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Appendix

Al DModes of Convergence

The following theory «

can be tound for instance in Feller (1963). Karr (1993)
or Loéve (1978). ’

We introduce the main modes of convergence for a sequence of random
variables 4, 4, 4.,

Convergence in Distribution

The sequence (4,) 3:%3@ m distribution ov converges weakly to the

V random variable A (A, L A) i for all bounded, continuous functions \
_ the relation

_
~
_
_
Ef(d,) = Ef{4d). n—-x. _
holds. m

. 4 ———

Notice: 4, — A holds(if and onlif for all continuity to:;m z of the distri-
2o B0 COTUALIEY po

c::o: ?:25: Fy the relation

Fylri — Fyizl. n—x. PALL
is satisfied. If £ is conrinuous then

{A.l) can even he strenzhtened to uniform
convergence:

sup  Fy le) = Fyrl — 0. n — .
xz
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[t is also well known that ¢ convergence in distribution is equivalent to voEZSmo

convergence of the corresponding characteristic functions

An 24 if and only if Ee'*' 4 Feitt forall £.

Example Al.1 (Convergence in distribution of Gaussian random variables)

Assume that (4,) is a sequence of normal N(un, o) random variables.

First suppose that p, = p and o — o>, where 1 and o° are finite numbers.
Then the corresponding characteristic functions converge for every t € R:

a2

m‘mm?«p; = m:t:la,men - ml:lo.mQumu

The right-hand side .,m the characteristic function of an N (u, o*) random vari-

able 4. Hence A4, L. A.

Also the converse is true. [f we know that A, —L, 4. then the characteristic

functions ei#~ =0-372t* necessarily converge m: every t. From this fact we con-

L ] ¥
clude that there exist real numbers p and o2 such that, p, - g and o2 — .
This implies that A is necessarily a normal V(u.¢?) random variable. g

Convergence in Probability

The sequence (A,) converges in probability to the random variable A

| (4n == A) if for all positive = the relation
P4, =4 >2) =0, n—x.

holds.

Convergence in probability implies convergence in distribution. The converse

is true if and only if A = a for some constant aq.

Almost Sure Convergence

The sequence (4,) converges almost surely (a.s5.) ov with probability 1 to

the random variable 4 (A, == ) if the set of Ws with

has probability 1.

‘
|
|
_‘ Aa() = ()., n—= x.
|
|
|

APPENDIX 187

This means that

Pdn = A) = P({w: da(w) = Aw)}) =1.

Convergence with probability 1 implies convergence in probability. hence con-
vergence in distribution. Convergence in probability does not imply conver-

a.s.

P , .
gence a.s. However, 4, — A implies that 4, == 4 for a suitable subse-
quence (ny).

LP-Convergence

Let w v 0. The sequence (A,) converges in LP or in pth mean to A _
- L A)if E[|4,17 + [4/?] < > for all n and #

_
“ |
w Eid, - 47 =0, n—=x. _
| |

By /5;9 Emp:n::( P4, - ‘.: > z) TPE]A, - 4|7 for positive p and =

IN
o

Thus 4, L4 implies that 4, £, 4. The converse is in general nor true.

For p = 2, we say that (4,) converges in mean square to A. This notion
can be extended to stochastic processes: see for example Appendix A4. Mean
square convergence is convergence in the Hilbert space

L*=L[*0F Pl={X: EX? < x}

m:aosma with the inner product < X, ¥ >= E(XY) and the norm X =

VL f "X). The svmbol X stands for the equivalence class of random variables

: o d
v m@:m@;:w =%




