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1 Vector bundles

In the following, let K = R or C. Smooth manifolds are assumed to be
second countable. For a smooth manifold M we denote by D(M,K) the
ring of smooth functions M — K, and we set D(M) := D(M,R).

By definition, a smooth K-vector bundle of rank r over a smooth
manifold M consists of

e a smooth manifold E called the total space of the bundle,
e a smooth map m: E — M called the projection,
e for each p € M a K-vector space structure on the fibre E, := 7 1(p),

such that the axiom of local triviality holds: For each p € M there should
exist an open neighbourhood U of p and a diffeomorphism & : U x K" —
71U such that

o 10o®P(q,v) =gqforall (¢g,v) e U xK",
e for each ¢ € U the map
¢, : K" = E;, v O(q,v)
is a linear isomorphism.

Such a diffeomorphism ® is called a local trivialization of E. If r = 1
then F is called a (real or complex) line bundle over M.

Examples (i) The product bundle

MxV =M, (qv)~—q,

where V' is any finite-dimensional K-vector space.
(ii) The tangent bundle TM — M.



(iii) If 7 : E — M is a vector bundle and N C M a submanifold, then
E|y :=77!N is a vector bundle over N.

(iv) More generally, if 7 : E — M is a vector bundle and f: N — M a
smooth map, then

fE:={(¢g;v) € N x E| f(q) = m(v)}

is a vector bundle over N called the pull-back of FE by f.

(v) To any vector space V we can associate its dual vector space V*.
This construction can also be applied fibrewise to vector bundles. Namely,
if /g : B — M is a vector bundle then

E = J{p} x E}

pEM

has a unique structure of a vector bundle over M such that the projection
is given by
g E*— M, (p,v)—p

and such that for any local trivialization ® : U x K" — (7g)~'U of E the
map

Ux (K)* = (rp)"'U,  (p,€) = Eo0 B!

is a local trivialization of E*, where we agree that (K")* can be canonically
identified with K". The bundle E* is called the dual bundle of E. In the
case £ =T M the dual bundle T%M is called the cotangent bundle of M.

(vi) For any pair (V,W) of K-vector spaces let Hom(V, W) denote the
vector space of all linear maps V' — W. Applying this construction fibrewise
to a pair (E, E’) of vector bundles over a manifold M yields a vector bundle
Hom(E, E’) — M whose fibre over p € M is

Hom(E, E'), = Hom(E,, E,).

In the case E' = E we obtain the endomorphism bundle End(E) :=
Hom(E, E).

Let £ — M be a vector bundle of rank r. By a subbundle of E of rank
s we mean a subset E/ C F such that for every point p € M there exist a
local trivialization ® : U x K" — 7~ 'U of E around p and an s—dimensional
linear subspace V' C K" such that

PUXxV)=7UNE.

Then E’ is in a natural way a vector bundle over M.



Example If N C M is a submanifold then the tangent bundle TN is a
subbundle of TM|y.

By a section of a vector bundle 7 : £ — M we mean a smooth map
s : M — E such that m o s = Idy;. The vector space I'(F) of all sections of
E is a module over the ring D(M,K). Addition in I'(E) and multiplication
by functions are defined pointwise by

(s+t)(p) =5
(fs)(p) :== f(p)s(p)

for s,t € I'(F) and f € D(M,K).

By definition, a vector field on M is a section of T'M. We denote by
X(M) =T(TM) the D(M)-module of all vector fields on M.

Let m: E — M and 7’ : E/ — M’ be K-vector bundles and f : M — M’
a map. A smooth map F : E — E’ is called a bundle homomorphism
over f if F' maps each fibre E, linearly into E}(p). (This implies that f is
smooth.) If in addition M = M’ and f is the identity map then F is called
a bundle homomorphism. A bundle homomorphism F' : E — E’ which
is also a diffeomorphism is called a bundle isomorphism. A vector bundle
is called trivial if it is isomorphic to a product bundle.

Examples (i) If f: M — M’ is a smooth map between manifolds then the
tangent map T'f : TM — TM’' is a bundle homomorphism over f.

(ii) If 7 : E — M is a vector bundle and f : N — M a smooth map then
there is a canonical bundle homomorphism

fE— E

obtained by restricting the projection N x £ — E to f*E.
(i) Let E = M x K" and E = M x K*® be product bundles over M.
Then a bundle homomorphism E — E’ has the form

M xK' — M xK* (p,v)+— (p,a(p)v)

for some smooth map « from M into the space M (s x r,K) of s x r matrices
with entries in K.

Let £ — M be a K-bundle of rank r and let U C M be an open subset.
By a frame for E over U we mean an r—tuple (s,...,s,) of sections of E|



such that (s1(p),...,sr(p)) is a basis for E, for all p e U. If U = M then
(s1,...,8y) is called a global frame. In that case the map

T
MxK"—=E, (p,v)— Zvjsj(p)
j=1

is a bijective bundle homomorphism and therefore an isomorphism. Con-
versely, such an isomorphism clearly gives rise to a global frame.

2 Connections

Given a section s of a vector bundle ¥ — M and a vector field X on M
we would like to have some kind of derivative Vxs of s with respect to X.
This derivative should be a new section of F. Because there is no canonical
isomorphism between the fibres of E at two different points, we are unable
to define a canonical derivative of this kind. Instead, we will formulate some
properties that we would like such a derivative to have.

By a connection (or covariant derivative) in a K-vector bundle £ —
M we mean a map

V:X(M)xT(E) - T(E), (X,s)— Vxs
such that for all X,Y € X (M), s,t € I'(F), and f € D(M,K) one has
(i) Vxiv(s) =Vxs+ Vys,
(ii) Vyx(s) = fVxs,
(iii) Vx(s+1t) =Vxs+ Vxt,
(iv) Vx(fs) = (Xf)s+ Vs
Note that if f is constant, say f = «, then X f =0, so (iv) gives
Vx(as) =aVxs.
A section s is called covariantly constant, or parallel, if Vxs = 0 for

all vector fields X.

Example A product bundle E = M xV — M has a canonical connection V
called the product connection. To define this, note that to any function
h: M — V we can associate a section h of F given by

h(p) = (p, h(p)),



and any section of E has this form. Now define Vxh to be the section
corresponding to the function Xh, i.e.

VXfL = Xh.
Theorem 2.1 Any vector bundle E — M admits a connection V.

Proof. Choose an open cover {U, }aer of M such that E|y, is trivial for
each a. Choose a partition of unity {g,} subordinate to this cover. By the
example above, each bundle E|y, admits a connection V*. Now define, for
any section s of F and vector field X on M,

Vxs:= Zgavg((s),

where V< (s), defined initially on Uy, is extended trivially to all of M. Then
V clearly satisfies the first three axioms for a connection. To verify the fourth
one, let f € D(M,K). Then

x(f) = 9a(Xf s+ [V(s)
=Xf-s+1) 9aV%(s)

=Xf-s+fVx(s). O

For an arbitrary connection V we will now investigate the dependence
of Vxs on the two variables X and s, beginning with s.

Proposition 2.1 Let V be a connection in E — M and X a vector field
on M. Then Vx is a local operator, i.c. if a section s of E vanishes on
an open subset U C M then Vxs vanishes on U, too.

Proof. Suppose s|y = 0 and let p € U. Choose a smooth real function f
on M which is supported in U and satisfies f(p) = 1. Then fs =0, so

0=Vx(fs)=Xf-s+ fVxs.
Evaluating this equation at p gives (Vxs)(p) =0. O
Proposition 2.2 Let E, E' be K-vector bundles over M and
A:T(E)—=T(E"

a D(M,K)-linear map. Then there exists a unique bundle homomorphism
a: E — E' such that As = as for all s € T'(E).



Explicitly, the assumption on A is that
A(s+t) =As+ At, A(fs) = fAs

for all s,t € I'(E) and f € D(M,K). The main point in the proposition is
that (As)(p) depends only on the value of s at p.

Proof of proposition. Uniqueness follows from the fact that for any p € M
and v € E, there exists a section s of E with s(p) = v. To prove existence
of a, let p € M and v € E,. Choose a section s of E with s(p) = v and
define

av = (As)(p).

To show that av is independent of the choice of s it suffices to verify that if
t is any section of E with ¢(p) = 0 then (At)(p) = 0. Let r be the rank of
E. Choose sections si,...,S, of E which are linearly independent at every
point in some neighbourhood U of p. Choose a smooth real function f on
M which is supported in U and satisfies f(p) = 1. Then

ftzzgjsg‘
J

for some uniquely determined K-valued functions g',...,¢" on M that van-
ish outside U. Clearly, ¢/(p) = 0. Applying A to both sides of the above
equation we obtain

fAt=) g’ As),
J

and evaluating both sides of this equation at p gives (At)(p) = 0 as required.
U

Corollary 2.1 Let V be a connection in E — M and s e T'(E), pe M. If
X,Y are vector fields on M satisfying X, =Y, then (Vxs)(p) = (Vys)(p).

Proof. This follows from the proposition because for given s the map
X —V XS
is D(M)-linear. O
The corollary allows us to define V,s for any tangent vector v € T, M.

Namely, choose any vector field X with X, = v and set

Vs := (Vxs)(p).



Proposition 2.3 Let E1,...,E,,, E' be K-vector bundles over M and
B:T(E)) x -+ xT'(Ep) = T(E")

a D(M,K)-multilinear map. Then there exists for each p € M a K-
multilinear map
By: (Er)p X -+ %X (En)y = E,,

such that if s; € I'(Ej), j =1,...,m then
B(Sl7"'asm)(p) :Bp(sl(p)a"'asm(p))' (1)

Proof. If at least one of the sections s; vanishes at p then, by Proposi-
tion 2.2, B(s1,...,Sn) also vanishes at p. By repeated application of this
we see that if for each j we are given a pair of sections s;,¢; of E; with the
same value at p then

B(s1y...,8m)(p) = B(t1,...,tm)(p).
We can now define B, by (1). O

Proposition 2.4 Let E — M be a K-vector bundle.

(1) If V,V' are connections in E then there exists a unique bundle homo-
morphism a : TM — Endg(F) such that for all vector fields X on M
and sections s of E one has

Vs —Vyxs=a(X):s.

(i) If V is any connection in E and a : TM — Endg(E) a bundle homo-
morphism then there is a connection V' in E given by

Vs =Vxs+a(X)-s.

Proof. The second statement is easily verified. To prove the first one, set
B:X(X)xT(E)—>T(E), (X,s)— Vis—Vxs.

First assume K = R. It is easy to see that B is D(M)-bilinear, so by
Proposition 2.2 it is given by a collection of bilinear maps

T,M x E, = E,, p€ M,



or equivalently, by a collection of linear maps
T,M — End(E,).

Together, these maps make up the desired bundle homomorphism a. If
K = C just observe that a takes values in Endc(E). O

Example Let £ — M be a trivial vector bundle and (si,...,s;) a global
frame for E. Then there is a 1-1 correspondence between connections in F
and r X r matrices w = (w;) of K—valued 1-forms on M specified by the
formula

Vxs; = Zwé(X)si (2)
i=1

for vector fields X on M. To deduce this from the proposition, let V° be the
product connection in E given by Vxs; = 0. Then any other connection in
E has the form V° + a, where in this case a is given by an r x r matrix of
1-forms.

Note that w can be thought of as a matrix-valued 1-form on M. We call
w the connection form of V with respect to the given global frame.

3 Pull-back connections

Let m : E — M be a vector bundle and f : M — M a smooth map. By
a section of E along f we mean a smooth map t : M — E such that
mot = f. We will usually identify such a map t with the corresponding
section § of the pull-back bundle f*FE given by 5(p) = (p,t(p)). Note that if
s is a section of E then f*s:= so f is a section of E along f.

Proposition 3.1 Let V be a connection in E. — M and [ : M~% M a
smooth map. Then there exists a unique connection V = f*V in E := f*E
such that for all s e I'(E), p € M, and v € T,M we have

Vv(f*s) = Vf*v(s) mn Ep = Ef(p), (3)
where f :TpM — Ty(p)M is the tangent map of f.

Proof. Uniqueness follows from the fact that if {s;} is a frame for E over
an open set U C M then {f*s;} is a frame for F over f~1U. We prove
existence in three steps.



(i) First suppose M is an open subset of M and f the inclusion map,
so that F is just the restriction of E to M. In this case the existence of V
follows from Proposition 2.1 and Corollary 2.1.

(ii) Next we consider the case when F is trivial. Let (s1,...,s,) be a
global frame for E and (w;) the matrix of 1-forms on M with

Vys; = Zw;-(Y S
i

for vector fields Y on M. Set 5; := f*s; and G). = f*w , and let V be the

unique connection in E such that
Vi =Y @HX)5
i

for vector fields X on M. We now verify that V satisfies (3). Let p € M, v €
T,M, and s € I'(E). Then s = 3, his;j for some functions h/ € D(M,K).
Set q := f(p), w:= f.v, and ¢/ := hJ o f. Then f*s = Zj ¢’3;, and

@véj:Zoﬁj-(v Zw = Vuwsj,

SO

—Z Q)+ 1 (q)  Vus;)

= sz.

(iii) In the general case, choose an open cover {Uy}aer of M such that
E|y, is trivial for each a. Set U, := f~'U,. By case (ii), we have a pull-
back connection V* in E| o . By uniqueness, Ve and V7 restrict to the
same connection on U, N Ug for each «, 8 € I. Hence, the connections V*
patch together to give the desired connection in E. O

Example Let £ — M be a K—vector bundle with connection V and
vl —= M, t—~(t)

a smooth path in M, where I C R is an interval. Proposition 3.1 provides

a K-linear operator % := (v*V) 4 acting on sections of E along v with the
dt

follwing properties.



e For all smooth functions f : I — K and sections o of F along v one

has
D df

o) =4
e If 0 = f*s is the pull-back of a section s of E then

+f

Do
o = V().

4 Holonomy

Proposition 4.1 Let E — M be a K—vector bundle with connection V, and
let v : I — M be a smooth curve. Letty € I and v € Eyy,). Then there
exists a unique parallel section o of E along v such that o(tg) = v.

Here, o is called parallel if D 7 = 0.

Proof. It is a simple exermse to show that any vector bundle over an

interval is trivial. Hence, there exists a global frame (o1, ..., 0,) of the pull-

back bundle v*E. In terms of this frame, the operator % is given by an r x r

matrix (c;) of functions I — K such that

DO'] anz

We are therefore seeking smooth K-valued functions f!,...,f" on the in-
terval I with specified values at tg such that

D - df’ . ;
Ozdtzjjfjaj:zj: <§t‘0j+szi:cj0i>
—Z dfl‘*‘z 1) o,

or, equivalently,

df2+z =0, i=1,...,r (4)

Because this is a linear system of ordinary differential equations, it has a
unique solution with given values at . O
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The proposition allows us to define for any a,b € I the holonomy map,
or parallel transport,

Hol!, := Hol},(V,7) : Eya) = By

of V along . This is the linear isomorphism characterized by the property
that if o is any parallel section of E along v then

Hol®(o(a)) = o(b).
Clearly, if a,b,c € I then
Hol¢ = Hol§ o Hol®.

We can exploit this property to define Holg even if v is only piecewise
smooth. Namely, if
a=ay<a1<---<a,=0>

and 7Yq,_, q;) is smooth for i = 1,...,n we define HOIZ to be the composite
of the holonomies along each subinterval, i.e.

b n
Hol,, := Holg" | o---oHolg? o Holg!. (5)
The following property expresses a connection in terms of its holonomy.

Proposition 4.2 Let V be a connection in a vector bundle E — M and s
a section of E. Let vy : (—¢,e) — M be a smooth curve, where € > 0. For
—e<t<eset

hy == Holg(v,’y) : E'y(t) — E’y(O)'
Then

d

v'\/(O) (S) = 5

S| mGs0)).

0

Note that ¢ — h(s(y(t))) is a curve in the finite-dimensional vector space
E.(0), and we are differentiating this curve at 0 in the usual sense.

Proof. Let (o1,...,0,) be a global frame for v*E consisting of parallel
sections. Then v*s =3 fio; for some functions f7 : (—e,e) — K. Now,

ha(s(v(t) = > F(t) - 05(0),
J

and




5 Curvature

The curvature F = FV of a connection V in a K-vector bundle £ — M
associates to any pair X,Y of vector fields on M the map I'(E) — I'(E)
given by

F(X, Y)s = vays — VyVXS — V[Xy]s.

If F(X,Y) =0 for all X,Y then V is called flat. We will sometimes use the
notation
Vx,Vy]:=VxVy —VyVyx.

Example Let V be the product connection in £ := M x K" — M. Iden-
tifying sections of E with functions h : M — K" we have Vxh = Xh,
SO

VxVyh - VyVxh=XYh-YXh=[X,Y]h=Vxyh

Therefore, the product connection is flat.

Proposition 5.1 Let V be a connection in a vector bundle £ — M. Then
The map

X(M) x X(M) xT(E) = T(E), (X,Y,s)— F(X,Y)s

is D(M, K)-multilinear. Hence, F defines for each p € M a skew-symmetric
bilinear map
F, : T,M x T,M — Endg(E)).

Proof. We prove linearity in X (and hence in Y because of the skew-
symmetry), leaving the linearity in s as an exercise for the reader.
Let g € D(M,K). Then

[gX7 Y] = g[X7Y] - (Yg)Xa
SO
F(gX, Y) = VngyS — Vyvgxs — V[ng]S
=gVxVys—|[(Y9)Vxs+gVyVxs| — [gVixy)s — (Yg)Vxs]
=gF(X,Y)s. O

It follows from the proposition that if F is trivial and (sg,...,s,) is a
global frame for E then there is an r X r matrix (Q;) of 2—forms on M, called
the curvature form of V with respect to the given frame, such that for all
vector fields X,Y on M one has

F(X,Y)s; =Y Qi(X,Y)s;.
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Theorem 5.1 Let V be a connection in a trivial vector bundle E — M,

and let (s1,...,8,) be a global frame for E. Let w = (w;) and Q = (Q;)

be the corresponding connection form and curvature form of V, respectively.
Then for all i,k one has

b= dwp + Y wi Awl.
J

In matrix notation,
O =dw+wAw.

Proof. Recall that for any 1-forms «, 5 on M one has

(@np)X,Y) = a(X)B(Y) — a(Y)B(X),
(da)(X,Y) = X(a(Y)) = V(X)) — a([X, Y]).

Now

VxVysip =Y Vx(wl(Y)s;)
J

= (X(wi(Y) 55+ wi(Y) Zwé(X)&)

:Z X(w,i(Y)—i—Zw;(X)wi(Y) s,

and of course there is a similar formula with X, Y switched. Combining this
with '
Vix,y|Sk = Z‘%([X, Y])si
i

we obtain
F(X,Y)skzz dw,i+2w§/\wi (X,Y)-s. O
( J

Corollary 5.1 In the situation of the theorem, let f : M — M be a smooth
map and (Q;) the curvature form of the pull-back connection f*V with re-
spect to the global frame (f*s;) for f*E. Then

Qi =l O
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6 Orthogonal connections

By a Euclidean metric on a real vector bundle £ — M we mean a choice
of scalar product (-, -) on each fibre E,, such that for every pair s, ¢ of sections
of E the function

M =R, p(s(p),t(p))

is smooth. A real vector bundle equipped with a Euclidean metric is called
a Euclidean vector bundle.

Example The product bundle M x R¥ — M where each fibre has the
standard Euclidean metric.

Theorem 6.1 Fvery real vector bundle admits a Euclidean metric.

Proof. Glue together local Euclidean metrics using a partition of unity.
U

Let E — M be a Euclidean vector bundle of rank k. By an orthonormal
frame for F over an open set U C M we mean a k-tuple (s1,...,sg) of
sections of E|y such that (si(p),...,sg(p)) is an orthonormal basis for E,,
for every p € U. Note that the Gram-Schmidt process applied pointwise to
an arbitrary frame for E over U yields an orthonormal frame.

Let E — M be a real vector bundle equipped with a connection V as
well as a Euclidean metric. Then V is called orthogonal, or compatible
with the Euclidean metric, if for all sections s,t of F and vector fields
X on M one has

X (s,t) = (Vxs,t) + (s, Vxt).

Example If each fibre of a product bundle E = M x R¥ — M has the same
scalar product, then the product connection in E is orthogonal.

Theorem 6.2 Fvery Fuclidean vector bundle admits an orthogonal connec-
tion.

Proof. This is proved just as Theorem 2.1. O

For any finite-dimensional Euclidean space V' let so(V) denote the Lie
algebra of skew-symmetric linear endomorphisms of V. If F — M is a
Euclidean vector bundle then we can apply this construction fibrewise to
obtain a subbundle

so(E) := U so(Ep)
peEM
of the endomorphism bundle End(E).
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Proposition 6.1 Let V be an orthogonal connection in a Fuclidean vector
bundle E — M, and a : TM — End(E) a bundle homomorphism. Then the
connection V + a is orthogonal if and only if a takes values in so(E).

Proof. Set V' := V + a. Then for any vector field X on M and sections
s,t of E one has

(Vixs,t) + (s, Vixt) = X(s,t) + (a(X)s,t) + (s, a(X)1).
From this the proposition follows immediately. |

Theorem 6.3 Let E — M be a real vector bundle equipped with both a
connection V and o Fuclidean metric. Then the following are equivalent.

(i) V is orthogonal.

(ii) For every piecewise smooth curve v : [a,b] — M the holonomy E. ) —
E., @) of V along v is an orthogonal linear map.

Proof. Suppose V is orthogonal and let 7 : [a,b] — M be a piecewise
smooth curve. We will show that the holonomy of V along v is orthogonal.
Because of the composition law (5) for the holonomy we may assume 7 is
smooth. We may in fact also assume F is trivial, since for any sufficiently
fine partion of the interval [a, b] the image of each subinterval under ~ will
be contained in an open subset of M over which F is trivial.

Let (w;) be the connection form of V with respect to a global frame
(s1,...,8%) for E. Then

0= X<SZ', Sj>
= (Vxsi, sj) + (si, Vxsj)

= <wa(X)sk,sj> + <si,2w§“(X)sk>
k k
= w] (X) + wj(X),

so that w? = —wg . Now let ¢ be a parallel section of F along . We will show
that the pointwise norm |o| is a constant function on [a, b], which implies
that the holonomy of V along ~ is orthogonal. Since (v*s;) is a global
orthonormal frame for v*E we have 0 = ), fiv*s; for some real-valued
functions f on the interval [a,b], and

o = S

7
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Let cé- be the functions given by 'y*w;- = cédt. Equation (4) now yields

dt|a(t)|2—2§i:f 'czt__Q%:f fle;=0

by the skew-symmetry of the matrix (c;) Hence, o has constant length as
claimed.

To prove the reverse implication in the proposition, suppose (ii) holds
and let s1, s be a pair of sections of E and X a vector field on M. Given a
point p € M we can find € > 0 and a smooth curve

v:(—€€) > M
such that v(0) = p and 7/(0) = X,. For —e <t < € let
he = Hol) (V,v) : E, 4y = Ep

be the holonomy of V, which is orthogonal by assumption. Using Proposi-
tion 4.2 we obtain

Xylsr ) = & RECIORECION
_ % RUBCIONECION
= (] a2 ) + (o100, G| hesatron)
= (Vxs1,82)p + (51, Vxs2)p,
which shows that V is orthogonal. a

Proposition 6.2 Let V be an orthogonal connection in a Fuclidean vector
bundle E — M and F the curvature of V. Then F(X,Y) is a section of
so(E) for all vector fields X,Y on M.

Proof. For any sections s,t of & we have
XY (s, t) = (VxVys,t) + (Vys, Vxt) + (Vxs, Vyt) + (s, VxVyt).

Combining this with the corresponding equality with X and Y interchanged
we obtain

([Vx,Vyls, t) + (s, [Vx, Vy]t) = [X,Y](s,t)
= (Vix,y1s:t) + (s, Vix yvit)-

Therefore,
(F(X,Y)s, t) + (s, F(X,Y)t)=0. O
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