TRIAL EXAM SPRING 2018

MAT4770 \& MAT9770

Excercise 1

a. Define a CAR (p)-process X, for $p \geq 1$. Consider a p-dimensional stochastic process $\vec{Z}(t) \in \mathbb{R}^{p}$ s.t. has the following dynamics

$$
\begin{equation*}
d \vec{Z}(t)=A \vec{Z}(t) d t+\vec{e}_{p} \sigma d B(t) \tag{0.1}
\end{equation*}
$$

where
$A=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_{p} & -\alpha_{p-1} & -\alpha_{p-2} & \cdots & -\alpha_{1}\end{array}\right] \in M_{p \times p}(\mathbb{R}), \quad \alpha_{1}, \ldots, \alpha_{p}$ are all positive numbers,
$B(t)$ is a 1-dimensional Brownian motion in \mathbb{R},

$$
\vec{e}_{p}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \in M_{p \times 1}(\mathbb{R})
$$

We define the $\operatorname{CAR}(p)$-process as the stochastic process $\vec{X}(t)$ given by

$$
\begin{equation*}
\vec{X}(t)=\vec{e}_{1}^{T} \vec{Z}(t)=Z_{1}(t) \tag{0.2}
\end{equation*}
$$

b. Let a commodity price follow a $\operatorname{CAR}(p)$-process, that is $S(t)=X(t)$. Introduce a pricing measure $\mathbb{Q} \sim \mathbb{P}$ by using a constant market price of risk θ in Girsanov's Theorem. Derive the forward price $t \mapsto f(t, \tau), t \leq \tau$ for a contract delivering at time $\tau>0$. Analyse what happens with the forward price when $\tau \rightarrow \infty$ in view of properties of the $\operatorname{CAR}(p)$-process. By the arbitrage free-argument, we know the forward price $f(t, \tau)$ is given by the following expression known as the arbitrage free forward pricing formula

$$
\begin{equation*}
f(t, \tau)=\mathbb{E}_{\mathbb{Q}}\left[S(\tau) \mid \mathcal{F}_{t}\right] \tag{0.3}
\end{equation*}
$$

Date: 10th April 2019.

In order to compute this we first need to derive the risk-free dynamics for S, through Girsanov's Theorem. Notice $S(\tau)=X(\tau)$.

Theorem 1. (Girsanov's Theorem) Let $\theta \in \mathbb{R}$ and define forall $t \leq \tau, d W(t)=$ $d B(t)-\theta d t$ and $\mathcal{E}(t)=\exp \left\{\theta B(t)-\frac{1}{2} \theta^{2} t\right\}$.

If $t \mapsto \mathcal{E}(t) ; t \leq \tau$ is a martingale, then $\exists!\mathbb{Q} \sim \mathbb{P}$ such that $W(t)$ is a \mathbb{Q}-Brownian motion for $t \leq \tau$. Moreover

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}(t), \quad \forall t \leq \tau
$$

Now we know from Equation (0.1), that is the \mathbb{P}-dynamics of $\vec{Z}(t)$ and Girsanov's Theorem (1) we can write

$$
\begin{aligned}
d \vec{Z}(t) & =A \vec{Z}(t) d t+\vec{e}_{p} \sigma(d W(t)+\theta d t) \\
& =A \vec{Z}(t) d t+\sigma \theta \vec{e}_{p} d t+\sigma \vec{e}_{p} d W(t)
\end{aligned}
$$

In order to find the solution to this equation we consider the process $e^{-A t} \vec{Z}(t)$, then we know

$$
\begin{aligned}
d\left(e^{-A t} \vec{Z}(t)\right) & =-A e^{-A t} \vec{Z}(t) d t+e^{-A t} d \vec{Z}(t) \\
& =-A e^{-A t} \vec{Z}(t) d t+e^{-A t}\left[A \vec{Z}(t) d t+\sigma \theta \vec{e}_{p} d t+\sigma \vec{e}_{p} d W(t)\right] \\
& =e^{-A t} \vec{e}_{p} \sigma \theta d t+e^{-A t} \vec{e}_{p} \sigma d W(t)
\end{aligned}
$$

Now integrating in $[t, \tau]$ for all $t \leq \tau$ we have

$$
\begin{aligned}
\int_{t}^{\tau} d\left(e^{-A u} \vec{Z}(u)\right) & =\int_{t}^{\tau} e^{-A u} \vec{e}_{p} \sigma \theta d u+\int_{t}^{\tau} e^{-A u} \vec{e}_{p} \sigma d W(u), \\
e^{-A \tau} \vec{Z}(\tau) & =e^{-A t} \vec{Z}(t)+\int_{t}^{\tau} e^{-A u} \vec{e}_{p} \sigma \theta d u+\int_{t}^{\tau} e^{-A u} \vec{e}_{p} \sigma d W(u), \\
\vec{Z}(\tau) & =e^{A(\tau-t)} \vec{Z}(t)+\int_{t}^{\tau} e^{A(\tau-u)} \vec{e}_{p} \sigma \theta d u+\int_{t}^{\tau} e^{A(\tau-u)} \vec{e}_{p} \sigma d W(u) .
\end{aligned}
$$

Trivially by the definition of $\operatorname{CAR}(p)$-process we know that the risk-free dynamics for $\vec{X}(\tau)=e_{1}^{T} \vec{Z}(\tau)$, therefore we can write the forward using Equation (0.3) as follows.

$$
\begin{aligned}
f(t, \tau) & =\vec{e}_{1}^{T} \mathbb{E}_{\mathbb{Q}}\left[\vec{Z}(\tau) \mid \mathcal{F}_{t}\right] \\
& =\vec{e}_{1}^{T} e^{A(\tau-t)} \vec{Z}(t)+\sigma \theta \int_{t}^{\tau} \vec{e}_{1}^{T} e^{A(\tau-t)} \vec{e}_{p} d s
\end{aligned}
$$

Now we do a change of variables as follows to reexpress the previous equation

$$
f(t, \tau)=\vec{e}_{1}^{T} e^{A(\tau-t)} \vec{Z}(t)+\sigma \theta \int_{0}^{\tau-t} \vec{e}_{1}^{T} e^{A s} \vec{e}_{p} d s
$$

Where $\int_{0}^{\tau-t} \vec{e}_{1}^{T} e^{A s} \vec{e}_{p} d s=\vec{e}_{1}^{T} A^{-1}\left(e^{A(\tau-t)}-I d\right) \vec{e}_{p}$, as the expression is integrable given that A is always invertible. Note that matrix A has eigenvalues with negative real part $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ and eigenvectors $\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$ which form a basis.

$$
\vec{Z}(t)=\sum_{i=1}^{p} z_{i}(t) \vec{v}_{i} .
$$

Therefore we have

$$
\begin{aligned}
e^{A(\tau-t) \vec{Z}(t)} & =\sum_{i=1}^{p} z_{i}(t) e^{A(\tau-t)} \vec{v}_{i} \\
& =\sum_{i=1}^{p} z_{i}(t) e^{\lambda_{i}(\tau-t)} \vec{v}_{i} \\
& =\sum_{i=1}^{p} z_{i}(t) e^{\operatorname{Re}\left(\lambda_{i}\right)(\tau-t)} e^{i \operatorname{Im}\left(\lambda_{i}\right)(\tau-t)} \vec{v}_{i}
\end{aligned}
$$

Since the real part is negative we know that $e^{\operatorname{Re}\left(\lambda_{i}\right)(\tau-t)} \rightarrow 0$, when $\tau \rightarrow \infty$. Therefore we have

$$
\lim _{\tau \rightarrow \infty} \vec{e}_{1}^{T} e^{A(\tau-t)} \vec{Z}(t)=0
$$

Similarly

$$
\vec{e}_{1}^{T} A^{-1}\left(e^{A(\tau-t)}-I d\right) \vec{e}_{p} \xrightarrow{\tau \rightarrow \infty}-\vec{e}_{1}^{T} A^{-1} \vec{e}_{p} .
$$

Therefore we have that

$$
\lim _{\tau \rightarrow \infty} f(t, \tau)=-\sigma \theta \vec{e}_{1}^{T} A^{-1} \vec{e}_{p}
$$

this is in the long end we get a constant as $\tau \rightarrow \infty$.
c. Suppose the interest rate is zero, $r=0$. Consider a forward contract delivering the accumulated value of S over the period $\left[\tau_{1}, \tau_{2}\right]$, with $\tau_{2}>$ $\tau_{1}>0$. Derive an expression for the price $F\left(t, \tau_{1}, \tau_{2}\right), \quad t \leq \tau_{1}$. .

$$
F\left(t, \tau_{1}, \tau_{2}\right)=\mathbb{E}_{\mathbb{Q}}\left[\int_{\tau_{1}}^{\tau_{2}} S(u) d u \mid \mathcal{F}_{t}\right]
$$

by section (b) in this exercise we have

$$
\begin{aligned}
F\left(t, \tau_{1}, \tau_{2}\right)= & \int_{\tau_{1}}^{\tau_{2}} f(t, u) d u \\
= & \vec{e}_{1}^{T} \int_{\tau_{1}}^{\tau_{2}} e^{A(u-t)} d u \vec{Z}(t)+\sigma \theta \vec{e}_{1}^{T} A^{-1} \int_{\tau_{1}}^{\tau_{2}}\left(e^{A(u-t)}-I d\right) d u \vec{e}_{p} \\
= & \vec{e}_{1}^{T} A^{-1}\left(e^{A\left(\tau_{2}-t\right)}-e^{A\left(\tau_{1}-t\right)}\right) \vec{Z}(t) \\
& \quad+\sigma \theta \vec{e}_{1}^{T} A^{-1}\left(A^{-1}\left(e^{A\left(\tau_{2}-t\right)}-e^{A\left(\tau_{1}-t\right)}\right)-I d\left(\tau_{2}-\tau_{1}\right)\right) \vec{e}_{p} .
\end{aligned}
$$

d. Imagine that the temperature market trades a forward with "delivery" over the month of July (with forward price F_{J}), as well as four
weekly contracts "delivering" the first, second third and fourth week of July (with forward prices $F_{1}, F_{2}, F_{3}, F_{4}$). We assume that these four weeks cover exactly the month of July. By "delivery", we mean a stream of money matching the measured accumulated temperature over the period. Suppose that $F_{J}>F_{1}+F_{2}+F_{3}+F_{4}$. Show how you can create an arbitrage position. Does your model in 1c allow for such an arbitrage? If $F_{J}>F_{1}+F_{2}+F_{3}+F_{4}$ holds, then one can build the following arbitrage strategy.

- Today:
- Sell July forward contract F_{J} at $0 \$$
- Buy $F_{1}, F_{2}, F_{3}, F_{4}$ contracts at $0 \$$
- Total cost of investment: $0 \$$.
- July:
- Deliver July forward contract (income of $F_{J} \$$)
- Receive the weekly forward contracts and use them to deliver the July contract (outcome of $-\left(F_{1}+F_{2}+F_{3}+F_{4}\right) \$$)
- Total cost of investment: $F_{J}-\left(F_{1}+F_{2}+F_{3}+F_{4}\right)>0$. We have built an arbitrage strategy.
Our model in 1c does not allow arbitrage as we can split the integral $\int_{\tau_{1}}^{\tau_{2}} f(t, u) d u$ into 4 weeks.

Exercise 2

Let $I(t)$ be a compound Poisson process with jump intensity $\lambda=1$ and jump size distribution being exponential, with mean jumps equal to 1 .
a. On $0 \leq t \leq T<\infty$, define a probability $\mathbb{Q} \sim \mathbb{P}$ by the Esscher transform of I. What is the logarithm of the moment generating function of I with respect to \mathbb{Q}. Knowing that the jumps are still exponentially distributed under \mathbb{Q}, find the jump intensity and the mean jump size under \mathbb{Q}. Discuss, in terms of the market price of risk (i.e., the parameter in the Esscher transform), what happens with the mean jump size. Consider a CPP given by $I(t)=\sum_{k=1}^{N(t)} J_{k}, \lambda=1$, such that $J_{k} \sim \exp \{\lambda\}$. By the Esscher transform (always need to state conditions so that the Esscher transform is well defined) we have

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\exp \{\tilde{\theta} I(t)-\varphi(\tilde{\theta}) t\} ; \quad \varphi(\tilde{\theta})=\log \mathbb{E}\left[e^{\tilde{\theta} I(1)}\right]
$$

only defined for $\tilde{\theta}$'s where $\mathbb{E}\left[e^{\tilde{\theta} I(1)}\right]<+\infty$.

$$
\mathbb{E}\left[e^{\tilde{\theta} I(1)}\right]=\mathbb{E}\left[e^{\tilde{\theta} \sum_{k=1}^{N(1)} J_{k}}\right]
$$

$$
\begin{aligned}
& =\mathbb{E}\left[\mathbb{E}\left[e^{\tilde{\theta} \sum_{k=1}^{n} J_{k}} \mid N(1)=n\right]\right] \\
& =e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \mathbb{E}\left[e^{\tilde{\theta} J}\right]^{n} \\
& =\exp \left\{-\lambda+\lambda \mathbb{E}\left[e^{\tilde{\theta} J}\right]\right\}
\end{aligned}
$$

Now $\varphi(\tilde{\theta})=\lambda\left(\mathbb{E}\left[e^{\tilde{\theta} J}\right]-1\right)$ as long as $\mathbb{E}\left[e^{\tilde{\theta} J}\right]<+\infty$, but $\mathbb{E}\left[e^{\tilde{\theta} J}\right]=\int_{0}^{\infty} e^{\tilde{\theta} z} e^{-z} d z=$ $\frac{1}{1-\tilde{\theta}} ; \tilde{\theta}<1$. Thus when $\tilde{\theta}<1$ we have the Esscher transform is well defined.

We will now find the log-MGF of I w.r.t. \mathbb{Q}.

$$
\begin{aligned}
\varphi_{\mathbb{Q}}(x) & =\log \mathbb{E}_{\mathbb{Q}}\left[e^{x I(1)}\right] \\
& =\log \mathbb{E}\left[e^{x I(1)} e^{\tilde{\theta} I(1)-\varphi(\tilde{\theta})}\right] \\
& =\left(\log \mathbb{E}\left[e^{(x+\tilde{\theta}) I(1)}\right]\right)-\varphi(\tilde{\theta}) \\
& =\varphi(x+\tilde{\theta})-\varphi(\tilde{\theta}), \quad \text { when } x+\tilde{\theta}<1 \\
& =\lambda\left(\frac{x+\tilde{\theta}}{1-(x+\tilde{\theta})}-\frac{\tilde{\theta}}{1-\tilde{\theta}}\right) \\
& =\lambda \frac{x}{(1+\tilde{\theta})(1-\tilde{\theta}-x)} .
\end{aligned}
$$

If $J \sim \operatorname{Exp}\{\xi\}$, under \mathbb{Q}, then

$$
\begin{aligned}
\varphi_{\mathbb{Q}}(x) & =\lambda_{\mathbb{Q}} \frac{x}{\xi-x} ; \quad x<\xi \\
& =\lambda \frac{x}{(1-\tilde{\theta})(1-\tilde{\theta}-x)}
\end{aligned}
$$

Let $\xi=1-\tilde{\theta}$ and $\lambda_{\mathbb{Q}}=\frac{\lambda}{1-\theta}$. If $\tilde{\theta} \in(0,1) \Rightarrow$ increased mean jump size we get more frequent jumps. If $\tilde{\theta}<0 \Rightarrow$ we get smaller jumps on average and less frequent.
b. Define a spot price S with dynamics $S(t)=\exp (X(t)+Y(t))$, where Y has dynamics under \mathbb{P} given by

$$
d Y(t)=-b Y(t) d t-d I(t)
$$

and

$$
d X(t)=-\alpha X(t) d t+d B(t)
$$

Find the characteristic function of $X(t)+Y(t)$, and find its limit when $t \rightarrow \infty$. Notice the negative jumps in Y.

$$
\left\{\begin{array}{l}
X(t)=e^{-\alpha t} X(0)+\int_{0}^{t} e^{-\alpha(t-s)} d B(s) \\
Y(t)=e^{-b t} Y(0)-\int_{0}^{t} e^{-b(t-s)} d I(s)
\end{array}\right.
$$

Characteristic function of

$$
\begin{aligned}
X(t)+Y(t)= & \mathbb{E}\left[e^{i x(X(t)+Y(t))}\right] \\
= & \exp \left\{i x e^{-\alpha t} X(0)+i x e^{-b t} Y(0)\right\} \\
& \times \mathbb{E}\left[\exp \left\{i x \int_{0}^{t} e^{-\alpha(t-s)} d B(s)\right\}\right](*) \\
& \times \mathbb{E}\left[\exp \left\{i x \int_{0}^{t} e^{-b(t-s)} d I(s)\right\}\right](* *)
\end{aligned}
$$

where

$$
\int_{0}^{t} e^{-\alpha(t-s)} d B(s) \sim N\left(0, \int_{0}^{t} e^{-2 \alpha(t-s)} d s\right)
$$

and

$$
\begin{aligned}
(*) & =\exp \left\{-\frac{x^{2}}{4 \alpha}\left(1-e^{-2 \alpha t}\right)\right\} \xrightarrow{t \nearrow \infty} e^{-\frac{x^{2}}{4 \alpha}}, \\
(* *) \text { by }(\mathrm{a}) & =\exp \left\{\int_{0}^{t} \varphi\left(-i x e^{-b(t-s)}\right) d s\right\} \\
& =\exp \left\{\lambda \int_{0}^{t} \frac{-i x e^{-b s}}{1+i x e^{-b s}} d s\right\} \\
& =\exp \left\{\left.\frac{\lambda}{b} \ln \left(1+i x e^{-b s}\right)\right|_{s=0} ^{t}\right\} \\
& =\exp \left\{\frac{\lambda}{b} \ln \left(\frac{1+i x e^{-b x}}{1+i x}\right)\right\} \xrightarrow{t \nearrow \infty} e^{\frac{\lambda}{b} \ln \left(\frac{1}{1+i x}\right)} .
\end{aligned}
$$

Therefore

$$
\mathbb{E}\left[e^{i x(X(t)+Y(t))}\right] \xrightarrow{t \nearrow \infty} \exp \left\{-\frac{x^{2}}{4 \alpha}\right\} \frac{1}{(1+i x)^{\lambda / b}},
$$

where $\exp \left\{-\frac{x^{2}}{4 \alpha}\right\}$ is the normal distribution and $\frac{1}{(1+i x)^{\lambda / b}}$ is the Gamma distribution. So the product of the two distributions is somehow defining the characteristic function of the sum of the two random variables.
c. Derive the forward price $t \mapsto f(t, \tau)$ for $t \leq \tau$, for a forward contract delivering at time $\tau>0$. The market price of risk (the parameter in the Esscher transform) is set equal to $\tilde{\theta}=1$, while the market price of risk associated with X is $\hat{\theta}=0$ (you do no change of probability for X).

$$
\begin{aligned}
f(t, \tau)=\mathbb{E}_{\mathbb{Q}} & {\left[e^{X(\tau)+Y(\tau)} \mid \mathcal{F}_{t}\right] } \\
=\exp & \left\{e^{-\alpha(\tau-t)} X(t)+e^{-b(\tau-t)} Y(t)\right\} \\
& \times \mathbb{E}_{\mathbb{Q}}\left[e^{\int_{t}^{\tau} e^{-\alpha(\tau-s)} d B(s)}\right](*) \\
& \times \mathbb{E}_{\mathbb{Q}}\left[e^{-\int_{t}^{\tau} e^{-b(\tau-s)} d I(s)}\right](* *),
\end{aligned}
$$

where

$$
\begin{aligned}
(*) & =\exp \left\{\frac{1}{2} \int_{t}^{\tau} e^{-2 \alpha(\tau-s)} d s\right\} \\
(* *) & =\exp \left\{\int_{t}^{\tau} \varphi_{\mathbb{Q}}\left(-e^{-b(\tau-s)}\right) d s\right\} \\
& =\exp \left\{\int_{0}^{\tau-t}\left(\varphi\left(1-e^{-b s}\right)-\varphi(1)\right) d s\right\} .
\end{aligned}
$$

