MAT4720/9720

Stochastic Analysis and Stochastic Differential Equations

ASSIGNMENT

Evaluation: passed/not passed.

Exercise 1.

During classes, we have presented the construction of the Itô stochastic integral with respect to a (\mathbb{F}, P) -Brownian motion as integrator. We also have commented on the extension of these arguments to the case of continuous (\mathbb{F}, P) -martingales with values in $L^2(P)$. This is the integrator.

In this exercise you are asked to formalise part of this construction. See here below. Let $M = M_t$, $t \in [0, T]$, be a continuous martingale with values in $L^2(P)$.

1. The stochastic integrands are continuous adapted processes $\varphi \in L^2(P \times d < M >)$ where $L^2(P \times d < M >) = L^2(\Omega \times [0,T], \mathcal{F} \otimes \mathcal{B}[0,T], P \times d < M >)$, so that

$$E\Big[\int_0^T \varphi(t)d < M > \Big] = \int_{\Omega} \int_0^T \varphi(\omega,t) \, d < M > (\omega) \, P(d\omega) < \infty.$$

Here, < M > is the (predictable) compensator of M, i.e. it is the continuous adapted increasing process such that $M^2 - < M >$ is a martingale.

In this exercise, we make use of the result that any such process φ admits an approximating sequence $(\varphi_n)_{n=1,2,\dots}$ in $L^2(P \times d < M >)$ of simple integrands of the type:

$$\varphi_n(\omega,t) = \sum_{k=1}^{K_n} \phi_{n,k}(\omega) 1_{[t_{k-1}^n, t_k^n)}(t), \qquad (\omega,t) \in \Omega \times [0,T],$$

for the partitions $0 = t_0^n < ... < t_{K_n}^n = T$ with mesh vanishing and where, for all k, $\phi_{n,k}$ is a bounded and $\mathcal{F}_{t_{k-1}^n}$ -measurable random variable. (No need to prove this.)

- 2. Prove the Itô isometry for simple integrands in this framework. Provide full detail.
- 3. Define the Itô integral by an appropriate limiting argument. Provide full detail.

Also, prove that in this framework the following holds true for the simple integrands φ and all s,t with s < t:

$$E\left[\int_{s}^{t} \varphi(u)dM(u)|\mathcal{F}_{s}\right] = 0.$$

Exercise 2.

Let $B = B_t$, $t \ge 0$, be a Brownian motion. Provide full detail when replying the following questions.

- 1. Study the process $Y_t := e^{B_t}$, $t \in [0, T]$, and establish whether it is a martingale, sub-martingale, or super-martingale.
- 2. Let $f \in L^2[0,T]$ be a deterministic function. Study the process

$$Z_t := e^{\int_0^t f(s)dB_s - \frac{1}{2} \int_0^t f^2(s)ds}, \qquad t \in [0, T],$$

and establish whether it is a martingale, sub-martingale, or super-martingale.

- 3. Use the properties of Gaussian distributions to compute the first and second moment of Y_t and Z_t for a given t
- 4. By means of the Itô formula show that the processes Y and Z above are Itô processes.

Exercise 3.

By application of the Itô formula show that the following processes are Itô processes:

1.
$$X_t = xe^{\lambda t} + \sigma e^{\lambda t} \int_0^t e^{-\lambda s} dB_s, \qquad t \ge 0 \qquad (\lambda, \sigma > 0, x \in \mathbb{R})$$

2.
$$Y_t = a(1-t) + bt + (1-t) \int_0^t \frac{dB_s}{1-s}, \quad t \in [0,1)$$
 $(a, b \in \mathbb{R})$

Exercise 4.

On the finite probability space $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ with the σ -algebra of all the subset of Ω and with probability

$$P(\omega_k) = \begin{cases} \frac{1}{9}, & k = 1\\ \frac{2}{9}, & k = 2\\ \frac{2}{15}, & k = 3\\ \frac{8}{15}, & k = 4, \end{cases}$$

we consider the following stochastic process

$$M(0) = 3;$$
 $M(1, \omega_k) = \begin{cases} 5, & k = 1, 2 \\ 2, & k = 3, 4 \end{cases};$ $M(2, \omega_k) = \begin{cases} 7, & k = 1 \\ 4, & k = 2, \\ 6, & k = 3, \\ 1, & k = 4 \end{cases}$

- 1. Show that it is a martingale with respect to its natural filtration $\mathbb{F} := \{\mathcal{F}_t, t = 0, 1, 2\}.$
- 2. Find an \mathbb{F} -predictable increasing stochastic process A(t), t = 0, 1, 2 with A(0) = 0 such that the stochastic process

$$X(t) := M^{2}(t) - A(t), \qquad t = 0, 1, 2,$$

is a martingale.

3. Find an \mathbb{F} -predictable stochastic process $B(t),\,t=0,1,2$ with B(0)=1 such that the stochastic process

$$Y(t) := B(t)M(t), \qquad t = 0, 1, 2,$$

is a martingale.

4. Find an \mathbb{F} -predictable stochastic process $C(t),\,t=0,1,2$ with C(0)=1 such that the stochastic process

$$Z(t) := C(t)M^3(t), \qquad t = 0, 1, 2,$$

is a martingale.