Exercise 1

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a submartingale w.r.t. the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\forall n \in \mathbb{N}, \exists k \geq n: \mathbb{E}\left(X_{k}\right) \leq \mathbb{E}\left(X_{n}\right)
$$

Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a martingale!

Exercise 2

Let X_{1}, X_{2}, \ldots be i.i.d., integrable random variables with $\mathbb{E}\left(X_{1}\right)=1$. Show that $M_{n}:=\prod_{k=1}^{n} X_{k}$ is a martingale with respect to the filtration $\mathcal{F}_{n}:=$ $\sigma\left(X_{1}, \ldots, X_{n}\right)$

Exercise 3

Let X_{1}, X_{2}, \ldots be i.i.d. with $P\left(X_{1}=-\frac{1}{2}\right)=P\left(X_{1}=\frac{1}{2}\right)=\frac{1}{2}$ and

$$
M_{n}:=\prod_{i=1}^{n}\left(1+X_{k}\right)
$$

(i) Show hat $\left(M_{n}\right)_{n \in \mathbb{N}}$ is a martingale w.r.t. an adequate filtration.
(ii) Show that for $a \in \mathbb{R}$

$$
\tau:=\min \left\{k \geq 1: X_{k}=a\right\}
$$

is a stopping time w.r.t. the natural filtration.

Exercise 4

Let X_{1}, X_{2}, \ldots be i.i.d. random variables which are square-integrable, but not constant. Let

$$
M_{n}:=\sum_{k=1}^{n} X_{k} X_{k+1}
$$

Under which conditions is $\left(M_{n}\right)_{n \in \mathbb{N}}$ w.r.t. the filtration $\mathcal{F}_{n}:=$ $\sigma\left(X_{1}, \ldots, X_{n+1}\right)$ a martingale?

Exercise 5

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $\mathcal{N}(-a, 1)$ random variables and $a>0$.
(i) For which value of $h \in \mathbb{R}$ is the process $Y_{n}=\exp \left(h \sum_{i=1}^{n} X_{i}\right)$ a martingale with respect to the natural filtration $\mathcal{F}:=\sigma\left(X_{1}, \ldots, X_{n}\right)$?
(ii) For which values of h is it a sub- or supermartingale?
(iii) Assume $h=2 a$, let $x>0$. Define $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that

$$
P\left(\sup _{n \geq 1} S_{n}>x\right) \leq e^{-2 a x}
$$

Exercise 6

Let $\left(X_{n}\right)_{n \geq 1}$ i.i.d. random variables with density

$$
f(x)=\frac{1}{2} e^{-|x|}, \quad x \in \mathbb{R}
$$

Find $A(\theta)$ such that $\forall|\theta|<1$ the sequence

$$
M_{n}=M_{n}(\theta)=\exp \left[\theta \sum_{i=1}^{n} X_{k}-n A(\theta)\right]
$$

is a martingale w.r.t. the natural filtration $\mathcal{F}_{n}:=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Exercise 7

Let (Ω, \mathcal{F}, P) a probability space, $X \in L^{2}(\Omega, \mathcal{F}, P)$ a random variable and $\mathcal{A} \subset \mathcal{F}$ a sub- σ-algebra. The expected variance of X given \mathcal{A} is defined by:

$$
\operatorname{Var}[X \mid \mathcal{A}]:=\mathbb{E}\left[(X-\mathbb{E}[X \mid \mathcal{A}])^{2} \mid \mathcal{A}\right]
$$

Show that

$$
\operatorname{Var}[X]=\mathbb{E}[\operatorname{Var}[X \mid \mathcal{A}]]+\operatorname{Var}[\mathbb{E}[X \mid \mathcal{A}]]
$$

Exercise 8

Let $\left(X_{k}\right)_{k \geq 1}$ be i.i.d. random variables with $P\left(X_{k}=k\right)=\frac{1}{k}$ and $P\left(X_{k}=\right.$ $0)=\frac{k-1}{k}$. Let $M_{n}=\prod_{k=1}^{n} X_{k}, M_{0}=0$. Is $\left(M_{n}\right)_{n \in \mathbb{N}}$ a martingale?

Exercise 9

Let ξ_{1}, ξ_{2}, \ldots i.di.d with $\mathbb{E}\left[\xi_{j}^{2}\right]=\sigma^{2}<\infty$ and $\mathbb{E}\left[\xi_{j}\right]=0$. Then, $X_{n}:=\sum_{i=1}^{n} \xi_{i}$ is a martingale and X_{n}^{2} is a submartingale. Find the increasing process A_{n} in the Doob decomposition of X_{n}^{2}, i.e. find A_{n} s.t. $X_{n}^{2}-A_{n}$ is a martingale.

Solution of Exercise 1

We consider the Doob composition $X_{n}=M_{n}+A_{n}$ with M_{n} a martingale and $A_{n} \geq 0$ an increasing predictable process. It follows

$$
\begin{equation*}
\mathbb{E}\left[X_{n}\right]=\underbrace{\mathbb{E}\left[M_{n}\right]}_{=\mathbb{E}\left[M_{n+1}\right]}+\underbrace{\mathbb{E}\left[A_{n}\right]}_{\geq \mathbb{E}\left[A_{n-1}\right]} \geq \mathbb{E}\left[X_{n-1}\right] . \tag{1}
\end{equation*}
$$

Hence, the sequence of $\left(\mathbb{E}\left[X_{n}\right]\right)_{n \in \mathbb{N}}$ is an increasing sequence of real numbers. On the other hand, by

$$
\forall n \in \mathbb{N}, \exists k \geq n: \mathbb{E}\left(X_{k}\right) \leq \mathbb{E}\left(X_{n}\right)
$$

we can a extract a decreasing a subsequence $\left(\mathbb{E}\left[X_{n_{k}}\right]\right)_{k \in \mathbb{N}}$. Hence, the whole sequence $\left(\mathbb{E}\left[X_{n}\right]\right)_{n \in \mathbb{N}}$ must be constant. By (1), this is only possible if $\mathbb{E}\left[A_{n}\right]=0$ for all n. Since $A_{n} \geq 0$, it follows $A_{n}=0$. Hence, $X_{n}=M_{n}$ is a martingale.

Solution of Exercise 2

By definition, M_{n} is adapted to \mathcal{F}_{n}.
Furthermore by independece, we have

$$
\mathbb{E}\left[\left|M_{n}\right|\right]=\mathbb{E}\left[\left|\prod_{i=1}^{n} X_{i}\right|\right]=\prod_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|\right]<\infty
$$

It's left to check the Martingale property:

$$
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=\mathbb{E}[\underbrace{\prod_{i=1}^{n-1} X_{i}}_{\mathcal{F}_{n-1} \text {-meas. }} \cdot X_{n} \mid \mathcal{F}_{n-1}]=\prod_{i=1}^{n-1} X_{i} \cdot \underbrace{\mathbb{E}\left[X_{n}\right]}_{\text {ind. of } \mathcal{F}_{n-1}} \mathcal{F}_{n-1}]=\prod_{i=1}^{n-1} X_{i}=M_{n-1} .
$$

Solution of Exercise 3(i)
$\mathcal{F}_{n}:=\sigma\left(X_{1}, \ldots, X_{n}\right)$ is a filtration which $\left(M_{n}\right)$ is adapted to. As a finite random variable M_{n} is also integrable. Furthermore, we have

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & \left.=\mathbb{E}\left|M_{n}\left(1+X_{n+1}\right)\right| \mathcal{F}_{n}\right]=M_{n} \mathbb{E}\left[1+X_{n+1} \mid \mathcal{F}_{n}\right] M_{n} \mathbb{E}\left[1+X_{n+1}\right] \\
& =M_{n}\left(\frac{1}{2} \cdot \frac{1}{2}+\frac{3}{2} \cdot \frac{1}{2}\right)=M_{n} .
\end{aligned}
$$

Solution of Exercise 3(ii)

$$
\begin{aligned}
\{\tau=n\} & =\left\{X_{1}, \ldots, X_{n-1} \neq a, X_{n}=a\right\} \\
& =\left\{M_{1}-1 \neq a, \frac{M_{2}}{M_{1}}-1 \neq a, \ldots, \frac{M_{n}}{M_{n-1}}-1 \neq a\right\} \in \sigma\left(M_{1}, \ldots, M_{n}\right)
\end{aligned}
$$

Solution of Exercise 4

M_{n} is obviously adapted.

By Cauchy-Schwarz, each summand $X_{k} X_{k+1}$ is in L^{1} and hence M_{n} is integrable. (This can also be seen by exploiting independence of X_{k}.)
Hence, M_{n} is and integral if and only if
$M_{n} \stackrel{!}{=} \mathbb{E}[\underbrace{M_{n}}_{\mathcal{F}_{n}-\text { meas. }}+\underbrace{X_{n+1}}_{\mathcal{F}_{n}-\text { meas } .} X_{n+2} \mid \mathcal{F}_{n}]=M_{n}+X_{n+1} \mathbb{E}\left[X_{n+2} \mid \mathcal{F}_{n}\right]=M_{n}+X_{n+1} \mathbb{E}\left[X_{n+2}\right]$
Since X_{i} are not constant, it follows that $\mathbb{E}\left[X_{i}\right]=0$ must hold.

Solution of Exercise 5

i) We have $e^{h S_{n}}=\prod_{1 \leq i \leq n} e^{h X_{i}}$ which is adapted to the given filtration. Because of the independence of X_{i}, we have

$$
\mathbb{E}\left[e^{h S_{n}}\right]=\prod_{1 \leq i \leq n} \mathbb{E}\left[e^{h X_{i}}\right]
$$

and it suffices to show the integrability of $e^{h X_{1}}$:

$$
\begin{align*}
\mathbb{E}\left[e^{h X_{1}}\right] & =\int e^{h x} \frac{1}{\sqrt{2 \pi}} e^{-(x+a)^{2} / 2} d x \\
& =e^{-h a} e^{h^{2} / 2} \underbrace{\int \frac{1}{\sqrt{2 \pi}} e^{-(x-h)^{2} / 2} d x}_{=1, \text { (density) }} \\
& =e^{-h a+h^{2} / 2}<\infty \tag{2}
\end{align*}
$$

Hence, it is left to prove that

$$
\begin{equation*}
\mathbb{E}\left[e^{h S_{n}} \mid \mathcal{F}_{n-1}\right]=e^{h S_{n-1}} \cdot \underbrace{\mathbb{E}\left[e^{h X_{n}} \mid \mathcal{F}_{n-1}\right]}_{=\mathbb{E}\left[e^{h X_{n}}\right]} \stackrel{!}{=} e^{h S_{n-1}} \tag{3}
\end{equation*}
$$

holds, i.e. $\mathbb{E}\left[e^{h X_{n}}\right] \stackrel{\text { i.i.d. }}{=} \mathbb{E}\left[e^{h X_{1}}\right] \stackrel{!}{=} 1$. From (2), we see that this is the case if and only if $h=2 a$ or $h=0$.
ii) For $h \in[0,2 a]$ we get a supermartingale, for $h \leq 0$ or $h \geq 2 a$ we get a submartingale (which we can see by plugging in these values in the equation (3) above):

$$
Y_{n} \text { supermartingale } \Leftrightarrow \mathbb{E}\left[e^{h X_{1}}\right] \leq 1 \Leftrightarrow h \in[0,2]
$$

and

$$
Y_{n} \text { submartingale } \Leftrightarrow \mathbb{E}\left[e^{h X_{1}}\right] \geq 1 \Leftrightarrow h \in(-\infty, 0] \cup[2, \infty) \text {. }
$$

iii) We apply Doob's martingale inequality:

$$
\begin{aligned}
P\left(\sup _{n \geq 1} S_{n}>x\right) & \stackrel{\mathrm{MCT}}{=} \lim _{k \rightarrow \infty} P\left(\sup _{n \leq k} X_{n}>x\right)=\lim _{k \rightarrow \infty} P\left(\sup _{n \leq \infty} e^{h S_{n}}<e^{h x}\right) \\
& \leq \lim _{k \rightarrow \infty} \frac{\mathbb{E}\left[e^{h S_{n}}\right]}{e^{h x}}=\frac{1}{e^{h x}}=e^{-2 a x}
\end{aligned}
$$

Solution of Exercise 6

Measurability is obvious.
From
$M_{n}=\exp \left(\theta \sum_{k=1}^{n} X_{k}-n A(\theta)\right)=\exp \left(\sum_{k=1}^{n}\left(\theta X_{k}-A(\theta)\right)\right)=\prod_{k=1}^{n} \underbrace{\exp \left(\left(\theta X_{k}-A(\theta)\right)\right)}_{=: Y_{k}}$
we obtain

$$
\begin{align*}
\mathbb{E}\left[M_{n}\right] & :=\prod_{k=1}^{n} \int_{0}^{\infty} \frac{1}{2} e^{-|x|} \exp (\theta x-A(\theta)) d x \\
& =\prod_{k=1}^{n} \frac{1}{2}\left(\int_{0}^{\infty} e^{-x} \exp (\theta x-A(\theta)) d x+\int_{0}^{\infty} \exp (-(\theta+1) x-A(\theta)) d x\right) \\
& =\prod_{k=1}^{n} \frac{1}{2}\left(\int_{0}^{\infty} \exp [(\theta-1) x-A(\theta)] d s+\int_{0}^{\infty} \exp [-(\theta+1) x-A(\theta)] d s\right) \tag{5}
\end{align*}
$$

Since $\theta-1,-\theta-1<0$, this is integrable for every choice of $A(\theta)$.
By independence, we get

$$
\begin{aligned}
\mathbb{E}[M_{n+1} \mid \underbrace{\sigma\left(M_{1}, \ldots, M_{n}\right)}_{=\sigma\left(X_{1}, \ldots, X_{n}\right)}] & =M_{n} \cdot \mathbb{E}\left[\exp \left[\theta X_{n+1}-A(\theta)\right)\right] \\
& =M_{n} \cdot \mathbb{E}\left[\exp \left[\left(\theta X_{1}-A(\theta)\right)\right]\right]
\end{aligned}
$$

So, we have to chose $A(\theta)$ such that

$$
\begin{aligned}
1 & =\mathbb{E}\left[\exp \left(\theta X_{1}-A(\theta)\right)\right] \\
& =\frac{1}{2}\left(\int_{0}^{\infty} \exp [(\theta-1) x-A(\theta)] d x+\int_{0}^{\infty} \exp [-(\theta+1) x-A(\theta)] d x\right) \\
& =\frac{1}{2}\left(\left.\frac{1}{\theta-1} \exp ((\theta-1) x-A(\theta))\right|_{0} ^{\infty}-\left.\frac{1}{\theta+1} \exp (-(\theta+1) x-A(\theta))\right|_{0} ^{\infty}\right) \\
& =\frac{\exp (-A(\theta))}{\left(1-\theta^{2}\right)}
\end{aligned}
$$

holds. Hence, we have to chose $A(\theta)=-\ln \left(1-\theta^{2}\right)$.

Solution of Exercise 7

We define $\bar{X}:=\mathbb{E}[X \mid \mathcal{A}]$:

$$
\begin{align*}
\mathbb{E}[\operatorname{Var}[X \mid]]+\operatorname{Var}[\bar{X}] & =\mathbb{E}\left[\mathbb{E}\left[(X-\bar{X})^{2} \mid \mathcal{A}\right]\right]+\operatorname{Var}[\bar{X}] \\
& =\mathbb{E}\left[\mathbb{E}\left[(X-\bar{X})^{2} \mid \mathcal{A}\right]\right]+\mathbb{E}\left[\bar{X}^{2}\right]+\operatorname{Var}[\bar{X}] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[\mathbb{E}[X \underbrace{\bar{X}}_{\mathcal{A} \text { meas. }} \mid \mathcal{A}]]+\mathbb{E}\left[\bar{X}^{2}\right]+\operatorname{Var}[\bar{X}] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[\bar{X} \cdot \bar{X}]+\mathbb{E}\left[\bar{X}^{2}\right]+\mathbb{E}\left[\bar{X}^{2}\right]-\mathbb{E}[\bar{X}]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}\left[\bar{X}^{2}\right]+2 \mathbb{E}\left[\bar{X}^{2}\right]-\mathbb{E}\left[X^{2}\right]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\operatorname{Var}[X] \tag{6}
\end{align*}
$$

Solution of Exercise 8

Yes, M_{n} is a martingale with respect to $\mathcal{F}_{n}:=\sigma\left(M_{0}, \ldots, M_{n}\right)$. It is adapted by definition and integrable because of

$$
\mathbb{E}\left[\left|M_{n}\right|\right]=\mathbb{E}\left[M_{n}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=1
$$

Finally, we have:

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i} \mid \mathcal{F}_{n}\right] \cdot \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\prod_{i=1}^{n} X_{i} \mathbb{E}\left[X_{n+1}\right]=M_{n} \cdot 1=M_{n}
$$

Solution of Exercise 9

Claim: $A_{n}=n \sigma^{2}$
Proof. A_{n} is positive, increasing and as a constant random variable \mathcal{F}_{n-1} measurable. Furthermore,

$$
\begin{aligned}
\mathbb{E}\left[X_{n}^{2}-n \sigma^{2} \mid \mathcal{F}_{n-1}\right] & =\sum_{1 \leq i, j \leq n-1} \underbrace{\mathbb{E}\left[\xi_{i} \xi_{j} \mid \mathcal{F}_{n-1}\right]}_{=\xi_{i} \xi_{j}}+\underbrace{\mathbb{E}\left[\xi_{n}^{2}\right]}_{=\sigma^{2}}+2 \sum_{j=1}^{n-1} \underbrace{\mathbb{E}\left[\xi_{j} \xi_{n} \mid \mathcal{F}_{n-1}\right]}_{=\mathbb{E}\left[\xi_{j}\right] \mathbb{E}\left[\xi_{n}\right]=0}-n \sigma^{2} \\
& =X_{n-1}^{2}-(n-1) \cdot \sigma^{2}
\end{aligned}
$$

