Geometry and Analysis, Fall 2018

Problem sheet 1, to be discussed Friday the 31th August.

Problem 1. Let E, E' be vector bundles over M and $F : E \to E'$ a bijective bundle homomorphism. Show that F is a bundle isomorphism.

Problem 2. Let E, E' be vector bundles over M and $F : E \to E'$ a bundle homomorphism which has *constant rank*, i.e. $F(E_p)$ has the same dimension for all $p \in M$. Show that the kernel

$$\ker(F) := \bigcup_{p \in M} \ker(F_p)$$

and image

$$\operatorname{im}(F) := \bigcup_{p \in M} \operatorname{im}(F_p)$$

of F are subbundles of E and E', respectively.

Problem 3. For $n \geq 1$ let \mathbb{CP}^n be complex projective *n*-space, which is the space of all 1-dimensional linear subspaces of \mathbb{C}^{n+1} . Recall that \mathbb{CP}^n is in a natural way a smooth 2n-manifold. Show that

$$L := \{ (\lambda, v) \in \mathbb{CP}^n \times \mathbb{C}^{n+1} \, | \, v \in \lambda \}$$

is a rank 1 subbundle of the product bundle $\mathbb{CP}^n \times \mathbb{C}^{n+1} \to \mathbb{CP}^n$.

Problem 4. Let E and E' be \mathbb{K} -vector bundles over M equipped with connections ∇ and ∇' , respectively. Show that there exists exactly one connection $\tilde{\nabla}$ in the bundle $\operatorname{Hom}(E, E')$ over M such that for all vector fields X on M and sections $u \in \Gamma(\operatorname{Hom}(E, E'))$ and $s \in \Gamma(E)$ one has

$$\nabla'_X(us) = \nabla_X u \cdot s + u \cdot \nabla_X s.$$