
Solutions to the exam in MAT4720

Problem 1
(i) See e.g. Def. 2.9 in the lecture notes (LN).
(ii) See e.g. Def. 2.10, LN.
(iii) See e.g. Th. 9.1, LN.
(iv) See e.g. Def. 8.9, LN.
(v) See e.g. Th. 8.22, LN.

Problem 2
(i) Since Bt � Bs is independent of events in Fs for t � s and has mean

zero, we obtain by using the properties of conditional expectations that

E[Bt + 3t jFs] = E[Bt �Bs jFs] + E[Bs + 3t jFs]
= E[Bt �Bs] +Bs + 3t
= Bs + 3t 6= Bs + 3s

for t > s. So Xt; t � 0 cannot be a martingale.
(ii) Since the above integrand processes are continuous transformations of

the Brownian motion, the integrand processes are measurable and adapted.
We observe that

E[

Z T

0

B2sds] =

Z T

0

E[B2s ]ds =

Z T

0

sds <1

and

E[

Z T

0

exp(2 sin(Bs))ds] � E[
Z T

0

e2ds] <1;

that is the integrand processes w.r.t. Xt; Yt; 0 � t � T are in V (0; T ). So a
versions of Xt; Yt; 0 � t � T are by the properties of Itô integral processes
square integrable martingales.
Assume that Zt; 0 � t � T is a square integrable martingale. De�ne the

sequence of stopping times � k %1 a.e. by

� k := infft > 0 :
Z t

0

exp(4B2s )ds � kg; k 2 N.

On the other hand, we have for t � s

E[Z2t jFs] � (E[Zt jFs])2 = Z2s
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since for A 2 Fs
1AZt = E[1AZt jFs] + Y;

where Y is orthogonal to E[1AZt jFs] (see Lemma 7.6, LN), which implies
E[1AZ

2
t ] � E[1A(E[Zt jFs])2]

for all A 2 Fs and hence the above inequality (Jensen�s inequality).
Thus Z2t ; 0 � t � T is a continuous submartingale. So by Problem 5 (ii),

Itô�s isometry and e.g. Exerc. 3, Prob. 5 we get

E[Z2T ] � E[Z2T^�k ] = E[(

Z T^�k

0

exp(2B2s )dBs)
2]

= E[

Z T

0

1[s;1)(T ^ � k) exp(4B2s )ds]:

Using Fatou�s Lemma, we see that

E[

Z T

0

exp(4B2s )ds] � E[Z2T ] <1:

However,Z T

0

E[exp(4B2s )]ds =

Z T

0

Z
R

1p
2�s

exp(�y
2

2s
) exp(4y2)dyds

�
Z T

1

Z
R

1p
2�s

exp(�y
2

2s
) exp(4y2)dyds

�
Z T

1

Z
R

1p
2�s

exp(�y
2

2
) exp(4y2)dyds

=

Z T

1

1p
2�s

ds

Z
R
exp(

7y2

2
)dy =1;

which is a contradiction.
(iii) It follows from the independent and normally distributed increments

of the Brownian motion, the properties of conditional expectations and the
fact that B2s is Fs�measurable that

E[exp(Bt �Bs)B2s jFs] = B2sE[exp(Bt �Bs) jFs]
= B2sE[exp(Bt �Bs)]

= B2s exp(�
1

2
V ar[Bt �Bs])

= B2s exp(�
1

2
(t� s)); t � s:
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(iv) Choosing the C2-function g(t; x) := (x+ t) exp(�x� 1
2
t) gives

Xt = g(t; Bt)

= 0 +

Z t

0

(exp(�Bs �
1

2
s)� 1

2
Xs)ds+

Z t

0

(exp(�Bs �
1

2
s)�Xs)dBs

+
1

2

Z t

0

(� exp(�Bs �
1

2
s)� exp(�Bs �

1

2
s) +Xs)ds

=

Z t

0

(exp(�Bs �
1

2
s)�Xs)dBs:

Since the integrand process is in V (0; T ) for all T , the stochastic integral
process has a continuous martingale version.

Problem 3
The derivative of the drift function is given by 2x

1+x2
, which is a bounded

function. On the other hand,

log(1 + x2) � log((1 + jxj)2) = 2 log(1 + jxj) � 2(1 + jxj):

So the drift function satis�es the linear growth and Lipschitz condition (glob-
ally). Obviously, the same applies to the di¤usion coe¢ cient. Hence, it fol-
lows from the existence and uniqueness theorem for strong solutions of SDE�s
that the above equation has a unique stong solution on [0; T ].
(ii) Let �t; �t; 0 � t � T be bounded, measurable and Ft�adapted

processes.
Using Itô�s formula applied to the Itô process Yt :=

R t
0
(�s � 1

2
�2s)ds +R t

0
�sdBs and the function g(y) := x exp(y), we �nd that

Xt = g(Yt) = x+

Z t

0

(�s �
1

2
�2s)Xsds+

Z t

0

�sXsdBs

+
1

2

Z t

0

�2sXsds

= x+

Z t

0

�sXsds+

Z t

0

�sXsdBs

So Xt; 0 � t � T is a solution to the SDE

dXt = �tXtdt+ �tXtdBt; X0 = x; 0 � t � T:
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The coe¢ cients of the SDE are stochastic. Therefore we cannot directly
apply the existence and uniqueness theorem for SDE�s.
It follows from the mandatory assignment, Prob. 6, that

E[

Z T

0

X2
t dt] <1:

Let us assume there is another solution Zt; 0 � t � T satisfying the same
integrability condition. Then, using Itô�s isometry and Hölder�s inequality
that

E[jXt � Ztj2] � 2E[(

Z t

0

�s(Xs � Zs)ds)2 + (
Z t

0

�s(Xs � Zs)dBs)2]

� C

Z t

0

E[jXs � Zsj2]ds

for a constant C depending of the size of the processes �t; �t; 0 � t � T and
the time horizon T .
So Gronwall�s Lemma shows that

E[jXt � Ztj2] � 0 exp(C) = 0

for all t. So Xt = Zt with prob. 1 for all t. Hence the solution is unique.

Problem 4 Consider a 1�dimensional Brownian motion Bt; 0 � t � T
and denote by Ft; 0 � t � T its natural �ltration.
(i) Prove that the process Xt := B3t � 3tBt is martingale using Itô�s

formula.
Using Itô�s formula applied to g(t; x) := x3 � 3tx, we get that

Xt = g(t; Bt) =

Z t

0

(�3Bs)ds+
Z t

0

(3B2s � 3s)dBs

+
1

2

Z t

0

6Bsds =

Z t

0

(3B2s � 3s)dBs; 0 � t � T:

The above integrand process is in the class V (0; T ). So the integral process
and therefore Xt; 0 � t � T has a continuous martingale version.
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(ii) It follows from the properties of the Brownian motion (independent
stationary increments) and those of conditional expectations that

E[B3t � 3tBt jFs]
= E[(Bt �Bs +Bs)3 jFs]� 3tBs
= E[(Bt �Bs)3 + 2(Bt �Bs)2Bs + (Bt �Bs)B2s + (Bt �Bs)2Bs

+2(Bt �Bs)B2s +B3s jFs]� 3tBs
= E[(Bt �Bs)3] + 3BsE[(Bt �Bs)2] + 3B2sE[(Bt �Bs)]

+B3s � 3tBs
= 3Bs(t� s) +B3s � 3tBs = B3s � 3sBs:

So Xt; 0 � t � T is a martingale.

Problem 5
(i) Using Itô�s formula we �nd that

B2t =

Z t

0

2BsdBs +
1

2

Z t

0

2ds

=

Z t

0

2BsdBs +
1

2

Z t

0

2ds:

Since the integral process is a square integrable martingale, we see for t � s
that

E[B2t jFs] = E[

Z t

0

2BsdBs jFs] + t

=

Z s

0

2BsdBs + t

�
Z s

0

2BsdBs + s

= B2s :

So Xt; t � 0 is a submartingale w.r.t. Ft; t � 0.
(ii) If Yt; t � 0 is a submartingale, it follows from the optional sampling

theorem Ht; t � 0 by taking expectation that for every pair of bounded
stopping times S � T with respect to Ht; t � 0 we have

E[YT ] = E[E[YT jHS]] � E[XS]:
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Let us show the converse statement: To this end, let t > s and A 2 Hs

De�ne the random time
� = s1A + 1Act.

Since

f� � lg =

8<:

 , if l � t
A , if s � l < t
? , if l < s

;

� is a (bounded) stopping time w.r.t. Ht; t � 0. So

E[Ys] � E[Y� ] = E[1AYs] + E[1AcYt]

and therefore

E[1AcYs] = E[(1� 1A)Ys] � E[1AcYt] = E[1AcE[Yt jHs]]

for all Ac 2 Hs. Hence
Ys � E[Yt jHs] a.e.

for all t > s.
Problem 6
(i) De�ne the �rst exit times

� k := infft > 0 : Bxt = 0 or Bxt = kg; k > x > 0:

We know from the examples of the lecture notes that E[� k] <1.
Consider the probability that the Bm exits at the point k:

pk := P (B
x
�k
= k):

Then Dynkin�s formula applied to f(y) = y2 on [0; k] gives

E[f(Bx�k)] = f(x) + E[� k]:

We observe that

E[f(Bx�k)] = E[1fBx�k=kgf(B
x
�k
) + 1fBx�k=0gf(B

x
�k
)]

= pkk
2:

On the other hand, Dynkin�s formula applied to f(y) = y on [0; k] yields

pkk = x:

6



So
E[� k] = pkk

2 � x2 = x(k � x):
Thus monotone convergence in connection with � k; k 2 N, k > x implies for
k �!1 that E[limk � k] =1. We also see that limk � k = � on f� <1g a.e.
Further, we have [

k2N;k>x

Qk = f� <1g;

where Qk := fB�k = 0g the event that the Bm exits a zero. Qk � Qk+1 for
such k. So

P (� <1) = lim
k
(1� pk) = 1:

Hence limk � k = � with probability one. Therefore we have that E[� ] =
E[limk � k] =1:
(ii) De�ne for � > 0 the process

Zt = exp(

Z t

0

(�
p
2�)dBs �

1

2

Z t

0

(�
p
2�)2)

= exp(�
p
2�)Bt � �t); t � 0:

We know from the assignment, Prob. 6 (or Girsanov�s theorem) that Zt; t � 0
is continuous square integrable martingale. Then it follows from the optional
sampling theorem for martingales that Zt^� ; t � 0 is a martingale w.r.t.
Ft^� ; t � 0. So in particular

E[Zt^� ] = E[Zt] = 1:

On the other hand,

E[Zt^� ] = E[exp(�
p
2�)Bt^� � �(t ^ �)]:

We know that

lim
t�!1

Zt^� = exp(�
p
2�)B� �

p
2�x+

p
2�x� ��)

= exp(�
p
2�)Bx� +

p
2�x� ��) = exp(

p
2�x� ��):

Since Bxt^� 2 [0;1) a.e. we see that Zt^� � exp(
p
2�x): Thus dominated

convergence yields
E[exp(

p
2�x� ��)] = 1;

which gives
g(�) = E[exp(���)] = exp(�

p
2�x).
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