TRIAL EXAM SPRING 2018

MAT4770 & MAT9770

Excercise 1

a. Define a CAR(p)-process X, for $p \ge 1$. Consider a p-dimensional stochastic process $\vec{Z}(t) \in \mathbb{R}^p$ s.t. has the following dynamics

(0.1)
$$d\vec{Z}(t) = A\vec{Z}(t) dt + \vec{e}_p \sigma dB(t),$$

where

 $A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_p & -\alpha_{p-1} & -\alpha_{p-2} & \cdots & -\alpha_1 \end{bmatrix} \in M_{p \times p} \left(\mathbb{R} \right), \qquad \alpha_1, \dots, \alpha_p \text{are all positive numbers,}$

B(t) is a 1-dimensional Brownian motion in \mathbb{R} ,

$$\vec{e}_{p} = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \in M_{p \times 1}\left(\mathbb{R}\right).$$

_ .

We define the CAR(p)-process as the stochastic process $\vec{X}(t)$ given by

(0.2)
$$\vec{X}(t) = \vec{e}_1^T \vec{Z}(t) = Z_1(t)$$

b. Let a commodity price follow a $\mathbf{CAR}(p)$ -process, that is S(t) = X(t). Introduce a pricing measure $\mathbb{Q} \sim \mathbb{P}$ by using a constant market price of risk θ in Girsanov's Theorem. Derive the forward price $t \mapsto f(t, \tau), t \leq \tau$ for a contract delivering at time $\tau > 0$. Analyse what happens with the forward price when $\tau \to \infty$ in view of properties of the $\mathbf{CAR}(p)$ -process. By the arbitrage free-argument, we know the forward price $f(t, \tau)$ is given by the following expression known as the arbitrage free forward pricing formula

(0.3)
$$f(t,\tau) = \mathbb{E}_{\mathbb{Q}}\left[S(\tau) \mid \mathcal{F}_t\right]$$

Date: 10th April 2019.

In order to compute this we first need to derive the risk-free dynamics for S, through Girsanov's Theorem. Notice $S(\tau) = X(\tau)$.

Theorem 1. (Girsanov's Theorem) Let $\theta \in \mathbb{R}$ and define for all $t \leq \tau$, $dW(t) = dB(t) - \theta dt$ and $\mathcal{E}(t) = \exp\left\{\theta B(t) - \frac{1}{2}\theta^2 t\right\}$.

If $t \mapsto \mathcal{E}(t)$; $t \leq \tau$ is a martingale, then $\exists ! \mathbb{Q} \sim \mathbb{P}$ such that W(t) is a \mathbb{Q} -Brownian motion for $t \leq \tau$. Moreover

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathcal{F}_{t}} = \mathcal{E}\left(t\right), \quad \forall t \leq \tau.$$

Now we know from Equation (0.1), that is the \mathbb{P} -dynamics of $\vec{Z}(t)$ and Girsanov's Theorem (1) we can write

$$\begin{split} d\vec{Z}\left(t\right) &= A\vec{Z}\left(t\right)dt + \vec{e}_p\sigma\left(dW\left(t\right) + \theta dt\right), \\ &= A\vec{Z}\left(t\right)dt + \sigma\theta\vec{e}_pdt + \sigma\vec{e}_pdW\left(t\right). \end{split}$$

In order to find the solution to this equation we consider the process $e^{-At}\vec{Z}(t)$, then we know

$$d\left(e^{-At}\vec{Z}\left(t\right)\right) = -Ae^{-At}\vec{Z}\left(t\right)dt + e^{-At}d\vec{Z}\left(t\right),$$

$$= -Ae^{-At}\vec{Z}\left(t\right)dt + e^{-At}\left[A\vec{Z}\left(t\right)dt + \sigma\theta\vec{e}_{p}dt + \sigma\vec{e}_{p}dW\left(t\right)\right],$$

$$= e^{-At}\vec{e}_{p}\sigma\theta dt + e^{-At}\vec{e}_{p}\sigma dW\left(t\right).$$

Now integrating in $[t, \tau]$ for all $t \leq \tau$ we have

$$\begin{split} \int_{t}^{\tau} d\left(e^{-Au}\vec{Z}\left(u\right)\right) &= \int_{t}^{\tau} e^{-Au}\vec{e}_{p}\sigma\theta du + \int_{t}^{\tau} e^{-Au}\vec{e}_{p}\sigma dW\left(u\right),\\ e^{-A\tau}\vec{Z}\left(\tau\right) &= e^{-At}\vec{Z}\left(t\right) + \int_{t}^{\tau} e^{-Au}\vec{e}_{p}\sigma\theta du + \int_{t}^{\tau} e^{-Au}\vec{e}_{p}\sigma dW\left(u\right),\\ \vec{Z}\left(\tau\right) &= e^{A\left(\tau-t\right)}\vec{Z}\left(t\right) + \int_{t}^{\tau} e^{A\left(\tau-u\right)}\vec{e}_{p}\sigma\theta du + \int_{t}^{\tau} e^{A\left(\tau-u\right)}\vec{e}_{p}\sigma dW\left(u\right). \end{split}$$

Trivially by the definition of $\operatorname{CAR}(p)$ –process we know that the risk-free dynamics for $\vec{X}(\tau) = e_1^T \vec{Z}(\tau)$, therefore we can write the forward using Equation (0.3) as follows.

$$\begin{split} f\left(t,\tau\right) &= \vec{e}_1^T \mathbb{E}_{\mathbb{Q}}\left[\vec{Z}\left(\tau\right) \mid \mathcal{F}_t\right] \\ &= \vec{e}_1^T e^{A(\tau-t)} \vec{Z}\left(t\right) + \sigma \theta \int_t^\tau \vec{e}_1^T e^{A(\tau-t)} \vec{e}_p ds. \end{split}$$

Now we do a change of variables as follows to reexpress the previous equation

$$f(t,\tau) = \vec{e}_1^T e^{A(\tau-t)} \vec{Z}(t) + \sigma \theta \int_0^{\tau-t} \vec{e}_1^T e^{As} \vec{e}_p ds.$$

Where $\int_0^{\tau-t} \vec{e}_1^T e^{As} \vec{e}_p ds = \vec{e}_1^T A^{-1} \left(e^{A(\tau-t)} - Id \right) \vec{e}_p$, as the expression is integrable given that A is always invertible. Note that matrix A has eigenvalues with negative real part $(\lambda_1, \ldots, \lambda_p)$ and eigenvectors $(\vec{v}_1, \ldots, \vec{v}_p)$ which form a basis.

$$\vec{Z}(t) = \sum_{i=1}^{p} z_i(t) \, \vec{v}_i.$$

Therefore we have

$$e^{A(\tau-t)}\vec{Z}(t) = \sum_{i=1}^{p} z_i(t) e^{A(\tau-t)} \vec{v}_i$$

= $\sum_{i=1}^{p} z_i(t) e^{\lambda_i(\tau-t)} \vec{v}_i$
= $\sum_{i=1}^{p} z_i(t) e^{Re(\lambda_i)(\tau-t)} e^{iIm(\lambda_i)(\tau-t)} \vec{v}_i.$

Since the real part is negative we know that $e^{Re(\lambda_i)(\tau-t)} \to 0$, when $\tau \to \infty$. Therefore we have

$$\lim_{\tau \to \infty} \vec{e}_1^T e^{A(\tau-t)} \vec{Z} \left(t \right) = 0.$$

Similarly

$$\vec{e}_1^T A^{-1} \left(e^{A(\tau-t)} - Id \right) \vec{e}_p \stackrel{\tau \to \infty}{\longrightarrow} -\vec{e}_1^T A^{-1} \vec{e}_p.$$

Therefore we have that

$$\lim_{d\to\infty} f(t,\tau) = -\sigma\theta \vec{e}_1^T A^{-1} \vec{e}_p,$$

this is in the long end we get a constant as $\tau \to \infty$.

c. Suppose the interest rate is zero, r = 0. Consider a forward contract delivering the accumulated value of S over the period $[\tau_1, \tau_2]$, with $\tau_2 > \tau_1 > 0$. Derive an expression for the price $F(t, \tau_1, \tau_2)$, $t \leq \tau_1$.

$$F(t,\tau_1,\tau_2) = \mathbb{E}_{\mathbb{Q}}\left[\int_{\tau_1}^{\tau_2} S(u) \, du \mid \mathcal{F}_t\right],$$

by section (b) in this exercise we have

$$\begin{split} F\left(t,\tau_{1},\tau_{2}\right) &= \int_{\tau_{1}}^{\tau_{2}} f\left(t,u\right) du \\ &= \vec{e}_{1}^{T} \int_{\tau_{1}}^{\tau_{2}} e^{A\left(u-t\right)} du \vec{Z}\left(t\right) + \sigma \theta \vec{e}_{1}^{T} A^{-1} \int_{\tau_{1}}^{\tau_{2}} \left(e^{A\left(u-t\right)} - Id\right) du \vec{e}_{p} \\ &= \vec{e}_{1}^{T} A^{-1} \left(e^{A\left(\tau_{2}-t\right)} - e^{A\left(\tau_{1}-t\right)}\right) \vec{Z}\left(t\right) \\ &+ \sigma \theta \vec{e}_{1}^{T} A^{-1} \left(A^{-1} \left(e^{A\left(\tau_{2}-t\right)} - e^{A\left(\tau_{1}-t\right)}\right) - Id\left(\tau_{2}-\tau_{1}\right)\right) \vec{e}_{p}. \end{split}$$

d. Imagine that the temperature market trades a forward with "delivery" over the month of July (with forward price F_J), as well as four

weekly contracts "delivering" the first, second third and fourth week of July (with forward prices F_1, F_2, F_3, F_4). We assume that these four weeks cover exactly the month of July. By "delivery", we mean a stream of money matching the measured accumulated temperature over the period. Suppose that $F_J > F_1 + F_2 + F_3 + F_4$. Show how you can create an arbitrage position. Does your model in 1c allow for such an arbitrage? If $F_J > F_1 + F_2 + F_3 + F_4$ holds, then one can build the following arbitrage strategy.

- Today:
 - Sell July forward contract F_J at 0\$
 - Buy F_1, F_2, F_3, F_4 contracts at 0\$
 - Total cost of investment: 0\$.
- July:
 - Deliver July forward contract (income of F_J \$)
 - Receive the weekly forward contracts and use them to deliver the July contract (outcome of $-(F_1 + F_2 + F_3 + F_4)$ \$)
 - Total cost of investment: $F_J (F_1 + F_2 + F_3 + F_4) > 0$. We have built an arbitrage strategy.

Our model in 1c does not allow arbitrage as we can split the integral $\int_{\tau_1}^{\tau_2} f(t, u) du$ into 4 weeks.

EXERCISE 2

Let I(t) be a compound Poisson process with jump intensity $\lambda = 1$ and jump size distribution being exponential, with mean jumps equal to 1.

a. On $0 \le t \le T < \infty$, define a probability $\mathbb{Q} \sim \mathbb{P}$ by the Esscher transform of *I*. What is the logarithm of the moment generating function of *I* with respect to \mathbb{Q} . Knowing that the jumps are still exponentially distributed under \mathbb{Q} , find the jump intensity and the mean jump size under \mathbb{Q} . Discuss, in terms of the market price of risk (i.e., the parameter in the Esscher transform), what happens with the mean jump size. Consider a CPP given by $I(t) = \sum_{k=1}^{N(t)} J_k$, $\lambda = 1$, such that $J_k \sim \exp{\{\lambda\}}$. By the Esscher transform (always need to state conditions so that the Esscher transform is well defined) we have

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathcal{F}_{t}} = \exp\left\{\tilde{\theta}I\left(t\right) - \varphi\left(\tilde{\theta}\right)t\right\}; \qquad \varphi\left(\tilde{\theta}\right) = \log\mathbb{E}\left[e^{\tilde{\theta}I(1)}\right],$$

only defined for $\tilde{\theta}$'s where $\mathbb{E}\left[e^{\tilde{\theta}I(1)}\right] < +\infty$. $\mathbb{E}\left[e^{\tilde{\theta}I(1)}\right] = \mathbb{E}\left[e^{\tilde{\theta}\sum_{k=1}^{N(1)}J_k}\right]$ TRIAL EXAM SPRING 2018

$$= \mathbb{E}\left[\mathbb{E}\left[e^{\tilde{\theta}\sum_{k=1}^{n}J_{k}} \mid N\left(1\right) = n\right]\right]$$
$$= e^{-\lambda}\sum_{n=0}^{\infty}\frac{\lambda^{n}}{n!}\mathbb{E}\left[e^{\tilde{\theta}J}\right]^{n}$$
$$= \exp\left\{-\lambda + \lambda\mathbb{E}\left[e^{\tilde{\theta}J}\right]\right\}.$$

Now $\varphi\left(\tilde{\theta}\right) = \lambda\left(\mathbb{E}\left[e^{\tilde{\theta}J}\right] - 1\right)$ as long as $\mathbb{E}\left[e^{\tilde{\theta}J}\right] < +\infty$, but $\mathbb{E}\left[e^{\tilde{\theta}J}\right] = \int_0^\infty e^{\tilde{\theta}z} e^{-z} dz = \frac{1}{1-\tilde{\theta}}$; $\tilde{\theta} < 1$. Thus when $\tilde{\theta} < 1$ we have the Esscher transform is well defined.

We will now find the log-MGF of I w.r.t. \mathbb{Q} .

$$\begin{split} \varphi_{\mathbb{Q}}\left(x\right) &= \log \mathbb{E}_{\mathbb{Q}}\left[e^{xI(1)}\right] \\ &= \log \mathbb{E}\left[e^{xI(1)}e^{\tilde{\theta}I(1)-\varphi\left(\tilde{\theta}\right)}\right] \\ &= \left(\log \mathbb{E}\left[e^{\left(x+\tilde{\theta}\right)I(1)}\right]\right) - \varphi\left(\tilde{\theta}\right) \\ &= \varphi\left(x+\tilde{\theta}\right) - \varphi\left(\tilde{\theta}\right), \quad \text{when } x+\tilde{\theta} < 1 \\ &= \lambda \left(\frac{x+\tilde{\theta}}{1-\left(x+\tilde{\theta}\right)} - \frac{\tilde{\theta}}{1-\tilde{\theta}}\right) \\ &= \lambda \frac{x}{\left(1+\tilde{\theta}\right)\left(1-\tilde{\theta}-x\right)}. \end{split}$$

If $J \sim \text{Exp} \{\xi\}$, under \mathbb{Q} , then

$$\varphi_{\mathbb{Q}}(x) = \lambda_{\mathbb{Q}} \frac{x}{\xi - x}; \qquad x < \xi$$
$$= \lambda \frac{x}{\left(1 - \tilde{\theta}\right) \left(1 - \tilde{\theta} - x\right)}$$

Let $\xi = 1 - \tilde{\theta}$ and $\lambda_{\mathbb{Q}} = \frac{\lambda}{1-\theta}$. If $\tilde{\theta} \in (0,1) \Rightarrow$ increased mean jump size we get more frequent jumps. If $\tilde{\theta} < 0 \Rightarrow$ we get smaller jumps on average and less frequent.

b. Define a spot price S with dynamics $S(t) = \exp(X(t) + Y(t))$, where Y has dynamics under \mathbb{P} given by

$$dY(t) = -bY(t) dt - dI(t),$$

and

$$dX(t) = -\alpha X(t) dt + dB(t).$$

Find the characteristic function of X(t) + Y(t), and find its limit when $t \to \infty$. Notice the negative jumps in Y.

$$\begin{cases} X(t) = e^{-\alpha t} X(0) + \int_0^t e^{-\alpha(t-s)} dB(s), \\ Y(t) = e^{-bt} Y(0) - \int_0^t e^{-b(t-s)} dI(s). \end{cases}$$

Characteristic function of

$$X(t) + Y(t) = \mathbb{E}\left[e^{ix(X(t)+Y(t))}\right]$$

= exp { $ixe^{-\alpha t}X(0) + ixe^{-bt}Y(0)$ }
 $\times \mathbb{E}\left[\exp\left\{ix\int_{0}^{t}e^{-\alpha(t-s)}dB(s)\right\}\right](*)$
 $\times \mathbb{E}\left[\exp\left\{ix\int_{0}^{t}e^{-b(t-s)}dI(s)\right\}\right](**)$

where

$$\int_0^t e^{-\alpha(t-s)} dB(s) \sim N\left(0, \int_0^t e^{-2\alpha(t-s)} ds\right),$$

and

$$\begin{aligned} (*) &= \exp\left\{-\frac{x^2}{4\alpha}\left(1 - e^{-2\alpha t}\right)\right\} \stackrel{t \not\to \infty}{\longrightarrow} e^{-\frac{x^2}{4\alpha}},\\ (**) \text{ by } (\mathbf{a}) &= \exp\left\{\int_0^t \varphi\left(-ixe^{-b(t-s)}\right) ds\right\}\\ &= \exp\left\{\lambda \int_0^t \frac{-ixe^{-bs}}{1 + ixe^{-bs}} ds\right\}\\ &= \exp\left\{\frac{\lambda}{b}\ln\left(1 + ixe^{-bs}\right) \mid_{s=0}^t\right\}\\ &= \exp\left\{\frac{\lambda}{b}\ln\left(\frac{1 + ixe^{-bx}}{1 + ix}\right)\right\} \stackrel{t \not\to \infty}{\longrightarrow} e^{\frac{\lambda}{b}\ln\left(\frac{1}{1 + ix}\right)}.\end{aligned}$$

Therefore

$$\mathbb{E}\left[e^{ix(X(t)+Y(t))}\right] \xrightarrow{t \nearrow \infty} \exp\left\{-\frac{x^2}{4\alpha}\right\} \frac{1}{(1+ix)^{\lambda/b}},$$

where $\exp\left\{-\frac{x^2}{4\alpha}\right\}$ is the normal distribution and $\frac{1}{(1+ix)^{\lambda/b}}$ is the Gamma distribution. So the product of the two distributions is somehow defining the characteristic function of the sum of the two random variables.

c. Derive the forward price $t \mapsto f(t,\tau)$ for $t \leq \tau$, for a forward contract delivering at time $\tau > 0$. The market price of risk (the parameter in the Esscher transform) is set equal to $\tilde{\theta} = 1$, while the market price of risk associated with X is $\hat{\theta} = 0$ (you do no change of probability for X).

$$\begin{split} f\left(t,\tau\right) &= \mathbb{E}_{\mathbb{Q}}\left[e^{X(\tau)+Y(\tau)} \mid \mathcal{F}_{t}\right] \\ &= \exp\left\{e^{-\alpha(\tau-t)}X\left(t\right) + e^{-b(\tau-t)}Y\left(t\right)\right\} \\ &\quad \times \mathbb{E}_{\mathbb{Q}}\left[e^{\int_{t}^{\tau} e^{-\alpha(\tau-s)}dB(s)}\right](*) \\ &\quad \times \mathbb{E}_{\mathbb{Q}}\left[e^{-\int_{t}^{\tau} e^{-b(\tau-s)}dI(s)}\right](**) \,, \end{split}$$

where

$$\begin{aligned} (*) &= \exp\left\{\frac{1}{2}\int_{t}^{\tau} e^{-2\alpha(\tau-s)}ds\right\},\\ (**) &= \exp\left\{\int_{t}^{\tau}\varphi_{\mathbb{Q}}\left(-e^{-b(\tau-s)}\right)ds\right\}\\ &= \exp\left\{\int_{0}^{\tau-t}\left(\varphi\left(1-e^{-bs}\right)-\varphi\left(1\right)\right)ds\right\}.\end{aligned}$$