
The stochastic non-anticipating (NA) derivative

and integral representations

by

Giulia di Nunno

In the complete probability space (Ω,F , P ) we consider a standard Brownian motion
B = Bt, t ≥ 0 (B0 = 0), generating the filtration F := {Ft, t ≥ 0}. Let X = Xt, t ≥ 0, be a
martingale with respect to the filtration F with

E|Xt|2 <∞, for all t ≥ 0,

i.e. X is a martingale in L2(Ω). Here L2(Ω) = L2(Ω,F , P ) is the standard L2-space with the
norm

‖ξ‖ :=
(
E|ξ|2

)1/2
=
(∫

Ω
|ξ(ω)|2P (dω)

)1/2
.

For any T > 0, we write L2(Ω×[0, T ]) for the functional space L2(Ω×[0, T ],F×B[0, T ], P×dt)
of the stochastic functions

ϕ := ϕt, 0 ≤ t ≤ T,

where, for each t,
ϕt = ϕt(ω), ω ∈ Ω,

is a random variable and

‖ϕ‖L2 :=
(
E

∫ T

0
|ϕt|2dt

)1/2
=
(∫

Ω×[0,T ]
|ϕt(ω)|2P (dω)× dt

)1/2
<∞.

Corresponding notation and meaning is adopted for the case T =∞.

Here below we recall two fundamental results.

The Itô representation theorem. For any FT -measurable random variable ξ ∈ L2(Ω)
there exists a unique F-adapted (non-anticipating) stochastic function ϕ = ϕt, 0 ≤ t ≤ T , in
L2(Ω× [0, T ]) such that

(1) ξ = Eξ +

∫ T

0
ϕsdBs.
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The martingale representation theorem. For any martingale X = Xt, t ≥ 0, in L2(Ω)
with respect to the filtration F there exists a unique F-adapted (non-anticipating)stochastic
function function ϕ = ϕt, t ≥ 0, in L2(Ω× [0,∞)) such that

(2) Xt = EX0 +

∫ t

0
ϕsdBs, t ≥ 0.

We refer to [Ø], Chapter 4, for the details.

The theorems above consider only the existence of the integrand ϕ. But for many appli-
cations it is fundamental to know how to determine this ϕ explicitly - e.g. the application to
hedging problems in mathematical finance. In the sequel the problem we are dealing with is
how to determine ϕ in the above stochastic integral representations.

We are going to answer this question by means of the non-anticipating stochastic deriva-
tive in the framework of Itô stochastic calculus.

First of all recall the definition of the partitions of [0, T ).

Definition. The partitions of (0, T ] are the series of disjoint intervals of the form

[tnk−1, t
n
k), k = 1, ...,Kn, (0 = tn0 < ... < tnKn

= T )

such that
⊔Kn

k=1[tnk−1, t
n
k) = [0, T ) and

δn := max
k=1,...,Kn

|tnk − tnk−1| −→ 0, n→∞.

Definition. For any random variable ξ ∈ L2(Ω) we can define the non-anticipating stochastic
derivative

(3) Dξ = Dsξ, 0 ≤ s ≤ T,

of ξ with respect to the integrator Bt, t ≥ 0, as the element in L2(Ω × [0, T ]) given by the
limit

(4) Dξ = lim
n→∞

ϕn in L2(Ω× [0, T ])

with

(5) ϕn(s) :=

Kn∑
k=1

E
[
ξ · ∆Bnk

∆tnk

∣∣∣Ftnk−1

]
1[tnk−1,t

n
k )(s), 0 ≤ s ≤ T,

where ∆Bnk := Btnk
−Btnk−1

and ∆tnk := tnk − tnk−1.

Remarks.
i) The above definition does not depend on the choice of the partitions, thus it is well-posed.
ii) The sochastic functions ϕn(s), 0 ≤ s ≤ T , are simple functions in L2(Ω × [0, T ]) and
they are F-adapted (thanks to the properties of conditional expectation), thus the stochastic
functions ϕn are simple integrands.
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iii) The stochastic function Dξ = Dsξ, 0 ≤ s ≤ T , is then the limit of simple integrands in
L2(Ω× [0, T ]) and thus it is an integrand itself (recall the scheme of construction of the Itô
integration).

Theorem. For any FT -measurable random variable ξ ∈ L2(Ω) the integrand ϕ = ϕs, 0 ≤
s ≤ T , appearing in the Itô representation (1)

ξ = Eξ +

∫ T

0
ϕsdBs

can be determined by the stochastic non-anticipating derivative:

ϕs = Dsξ, 0 ≤ s ≤ T.

Proof. For a better understanding we split the proof in several steps, here marked with a
bullet.

• From the Ito representation theorem, we have that

ξ = Eξ +

∫ T

0
ϕsdBs,

then taking the conditional expectation we define the process

ξt := E
[
ξ|Ft

]
= Eξ +

∫ t

0
ϕsdBs, 0 ≤ t ≤ T,

which is a martingale with respect to F (see also Martingale representation theorem).
Also, we can observe that

E
[
ξ∆Bnk|Ftnk−1

]
= E

[
∆ξnk∆Bnk|Ftnk−1

]
for ∆ξnk := ξtnk − ξtnk−1

. In fact, we have

E
[
ξ∆Bnk|Ftnk−1

]
= E[ξ]E

[
∆Bnk|Ftnk−1

]
+

∫ tnk−1

0
ϕsdBsE

[
∆Bnk|Ftnk−1

]
+ E

[ ∫ tnk

tnk−1

ϕsdBs∆Bnk|Ftnk−1

]
+ E

[
E
[ ∫ T

tnk

ϕsdBs|Ftnk

]
∆Bnk|Ftnk−1

]
= E

[
∆ξnk∆Bnk|Ftnk−1

]
.
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Hence the simple function in (5) can be rewritten in the equivalent form

(6) ϕn(s) :=

Kn∑
k=1

E
[
∆ξnk ·

∆Bnk

∆tnk

∣∣∣Ftnk−1

]
1[tnk−1,t

n
k )(s), 0 ≤ s ≤ T.

• Being the integral
∫ T

0 ϕsdBs an Itô integral, then by construction there exists a sequence
of simple integrands ψn, n = 1, 2, ..., with

ψn
s :=

Kn∑
k=1

enk−11[tnk−1,t
n
k )(s) + enT 1{T}(s), 0 ≤ s ≤ T,

(with bounded Ftnk−1
-measurable random variables enk−1), such that

(7) ϕ = lim
n→∞

ψn in L2(Ω× [0, T ]), i.e. ‖ϕ− ψn‖L2 −→ 0, n→∞,

and thus ∫ T

0
ϕsdBs = lim

n→∞

∫ T

0
ψn
s dBs in L2(Ω).

• Note that in the construction of the Itô integral there is no statement of uniqueness of
the sequence of simple integrands. We are going to exploit this fact and prove that the
sequence ϕn, n = 1, 2..., of simple integrands (see Remark (iii)) also characterizes the
integral, i.e. ∫ T

0
ϕsdBs = lim

n→∞

∫ T

0
ϕn
s dBs in L2(Ω).

From the Itô isometry and the construction of the integral, we conclude that it is enough
to prove that

(8) ϕ = lim
n→∞

ϕn in L2(Ω× [0, T ]), i.e. ‖ϕ− ϕn‖L2 −→ 0, n→∞.

• Moreover, since

(9) ‖ϕ− ϕn‖L2 ≤ ‖ϕ− ψn‖L2 + ‖ψn − ϕn‖L2 ,

we only need to show that

(10) ‖ψn − ϕn‖L2 −→ 0, n→∞.
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• In fact, we can see that

‖ψn−ϕn‖2L2
= E

[ ∫ T

0

( Kn∑
k=1

{
enk−1 −

1

∆tnk
E
[
∆ξnk∆Bnk|Ftnk−1

]}
1[tnk−1,t

n
k )(s)

)2
ds
]

= E
[ ∫ T

0

Kn∑
k=1

1

(∆tnk)2

(
enk−1∆tnk − E[∆ξnk∆Bnk|Ftnk−1

]
)2

1[tnk−1,t
n
k )(s)ds

]
=

Kn∑
k=1

1

∆tnk
E
[(
E
[
enk−1∆tnk −

∫ T

0
ϕs1[tnk−1,t

n
k )(s)ds

∣∣Ftnk−1

])2]
=

Kn∑
k=1

1

∆tnk
E
[( ∫ T

0

(
enk−1 − ϕs

)
1[tnk−1,t

n
k )(s)ds

)2]
≤

Kn∑
k=1

1

∆tnk
E
[ ∫ T

0

(
ψn
s − ϕs

)2
1[tnk−1,t

n
k )(s)ds ·

∫ T

0
1[tnk−1,t

n
k )(s)ds

]
= ‖ψn − ϕ‖2L2

−→ 0, n→∞.

Here above we have applied Hölder inequality.

• From (9) we have that ‖ϕ− ϕn‖2L2
≤ 2‖ϕ− ψn‖2L2

−→ 0, n→∞.

By this we end the proof.

Corollary. The non-anticipating stochastic derivative Dξ is continuous with respect to ξ in
L2(Ω). Namely,

ξ = lim
n→∞

ξn , i.e. ‖ξ − ξn‖ −→ 0, n→∞,

implies
Dξ = lim

n→∞
Dξn , i.e. ‖Dξ −Dξn‖L2 −→ 0, n→∞.

Proof. This can be proved applying the Itô isometry and the stochastic integral representa-
tion from the main theorem.

Corollary. Any martingale X = Xt, 0 ≤ t ≤ T (T < ∞), in L2(Ω) with respect to the
filtration F admits the following (unique) stochastic integral representation

(11) Xt = EX0 +

∫ t

0
DsXTdBs, t ≥ 0.

(Recall that for martingales EXt = EX0, for all t).
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