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MAT4770 & MAT9770 LECTURE NOTES

Abstract. We treat the case when forward dynamics does not have any jump
components. In this situation we can derive explicit pricing formulas for the
plain vanilla options being slight extensions of the Black-76 Formula.

Section 9.1.1: The Case of no Jumps - The Black-76 Formula

Consider a call option written on a forward contract, with exercise time T > 0

and strike price K > 0. The forward contract has maturity τ ≥ T , and we suppose
the risk-neutral dynamics are given as follows

(0.1)
df (t, τ)

f (t, τ)
=

p∑
k=1

σk (t, τ) dWk (t) ,

where Wk are p independent Brownian motions under the risk-neutral probability
Q. Recalling the forward price dynamics resulting from a geometric spot model
derived in Proposition 4.8., we have

σk (t, τ) =

m∑
i=1

σik (t) exp

(
−
∫ τ

t

αi (u) du

)
.

The speeds of mean reversion are described by the functions αi, and the spot
volatilities by σik. The forward dynamics in (0.1) can also come from the direct
modelling of the forward price curve as analysed in Chapter 6 (...).

The following Proposition states the price of a cal option and is known as the
Black-76 Formula.

Proposition 1. The price of a call option at time t ≤ T , written on a forward
with delivery at time τ , where the option has exercise time T ≤ τ and strike price
K, is

C (t;T,K, τ) = e−r(T−t) {f (t, τ) Φ (d1)−KΦ (d2)} .

Here,

d1 = d2 +

√√√√ p∑
k=1

∫ T

t

σ2
k (u, τ) du,(0.2)
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d2 =
ln (f (t, τ) /K)− 1

2

∑p
k=1

∫ T
t
σ2
k (u, τ) du√∑p

k=1

∫ T
t
σ2
k (u, τ) du

,(0.3)

and Φ is the cumulative standard normal probability distribution function.

Proof. consider the case p = 1. We have that

ln f (T, τ)
d
= ln f (t, τ)− 1

2

∫ T

t

σ2 (u, τ) du+X

√∫ T

t

σ2 (u, τ) du,

where X is a standard normally distributed random variable. From general option
theory, the price is defined as the present expected payoff, with expectation taken
under the risk-neutral probability. Hence,

C (t;T,K, τ)

= e−r(T−t)EQ [max (f (T, τ)−K, 0) | Ft]

= e−r(T−t)E
[
max

(
eln f(t,τ)− 1

2

∫ T
t
σ2(u,τ)du+X

√∫ T
t
σ2(u,τ)du −K, 0

)]
= e−r(T−t)EQ

[
max

(
f (t, τ) e−

1
2

∫ T
t
σ2(u,τ)du+X

√∫ T
t
σ2(u,τ)du −K, 0

)]
.

Note that we get a positive payoff from the option only when

X >
ln
(

K
f(t,τ)

)
+ 1

2

∫ T
t
σ2 (u, τ) du√∫ T

t
σ2 (u, τ) du

= −d2.

Then we can rewrite the previous expression as

C (t;T,K, τ)

= e−r(T−t)
∫ ∞
−d2

(
f (t, τ) e−

1
2

∫ T
t
σ2(u,τ)du+x

√∫ T
t
σ2(u,τ)du −K

)
φ (x) dx

= e−r(T−t)
(
f (t, τ)

∫ ∞
−d2

e−
1
2

∫ T
t
σ2(u,τ)du+x

√∫ T
t
σ2(u,τ)duφ (x) dx−K

∫ ∞
−d2

φ (x) dx

)
,

where φ (x) = 1√
2π
e−

x2

2 is the density of the standard normally distributed random
variable X. Note in the following lines that we will make use of the symmetry of
the standard normal density function. Therefore we can rewrite the call prices as
follows

C (t;T,K, τ)

=
e−r(T−t)√

2π

(
f (t, τ)

∫ ∞
−d2

e−
1
2

∫ T
t
σ2(u,τ)du+x

√∫ T
t
σ2(u,τ)due−

x2

2 dx−K
∫ ∞
−d2

e−
x2

2 dx

)
=
e−r(T−t)√

2π

(
f (t, τ)

∫ ∞
−d2

e−
1
2

∫ T
t
σ2(u,τ)du+x

√∫ T
t
σ2(u,τ)du− x2

2 dx

)
−Ke−r(T−t)Φ (d2)
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=
e−r(T−t)√

2π

(
f (t, τ)

∫ ∞
−d2

e
− 1

2

(
x2−2x

√∫ T
t
σ2(u,τ)du+

∫ T
t
σ2(u,τ)du

))
−Ke−r(T−t)Φ (d2)

=
e−r(T−t)√

2π

(
f (t, τ)

∫ ∞
−d2

e
− 1

2

(
x−
√∫ T

t
σ2(u,τ)du

)2

dx

)
−Ke−r(T−t)Φ (d2)

= e−r(T−t)f (t, τ) Φ

−
d2 +

√∫ T

t

σ2 (u, τ) du

−Ke−r(T−t)Φ (d2)

= e−r(T−t) (f (t, τ) Φ (d1)−KΦ (d2)) .

�

We now turn our attention to the question of hedging the call option on the
forward. From option theory, the delta hedging strategy is defined as follows

(0.4) ∆ (t;T,K, τ) ,
∂C (t;T,K, τ)

∂f (t, τ)
.

The delta hedge gives the number of forwards one should have in the portfolio at
all times up to exercise in a hedge of the call option. The strategy is derived in the
following Proposition.

Proposition 2. The delta hedge of the call option written on a forward with ma-
turity at time τ , and where the option has exercise time T ≤ τ and strike K, is
given as

∆ (t;T,K, τ) = e−r(T−t)Φ (d1) ,

where Φ and d1are defined in the Prop. (1).

Proof. A differentiation leads to

∆ (t;T,K, τ) = e−r(T−t)
{

Φ (d1) + f (t, τ) Φ′ (d1)
∂d1

∂f
−KΦ′ (d2)

∂d2

∂f

}
,

where d2 is defined as in Prop. (1). We only need to prove that indeed

f (t, τ) Φ′ (d1)
∂d1

∂f
−KΦ′ (d2)

∂d2

∂f
= 0.

This is easily done as shown in the following lines. Note first that ∂d1
∂f = ∂d2

∂f ,
therefore we have

0 = f (t, τ) Φ′ (d1)
∂d1

∂f
−KΦ′ (d2)

∂d2

∂f

⇔ f (t, τ) Φ′ (d1) = KΦ′ (d2)

⇔ ln
f (t, τ)

K
= ln

Φ′ (d2)

Φ′ (d1)
,
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remember that Φ′ (di) = 1√
2π
e−

d2i
2 ,therefore ln Φ′(d2)

Φ′(d1) = ln e−
d22
2

e−
d21
2

= ln e−
d22
2 −ln e−

d21
2 =

1
2

(
d2

1 − d2
2

)
.Now it is only left to prove that

ln
f (t, τ)

K
=

1

2

(
d2

1 − d2
2

)
.

To show that the following lines serve the purpose

1

2

(
d2

1 − d2
2

)
=

1

2
(d1 + d2) (d1 − d2)

by eq. (0.2) =
1

2

d2 +

√∫ T

t

σ2 (u, τ) du+ d2

√∫ T

t

σ2 (u, τ) du


=

1

2

2d2 +

√∫ T

t

σ2 (u, τ) du

√∫ T

t

σ2 (u, τ) du


by eq. (0.3) =

(
ln (f (t, τ) /K)− 1

2

∫ T

t

σ2 (u, τ) du

)
+

1

2

∫ T

t

σ2 (u, τ) du

= ln (f (t, τ) /K) .

�

Remark. The following bulletpoints.

• We recognise the price and hedging strategy are analogous to the call option
in the classical Black-Scholes contexts.

• The only difference is that the forward dynamics is a martingale in the risk-
neutral setting (Remember HJM-approach) whereas in the Black-Scholes
framework it is the discounted asset price (Spot price) which is a martingale.
This leads to some minor modifications of the price and hedge in the case
of forward options.

We will have a quick look at an example where the forward price dynamics comes
from a Schwartz model with constant volatility and speed of mean reversion, i.e.,
assuming p = m = 1, we have

σ (u, τ) = σe−α(τ−u).

Thus the aggregated volatility to be inserted into the Black-76 Formula becomes∫ T

t

σ2 (u, τ) du =
σ2

2α

(
e−2α(τ−T ) − e−2α(τ−t)

)
.

It is obvious that the aggregated volatility increases with the exercise time and
decreases with the maturity of the forward. Hence if the maturity of the forward is
far into the future, the aggregated volatility will be relatively low if exercise of the
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option is close. The aggregated volatility is decreasing with an increasing speed of
mean reversion α.

Now we will consider a call option written on a swap contract. Suppose that
the delivery period is [τ1, τ2] , and consider the forward dynamics as considered in
subsection 6.4 given by

dF (t, τ1, τ2)

F (t, τ1, τ2)
=

p∑
k=1

Σk (t, τ1, τ2) dWk (t) .

Following the case of options on forwards, the following result is reached and the
proof is left as an exercise for the reader. (Hint: closely follow the proof from Prop.
(1))

Proposition 3. Suppose a call option written on a swap contract with delivery
period [τ1, τ2], has exercise time T ≤ τ1 and strike K. The option price at time t
is then given as

C (t;T,K, τ1, τ2) = e−r(T−t) {F (t, τ1, τ2) Φ (d1)−KΦ (d2)} ,

where

d1 = d2 +

√√√√ p∑
k=1

∫ T

t

Σ2
k (s, τ1, τ2) ds,

d2

ln (F (t, τ1, τ2) /K)− 1
2

∑p
k=1

∫ T
t

Σ2
k (s, τ1, τ2) ds√∑p

k=1

∫ T
t

Σ2
k (s, τ1, τ2) ds

.

The delta hedge of the option is given by

∆ (t;T,K, τ1, τ2) = e−r(T−t)Φ (d1) .

Where Φ is the cummulative standard normal probability distribution function.


