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To pass the assignment you need a score of at least 50p. All questions have equal
weight.

Problem 1. 1. (10p) Describe the main ingredients of an Itô financial market:
risk free asset, risky assets, portfolio, wealth process,...

2. Suppose that the Itô financial market is given by

dS0
t = rS0

t dt, S0
0 = 1,

dS1
t =

(
µ− S1

t

)
dt+ σdBt, S1

0 = s1 > 0,

where r > 0, µ > 0, and σ ̸= 0 are constants.

a) (10p) Find the price of the European T -claim F = S1
T .

b) (10p) Find the replicating portfolio φ = (φ0, φ1) for this claim.

Problem 2. 1. (10p) Explain what is an infinitely divisible distribution on
Rd. Let µ be the uniform probability distribution over the d-dimensional
open ball with radius 1 and centered at the origin. That is the probability
distribution with density µ (dx) = Γ( d

2 +1)
πd/2 1{|x|<1} (x) dx,A ∈ B

(
Rd
)
, where

Γ (α) =
∫∞

0 yα−1e−ydy. Is µ infinitely divisible? (Hint: The important point
to notice is that this distribution has bounded support. The normalization
constant does not matter)

2. (10p) Define what is a Lévy measure on Rd
0. Let d = 1, is ν (dx) = 1

x2 1{x ̸=0}dx
a Lévy measure? And µ (dx) = 1

x3 1{|x|>1}dx?

3. (10p) State the Lévy-Kintchine formula. Justify that all the terms in the
formula are well defined.

4. (10p) Show that if ν is a Lévy measure on Rd
0, then for all ε > 0 one has that

ν
({
y ∈ Rd : |y| > ε

})
< ∞,

and conclude that ν is σ-finite.

Problem 3. Let µ be a probability measure on Rd and φµ (u) its characteristic
function, i.e.,

φµ (u) =
∫
Rd
ei⟨u,x⟩µ (dx) .

We say that µ̃ is the dual of µ if µ̃ (A) = µ (−A),A ∈ B
(
Rd
)

and we say that µ♯ is
the symmetrization of µ if µ♯ = µ ∗ µ̃.
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1. (10p) Prove that φµ̃ (u) = φµ (−u) = φµ (u), where z = (a+ ib) = a − ib is
the complex conjugation. (Hint: use the image measure theorem)

2. (10p) Prove that φµ♯ (u) = |φ (u)|2.

3. (10p) Show that if µ is infinitely divisible divisible probability measure
on Rd then φµ (u) ≠ 0, u ∈ Rd. (Hint: consider the limit φ (u) :=
limn→∞

∣∣∣φµ1/n (u)
∣∣∣2 and use Lévy’s continuity theorem)

Problem 4. Let {Zn}n≥1 be a sequence of independent, identically distributed
d-dimensional random variables with common law PZ and N be a Poisson process
of intensity λ that is independent of {Zn}n≥1. Recall that the compound Poisson
process is defined as

Yt = Z1 + · · · + ZNt , t ≥ 0,
and each Yt ∼ Poisson (λt, PZ).

1. (10p) Prove that Y = {Yt}t∈R+
has stationary and independent increments.

2. (10p) Find Θ ⊆ Rd, which may depend on Z and N , such that if θ ∈ Θ then
E
[
e⟨θ,Yt⟩

]
< ∞,t ∈ R+.

3. (10p) For θ ∈ Θ, consider the process X (θ) = {Xt (θ)}t∈R+
where

Xt (θ) = exp (⟨θ, Yt⟩ − γ (θ) t) ,

for some function γ (θ). Find γ (θ) such that X is a martingale.
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Solution Problem 1

1. Let B be an m-dimensional standard Brownian motion defined on a complete
probability space (Ω,F , P ) and let F := FB be the usual augmentation of
the natural filtration generated by B.

Definition 1. In the previous probabilistic setup, a financial market with
n+ 1 investment possibilities consists in

a) A risk free asset, where the unit price S0
t at time t is given by

dS0
t = r (t)S0

t dt, t ∈ [0, T ] ,
S0

0 = 1.

b) n risky assets, where the unit price Sit at time t of the i-the risky asset
is given by

dSit = µi (t) dt+
m∑
j=1

σij (t) dBj
t t ∈ [0, T ] ,

Si0 = si0 ∈ R,

for i = 1, ..., n.
Here:

• T > 0 is the investment horizon,
• r ≥ 0 is the interest rate, r1/2 ∈ L0

a,T and we will assume it to be
bounded.

• µ = (µ1 (t) , ..., µn (t))T is the vector of appreciation rates of the
risky assets and (µi)1/2 ∈ L0

a,T , i = 1, ..., n.
• σ =

(
σij (t)

)
i=1,...,n,j=1,...,m

is the volatility matrix of the risky assets
and σij ∈ L0

a,T , i = 1, ..., n,j = 1, ...,m. Note that σi denote the ith
row of the n×m matrix σ, that is, σi = (σi1 (t) , ..., σim)..
The market is called normalized or discounted if S0

t ≡ 1.
Remark 2. S0 is called the safe investment because there is no Brownian
part in its dynamics and since r ≥ 0 the value of this investment cannot
decrease in time. Note however that S0 is in general a stochastic process.
Since

S0
t = exp

(∫ t

0
r (s) ds

)
> 0, 0 ≤ t ≤ T,

we can define the discount factor (or normalizing factor) ξ (t) by

ξ (t) :=
(
S0
t

)−1
= exp

(
−
∫ t

0
r (s) ds

)
> 0, 0 ≤ t ≤ T.
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Note that dξ (t) = −r (t) ξ (t) dt. Hence, we can always normalize the
market by defining S̄it =ξ (t)Sit ,i = 1, ..., n. The market

S̄t =
(
1, S̄1

t ..., S̄
n
t

)T
,

is called the normalization of S. Normalization corresponds to consider
the price S0 of the safe investment as the unit price (the numeraire) and
compute the other prices in terms of this unit.
Definition 3. A portfolio φ is an (n+ 1)-dimensional process

φ (t) = (φ0 (t) , φ1 (t) , ..., φn (t)) ,

with φi ∈ L0
a,T representing the number of units of the i-th asset held at

time t. Note that this is a row vector.
Definition 4. The wealth (or value) process V = V φ associated to
the portfolio φ is defined by

V φ
t = φ (t)St =

n∑
i=0

φi (t)Sit .

Definition 5. A portfolio φ is called self-financing if
∫ t

0 φ (s) dSs exists
for all t > 0 and

V φ
t = V φ

0 +
∫ t

0
φ (s) dSs,

or, in differential notation,

dV φ
t = φ (t) dSt.

Definition 6. The normalized (or discounted) wealth process V̄ φ

is defined by

V̄ φ
t = ξ (t)V φ

t = ξ (t)φ (t)St = φ (t) S̄t.

Definition 7. A self-financing portfolio φ is called admissible if there
exists a constant K = Kφ > 0 such that

V φ
t ≥ −Kφ, a.s. for all t ∈ [0, T ].

The set of all admissible portfolios is denoted by A.
Definition 8. A portfolio φ ∈ A is called an arbitrage if

V φ
0 = 0, V φ

T ≥ 0, P -a.s. and P (V φ
T > 0) > 0.
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2.

a) In this market consider θ ∈ L2
a,T such that

σθt = µ− S1
t − rS1

t , λ⊗ P -a.e.,

that is θt = µ−(1−r)S1
t

σ
. We need to consider the the change of measure

dQ

dP
= Zt (θ) = exp

(
−
∫ t

0
θsdBs − 1

2

∫ t

0
θ2
sds

)
.

To show that Z (θ) is a martingale is not straightforward (it does not
follow by a direct application of Novikov’s theorem, but it is true) so we
will assume it without proof. By Girsanov’s theorem we have that

dBQ
t := θtdt+ dBt,

is a Q-Brownian motion and the dynamics of S1 can be rewriten in
terms of BQ as

dS1
t =

(
µ− S1

t

)
dt+ σdBt =

(
µ− S1

t

)
dt+ σ(dBQ

t − θtdt)

= rS1
t dt+ σdBQ

t .

Moreover, using Ito’s product rule with e−rtS1
t and taking into account

that d [e−r·, S1]t = 0 we get that

d
(
e−rtS1

t

)
= −rS1

t dt+ e−rtdS1 = σdBQ
t ,

which yields
S1
t = ertS1

0 +
∫ t

0
er(t−s)σdBQ

s . (1)

By Theorem 5.16, we have that the market is arbitrage free. By Corollary
5.27 (1), since n = m and σ is invertible we have that the market is
complete. Then, using Theorem 5.31 we know that the upper and lower
price of F coincide and are equal to

p (F ) = EQ
[
e−rTS1

T

]
= EQ

[
e−rT

(
erTS1

0 +
∫ T

0
er(T−s)σdBQ

s

)]
= S1

0 ,

because the (Q-)expectation of an Itô integral with respect to a Q-
Brownian motion is zero.
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b) By Theorem 5.36, the replicating portfolio will satisfy

e−rtφ1 (t)σ = ψt,

where ψ is such that

e−rTF = e−rTS1
T = EQ

[
e−rTS1

T

]
+
∫ T

0
ψtdB

Q
t = S1

0 +
∫ T

0
ψtdB

Q
t .

Looking at equation (1) we deduce that ψt = σe−rt and then φ1 (t) ≡ 1.
Moreover, using the formulas in Lemma 5.8, we find that

φ0 (t) = φ0 (0) +
∫ t

0
e−rsd

(∫ s

0
φ1 (u) dS1

u − φ1 (s)S1
s

)
= φ0 (0) +

∫ t

0
e−rsd

(
S1
s − S1

0 − S1
s

)
= φ0 (0) ,

and, choosing V φ
0 := EQ

[
e−rTS1

T

]
= S1

0 , we have that φ0 (0) must satisfy

S1
0 = φ0 (0)S0

0 + φ1 (0)S1
0 = φ0 (0) + S1

0 ,

which yields φ0 (0) = 0. Choosing V φ
0 := 0, would yield φ0 (0) = −S1

0 .
In any case, the interpretation of the hedging strategy is the buy and
hold strategy.

Remark 9. In this problem, since it is clear that the hedging strategy is the
buy and hold strategy, one can make simpler reasonings to compute the price.

Solution Problem 2

1. A probability distribution on Rd,which can be associated to the law of a
random vector, is infinitely divisible if it can be written as the law of the
sum of an arbitrary number of independent and identically distributed (i.i.d.)
random vectors. The fact that the number of summands can be arbitrarily
large and they are identically distributed ensures that the contribution of
each term in the decomposition can be made aritrarily/infinitely small. A
precise definition is as follows: let X be a random variable in Rd with law PX .
We say that X is infinitely divisible if, for all n ∈ N, there exists Yn,1, . . . , Yn,n,
i.i.d. random variables in Rd, such that

L (X) = L (Yn,1 + · · · + Yn,n) .

The previous property can be expressed in term of convolution products of
probability distributions, because the law of the sum of independent random
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vectors correspond to the convolution product of the laws of its summands.
This yields a criteria for infinite divisibility in terms of convolution n-th roots
of probability distributions. Similarly, the characteristic function of the sum
of independent random vectors correspond to the product of the laws of its
summands. This yields a criteria for infinite divisibility in terms of n-th roots
of characteristic functions.
The probability distribution is the uniform distribution in

B1 (0) =
{
x ∈ Rd : |x| < 1

}
.

Let Y ∼ µ. Note that
P (|Y | < 1) = 1. (2)

Suppose that Y is infinitely divisible, then for every n ∈ N there exists
{Yn,i}i=1,...,n i.i.d. such that

L (Y ) = L (Yn,1 + · · · + Yn,n) .

Fix n ∈ N, then equation (2) and the fact that {Yn,i}i=1,...,n are identically
distributed implies that

P
(

|Yn,i| <
1
n

)
= 1, i = 1, . . . , n.

Moreover,

Var [Yn,i] = E
[
|Yn,i|2

]
− (E [|Yn,1|])2 ≤ E

[
|Yn,i|2

]
≤ 1
n2 , i = 1, . . . , n.

Since {Yn,i}i=1,...,n are independent, we get

Var [Y ] =
n∑
i=1

Var [Yn,i] ≤ n

n2 = 1
n
.

However, as n can be arbitrarily large, the last inequality implies that the
variance of Y must be arbitrarily small. This contradicts the assumption
Y ∼ µ . Indeed, we have proved that the unique infinitely divisible distribution
with bounded support is the Dirac distribution at the origin, that is, Y ≡ 0,P -
a.s.

2. Let ν be a Borel measure defined on Rd
0 := Rd \ {0} . We say that ν is a Lévy

measure if ∫
Rd

0

(
|x|2 ∧ 1

)
ν (dx) < ∞. (3)
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If we take d = 1 and ν (dx) = 1
x2 1{x ̸=0}dx we have that ν is a Borel measure

and ∫
Rd

0

(
|x|2 ∧ 1

)
ν (dx) =

∫
Rd

0

(
|x|2 ∧ 1

) 1
x2dx

=
∫

0<|x|<1

|x|2

x2 dx+
∫

|x|≥1

1
x2dx

=
∫ 1

−1
dx+ 2

∫ +∞

1

1
x2dx

= 2 − 2
[
x−1

]+∞

1
= 2 + 2 = 4 < ∞,

and (3) is satisfied. If we take d = 1 and µ (dx) = 1
x3 1{|x|>1}dx, note that µ

is not a Borel measure as it is negative for x < 0. Hence, µ is not a Lévy
measure. (The problem is not the integrability because we are integrating
over {|x| > 1}).

3. The Lévy-Kintchine theorem is as follows: µ ∈ M1
(
Rd
)

is infinitely divisible
if there exists a vector γ ∈ Rd, a positive definite symmetric d× d matrix A
and a Lévy measure ν on Rd

0 such that, for all u ∈ Rd,

φµ (u) = exp
(

i ⟨γ, u⟩ − 1
2 ⟨u,Au⟩ +

∫
Rd

0

(
ei⟨u,y⟩ − 1 − i ⟨u, y⟩ 1B1(0) (y)

)
ν (dy)

)
,

(4)
where B1 (0) :=

{
x ∈ Rd : |x| < 1

}
. Conversely, any mapping of the form (4)

is the characteristic function of an infinitely divisible probability measure on
Rd.
Note that the formula (4) is well defined if∫

Rd
0

(
ei⟨u,y⟩ − 1 − i ⟨u, y⟩ 1B1(0) (y)

)
ν (dy) < ∞. (5)

Using Taylor’s theorem and Cauchy-Schwarz inequality, we get∣∣∣ei⟨u,y⟩ − 1 − i ⟨u, y⟩ 1B1(0) (y)
∣∣∣ ≤

∣∣∣1B1(0) (y)
(
ei⟨u,y⟩ − 1 − i ⟨u, y⟩

)∣∣∣+ ∣∣∣1Bc
1(0) (y)

(
ei⟨u,y⟩ − 1

)∣∣∣
≤ 1

2 |⟨u, y⟩|2 1B1(0) (y) + 21Bc
1(0) (y)

≤ 1
2 |u|2 |y|2 1B1(0) (y) + 21Bc

1(0) (y) .

Combining the previous inequality with equation (3) we obtain (5) , that is,

ei⟨u,y⟩ − 1 − i ⟨u, y⟩ 1B1(0) (y) ∈ L1 (v) .
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4. Since ν is a Lévy measure we know that it satisfies (3). Note that (3) is
equivalent to the following two conditions∫

0<|y|<1
|y|2 ν (dy) < ∞ (6)

and ∫
|y|≥1

ν (dy) < ∞. (7)

If ε ≥ 1, then (7) implies the result. If ε < 1, then

ν
({
y ∈ Rd : |y| > ε

})
=
∫
ε<|y|<1

ν (dy) +
∫

|y|≥1
ν (dy) .

The second integral is finite by (7). For the first integral we have∫
ε<|y|<1

ν (dy) = 1
ε2

∫
ε<|y|<1

ε2ν (dy) < 1
ε2

∫
ε<|y|<1

|y|2 ν (dy)

<
1
ε2

∫
0<|y|<1

|y|2 ν (dy) < ∞,

where in the second inequality we have used that the monotonicity of the
integral and

1{ε<|y|<1} |y|2 < 1{0<|y|<1} |y|2

and in the third inequality we have used (6). To show that ν is σ-finite, we
consider the decomposition

Rd
0 =

⊎
n≥1

An,

where A1 = {|y| ≥ 1} and

An =
{ 1
n

≤ |y| < 1
n− 1

}
, n ≥ 2.

Clearly, ν (A1) < ∞ by (6) and, for n ≥ 2,

ν (An) ≤ ν
({

|y| > 1
n+ 1

})
< ∞,

where we have used that An ⊂
{
|y| > 1

n+1

}
, the monotonicity of measures

and (7).
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Solution Problem 3

1. Let T : Rd → Rd be the (bijective, T
(
Rd
)

= Rd) mapping given by
y = T (x) = −x. Note that, by construction µ̃ = µ ◦ T−1 = µT . Then,
by the image measure theorem we have that

φµ̃ (u) =
∫
Rd
ei⟨u,y⟩µ̃ (dy) =

∫
T(Rd)

ei⟨u,y⟩µT (dy)

=
∫
Rd
ei⟨u,T (x)⟩µ (dx) =

∫
Rd
ei⟨u,−x⟩µ (dx)

=
∫
Rd
ei⟨−u,x⟩µ (dx) = φµ (−u) .

Note that, by Euler’s formula and the basic properties of trigonometric
functions,

ei⟨−u,x⟩ = cos (⟨−u, x⟩) + i sin (⟨−u, x⟩)
= cos (⟨u, x⟩) − i sin (⟨u, x⟩) .

Therefore,

φµ (−u) =
∫
Rd
ei⟨−u,x⟩µ (dx)

=
∫
Rd

cos (⟨u, x⟩)µ (dx) − i
∫
Rd

sin (⟨u, x⟩)µ (dx)

=
∫
Rd

cos (⟨u, x⟩)µ (dx) + i
∫
Rd

sin (⟨u, x⟩)µ (dx)

=
∫
Rd
ei⟨u,x⟩µ (dx) = φµ (u).

2. Using the formula that relates integrals with respect to the convolution
product of two measures and integrals with respect to the product measure
of these two measures, combined with Fubini’s theorem, we obtain

φµ♯ (u) = φµ∗µ̃ (u) =
∫
Rd
ei⟨u,x⟩ (µ ∗ µ̃) (dx)

=
∫
Rd×Rd

ei⟨u,x+y⟩µ⊗ µ̃ (dx, dy)

=
∫
Rd
ei⟨u,x⟩µ (dx)

∫
Rd
ei⟨u,y⟩µ̃ (dy)

= φµ (u)φµ̃ (u) = φµ (u)φµ (−u)
= φµ (u)φµ (u) = |φµ (u)|2 .
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3. Let µ be an infinitely divisible divisible probability measure on Rd. Then,
by Proposition 6.8 in the lecture notes, we know that, for each n ∈ N, there
exists a probability distribution µ1/n, with characteristic function φµ1/n such
that

φµ (u) =
(
φµ1/n (u)

)n
.

By the previous step we have that |φµ (u)|2 and
∣∣∣φµ1/n (u)

∣∣∣2 are (real-valued)
characteristic function. Moreover, note that

|φµ (u)|2 = φµ (u)φµ (u) =
(
φµ1/n (u)

)n (
φµ1/n (u)

)n
=
∣∣∣φµ1/n (u)

∣∣∣2n
and we get that ∣∣∣φµ1/n (u)

∣∣∣2 = |φµ (u)|2/n .

Hence, we can define φ (u) by the following limit of real-valued functions

φ (u) := lim
n→∞

∣∣∣φµ1/n (u)
∣∣∣2 = lim

n→∞
|φµ (u)|2/n =

{
1 if φµ (u) ̸= 0
0 if φµ (u) = 0 .

Since φµ (0) = 1 and φµ is continuous, there exists a neighbourhood U0 of
0 such that φµ (u) ≠ 0, u ∈ U0 and, therefore, φ (u) = 1, u ∈ U0 and φ is
also continuous in U0. By Lévy’s continuity theorem φ is the characteristic
function of a probability distribution and, hence, it is continuous for all
u ∈ Rd. But this can only happen if φ is identically equal to 1, that is, if
φµ (u) ̸= 0, u ∈ Rd.

Solution Problem 4

1. First we prove that Y has stationary increments. As Y0 = 0, we have to prove
that

E
[
ei⟨u,Yt−Ys⟩

]
= E

[
ei⟨u,Yt−s⟩

]
, u ∈ Rd, 0 ≤ s < t.

In the following computations we will be using the basic properties
of conditional expectation such as conservation of expectation and the
substitution property. We will also make use of the fact that {Zi}i≥1 are i.i.d.
random variables and that N has stationary increments. We can write

E
[
ei⟨u,Yt−Ys⟩

]
= E

[
e

i
〈
u,
∑Nt

j=Ns+1 Zj

〉]
= E

[
E
[
e

i
〈
u,
∑Nt

j=Ns+1 Zj

〉∣∣∣∣∣σ (Nt, Ns)
]]

= E

E [ei
〈
u,
∑nt

j=ns+1 Zj

〉]∣∣∣∣∣
ns=Ns,nt=Nt
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= E

E [ei
〈
u,
∑nt−ns

j=1 Zj

〉]∣∣∣∣∣
ns=Ns,nt=Nt


= E


nt−ns∏

j=1
E
[
ei⟨u,Zj⟩

]∣∣∣∣∣∣
ns=Ns,nt=Nt


= E

Nt−Ns∏
j=1

E
[
ei⟨u,Zj⟩

]
= E

Nt−s∏
j=1

E
[
ei⟨u,Zj⟩

]
= E


 n∏
j=1

E
[
ei⟨u,Zj⟩

]∣∣∣∣∣∣
n=Nt−s


= E

E [ei
〈
u,
∑n

j=1 Zj

〉]∣∣∣∣∣
n=Nt−s


= E

[
E
[
e

i
〈
u,
∑Nt−s

j=1 Zj

〉∣∣∣∣∣σ (Nt−s)
]]

= E
[
ei⟨u,Yt−s⟩

]
.

Secondly we prove that Y has independent increments. We have to show that
for any 0 ≤ t0 < t1 < · · · < tn and {uj}j=1,...,n ⊆ Rd we have that

E
[
ei
∑n

j=1⟨uj ,Ytj −Ytj−1⟩
]

=
n∏
j=1

E
[
ei⟨uj ,Ytj −Ytj−1⟩

]
.

By similar arguments as before,

E
[
ei
∑n

j=1⟨uj ,Ytj −Ytj−1⟩
]

= E

ei
∑n

j=1

〈
uj ,
∑Ntj

i=Ntj−1 +1 Zi

〉
= E

E
ei

∑n

j=1

〈
uj ,
∑Ntj

i=Ntj−1 +1 Zi

〉∣∣∣∣∣∣σ (Nt0 , ..., Ntn)


= E

E [ei
∑n

j=1

〈
uj ,
∑nj

i=nj−1+1 Zi

〉]∣∣∣∣∣
n0=Nt0 ,...,nn=Ntn


= E


 n∏
j=1

E
[
e

i
〈
uj ,
∑nj

i=nj−1+1 Zi

〉]∣∣∣∣∣∣
n0=Nt0 ,...,nn=Ntn


= E


 n∏
j=1

φZ (uj)nj−nj−1

∣∣∣∣∣∣
n0=Nt0 ,...,nn=Ntn
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= E

 n∏
j=1

φZ (uj)Ntj −Ntj−1


=

n∏
j=1

E
[
φZ (uj)Ntj −Ntj−1

]
On the other hand

E
[
ei⟨uj ,Ytj −Ytj−1⟩

]
= E

ei
〈
uj ,
∑Ntj

i=Ntj−1 +1 Zi

〉
= E

E
ei
〈
uj ,
∑Ntj

i=Ntj−1 +1 Zi

〉∣∣∣∣∣∣σ
(
Ntj , Ntj−1

)
= E

E [ei
〈
uj ,
∑nj

i=nj−1+1 Zi

〉]∣∣∣∣∣
nj=Ntj ,nj−1=Ntj−1


= E

E [ei
〈
uj ,
∑nj −nj−1

i=1 Zi

〉]∣∣∣∣∣
nj=Ntj ,nj−1=Ntj−1



= E


nj−nj−1∏

i=1
E
[
ei⟨uj ,Zi⟩

]∣∣∣∣∣∣
nj=Ntj ,nj−1=Ntj−1


= E

[(
φZ (uj)nj−nj−1

)∣∣∣
nj=Ntj ,nj−1=Ntj−1

]
= E

[
φZ (uj)Ntj −Ntj−1

]
,

and we can conclude.

2. Let ψZ (θ) denote the moment generating function of Z, that is,

E
[
e⟨θ,Z⟩

]
=
∫
Rd
e⟨θ,z⟩PZ (dz) ,

and assume that θ ∈ ΘZ , where

ΘZ =
{
θ ∈ Rd :

∫
Rd
e⟨θ,z⟩PZ (dz) < ∞

}
.

Then, if θ ∈ ΘZ , we have that

E
[
e⟨θ,Yt⟩

]
= E

[
e⟨θ,

∑Nt
i=1 Zi⟩

]
= E

[
E
[
e⟨θ,

∑Nt
i=1 Zi⟩

∣∣∣∣σ (Nt)
]]

= E
[
E
[
e⟨θ,

∑n

i=1 Zi⟩
]∣∣∣∣
n=Nt

]
= E

( n∏
i=1

E
[
e⟨θ,Zi⟩

])∣∣∣∣∣
n=Nt
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= E
[
ψZ (θ)Nt

]
=

∞∑
k=0

ψZ (θ)k e−λt (λt)
k

k!
= e−λteλtψZ(θ) = eλt(ψZ(θ)−1) < ∞.

Therefore, we can conclude that the fact that E
[
e⟨θ,Yt⟩

]
< ∞ does not depend

on t or λ, but only on the fact that Z has finite exponential moments, that
is, ΘZ ̸= ∅. The desired set is Θ = ΘZ .

3. Let X (θ) be the process

Xt (θ) = exp (⟨θ, Yt⟩ − γ (θ) t) , t ∈ R+,

for some function γ (θ) , θ ∈ Θ. The integrability requirement is satisfied

E [|Xt (θ)|] = E [|exp (⟨θ, Yt⟩ − γ (θ) t)|]
= E [exp (⟨θ, Yt⟩ − γ (θ) t)]
= E

[
e⟨θ,Yt⟩

]
e−γ(θ)t

= eλt(ψZ(θ)−1)−γ(θ)t < ∞.

We consider the filtration FY =
{
FY
t = σ

(
{Ys}s≤t

)}
t∈R+

. Xt (θ) is σ (Yt)-
measurable because it is the composition of a Borel measurable function and
Yt. Hence, Xt (θ) is FY

t -measurable for all t ∈ R+ and X (θ) is FY -adapted.
For the martingale property, it suffices to check that

E
[
Xt (θ)
Xs (θ)

∣∣∣∣∣FY
s

]
= 1.

We have that

E
[
Xt (θ)
Xs (θ)

∣∣∣∣∣FY
s

]
= E

[
exp (⟨θ, Yt − Ys⟩ − γ (θ) (t− s))| FY

s

]
= E

[
exp (⟨θ, Yt − Ys⟩)| FY

s

]
e−γ(θ)(t−s)

= E [exp (⟨θ, Yt − Ys⟩)] e−γ(θ)(t−s)

= E [exp (⟨θ, Yt−s⟩)] e−γ(θ)(t−s)

= eλ(t−s)(ψZ(θ)−1)e−γ(θ)(t−s)

= e(t−s){λ(ψZ(θ)−1)−γ(θ)},

where in the third equality we have used that Yt −Ys is independent from FY
s

and in the fourth equality we have used that Y has stationary increments.
Therefore, the martingale property is satisfied if and only if

γ (θ) = λ (ψZ (θ) − 1) .
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