Geometry and Analysis, Fall 2018

Problem sheet 4, to be discussed Monday the 1st October.

Problem 1. Let E, E^{\prime} be vector bundles over M equipped with connections ∇, ∇^{\prime}, respectively, and let $\tilde{\nabla}$ be the induced connection in $E \otimes E^{\prime}$. Let F, F^{\prime}, \tilde{F} be the curvatures of $\nabla, \nabla^{\prime}, \tilde{\nabla}$. Show that for vector fields X, Y on M and sections s, t of E, E^{\prime} one has

$$
\tilde{F}(X, Y)(s \otimes t)=F(X, Y) s \otimes t+s \otimes F^{\prime}(X, Y) t .
$$

Problem 2. Let L, L^{\prime} be complex line bundles over M. Show that

$$
c_{1}\left(L \otimes L^{\prime}\right)=c_{1}(L)+c_{1}\left(L^{\prime}\right) .
$$

Problem 3. Let $L \rightarrow M$ be a complex line bundle. Show that $c_{1}(L)=0$ if and only if L admits a flat connection.

