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 The Annals of Probability
 1976, Vol. 4, No. 4, 570-586

 WEAK MARTINGALES AND STOCHASTIC INTEGRALS

 IN THE PLANE'

 By EUGENE WONG AND MOSHE ZAKAI

 University of California, Berkeley

 This paper continues the development of a stochastic calculus for two-
 parameter martingales, and particularly for the two-parameter Wiener
 process. Whereas in an earlier paper we showed that two types of stochastic
 integrals were necessary for representing functionals and martingales of a
 Wiener process, introduction of two mixed area integrals is necessary to
 complete the stochastic calculus. These mixed integrals are weak martin-
 gales in the sense of Cairoli and Walsh, and are necessary in a general
 representation for weak martingales and transformations of weak mar-
 tingales.

 Stopping times are introduced for two-parameter processes, and a
 characterization of strong martingales in terms of stopping times is given.

 0. Introduction. This paper continues recent work toward the development
 of a stochastic calculus in the plane (i.e., for the case where the time parameter

 is two dimensional) for continuous martingales in general and for the two pa-

 rameter Wiener process in particular.

 The basic references for this work are the fundamental paper by Cairoli and

 Walsh [3] and a previous paper by the present authors [4]. The reader is referred
 to [3] and [4] for further references.

 In order to describe the contents of this paper we give, first, an incomplete

 definition for two parameter martingales, weak, 1- and 2-martingales. Precise

 definitions and references will be given in the next section. Let (Q, X, 9) be
 a probability space, s < s < so, 0 < t < to, sub v-fields of _ such that

 981 C c S2 t2 if s,?< 52 and t1 < t2. In what follows assume 0 < s, < 52 < 50
 o < t, < t2 < to, and X, t to be st-measurable. Then X, t is a martingale if
 E(X,2I t2IS11) = XS1t1 Xs,, is an adapted 1-martingale if for all fixed t
 E(X, 2 t I _SW t) = XS1 t and an adapted 2-martingale if for all fixed s E(X, t2 1 9Ws t) =

 X, tl (there is some difference between the definition of 1- and 2-martingales
 used in this paper and that of [3] as will be pointed out in the next section).

 X8,t is a weak martingale if

 E{X82,t2 + X81,tl- 2 tl- Xs1,t2 1 _~'SI,t1} = 0

 In Section 2 we show that X,,t is a weak martingale if and only if it is the sum
 of a martingale, a 1-martingale and a 2-martingale (a discrete version of this

 Received April 14, 1975; revised November 21, 1975.

 1 Research sponsored by U. S. Army Research Office, Durham, N. C., Grant DAHC04-74-
 G0087.

 AMS 1970 subject classifications. Primary 60G45, 60H05.

 Key words and phrases. Martingales, 2-parameter processes, stochastic integral, random field,
 Wiener process.

 570

This content downloaded from 193.157.137.142 on Sun, 29 Sep 2019 15:34:06 UTC
All use subject to https://about.jstor.org/terms



 STOCHASTIC INTEGRALS IN THE PLANE 571

 result appears in [1]). A one (or two) martingale X, , is said to be proper if for
 a fixed s (resp. t) it is of bounded variation in t (resp. s). It is shown that weak

 martingales satisfying certain restrictions can be decomposed into the sum of a

 martingale, a proper 1 -martingale and a proper 2-martingale. In Section 3 we

 introduce a mixed area integral cp(z, z') dM, dp(z') where j(z) is a (possibly
 random) function of bounded variation and M, is a martingale. It is shown that
 such integrals are proper 1 or 2 martingales. In some special cases this integral

 reduces to the mixed integral introduced by Cairoli and Walsh [3]. In Section 4

 it is shown that every proper 1- or 2-martingale of the Wiener process satisfying

 a suitable differentiability condition can be represented as a mixed area integral.

 Stopping times are introduced in Section 5 and used to give a characterization

 of strong martingales of the Wiener process.

 1. Preliminaries and notation. Let z = (s, t), 0 < s < s0, 0 < t < to denote
 points on a rectangle in the positive quadrant of the plane. z, -< z2 will denote
 51 < s2 and tj < t2. R,0 will denote the rectangle {z:0 -< z -< zo}. Let (Q. I , 7)
 be a probability space and { z e R,0} be a family of sub a-fields of J such
 that [3]:

 (F1) z < z' implies - c
 (F2) W contains all the null sets of I,

 (F3) forallz, '- = nfl ,, s' > s, t' > t,
 (F4) for each z, '' and 22 are conditionally independent given _, where

 _1 = As, top Adz - ) Son t =

 DEFINITION. A process {M2, z e R,0} is a martingale if (1) Mz is Ad adapted,
 (2) for each z, M. is integrable, (3) for each z < z', E(MZ, 1 2-) = M.

 Let z = (s, t), z' = (s', t'), the condition s < s', t < t' will be denoted by

 z -< z'. If z -< z', (z, z'] will denote the rectangle (s, s'] x (t, t'] and if X2 is a

 random process, X(z, z'] will denote X,,,t, + Xst - Xst-Xst
 Several other notions of martingales were introduced in [3]. We follow here

 these definitions with the exception of the definition of adapted 1- and 2-martin-

 gales which differ from the definition of 1- and 2-martingales given in [3], as will

 be pointed out later. In the following definitions X = {X2, z e Rz0} is assumed,
 for each z e RZ0, to be integrable and z adapted.

 DEFINITIONS. (a) X2 is a weak martingale if E{X(z, z'] I } = 0 for every
 z -< z' -< Zo.

 (b) X, is an adapted 1-martingale (2-martingale) if X2 is 2'z adapted and
 fXS to AS j is a martingale in s for each fixed t (in t for each fixed s).

 (c) X2 is a strong martingale if it vanishes at the axes and E{X(z, z'] j 2'1' V

 ,5Z2} = 0 for every z -< z'.

 REMARK. X2 was defined in [3] to be a 1-martingale if X. is Z' adapted and
 E{X(Z, Z'] 1 21l = 0, z -< z', therefore X. is an adapted 1-martingale if and only
 if it is a 1-martingale, z adapted and X8,0 is an Us ,0-martingale.

This content downloaded from 193.157.137.142 on Sun, 29 Sep 2019 15:34:06 UTC
All use subject to https://about.jstor.org/terms



 572 EUGENE WONG AND MOSHE ZAKAI

 Some additional notational conventions.

 (a) The letters z, C, r will be used to denote points in R20 whenever these
 letters appear with or without primes. It will always be assumed that zo = (sO, to),
 0 < so < oo, 0 < to < oo is a fixed point in the plane.

 (b) We say that z1 A z2 if s, < 52 and t2 < t, and that z AA Z2 if sl < 52 and
 t2 < tl, in either of these cases z1 A z2 will denote the point (sl, t2).

 (C) Z1 V Z2 will denote the point (max (sl, s2), max (tl, t2)).
 (d) The function h(z, z') is defined as h(z, z') = 1 if z A z', and 0 otherwise.
 (e) The region of integration for a stochastic integral is usually understood

 from the context and in such cases will be omitted from the notation. For

 example, if we write

 X2= Sb(')dMC dMC,

 it will be understood that the region of integration is R, x R,.

 2. The decomposition of weak martingales.

 PROPOSITION 2.1. X2 is a weak martingale on R20 if and only if it is expressible

 as X2 = M2' + M'2 where Ml' is an adapted 1-martingale, M'2 is an adapted 2-
 martingale.

 PROOF. It follows directly from the definitions that every adapted 1- or 2-

 martingale is a weak martingale. Let

 Ml = E(X0oIt |I t).

 Note that E(Xsot I Jst) = E(XSot | 1so) by assumption (F4) on the conditional
 independence property of the a-fields. Therefore Ml t is an adapted 1-martingale.

 Let Y = X- - Ml. Then for h > 0, (s, t + h) -< zo,

 E(YS, t+h Ys- e so t)

 E(YS,t+h- Y,,t I cat)

 =E{XS,t+h x8, - E(Xs0,t+h I Ws, t+h) + E(X8O, t | Js, 0 I 8, t}
 =EfX.,t+h Xsit Xo0,t+h + Xst | s~t

 =0

 since X, t is a weak martingale. Therefore Y. = M,2 is an adapted 2-martingale. 0

 REMARKS. (a) If the a-fields S and GO , are trivial and X0,O = 0 then
 Ml = Ml0 =M2 = 0. (b) The decomposition of Proposition 1 is not unique.

 However, if X, = M + M2and also X, = N'- + N,2 then M,'- Nz'and Mz2-
 are both 1- and 2-martingales. Therefore, by the converse to Proposition 1.1

 of [3] (see the proof of Proposition 1.1 of [3]), Mz' - = N= 2- M2 is a
 martingale.

 Let Var (X8,.) denote the variation in the t direction of X8,t over the interval
 [0, to], similarly Var (X., t) will denote the variation in the s direction of X8, t over

 [0, so].
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 STOCHASTIC INTEGRALS IN THE PLANE 573

 DEFINITION. A weak martingale, in particular an adapted 1- or 2-martingale,

 will be said to be regular on R20 if it satisfies the following conditions:

 (a) For every fixed t, X, t is a one parameter semimartingale in the parameter
 s (i.e., the sum of a one parameter martingale relative to 8 and a function

 of bounded variation).

 (b) For every fixed s, Xs,, is a one parameter semimartingale in the t parameter.
 (c) Let X.,,o = m(s) + i(s) where m(s) is an s martingale and i(s) is of

 bounded variation then E Var ,2(.) < oo.

 (d) Let X =Ot = n(t) + p(t) where n(t) is an _0,t martingale and p(t) is of
 bounded variation then E Var p(.) < oo.

 DEFINITION. An adapted 1-martingale M,' (2-martingale M.2) is said to be a
 proper 1- (2-) martingale if E Var (M',.) < oo for all s ? so (E Var (M2,t) < ??
 for all t < to).

 PROPOSITION 2.2. Let M'1 be an adapted 1-martingale on RzO. If EVar (M80,.)< oo
 then M' is proper on RZQ and, moreover, Var (M8,.) is a one parameter positive

 submartingale relative to

 PROOF. Let 2(t) = M8104 2 (t) = 2(0) + 2+(t) - 2-(t) where 2+(t) and 2-(t) are
 nondecreasing and nonnegative and 2+(O) = 2-(O) = 0. Then

 M."t = E(20 + 2+(t) - -(t) 18.t)
 = E(20 + 2+(t) - -(t) 18.to)I

 Note that since 2t+ and yt- are increasing functions, so are E(2t+ I8.to) and
 E(2t | <8,to)Therefore

 Var (M',.) < E(Var (Mo,.) to)
 which proves the proposition. [

 PROPOSITION 2.3. Let M,' be a regular 1-martingale; then M.1 =Mz1'P + M2
 where MI"P is a proper 1 -martingale and M, is a martingale.

 PROOF. Let M,, = 2(t) + M(t) where 2(t) is of bounded variation and m(t)
 is a one parameter martingale. Let

 Xz = E(2 (t) t) YZ = E(m(t) 1 8 t) @

 Then X, is a proper 1-martingale, Y, is a martingale and M,' = X" + Y,. L

 THEOREM 2.4 Every regular weak martingale X, can be decomposed as

 XX = Mzl'P + M22,P + M2

 where M2'P is a proper 1-martingale, M2'P is a proper 2-martingale and M, is a
 martingale.

 PROOF. 'Let X,04 = 2, + m, where 2 is of bounded variation and m, is a one
 parameter martingale. Let

 Xx = E(2t | 8,t) X = E(mt I 8,t) .
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 574 EUGENE WONG AND MOSHE ZAKAI

 Let Y =X XXa-Xb, note that Y,,ot = O for all t < to. Let YSto = p8 + hI
 where P8 is of bounded variation and h8 is a one parameter martingale. Such a

 decomposition is possible since Xa,,t + Xb, is a one parameter martingale and
 X, is regular. Let

 X= E(pI | t) XId = E(hS | s, t)X
 Note that Xe = X, -X - X b - X - X/ is a weak martingale, Xso,t = O for
 all t < t and Xe0 =0 for all s < so. It follows from the definition of weak
 martingales that X e = 0 for all z < zo. Setting MlP = Xa, M2,P = Xc and
 M = Xb + Xd completes the proof. [

 THEOREM 2.5. If M,1'P is a proper and continuous 1-martingale with M1'P 0,
 then for q > 1

 E~su~e Ro 1,P' )q < (?_1)E(Var (MslP))q.

 Similarly for a proper and continuous 2-martingale M2 with M' =O 0

 E(sup, Ro 2P')q < ) E(Var (M!.P))q

 for q > 1.

 PROOF. Since Ml - 0,

 supt~to IM1:PI < Var (M8,.);
 therefore

 supz<zo IM1:PI < sup8?0o Var (MK!,.) .

 Since, by Proposition 2.2, Var (M8,.) is a positive submartingale, Doob's maximal
 inequality yields for q > 1

 El/z{supz<z0 IM2' q} < El/_(sup8g80 Var (Ml:'))q

 < q 1El/q(Var-(M',P))q

 which proves the theorem. There is, obviously, a corresponding inequality for

 q = 1. U

 REMARK. The original version of Proposition 2.2 did not include explicitly

 the conclusion that Var (Ms!,.) is a submartingale. A reviewer called our attention
 to this fact and also pointed out that our proof of Theorem 2.5 can be replaced
 by the simplified proof given here.

 3. Mixed area integrals. In [4] we introduced a stochastic integral over

 R+2 X R+2 5 b(z, z') dW(z) dW(z') (see also [3]). It seems that for the full de-
 velopment of a stochastic calculus in the plane still another integral is necessary.

 This integral will be of the form 95; s(z, z') dW(z') dz where 0b(z, z') = 0 unless
 z A z' (or (z' A z)) and will be a proper 1-martingale (2-martingale). A related

 integral has been introduced by Cairoli and Walsh in [3] and termed a mixed
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 STOCHASTIC INTEGRALS IN THE PLANE 575

 integral. The relation between the mixed integral of Cairoli and Walsh and the

 mixed area integral so defined in this section will be pointed out later.

 Let ,az, z C R2o be a continuous random function of bounded variation adapted
 to A, and let [e(A) be the signed measure induced on the Borel sets A of Rzo

 by pz. Let Ief(A) denote the variation of the ,u measure. That is, if [e(A) = ,u+(A) - p(A) is the Jordan decomposition of ,a then Ipl(A) = ,+(A) + ,-(A).
 We assume that the total variation of p is bounded by a constant fuo < oo, i.e.,
 IpI(Rzo) <,uoa.s.

 Let Mz be a continuous martingale and let A = (zl, z,'], B = (z2, z2'] be rec-
 tangles such that if z e B and z' e A, then z A z'. Define, now, the process

 (3.1) Xz = aM(A n Rz)p(B n Rz)

 where a is Wz 1,Z2-measurable. Then

 (a) Xz is a continuous proper 1-martingale,

 (b) The variation of Xz is jal * M(A)| *ljo Id, p(B n R,, t)I < IM(A)I *jal IpIy(B).
 Let

 Ub(z, z') =a if zeB, z'eA
 = 0 otherwise

 and define

 (3.2) 5 5(4, 4') dMC, dpC = XZ

 where Xz is as defined by (3.1).
 To simplify notation assume zo = (1, 1). Fix an integer n and introduce a

 grid on Rzo
 Z = (2-i, 2-nj)

 where i, j are integers 0 < i, j < 2". Define the rectangle Aij = (Zij Zi+l,j+l
 Let IA (z) denote the indicator function of Aij. Define

 Vij,kl(Z, Z') = aI.ij(Z)IAkL(Z') if Zij AA Zkl
 = 0 otherwise

 and a is bounded and JYzkl measurable. A function 5(z, z') is said to be a

 simple function if it is a finite sum of functions of the form Vij,kl(Z, z') for some
 n. The extension of (3.2) to simple functions is obvious, and the resulting Xz
 is a proper 1-martingale. Let 95 be a simple function and for 4; = (Zij, Zi+lj+l,]
 let M(A4) = zi+,,j+l + zij - zi+,j-zij+l Then

 (3-3) XZO = Zij,k1 0ij,k1P(Aij)M(Ak1)
 If Mz is a strong martingale then we have

 EXz0 = E{Zij,kl,i'j' Vij,klVi'j',kl( ij)((Aij')M'(Akl)I

 (3.4) = E; 55R O (z, )O(), z ) dpd dp. d[M]xx
 =E ZO (;RZO 5bZO Zo)dZ2d[M - F ( (z, z') ds l)2 d[M]t zo Rzo

 where [M]zl is the unique predictable process such that {2 M~,~~
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 576 EUGENE WONG AND MOSHE ZAKAI

 is a martingale in s for t fixed, and the passage from (3.3) to (3.4) follows from
 Proposition 1.7 of [3].

 The variation of Xso0 0 < to is upper bounded by

 (3.5) Var (X 0,0, 0 < 0 < to) < L ij lPlA5) |kl Vi5jkM(I-kl)I

 Setting IjI(Aj5) = (1II)l * (IpI)l we have by the Schwarz inequality

 (3.6) E(Var (X,0 0, 0 < 0 < t0))2

 < EQ7.5 jj~y(Aj) 2A Ei jpj (Aij)(Ej 0:k ijklj M(A kl))2}1

 And since M, is a square integrable strong martingale, we have by 1.7 of [3]

 (3.7) E(Var (X8,0, 0 < 0 < to))2 < [OE 7,i5 |(Aij)(jkl ijk AlM2(Akl))

 (3.8) = POiE ; x Xzo 02(Z, z')djpj(z)d[M]1Z.
 Consider now the special case where ,u(z) is a product measure ,u(s, t) =

 Pa 'l(s)p'"2'(t). For simplicity we will assume that , is a positive measure, [el)(di)
 will denote [e(1)(2-"(i + 1)) - [(1)(2-"i) and similarly for [e(2)(d,). In this case
 we can write instead of (3.5)

 Var (X80,a, 0 ?0 ?< to) ? Ej a 2(dj)I i kg e(di)A(Akl)I

 Setting p(2) = (p(2))j(p(2))j yields

 (3.9) E(VarX)2 < E{ r (2)(dj) Ej p(2)(d )()7 2
 < po(2)E j lo (~ jot r, 7,Zi) dp' '(g))2 d[M]', dp(2'().

 If ,p is not positive, then (3.9) holds with (2) (t) replaced by lp(2I (t).
 The requirement that Mz be a strong martingale was needed to pass from (3.7)

 to (3.8); in the following particular case this is not necessary. Let O(z, z') be a
 corner function, i.e., O(z, z') = h(z, z')w(z V z') where h(z, z') = 1 whenever
 Z A Z' and zero otherwise. Then

 (3.10) Oij,kl = 7rk,j * I(i < k) * IYl < j)

 where I( ) denotes the indicator function. Substituting (3.10) in (3.3) and
 summing over 1 we have

 (3.11) X ZO = E( ij (Aij) E k> i wk5(M(k + 1,]) - M(k, ])) .

 Setting s = pi,* we have

 EX 0 < ,oE{Z1j 1J(Aij) Ek>i 2j(M(k + 1,1) - M(k, ]))2}
 = eOEIjR dplt(s, t) iso d24tdA[M]1,t}

 where [M].' is as in (3.4) and is chosen to be measurable in (s, t). Integration
 by parts with respect to s yields

 (3.12) EX22 < ,ao E ; o ;o 7r2'tds[M]1,tdtjpj(s5 t)
 Furthermore

 Var (Xso, 0 0< < to) <E.ij I|I(Aij) I EZk>i 7rk(M(k + 1,]) - M(k,] )) .
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 STOCHASTIC INTEGRALS IN THE PLANE 577

 Therefore by the same arguments as those leading from (3.11) to (3.12) we have

 (3.13) E(Var Xs0, 0 < 6 < to)2 ? p0oE{SWoo Aso 7r2, ds[M]Alt dtlpl(s, t)} .

 In addition to (3.10) assume, now, that p is a product measure: namely

 ((s, t) - ,e'll(s),p(2)(t) where, for simplicity, we assume that P(1) and P (2) are posi-
 tive measures. Then

 XZO =: Zj "j(2)(Zi "i )(Zk>i 7rk(Mk+i,j Mk,j)))M

 Let

 aj - Li Aei)(Zjk>i 7Ckd(Mk+lj - Mkj))

 then Var (X80,, 0 < 6 < to) _ j < j2'1ajj.
 Setting pj(2) = (j(/ 2))I(pe)

 E(Var X)2 < [ae2'(to)E(E jij6(2)aj2)

 Now, a6 can also be written as

 aj = Zk (7kj(AMk+l,j - Mk,j) Zi>k Ad ))

 Therefore

 (3 .14) E(Var x)2 < p(2)(t ) ; to j to (pul)(S))^Ts2, d,[M]I" d' p (2)

 Let M. be a square integrable strong martingale and let Ba be the class of all
 processes {f(C, C'), C, C' -< zo} satisfying

 (1) 95 is predictable as defined in Section 2 of [3],

 (2) O(C, C') = 0 unless C A C',
 (3) E 5 R, XR 02(C ')dlped[M]z < oa, or if p, is a product measure, the 20 X Z0

 right-hand side of (3.9) is finite.

 Since simple functions are dense in Ba, the mixed area integral 95 di dM
 can be extended by continuity to all 95 in Ba. In view of Theorem 3 of Section 2
 the integral will be a continuous proper 1 martingale satisfying (3.4) and (3.8).

 Similarly, let M. be a square integrable martingale and let Bb be the class of all
 corner functions O(C, C') = h(C, C')w(C V C') satisfying

 (1) r(C) is FC predictable,
 (2) E{%jo so 2 td.[M]lt dtii(S, t)} < o6, or if p is a product measure, the right-

 hand side of (3.9) is finite.

 Then the mixed surface integral can be extended to Bb. To summarize:

 THEOREM 3.1. (1) Let pz satisfy the assumptions made at the beginning of this
 section, let M, be a continuous strong square integrable martingale, and assume
 c 5Ba. Then

 (a) 5 /'(G, 4') dp(C) dM,, is a proper square integrable continuous 1-martingale;
 (b) the integral is linear in 9;
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 578 EUGENE WONG AND MOSHE ZAKAI

 (c) EXZ2 is as given by (3.4) and E(Var Xs 0, 0 < 0 ? t)2 satisfies the upper bound
 (3.8).

 (d) Furthermore, if ,a is a product measure, (3.9) holds.

 (2) Let pe and M. be as in part 1 and r e Bb then (a) and (b) hold with ( ')=
 h(C, C')w(C V C'). EX,2 and E(Var Xs a, 0 < 0 ? t)2 satisfy the bounds (3.12) and
 (3.13) respectively. If p is a product measure then (3.14) is satisfied.

 REMARKS. (a) In [3] Cairoli and Walsh introduced the mixed integral

 50o 50o r(s, t) asMst dt .

 We now show that the mixed area integral of this section includes the mixed

 integral of [3] when 7rw is 7Unpredictable. Let p(t) = st. Approximate 0b by
 simple functions. It follows that the area integral 5 5 7 dz dM2, can be expressed
 as

 5 SRZOXRZO w(z V z') dz dMz, = 50o 50o swc(s, t) a AMst dt

 and conversely if E 500o 50o r2(S, t) dt ds[M]:,;t < c0, then

 to 0o 7r(s, t) a8Ms,, dt - 5 5 2r(z V z') dz dM2,

 and the integrand 7r(z V z')/s' is admissible by (3.14). Note that 7r(z V z')/s' is

 also a corner function since we integrate over z V z', and z V z' = (s', t).

 (b) Let Xz = S S O(C, C') dpC dMC, then, in view of (3.4), Xz = 0 for all z G Rzo
 does not imply that b(P, C') = 0 in Rzo x Rzo. In particular, for 4 = (a, r),
 dpl = da dr, if

 95(C, 4') = sin 2w( (a- ) -b('')h(, 4')

 then X2 = O for all z in R2o. For any O(C, C') define

 05(G, C') = ,g' 50(a, r; C') da

 and b C') = 9(g, C') - 9(4, C'), and similarly

 0(c, c') = S- 5( , a', a') dr' .

 Then

 S5 (C, C') dWC dC' = 0

 S0(,') dC dWC, = 0.

 We can also define 0(g, c'), 9(g, C), etc., since the bar and operations on the
 C and C' variables commute. Note that =5(a, l') =(u', r) (a corner function)
 and S S Vs0(' C')02(g' C') dC d = 0-

 (c) The stochastic integral of the second type [4] was generalized in [3] to

 S O(z, z') dMz dMz,, where M, is a strong martingale and EMI0 < oo. By an
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 STOCHASTIC INTEGRALS IN THE PLANE 579

 argument similar to the one given here 95 dM dM can be defined for martin-
 gales which are not strong provided that 95(z, z') is a corner function (95(z, z') =
 7r(z V z')h(z, z')) as follows:

 Let A (z, z'] be a rectangle, z = (s, t), z' = (s', t'). Let A1 = ((s, 0), (s', t)],

 A2 = ((O, t'), (s, t')]. Define X2A = aM(A1 n RZ)M(A2 n R2) as in Proposition 2.4
 of [3]. Note that in this case, since MI is not strong, X2A need not be orthogonal

 to M,! but X2A is a martingale and we still have as in Proposition 2.4 of [3]

 <XA> = a2 ;; IA (C)IA2(') d[M]C2 d[M]:,

 If A = (z1, z1'], B =(Z2, Z2'] and A n B = 0 then XZA and XZB are orthogonal.

 It follows, by standard arguments, that for corner functions, Proposition 2.5 of

 [3] holds without the requirement that M, be strong except that in this case
 S S 95 dMC dMC, need not be orthogonal to M.

 4. The representation of some weak martingales of the Wiener process. Let

 X, C Z be a proper 1-martingale of the Wiener process and assume that almost
 all the sample functions of 2(t) = XO t are absolutely continuous with respect
 to some fixed (nonrandom) positive finite measure, i.e.,

 (4.1) 2(t) = op(O) dv(O)

 Furthermore, we will assume that

 (4.2) E 5 1o p2(8) dv(O) <

 It will be shown in this section that 1 -martingales satisfying the above conditions

 can be represented as mixed area integrals. The Wiener process assumption is

 not used in the following proposition but will be needed later.

 PROPOSITION 4.1. Let {fi} be a complete orthogonal set with respect to the v
 measure on [0, to] (i.e., % o fi(t')fj(t') dv(t') = 6ij). Under the above conditions on Xz
 there exists a sequence of martingales Mj(z) such that for z -< zo

 (4.3) E(X, - s O fi (69) M(s, 0) dv )2 NO 0
 PROOF.

 (4.4) = E ( t 158,t) = %E(po 0 8,t) dv0

 hence, by F4 of Section 1

 XSt= S0 E(po | ,o)dvo

 Let

 ai = 5 o? p(t)fi(t) dvt .

 Therefore ai are Jzo-measurable and

 E(t- _ a N sfi(Q) dy0)2 = E(5t (p(O) -_ N a fi(O)) dVy)2

 ? K 50o E(p(O) -_ iftQ(9))2 dVo
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 which converges to zero by dominated convergence. Let Mj(z) = E(a, I95z)
 Then Mi2(z) < Eai2, and by (4.4)

 t- 5o EN M1(s, O)fi(O) dV0)2 = E( I E{po- N aifi(O) 1 ,0} dv)2
 ? K 5t E(po - N ajf (0))2 dv0

 which converges to zero as N -> oo, thus proving (4.3). [

 THEOREM 4.2. Under the above conditions on Xz, X, can be written as

 (4.5) XZ= SS RzxRz ( 4) dp(C) dWC,
 where dp(z) = ds dv(t).

 PROOF. Let M1(z) be the martingales of Proposition 4.1. Then, by the corol-
 lary to Theorem (6.1) of [4]

 Mi(z) O jbs(C) dWC + S S (, C') dWC dW,,
 and by (4.4)

 (4.6) E L7 Mi2(zo)= E I SR () d + E I SR C C) dC dC' 1 zo 0i1 zo ~ zo

 Let Maji(z) = O6() dWC, and approximate 5b and f by simple functions. It
 follows that

 St fi(Q)Ma,i(S, 0) dv(0) = S O ( ') du C dWC,

 where 4 = (a, 0), dpc = da dv(Q), and

 Oba,i(, C') = h(C, C') f)i(f) a,

 Now, by the orthogonality of /i(0)

 FS SRzxRz (N+Kfi(0)0i(Cf))2 dpC d~' < K E EN+K SR I2(CP) dC', zoXZ (Ez o zo

 where K1 is independent of N and K. Therefore, by (4.6) iLNf1(0)Oi(C') converges
 to a function 0b(0, C'). Set

 '(G, cf) =- 1 f) a'

 then

 (4.7) EV sotfi(O)MaJiS, 0) dV(0) --q.m. IPC C 1( f) dpC dWC,.

 Similarly, let

 Mbj(Z) = S f b ') dWC dWC,

 and approximate f and 0b by simple functions. It follows that

 5 fi(0)Mbj(S, 0) dv(0) = SS 9bjbbi(C' C) dpc dWC,

 where , is as before and

 Obj( C) -PO) = R (zV v oi(C ) dW,)
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 STOCHASTIC INTEGRALS IN THE PLANE 581

 (cf. Theorem 2.6 of [3]). The convergence of 1/v' gn 'Vb,i to a function b
 follows as in the previous case. Hence, by Proposition 4.1.

 X.= S S ($(G, 4')- , c')) dpc dWc,
 which is the desired result. [

 5. A characterization of strong martingales of the Wiener process. It was

 shown by Cairoli and Walsh [3] that a martingale M, of the Wiener process W,
 is a strong martingale if and only if it is a type-one integral, i.e., M, = O c dWc.
 A characterization in terms of stopping times will be given here.

 DEFINITIONS.

 1. T(z, w) is a stopping time if

 (a) T(z, w) is a measurable and adapted random process;
 (b) for almost all w, T(z, w) as a function of z is nonincreasing (z >- z'

 T. < T,) and takes only the values zero or one.

 2. T(z, w) is a predictable stopping time if it is a stopping time and a predict-
 able process.

 3. Let Y, be a square integrable martingale (or a function of bounded varia-
 tion) and let T be a predictable stopping time. Then YZAT (Y stopped at T)

 YZ A T = SRZ T(C, w) d Y(C, w)

 More generally, let Yz be any adapted process such that

 SRz TC dYC

 is defined and adapted, then YZAT is defined in the same way.

 In order to point out the difference between stopping in the one-parameter
 and the two-parameter cases, let T be defined as

 T(z) = 0 if s > I and t >

 = 1 otherwise;

 then if (s, t) is in the region where T = 0, M(S t)AT = Ml , + (M. - Ml *) +
 (mit- Ml,). Therefore in the stopped region MZAT is M*,, plus the sum of two
 one-parameter martingales.

 PROPOSITION 5. 1. Let M, be a right continuous square integrable martingale, T
 a predictable stopping time and let

 Xz= dMc
 where

 Es RZ 02 d[M]z < c.

 Also if Mz is a right continuous strong martingale, and EM4z < oo, let

 Yz= s 9(, 4')dM, dM,,
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 582 EUGENE WONG AND MOSHE ZAKAI

 where

 E S SR XR 02(z, z') d[M], d[M]z, < o zo XZO

 Then

 (5.1) XZAT = SRZ Tc dMc
 and

 (5.2) YzAT = S S RZXRZ T(C V C')5(C, C') dM, dMZ,
 PROOF. We prove, first, (5.1). It follows from Theorem 2.2 of [3] that

 E(XZAT- T Tc Oc dMc)y = E(S TdXc- 5 Tc Oc dMc)2

 = E{ Tc d<X>c + 5 Tc2d<M>c
 -2 T.Ac d<X, M>c}

 where <.> is an increasing function as defined in [3]. Equation (5.1) follows

 since <X>z = 5 Oc2 d<M>,, <X, M> = 5 0,5 d<M>,. Turning now to the proof of
 (5.2), let 0" be such that

 (5.3) E 55 (0V,z, - 0",)2 d[M]Z2 d[M]', 0 0
 and let

 y n = SS bdM, dM,, .

 Also let TO" be such that ITJ ? 1 and

 (5.4) E 5 (Tzn - Tz)2 d< Y> ->, 0.
 By (2.19) of [3]

 (5.5) E 5 (Tz" - T)2 d<Y> = E 5 (T"y, - TZVZ')202'ZZ d[M]z2 d[M]',
 Therefore

 E(5 T, dY - _ T dyJ)2 ? E(5 T~d(Y - Yn))2 + E(5 (T - T") dy)2

 < E<Y" - Y>,o + E S (Tz- T-")2d<Y>
 which tends to zero as n -> oo. Therefore

 (5.6) E(5 Tz dYz - 5 Tz dyz)2 _>o 0.

 Let n, zij, Aij, IAij(Z), Vij,kl be as defined in Section 3 (the lines between equa-
 tions (3.2) and (3.3)). Let Tz" be a sequence of simple function approximations

 to Tz on the partition defiied by n satisfying (5.4); for z ? Aij, T'"; will denote
 TZn. Then

 (5.7) 5 Tn dY = Lij TY"(Rz n Aij)

 Approximating 0,,,, by simple functions J

 n = E ijkl J7 j,,klM(Ad n M n ( )

 Yt In - ij,k1 073'i,k1 M(A~ij n Rz)M(A~kl n RZ).
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 Substituting Y, into (5.7) yields

 T dY" = d T ,, b, , dM, dMZ,
 - T5 [, ;(O, ; - ,;,) + (T, ,- c T.; c)o,; ,; + T.; ,, 0,; ,;,] dM, dM,,

 and (5.2) follows by (5.3), (5.4), (5.5) and (5.6). [

 From now on we consider the Wiener process case; in this case every stopping

 time is predictable. Let Hi be the a-fields generated by the Wiener process

 WC, C -< z, let T be a stopping time and let GRAT, be the a-fields generated by
 WCAT, C < Z.

 PROPOSITION 5.2. Let 0, be J, adapted and E SR tzoyS2dz < oo. Let T. be a
 stopping time; then, a.s.

 E{SRZ Oi% dWc |zOATJ= SRZ Tco5 dWc.

 PROOF. Let Tr - be a left continuous modification of T,. Then, by Proposition
 5.1, W.AT W and therefore SAT-. Given a sample WCAT, CT WCAT- 5C AT WCAT5

 4 < z, we can determine whether Tz- = 1 or Tz- = 0 by examining the quadratic
 variation of W4CAT along an increasing path from (0, 0) to z; this follows from
 Proposition 7.1 of [3]. Therefore To- is SdAT-measurable and so is 5i T6.
 Therefore

 SRZ Oc Tc- dWCAT = -RZ Oc Tc dWC

 is J7-measurable.

 It remains to be shown that E{S RZ (1 - Tc)o dWc I |' XOAT} = 0. Let n, zi, j
 Ai, be as defined in Section 3 (after equation 3.2). Let [z] = ([s. 2"], [t. 2n])
 where [s. 2"] is the largest integer k satisfying k < so 2n. Set Tin = (T[ ]C .
 Note that the number of different samples functions of the random function T, ",
 4 < z0 is finite. Consider now s (1 - TV)5 dW,. Since T,1n > TV and T \1 TV
 as n o, it follows by dominated convergence:

 (5.8) E(5 (Tcn - Tc)q5 dW C)2 = F 5 (T;n - Tc)q5C2d >o 0 .
 Let 5 be a simple function:

 0=i, jai I, i(4G)

 where ail is J5j[]-measurable. Then

 SR (1 - Tcn)q5 dWc = 1ijaij(l - T'~-)W(Aij n R,)
 and

 E(aij( l- T( -) W(lAij n R,) 1 I-T") = 0
 since if T7" = 1 then 1- Tt- = 0 and if Tt- = O then

 E(aij(l - T'-) W(A/ j n R,) 1 ST, V , 'i. V Sri.) - 0.

 Let . be a sequence of simple function approximations to 5b; then

 (1 - T)5 dW = 5(1 - T")q5 dW + 5 (1 - T")(o5 - qan) dW
 + 5 (TA - T)o dW.
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 584 EUGENE WONG AND MOSHE ZAKAI

 The last two terms converge to zero in quadratic mean as n -> oo. Therefore,
 since i D 2-ST, E(5 (1 - T)o dW I -TAzO) = 0 which completes the proof. O

 Let IwT+ = fnl .wTn where T" is as defined in the proof of the previous
 theorem (i.e., T" = (T ])- and T- is the left continuous version of T). We will

 assume that TZ _ 0 for z >> z0 and denote XZOAT by XT.

 PROPOSITION 5.3. ST+ = T

 PROOF. In the proof of Proposition 5.2 we showed that ST- = j Let

 g(C) be square integrable and nonrandom. Let

 Y = exp RZO g(C) dWc.

 Since the number of different samples of T" is finite,

 E(YI<Tn) = exp S R g(C)TcndWc * exp2 SRI (1 -T )g(C)dC . zo 2 zo

 By the (reversed) martingale convergence theorem

 E(Y I | ITT+) limbo,, E( Y |ITA

 - exp SR sg(C)Tc- dWc * exp I R5 (1 -T-)g2(C) dC

 which is ST-measurable. Since random variables of the form of Y with g(C) =
 SN ai gi(), where gi(C) are orthonormal on Rz , generate the Hermite polyno-
 mials which are dense in the space of square integrable functionals of W, it

 follows that ST + = ST-.T

 THEOREM 5.4. Let Ti and T2 be stopping times and T73= Tj(C) * T2(C) = min (T,, T2);
 then -T and T are conditionaly independent given FT3.

 PROOF. Since the number of different samples of Tn is finite, it follows by the

 independence of W(A) and W(B), where A and B are Borel sets in R+, A n B 0,
 that STW- and are conditionaly independent given JT3tU Therefore, if

 Y is a bounded SYT +-measurable random variable and since Tin T2n = (t1. 2)

 E{ Y I _T + V W +} = E{E[ Y I _T I V STf]] 1 ST2+ V +}
 = E{E[ Y I -T3 n]1-IT + V 5CT+}

 Since E[ Y I J-ST3fl] _a.s. E[ Y I '-5T3+] as h > oo, it follows by the smoothing prop-
 erty of conditional expectations that

 El Y |JrT2+ V &T3+} = El Y I JT3+} I

 By Proposition 5.3 S9-T+ = ST_ and the proof is complete. [

 PROPOSITION 5.5. If Oc(1 is C adapted and 0,c is c adapted,
 E (5b~')2dz < oo, E 55 s 2z,, dz dz' < oo then a.s.

 (5.9) E{l qOc) dWc I -T} ESoc( 'I | S'l A 5a7,T}Tc dWC
 and

 (5.10) E{;; cc dWc dWc,I ST} = ;; E(c, I7TCVC,)Tc * To dWcdWc
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 PROOF. Equation (5.9) follows easily from Theorem 5.4 for the case where

 f(1) are simple functions and the extension to general 011) is straightforward.
 Equation (5.10) follows from (5.9) by the stochastic Fubini theorem (Theorem
 2.6 of [3]). [

 Let T,(z, co) 0 < i < oo, be a one-parameter collection of stopping times such

 that for almost all co, T,2(z, co) > T,1(z, co) whenever 2, < 2,. We will call such
 a collection an increasing collection of stopping times. Let M, be a martingale
 of the Wiener process and let z0 be fixed. We will denote

 -9_ = J7_ATI

 xi = MzoA TI.

 THEOREM 5.6. Let M, be a square integrable martingale of the Wiener process,

 then Mz, z < zo is a strong martingale if and only if {JXj, I is a martingale for
 all increasingfamilies of stopping times.

 PROOF. If M, is a strong martingale then Mz = OR c dWc [3],

 Xi = SRZ Tj()oc dWc

 by Proposition 5.1 and therefore (X,, H is a martingale by Proposition 5.2.
 Conversely, let a < j and define

 A = {z: s + t < al
 B = {z: a < s + t ?p.

 Let T1 and T2 be the following deterministic stopping times.

 T1(z,c) = 1 if z e A

 = 0 otherwise;

 T2(z, I)=1 if zeAUB

 = 0 otherwise.

 Let M. = 55 I') dW. dW.,; then

 X-2 X21 = 5 5RzoXRZ0 (T2(C V C') - T1(C V C'))b(I, 4') dW, dWa,.

 Divide the above integral into five integrals. I, is the above integral over
 C V V' e A hence this integral is zero. '2 is the above integral over C e A, C' e B,
 (and C V C' e B), I3 is the above integral over C' e A, C e B, I4 is over C v C' e B,

 C e A, ' e A, I, is over ' e B, C e B. Since JT1 = a{Wc, C e A}, it follows by
 simple function approximation that E(hI | b ) = 0 for all i with the exception
 of i = 4. Consider now E(I, jJWT1). If X is to be a martingale, we must have a.s.

 E{ 5 SzA,z'eA,zYz'eB q5(Z, Z') dWzAT1 dVzAT | = 0

 And, by Proposition 5.5

 5 5 E{jb(z, z') j 'T1} d WZA T, dWZ'A T= 0

 where the region of integration is the same as the previous integral.
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 Thus 5 S (E{p |YT1j})Id(Z A Tl)d(z' A T1) = 0, and

 E(O(g, C') ] wT) = 0 a.s.

 For C V C' fixed let ac / (C V C'). By the continuity of the JT1- a-fields

 OG~, ') = lima , A E{Jb(, V') I| a} = 0
 which completes the proof. [
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