exists a section s of E with s(p) = v. To prove existence of a, let $p \in M$ and $v \in E_p$. Choose a section s of E with s(p) = v and define

$$av := (As)(p).$$

To show that av is independent of the choice of s it suffices to verify that if t is any section of E with t(p) = 0 then (At)(p) = 0. Let r be the rank of E. Choose sections s_1, \ldots, s_r of E which are linearly independent at every point in some neighbourhood U of p. Choose a smooth real function f on M which is supported in U and satisfies f(p) = 1. Then

$$ft = \sum_{j} g^{j} s_{j}$$

for some uniquely determined \mathbb{K} -valued functions g^1, \ldots, g^r on M that vanish outside U. Clearly, $g^j(p) = 0$. Applying A to both sides of the above equation we obtain

$$fAt = \sum_{j} g^{j} A s_{j},$$

and evaluating both sides of this equation at p gives (At)(p) = 0 as required. \Box

Corollary 2.1 Let ∇ be a connection in $E \to M$ and $s \in \Gamma(E)$, $p \in M$. If X, Y are vector fields on M satisfying $X_p = Y_p$ then $(\nabla_X s)(p) = (\nabla_Y s)(p)$.

Proof. This follows from the proposition because for given s the map

$$X \mapsto \nabla_X s$$

is $\mathcal{D}(M)$ -linear. \square

The corollary allows us to define $\nabla_v s$ for any tangent vector $v \in T_p M$. Namely, choose any vector field X with $X_p = v$ and set

$$\nabla_v s := (\nabla_X s)(p).$$

Proposition 2.3 Let E_1, \ldots, E_m, E' be \mathbb{K} -vector bundles over M and

$$B: \Gamma(E_1) \times \cdots \times \Gamma(E_m) \to \Gamma(E')$$

a $\mathcal{D}(M,\mathbb{K})$ -multilinear map. Then there exists for each $p \in M$ a \mathbb{K} multilinear map

$$B_p: (E_1)_p \times \cdots \times (E_m)_p \to E'_p$$

such that if $s_j \in \Gamma(E_j)$, j = 1, ..., m then

$$B(s_1, \dots, s_m)(p) = B_p(s_1(p), \dots, s_m(p)).$$
 (1)

Proof. If at least one of the sections s_j vanishes at p then, by Proposition 2.2, $B(s_1, \ldots, s_m)$ also vanishes at p. By repeated application of this we see that if for each j we are given a pair of sections s_j, t_j of E_j with the same value at p then

$$B(s_1, ..., s_m)(p) = B(t_1, ..., t_m)(p).$$

We can now define B_p by (1). \square

Proposition 2.4 Let $E \to M$ be a \mathbb{K} -vector bundle.

(i) If ∇, ∇' are connections in E then there exists a unique bundle homomorphism $a: TM \to End_{\mathbb{K}}(E)$ such that for all vector fields X on M and sections s of E one has

$$\nabla_X' s - \nabla_X s = a(X) \cdot s.$$

(ii) If ∇ is any connection in E and $a:TM\to End_{\mathbb{K}}(E)$ a bundle homomorphism then there is a connection ∇' in E given by

$$\nabla_X' s = \nabla_X s + a(X) \cdot s.$$

Proof. The second statement is easily verified. To prove the first one, set

$$B: \mathcal{X}(X) \times \Gamma(E) \to \Gamma(E), \quad (X,s) \mapsto \nabla_X' s - \nabla_X s.$$

First assume $\mathbb{K} = \mathbb{R}$. It is easy to see that B is $\mathcal{D}(M)$ -bilinear, so by Proposition 2.2 it is given by a collection of bilinear maps

$$T_pM \times E_p \to E_p, \quad p \in M,$$

or equivalently, by a collection of linear maps

$$T_pM \to \operatorname{End}(E_p)$$
.

Together, these maps make up the desired bundle homomorphism a. If $\mathbb{K} = \mathbb{C}$ just observe that a takes values in $\operatorname{End}_{\mathbb{C}}(E)$. \square

Example Let $E \to M$ be a trivial vector bundle and (s_1, \ldots, s_r) a global frame for E. Then there is a 1-1 correspondence between connections in E and $r \times r$ matrices $\omega = (\omega_j^i)$ of \mathbb{K} -valued 1-forms on M specified by the formula

$$\nabla_X s_j = \sum_{i=1}^r \omega_j^i(X) s_i \tag{2}$$

for vector fields X on M. To deduce this from the proposition, let ∇^0 be the product connection in E given by $\nabla_X s_j = 0$. Then any other connection in E has the form $\nabla^0 + a$, where in this case a is given by an $r \times r$ matrix of 1–forms.

Note that ω can be thought of as a matrix-valued 1-form on M. We call ω the **connection form** of ∇ with respect to the given global frame.

3 Pull-back connections

Let $\pi: E \to M$ be a vector bundle and $f: \tilde{M} \to M$ a smooth map. By a **section of** E **along** f we mean a smooth map $t: \tilde{M} \to E$ such that $\pi \circ t = f$. We will usually identify such a map t with the corresponding section \tilde{s} of the pull-back bundle f^*E given by $\tilde{s}(p) = (p, t(p))$. Note that if s is a section of E then $f^*s := s \circ f$ is a section of E along f.

Proposition 3.1 Let ∇ be a connection in $E \to M$ and $f: \tilde{M} \to M$ a smooth map. Then there exists a unique connection $\tilde{\nabla} = f^*\nabla$ in $\tilde{E} := f^*E$ such that for all $s \in \Gamma(E)$, $p \in \tilde{M}$, and $v \in T_p\tilde{M}$ we have

$$\tilde{\nabla}_v(f^*s) = \nabla_{f_*v}(s) \quad \text{in } \tilde{E}_p = E_{f(p)}, \tag{3}$$

where $f_*: T_p \tilde{M} \to T_{f(p)} M$ is the tangent map of f.

Proof. Uniqueness follows from the fact that if $\{s_j\}$ is a frame for E over an open set $U \subset M$ then $\{f^*s_j\}$ is a frame for \tilde{E} over $f^{-1}U$. We prove existence in three steps.

- (i) First suppose \tilde{M} is an open subset of M and f the inclusion map, so that \tilde{E} is just the restriction of E to \tilde{M} . In this case the existence of $\tilde{\nabla}$ follows from Proposition 2.1 and Corollary 2.1.
- (ii) Next we consider the case when E is trivial. Let (s_1, \ldots, s_r) be a global frame for E and (ω_i^i) the matrix of 1-forms on M with

$$\nabla_Y s_j = \sum_i \omega_j^i(Y) s_i$$

for vector fields Y on M. Set $\tilde{s}_j := f^*s_j$ and $\tilde{\omega}^i_j := f^*\omega^i_j$, and let $\tilde{\nabla}$ be the unique connection in \tilde{E} such that

$$\tilde{\nabla}_X \tilde{s}_j = \sum_i \tilde{\omega}_j^i(X) \tilde{s}_i$$

for vector fields X on \tilde{M} . We now verify that $\tilde{\nabla}$ satisfies (3). Let $p \in \tilde{M}, v \in T_p\tilde{M}$, and $s \in \Gamma(E)$. Then $s = \sum_j h^j s_j$ for some functions $h^j \in \mathcal{D}(M, \mathbb{K})$. Set $q := f(p), w := f_*v$, and $g^j := h^j \circ f$. Then $f^*s = \sum_j g^j \tilde{s}_j$, and

$$\tilde{\nabla}_v \tilde{s}_j = \sum_i \tilde{\omega}_j^i(v) \tilde{s}_i(p) = \sum_i \omega_j^i(w) s_i(q) = \nabla_w s_j,$$

so

$$\begin{split} \tilde{\nabla}_v(f^*s) &= \sum_j [v(g^j) \cdot \tilde{s}_j(p) + g^j(p) \cdot \tilde{\nabla}_v \tilde{s}_j] \\ &= \sum_j [w(h^j) \cdot s_j(q) + h^j(q) \cdot \nabla_w s_j] \\ &= \nabla_w s. \end{split}$$

(iii) In the general case, choose an open cover $\{U_{\alpha}\}_{\alpha\in I}$ of M such that $E|_{U_{\alpha}}$ is trivial for each α . Set $\tilde{U}_{\alpha}:=f^{-1}U_{\alpha}$. By case (ii), we have a pull-back connection $\tilde{\nabla}^{\alpha}$ in $\tilde{E}|_{\tilde{U}_{\alpha}}$. By uniqueness, $\tilde{\nabla}^{\alpha}$ and $\tilde{\nabla}^{\beta}$ restrict to the same connection on $\tilde{U}_{\alpha}\cap \tilde{U}_{\beta}$ for each $\alpha,\beta\in I$. Hence, the connections $\tilde{\nabla}^{\alpha}$ patch together to give the desired connection in \tilde{E} . \square

Example Let $E \to M$ be a K-vector bundle with connection ∇ and

$$\gamma: I \to M, \quad t \mapsto \gamma(t)$$

a smooth path in M, where $I \subset \mathbb{R}$ is an interval. Proposition 3.1 provides a \mathbb{K} -linear operator $\frac{D}{dt} := (\gamma^* \nabla)_{\frac{d}{dt}}$ acting on sections of E along γ with the following properties.

• For all smooth functions $f:I\to \mathbb{K}$ and sections σ of E along γ one has

$$\frac{D}{dt}(f\sigma) = \frac{df}{dt} \cdot \sigma + f \cdot \frac{D\sigma}{dt}.$$

• If $\sigma = f^*s$ is the pull-back of a section s of E then

$$\frac{D\sigma}{dt} = \nabla_{\frac{d\gamma}{dt}}(s).$$

4 Holonomy

Proposition 4.1 Let $E \to M$ be a \mathbb{K} -vector bundle with connection ∇ , and let $\gamma: I \to M$ be a smooth curve. Let $t_0 \in I$ and $v \in E_{\gamma(t_0)}$. Then there exists a unique parallel section σ of E along γ such that $\sigma(t_0) = v$.

Here, σ is called parallel if $\frac{D\sigma}{dt} = 0$.

Proof. It is a simple exercise to show that any vector bundle over an interval is trivial. Hence, there exists a global frame $(\sigma_1, \ldots, \sigma_r)$ of the pullback bundle γ^*E . In terms of this frame, the operator $\frac{D}{dt}$ is given by an $r \times r$ matrix (c_i^i) of functions $I \to \mathbb{K}$ such that

$$\frac{D\sigma_j}{dt} = \sum_i c_j^i \sigma_i.$$

We are therefore seeking smooth \mathbb{K} -valued functions f^1, \ldots, f^r on the interval I with specified values at t_0 such that

$$0 = \frac{D}{dt} \sum_{j} f^{j} \sigma_{j} = \sum_{j} \left(\frac{df^{j}}{dt} \cdot \sigma_{j} + f^{j} \sum_{i} c_{j}^{i} \sigma_{i} \right)$$
$$= \sum_{i} \left(\frac{df^{i}}{dt} + \sum_{j} c_{j}^{i} f^{j} \right) \sigma_{i},$$

or, equivalently,

$$\frac{df^i}{dt} + \sum_j c^i_j f^j = 0, \quad i = 1, \dots, r.$$

$$(4)$$

Because this is a *linear* system of ordinary differential equations, it has a unique solution with given values at t_0 .

The proposition allows us to define for any $a, b \in I$ the **holonomy map**, or **parallel transport**,

$$\operatorname{Hol}_a^b := \operatorname{Hol}_a^b(\nabla, \gamma) : E_{\gamma(a)} \stackrel{\approx}{\to} E_{\gamma(b)}$$

of ∇ along γ . This is the linear isomorphism characterized by the property that if σ is any parallel section of E along γ then

$$\operatorname{Hol}_a^b(\sigma(a)) = \sigma(b).$$

Clearly, if $a, b, c \in I$ then

$$\operatorname{Hol}_a^c = \operatorname{Hol}_b^c \circ \operatorname{Hol}_a^b$$
.

We can exploit this property to define Hol_a^b even if γ is only piecewise smooth. Namely, if

$$a = a_0 < a_1 < \dots < a_n = b$$

and $\gamma_{[a_{i-1},a_i]}$ is smooth for $i=1,\ldots,n$ we define Hol_a^b to be the composite of the holonomies along each subinterval, i.e.

$$\operatorname{Hol}_{a}^{b} := \operatorname{Hol}_{a_{n-1}}^{a_{n}} \circ \cdots \circ \operatorname{Hol}_{a_{1}}^{a_{2}} \circ \operatorname{Hol}_{a_{0}}^{a_{1}}. \tag{5}$$

The following property expresses a connection in terms of its holonomy.

Proposition 4.2 Let ∇ be a connection in a vector bundle $E \to M$ and s a section of E. Let $\gamma: (-\epsilon, \epsilon) \to M$ be a smooth curve, where $\epsilon > 0$. For $-\epsilon < t < \epsilon$ set

$$h_t := Hol_t^0(\nabla, \gamma) : E_{\gamma(t)} \to E_{\gamma(0)}.$$

Then

$$\nabla_{\gamma'(0)}(s) = \frac{d}{dt} \bigg|_{0} h_{t}(s(\gamma(t))).$$

Note that $t \mapsto h_t(s(\gamma(t)))$ is a curve in the finite-dimensional vector space $E_{\gamma(0)}$, and we are differentiating this curve at 0 in the usual sense.

Proof. Let $(\sigma_1, \ldots, \sigma_r)$ be a global frame for $\gamma^* E$ consisting of parallel sections. Then $\gamma^* s = \sum_j f^j \sigma_j$ for some functions $f^j : (-\epsilon, \epsilon) \to \mathbb{K}$. Now,

$$h_t(s(\gamma(t))) = \sum_j f^j(t) \cdot \sigma_j(0),$$

and

$$\nabla_{\gamma'(0)}(s) = \frac{D\gamma^*s}{dt}(0) = \sum_j (f^j)'(0) \cdot \sigma_j(0) = \left. \frac{d}{dt} \right|_0 h_t(s(\gamma(t))). \quad \Box$$

5 Curvature

The **curvature** $F = F^{\nabla}$ of a connection ∇ in a \mathbb{K} -vector bundle $E \to M$ associates to any pair X,Y of vector fields on M the map $\Gamma(E) \to \Gamma(E)$ given by

$$F(X,Y)s := \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s.$$

If F(X,Y)=0 for all X,Y then ∇ is called **flat**. We will sometimes use the notation

$$[\nabla_X, \nabla_Y] := \nabla_X \nabla_Y - \nabla_Y \nabla_X.$$

Example Let ∇ be the product connection in $E := M \times \mathbb{K}^r \to M$. Identifying sections of E with functions $h : M \to \mathbb{K}^r$ we have $\nabla_X h = Xh$, so

$$\nabla_X \nabla_Y h - \nabla_Y \nabla_X h = XYh - YXh = [X, Y]h = \nabla_{[X,Y]}h.$$

Therefore, the product connection is flat.

Proposition 5.1 Let ∇ be a connection in a vector bundle $E \rightarrow M$. Then The map

$$\mathcal{X}(M) \times \mathcal{X}(M) \times \Gamma(E) \to \Gamma(E), \quad (X, Y, s) \mapsto F(X, Y)s$$

is $\mathcal{D}(M, \mathbb{K})$ -multilinear. Hence, F defines for each $p \in M$ a skew-symmetric bilinear map

$$F_p: T_pM \times T_pM \to End_{\mathbb{K}}(E_p).$$

Proof. We prove linearity in X (and hence in Y because of the skew-symmetry), leaving the linearity in s as an exercise for the reader.

Let $g \in \mathcal{D}(M, \mathbb{K})$. Then

$$[qX, Y] = q[X, Y] - (Yq)X,$$

so

$$\begin{split} F(gX,Y) &= \nabla_{gX} \nabla_{Y} s - \nabla_{Y} \nabla_{gX} s - \nabla_{[gX,Y]} s \\ &= g \nabla_{X} \nabla_{Y} s - [(Yg) \nabla_{X} s + g \nabla_{Y} \nabla_{X} s] - [g \nabla_{[X,Y]} s - (Yg) \nabla_{X} s] \\ &= g F(X,Y) s. \quad \Box \end{split}$$

It follows from the proposition that if E is trivial and (s_1, \ldots, s_r) is a global frame for E then there is an $r \times r$ matrix (Ω_j^i) of 2-forms on M, called the **curvature form** of ∇ with respect to the given frame, such that for all vector fields X, Y on M one has

$$F(X,Y)s_j = \sum_i \Omega_j^i(X,Y)s_i.$$

Theorem 5.1 Let ∇ be a connection in a trivial vector bundle $E \to M$, and let (s_1, \ldots, s_r) be a global frame for E. Let $\omega = (\omega_j^i)$ and $\Omega = (\Omega_j^i)$ be the corresponding connection form and curvature form of ∇ , respectively. Then for all i, k one has

$$\Omega_k^i = d\omega_k^i + \sum_i \omega_j^i \wedge \omega_k^j.$$

In matrix notation,

$$\Omega = d\omega + \omega \wedge \omega.$$

Proof. Recall that for any 1-forms α, β on M one has

$$(\alpha \wedge \beta)(X,Y) = \alpha(X)\beta(Y) - \alpha(Y)\beta(X),$$

$$(d\alpha)(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y]).$$

Now

$$\nabla_X \nabla_Y s_k = \sum_j \nabla_X (\omega_k^j(Y) s_j)$$

$$= \sum_j \left(X(\omega_k^j(Y) \cdot s_j + \omega_k^j(Y) \sum_i \omega_j^i(X) s_i \right)$$

$$= \sum_i \left(X(\omega_k^i(Y) + \sum_j \omega_j^i(X) \omega_k^j(Y) \right) s_i,$$

and of course there is a similar formula with X,Y switched. Combining this with

$$\nabla_{[X,Y]}s_k = \sum_i \omega_k^i([X,Y])s_i$$

we obtain

$$F(X,Y)s_k = \sum_i \left(d\omega_k^i + \sum_j \omega_j^i \wedge \omega_k^j \right) (X,Y) \cdot s_i. \quad \Box$$

Corollary 5.1 In the situation of the theorem, let $f: \tilde{M} \to M$ be a smooth map and $(\tilde{\Omega}^i_j)$ the curvature form of the pull-back connection $f^*\nabla$ with respect to the global frame (f^*s_j) for f^*E . Then

$$\tilde{\Omega}_{j}^{i} = f^{*}\Omega_{j}^{i}.$$

6 Orthogonal connections

By a **Euclidean metric** on a real vector bundle $E \to M$ we mean a choice of scalar product $\langle \cdot, \cdot \rangle$ on each fibre E_p such that for every pair s, t of sections of E the function

$$M \to \mathbb{R}, \quad p \mapsto \langle s(p), t(p) \rangle$$

is smooth. A real vector bundle equipped with a Euclidean metric is called a **Euclidean vector bundle**.

Example The product bundle $M \times \mathbb{R}^k \to M$ where each fibre has the standard Euclidean metric.

Theorem 6.1 Every real vector bundle admits a Euclidean metric.

Proof. Glue together local Euclidean metrics using a partition of unity. \Box

Let $E \to M$ be a Euclidean vector bundle of rank k. By an **orthonormal** frame for E over an open set $U \subset M$ we mean a k-tuple (s_1, \ldots, s_k) of sections of $E|_U$ such that $(s_1(p), \ldots, s_k(p))$ is an orthonormal basis for E_p for every $p \in U$. Note that the Gram-Schmidt process applied pointwise to an arbitrary frame for E over U yields an orthonormal frame.

Let $E \to M$ be a real vector bundle equipped with a connection ∇ as well as a Euclidean metric. Then ∇ is called **orthogonal**, or **compatible** with the Euclidean metric, if for all sections s,t of E and vector fields X on M one has

$$X\langle s, t \rangle = \langle \nabla_X s, t \rangle + \langle s, \nabla_X t \rangle.$$

Example If each fibre of a product bundle $E = M \times \mathbb{R}^k \to M$ has the same scalar product, then the product connection in E is orthogonal.

Theorem 6.2 Every Euclidean vector bundle admits an orthogonal connection.

Proof. This is proved just as Theorem 2.1. \Box

For any finite-dimensional Euclidean space V let $\mathrm{so}(V)$ denote the Lie algebra of skew-symmetric linear endomorphisms of V. If $E \to M$ is a Euclidean vector bundle then we can apply this construction fibrewise to obtain a subbundle

$$so(E) := \bigcup_{p \in M} so(E_p)$$

of the endomorphism bundle $\operatorname{End}(E)$.

Proposition 6.1 Let ∇ be an orthogonal connection in a Euclidean vector bundle $E \to M$, and $a: TM \to End(E)$ a bundle homomorphism. Then the connection $\nabla + a$ is orthogonal if and only if a takes values in so(E).

Proof. Set $\nabla' := \nabla + a$. Then for any vector field X on M and sections s,t of E one has

$$\langle \nabla_X' s, t \rangle + \langle s, \nabla_X' t \rangle = X \langle s, t \rangle + \langle a(X)s, t \rangle + \langle s, a(X)t \rangle.$$

From this the proposition follows immediately. \Box

Theorem 6.3 Let $E \to M$ be a real vector bundle equipped with both a connection ∇ and a Euclidean metric. Then the following are equivalent.

- (i) ∇ is orthogonal.
- (ii) For every piecewise smooth curve $\gamma:[a,b]\to M$ the holonomy $E_{\gamma(a)}\to E_{\gamma(b)}$ of ∇ along γ is an orthogonal linear map.

Proof. Suppose ∇ is orthogonal and let $\gamma:[a,b]\to M$ be a piecewise smooth curve. We will show that the holonomy of ∇ along γ is orthogonal. Because of the composition law (5) for the holonomy we may assume γ is smooth. We may in fact also assume E is trivial, since for any sufficiently fine partion of the interval [a,b] the image of each subinterval under γ will be contained in an open subset of M over which E is trivial.

Let (ω_j^i) be the connection form of ∇ with respect to a global frame (s_1, \ldots, s_k) for E. Then

$$0 = X \langle s_i, s_j \rangle$$

$$= \langle \nabla_X s_i, s_j \rangle + \langle s_i, \nabla_X s_j \rangle$$

$$= \left\langle \sum_k \omega_i^k(X) s_k, s_j \right\rangle + \left\langle s_i, \sum_k \omega_j^k(X) s_k \right\rangle$$

$$= \omega_i^j(X) + \omega_i^i(X),$$

so that $\omega_j^i = -\omega_i^j$. Now let σ be a parallel section of E along γ . We will show that the pointwise norm $|\sigma|$ is a constant function on [a,b], which implies that the holonomy of ∇ along γ is orthogonal. Since (γ^*s_i) is a global orthonormal frame for γ^*E we have $\sigma = \sum_i f^i \gamma^* s_i$ for some real-valued functions f^i on the interval [a,b], and

$$|\sigma|^2 = \sum_i (f^i)^2.$$

Let c_i^i be the functions given by $\gamma^* \omega_i^i = c_i^i dt$. Equation (4) now yields

$$\frac{d}{dt}|\sigma(t)|^2 = 2\sum_i f^i \cdot \frac{df^i}{dt} = -2\sum_{ij} f^i f^j c^i_j = 0$$

by the skew-symmetry of the matrix (c_j^i) . Hence, σ has constant length as claimed.

To prove the reverse implication in the proposition, suppose (ii) holds and let s_1, s_2 be a pair of sections of E and X a vector field on M. Given a point $p \in M$ we can find $\epsilon > 0$ and a smooth curve

$$\gamma: (-\epsilon, \epsilon) \to M$$

such that $\gamma(0) = p$ and $\gamma'(0) = X_p$. For $-\epsilon < t < \epsilon$ let

$$h_t = \operatorname{Hol}_t^0(\nabla, \gamma) : E_{\gamma(t)} \to E_p$$

be the holonomy of ∇ , which is orthogonal by assumption. Using Proposition 4.2 we obtain

$$\begin{aligned} X_{p}\langle s_{1}, s_{2}\rangle &= \frac{d}{dt}\Big|_{0} \langle s_{1}(\gamma(t)), s_{2}(\gamma(t))\rangle \\ &= \frac{d}{dt}\Big|_{0} \langle h_{t}s_{1}(\gamma(t)), h_{t}s_{2}(\gamma(t))\rangle \\ &= \left\langle \frac{d}{dt}\Big|_{0} h_{t}s_{1}(\gamma(t)), s_{2}(p)\right\rangle + \left\langle s_{1}(p), \frac{d}{dt}\Big|_{0} h_{t}s_{2}(\gamma(t))\right\rangle \\ &= \langle \nabla_{X}s_{1}, s_{2}\rangle_{p} + \langle s_{1}, \nabla_{X}s_{2}\rangle_{p}, \end{aligned}$$

which shows that ∇ is orthogonal.

Proposition 6.2 Let ∇ be an orthogonal connection in a Euclidean vector bundle $E \to M$ and F the curvature of ∇ . Then F(X,Y) is a section of so(E) for all vector fields X,Y on M.

Proof. For any sections s, t of E we have

$$XY\langle s,t\rangle = \langle \nabla_X \nabla_Y s,t\rangle + \langle \nabla_Y s,\nabla_X t\rangle + \langle \nabla_X s,\nabla_Y t\rangle + \langle s,\nabla_X \nabla_Y t\rangle.$$

Combining this with the corresponding equality with X and Y interchanged we obtain

$$\begin{split} \langle [\nabla_X, \nabla_Y] s, t \rangle + \langle s, [\nabla_X, \nabla_Y] t \rangle &= [X, Y] \langle s, t \rangle \\ &= \langle \nabla_{[X,Y]} s, t \rangle + \langle s, \nabla_{[X,Y]} t \rangle. \end{split}$$

Therefore,

$$\langle F(X,Y)s,t\rangle + \langle s,F(X,Y)t\rangle = 0.$$