
Introduction to Computability Theory

Dag Normann
The University of Oslo

Department of Mathematics
P.O. Box 1053 - Blindern

0316 Oslo
Norway

August 16, 2010

Contents

1 Classical Computability Theory 5
1.1 The foundation, Turing’s analysis 5
1.2 Computable functions and c.e. sets 8

1.2.1 The primitive recursive functions 8
1.2.2 The computable functions 13
1.2.3 Computably enumerable sets 20

1.3 Degrees of Unsolvability . 25
1.3.1 m-reducibility . 25
1.3.2 Truth table degrees . 28
1.3.3 Turing degrees . 30

1.4 A minimal Turing degree . 36
1.4.1 Trees . 36
1.4.2 Collecting Trees . 38
1.4.3 Splitting Trees . 39
1.4.4 A minimal degree . 39

1.5 A priority argument . 40
1.5.1 C.e. degrees . 40
1.5.2 Post’s Problem . 41
1.5.3 Two incomparable c.e. degrees 42

1.6 Models for second order number theory 44
1.7 Subrecursion theory . 46

1.7.1 Complexity . 46
1.7.2 Ackermann revisited . 46
1.7.3 Ordinal notation . 47
1.7.4 A subrecursive hierarchy 50

1.8 Exercises . 50

2 Generalized Computability Theory 59
2.1 Computing with function arguments 59

2.1.1 Topology . 60
2.1.2 Associates . 61
2.1.3 Uniform continuity and the Fan Functional 62

2.2 Computing relative to a functional of
type 2 . 64

1

2.3 2E versus continuity . 67
2.4 The Hyperarithmetical sets . 71

2.4.1 Trees . 71
2.4.2 Π0

k-sets etc. 73
2.4.3 Semicomputability in 2E and Gandy Selection 76
2.4.4 Characterising the hyperarithmetical sets 79

2.5 Typed λ-calculus and PCF . 80
2.5.1 Syntax of PCF . 80
2.5.2 Operational semantics for PCF 82
2.5.3 A denotational semantics for PCF 84

2.6 Exercises to Chapter 2 . 86

3 Non-trivial exercises and minor projects 90

2

Preface

This compendium will be the curriculum text for the course on Computability
Theory at the University of Oslo, Autumn 2010. The compendium is based on
chapters 3 and 4 of the compendium for ”Mathematical Logic II” from 2005, [3]
In its present form, the compendium may be used free of charge by anyone, but
if someone uses it for an organized course, the author would like to be informed.

Blindern, 16.08.2010

Dag Normann

3

Introduction

This compendium is written primarily as a text for the course MAT4630 - Com-
putability Theory given at the University of Oslo, Norway. The compendium is
essentially consisting of two parts, Classical Computability Theory and Gener-
alized Computability Theory. In Chapter 1 we use a Kleene-style introduction
to the class of computable functions, and we will discuss the recursion theorem,
c.e. sets, Turing degrees, basic priority arguments, the existence of minimal
degrees and a few other results.
In Chapter 2 we give an introduction to computations relative to type 2 func-
tionals, the hyperarithmetical sets and, to some extent, to PCF.

We will assume that the reader is familiar with the standard vocabulary of
logic and set theory, but no advanced background from logic is required.

Both chapters are supplied with a set of exercises at the end, some simple
and some hard. The exercises are integrated parts of the text, and at the end
the students are assumed to have worked through most of them. The philosophy
behind this is that students have to work through some of the proofs themselves
in order to really understand the subject and being able to use it in other
contexts.

Chapter 3 will consist of just exercises. These are not integrated parts, but
challenges the eager reader/student might like to face.
The compendium is not to be considered as a complete textbook. For instance,
it is scarce on references, and we do not give proper credit for the theorems we
prove.

At the end, there is a subject index and a short bibliography. On request, it
is possible to extend both parts, and then to make these revised parts available.

Suggestions for further reading

• Cooper [1]

• Odifreddi [4]

• Rogers [5]

• Sacks [6]

• Soare [7]

• Streicher [8]

There are many other texts available. Still maybe Rogers [5] and Odifreddi [4]
are the most accessible introductory texts available.

4

Chapter 1

Classical Computability
Theory

1.1 The foundation, Turing’s analysis

In Leary [2] (the text book used locally for the introductory course on logic) the
recursive functions are defined as those that can be represented in elementary
number theory. f : Nk → N is recursive if there is a formula φ(x1, . . . , xk, y)
such that for all n1, . . . , nk,m we have that f(n1, . . . , nk) = m if and only if

N ` φ(cn1 , . . . , cnk , y)↔ y = cm.

Here cn is the numeral for n, and N is elementary number theory.
The advantage of this definition is that it is well suited for proving Gödel’s

incompleteness theorem without introducing too many new concepts. The prob-
lem is that there is absolutely no conceptual analysis of the notion of computabil-
ity behind this definition.

Gödel defines a class of recursive functions by recursion (pun intended). His
aim is to define a sufficiently rich class for handling algorithms for e.g. substitu-
tion of a term for a variable, and for coding the meta-theory of a formal theory,
but sufficiently simple to enable us to show that any recursive function will be
definable, and actually, representable as described above. Gödel’s computable
functions are now known as the µ-recursive ones.

We are going to base our study of computability on an approach due to
Kleene, and we are going to restrict ourselves to computable functions defined
on the natural numbers. In many respects, computing can be described as
manipulation of symbols following a given set of rules. The symbols are not then
natural numbers, and different ways of representing natural numbers (binary,
decadic, via numerals, Roman figures etc.) might give different concepts of
computing with numbers.

The best mathematical model for computability and computations is due
to Alan Turing. He defined what is now known as Turing machines, small

5

finite state machines operating on an infinite one-dimensional tape and doing
symbol manipulations on this tape. The machine will, between each step of the
computation, be in one of finitely many states. It will read one of the symbols
on the tape, and dependent of the state it is in and the symbol on the tape that
it reads, it will according to a fixed rule change its state, rewrite the symbol
and move to the symbol to the right or to the left. It may of course stay in
the same state, it may of course keep the symbol on the tape as it is, but it is
hardly convenient to let it stay where it is. We think of the tape as consisting
of squares, like an old fashioned movie-tape.

A Turing machine M is determined by

1. A finite alphabet Σ including one special symbol Bl for an empty square
of the tape.

2. A finite set K of states, with one special state s ∈ K called the initial
state.

3. A partial function δ : (Σ×K)→ (Σ×K ×{L,R}), where L means ”left”
and R means ”right”.

In the literature you will find many variations in the definition of a Turing
machine, but they all have the same computational power. In this exposition,
we decided to let the function δ, which rules the action of the machine, be
partial. If δ(σ, p) is undefined, the machine will be in a halting situation, which
means that the computation comes to an end. We are not going to give a precise
definition of the operational semantics for Turing machines, but are content with
an intuitive description:

The operational semantics of Turing Machines

Let M = 〈Σ,K, s, δ〉 be a Turing machine.
The starting configuration of M will consist of a word w (called the input) in Σ
written on an otherwise blank tape that is infinite in both directions, a position
on the tape and the initial state s.
At each step, the machine M may enter a new state, rewrite the symbol at its
position on the tape and shift its position one square to the right or to the left,
all according to the function δ.
If M is in stage p and reads the symbol σ, and δ(σ, p) is undefined, M halts.
Then we who observe M will know this, and we will be able to read the content
of the tape, which will be called the output.

Normally there will be some conventions for how to organize the input con-
figuration, e.g. that there should be no blanks in the input word and that the
machine will be started at the first blank square to the left or to the right of
the input word. Then the following makes sense

Definition 1.1.1 Let Σ0 be an alphabet not containing the symbol Bl
Let Σ∗0 be the set of finite words over Σ0.
Let f : Σ∗0 → Σ∗0 be a partial function.

6

We say that f is Turing computable if there is a Turing machine M over an
alphabet Σ ⊃ Σ0 such that if M is started with w ∈ Σ∗ on the tape, then it
halts if and only if f(w) is defined, and then with f(w) as the output word.

Turing claimed that a Turing machine can

• Search systematically for pieces of information.

• Remember pieces of information

• Rewrite contents

all according to fixed rules. As an example we may consider the map n 7→ n! and
the map m 7→ mm. We all agree that these maps are in principle computable,
but try to think about how a computation of 1010! could be carried out: We
will need a lot of book-keeping devices in order to be at the top of the situation
at each stage, but nothing that is not covered by the three items above.

We follow Turing in claiming that his model is a good mathematical model
for algorithmic computations. We are, however, not going to make this com-
pendium into a study of Turing machines. The interested reader should consult
other textbooks on the subject.

The two key results are:

Theorem 1.1.2 There is a fixed alphabet Σ such that for any alphabet Σ′, any
Turing machine M over Σ′ may be coded as a word [M] in Σ and every word w
in Σ′ may be coded as a word [w] in Σ such that the partial function

U([M][w]) = [M(w)]

is Turing computable, where we write M(w) for the output word if the input
word is w.

This is known as the existence of a Universal Turing Machine.

The Halting Problem is the following:

Given a Turing machine M and an input w, will M eventually come to a halt
when started on w?

Theorem 1.1.3 There is no Turing machine H that solves the Halting Problem
in the following sense:
H([M][w]) will always halt, and will halt with an empty output word if and only
if M halts on w.

Our approach to computability will be more in the original style of Gödel, we
will study functions defined for natural numbers only. However, the results that
we obtain will be relevant for the more general approaches as well. This is based
on what is known as the Church-Turing Thesis, which we phrase like this:

All algorithms can be simulated by a Turing Machine,

and the fact that Turing-computability can be reduced to the notion we will
be working with. This is left as one of the minor projects in Chapter 3, see
Exercise 3.2.

7

1.2 Computable functions and c.e. sets

1.2.1 The primitive recursive functions

The basic definition

Recursion means ‘backtracking’, and in pre-Church/Kleene mathematics the
term recursive function was used for the functions defined by iterated recursion.
In this pre-Church/Kleene context a recursive definition will be a definition of
a function on the natural numbers, where we give one initial value f(0), and
define f(k+1) as a function of f(k) and k. E.g. Skolem used the term ‘recursive
function’ in this way. Following Kleene, we will call these functions primitive
recursive.

We let ~x and ~y etc. denote ordered sequences of natural numbers of some
fixed length. Normally the length will not be specified, but will be clear from
the context.

Definition 1.2.1 The primitive recursive functions f : Nn → N will be the
least class of functions satisfying:

i) f(x, ~y) = x+ 1 is primitive recursive.

ii) Ii,n(x1, . . . , xn) = xi is primitive recursive.

iii) f(~x) = q is primitive recursive for each q ∈ N.

iv) If g is n-ary and primitive recursive, and f1, . . . , fn arem-ary and primitive
recursive, then the composition

h(~x) = g(f1(~x), . . . , fn(~x))

is primitive recursive.

v) If g and h are primitive recursive of arity n and n + 2 resp., then f is
primitive recursive where

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(f(x, ~y), x, ~y)

We say that f is defined by primitive recursion or by the recursion operator
from g and h.

The pool of primitive recursive functions and sets

Standard number theoretical functions like addition, multiplication, exponenti-
ation and factorial will all be primitive recursive. For instance f(x, y) = x + y
may be defined by

- x+ 0 = x

- x+ (y + 1) = (x+ y) + 1.

8

Subtraction is not primitive recursive for the simple reason that it leads us
outside N. We define a modified subtraction. This will be primitive recursive,
see Exercise 1.1.

Definition 1.2.2 We let ·− be the modified subtraction defined by

x ·− y = x− y if y ≤ x

x ·− y = 0 if x ≤ y.

By the definition of the primitive recursive functions, all projection maps

Ii,n(x1, . . . , xn) = xi

are primitive recursive. We can use this to consider any function of a set of
variables as a function of a larger set of variables, as in

f(x1, x2, x3) = g(I1,3(x1, x2, x3), I3,3(x1, x2, x3)) = g(x1, x3).

Thus we will not need to be concerned with the requirement that every function
in a composition must be of the same arity. This will simplify some of the
descriptions of primitive recursive functions.

Definition 1.2.3 Let A ⊆ Nn. The characteristic function of A will be the
function

KA : Nn → N

that is 1 on A and 0 outside A.

Definition 1.2.4 A set A ⊆ Nn is primitive recursive if the characteristic func-
tion KA is primitive recursive.

The primitive recursive sets will form a Boolean algebra for every dimension,
see Exercise 1.2.

If A ⊆ Nk is primitive recursive and f, g : Nk → N are primitive recursive,
we may define a primitive recursive function h by cases as follows:

h(~x) = KA(~x) · f(~x) + (1 ·−KA(~x)) · g(~x)).

We see that h(~x) = f(~x) when ~x ∈ A and h(~x) = g(~x) otherwise.
Every set defined from = and < using propositional calculus will be primitive

recursive. We may also use functions known to be primitive recursive in the
definition of primitive recursive sets, and we may use primitive recursive sets
when we describe primitive recursive functions. We will leave the verification of
most of this to the reader, just state the properties of primitive recursion that
are useful to us. The proofs are simple, and there is no harm leaving them as
exercises. We will however prove one basic (and simple) lemma:

9

Lemma 1.2.5 Let f : N1+n → N be primitive recursive. Then the function g
defined as the bounded product

g(x, ~y) =
∏
z≤x

f(z, ~y)

will be primitive recursive.

Proof
We define g by primitive recursion as follows
g(0, ~y) = f(0, ~y)
g(x+ 1, ~y) = g(x, ~y) · f(x+ 1, ~y).

By the same argument we can show that the primitive recursive functions
will be closed under bounded sums. What is more important to us is that the
primitive recursive sets will be closed under bounded quantification. This is
an important strengthening of the pure relational language without quantifiers,
and this will be useful when we need to construct primitive recursive sets and
functions for various tasks.

Lemma 1.2.6 Let A ⊆ N1+n be primitive recursive. Then the following sets
are primitive recursive

a) B = {(x, ~y) | ∃z ≤ y((z, ~y) ∈ A)}

b) C = {(x, ~y) | ∀z ≤ y((z, ~y) ∈ A)}

The proof is left as Exercise 1.3.

In computability theory, the µ-operator is important. Within primitive re-
cursion theory we may often use bounded search, or a bounded µ-operator:

Lemma 1.2.7 Let f : N1+n → N be primitive recursive. Then

g(x, ~y) = µ<xz.(f(z, ~y) = 0)

is primitive recursive, where g(x, ~y) is the least z such that f(z, ~y) = 0 if there
is one such z < x, while g(x, ~y) = x otherwise.

g can be defined using primitive recursion and definition by cases. The details
are left as Exercise 1.4.

The interplay between the primitive recursive functions and the primitive
recursive sets is ruled by the following principles:

Theorem 1.2.8 a) Every set definable from = and < using primitive recur-
sive functions, boolean operators and bounded quantifiers will be primitive
recursive.

b) Every function defined by the schemes of primitive recursion, bounded
search over a primitive recursive set and definition by cases over a finite
partition of Nn into primitive recursive sets will be primitive recursive.

10

There is no need to prove this theorem, since it in a sense is the synthesis of
what has been proved so far. The consequence is the level of freedom in defining
primitive recursive functions and relations we have obtained. This freedom will
be sufficient when we later claim that certain facts are trivial to prove.

Sequence numbers

One important use of primitive recursion is the coding of finite sequences. Gödel
needed an elaborate way of coding finite sequences via the so called β-function.
As we mentioned above, it was important for Gödel to show that the recursive
functions are definable in ordinary number theory. Since this is not important
to us to the same extent, we will use full primitive recursion in coding such
sequences. All proofs of the lemmas below are trivial and can safely be left for
the reader.

Lemma 1.2.9 a) The set of prime numbers (starting with 2 as the least
prime number) is primitive recursive.

b) The monotone enumeration {pi}i∈N of the prime numbers is primitive
recursive (with p0 = 2).

We now define the sequence numbers:

Definition 1.2.10 Let x0, . . . , xn−1 be a finite sequence of numbers, n = 0
corresponding to the empty sequence.
We let the corresponding sequence number 〈x0, . . . , xn−1〉 be the number

2n ·
n−1∏
i=0

pxii+1

If y = 〈x0, . . . , xn−1〉, we let lh(y) (the length of y) be n and (y)i = xi.
If x = 〈x0, . . . , xn−1〉 and y = 〈y0, . . . , ym−1〉, we let x ∗ y be the sequence
number of the concatenation, i.e.

x ∗ y = 〈x0, . . . , xn−1, y0, . . . , ym−1〉.

Sometimes, when it is clear from the context, we will misuse this terminology
and let

a ∗ 〈x0, . . . , xn−1〉 = 〈a, x0, . . . , xn−1〉.

Lemma 1.2.11 a) The set of sequence numbers is primitive recursive, and
the sequence numbering is one-to-one (but not surjective).

b) The function lh is the restriction of a primitive recursive function to the
set of sequence numbers.

c) The function coor(y, i) = (y)i (the i’th coordinate of y) defined for se-
quence numbers y of length > i is the restriction of a primitive recursive
function of two variables.

11

d) For each n, the function

seqn(x0, . . . , xn−1) = 〈x0, . . . , xn−1〉

is primitive recursive.

e) For all sequences x0, . . . , xn−1 and i < n, xi < 〈x0, . . . , xn−1〉

f) 1 is the sequence number of the empty sequence.

h) Concatenation of sequence numbers is primitive recursive.

It makes no sense to say that the full sequence numbering is primitive re-
cursive. However any numbering satisfying Lemma 1.2.11 can be used for the
purposes of this course, so there is no need to learn the details of this defini-
tion. Occasionally it may be useful to assume that the sequence numbering is
surjective. This can be achieved, see Exercise 1.5.

Primitive recursion is technically defined on successor numbers via the value
on the predecessor. Sometimes it is useful to use the value on all numbers less
than the argument x in order to define the value on x. In order to see that this
is harmless, we use the following construction and the result to be proved in
Exercise 1.6:

Definition 1.2.12 Let f : N→ N.
Let f̄(n) = 〈f(0), . . . , f(n− 1)〉.

We will sometimes use an alternative coding of pairs that is both 1-1 and
onto:

Definition 1.2.13 Let

P (x, y) =
1
2

((x+ y)2 + 3x+ y)

It can be shown that P : N2 → N is a bijection. Let π1 and π2 be the two
projection maps such that for any x

P (π1(x), π2(x)) = x.

P , π1 and π2 are primitive recursive. The verifications are left for the reader as
Exercise 1.5 e).

Ackermann proved that there is a total computable function that is not
primitive recursive. His observation was that in the list of functions

f0(x, y) = x+ 1, f1(x, y) = x+ y, f2(x, y) = xy, f3(x, y) = xy

each function but the first is defined as a y-iteration of the previous one.
For n ≥ 3 we may then define

12

fn(x, 0) = 1, fn(x, y + 1) = fn−1(fn(x, y), x)

This defines the generalized exponentiations, or the Ackermann-branches. The
three-place function

f(n, x, y) = fn(x, y)

is not primitive recursive.
We will not prove Ackermann’s result as stated, but in Exercise 1.7 we will see
how we may define a function, using a double recursion, that is not primitive
recursive. It will be easier to solve this exercise after the introduction to Kleene
indexing.

1.2.2 The computable functions

The µ-operator

We extend the definition of the primitive recursive functions to a definition of
the computable functions by adding one principle of infinite search. We will
consider the construction

g(~x) = µx.f(x, ~x) = 0.

In order to understand this definition, we must discuss what we actually mean,
i.e. which algorithm this is supposed to represent.
Intuitively we want µx.g(x, ~x) = 0 to be the least x such that g(x, ~x) is 0.
If g(x, ~x) ∈ N for all x, this is unproblematic, we search for this least x by
computing g(0, ~x) , g(1, ~x) and so on until we find one value of x giving 0 as the
outcome. Now, if there is no such x, we will search in vain, or in more technical
terms, our procedure will be non-terminating. This forces us to introduce partial
functions, i.e. functions being undefined on certain arguments. This further
forces us to be careful about our interpretation of the µ-operator, we may in the
search for the least x such that g(x, ~x) = 0 face a z for which g(z, ~x) is undefined
before we find a z for which g(z, ~x) = 0. In this case we will let µx.g(x, ~x) = 0
be undefined, realizing that the algorithm for computing this number that we
have in mind will be non-terminating.
With this clarification we ad the following

Definition 1.2.14 The computable functions is the least class of partial func-
tions f : Nn → N satisfying i) - v) in the definition of the primitive recursive
functions, together with the extra clause

vi) If g : Nn+1 → N is computable then

f(~x) = µx.g(x, ~x) = 0

is computable.

A set is computable if the characteristic function is computable.
A total computable function is a computable function terminating on all inputs
from the domain Nn.

13

Remark 1.2.15 Gödel’s µ-recursive functions will be the total computable
functions.

We must have in mind that the characteristic function of a set is total, so
dealing with computable sets and with total computable functions will be much
of the same. This is made precise in the following lemma:

Lemma 1.2.16 Let f : Nn → N be total. Then the following are equivalent:

i) f is computable.

ii) The graph of f , seen as a subset of Nn+1, is computable.

Proof
Let A be the graph of f , KA the characteristic function of A.
If f is computable, then

KA(~x, y) = K=(f(~x), y)

and K= is primitive recursive, see Exercise 1.1, g) and e).
If KA is computable, then

f(~x) = µy.1 ·−KA(~x, y) = 0,

so f is computable.

Remark 1.2.17 This result will not hold for primitive recursion, there will be
functions with primitive recursive graphs that are not primitive recursive.

There is an interplay between the total computable functions and the com-
putable sets resembling Theorem 1.2.8 as follows

Theorem 1.2.18 a) Any set definable from computable sets and total com-
putable functions using boolean valued operators and bounded quantifiers
will be computable.

b) If A ⊆ Nn+1 is computable, then g is computable, where

g(~x) is the least number z such that (z, ~x) ∈ A.

The proof is trivial.

Kleene’s T -predicate

The definition of the computable functions is technically an inductive defini-
tion of a class of partial functions. It is, however, important to be aware of
the computational interpretation of this definition, the so to say ‘operational
semantics’. Every partial computable function is given by a term in a language
with constants for each number, the +1 function and symbols for the recursion
operator and the µ-operator.

14

This operational semantics then tells us that there are actual computations go-
ing on. Now we will define the concept of a computation tree. A computation
tree will be a number coding every step in a computation up to the final out-
come. In order to be able to do so, we need a Gödel numbering, or an indexing,
of the computable functions. Observe that the numbering will not be 1-1, we
will enumerate the algorithms or the terms, and then only indirectly enumerate
the computable functions.

Definition 1.2.19 For each number e and simultaneously for all n we define
the partial function φne of n variables ~x = (x1, . . . , xn) as follows:

i) If e = 〈1〉, let φne (~x) = x1 + 1.

ii) If e = 〈2, i〉 and 1 ≤ i ≤ n, let φne (~x) = xi.

iii) If e = 〈3, q〉, let φne (~x) = q.

iv) If e = 〈4, e′, d1, . . . , dm〉 let

φe(~x) = φme′ (φ
n
d1(~x), . . . , φndm(~x)).

v) If e = 〈5, d1, d2〉 then
φn+1
e (0, ~x) = φnd1(~x)
φn+1
e (x+ 1, ~x) = φn+2

d2
(φn+1
e (x, ~x), x, ~x).

vi) If e = 〈6, d〉 then
φne (~x) = µz.φn+1

d (z, ~x) = 0.

Otherwise If neither of i) - vi) above applies, let φne (~x) be undefined.

Remark 1.2.20 We have defined φe(~x) for every index e and every input ~x,
either as an undefined value or as a natural number. Indeed, if we get a natural
number, this number will be unique, see Exercise 1.8.
When no misunderstanding should occur, we will drop the superscript n and
write φe(~x) instead of φne (~x).

Definition 1.2.21 We write φe(~x)↓ if there is a y with φe(~x) = y. We then
say that φe(~x) terminates.
If φe(~x) does not terminate, we may write

φe(~x)↑ .

We are now ready to use the sequence numbering and this indexing to define
computation trees. Each terminating computation will have a unique computa-
tion tree, a number coding each step of the computation from the input to the
output. We will actually be overloading this code with information, but for our
purposes this is harmless. What is important to us is that information retrieval
will be easy.

15

Before giving the formal definition, we will describe more informally how a com-
putation may be viewed as writing down a labelled tree, where we start with a
root node

φe(~x) =?

and ends up, after having created the whole tree, with a root node

φe(~x) = a,

where a is the output of the computation.
If φe is one of the initial functions from schemes i) - iii), we can just replace ?
with the correct answer a at once.
If

φe(~x) = φe′(φd1(~x), . . . , φdm(~x))

we first write down child nodes labelled φdi(~x) =? for i = 1, . . . ,m, then
follow our procedure for replacing the occurrences of ? with proper outputs
~y = y1, . . . , ym.
Then we introduce a further child node φe′(~y) =? and go through the process
again replacing this ? with a value a. Then we may finally replace the topmost
? with a.

We may also describe what goes on in schemes v) and vi) as constructing sub-
trees until we have the information required.
It is the essential part of the information in these informal trees that we want to
capture, in a coded way, in the computation trees, and we use iterated sequence
numbering to obtain this code.

Definition 1.2.22 Let φe(~x) = y. By primitive recursion on e we define the
computation tree of φe(~x) = y as follows, assuming that the index e will be the
index of the corresponding case:

i) 〈e, ~x, x1 + 1〉 is the computation tree for φe(~x) = x1 + 1.

ii) 〈e, ~x, xi〉 is the computation tree for φe(~x) = xi.

iii) 〈e, ~x, q〉 is the computation tree for φe(~x) = q.

iv) 〈e, t, t1, . . . , tn, y〉 is the computation tree in this case, where each ti is
the computation tree for φdi(~x) = zi and t is the computation tree for
φe′(~z) = y.

v) 〈e, 0, t, y〉 is the computation tree for φe(0, ~x) = y when t is the computa-
tion tree for φd1(~x) = y.
〈e, x + 1, t1, t2, y〉 is the computation tree for φe(x + 1, ~x) = y when t1 is
the computation tree for φe(x, ~x) = z and t2 is the computation tree for
φd2(z, x, ~x) = y.

vi) 〈e, t0, . . . , ty−1, ty, y〉 is the computation tree in this case, where ti is the
computation tree for φd(i, ~x) = zi 6= 0 for i < y and ty is the computation
tree for φd(y, ~x) = 0.

16

We say that t is a computation tree for φne (~x) if for some y, t is the computation
tree for φne (~x) = y.

We are now ready to define Kleene’s T -predicate:

Definition 1.2.23 Let
Tn(e, x1, . . . , xn, t)

if t is a computation tree for φe(x1, . . . , xn)

We will normally write T instead of T1.

Theorem 1.2.24 a) For each n, Tn is primitive recursive.

b) There is a primitive recursive function U such that if t is a computation
tree, then U(t) is the output of the corresponding computation.

c) (Kleene’s Normal Form Theorem)
For every arity n and all e we have

φe(x1, . . . , xn) = U(µt.Tn(e, x1, . . . , xn, t)).

Proof
It is only a) that requires a proof. The proof of a) is however easy, we construct
the characteristic function of Tn by recursion on the last variable t. Monotonisity
of the sequence numbering is important here. We leave the tedious, but simple
details for the reader.

Corollary 1.2.25 For each number n, the function

f(e, x1, . . . , xn) = φe(x1, . . . , xn)

is computable.

Remark 1.2.26 Corollary 1.2.25 is the analogue of the existence of a universal
Turing machine, we can enumerate the computable functions in such a way
that each computable function is uniformly computable in any of the numbers
enumerating it. This universal function is partial. There is no universal function
for the total computable functions, see Exercise 1.9.

The Recursion Theorem

The recursion theorem is one of the key insights in computability theory intro-
duced by Kleene. In programming terms it says that we may define a set of
procedures where we in the definition of each procedure refer to the other pro-
cedures in a circular way. The proof we give for the recursion theorem will be a
kind of ‘white rabbit out of the hat’ argument based on the much more intuitive
Snm-theorem. So let us first explain the Snm-theorem. Let f be a computable
function of several variables. Now, if we fix the value of some of the variables, we
will get a computable function in the rest of the variables. Of course, the index

17

of this function will vary with values we give to the variables.The Snm-theorem
tells us that the index for this new function can be obtained in a primitive re-
cursive way from the index of the original function and the values of the fixed
variables. We have to prove one technical lemma:

Lemma 1.2.27 There is a primitive recursive function ρ (depending on n) such
that if

φne (x1, . . . , xn) = t

and
1 ≤ i ≤ n

then
φn−1
ρ(e,i,xi)

(x1, . . . , xi−1, xi+1, . . . , xn) = t.

Proof
We define ρ by induction on e, considering the cases i) - vi). We leave some of
the easy details for the reader, see Exercise 1.11.
φe(~x) = x1 + 1:
If 1 < i let ρ(e, i, xi) = e, while ρ(e, 1, x1) = 〈3, x1 + 1〉.
The cases ii) and iii) are left for the reader.
If e = 〈4, e′, d1, . . . , dn〉, we simply let

ρ(e, i, xi) = 〈4, e′, ρ(d1, i, xi), . . . , ρ(dn, i, xi)〉.

Case v) splits into two subcases. If 1 < i, this case is easy. For i = 1 we let
ρ(e, 1, 0) = d1.
ρ(e, 1, x+ 1) = 〈4, 〈3, x〉, ρ(e, 1, x), dx, 〈2, 1〉, . . . , 〈2, n〉〉
where 〈3, x〉 is the index for f(~x) = x and 〈2, i〉 is the index for the function
selecting xi from ~x. In this case the primitive recursion is replaced by an iterated
composition, the depth of which is determined by the value of x.
Case vi) is again easy, and is left for the reader.

Theorem 1.2.28 (The Snm-theorem)
Let n ≥ 1,m ≥ 1. There is a primitive recursive function Snm such that for all
e, x1, . . . , xn, y1, . . . , ym

φn+m
e (x1, . . . , xn, y1, . . . , ym) = φmSnm(e,x1,...,xn)(y1, . . . , ym)

Proof
Let ρ be as in Lemma 1.2.27.
Let S1

m(e, x) = ρ(e, 1, x)
Let Sk+1

m (e, x1, . . . , xk+1) = ρ(Skm+1(e, x1, . . . , xk), 1, xk+1). By an easy induc-
tion on k we see that this construction works for all m.

The Snm-theorem is a handy tool in itself, and we will use it frequently
stating that we can find an index for a computable function uniformly in some
parameter. Now we will use the Snm-theorem to prove the surprisingly strong

18

Theorem 1.2.29 (The Recursion Theorem)
Let f(e, ~x) be a partial, computable function.
Then there is an index eo such that for all ~x

φe0(~x) ' f(e0, ~x).

Proof
Recall that by this equality we mean that either both sides are undefined or
both sides are defined and equal. Let

g(e, ~x) = f(S1
n(e, e), ~x)

and let ĝ be an index for g. Let

e0 = S1
n(ĝ, ĝ).

Then

φe0(~x) = φS1
n(ĝ,ĝ)(~x) = φĝ(ĝ, ~x) = g(ĝ, ~x) = f(S1

n(ĝ, ĝ), ~x) = f(e0, ~x).

Remark 1.2.30 Readers familiar with the fixed point construction in untyped
λ-calculus may recognize this proof as a close relative, and indeed it is essentially
the same proof. The recursion theorem is a very powerful tool for constructing
computable functions by self reference. In Chapter 2 we will use the recursion
theorem to construct computable functions essentially by transfinite induction.
Here we will give a completely different application, we will prove that there is
no nontrivial set of partial computable functions such that the set of indices for
functions in the class is computable.

Theorem 1.2.31 (Riece)
Let A ⊆ N be a computable set such that if e ∈ A and φe = φd then d ∈ A.
Then A = N or A = ∅.

Proof
Assume not, and let a ∈ A and b 6∈ A.
Let f(e, x) = φb(x) if e ∈ A and f(e, x) = φa(x) if e 6∈ A.
By the recursion theorem, let e0 be such that for all x

f(e0, x) = φe0(x).

If e0 ∈ A, then φe0 = φb so e0 6∈ A.
If e0 6∈ A, then φe0 = φa so e0 ∈ A.
This is a clear contradiction, and the theorem is proved.

Corollary 1.2.32 (Unsolvability of the halting problem)
{(e, x) | φe(x)↓} is not computable.

Remark 1.2.33 Riece’s theorem is of course stronger than the unsolvability of
the Halting Problem, for which we need much less machinery.

19

1.2.3 Computably enumerable sets

Four equivalent definitions

An enumeration of a set X is an onto map F : N → X. For subsets of N we
may ask for computable enumerations of a set. A set permitting a computable
enumeration will be called computably enumerable or just c.e. The standard
terminology over many years has been recursively enumerable or just r.e., be-
cause the expression recursive was used by Kleene and many with him. We will
stick to the word computable and thus to the term computably enumerable.
Of course there is no enumeration of the empty set, but nevertheless we will
include the empty set as one of the c.e. sets.
In this section we will give some characterizations of the c.e. sets. One impor-
tant characterization will be as the semi-decidable sets. A computable set will
be decidable, we have an algorithm for deciding when an element is in the set
or not. In a semi-decidable set we will have an algorithm that verifies that an
element is in the set when it is, but when the element is not in the set, this
algorithm may never terminate. A typical semi-decidable set is the solving set
of the Halting Problem

{(e, x) | φe(x)↓}.

Another example is the set of theorems in first order number theory or any
nicely axiomatizable theory. The set of words in some general grammar will
form a third class of examples.

We will show that the semi-decidable subsets of N will be exactly the c.e.
sets. A third characterization will be that the c.e. sets are exactly the sets of
projections of primitive recursive sets. In the literature this class is known as the
Σ0

1-sets. A fourth characterization will be as the ranges of partial, computable
functions.

This is enough talk, let us move to the definition:

Definition 1.2.34 Let A ⊆ N. We call A computably enumerable or just c.e.
if A = ∅ or A is the range of a total computable function.

Theorem 1.2.35 Let A ⊆ N. Then the following are equivalent:

i) A is c.e.

ii) A is the range of a partial computable function.

iii) There is a primitive recursive set S ⊆ N2 such that

A = {n | ∃m(n,m) ∈ S}

iv) There is a partial computable function with domain A.

Proof
Since the empty set satisfies all four properties, we will assume that A 6= ∅.
i) ⇒ ii):

20

Trivial since we in this compendium consider the total functions as a subclass
of the partial functions.
ii) ⇒ iii):
Let A be the range of φe.
Then

n ∈ A⇔ ∃y(T (e, π1(y), π2(y)) ∧ n = U(π2(y)))

where π1 and π2 are the inverses of the pairing function P , T is Kleene’s T -
predicate and U is the function selecting the value from a computation tree.
The matrix of this expression is primitive recursive.
iii) ⇒ iv): Let

n ∈ A⇔ ∃m((n,m) ∈ S).

where S is primitive recursive. Then A is the domain of the partial computable
function

f(n) = µm.(n,m) ∈ S.

iv) ⇒ i):
Let A be the domain of φe and let a ∈ A (here we will use the assumption that
A is non-empty).
Let f(y) = π1(y) if T (e, π1(y), π2(y)), f(y) = a otherwise. Then f will be
computable, and A will be the range of f .
This ends the proof of the theorem.

Clearly characterizations ii) and iii) make sense for subsets of Nn as well for
n > 1, and the equivalence will still hold. From now on we will talk about c.e.
sets of any dimension. The relationship between c.e. subsets of N and Nn is
given in Exercise 1.14.

The following lemma will rule our abilities to construct c.e. sets:

Lemma 1.2.36 Let A ⊆ Nn and B ⊆ Nn be c.e. Then

a) A ∩B and A ∪B are both c.e.

b) If n = m+ k and both m and k are positive, then

{~x | ∃~y(~x, ~y) ∈ A}

will be c.e., where ~x is a sequence of variables of length m and ~y is of
length k.

Moreover, every computable set is c.e., the inverse image or direct image of a
c.e. set using a partial computable function will be c.e.

All these claims follow trivially from the definition or from one of the char-
acterizations in Theorem 1.2.35.

Clearly, a finite set will not permit a 1-1 enumeration. It turns out that any
infinite c.e. set is the range of a 1-1 computable function. This will turn out to
be a useful observation:

21

Lemma 1.2.37 Let f : N→ N be computable with an infinite range.
Then there is a 1-1 computable function g with the same range as f .

Proof
We define g from f by recursion as follows

g(0) = f(0)

g(n+ 1) = f(µm(f(m) 6∈ {g(0), . . . , g(n)})).

Then g is computable and, by construction, with the same range as f . Also see
Exercise 1.13

Let us introduce another standard piece of notation:

Definition 1.2.38 Let

We = {n | φe(n)↓} = {n | ∃tT (e, n, t)}.

Let
We,m = {n | ∃t < mT (e, n, t)}.

We let φe,m be the finite subfunction of φe where we restrict ourselves to com-
putations with computation trees bounded by m.
We let K be the diagonal set

K = {e | e ∈We}.

Lemma 1.2.39 a) {(e, n) | n ∈We} is c.e.

b) K is c.e.

c) Each set We,m is finite.

d) {(e, n,m) | n ∈We,m} is primitive recursive.

All proofs are trivial.

Selection with consequences

From now on we will prove lemmas and theorems in the lowest relevant dimen-
sion, but clearly all results will hold in higher dimensions as well.

Theorem 1.2.40 (The Selection Theorem)
Let A ⊆ N2 be c.e. Then there is a partial computable function f such that

i) f(n)↓⇔ ∃m(n,m) ∈ A.

ii) If f(n)↓ then (n, f(n)) ∈ A.

22

Proof
This time we will give an intuitive proof. Let A be the projection of the primitive
recursive set B ⊆ N3 (characterization iii).). For each n, search for the least m
such that (n, π1(m), π2(m)) ∈ B, and then let f(n) = π1(m).

Intuitively we perform parallel searches for a witness to the fact that (n,m) ∈
A for some m, and we choose the m for which we first observe a witness.

Corollary 1.2.41 Let A and B be two c.e. sets. Then there are disjoint c.e.
sets C and D with

C ⊆ A, D ⊆ B and A ∪B = C ∪D.

Proof
Let E = (A× {0}) ∪ (B × {1}) and let f be a selection function for E.
Let C = {n | f(n) = 0} and D = {n ; f(n) = 1}.
Then C and D will satisfy the properties of the corollary.

Corollary 1.2.42 A set A is computable if and only A and the complement of
A are c.e.

One way is trivial, since the complement of a computable set is computable and
all computable sets are c.e. So assume that A and its complement B are c.e.
Let E be as in the proof of the corollary above, and f the selection function.
Then f is the characteristic function of A, so A is computable.

Corollary 1.2.43 Let f : N→ N be a partial function. Then the following are
equivalent:

i) f is computable.

ii) The graph of f is c.e.

Proof
If the graph of f is c.e., then f will be the selection function of its own graph,
which is computable by the selection theorem. If on the other hand f is com-
putable, then the graph of f will be the domain of the following function g(n,m):
Compute f(n) and see if the result equals m.

Computably inseparable c.e. sets

In Exercise 1.16 we will see that two disjoint complements of c.e. sets can be
separated by a computable set. This is an improvement of Corollary 1.2.43.
Here we will show that a similar separation property does not hold for c.e. sets,
and we will draw some consequences of this fact.

Definition 1.2.44 Let A and B be two disjoint subsets of N. We say that A
and B are computably separable if there is a computable set C such that A ⊆ C
and B ∩ C = ∅. Otherwise A and B are computably inseparable.

23

Theorem 1.2.45 There is a pair of computably inseparable c.e. sets.

Proof
Let A = {e | φe(e) = 0} and B = {e | φe(e) = 1}.
Assume that C is a computable set that separates A and B, and assume that
e0 is an index for the characteristic function of C.
Then, if e0 ∈ C we have that φe0(e0) = 1. Then e0 ∈ B which is disjoint from
C.
Likewise, if e0 6∈ C we see that e0 ∈ A ⊆ C. In both cases we obtain a
contradiction, so the existence of C is impossible.

Now this theorem has some interesting consequences concerning the differ-
ence between classical and constructive mathematics. We will end our general
introduction to the basics of computability theory discussing some of the con-
sequences.

Definition 1.2.46 a) A binary tree is a non-empty set D of finite 0-1-
sequences such that any initial segment of an element in D is also in D. A
binary tree is computable if the set of sequence numbers of the sequences
in D is computable.

b) An infinite branch in a binary tree D is a function f : N → {0, 1} such
that (f(0), . . . , f(n− 1)) ∈ D for all n.

Lemma 1.2.47 (König’s Lemma)
An infinite binary tree has an infinite branch.

The proof of König’s lemma is trivial, but has very little to do with com-
putability theory. One constructs a branch by always extending the sequence
in a direction where the tree is still infinite.
Well known theorems proved by similar arguments will be that a continuous
function on a closed bounded interval will obtain its maximum and that any
consistent first order theory has a complete extension.

Remark 1.2.48 The version of König’s Lemma given above, restricting our-
selves to binary trees, is often called Weak König’s lemma, abbreviated WKL.
The full König’s lemma then refers to infinite trees with finite branching, not
just binary branching. There are results showing that WKL is equivalent, rela-
tive to some very weak formal theory, to the mentioned theorems from analysis
and topology.
Relative to the same very weak theory, WKL is weaker than the full König’s
lemma.

We will show a failure of a constructive version of König’s lemma:

Lemma 1.2.49 There is an infinite, computable binary tree without a com-
putable, infinite branch.

24

Proof
Let A and B be two computably inseparable c.e. sets and let {An}n∈N and
{Bn}n∈N be primitive recursive sequences of sets An and Bn contained in
{0, . . . , n− 1}, with A =

⋃
n∈N An and B =

⋃
n∈N Bn.

If σ is a 0-1-sequence of length n, we let σ ∈ D if for all i < n: i ∈ An ⇒ σ(i) = 1
and i ∈ Bn ⇒ σ(i) = 0. σ will be a characteristic function on {0, . . . , n − 1}
separating An and Bn.
Now the characteristic function of any set separating A and B will be an infi-
nite branch in D. Since A and B are disjoint, D will be an infinite, binary tree.
Moreover, D will be primitive recursive. A computable, infinite branch will on
the other hand be the characteristic function of a computable set separating A
and B, something assumed not to exist. This ends the proof.

In Exercises 1.17 and 1.18 we will give an application of this lemma to
propositional calculus and to constructive analysis.

1.3 Degrees of Unsolvability

1.3.1 m-reducibility

Discussion

Having introduced the main concepts of computability theory there are several
options. One option will be to give a further analysis of the computable functions
and subclasses of them. This will lead us to complexity theory or to subrecursive
hierarchies (see Section 1.7). One key concept then will be that one set or
function can be reduced to another in some simple way.
We will not consider such a fragmentation of the computable functions into
interesting subclasses yet. Instead we will ask for reductions between possible
non-computable functions and sets, using the complexity of computability itself
for defining the notion of reduction. The connection between this approach and
the ones mentioned above is that both the formation of interesting concepts and
the methodology of those approaches to computability theory are based on the
experience gained from investigating computable reductions in general. Thus,
in an introductory course, where one should learn the computability theorists
way of thinking, this section is basic.

Definition 1.3.1 Let A and B be two subsets of N.
We say that A is m-reducible to B, A <m B, if there is a total computable
function f such that for all n:

n ∈ A⇔ f(n) ∈ B.

We read this as ‘many-one-reducible’, since f may be a many-one function. If
we insist on f being injective, we will get 1-reducibility.

There is no way we can reduce N to ∅ and vice versa, and we will exclude
those trivial sets from our further discussion. We then get the observations:

25

Lemma 1.3.2 a) If A is computable and B 6= N, ∅, then A <m B.

b) A <m B ⇔ (N \A) <m (N \B).

c) <m is transitive.

The proofs are easy and are left for the reader.

Definition 1.3.3 We call two sets A and B m-equivalent if A <m B and
B <m A. We then write A ≡m B.

Clearly ≡m will be an equivalence relation with a partial ordering inherited
from <m. We call the set of equivalence classes with this induced ordering the
m-degrees.

Remark 1.3.4 Let us briefly discuss the distinction between a complexity class
and a degree. A complexity class will consist of all functions and/or sets that
may be computed or decided with the aid of a prefixed amount of computing
resources. Resources may be the time or space available (normally as functions
of the input), but to us it may also be the possible service of a non-computable
oracle. This will be better explained later. A degree, on the other hand, will be
some mathematical object measuring the complexity of a function or a set. It
has turned out that the most useful object for this purpose simply is the class
of functions of the same complexity as the given object. It is like the old Frege
semantics where 17 is interpreted as the set of all sets with 17 elements, and in
general a property is interpreted as the set of all objects sharing that property.
It remains to decide what we mean by ‘having the same complexity’, and we
will consider three (out of many in the literature) possible choices. Being m-
equivalent is one, and later we will learn about truth table equivalent sets and
Turing equivalent functions.

The m-degrees have some properties that are easy to establish:

Lemma 1.3.5 a) Let X be a finite set of m-degrees. Then X has a least
upper bound.

b) Let X be a countable set of m-degrees. Then X has an upper bound.

Proof
The computable sets will form the minimal m-degree. Thus the empty set of
m-degrees has a least upper bound. In order to prove the rest of a) it is sufficient
to show that {A,B} will have a least upper bound. Let

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}.

This will define the least upper bound, see Problem 1.19.
In order to prove b), Let {An | n ∈ N} be a countable family of sets. Let

A = Σn∈NAn = {〈n,m〉 | m ∈ An}.

26

Then the m-degree of A will bound the m-degrees of An for each n ∈ N.

We will invest most of our efforts in analyzing the Turing degrees below.
We will however prove one negative result about the m-degrees, they do not
represent a linear stratification of all nontrivial sets into complexity classes.

Lemma 1.3.6 There are two nontrivial sets A and B such that A 6<m B and
B 6<m A.

Proof
Let A be c.e. but not computable. Let B = N \A.
If C <m A, C will be c.e., so B is not m-reducible to A. It follows from Lemma
1.3.2 that A is not m-reducible to B.

An m-complete c.e. set

We proved that the computable inverse of a c.e. set is c.e. A reformulation of
this will be

Lemma 1.3.7 Let A <m B. If B is c.e., then A is c.e.

Thus the c.e. sets form an initial segment of all sets pre-ordered bym-reductions.
First we will show that this set has a maximal element:

Lemma 1.3.8 Let K = {e | φe(e)↓}. Then any other c.e. set is m-reducible to
K.

Proof
Let A = {d | φe(d) ↓}. Adding a dummy variable we can without loss of
generality assume that A = {d | φe(d, x)↓} where the outcome of φe(d, x) is
independent of x. Then A <m K by

A = {d | S1
1(e, d) ∈ K}.

Remark 1.3.9 K is in a sense the prototype of a complete c.e. set, and we will
make further use of K is the sequel.

A natural question is now if there are c.e. sets that are not m-equivalent
to K or the computable sets; are there more m-degrees among the c.e. sets?
This was answered by Emil Post, when he classified a whole class of c.e. sets
‘in between’.

Simple sets

Definition 1.3.10 A c.e. set A is simple if the complement of A is infinite,
but does not contain any infinite c.e. sets.

A simple set cannot be computable (why?). We will prove that there exist
simple sets, and that K cannot be reduced to any simple sets.

27

Lemma 1.3.11 There exists a simple set.

Proof
Let B = {(e, x) | 2e < x ∧ φe(x)↓}.
Let g be a computable selection function for B, i.e. g(e)↓ when (e, x) ∈ B for
some x, and then g(e) selects one such x.
Let A be the image of g. Then A is c.e.
Since g(e) > 2e when defined, the complement of A will be infinite. This is
because each set {0, . . . , 2e} will contain at most e elements from A.
If We is infinite, We will contain a number > 2e, and g(e) will be defined. Then
A ∩We 6= ∅, so We is not contained in the complement of A. This shows that
A is simple.

Lemma 1.3.12 Let K <m A where A is c.e.
Then the complement of A contains an infinite c.e. set.

Proof
Let f be total and computable such that

e ∈ K ⇔ f(e) ∈ A.

We will construct a computable sequence {xi}i∈N of distinct numbers outside
A, and use the recursion theorem to glue the whole construction together.
The induction start will be the empty sequence.
Assume that Bn = {x0, . . . , xn−1} has been constructed such that Bn is disjoint
from A.
Let ρ(n) be such that Wρ(n) = {e | f(e) ∈ Bn}. By the uniformity of the
construction, ρ will be computable. We will let xn = f(ρ(n)).
If xn ∈ Bn we have that xn 6∈ A, so ρ(n) 6∈ K, and ρ(n) 6∈ Wρ(n). This
contradicts the assumption that xn ∈ Bn and the definition of Wρ(n). Thus
xn 6∈ Bn.
On the other hand, if xn ∈ A, then ρ(n) ∈ K, ρ(n) ∈Wρ(n) and by construction,
xn ∈ Bn, which we agreed was impossible. Thus xn is a new element outside A.
We can then continue the process and in the end produce an infinite c.e. set
outside A.

Corollary 1.3.13 There is a non-computable c.e. set A such that K is not
m-reducible to A.

The construction above of a simple set is in a sense ad hoc. In Exercise 1.32
we give an alternative construction of simple sets, and we prove an important
strengthening of Corollary 1.3.13.

1.3.2 Truth table degrees

As an intermediate step from m-reducibility to Turing-reducibility, we will dis-
cuss a concept known as truth table reducibility or simply tt-reducibility.
When A <m B we can decide if a ∈ A by asking one question f(a) ∈ B? about

28

membership in B. When we work with c.e. sets A and B, we think of A and
B as semicomputable sets, and then A <m B means that we can uniformly
describe an algorithm terminating on B from any algorithm terminating on
A. This concept is intimately related to reducibilities between formal theories,
where T < T ′ if there is a computable function f that to any formula Φ in the
language of T gives a formula f(Φ) in the language of T ′ such that

T ` Φ⇔ T ′ ` f(Φ).

If we work in another context, m-reducibility may seem artificially restricted.
Why should we not be allowed to claim that the complement of a set B is re-
ducible to B, since we can easily transform a ’yes’ to a ’no’?
If we allow ourselves to use negative information about B in order to decide
if a number a is in A, there is of course no reason to restrict this to only one
question f(a) about B. This leads us to tt-reducibility, and in turn to Turing-
reducibility.

Given a set variable X (for a set X ⊆ N) we will consider all atomic statements
a ∈ X as propositional variables. We then consider the language L of propo-
sitional formulas over these variables, for simplicity restricting ourselves to the
connectives ¬ and ∨.
To each formula Φ in L, we associate a number code [[Φ]] as follows:

[[a ∈ X]] = 〈0, a〉.

[[¬Φ]] = 〈1, [[Φ]]〉.

[[Φ ∨Ψ]] = 〈2, [[Φ]], [[Ψ]]〉.

We leave it as Exercise 1.20 to prove that the set of codes for formulas in L is
primitive recursive.

Definition 1.3.14 a) If Φ is a formula in L and B is a set, we let B |= Φ
mean that Φ will be true under the valuation a ∈ B when a varies over N.

b) If n ∈ N, we let B |= n mean that there is a formula Φ with [[Φ]] = n such
that B |= Φ.

Definition 1.3.15 Let A and B be two sets. We say that A is truth table
reducible to B, A <tt B, if there is a total, computable function f : N→ N such
that for all a ∈ N

a ∈ A⇔ B |= f(a).

Example 1.3.16 If B is a set and

A = {2n | n ∈ B} ∪ {2n+ 1 | n 6∈ B}

then B <m A and A <tt B.

29

We leave the verification of this claim for the reader.

Lemma 1.3.17 a) If A <tt B and B <tt C then A <tt C.

b) If A, B and C are sets, and

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}

then
A⊕B <tt C ⇔ A <tt C ∧B <tt C.

We leave the proof as Exercise 1.21.

This lemma has as a consequence that the relation

S ≡tt B ↔ A <tt B ∧B <tt A

is an equivalence relation. A further consequence is that the quotient ordering
of the set of equivalence classes is an upper semi-lattice. We will call these
equivalence classes for tt-degrees.
Instead of investigating this degree-structure in depth, we will move on to the
Turing degrees.

1.3.3 Turing degrees

Relativised computations

In the previous sections we considered m-reducibility ant tt-reducibility. The
former is a natural concept when we compare sets where the positive part has a
kind of complexity that differs from that of the negative part. A typical case will
be c.e.-sets, but in the next chapter we will see other examples of classes of sets
definable in a prefixed manner. When we identify a set with its characteristic
function, we somehow looses this aspect of a set and its complement being of a
different nature, and then tt-reducibility is a more natural concept.
When A <tt B, the set of questions about membership in B we ask may depend
on the question a ∈ A?, but not on B itself. This means that we do not allow new
questions about B to be asked based on the answers of previous questions. We
will now extend the concept of reducibility, both allowing repeated questioning,
and reducing functions to functions instead of sets to sets. We extend the
definition of the computable functions by adding some extra functions as initial
ones. This is technically described in the following definition:

Definition 1.3.18 Let f1, . . . , fk be a finite list of partial functions fi : N→ N.

a) We extend the definition of φe(~x) to a definition of

φf1,...,fke (~x)

by adding a new clause
vii) If e = 〈7, i, k〉 then φf1,...,fke (x, ~x) = fi(x). If fi(x) is undefined, then
this computation does not terminate.

30

b) The computation tree will in this case be 〈7, i, k, x, fi(x)〉.

We call these algorithms relativized algorithms meaning that the concept of
computation has been relativized to f1, . . . , fk. One important aspect of this
definition is the finite use principle. Even if we in reality accept functions as
inputs in algorithms as well, no terminating algorithm will use more than a
finite amount of information from the functions involved.

Lemma 1.3.19 Assume that φf1,...,fke (~x) = z. Then there are finite partial
subfunctions f ′1, . . . , f

′
k of f1, . . . , fk resp. such that

φ
f ′1,...,f

′
k

e (~x) = z

with the same computation tree.

The proof is by a tedious but simple induction on e, using the fact that a
sequence number is larger than all parts of the sequence.

We have given and used an enumeration of all ordered sequences of natural
numbers. In the same fashion we can construct an enumeration {ξi}i∈N of
all finite partial functions such that the following relations will be primitive
recursive:

- ξi(x)↓

- ξi(x) = y

- dom(ξi) ⊆ {0, . . . , n}.

The reader is free to ad any other important properties, as long as they are
correct.

Example 1.3.20 In order to avoid that the reader will focus on inessential
details, we offer the construction of ξi in the guise of an example.
Let p0, p1, p2, . . . be an enumeration of the prime numbers, starting with p0 = 2,
p1 = 3 and so on.
Define ξi by

ξi(n) = m if there are exactly m+ 1 factors of pn in i.

ξi↑ if pn is not a factor in i.

For example, if i = 23 · 74 · 11, then ξi(0) = 2, ξi(3) = 3 and ξi(4) = 0. For all
other inputs x, ξi(x) will be undefined.

The properties above are sufficient to prove the extended Kleene T-predicate:

Lemma 1.3.21 For each n and k, the following relation is primitive recursive:
Tn,k(e, ~x, i1, . . . , ik, t)⇔ t is the computation tree of φ

ξi1 ,...,ξik
e (~x).

31

In order to save notation we will from now on mainly consider computations
relativized to one function. Using the coding

〈f0, . . . , fk−1〉(x) = fπ1(x)(mod k)(π2(x))

we see that there is no harm in doing this.

Lemma 1.3.22 There is a primitive recursive function c such that for any
partial functions f , g and h, if for all x, f(x) = φge(x) and for all x, g(x) =
φhd(x), then for all x, f(x) = φhc(e,d)(x).

Proof
c(e, d) is defined by primitive recursion on e, dividing the construction into cases
i) - xi).
For cases i) - iii), we let c(e, d) = e.
For the cases iv) - viii) we just let c(e, d) commute with the construction of
e from its subindices, i.e., if the case is e = expr(e1, . . . , en) then c(e, d) =
expr(c(e1, d), . . . , c(en, d)), where expr can be any relevant expression.
If e = 〈9, 1, 1〉 we have φge(x, ~x) = g(x) = φhd(x), so we let c(e, d) = d′ where
φhd′(x, ~x) = φhd(x). d′ is primitive recursive in d.

Remark 1.3.23 There is an alternative proof of this lemma. By the finite use
principle we see that if g is computable in h and f is computable in g, then the
graph of f will be c.e. relative to h. Everything will be uniform, so we may
extract c from this proof as well.

We can use the concepts introduced here to talk about computable function-
als, and not just about computable functions.

Definition 1.3.24 Let F : NN → N, a functional of type 2.
We call F computable if there is an index e such that for all total f : N→ N we
have

F (f) = φfe (0).

All computable functionals of type 2 will be continuous with respect to the
canonical topologies. Kleene extended the notion of relativized computation to
cover all functionals of any finite type as possible inputs. This will be discussed
briefly in Chapter 2.

The second recursion theorem

We are now in the position to state and prove the second recursion theorem:

Theorem 1.3.25 Let F (f, x) = φfe (x) be a computable functional.
Then there is a computable f such that for all x,

f(x) = F (f, x).

Moreover, f will be the least such function in the sense that if

∀x(g(x) = F (g, x)),

then f ⊆ g as graphs.

32

Proof
Let f0 be the everywhere undefined function, and by recursion let fn+1(x) =
F (fn, x).
Since f0 ⊆ f1 we see by induction on n that fn ⊆ fn+1 for all n.
Let f =

⋃
{fn | n ∈ N}. By the finite use principle we see that

F (f, x) = y ⇔ ∃nF (fn, x) = y ⇔ ∃nfn+1(x) = y ⇔ f(x) = y.

Clearly f is the minimal solution to the equation, the minimal fixed point of F .
It remains to show that f is computable, i.e. that the graph of f is c.e.
We will use the effective enumeration of all finite partial functions and the
effective coding of sequences. Let ξ with indices vary over all finite partial
functions. Then we can rewrite the following characterization of the graph of f
int a Σ0

1-form:
f(x) = y ⇔ ∃n∃〈ξ1, . . . , ξn〉(∀zξ0(z)↑

∧∀i < n(∀z ∈ dom(ξi+1)(ξi+1(z) = F (ξi, z)) ∧ ξn(x) = y)).

Remark 1.3.26 The existence of a computable fixed point for F follows by the
recursion theorem. It is possible to show that the index obtained by the proof
of the recursion theorem will be an index for the least fixed point, see Exercise
1.22.

Turing Degrees

We will now restrict ourselves to total functions.

Definition 1.3.27 Let f and g be two functions. We say that f is computable
in g if there is an index e such that for all x,

f(x) = φge(x).

We write f <T g. We will then say that f is Turing reducible to g.

The key properties of Turing reducibility is given by

Lemma 1.3.28 a) <T is a transitive relation.

b) If f is computable and g is any function, then f <T g.

c) If f and g are functions, there is a function h such that for any other
function h′:

f <T h and g <T h.

If f <T h′ and g <T h′ then h <T h
′.

Proof
a) is a consequence of Lemma 1.3.22, b) is trivial, and to prove c), let
h(2n) = f(n) and h(2n+ 1) = g(n).

33

Definition 1.3.29 Let f and g be two functions. f and g are Turing equivalent ,
in symbols f ≡T g, if f <T g and g <T f .

≡T will be an equivalence relation. The equivalence classes will be called Turing
degrees or Degrees of unsolvability. We will simply call them degrees. We will
let bold-face low case letters early in the alphabet , a, b, etc. denote degrees.
The set of degrees has a canonical ordering < inherited from <T .

We can summarize what we have observed so far in

Lemma 1.3.30 The ordered set of degrees is an upper semi-lattice with a least
element such that every countable set is bounded, and every initial segment is
countable.

We leave the verifications for the reader. We will now see that there is no
maximal degree:

Lemma 1.3.31 Let a be a degree. Then there is a degree b such that

a < b.

Proof
Let f ∈ a. Let g(x) = φfπ1(x)

(π2(x)) + 1 if φfπ1(x)
(π2(x))↓, otherwise g(x) = 0.

The proof of the unsolvability of the halting problem can be relativized to f so
g is not computable in f . On the other hand, clearly f is computable in g.

The g constructed in the proof above is called f ′, the jump of f . The jump
operator is indeed a degree-operator, see Exercise 1.23.

Before proving further results about Turing degrees in general, we will relate
them tom-degrees and tt-degrees, in order to see that we have created something
genuinely stronger.
By the results proved in Exercise 1.13 It follows that the Turing degrees and
the m-degrees of c.e. sets are not in general the same. We will prove a similar
result for tt-reducibility:

Lemma 1.3.32 There is a set B that is Turing equivalent to K but not tt-
reducible to K.

Proof
Let

e ∈ A↔ e 6∈ K ∨ K 6|= φe(e)

and let B = A⊕K. Then K is m-reducible to B.
We first show that A is computable relative to K: If e 6∈ K then e ∈ A. If e ∈ K,
then e ∈ A exactly when K 6|= φe(e). This can be decided with the help of K.
We then see by a diagonal argument that A cannot be tt-reducuble to K via
any total φe. Since A is even m-reducible to B, it follows that B cannot be
tt-reducible to K.

34

We have shown that there are incomparable m-degrees. The same method
can be used to show that there are incomparable Turing degrees, see Exer-
cise 1.24. We will prove a stronger result, showing that no strictly increasing
sequence of degrees will have a least upper bound.

Theorem 1.3.33 Let {ai}i∈N be a strictly increasing sequence of degrees. Then
there are two degrees b and c that are both upper bounds for the sequence, such
that for any degree d, if d < b and d < c, then d < ai for some i ∈ N.

A pair b, c as above is called a perfect pair for the sequence. The degrees in
a perfect pair for a sequence will be incomparable. Further, the existence of a
perfect pair shows that the sequence will have no least upper bound.

Proof
Let {fi}i∈N be a sequence of total functions of increasing Turing degrees. We
will construct the functions g and h as the limits of approximations gx and hx,
where we in the construction of gx+1 and hx+1 want to ensure that if e1 = π1(x)
and e2 = π2(x) and φge1 = φhe2 are total, then φge1 is computable in fx. In order
to simplify the notation, we let g and h be defined on N2, but this will alter
nothing.
In the construction we will preserve the following properties:

1. If i < x, then gx(i, n) and hx(i, n) are defined for all n.

2. If i < x, then gx(i, n) = fi(n) for all but finitely many n.

3. If i < x, then hx(i, n) = fi(n) for all but finitely many n.

4. gx(i, n) is defined only for finitely many (i, n) with x ≤ i.

5. hx(i, n) is defined only for finitely many (i, n) with x ≤ i.

This will ensure that gx and hx are equivalent to fx−1 for x ≥ 0.
Let g0 and h0 both be the empty function.
Now, let x ≥ 0 and assume that gx and hx are defined satisfying 1. - 5. above.
Let e1 = π1(x) and e2 = π2(x). What we will do next will depend on the answer
to the following question:
Can we find an n and finite extensions g′ of gx and h′ of hx such that
φg
′

e1(n) 6= φh
′

e2(n) and both are defined?
(By a finite extension we mean that we ad a finite number of elements to the do-
main.) If the answer is ‘no’, we extend gx to gx+1 by letting gx+1(x, n) = fx(n)
whenever this is not in conflict with the construction of gx (a conflict that can
appear at at most finitely many places), and we construct hx+1 from hx and fx
in the same way.
If the answer is ‘yes’, we first choose two such finite extensions, and then we
construct gx+1 and hx+1 from these extensions as above. This ends our con-
struction.

We let g(x, n) = gx+1(x, n) and h(x, n) = hx+1(x, n). In the construction
we have tried as hard as possible to avoid that φge = φhd . The point is that we

35

have tried so hard that if they after all turn out to be equal, they will both be
computable in one of the fi’s.
Claim 1
fi is computable in both g and h.
Proof
We have that fi(n) = g(i, n) except for finitely many i, so fi is computable in
g. The same argument holds for h.
Claim 2
For x ≥ 0 we have that gx and hx both are computable in fx−1

Proof
This is a trivial consequence of properties 1. - 5.
Claim 3
If φge = φhd and both are total, then φge is computable in fx for some x.
Proof
Let x = P (e, d) where P is the pairing from Definition 1.2.13. Then in the
construction of gx+1 and hx+1 we ask for a y and finite extensions g′ and h′ of
gx and hx such that φg

′

e (y) 6= φh
′

d (y). If we had found some, we would let g and
h be further extensions of one such pair of finite extensions, and then we would
have preserved that φge(y) 6= φgd(y), contradicting our assumption on e and d.
On the other hand, for every y we can, by the assumption and the finite use
principle, find finite extensions such that φg

′

e (y)↓ and φh
′

d (y)↓. The point is that
all these values must be equal, otherwise we could have found two extensions
giving different values. Thus we can give the following algorithm for computing
φge(y) from gx which again is computable in fx−1: Search for any finite extension
(by searching through the finite partial functions compatible with gx) g′ of gx
such that φg

′

e (y)↓ The value we obtain will be the correct value.
This ends the proof of our theorem.

1.4 A minimal Turing degree

1.4.1 Trees

In the constructions of degrees we have performed so far, we have been using
brute force. For instance, when we want to construct a minimal pair, we start
with three properties:

1. f is not computable.

2. g is not computable

3. If h is computable in both f and g, then h is computable.

We then split these properties into infinite lists of requirements, which we try
to satisfy during the construction:

R1,e If φe is total, then f 6= φe.

R2,e If φe is total, then g 6= φe.

36

R3,e,d If φfe = φgd is total, then φfe is computable.

Now, for any of these requirements and any pair σ and τ of finite sequences
there will be finite extensions σ′ and τ ′ such that any further total extension f
and g of σ′ and τ ′ resp. will satisfy the requirement. Thus by a step-by-step
construction we can construct f and g via finite approximations satisfying one
requirement at the time. The reader is invited to work out the full proof, see
Exercise 1.25.

We will now face a problem which we cannot solve by this simple method.
We will show that there is a non-computable function f such that there is
no function of complexity strictly between f and the computable functions.
Again we will set up the relevant properties of f , and fragmentize them into
a sequence of requirements we want to satisfy during the construction. The
problem will be that we cannot ensure that these requirements are satisfied by
considering just a finite approximation of f . Instead we will use trees, and we
will satisfy the various requirements by insisting that f is a branch in a given
binary tree. Before we can go into details with the argument, we will reconsider
our definition of a binary tree, and give it a formulation that will be handy for
this particular application. We will not distinguish between finite sequences and
sequence numbers here, but whenever we say that a function defined from a set
of finite sequences to the set of finite sequences is computable, we mean that
the corresponding function on sequence numbers is computable.

Definition 1.4.1 Let D be the set of finite 0-1-sequences.

a) If σ ∈ D we let σ ∗ 0 and σ ∗ 1 be σ extended by 0 or 1 resp. We extend
this to the concatenation σ ∗ τ in the canonical way.

b) If σ and τ are two sequences, and i < lh(σ), i < lh(τ) and σ(i) 6= τ(i), we
say that σ and τ are incompatible.

c) f : D → D is monotone if f(σ) is a proper subsequence of f(τ) whenever
σ is a proper subsequence of τ .

d) A tree is a monotone function T : D → D mapping incompatible sequences
to incompatible sequences.

e) If S and T are trees, then S is a subtree of T if there is a tree T ′ such that
S = T ◦ T ′.

f) If T is a tree and f : N → {0, 1}, then f is a branch in T if for every n
there is a sequence σ of length n such that T (σ) is an initial segment of
f .

Remark 1.4.2 These trees will sometimes be called perfect trees, the set of
branches will form a perfect subset of the set {0, 1}N in the topological sense,
i.e. a set that is closed and without isolated points.
Our intuition should be focused on the set Set(T) of sequences that are initial
segments of the possible T (σ)’s. This will be a binary tree in the traditional

37

sense, and we will have the same set of infinite branches. If S is a subtree of T ,
then Set(S) ⊆ Set(T). The converse will not hold in general.

Lemma 1.4.3 Let {Tn}n∈N be a sequence of trees such that Tn+1 is a subtree
of Tn for all n. Then there is a function f that is a branch in all trees Tn.

Proof
Consider the set X of σ such that σ ∈ Set(Tn) for all n.
X will be a binary tree. The empty sequence is in X. If σ ∈ X, then for all
n, σ ∗ 0 ∈ Set(Tn) or σ ∗ 1 ∈ Set(Tn). At least one of these has to hold for
infinitely many n and, since we are dealing with subtrees, for all n. Thus X is
not a finite tree and by König’s Lemma has an infinite branch, which will be a
common branch for all Tn’s.

Remark 1.4.4 Using topology we might just say that the intersection of a
decreasing sequence of nonempty compact sets is nonempty, in order to prove
this lemma.

We will now see that certain computable trees can be used to meet natural
requirements. As a first case, let us prove:

Lemma 1.4.5 Let T be a computable tree and assume that φe is total. Then
there is a computable subtree S of T such that φe is not a branch in S.

Proof
If φe is not a branch in T , we can use S = T . If φe is a branch in T , one of T (0)
and T (1) will be incompatible with φe, since they are incompatible themselves.
(here 0 is the sequence of length 1 with entry 0). Assume that φe is incompatible
with T (0).
Let S(σ) = T (0∗σ). Then S is a subtree as desired. The other case is essentially
the same.

1.4.2 Collecting Trees

Now we will describe a property on computable trees that will ensure that if f
is a branch in the tree and φfe is total, then φfe is computable.

Definition 1.4.6 Let T be a computable tree, e an index.
T is e-collecting if for all finite sequences σ, τ and all x ∈ N, if φT (σ)

e (x)↓ and
φ
T (τ)
e (x)↓, then

φT (σ)
e (x) = φT (τ)

e (x).

Lemma 1.4.7 Let T be a computable e-collecting tree and let f be a branch in
T . If φfe is total, then φfe is computable.

Proof
We will give an algorithm for computing φfe (x) from x.

38

Since φfe (x)↓, there will be a 0-1-sequence σ such that φT (σ)
e (x)↓, and since T

is e-collecting, the value φT (σ)
e (x) will be independent of the choice of σ. Thus

our algorithm will be:
Search for a finite sequence σ such that φT (σ)

e (x)↓ and let the answer be the
output of our algorithm.

Remark 1.4.8 There is more information to be gained from this proof. We
see that the function φfe itself is independent of f as long as it is total and f is
a branch in an e-collecting tree.

1.4.3 Splitting Trees

We will now find a criterion that will ensure that f is computable in φfe whenever
f is a branch in a computable tree and φfe is total:

Definition 1.4.9 Let T be a computable tree, and let e be an index.
We call T e-splitting if for all finite 0-1-sequences σ and τ , if σ and τ are
incompatible, then there exists a number x such that

φ
T (σ)
e (x)↓ and φ

T (τ)
e (x)↓ with φ

T (σ)
e (x) 6= φ

T (τ)
e (x).

Lemma 1.4.10 Let T be an e-splitting computable tree , let f be a branch in
T and assume that φfe is total. Then f is computable in φfe .

Proof
We will compute an infinite 0-1-sequence {ki}i∈N from φfe such that T (σn) is an
initial segment of f for all n, where σn = (k0, . . . , kn−1). The empty sequence
σ0 of course satisfies this. Assume that σn is constructed. Then one of T (σn ∗0)
and T (σn ∗ 1) will be an initial segment of f . We will just have to determine
which one. Now φ

T (σn∗1)
e and φ

T (σn∗1
e) will be incompatible, so exactly one of

them will be incompatible with φfe . We can then use φfe to find the incompatible
one, which means that we can decide which direction is along f and which is
not. This provides us with the induction step, and we can move on. This ends
the proof of the lemma.

Remark 1.4.11 In the case of T being an e-splitting tree, we see that φfe is a
one-to one-function of the branch f , and what we just argued for is that we can
compute the inverse.

1.4.4 A minimal degree

Using Lemmas 1.4.3, 1.4.5, 1.4.7 and 1.4.10 we can show the existence of a
minimal degree from the following:

Lemma 1.4.12 Let T be a computable tree and let e be an index. Then there
is a computable subtree S that is either e-collecting or e-splitting.

39

Proof
Case 1: There is a sequence σ such that for all τ and τ ′ extending σ, φT (τ)

e and
φ
T (τ ′)
e are equal where both are defined, i.e. φT (τ)

e and φ
T (τ ′)
e are compatible..

Let S(τ) = T (σ ∗ τ). Then S will be a subtree of T and S will be e-collecting.
Case 2: Otherwise. Then for every σ there will be extensions τ0 and τ1 such that
φ
T (τ0)
e and φT (τ1)

e are incompatible. Further, using the selection theorem,we can
find these τ0 and τ1 as computable functions t0(σ) and t1(σ).
We then define the subtree S by

S(()) = T (()), i.e. S and T are equal on the empty sequence.

If S(σ) is defined, let S(σ ∗ 0) = T (t0(σ)) and S(σ ∗ 1) = T (t1(σ)).

This defines a subtree that will be e-splitting.

We have now proved all essential steps needed in the construction of a min-
imal degree:

Theorem 1.4.13 There is a non-computable function f such that if g <T f
then either g is computable or g is equivalent to f .

Proof
Using the lemmas above we construct a family {Tn} of computable trees such
that Tn+1 is a subtree of Tn for all n, and such that for all e:

If φe is total, then φe is not a branch in T2e+1.

T2e+2 is either e-collecting or e-splitting.

Then by Lemma 1.4.3 there is an f that is a branch in all Tn’s, and this f will
have the property wanted.

1.5 A priority argument

1.5.1 C.e. degrees

In the constructions of minimal pairs and functions of minimal degrees we have
not been concerned with the complexity of the sets and functions constructed.
We can decide upper bounds on the complexity of the objects constructed in the
proofs by analyzing the complexity of properties like ‘φe is total’ and counting
in depth how many number quantifiers we will need in order to write out a
definition of the object constructed. If we, however, are interested in results
about degrees with some bounded complexity, we must be more careful in our
constructions. In this section we will be interested in degrees with at least one
c.e. set in it:

Definition 1.5.1 Let a be a degree.
a is an c.e. degree if a contains the characteristic function of a c.e. set. We say
that f is of c.e. degree if the degree of f is a c.e. degree.

40

There is a nice characterization of the functions of c.e. degree. We leave the
proof as an exercise for the reader, see Exercise 1.29.

Theorem 1.5.2 Let f be a function. Then the following are equivalent:

i) f is of c.e. degree.

ii) There is a primitive recursive sequence {fi}i∈N converging pointwise to f
such that the following function

g(x) = µn.∀m ≥ n(fm(x) = f(x))

is computable in f .

1.5.2 Post’s Problem

So far we only know two c.e. degrees, O, the degree of the computable sets and
functions, and O′, the degree of the halting problem or of K. Post’s Problem
asks if there are more c.e. degrees than those two. This is of course a nice,
technical problem, but it has implications beyond that. One of the reasons
why c.e. sets are so interesting is that the set of theorems in an axiomatizable
theory is c.e. If there were no more c.e. degrees than those two known to us, a
consequence would be that there are two kinds of axiomatizable theories, those
that are decidable and those that share the complexity of Peano Arithmetic.
As a consequence of Gödel’s proof of the incompleteness theorem, the set of
Gödel-numbers of theorems in Peano Arithmetic is a complete c.e. set, and
actually of even the same m-degree as K.

Now, in 1957 two young mathematicians, Friedberg and Muchnic, indepen-
dently constructed c.e. sets of in-between degrees. They both developed what
is now known as the priority method. The problem we have to face when con-
structing c.e. sets is that we must give an algorithm for adding elements to the
set, but we cannot give an algorithm for keeping objects out of the set. If we
did that, the set constructed would become computable. Thus when we have
made an attempt to approximate a set with positive and negative information,
we must be allowed to violate the negative information. However, we must
not violate the negative information to such an extent that we ruin our global
goal. We solve this dilemma by introducing priorities to our requirements. If
an effort to satisfy one requirement will ruin the attempt to satisfy another re-
quirement, we let the requirement with highest priority win. This idea will work
when two properties are satisfied by the construction: If we make an attempt
to satisfy a requirement and we never ruin this attempt, we actually manage to
satisfy the requirement. Further, if we after a stage in the construction never
make an attempt to satisfy a requirement, the requirement will automatically
be satisfied.

Thus we are bound to satisfy the requirement of highest priority, either
because we make an attempt which will not be ruined, or because there is no
need to make an attempt.

41

Then we are bound to satisfy the next requirement, either because we make an
attempt after the final attempt for the first requirement, or because there is no
need to make such an attempt,
and so on.... In the finite injury lemma we will give a full proof along this line
of arguing.

1.5.3 Two incomparable c.e. degrees

Post’s problem was solved by constructing two incomparable c.e. degrees a and
b. We will see below why this actually solves the original problem.

Theorem 1.5.3 There are two c.e. sets A and B that are not computable
relative to each other.

Remark 1.5.4 If A and B are not computable in each other, neither can be
computable, because any computable set will be computable in any other set.
Moreover neither can have the same degree as K, because every c.e. set is
computable in K. Thus we have not just produced an in-between degree, but
two in-between degrees. In Exercise 1.30 we will see that there are infinitely
many in-between c.e. degrees, and that any countable partial ordering can be
embedded into the ordering of the c.e. degrees.

Proof
We will construct two c.e. sets A and B satisfying

R2e: N \A 6= WB
e

R2e+1: N \B 6= WA
e

or in other terms: The complement of A is not c.e. relative to B and vice versa.
If we achieve this for all e, we will have proved the theorem, since a set A is
computable in B if and only if both A and the complement of A are c.e. in
B, and since A is c.e. we have that A is computable in B if and only if the
complement of A is c.e. in B.

We will construct two primitive recursive increasing sequences {An}n∈N and
{Bn}n∈N of finite sets . We let

A0 = B0 = ∅.

We call each step in the process a stage. If n = 〈1, e, x〉 we will consider to make
an attempt to satisfy R2e at stage n, while if n = 〈2, e, x〉 we will consider to
make an attempt to satisfy R2e+1.
An attempt to satisfy R2e will consist of selecting a q ∈ An+1 ∩WBn+1

e , and
then put up a protection, the set of points used negatively in the verification of
q ∈ WBn+1

e . If we can keep all objects in this protection out of B throughout
the construction, we will have

q ∈ A ∩WB
e

42

and R2e will be satisfied. We call the protection active at a later stage m if Bm
is disjoint from this protection.

There is some little minor trick to observe, for different e’s we will use disjoint
infinite supplies of numbers that we may put into A (or B) in order to satisfy
R2e (or R2e+1). We will use this to show that if we make only finitely many
attempts, we will succeed after all.

Now let n = 〈1, e, x〉 and assume that An and Bn are constructed. Assume
further that we constructed certain protections, some of them active at stage n,
others not. We write the following procedure for what to do next:
Let Bn+1 = Bn.
Question 1: Is there a protection for R2e active at stage n?
If the answer is ‘yes’, let An+1 = An. and continue to the next stage.
If the answer is ‘no’, ask
Question 2: Is there a y < n such that φBne,n(〈y, e〉) ↓ and y is in no active
protection for any requirement R2d+1 where 2d+ 1 < 2e?
If the answer is ‘no’, let An+1 = An and proceed to the next stage.
If the answer is ‘yes’, choose the least y, let An+1 = An ∪ {〈y, e〉}, construct a
protection {0, . . . , n} \Bn for R2e and move on to the next stage.
If n = 〈2, e, x〉 we act in the symmetric way, while for other n we just move on
to the next stage, not adding anything to A or B.
This ends the construction.
Claim 1 (The Finite Injury Lemma)
For each requirement Rs there is a stage ns after which we do not put up or
injure any protection for Rs.
Proof
We prove this by induction on s, and as an induction hypothesis we may assume
that there is a stage ms after which we never put up a protection for any
requirement Rt with t < s. Then after stage ms we will never injure a protection
for Rs. Thus if we never put up a protection for Rs after stage ms we can let
ns = ms, while if we construct a protection, this will never be injured and we
can let ns be the stage where this protection is constructed.
Now let A =

⋃
n∈N An and B =

⋃
n∈N Bn. Then A and B are c.e. sets.

Claim 2
Each requirement Rs will be satisfied.
Proof
We prove this for s = 2e. There are two cases.
1. There is a protection for Rs active at stage ns.
If this is the case, there will be a y such that 〈y, e〉 ∈ Ans ∩WBn

e . Since the
protection is not injured, we will have that 〈y, e〉 ∈ A∩WB

e and the requirement
is satisfied, A and WB

e are not complementary.
2. There is no such protection.
There are only finitely many objects of the form 〈y, e〉 in A, because we ad at
most one such object for each stage before ns, and never any at a stage after
ns.

43

On the other hand, there can be only finitely many objects of the form 〈y, s〉 in
WB
e , since otherwise we could choose one that is not in any protection for any

Rt for t < s, and sooner or later we would at some stage after ns make a new
attempt to satisfy Re, which we are not. Thus A ∪WB

e contains only finitely
many objects of the form 〈y, e〉 and the sets are not the complements of each
other. Thus the requirement will be satisfied in this case as well.

We have shown that all the requirements are satisfied in this construction,
so the theorem is proved.

Remark 1.5.5 In Exercise 1.31, we prove the so called splitting theorem. The
proof of the splitting theorem is by a more elaborated priority argument than
the ones we have seen so far. Soare [7] is recommended for readers who would
like to see priority arguments in their full power.

1.6 Models for second order number theory

One possible application of degree theory is the investigation of the relative
strength of formal theories. We will prove one theorem, showing that WKL
actually is a rather weak axiom of set existence.
In order to make this precise, we have to discuss what we mean by fragments
of second order number theory and models of such fragments. Since this is not
a course on logic, we will be brief.

We extend the language of number theory with variables X1,n, X2,n, . . . for n-ary
relations on N. In this language, we may typically express the general induction
axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X)→ ∀x(x ∈ X)),

where we drop the index of the unary variable X.
A fragment of second order number theory will then be a set of axioms in this
language, containing the axioms of number theory without induction, some in-
duction axioms and some set existence axioms.
A formula in this language is arithmetical if all quantifiers are number quanti-
fiers. The scheme of arithmetical comprehension is the axiom scheme

∃X∀~x(~x ∈ X ↔ Φ(~x, ~y, ~Y))

where Φ is arithmetical. Weak König’s Lemma, WKL is another axiom of set
existence.

It is customary to assume that we have ∆0-comprehension, i.e. the comprehen-
sion axiom for Φ as above, when Φ only contains bounded quantifiers. Then we
have the expressive power to code any n-ary relation as a unary relation, and
identify a set with its characteristic function. This means that we may consider
a setM of unary functions with some basic closure properties as models of such
fragments. We will use this as a definition:

44

Definition 1.6.1 By a second order structure we will mean a setM⊂ NN such
that whenever f1, . . . , fn are in M and g is computable relative to f1, . . . , fn,
then g ∈M.

It is easy to see that any model satisfying arithmetical comprehension will also
satisfy WKL. We will use degree theory to prove a theorem due to C. Jockusch
and R.I. Soare, the converse is not true. In order to do so, we need to introduce
a new concept:

Definition 1.6.2 Let a be a Turing degree.
We say that a is low if a′ = O′.

We will indirectly prove that there are non-computable low degrees.

Theorem 1.6.3 Let T be a computable, infinite binary tree.
Then T has an infinite branch f of low degree.

Proof
We will construct a decreasing sequence {Te} of infinite, computable binary
trees, and we will let f be a joint branch of all these trees.
Recall that lh(σ) denotes the length of the sequence σ and that φσe,m↑ if there
is no computation tree for φe)σ with a number code below m, and that this is
decidable.
Let T0 = T and assume for an arbitrary e that Te is constructed.
Let

Ue = {σ ∈ Te;φσe,lh(σ)↑}.
Then Ue is a computable tree.
If Ue is infinite, we let Te+1 = Ue, while if Ue is finite, we let Te+1 = Te.
First, let us see that the construction is computable relative to K. The con-
struction is by recursion, and the critical question at each step is if Ue is finite
or not. Since it is semi-decidable wether a computable binary tree is finite or
not, we can use a K-oracle to answer these questions.
Now, let f be a branch in all Te’s. We claim that

φfe (e)↑⇔ Ue is infinite.

Since f is a branch in Te, if φfe (e)↑, the all initial segments of f will be in Ue,
which then is infinite. On the other hand, if Ue is infinite, then Te+1 = Te,
and by the finite use principle and the assumption that f is a branch in Te+1 it
follows that φfe (e)↓ .
Since we could compute Ue from K and e and decide if Ue is finite or not relative
to K, we have shown that

Kf <T K.
for any f that is a branch in all Te (and there will be exactly one such branch).
This ends the proof of the theorem.

We may use this theorem to construct a second order model satisfying WKL
only containing functions of low degree. The key observation is that the argu-
ment above can be reformulated to a proof of

45

Corollary 1.6.4 Let T be an infinite binary tree of low degree. Then T has an
infinite branch f such that T ⊕ f is of low degree.

By this corollary, we may use brute force to construct an increasing sequence
of low degrees an such that for all binary, infinite trees T , if the degree of T is
below one an, then T has an infinite branch of a degree below some am. If we
then consider all functions bounded by one of these degrees, we have a model as
desired. This model cannot contain the characteristic function of K, since this
degree is not low. However, given arithmetical comprehension we can define K,
so this model cannot satisfy arithmetical comprehension.

1.7 Subrecursion theory

1.7.1 Complexity

What is to be considered as complex will be a matter of taste. Actually, a
logician may alter her/his taste for complexity several times a day. The generic
logician may give a class on automata theory in the morning, and then the reg-
ular languages will be the simple ones, while context free languages are more
complex. Still, context free languages are decidable in polynomial time, and
while our logician spends an hour contemplating on the P = NP-problem any
context free language is by far simpler than the satisfiability problem for propo-
sitional logic. If our logician is working mainly in classical computability theory,
all decidable languages are simple, while the undecidable ones are the complex
ones. When, however, our logician gives a course on set theory with large car-
dinal axioms in the afternoon, all definable sets are simple, even all subsets of
subsets of subsets of R are simple. Considering large cardinal axioms, we have
to move far in order to find sets of a challenging and interesting complexity.
In this section, our view on complexity will be one shared by many proof theo-
rists. One of the aims in proof theory is to characterize the functions and sets
provably computable in certain formal theories extending elementary number
theory. The idea is that if we know the functions provably computable in T , we
know something worth knowing about the strength of the theory T .

We will not be concerned with proof theory in this compendium, and any
references to proof-theoretical results should not be considered as a part of any
curriculum based on this text.

1.7.2 Ackermann revisited

In Section 1.2.1 we defined the Ackermann branches. The idea of Ackermann
was that each use of the scheme for primitive recursion involves an iteration of
a previously defined function. Then diagonalising over a sequence of functions
defined by iterated iteration would break out of the class of primitive recursive
functions.

The Ackermann branches were defined using functions of two variables. We
will be interested in pushing his construction through to the transfinite level,

46

in order to describe more complex functions from below. Then it will be conve-
nient, from a notational point of view, to use functions of one variable.

Definition 1.7.1
• Let F0(x) = x+ 1

• Let Fk+1(x) = F x+2
k (x)

In Exercise 1.33 we will see that diagonalising over the Fk’s will lead us
outside the class of primitive recursive functions.

From now on in this section we will let PA be first order Peano arithmetic;
i.e. elementary number theory with the axiom scheme for first order induction.
Our first order language L will be the language of PA.

Definition 1.7.2 A function f : N → N is provably computable if there is a
formula A(x, y) = ∃zB(x, y, z) in L where A defines the graph of f , B has only
bounded quantifiers and

PA ` ∀x∃yA(x, y).

This definition is extended in the obvious way to functions of several variables.

We will assume that the reader is familiar with the method of arithmetisa-
tion, sequence numbering and so forth.

Lemma 1.7.3 Let f(k, x) = Fk(x). Then f is provably computable.

Outline of proof
Essentially we have to prove that F0 is total and that if Fk is total then Fk+1

is total as well. This induction step is proved by induction, where we actually
must prove

∀x∀y∃zF yk (x) = z

by induction on y.
In order to write a complete proof, we have to write down the formal definition
of the graph of F and the establish a proof tree for the formula required to be
a theorem in PA. This is tedious and not very exiting; the exiting part is to
decide how much induction that is required.

1.7.3 Ordinal notation

The concept of an ordinal number will be properly introduced in a course on
set theory. A well ordering is a total ordering (X,≺) such that each nonempty
subset Y ⊆ X will have a least element. An ordinal number will be a set that
in a canonical way represents an isomorphism class of well orderings. For our
purposes it will be sufficient to think about order types of well orderings, and
we will use a term language for such order types. Exercise 3.5 is a self-service
introduction to ordinal numbers.

47

Definition 1.7.4 ω is the smallest infinite ordinal number, and it denotes the
order-type of N with the standard ordering.

All natural numbers will be ordinal numbers as well.
We may extend the arithmetical operations plus, times and exponentiation to
operations on orderings, or actually, on order types. The sum of two orderings
〈A,<A〉 and 〈B,<B〉 will be the set

C = A⊕B = ({0} ×A) ∪ ({1} ×B)

with the ordering <C defined by

• 〈0, a〉 <C 〈1, b〉 whenever a ∈ A and b ∈ B.

• 〈0, a1〉 <C 〈0, a2〉 if and only if a1 <A a2.

• 〈1, b1〉 <C 〈1, b2〉 if and only if b1 <B b2.

The product of two orderings will for our purposes be the anti-lexicographical
ordering on the product of the domains.

The formal definition of the exponential of orderings is less intuitive, but it helps
to think of exponentiation as iterated multiplication. Our definition only works
for special orderings 〈A,<A〉, including all well orderings.

Definition 1.7.5 Let 〈A,<A〉 and 〈B,<B〉 be two orderings where A has a
least element a0.
Let p ∈ C if p is a map from B to A such that p(b) = a0 for all but finitely
many b ∈ B.
If p 6= q are in C, there will be a maximal argument b such that p(b) 6= q(b).
We then let p <C q ⇔ p(b) < q(b) for this maximal b.

Lemma 1.7.6 If 〈A,<A〉 and 〈B,<B〉 are two well orderings then the sum,
product and exponential will be well orderings.

The proof is left as Exercise 1.34

As a consequence, every arithmetical expression in the constant ω and con-
stants for the natural numbers, and using ’plus’, ’times’ and ’exponents’, will
have an interpretation as an ordinal number.
The least ordinal number that cannot be described by an expression as above
is baptized ε0. As for ordinary arithmetics, ω0 = 1. This is a special case of the
more general rule

ωα · ωβ = ωα+β .

A consequence is that each ordinal α < ε0 can be written in a unique way as

α = ωαn + · · ·+ ωα0

where {α0, · · · , αn} is an increasing (not necessarily strictly) sequence of ordi-
nals less than α. We call this the Cantor Normal Form of α. If α0 = 0 the

48

ordinal α will be a successor ordinal, otherwise it will be a limit ordinal.

We extended the Ackermann hierarchy to the first transfinite level by diago-
nalising over the Ackermann branches. One advantage with the Cantor normal
form is that we may find a canonical increasing unbounded sequence below ev-
ery limit ordinal between ω and ε0. Actually, it is possible to do so for ordinals
greater than ε0 too, but readers interested in how this is done and why someone
would like to do it are recommended to follow a special course on proof theory
and ordinal denotations.

Definition 1.7.7 Let
α = ωαm + · · ·+ ωα0

be given on Cantor normal form, and assume that α0 > 0.
We define the n’th element α[n] of the fundamental sequence for α as follows:

Case 1 α0 = β + 1:
Let α[n] = ωαm + · · ·+ ωα1 + n · ωβ .

Case 2 α0 is a limit ordinal:
We may then assume that α0[n] is defined, and we let

α[n] = ωαm + · · ·+ ωα1 + ωα0[n]

We may consider the map α 7→ α[n] as an extension of the predecessor function
to limit ordinals:

Definition 1.7.8 Let 0 < α < ε0. We define the n-predecessor of α by

a) If α is a successor ordinal, the predecessor of α will be the n-predecessor
of α.

b) If α is a limit ordinal, α[n] will be the n-predecessor of α.

c) We say that β <n α if β can be reached from α by iterating the n-
predecessor map.

Lemma 1.7.9 Let α < ε0, β <m α and m < n. Then β <n α.

Proof
It is sufficient to prove that if m < n and α is a limit ordinal, then α[m] <n α.
This is left as a non-trivial exercise for the reader, see Exercise 3.3.

Lemma 1.7.10 Let α < ε0 and let β < α. Then there is an n such that β <n α.

Proof
This is proved by induction on α with the aid of Lemma 1.7.9. The details are
left as a nontrivial exercise for the reader, see Exercise 3.3

49

1.7.4 A subrecursive hierarchy

We will now extend the alternative Ackermann hierarchy to all ordinals less
than ε0:

Definition 1.7.11 Let α < ε0. We define Fα(x) by recursion on α as follows:

• F0(x) = x+ 1

• Fβ+1(x) = F x+2
β (x)

• Fα(x) = Fαx when α is a limit ordinal.

Proof theorists have shown that if a function f : N→ N is provably computable,
then f will be bounded almost everywhere by one of the Fα’s where α < ε0.
The proof involves the translation of a proof in PA to a proof in ω-logic, then
a cut-elimination procedure in ω-logic and finally an analysis of cut-free proofs
in ω-logic of the totality of computable functions. This analysis is far beyond
the scope of this compendium, and the reader is not recommended to work out
the details.
In Exercises 3.3 and 3.4, the reader is challenged to prove that each Fα is
provably computable and establish the hierarchical properties of the {Fα}α<ε0 -
hierarchy. The main results are:

Lemma 1.7.12 Let n < x and β <n α < ε0.
Then

Fβ(x) ≤ Fα(x).

Theorem 1.7.13 If β < α < ε0, then

∃x0∀x > x0(Fβ(x) < Fα(x)).

Remark 1.7.14 There are many aspects about subrecursive hierarchies that
we have not discussed in this section. We have not discussed complexity classes.
For instance, the class Hα of functions computable in polynomial time relative
to a finite iteration of Fα represents a stratification of the set of all provably
computable functions into a complexity hierarchy, where each complexity class
is closed under composition and closed under polynomial time reductions. We
will not discuss such matters further here.

1.8 Exercises

Exercise 1.1 Prove that the following functions are primitive recursive:

a) f(x, y, ~z) = x+ y

b) f(x, y, ~z) = x · y

c) f(x, y, ~z) = xy

50

d) f(x, ~y) = x!

e) f(x, ~y) = x ·−1

f) f(x, y, ~z) = x ·−y

g) f(x, y, ~z) = 0 if x = y

f(x, y, ~z) = 1 if x 6= y

h) f(x, y, ~z) = 0 if x < y

f(x, y, ~z) = 1 if x ≥ y

Exercise 1.2 Prove the following facts:

a) Nn and ∅ are primitive recursive as subsets og Nn.

b) The complement of a primitive recursive set is primitive recursive. More-
over, the union and intersection of two primitive recursive subsets of Nn
will be primitive recursive.

Exercise 1.3 a) Prove Lemma 1.2.6.

b) Prove that we can replace the inequalities by strict inequalities in Lemma
1.2.6.

Exercise 1.4 Prove Lemma 1.2.7.

Exercise 1.5 a) Prove Lemma 1.2.11.

b) Prove that the sequence numbering is monotone in each coordinate.

c) Prove that the monotone enumeration SEQ of the sequence numbers is
primitive recursive.
Hint: Find a primitive recursive bound for the next sequence number and
use bounded search.

d) Define an alternative sequence numbering as follows:
〈〈x0, . . . , xn−1〉〉 is the number z such that

SEQ(z) = 〈x0, . . . , xn−1〉.

Show that this alternative numbering is surjective and still satisfies Lemma
1.2.11

e) Prove that the pairing function P in Definition 1.2.13 is 1-1 and onto.

Exercise 1.6 Let X be a set of functions closed under the schemes of primitive
recursion.
Show that for any function f : N→ N we have

f ∈ X ⇔ f̄ ∈ X.

51

Exercise 1.7 We define the function f(k, e, y) by recursion on k and subrecur-
sion on e as follows:

1. For all k, if e = 〈1〉 and y = 〈x, x1, . . . , xn〉 we let

f(k, e, y) = x+ 1.

2. For all k, if e = 〈2, i〉, y = 〈x1, . . . , xn〉 and 1 ≤ i ≤ n we let

f(k, e, y) = xi.

3. For all k, if e = 〈3, q〉 we let

f(k, e, y) = q.

4. For all k, if e = 〈4, e′, d1, . . . , dn〉 we let

f(k, e, y) = f(k, e′, 〈f(k, d1, y), . . . , f(k, dn, y)〉).

5. For all k > 0, if e = 〈5, e1, e2〉 we let

* f(k, e, 〈0, x1, . . . , xn〉) = f(k − 1, e1, 〈x1, . . . , xn〉)
** f(k, e, 〈m+ 1, x1, . . . , xn〉) =

f(k − 1, e2, 〈f(k, e, 〈m,x0, . . . , xn〉,m, x1, . . . , xn〉)

6. In all other cases, we let f(k, e, y) = 0.

a) Prove that f is well defined, and that f is computable.

b) Prove that if g of arity n is primitive recursive, there is a number k and
an index e such that

g(x1, . . . , xn) = f(k, e, 〈x1, . . . , xn〉)

for all x1, . . . , xn ∈ Nn.

c) Prove that f is not primitive recursive.

Exercise 1.8 Prove that if φe(~x) = y and φe(~x) = z, then y = z.
Hint: Use induction on e.
Discuss why this is something that needs a proof.

Exercise 1.9 Let {fn}n∈N be a sequence of total functions such that

g(n,m) = fn(m)

is computable.
Show that each fn is computable, and that there is a total computable function
not in the sequence.
Hint: Use a diagonal argument.

52

Exercise 1.10 Show that there is a total computable function Φ(n, x) of two
variables that enumerates all primitive recursive functions of one variable.
Is it possible to let Φ be primitive recursive?

Exercise 1.11 Complete the proof of Lemma 1.2.27.

Exercise 1.12 Prove Corollary 1.2.32.

Exercise 1.13 a) Prove that every non-empty c.e. set is the image of a
primitive recursive function (easy) and that every infinite c.e. set is the
image of an injective computable function (not that easy, but still...).

b) Prove that the range of a strictly increasing total computable function is
computable.

Exercise 1.14 Let A ⊆ Nn. Show that A is c.e. (by characterization ii) or iii)
in Theorem 1.2.35) if and only if

{〈x1, . . . , xn〉 | (x1, . . . , xn) ∈ A}

is c.e.

Exercise 1.15 Give an explicit description of the selection function in the proof
of Theorem 1.2.40.

Exercise 1.16 Let A and B be two disjoint sets whose complements are c.e.
Show that there is a computable set C such that A ⊆ C and B ∩ C = ∅.
Hint: Use Corollary 1.2.41.

Exercise 1.17 Let L be the language of propositional calculus over an infinite
set {Ai}i∈N of propositional variables. Discuss the following statement:
There is a primitive recursive consistent set of propositions with no computable
completion.

Exercise 1.18 a) Show that there is an enumeration {In}i∈N of all closed
rational intervals contained in [0, 1] such that the relations In ⊆ Im, In ∩
Im = ∅ and |In| < 2−m are computable, where |In| is the length of the
interval.

A real number x is computable if there is a computable function h such
that

i) |Ih(n)| < 2−n

ii) For all n, x ∈ Ih(n)

b) Let f : [0, 1]→ [0, 1] be a continuous function.
We say that f is computable if there is a total computable function g :
N→ N such that

53

i) In ⊆ Im ⇒ Ig(n) ⊆ Ig(m)

ii) x ∈ In ⇒ f(x) ∈ Ig(n)

iii) For all x and m there is an n with x ∈ In and |Ig(n)| < 2−m.

Show that any computable function will be continuous. Show that there
is a computable function that does not take its maximal value at any
computable real.

Exercise 1.19 Show that if A ≡m B and C ≡m D, then A ⊕ C ≡m B ⊕ D.
Show that if A <m E and B <m E then A⊕ B <m E. Show that A⊕ B then
represents the least upper bound of A and B in the m-degrees.

Exercise 1.20 Show that the set of codes [[Φ]] for formulas in the language L
used in the definition of tt-reducibility is primitive recursive.
Will the set of tautologies in L be primitive recursive?

Exercise 1.21 Prove Lemma 1.3.17.

Exercise 1.22 Show that the second recursion theorem can be extracted from
the proof of the recursion theorem.
Hint: Let F (g, x) be computable. Use the recursion theorem on

f(e, x) = F (φe, x).

Let e0 be the index obtained from the proof of the recursion theorem.
Show that if φe0(x) = y and we make an oracle call for φe0(z) in the computation
of F (φe0 , x) then φe0(z) is a subcomputation of φe0(x).

Exercise 1.23 Show that if f1 ≡T f2, then the jumps f ′1 and f ′2 are also Turing
equivalent.

Exercise 1.24 Make a direct construction and show that there are two total
functions f and g such that f 6<T g and g 6<T f .

Exercise 1.25 Prove that there is a minimal pair of Turing degrees, i.e. a pair
{a,b} of degrees of non-computable functions, such that the degree O of com-
putable functions is the greatest lower bound of a and b.
Hint: You may use the main idea in the proof of Theorem 1.3.33, the present
theorem is just simpler to prove. You may also get some ideas from the discus-
sion of this proof in the text.

Exercise 1.26 Let O be the degree of the computable functions.
Recall the definition of the jump operator in the proof of Lemma 1.3.31, cfr.
Exercise 1.23. We define the arithmetical hierarchy as follows:

A Σ0
1-set is a c.e. set (of any dimension).

A Π0
1-set is the complement of a Σ0

1-set

54

A Σ0
k+1-set is the projection of a Π0

k-set

A Π0
k+1-set is the complement of a Σ0

k+1-set

A ∆0
k set is a set that is both Σ0

k and Π0
k.

Let O(n) be the degree obtained from O using the jump-operator n times.

a) Prove that if A is Σ0
k or A is Π0

k, then (the characteristic function of) A
has a degree a < O(k).

b) Show that for k ≥ 1 we have that A is ∆0
k+1 if and only if the degree of A

is bounded by O(k).
Hint: Use the relativized version of the fact that a set is computable if
and only if both the set and its complement are c.e.

Exercise 1.27 We generalize the original definitiion of a binary tree to

• A tree T is a set of finite sequences σ of natural numbers such that when-
ever σ ∈ T and τ ≺ σ, then τ ∈ T .

• A tree T is finitely branching if for all σ ∈ T :

{a | σa ∈ T}

is finite.

• A tree T is computably bounded if there is a computable function f such
that whenever σ = (a0, . . . , an−1) ∈ T then ai ≤ f(i) when i < n.

a) Prove that an infinite, computably bounded computable tree will have a
branch of degree ≤ O.

b) Show that there is a computable tree that is not computably bounded.

Exercise 1.28 Show that there are continuumly many minimal degrees.
Hint: Instead of constructing one tree Tn at level n we might construct 2n trees
Tσ,n for lh(σ) = n, ensuring for each e that the branches of different trees will
not be computable in each other via index e. The proof requires some clever
book-keeping.

Exercise 1.29 Prove Theorem 1.5.2.

Exercise 1.30 Let B ⊆ N2 be a set. For each n ∈ N, we let Bn = {m | (n,m) ∈
B} and we let B−n = {(k,m) ∈ B | k 6= n}.

a) Show that there is a c.e. set B such that for all n, Bn is not computable
in B−n.
Hint: Use an enumeration of N2 to give all the requirements

R(n,e) : N \Bn 6= WB−n
e

a priority rank.

55

b) Consider a computable partial ordering ≺ on the natural numbers.
Show that there is an order-preserving map of ≺ into the c.e. degrees.
Hint: Use the construction in a), and let
Cn = {(k,m) ∈ B | k � n}.

There is one computable partial ordering ≺ such that any other partial ordering
of any countable set can be embedded into ≺, see Exercise 3.1. Thus this shows
that any countable partial ordering can be embedded into the ordering of the
c.e. degrees.

Exercise 1.31 Fill in the details in the proof of the following theorem:

Theorem 1.8.1 Let a > O be an c.e. degree. Then there are two incomparable
c.e. degrees b and c such that a = b⊕ c.

This theorem is called The splitting theorem. We split the c.e. degree a into
two simpler c.e. degrees.
Proof
Let A be a non-computable c.e. set. It is sufficient to construct two disjoint c.e.
sets B and C such that
A = B ∪ C, A is not computable in B and A is not computable in C.
Let f be a 1-1 enumeration of A. At each stage n we will put f(n) into B or
f(n) into C, but not into both.
Let Bn be the numbers put int B before stage n and Cn be the set of numbers
put into C before stage n. Further, we let
An = {f(0), . . . , f(n− 1)}, so An = Bn ∪ Cn.
We put up requirements

R2e : KA 6= φBe .

R2e+1 : KA 6= φCe .

which we give priorities in the usual way.
For each requirement Rs we define three auxiliary functions. For s = 2e they
will be:

The match function

m(s, n) = µk < n.∀x ≤ k(φBne,n(x) = KAn(x)).

The bar function

b(s, n) = max{m(s, n′) | n′ ≤ n}.

The protection function
p(s, n) = {y | y is used negatively in computing φBne,n(x) for some x ≤
b(s, n)}.
In this case we call this a protection of B.

56

Now the construction at stage n is as follows: If f(n) 6∈ p(s, n) for any s ≤ n, put
f(n) into B. Otherwise, consider the requirement Rs of highest priority such
that f(n) ∈ p(s, n). If this is a protection of B, we put f(n) into C, otherwise
we put f(n) into B.
When we put an element into a protection of B we injure that requirement. We
will prove that for any requirement Rs there is a stage ns after which we will
never injure that requirement, and simultaneously that the bar-function b(s, n)
is bounded when s is fixed.
Assume that this holds for all s′ < s. Then there is a stage ns after which f(n)
is not in the protection for any s′ < s, and then, after stage ns, Rs will not be
injured.
This in turn means that if x < b(s, n) for n ≥ ns and φBne,n(x)↓, then φBe (x) =
φBne,n(x).
Now, if limn→∞ v(s, n) =∞ we can use the increasing matching and the stability
of φBne,n to show that A is computable, which it is not.
On the other hand, if KA = φBe we will get increasing matching. Thus at
the same time we prove that the construction of the bar and protection for Rs
terminates and that the requirement is satisfied at the end.

Exercise 1.32 Post hoped to prove that a simple set cannot be of the same
degree as the complete c.e. set K. This will not be the case, which will be clear
when you have solved this problem.

LetA be a non-computable c.e. set and f a total computable 1-1-enumeration
of A. We know that f cannot be increasing (why?).
Let

B = {n | ∃m > n(f(m) < f(n))}
This is called the deficiency set of the enumeration.

a) Show that B is c.e. and that B is computable n A.

b) Show that A is computable in B.
Hint: In order to determine if x ∈ A it is sufficient to find n 6∈ B such
that f(n) > x.

c) Show that B is simple.
Hint: If the complement of B contains an infinite c.e. set, the algorithm for
computing A from B in b) can be turned into an algorithm for computing
A.

Exercise 1.33 Let F (k, x) = Fk(x) be the alternative Ackermann function.

a) Show that x < F (k, x) for all k and x.

b) Show that F is monotone in both variables.

c) Let f : Nm → N be primitive recursive.
For ~x = (x1, . . . , xm), let

∑
~x = x1 + · · · + xm. Show that there is a

number k such that
f(~x) ≤ F (k,

∑
~x)

57

for all ~x ∈ Nm.
Hint: Use induction on the construction of f .
In the cases f(x, ~x) = x+ 1 and f(~x) = xi you may use k = 0.
In the case f(~x) = q, use a k such that F (k, 0) ≥ q.
In the case of composition, you may find it convenient to increase k by
more than one, while in the case of primitive recursion, you should increase
k by exactly one.

d) Show that F is not primitive recursive.
Hint: Show that G(k) = F (k, k) + 1 cannot be primitive recursive, using
c).

Exercise 1.34 Prove Lemma 1.7.6

Exercise 1.35 Let P be the set of polynomials P (x) where we only use + (not
’minus’) and where all coefficients are natural numbers.
We order P by

P (x) ≺ Q(x)⇔ ∃n∀m ≥ n(P (m) < Q(m)).

Show that ≺ is a well ordering of order-type ωω.

58

Chapter 2

Generalized Computability
Theory

2.1 Computing with function arguments

When we introduced the Turing degrees, we first introduced the notion of rela-
tivized computations via the notation

φf1,...,fne (x1, . . . , xm).

By a small change of notation, we may view this as a partial functional

φe(x1, . . . , xm, f1, . . . , fn)

where some of the inputs may be numbers and some may be functions.

Definition 2.1.1 Let F : Nm × (NN)n → N.
We say that F is computable if there is an index e such that for all ~f ∈ (NN)n

and ~f ∈ Nm we have that

F (~x, ~f) = φe(~x, ~f).

We will concentrate our attention to computable functionals F : NN → N.
Let us first see why we may expect to face all relevant theoretical problems even
then.

Lemma 2.1.2 Let n > 0 and m ≥ 0. Then there is a computable bijection
between Nm × (NN)n and NN.

Proof
We will produce the bijections between (NN)2 and NN and between N×NN and
NN. The rest then follows by iterating the two constructions.
Let 〈f, g〉(x) = 〈f(x), g(x)〉 where we use a computable pairing function with

59

computable projections on N.
Clearly 〈f, g〉 is computable from f and g in the sense that

F (x, f, g) = 〈f, g〉(x)

is computable. In the same sense, f and g will be computable from 〈f, g〉.
If f ∈ NN and x ∈ N, let

〈x, f〉(0) = x

〈x, f〉(y + 1) = f(y)

This clearly defines a bijection, and it is computable in the sense above.

2.1.1 Topology

All these spaces are actually topological spaces, even metrizable spaces. The
topology on N will be the discrete topology, and the natural metric will be the
one where distinct numbers have distance 1.
The topology on NN will be the standard product topology. Since there may be
readers not familiar with the product topology, we give a direct definition.

Definition 2.1.3 Let O ⊂ NN. O will be open if whenever f ∈ O there is a
number n such that for all g : N → N we have that g ∈ O whenever f and g
agrees for all arguments between and including 0 and n− 1.

In more technical terms, this can be expressed by

f ∈ O ⇒ ∃n∀g(f̄(n) = ḡ(n)⇒ g ∈ O).

If σ is a finite sequence of numbers, σ determines an open neighborhood

Bσ = {f ∈ NN | f̄(lh(σ)) = σ}

i.e. the set of functions f extending σ. These sets Bσ will form a basis for the
topology.

There is a close connection between topology and computability. There are
many examples of this in the literature. Although the use of topology is re-
stricted to fairly elementary general topology, it is very hard to read the current
literature on computability on non-discrete structures without any knowledge
of topology at all. In this section we will give one example of this connection.

Theorem 2.1.4 Let F : NN → N. Then the following are equivalent:

a) F is continuous.

b) There is a function f : N→ N such that F is computable relative to f .

60

Proof
First let F be computable relative to f , i.e. there is an index e such that

F (g) = φe(f, g)

for all g.
For a fixed g, the computation tree of φe(f, g) is finite, and thus application of g
will only be used a finite number of times in the computation tree. Let n be so
large that if g(x) occurs in the computation tree, then x < n. As a consequence
we see that if h̄(n) = ḡ(n) then the computation trees of φe(f, g) and φe(f, h)
will be identical. The further consequence is that

∀h ∈ NN(h̄(n) = ḡ(n)⇒ F (g) = F (h))

and this just means that F is continuous.
Now, let us prove the converse, and let F be continuous. Let {σn}n∈N be a

computable enumeration of all finite sequences. Let X = {n | F is constant on
Bσn}. Let f be defined by

f(n) = 0 if n 6∈ X

f(n) = m+ 1 if F is constant m on Bσn .

Then for each g ∈ N→ N we have that

F (g) = f(µn.f(n) > 0 ∧ σn ≺ g)− 1 (2.1)

where σ ≺ g means that the finite sequence σ is an initial segment of the infinite
sequence g.

2.1.2 Associates

In the proof of Theorem 2.1.4 we constructed a function f such that f(n) > 0
if and only if F is constant on Bσn and in this case, f(n) = F (g) + 1 for all
g ∈ Bσn . Following Kleene, we call this f the principal associate of F . This is
of course an important concept, but from a computability theory point of view
it is not completely satisfactory:

Lemma 2.1.5 There is a computable functional F such that the principal as-
sociate is not computable.

Proof
Let A = We be c.e. but not computable, i.e.

n ∈ A⇔ ∃mT (e, n,m)

where T is Kleene’s T -predicate.
Define the computable F by

• F (g) = 0 if ∃m < g(1)T (e, g(0),m)

61

• F (g) = 1 otherwise.

Let f be the principal associate of F . Let ν(n) = 〈n〉, i.e. the sequence number
of the one-point sequence containing just n. F will be constant on B〈n〉 if and
only if n 6∈ A, and then the constant value is 1, so we have

n 6∈ A⇔ f(ν(n)) = 2.

Since ν is computable and A is not computable, f cannot be computable.

When we showed that any functional F computable in f will be continuous,
we referred to the computation tree of φe(f, g). When we look at the example
showing Lemma 2.1.5 we see that the computation tree for F (g) always will
make use of g(0) and of g(1). Let f be defined by

• If lh(σn) < 2, let f(n) = 0.

• If lh(σn) ≥ 2 and ∃m < σn(1)T (e, σn(0),m), let f(n) = 1.

• If lh(σn) ≥ 2 and ∀m < σn(1)¬T (e, σn(0),m), let f(n) = 2.

Then Equation 2.1 will hold for this F and f .
This leads us to the following definition:

Definition 2.1.6 Let F : NN → N be continuous.
An associate for F will be a function f : N→ N such that

i) If σn ≺ σm and f(n) > 0 then f(m) = f(n).

ii) If f(ḡ(m)) > 0 then f(ḡ(m)) = F (g) + 1.

iii) ∀g ∈ NN∃m(f(ḡ(m)) > 0).

It is then clear that any continuous functional will be computable in any of its
associates via equation 2.1, and any computable functional will have a com-
putable associate, see Exercise 2.2

2.1.3 Uniform continuity and the Fan Functional

It is well known that any continuous function on a compact metric space is
uniformly continuous. In R, a set will be compact if and only if it is closed and
bounded. We have a similar characterization for NN:

Definition 2.1.7 a) We will consider the following partial ordering of NN :

f ≤ g ⇔ ∀n(f(n) ≤ g(n))

b) For f ∈ NN, let Cf = {g | g ≤ f}.

The following is left for the reader as Exercise 2.3

62

Lemma 2.1.8 Let A ⊆ NN. Then A will be compact if and only if A is closed
and A ⊆ Cf for some f .

As a result, each continuous F will be uniformly continuous on each Cf . Let us
see what this actually means. The formal definition is that for any ε > 0 there
is a δ > 0 such that for all g and h in Cf , if d(g, h) < δ then d(F (g), F (h)) < ε.
The metric on N is trivial, so let ε = 1

2 and choose δ > 0 accordingly. Choose n
such that 2n−1 < δ. Then ḡ(n) = h̄(n) ⇒ F (g) = F (h) whenever g and h are
in Cf . These considerations give us

Lemma 2.1.9 Let F : NN → N be continuous. Then

∀f ∈ NN∃n∀g ∈ Cf∀h ∈ Cf (ḡ(n) = h̄(n)→ F (g) = F (h))

We suggest an alternative proof in Exercise 2.4.

Lemma 2.1.9 suggests that we may consider the operator Φ defined by:

Definition 2.1.10 The Fan Functional Φ is defined on all continuous F : NN →
N and defines a function Φ(F) : NN → N by

Φ(F)(f) = µn.∀g ∈ Cf∀h ∈ Cf (ḡ(n) = h̄(n)→ F (g) = F (h)).

Theorem 2.1.11 Let Φ be the fan functional. Then Φ(F) is continuous when-
ever F is continuous.

Proof
Let f be given, and let α be an associate for F . For each n there will be a finite
set of sequences σ of length n that are bounded by f . Using König’s lemma
we may find an n such that α(σ) > 0 for each σ in this set. This n can be
found effectively in f and α, and will be an upper bound for Φ(F, f). We only
need information from f̄(n) in order to verify that this n is a good one, and we
may compute Φ(F)(f) from the information at hand. The details are left as an
exercise for the reader.

Remark 2.1.12 In some sense originally made precise by Kleene and indepen-
dently by Kreisel, the fan functional is continuous, see Exercise 2.5. In the next
section we will consider a concept of computation where we may accept even
functionals as inputs. This begs the question if the fan functional is even com-
putable. The answer to this is not unique, since there is no canonical choice of a
concept of computability in this case. In Exercise 2.5 we give a positive answer
to this question for one possible notion of computability.

We characterized the continuous functionals as those having associates. In
a way this is an old fashioned approach. In the current literature one often use
domains as an entry to the theory of continuous functionals. We did not do so,
because then we would have to introduce a lot of simple, but new, concepts. A
reader interested in learning more about this kind of generalized computability
is advised to consult some introduction to domain theory.

In Exercise 2.6 we will use some of the insight obtained in this section.

63

2.2 Computing relative to a functional of
type 2

A major step in the process of generalizing computability came when Kleene
and others started to relativize computations to functionals of type 2 and higher
types in general. For certain indices e, we have defined the partial function
φe(x1, . . . , xn, f1, . . . , fm), and of course there is no harm in accepting function-
als F1, . . . , Fk as dummy arguments. The problem is how we, in any sensible
way, can use Fj actively in a computation.

The strategy will be that whenever we can supply Fj with an argument f ,
then we get the value Fj(f) from some oracle call scheme.

Definition 2.2.1 Let Ψ : Nn+1 × (NN)m × (NN → N)k → N be given.
Let ~a ∈ Nn, ~f ∈ (NN)m and let ~F ∈ (NN → N)k.
By

λx.Ψ(x,~a, ~f, ~F)

we mean the function g : N→ N defined by

g(x) = Ψ(x,~a, ~f, ~F).

This makes sense even when ψ is a partial functional, but then λx.Ψ(x,~a, ~f, ~F)
may not be total.

Kleene suggested something equivalent to

Definition 2.2.2 We extend the definition of φe(~a, ~f) to a definition of
φe(~a, ~x, ~F) by adding the clauses:

viii) If e = 〈8, d, j〉 and
λx.φd(x,~a, ~f, ~F)

is total, then
φe(~a, ~f, ~F) = Fj(λx.φd(x,~a, ~f, ~F)).

ix) If e = 〈9〉 then
φe(d,~a, ~f, ~F) = φd(~a, ~f, ~F).

This is an example of what is generally called an inductive definition. A large
part of generalized computability theory is about inductive definitions and the
computational principles that are behind them. In this case, we have to assume
that each element in an infinite set of subcomputations will terminate before we
accept some computations to terminate. In order to handle this properly, we will
have to introduce a generalized concept of computation tree, now a computation
tree may be an infinite, well founded tree with countable branching at certain
nodes.

It will lead us too far in this introductory course to define all the concepts
needed for a mathematically stringent handling of computability relative to
functionals. As an appetizer, let us mention two kinds of problems:

64

1. What are the computable functionals of type 3?

2. What are the functions computable in a fixed functional?

Question 1 is actually hard to answer, there is no obvious characterization of
this set. We know that the fan functional, which is defined only for continuous
functionals of type 2, is not computable in the sense of Kleene. There are a few
other positive and negative results about which functionals that are Kleene-
computable, but nothing that is both general and informative. We know more
about the answer to the second question, we will address this partly in the next
section and partly as a small project discussed in Chapter 3. However, there
is no complete and satisfactory characterization of the class of sets of functions
that may turn out as the set of functions computable in some functional.

Remark 2.2.3 Scheme ix) may seem a bit dubious, and was actually consid-
ered to be a cheat. When we work with Turing machines or with Kleene’s
definition of computations relative to functions, the existence of a universal al-
gorithm is an important theorem. However, without scheme ix) we will not
be able to prove the existence of a universal algorithm for computations rela-
tive to functionals. We will follow Kleene, be pragmatic about it, and claim
that including scheme ix) will give us a much more fruitful concept. However,
introducing scheme ix) makes the two schemes v) for primitive recursion and
vi) for the µ-operator redundant. This, and other facts about computability in
functionals, are discussed in the nontrivial Exercise 2.10.

Definition 2.2.4 Let F be a functional of type 2, f a function of type 1. We
say that f is Kleene-computable in F , f <K F , if for some index e we have that

f(x) = φe(x, F)

for all x ∈ N.
This definition is extended in the canonical way to the concept f <K ~f, ~F .
We let the 1-section of F , 1− sc(F) be the set

1− sc(F) = {f | f <K F}.

The next sequence of lemmas should be considered as a small project on which
the reader might write an essay:

Lemma 2.2.5 If f <K ~f, ~F and each fi in ~f is computable in ~g, ~F , then
f <K ~g, ~F .

Proof
We may find a primitive recursive function ρ such that if

f(x) = φe(x, ~f, ~F)

for all x and if
fi(y) = φdi(y,~g, ~F)

65

for all y and i, then
f(x) = φρ(e,e1,...,em)(~g, ~F)

for all x.

Lemma 2.2.6 Let F and G be functionals of type 2. Assume that F (f) = G(f)
whenever f ∈ 1− sc(F). Then 1− sc(F) = 1− sc(G).

Proof
By induction on the ordinal rank of the computation tree we show that if
φe(~a,G) = a then φe(~a, F) = a with the same computation tree.

One of Kleene’s motivations for studying computations relative to function-
als was to have a tool for investigating the computational power of quantifiers.
Quantification over the natural numbers is captured by the discontinuous func-
tional 2E defined by:

Definition 2.2.7 Let

1. 2E(f) = 1 if ∃a ∈ N(f(a) > 0).

2. 2E(f) = 0 if ∀a ∈ N(f(a) = 0).

Definition 2.2.8 Let F and G be functionals of type 2.

a) F <K G if there is an index e such that F (f) = φe(G, f) for all functions
f : N→ N.

b) F is normal if 2E <K F .

The choice of the term ‘normal’ for these functionals reflects the focus of the
early workers of higher type computability. We will investigate computability
in 2E more closely in section 4.4. We end this section by showing that the
1-section of a normal functional will be closed under jumps, see the proof of
Lemma 1.3.31 for the definition.

Lemma 2.2.9 Let F be a normal functional. Then 1 − sc(F) is closed under
jumps.

Proof
Generalizing Kleene’s T -predicate, we see that if g = f ′, there is a computable
predicate T such that

g(a) = b↔ ∃nT (a, b, n, f).

Given f and a we can use 2E to decide if there are b and n such that T (a, b, n, f)
holds.
If it does, we may search for the relevant b and output b+ 1. If it does not, we
output 0.

66

2.3 2E versus continuity

Let fi be defined as

fi(i) = 1.

fi(j) = 0 if i 6= j.

Then limi→∞ fi is the constant zero function f while 2E(f) 6= limi→∞
2E(fi).

This shows that 2E is not continuous. Another way to see this is to observe
that (2E)−1({0}) is not an open set, while {0} is open in N.

We will now restrict ourselves to considering computations of φe(~a, F), i.e. com-
putations in one functional argument and some number arguments. We do this
in order to save notation, there is no theoretical reason for this restriction.

We will define the n’th approximation φne (~a, F) to a computation of φe(~a, F).
There will be four properties to observe

• φne (F,~a) will always be defined.

• If φe(~a, F)↓ and φe(~a, F) = limn→∞ φne (~a, F), then we can tell, in a uni-
form way, from which n0 the limit is reached.

• If φe(~a, F)↓ and φe(~a, F) 6= limn→∞ φne (~a, F) we can compute 2E from F
in a uniform way.

• If φe(~a, F)↓ we can computably distinguish between the two cases.

We will give most of the details, but the reader should be warned: The
rest of this section is an example of how advanced arguments in computability
theory might look like. (They often look more advanced than what they really
are.)

Definition 2.3.1 We define φne (~a, F) following the cases for the definition of
φe(~a, F) ignoring schemes v), vi) and vii).

i) If e = 〈1〉, we let φne (~a, F) = φe(~a, F).

ii) If e = 〈2, i〉, we let φne (~a, F) = φe(~a, F).

iii) If e = 〈3, q〉, we let φne (~a, F) = φe(~a, F).

iv) If e = 〈4, e′, d1, . . . , dm〉, let

φ0
e(~a, F) = 0.

φn+1
e (F,~a) = φne′(φ

n
d1

(~a, F), . . . , φndm(~a, F)).

viii) If e = 〈8, d, 1〉, then

φ0
e(~a, F) = 0.

φn+1
e (~a, F) = F (λx.φnd (x,~a, F)).

67

ix) If e = 〈9〉, let

φ0
e(d,~a, F) = 0.

φn+1
e (d,~a, F) = φnd (~a, F).

φne (~a, F) = 0 in all other cases.

Theorem 2.3.2 There are three partial computable functions π, η and ν de-
fined on the natural numbers such that φπ(e)(~a, F), φη(e)(~a, F) and φν(e)(~a, F)
terminate whenever φe(~a, F) terminates, and then

• φπ(e)(~a, F) = 0↔ φe(~a, F) = limn→∞ φne (~a, F).

• If φe(~a, F) = limn→∞ φne (~a, F) then φne (~a, F) = φe(~a, F) whenever
n ≥ φη(e)(~a, F).

• If φe(~a, F) 6= limn→∞ φne (~a, F) then 2E is computable in F via the index
φν(e)(~a, F).

Proof
We will construct π, η and ν using the recursion theorem, so we will take the
liberty to assume that we know the indices for these functions while defining
them.
We will not hide the intuition behind a technically accurate construction of
these functions, but to some extent describe in words what to do and why it
works. When we explain this, we will assume as an induction hypothesis that
our construction works for computations of lower complexity.
We will tell what to do when e corresponds to one of the schemes we have con-
sidered. The ‘otherwise’-case is trivial, since we do not have to prove anything
in this case, φe does not terminate on any input.
If e corresponds to scheme i), ii) or iii), let π(e) be the index for the constant
zero, η(e) the same, and we may without loss of consequences let ν(e) also be
the same.
Let e = 〈4, e′, d1, . . . , dm〉.
Let π(e) be the index for the following enumerated algorithm in (~a, F):

1. If φπ(e′)(~a, F) = φπ(d1)(~a, F) = · · · = φπ(dm)(~a, F) = 0, let φπ(e)(~a, F) = 0
and go to 2., otherwise let φπ(e)(~a, F) = 1 and go to 3.

2. Let φη(e)(~a, F) = 1 +max{φη(e′)(~a, F), φη(d1)(~a, F), . . . , φη(dm)(~a, F)}.

3. Select the least index d ∈ {e′, d1, . . . , dm} such that φπ(d)(~a, F) 6= 0. Then
use the index φν(d)(F,~a) for 2E to decide if φe(~a, F) = limn→∞ φne (~a, F)
or not. If it is, move to 4., otherwise to 5.

4. We let φπ(e)(~a, F) = 0. We use 2E to compute the proper value of
φη(e)(~a, F).

5. We let φπ(e)(~a, F) = 1, and we let φν(e) = φν(d).

68

The case ix) is handled in the same way, so we restrict our attention to case
viii):

φe(~a, F) = F (λx.φd(x,~a, F)).

Let f(x) = φe(x,~a, F) and let fn(x) = φne (x,~a, F).

For each m ∈ N, define gm(x) by the following algorithm:

1. Ask if f(x) = limn→∞ fn(x). If yes, continue with 2., otherwise continue
with 3.

2. If F (f) = F (fn) for all n such that m ≤ n ≤ φη(d)(x, F,~a), let gm(x) =
fφη(d)(x,~a,F)(x).
Otherwise choose the least n ≥ m such that F (f) 6= F (fn) and let gm(x) =
fn(x).

3. By the induction hypothesis, φν(d)(x,~a, F) provides us with an index to
compute 2E from F . Use 2E to ask if

∃n ≥ m(F (f) 6= F (fn)).

If not, let gm(x) = f(x), otherwise let gm(x) = fn(x) for the least such n.

In both cases, we will let gm(x) = f(x) if F (f) = F (fn) for all n ≥ m, while
gm(x) = fn(x) for the least counterexample otherwise. In the case 3. this is
done explicitly. In case 2. we must use that if n > φη(d)(~a, F), then fn(x) =
fφη(d)(x,F,~a)(x), a fact that follows from the induction hypothesis.
Thus for each m we may computably decide if ∃n ≥ m(F (f) 6= F (fn)) by

∃n ≥ m(F (f) 6= F (fn))⇔ F (f) = F (gm)). (2.2)

From 2.2 we can decide if

∃n(F (f) 6= F (fn)).

If not, we let φπ(e)(~a, F) = φη(e)(~a, F) = 0.
If there exists one such n we want to decide in a computational way if there are
infinitely many of them or not. We may use the same kind of construction as
that of gm(x) to compute a function h(x) such that h = f if F (f) 6= F (fn) for
infinitely many n, while h = fn for the largest n such that F (f) 6= F (fn) other-
wise. We must split the construction into the same cases as for the construction
of gm(x), and we must rely on 2.2 when 2E is not available. Then we get

∃n∀m ≥ n(F (f) = F (fm))⇔ F (f) 6= F (h)). (2.3)

In case both sides of equivalence 2.3 are positive, we can use equivalence 2.2
and the µ-operator to find φη(e)(~a, F). It remains to show how to compute 2E
from F in case both sides of equivalence 2.3 are negative. Actually, we will use
the same trick one third time. Assume that F (f) 6= F (fn) for infinitely many
n. Let g be given. We want to decide

∃x(g(x) 6= 0).

We construct f ′(x) as follows:

69

• If f(x) 6= limn→∞ fn(x) use 2E to decide if ∃x(g(x) 6= 0). If this is the
case, select the least such x, select the least n ≥ x such that F (f) 6= F (fn)
and let f ′(x) = fn(x). If it is not the case, let f ′(x) = f(x).

• Otherwise, ask if there is an x ≤ φη(d)(x,~a, F) such that g(x) 6= 0. In
both cases, do as above.

Then
∃x(g(x) 6= 0)⇔ F (f) 6= F (f ′))

and we are through.
This ends our proof of the theorem.

Remark 2.3.3 Our use of the recursion theorem is sound, but requires some
afterthought by the inexperienced reader. What is required in order to make the
definition of π, η and ν sound is to view them as Turing-computable functions
operating on indices for computable functionals of higher types. We have given
explicit constructions of φπ(e) etc. with self reference, and analyzing exactly
which combinations of the schemes that are required, we can express π(e) etc.
as functions of the Turing indices for π, η and ν. Then, by the recursion theorem,
a solution exists.

This theorem has an interesting corollary. A dichotomy theorem is a theorem
stating that a general situation splits into two nice, in a sense opposite, cases.
One case should then contain more information than just the negation of the
other. We have observed that if F is a normal functional, then 1 − sc(F) will
be closed under jump. This is actually a characterization, but in a very strong
sense. Clearly any 1-section will be closed under the relation ‘computable in’.
We defined a function to be of c.e.degree if it is Turing equivalent with the
characteristic function of a c.e. set. This concept may of course be relativized
to any function g. Finally, we say that a set Y of functions is generated from a
set X of functions if Y consists of all functions computable in some g1, . . . , gn
from X. We then have

Corollary 2.3.4 Let F be a functional of type 2. Then one of two will be the
case:

1. 2E <K F , i.e. F is normal.

2. There is some f ∈ 1 − sc(F) such that 1 − sc(F) is generated by the
elements in 1− sc(F) of c.e.(f)-degree.

Proof
If there is one terminating computation φe(~a, F) such that

lim
n→∞

φne (~a, F) 6= φe(~a, F)

then F is normal by Theorem 2.3.2.
Otherwise, let f(〈e, n,~a〉) = φne (~a, F). Clearly, f ∈ 1− sc(F). Let g ∈ 1− sc(F)

70

be given, g(x) = φe(x, F) for all x. Then g is computable in f and the c.e.(f)
set

A = {(x, n) | ∃m ≥ n(φme (x, F) 6= φne (x, F))}

which again is computable in F via λx.φη(e)(x).

Kleene computability is extended to functionals of all finite types, and this
dichotomy actually still holds. However, working with functionals in which 2E
is not computable, one may as well work with what is known as the hereditarily
continuous functionals. We will touch a little bit on this in section 4.5.

2.4 The Hyperarithmetical sets

Definition 2.4.1 A set is hyperarithmetical if it is computable in 2E.

We have cheated a bit, and used a characterization due to Kleene as our defini-
tion. For a more systematical introduction to hyperarithmetical sets and higher
computability theory in general, see Sacks [6].

The term ‘hyperarithmetical’ indicates that this is an extension of the arith-
metical sets in a natural way, and this is exactly what the intention is. The
arithmetical sets will be the sets that can be defined by first order formulas in
number theory. For each Gödel number a of a first order formula ψ(x) with one
free variable, we can, in a primitive recursive way, find an index π(a) such that

λx.φπ(a)(x, 2E)

will be the characteristic function of

{x | ψ(x)}.

Using the enumeration scheme ix) we can then find a subset B of N × N
that is computable in 2E and such that each arithmetical set A is a section
Bx = {y ; (x, y) ∈ B} of B. Then every set arithmetical in B will also be
hyperarithmetical, and so forth. In a sense, we may say that 2E provides the
‘arithmetical’ while the enumeration scheme provides the ‘hyper’.

2.4.1 Trees

If we want to analyze computations relative to functionals more closely, we need
a precise notion of a computation tree. Although there is a common intuition
behind all our concepts of trees, various needs require various conventions. For
the rest of this section we will use

Definition 2.4.2 a) A tree will be a nonempty set T of sequences of natural
numbers, identified with their sequence numbers, that is closed under
initial segments. The elements of T will be called nodes.

b) 〈〉, i.e. the empty sequence, is the root node of the tree.

71

c) A leaf node of a tree T will be a node in T with no proper extension in T .

d) A branch in a tree T will be a maximal, totally ordered subset of T . If a
branch is infinite, we identify it with the corresponding function f : N→ N
and if a branch is finite, we identify it with its maximal element.

e) A decorated tree will be a tree T together with a decoration, i.e. a map
f : T → N.

f) If Ti is a tree for each i ∈ I, where I ⊆ N, we let 〈Ti〉i∈I be the tree T
consisting of the empty sequence together with all sequences i ∗ σ such
that i ∈ I and σ ∈ Ti.

g) If a ∈ N and (Ti, fi) are decorated trees for each i ∈ I, we let

〈a, (Ti, fi)〉i∈I

be the decorated tree (T, f) defined by

– T = 〈Ti〉i∈I
– f(〈〉) = a

– f(i ∗ σ) = fi(σ) when i ∈ I and σ ∈ Ti.

A computation tree will be a decorated tree. Since it actually is the decorations
that will be of interest, we sometimes take the liberty to identify them with
the corresponding nodes with decoration in the tree. This liberty will be visible
when we discuss the root and the leaves of a computation tree.

Definition 2.4.3 Let φe(2E,~a) = b. We define the computation tree of the
computation by recursion as follows

i) e = 〈1〉: Let the root node also be the only leaf node and be decorated
with 〈e,~a, b〉.

ii) e = 〈2, i〉. Act as in case i).

iii) e = 〈3, q〉. Act as in case i).

iv) e = 〈e′, d1, . . . , dm〉: Let (T1, f1), . . . , (Tm, fm) be the computation trees
of φdi(

2E,~a) = ci resp. and let (Tm+1, fm+1) be the computation tree of
φe′(2E, c1, . . . , cm) = b.
Let the computation tree of φe(2E,~a) = b be

〈〈e,~a, b〉, Ti〉m+1
i=1 .

vii) e = 〈8, d〉: For each i ∈ N, let (Ti, fi) be the computation tree of φd(i,~a, 2E)
and let the computation tree of φe(~a, 2E) = b be

〈〈e,~a, b〉, (Ti, fi)〉i∈N.

72

The rest of the cases are similar, and the details are left for the reader.

Lemma 2.4.4 Whenever φe(~a, 2E) terminates, then the computation tree will
be computable in 2E.

Proof
We see how the computation tree is constructed from the computation trees
of the immediate subcomputations. This construction is clearly computable in
2E, and using the recursion theorem for computations relative to 2E we get a
uniform algorithm for computing the computation tree from a computation.

Recall that a tree is well founded if there is no infinite branch in the tree. It is
easy to see that the computation trees of terminating computations will be well
founded.

Definition 2.4.5 A pre-computation tree will be a decorated tree that locally
looks like a computation tree, i.e. each node will be of the form 〈d,~a, b〉, the leaf
nodes will correspond to initial computations, and other nodes relate to their
immediate subnodes as in Definition 2.4.3.

Lemma 2.4.6 a) The concept of a pre-computation tree is arithmetical.

b) A pre-computation tree that is well founded is actually a computation tree.

c) If φe(~a, 2E) terminates, there is exactly one pre-computation tree with a
root node on the form 〈e,~a, b〉, and then b will be the value of φe(~a, 2E).

Proof
a) is trivial. In order to prove b) we observe that a subtree of a well founded
pre-computation tree is itself a well founded pre-computation tree. Since facts
may be proved by induction on the subtree ordering of well founded trees, we
may use this kind of induction to prove the statement. The details are trivial.
The set of computations relative to 2E was defined by induction, and then we
may prove facts by induction over this construction. c) is proved this way in a
trivial manner.

2.4.2 Π0
k-sets etc.

In this section we will let ‘computable’ mean ‘Turing-computable’.

Definition 2.4.7 a) A product set will be any product of the sets N and NN

in any finite number and order. We define the arithmetical hierarchy of
subsets of product sets X as follows:

i) A set A is a Σ0
0-set and a Π0

0-set if A is computable. (In the literature
you may find that A is supposed to be definable using only bounded
quantifiers in order to be in these classes. This distinction does not
matter for our applications.)

73

ii) A set A ⊂ X is Σ0
k+1 if for some Π0

k subset B of N×X we have that

~x ∈ A⇔ ∃x ∈ N((x, ~x) ∈ B).

iii) A set A ⊂ X is Π0
k+1 if for some Σ0

k subset B of N×X we have that

~x ∈ A⇔ ∀x ∈ N((x, ~x) ∈ B).

iv) A is a ∆0
k-set if A is both Π0

k and Σ0
k.

b) We define the analytical hierarchy in the same fashion, but will only need
the first level here:

i) A set A ⊆ X is Π1
1 if there is some arithmetical set B ⊆ NN×X such

that
~x ∈ A⇔ ∀f ∈ NN((f, ~x) ∈ B).

ii) A set A ⊆ X is Σ1
1 if there is some arithmetical set B ⊆ NN×X such

that
~x ∈ A⇔ ∃f ∈ NN((f, ~x) ∈ B).

iii) A is ∆1
1 if A is both Σ1

1 and Π1
1.

Lemma 2.4.8 Let X be a product set, A ⊆ X. Then A is Σ0
1 if and only if A

is the domain of a partial computable function of arity X.

Proof
For product sets where all factors are N, these are two of the characterizations
of c.e.-sets. The proof of the equivalence generalizes trivially to all product sets.

In section 4.1 we showed how each product class either is homeomorphic to N or
to NN. We used pairing-functions 〈−,−〉 for pairs of numbers, pairs of functions
or for a pair consisting of one number and one function for this. These functions
can be used to show that multiple quantifiers of the same kind can be reduced
to one, and that number quantifiers can be ‘eaten up’ by function quantifiers.
For a complete proof, we need one more homeomorphism:

Lemma 2.4.9 (NN)N is homeomorphic to NN.

Proof
We use the observation (NN)N ≈ NN×N ≈ NN since N × N ≈ N. Precisely, if
{fi}i∈N is a sequence of functions, we code it as one function by

〈fi〉i∈N(〈n,m〉) = fn(m).

This is a computable bijection.

All these coding functions will have inverses for each coordinate. We use (−)i
for the inverse at coordinate i, letting pairing functions have coordinates 1 and
2. We can then perform the following reductions of quantifiers. Note that all
the dual reductions will also hold.

74

Lemma 2.4.10 For each relation R the following equivalences hold:

i) ∃n∃mR(n,m)⇔ ∃kR((k)1, (k)2).

ii) ∃f∃gR(f, g)⇔ ∃hR((h)1, (h)2).

iii) ∃f∃nR(f, n)↔ ∃gR((g)1, (g)2) (Where the decoding is different from the
one in ii).).

iv) ∀n∃mR(n,m)⇔ ∃f∀nR(n, f(n)).

v) ∀n∃fR(n, f)⇔ ∃g∀nR(n, (g)n).

The proofs are trivial and are left for the reader as Exercise 2.11.

Lemma 2.4.11 a) The classes Σ0
k, Π0

k, Σ1
1 and Π1

1 are closed under finite
unions and finite intersections. Moreover, the Σ-classes are closed under
∃n ∈ N and the Π-classes are closed under ∀n ∈ N.

b) The classes Π1
1 and Σ1

1 are closed under number quantifiers.

c) Π1
1-normal form theorem

If A ⊆ X is Π1
1, there is a computable set R ⊆ NN × N×X such that

~x ∈ A⇔ ∀f∃nR(f, n, ~x).

In the proof we use standard prenex operations and the reductions described in
Lemma 2.4.10 The details are left for the reader, see Exercise 2.11.

Theorem 2.4.12 Let Γ be one of the classes Π0
k, Σ0

k (k ≥ 1), Π1
1 or Σ1

1 (or
Π1
k, Σ1

k as defined in Exercise 2.12). For each product set X there is a universal
Γ-set A in N×X, i.e. such that for each Γ-set B ⊆ X there is an n ∈ N such
that for all ~x ∈ X:

~x ∈ B ⇔ (n, ~x) ∈ A.

Proof
Let Γ̃ be the dual of Γ, i.e. the set of complements of sets in Γ. Clearly, if the
property holds for Γ, it also holds for Γ̃. Since the Π- and Σ-classes are duals
of each other, it is sufficient to prove the lemma for one of each pair.
The existence of universal algorithms together with Lemma 2.4.8 ensures the
theorem to hold for Σ0

1. Then any class Γ of sets definable from Σ0
1-sets using a

fixed quantifier prefix will have universal sets for each product set. Each of our
classes Γ is either one of these or the dual to one of these. For Π1

1 we need the
normal form theorem, see Lemma 2.4.11 c).

We will end this subsection by viewing the connection between Π1
1-sets and well

founded trees.
Let A ⊆ N be a Π1

1-set written in its normal form

m ∈ A⇔ ∀f∃nR(m,n, f).

75

Since R is computable, there is, by the finite use property, a computable relation
R+ on N3 such that

m ∈ A⇔ ∀f∃n∃kR+(m,n, f̄(k)).

For each m we let Tm be the tree of finite sequences σ such that

∀n ≤ lh(σ)∀τ ≺ σ¬R+(m,n, τ).

Then Tm will be a tree, and we will have

m ∈ A⇔ Tm is well founded.

If we put a bit more effort into the arguments, we can actually show that we
may choose R+ to be primitive recursive, this is connected with the relativized
Kleene’s T -predicate, and thus each Π1

1 subset of N is m-reducible to the set of
indices for well founded primitive recursive trees. On the other hand, this set
is easily seen to be Π1

1 itself. Thus the class of Π1
1-sets contains an m-maximal

element, just like the c.e. sets.
In the next subsection we will se more analogies between the c.e. sets and the
Π1

1-sets.

2.4.3 Semicomputability in 2E and Gandy Selection

Definition 2.4.13 A subset A ⊆ N is semicomputable in 2E if there is an index
e such that for all a ∈ N:

φe(a, 2E)↓⇔ a ∈ A,

where ↓ still means ‘terminates’.

Lemma 2.4.14 All Π1
1 subsets of N are semicomputable in 2E.

Proof
Clearly the set of indices for computable trees is computable in 2E, so it is
sufficient to show that the concept of a well founded tree is semicomputable.
This can be done with a careful use of the recursion theorem: Let e be any
index. Using the enumeration scheme and 2E we can define a computable
function Φ(e, T) such that

• Φ(e, T, 2E) = 0 if T consists of exactly the empty sequence.

• Φ(e, T, 2E) = 2E(λnφe(Tn)) if T is a more complex tree, where Tn is the
set of sequences σ such that n ∗ σ ∈ T .

By the recursion theorem for 2E, there is an index e0 such that Φ(e0, T, 2E) =
φe0(T, 2E) for all T .
By induction on the well founded trees it is easy to se that φe0(T) will terminate
whenever T is well founded. In order to prove the other direction, we must
inspect the proof of the recursion theorem and see that in this particular case, if
φe0(T) terminates, then either T consists of the empty sequence only or φe0(Tn)

76

must terminate for each n and be a subcomputation. This is because we only
used e as an index in connection with the enumeration scheme in defining Φ. It
follows that T must be well founded.

Theorem 2.4.15 Let A ⊆ N. Then the following are equivalent:

i) A is Π1
1.

ii) A is semicomputable in 2E.

Proof
Lemma 2.4.14 gives us one direction.
The set C of computation tuples 〈e,~a, b〉 such that φe(2E,~a) = b is defined by a
positive induction, i.e. there is a formula Φ(x,X) such that atomic subformulas
t(x) ∈ X will occur positively and such that C is the least set such that

C = {a | Φ(a,C)}.

Then
c ∈ C ⇔ ∀B(B ⊆ {a | Φ(a,B)} → c ∈ B).

Now is the time to assume that the reader is familiar with well orderings
and preferably with ordinal numbers. For readers unfamiliar with this, we offer
Exercise 3.5, a guided self-service introduction to the topic.

Definition 2.4.16 Let T be a well founded tree on N.

a) The rank |T | of T , is the ordinal rank of T seen as a well founded relation,
where σ ≤ τ ⇔ τ ≺ σ.

b) The rank |σ|T of σ ∈ T , is the value of the rank function for T on σ.

c) If T is not well founded, we let |T | =∞ considered to be larger than any
ordinal number.

Theorem 2.4.17 There is a two-place function Φ partially computable in 2E
such that φ(T, S) terminates exactly when both S and T are trees, and at least
one of them is well founded, and then

1. If |T | ≤ |S| then Φ(T, S) = 0

2. If |S| < |T | then Φ(T, S) = 1.

Proof
We will use the recursion theorem for 2E, and the argument is an elaboration
on the argument showing that the set of well founded trees is semicomputable
in 2E.
We define Φ(S, T) by cases, using self reference, and the solution using the
construction behind the recursion theorem will give us the result. The set of
trees is computable in 2E, so for the sake of convenience, we assume that both
T and S are trees. Then

77

• If T consists of only the empty sequence, let Φ(T, S) = 0.

• If S consists of only the empty sequence, but T contains more, let Φ(T, S) =
1.

• If neither T nor S contains just the empty sequence, let

Φ(S, T) = 0⇔ ∀n∃m(Φ(Tn, Sm) = 0),

where we use 2E to decide this, and let 1 be the alternative value.

It is easy to see by induction on the rank that if one of the trees is well founded,
then Φ does what it is supposed to do. If neither T nor S are well founded,
Φ(T, S) will not terminate. This is however not important, and we skip the
argument.

Since every terminating computation is associated with a well founded compu-
tation tree, we may think of the rank of the computation tree as a measure of
the length of the computation.

Definition 2.4.18 Let φe(2E,~a) = b. The length |〈e,~a, b〉| of the computation
will be the ordinal rank of the corresponding computation tree. If 〈e,~a, b〉 is not
the tuple of a terminating computation, we let |〈e,~a, b〉| =∞.

Theorem 2.4.17 has an interesting application, the Stage Comparison Theorem:

Corollary 2.4.19 There is a function Ψ partially computable in 2E such that
whenever σ = 〈e,~a, b〉 and σ′ = 〈e′,~a′, b′〉 are tuples, then Ψ(σ, σ′) terminates if
and only if at least one of σ and σ′ is a genuine computation tuple, and then

Ψ(σ, σ′) = 0⇔ |σ| ≤ |σ′|.

We have proved a selection theorem for ordinary c.e. sets, the selection was
performed by searching for the least pair where the second element was a witness
to the fact that the first element was in the c.e. set in question. Gandy showed
how we may combine this idea and the ordinal length of computations to prove
a selection theorem for computations in 2E:

Theorem 2.4.20 (Gandy Selection)
Let A ⊆ N×N be c.e. in 2E. Then there is a selection function for A computable
in 2E.

Proof
We will use the recursion theorem for 2E. Let

A = {(a, b) | φe0(a, b, 2E)↓}.

Let f be computable in 2E satisfying

1. f(e, a, k) = 0 if |〈e0, a, k〉| < |〈e, a, k + 1〉|.

78

2. f(e, a, k) = f(e, a, k + 1) + 1 if φe(a, k + 1, 2E) ↓ and |〈e, a, k + 1〉| ≤
|〈e0, a, k〉|.

By the recursion theorem there is an index e1 such that

f(e1, a, k) = φe1(a, k, 2E).

We claim that λa.φe1(a, 0, 2E) is a selection function for A. Let a ∈ N be given.
First observe that if φe0(a, k, 2E)↓ then f(e, a, k) will terminate, so φe1(a, k, 2E)↓.
Moreover, observe that if φe1(a, k, 2E)↓ then φe1(a, k′, 2E)↓ whenever k′ < k.
Thus

∃kφe0(a, k, 2E)↓⇒ φe1(a, 0, 2E)↓ .

Now assume that φe1(a, 0, 2E)↓. If we look at the computation of φe1(a, 0, 2E)
we see that we will have φe1(a, 1, 2E), φe1(a, 2, 2E),... as subcomputations as
long as part 2 of the algorithm for f is followed. The ranks of these computations
will be a decreasing sequence of ordinals, and this sequence must come to an
end. It comes to an end exactly when we hit a k0 such that

|〈e0, a, k0〉| < |〈e1, a, k0 + 1〉|.

Then (a, k0) ∈ A and backtracking the value of φe1(a, k′, 2E) for k′ ≤ k0 we see
that φe1(a, k′, 2E) = k0 − k′.
Consequently λa.φe1(a, 0, 2E) will be a selection function for A

Remark 2.4.21 This proof is of course uniform in e0.

Corollary 2.4.22 Let A ⊆ N. Then the following are equivalent:

i) A is computable in 2E.

ii) Both A and N \A are semicomputable in 2E.

Proof
Clearly, if A is computable in 2E, then both A and its complement will be
semicomputable in 2E.
Now assume that both A and N \A are semicomputable in 2E.
Let

B = {(0, n) | n ∈ A} ∪ {(1,m) | m 6∈ A}.

B is semicomputable, and B is the graph of a function. By Gandy selection this
function must be computable in 2E. The result follows.

2.4.4 Characterising the hyperarithmetical sets

There is almost nothing left for us to do in this subsection. We have shown that
a set A is semicomputable in 2E if and only if it is Π1

1. We have shown that a
set B is computable in 2E if both B and its complement are semicomputable
in 2E. This gives us

79

Corollary 2.4.23 A set is hyperarithmetical if and only if it is ∆1
1.

Remark 2.4.24 Our proof of Corollary 2.4.23 is flavored by computability the-
ory, but there are alternative proofs in the literature. The result, in a different
form, goes back to Suslin in 1917. He essentially showed that a set A ⊆ NN is
Borel if and only if both A and its complement are projections of closed sets in
(NN)2, i.e. that relativized ∆1

1 is the same as Borel.

There are numerous analogies between the pair (Computable, computably enu-
merable) and the pair (∆1

1,Π
1
1). Some of these are left for the reader as Exercise

2.13.
There is a close connection between hyperarithmetical theory and fragments of
set theory.

2.5 Typed λ-calculus and PCF

We recommend Streicher [8] for an almost complete introduction to this subject.
Kleene’s definition of computations relative to functionals can be extended to
functionals of even higher types than two. This will, however, be a too spe-
cialized topic to be introduced in this text. Kleene’s concept turned out to be
useful in definability theory, the theory of what may be defined with the help
of certain principles, but we have moved quite a bit away from what what we
might call “genuine computability”.

The concept of higher type computability is nevertheless of interest also when
genuine computability is the issue, e.g. in theoretical computer science. In this
section we will give a brief introduction to PCF . PCF is a formal programming
language for computing with typed objects. It has its roots in work by Platek,
Scott developed the first version of it as a formal logic for computability and
Plotkin gave it the form we will be investigating. The intuition should be that
we are operating with hereditarily partial, monotone and continuous functionals.
We will explain this better when needed.

2.5.1 Syntax of PCF

Definition 2.5.1 We define the formal types, or just types as a set of terms for
types as follows:

1. ι and o are types. These are called the formal base types.

2. If σ and τ are types, then (σ → τ) is a type.

Remark 2.5.2 When we give a semantical interpretation of PCF , we will as-
sociate a mathematical object to each formal type. We think of ι as denoting
the set of natural numbers, o as denoting the set of boolean values and (σ → τ)
as denoting the relevant set of functions mapping objects of type σ to objects
of type τ . Since we will use these objects to interpret algorithms, we have to

80

interpret nonterminating algorithms as well. We will do so by including an el-
ement for ‘the undefined’ in the base types, and carry this with us for higher
types.

As usual the term language will consist of variables, constants and combined
terms. What is new is that each term will be typed, that some constants are
treated as function symbols, and that we need type matching when forming
combined terms.

Definition 2.5.3 The terms in PCF are inductively defined as follows:

1. Variables:
For each type σ there is an infinite list xσi of variables of type σ.

2. Constants:
In PCF we have the following typed constants:

kn of type ι for each natural number n.

tt and ff of type o.

Z of type ι→ o.

S and P of type ι→ ι.

⊃ι and ⊃o of types o→ (ι→ (ι→ ι)) and o→ (o→ (o→ o)) resp.

Yσ of type (σ → σ)→ σ for each type σ.

3. Combined terms:

If M is a term of type σ → τ and N is a term of type σ, then (MN)
is a term of type τ . This construction is called application.

If M is a term of type τ and x is a variable of type σ, then (λx.M)
is a term of type σ → τ .
This construction is called abstraction.

The intuition behind these constants and terms are as follows:
0 will denote the zero-element in N, tt and ff the two truth values.
Z will test if a number is zero or not.
S and P are the successor and predecessor operators on the natural numbers.
⊃ will select the second or third argument depending on the boolean value of
the first argument. Thus there will be one for each base type.
Yσ will denote the fixed point operator. The idea is that whenever f : σ → σ,
then f will have a least fixed point a of type σ. Our challenge will be to formalize
this in the formal theory and to find mathematical interpretations of these types
such that this makes sense.
Application (MN) simply mean that M is thought of as a function, N as an
argument and (MN) then just denotes the application. It may be confusing
that we are not using the more conventual notation M(N), but this has turned
out to be less convenient in this context.

81

If M is a term of type τ , M may contain a variable x of a type σ. The intuition is
that M denotes an unspecified object of type τ , an object that becomes specified
when we specify the value of x. (λx.M) will denote the function that maps the
specification of x to the corresponding specification of M .

The reader may have noticed that we have omitted a few parentheses here and
there. We will do so systematically, both for types and terms.
If f is a function of type (σ → (τ → δ)) we will view f as a function of two
variables of types σ and τ . We will write σ, τ → δ for such types. If then M is
of type σ, τ → δ, N is of type σ and K is of type τ we will write MNK instead
of (((M)(N))(K)).This means that the application is taken from left to right.

Lemma 2.5.4 Each type will be of the form σ = τ1, . . . , τn → b where n ≥ 0
and b is one of the base types.

The proof is easy by induction on the length of σ seen as a word in an alphabet.

With this convention we see that the type of ⊃ι is o, ι, ι→ ι and the type of ⊃o
is o, o, o→ o. We then view these as functions of three variables.

2.5.2 Operational semantics for PCF

An operational semantics for a language designed to describe algorithms will be
the specification of how to carry out step-by-step calculations or computations.
The operational semantics for PCF will be a set of rules for how to rewrite
terms in order to ‘ compute’ the value. This is of course most relevant when we
are dealing with combined terms of base types.

In PCF we have a similar distinction between free and bounded occurrences of
variables as in first order logic, x becomes bounded in λx.M . As for first order
languages, one term N may be substituted for a variable x in a term M if no
variables free in N becomes bounded after the substitution. We write Mx

N for
the result of the substitution, always assuming that N is substitutable for x in
M .

Definition 2.5.5 We define the relation −→, denoted by a long arrow, as the
reflexive and transitive closure of the following one-step reductions (we assume
that the typing is correct):

Zk0 −→ tt.

Zkn+1 −→ ff .

Pkn+1 −→ kn.

Skn −→ kn+1.

⊃b ttMN −→M where b is a base type.

82

⊃b ffMN −→ N where b is a base type.

(λx.M)N −→Mx
N .

YσM −→M(YσM).

M −→M ′ ⇒MN −→M ′N .

N −→ N ′ ⇒MN −→MN ′.

λxM −→ λyMx
y .

The last item tells us that we may replace a bounded quantifier with another
one not occurring in M . As an example we will see how we may compute f(x)
= 2x on the natural numbers:

Example 2.5.6 The function f(x) = 2x is defined by primitive recursion from
the successor operator as follows:

• f(0) = 0

• f(S(x)) = S(S(f(x)).

For the sake of readability, let g be a variable of type ι→ ι. Consider the term
M of type ι→ ι defined by

M = Yι→ιλg.λx
ι(⊃ι (Zx)k0S(S(g(Px)))).

If we look at the expression λg.λxι(⊃ (Zx)k0S(S(g(Px)))) we see that to each
g we define a function that takes the value 0 on input 0 and g(x − 1) + 2 for
positive inputs x. The least fixed point of this operator is exactly the function
f . The verification of e.g. Mk2 −→ k4 is a lengthy process.

Example 2.5.7 We will show how the µ-operator can be handled by PCF ,
i.e. we will define a term of type (ι → ι) → ι that must be interpreted as the
µ-operator.
Note that F (f) = µx.f(x) = 0 can in the same sense be defined in the following
way: F (f) = G(f, 0) where

G(f, k) = 0 if f(k) = 0.

G(f, k) = G(f, k + 1) + 1 if f(k) > 0.

G will be the fixed point of a PCF -definable operator, and then the µ-operator
is definable.

The conditionals ⊃o and ⊃ι can be extended to conditionals ⊃σ for all types σ,
see Exercise 2.14

Definition 2.5.8 Let f : N→ N be a partial function. We say that f is PCF -
definable if there is a term M of type ι→ ι such that the following are equivalent
for all numbers n and m:

83

1. Mkn −→ km

2. f(k) is defined and f(n) = m.

We used the expression ‘PCF -definable’ also for the µ-operator, trusting that
the reader accepts this yet not clarified terminology. We then have

Theorem 2.5.9 The PCF -definable functions are exactly the partial computable
ones.

Proof
We have shown how to handle the µ-operator and indicated how to handle
primitive recursion. The full details are then easy and are left for the reader as
Exercise 2.15.

2.5.3 A denotational semantics for PCF

The operational semantics for PCF explains how we may rewrite a term in
such a way that we eventually may read off a number or a boolean value as
the interpretation of the term. When we give a denotational semantics, we
will interpret each term as a mathematical object in some set. One important
aspect will be that the reductions of the operational semantics should not alter
the denotational interpretations. If we look at the term M for the f(x) = 2x
function, we obtain that Mk2 −→ k4 in the operational semantics, while we
want [[Mk2]] = 4, where we will use [[·]] for the denotational semantics.

For the rest of this section, we leave out essentially all details. It is not expected
that the reader will be able to fill in the details without consulting a textbook
on domain theory or some other introduction to a similar topic. Most lemmas
etc. will be left without proof.
Consider the term N = Yιλx.S(x). If we try to evaluate Nk0 we see that we
get an infinite reduction sequence. Thus the only sensible way to interpret this
term is by accepting ‘undefined’ as a possible value, and then using it in this
case.

Definition 2.5.10 Let N⊥ and B⊥ be the set N of natural numbers and the
set B of boolean values {true, false} extended with a new element ⊥ for the
undefined.

We will interpret each type σ as a set D(σ), and we let D(ι) = N⊥ and D(o) =
B⊥.
Each of these sets will be partial orderings by letting ⊥ be the smallest element
and the rest maximal elements that have no ordering between them. Such
ordered sets are called flat domains.

Definition 2.5.11 A partial ordering (D,v) is called bounded complete if

1. Each bounded set has a least upper bound.

2. Each directed subset X ⊆ D is bounded, with least upper bound tX.

84

It is easy to see that N⊥ and B⊥ both are bounded complete.

Definition 2.5.12 Let (D,vD) and (E,vE) be two partial orderings that are
bounded complete.
A function f : D → E is called continuous if f is monotone and for all directed
subsets X of D we have

tDX = tE{f(x) | x ∈ X}.

Lemma 2.5.13 Let (D,v) be bounded complete and let f : D → D be contin-
uous. Then f has a least fixed point in D.

Proof
The empty set has a least upper bound, which we call ⊥D.
Then

⊥D vD f(⊥D) vD f(f(⊥D)) v · · · .

The least upper bound of this sequence will be the least fixed point of f .

Definition 2.5.14 Let (D,vD) and (E,vE) be two orderings that are bounded
complete.
Let D → E be the set of continuous maps from D to E.
If f ∈ D → E and g ∈ D → E, we let f vD→E g if

∀x ∈ D(f(x) v g(x)).

Lemma 2.5.15 Let (D → E,vD→E) be as above. This partial ordering will be
bounded complete.

Not mentioning the ordering, we now interpret each type σ by recursion on σ
as follows:

D(σ → τ) = D(σ)→ D(τ).

What remains to be done can briefly be described as follows:

1. An assignment will be a map from a set of typed variables xσi to elements
of D(σ). The set of assignments can be viewed as elements of cartesian
products of some D(σ)’s, and will be ordered in a bounded complete way
by the coordinate-wise ordering.

2. Each term M of type σ will be interpreted as a continuous function [[M]]
from the set of assignments to D(σ). It will sometimes be convenient
to consider assignments restricted to the free variables of M , sometimes
convenient to accept dummy variables.

3. We must show that the least fixed point operator is a continuous map
from (D,v D) to D. This is used to define [[Yσ]].

4. We must show that application is a continuous map from (D → E) ×D
to E. This is used to define [[MN]] from [[M]] and [[N]].

85

5. We must show that abstraction is a continuous map from D × E → F to
D → (E → F). This is used to define [[λx.M]] from [[M]].

6. We must give interpretations to the constants kn, S, P , Z, ⊃ι and ⊃o.
This can easily be done by the reader.

7. We must show that if M −→ N then [[M]] = [[N]]. The only case that
requires some work is the reduction

(λx.M)N −→Mx
N

where we must show by induction on M that

[[M]](sx[[N]](s)) = [[Mx
N]](s).

The proof by induction is not very hard.

The denotational semantics for PCF that we have given is the one used
originally by Scott when he formed the logic LCF that was turned into the
programming language PCF by Plotkin . There are however alternative ways
of interpreting PCF -terms reflecting interesting aspects of PCF . One conse-
quence of the existence of a denotational semantics is that a closed term of type
ι cannot be interpreted as two different numbers. Consequently, though the use
of −→ is a non-deterministic process, there is no canonical way of performing
the next step, we do not risk to obtain different values to the same term.
We end this section by stating the converse, due to Plotkin, without any hints
of proof:

Theorem 2.5.16 Let M be a closed term og type ι. If [[M]] = n, then M −→
kn.

2.6 Exercises to Chapter 2

Exercise 2.1 A continued fraction is a finite or infinite tree of fractions

1
1 + n0 + 1

1+n1+
1

1+n2+···

.

A finite continued fraction will be a rational number while the value of an
infinite continued fraction is defined as the limit of the finite subfractions. This
limit will always exist. Why? (This part is not an exercise in logic, rather in
elementary analysis.)

a) Show that if 0 < a < 1, then there is a unique continued fraction with
value a.

b) Show that the continued fraction of a will be infinite if and only if a is
rational.

86

c) Show that the bijection obtained between the irrational elements in [0, 1]
and NN using continued fractions is a homeomorphism, i.e.c̃ontinuous in
both directions.

d) Discuss in which sense we may claim that the homeomorphism in c) is
computable.

Exercise 2.2 Show that if F is a computable functional of type 2, then F will
have a computable associate.

Exercise 2.3 Prove lemma 2.1.8.

Exercise 2.4 Let F : NN → N be continuous, and let T (F, f) be the set of
finite sequences σ bounded by f such that F is not constant on Bσ.
Show that T (F, f) will be a tree of sequences, and use König’s lemma to show
that T (F, f) is finite for each f ∈ NN. Use this to give an alternative proof of
Lemma 2.1.9.

Exercise 2.5 Show that there is a continuous function Φ̂ : NN → NN such
that whenever α is an associate for a continuous F : NN → N, then Φ̂(α) is an
associate for Φ(F).
Show that Φ̂ can be chosen to be computable in the sense that

G(x, α) = Φ̂(α)(x)

is computable.

Exercise 2.6 Let A and B be subsets of N and let KA and KB be the corre-
sponding characteristic functions.
Show that the following are equivalent:

i) B <m A

ii) There is a computable functional

F : NN → NN

such that KB = F (KA).

Hint: If F is computable, then we may use the compactness of {0, 1}N to see
that for any n ∈ N there is an upper bound of the amount of information about
an arbitrary element f of {0, 1}N we need in order to compute F (f)(n), and
then use that all truth-value functions of a fixed arity can be represented by a
formula in propositional calculus.

Exercise 2.7 Tait showed that the fan functional is not Kleene-computable.
Fill out the details in the following proof of Tait’s result:

1. A quasi-associate for F is a function α : N→ N such that

87

• α(n) = m+ 1⇒ F (f) = m when σn ≺ f .

• α(n) > 0 ∧ σn ≺ σm ⇒ α(m) = α(n).

• If f ∈ 1− sc(F) then for some n, σn ≺ f and α(n) > 0.

If φe(~a, F)↓ and α is a quasi-associate for F , then there is some n such
that whenever G has an associate extending (α(0), . . . , α(n)) and φe(~a,G)↓
then

φe(~a,G) = φe(~a, F).

Hint: Use Use induction on the ordinal rank of the computation tree for
φe(~a, F).

2. There is a quasi-associate for the constant zero function 2O and a non-
computable f : N→ {0, 1} such that α(f̄(n)) = 0 for all n.

3. For any finite part ᾱ(n) of α there is an associate β extending ᾱ(n) for a
functional that is not constant on {0, 1}N.

4. Combining 2. and 3. we obtain a contradiction from the assumption that
the fan functional is computable.

Exercise 2.8 If F : NN → N, let Fi(f) = F (〈i, f〉).
Show that there is a total functional Γ satisfying the equation

Γ(F) = F0(λx.Γ(Fx+1)),

and that we may compute Γ(F) uniformly from an associate for F .
The historical interest is that Γ is not computable in the fan functional. This
is too hard to be considered as an exercise.

Exercise 2.9 Work out detailed proofs of Lemmas 2.2.5, 2.2.6 and 2.2.9.
This cannot be seen as a simple exercise, but rather as a minor project.

Exercise 2.10 We reduce the definition of φe(~a, ~f, ~F) by ignoring schemes v)
and vi), and technically work with a subsystem.

a) Prove the Snm-theorem for computations with function and functional ar-
guments as well as number arguments.

b) Prove the recursion theorem for computations with function and functional
arguments as well as number arguments.

c) Use the recursion theorem to show that scheme v) is redundant in the
original definition, i.e. that the class of functional computable in the
subsystem is closed under primitive recursion.

d) Use the recursion theorem to show that scheme vi) is redundant in the
original definition, i.e. that the µ-operator is definable in the subsystem.
Hint: You may look at how the µ-operator is defined in PCF .

88

Exercise 2.11 Prove Lemma 2.4.10 and Lemma 2.4.11 in detail.

Exercise 2.12 We actually have a hierarchy for sets definable by second order
formulas as well. Let

• A ⊆ X is Π1
k+1 if for some Σ1

k set B ⊆ NN ×X,

~x ∈ A⇔ ∀f ∈ NN((f, ~x) ∈ B).

• A ⊆ X is Σ1
k+1 if for some Π1

k set B ⊆ NN ×X,

~x ∈ A⇔ ∃f ∈ NN((f, ~x) ∈ B).

a) Prove that the class of Π1
k sets are closed under finite unions and intersec-

tions, number quantifiers and universal function quantifiers. Prove that
there are universal Π1

k sets for any k ≥ 1 and any dimension.

b) Formulate and prove the analogue results for the Σ1
k-classes.

Exercise 2.13 a) Let f : N → N be computable in 2E. Show that the
image of f will also be computable in 2E. Discuss what this means for
the relation between semicomputable sets and c.e. sets relative to 2E.

b) Show that the class of sets semicomputable in 2E is closed under finite
unions and intersections, but not under complements.

c) Show that two disjoint Σ1
1-sets can be separated by a ∆1

1-set.
Hint: Use Gandy selection.

d) Show that there are disjoint Π1
1-sets that cannot be separated by any ∆1

1-
sets.
Hint: Use an analogue of the construction of two computably inseparable
c.e. sets.

Exercise 2.14 Let σ = τ1, . . . , τn → b be a type, where b is a base type.
Show that there is a term ⊃σ of type

o, σ, σ → σ

such that whenever s and t are terms of type σ, then,

⊃σ (tt)st −→ λxτ11 · · ·λxτnn .sx1 · · ·xn.

⊃σ (ff)st −→ λxτ11 · · ·λxτnn .tx1 · · ·xn.

Exercise 2.15 Prove Theorem 2.5.9 in detail.

89

Chapter 3

Non-trivial exercises and
minor projects

In this chapter we have collected some exercises or minor projects that are
based either on the material in more than one chapter or that are too hard to
be considered as exercises in the ordinary sense. We call them exercises, though
some of the items in this chapter are much more demanding than ordinary
exercises.

Exercise 3.1 Show that there is a computable partial ordering (N,≺) such
that every countable partial ordering (X ′, <′) can be embedded into (N,≺).

Exercise 3.2 Let Σ be a fixed alphabet. Show that there is an enumeration
{Mi}i∈N of the set of Turing machines over Σ and a one-to-one enumeration
{wj}j∈N of the set of words in Σ∗ such that the function f satisfying the equation

f(i, j) ' k ⇔Mi(wj) = wk

is computable, where ' means that either is both sides undefined, or both sides
are defined and with the same value.

Exercise 3.3 In the text we have indicated how to establish some of the prop-
erties of the hierarchy {Fα}α<ε0 . Work out all the details and write a small
essay about it. You may well combine this with Exercise 3.4.

Exercise 3.4 Show that if α < ε0 then Fα is provably computable. Suggest a
fundamental sequence for ε0 and thus a function Fε0 . If properly defined, Fε0
will not be provably computable in PA, but in some second order extension.
Discuss how we may formulate a proof of the totality of Fε0 in some second
order extension of PA.

Exercise 3.5 Recall that a well ordering will be a total ordering (X,<) such
that any nonempty subset of X will have a least element. An initial segment of
a well ordering (X,<) will be a subset Y of X such that y ∈ Y ∧x < y ⇒ x ∈ Y ,
together with the ordering < restricted to Y .

90

a) Show that an initial segment of a well ordering is itself a well ordering.

b) Show that if (X1, <1) and (X2, <2) are two well orderings and π1 and π2

are two isomorphisms between initial segments of (X1, <1) and (X2, <2)
resp. , then π1(x) = π2(x) if they are both defined.
Hint: Assume not. Consider the maximal initial segment where they
agree, and show that they must agree on the ‘next’ element as well.

c) Show that if (X1, <1) and (X2, <2) are two well orderings then they are
either isomorphic or one is isomorphic to a proper subset of the other. In
all cases the isomorphism is unique.
Hint: Let π be the union of all isomorphisms between initial segments of
the two well orderings. Then π is the unique isomorphism in question.

An ordinal number will be a set α such that

α is transitive, i.e. if β ∈ α then β is a set and if moreover γ ∈ β, then
γ ∈ α.

(α,∈) is a well ordering.

d) Show that the empty set ∅ is an ordinal number, and that ∅ ∈ α for all
non-empty ordinal numbers. Describe the three smallest ordinal numbers.

e) Show that if α is an ordinal number and β ∈ α, then β is an ordinal
number.

f) Show that if α and β are two ordinal numbers, then α = β, α ∈ β or
β ∈ α.
Hint: Show that identity functions are the only possible isomorphisms
between initial segments of ordinal numbers.

g) Show that if α is an ordinal number, then α+ 1 defined as α ∪ {α} is an
ordinal number.

h) Show that the union of any set of ordinal numbers is an ordinal number.

A binary relation (X,R) is well founded if each nonempty subset Y of X has
an R-minimal element x, i.e. an element x ∈ Y such that y 6∈ Y whenever yRx.

i) Let (X,R) be a well founded relation. Let R∗ be the transitive (but not
reflexive) closure of R. Show that R∗ is a well founded relation.

j) Show that if (X,R) is a well founded relation, there is a unique function
ρ mapping X into the ordinal numbers such that

∀x ∈ X(ρ(x) =
⋃
{ρ(y) + 1 | yR∗x}).

Hint: Use well foundedness to show that there is a maximal partial solution
to the function equation for ρ, and once again to show that this maximal
solution will be defined on all of X.

The function ρ will be called the rank function of R. The image of ρ will be an
ordinal number and will be called the rank of R.

91

Bibliography

[1] S. Barry Cooper, Computability Theory, Chapman & Hall/CRC (2004).

[2] Christopher C. Leary, A Friendly Introduction to Mathematical Logic, Pren-
tice hall, 2000.

[3] D. Normann Mathematical Logic II, Compendium December 21 - 2005,
available from the authors home page.

[4] Piergiorio Odifreddi, Classical Recursion Theory, Elsevier (1989).

[5] Hartley Rogers Jr., The Theory of Recursive Functions and Effective Com-
putability, MIT Press (1967 1.st ed. and 1987 2. ed.)

[6] G. E. Sacks, Higher Recursion Theory, Springer-Verlag (1990)

[7] Robert I. Soare, Computably Enumerable Sets and Degrees, Springer Verlag
(1987).
Soare is writing a new book in two volumes under contract with Springer
Verlag. This will soon be available.

[8] Thomas Streicher, Domain-Theoretic Foundations of Functional Program-
ming, World Scientific (2006).

92

Index

1− sc(F), 65
A <tt B, 29
Cf , 62
PCF -definable, 83
Snm-theorem, 18
We, 22
∆0
k, 74

∆1
1, 74

Π1
1, 74

Π1
1-normal form, 75

Σ1
1, 74

f̄ , 12
K, 22, 27
·−, 9
↓, 15
ε0, 48
λx.−−, 64
µ-recursive functions, 14
ω, 48
φe, 15
m-degrees, 26
m-equivalent sets, 26
m-reducibility, 25
2E, 66
WKL, 24

abstraction, 81
Ackermann, 12, 46, 49, 50
ackermann branches, 13
application, 81
arithmetical comprehension, 44
arithmetical formula, 44
arithmetical hierarchy, 73
associate, 62

binary tree, 24
bounded complete, 84

branch in a tree, 72

c.e., 20
c.e. degrees, 40
cantor normal form, 48
characteristic function, 9
Church, 8
Church-Turing Thesis, 7
collecting trees, 38
computable function, 13
computable functional, 59
computable functional of type 2, 32
computable set, 13
computable tree, 24
computably bounded tree, 55
computably enumerable, 20
computably enumerable set, 20
computably inseparable sets, 23
computably separable sets, 23
computation tree, 16, 72
computations relative to functionals, 64
concatenation, 11
continued fraction, 86

decorated tree, 72
degrees, 34
degrees of unsolvability, 34

fan functional, 63
finitely branching tree, 55
formal types, 80
Friedberg, 41
fundamental sequence, 49

Gödel, 5, 7, 41, 71
Gandy, 78

halting problem, 7, 19

93

hyperarithmetical, 71

inductive definition, 64
initial state of a Turing machine, 6
input word, 6

jump, 34, 66

Kleene, 4, 5, 8, 14, 17, 20, 21, 31, 32,
61, 63–66, 71, 80

Kleene’s T -predicate, 17

leaf node, 72
length of a computation, 78
limit ordinal, 49
low degree, 45

modified subtraction, 9
Muchnic, 41

node, 71
normal functional, 66

operational semantics, 82
order of NN, 62
ordinal number, 91
output of a turing machine, 6

perfect trees, 37
Platek, 80
Plotkin, 80, 86
positive induction, 77
Post, 27, 57
primitive recursive function, 8
primitive recursive set, 9
principal associate, 61
priority method, 41
provably computable, 47

r.e., 20
rank function, 91
rank of a relation, 91
rank of a tree, 77
recursive, 5
recursively enumerable set, 20
relativized computations, 31
Riece, 19

root node, 71

Sacks, 71
Scott, 80, 86
second order structure, 45
semicomputable in 2E, 76
sequence numbers, 11
simple set, 27
Skolem, 8
splitting theorem, 44, 56
splitting trees, 39
stage comparison, 78
state, 6
successor ordinal, 49
Suslin, 80

the recursion theorem, 19
topology on NN, 60
total computable function, 13
transitive set, 91
truth table reducibility, 28
truth table reducible, 29
tt-degrees, 30
tt-reducibility, 28
Turing, 4, 5, 7
turing computable, 6
turing degrees, 34
turing equivalence, 34
turing machines, 5
Turing reducible, 33
types, 80

universal turing machine, 7

well founded, 91
well ordering, 47, 90

94

