
Weather markets Models Empirical analysis

Weather Derivatives: Modeling and Pricing

Fred Espen Benth

University of Oslo

MAT4770 Energy stochastics, January 2018



Weather markets Models Empirical analysis

The temperature market
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The temperature market

• Chicago Mercantile Exchange (CME) organizes trade in
temperature derivatives:

• Futures contracts on weekly, monthly and seasonal
temperatures

• European call and put options on these futures

• Contracts on several US, Canadian, Japanese and European
cities
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HDD, CDD and CAT

• HDD (heating-degree days) over a period [τ1, τ2]∫ τ2

τ1

max (18− T (u), 0) du

• HDD is the accumulated degrees when temperature T (u) is
below 18◦C

• CDD (cooling-degree days) is correspondingly the
accumulated degrees when temperature T (u) is above 18◦C

• CAT = cumulative average temperature
• Average temperature here meaning the daily average∫ τ2

τ1

T (u) du
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At the CME...

• Futures written on HDD, CDD, and CAT as index

• HDD and CDD is the index for US temperature futures
• CAT index for European temperature futures, along with HDD

and CDD

• Discrete (daily) measurement of HDD, CDD, and CAT

• All futures are cash settled

• 1 trade unit=20 Currency (trade unit being HDD, CDD or
CAT)

• Currency equal to USD for US futures and GBP for European

• Call and put options written on the different futures
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The wind market

• The US Futures Exchange launched wind futures and options
summer 2007

• Futures on a wind speed index (Nordix) in two wind farm
areas

• Texas and New York
• Texas divided into 2 subareas, New York into 3

• The Nordix index aggregates the daily deviation from a 20
year mean over a specified period

• Benchmarked at 100

• Futures are settled against this index
• European calls and puts written on these futures
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• Formal definition of the index:

N(τ1, τ2) = 100 +

τ2∑
s=τ1

W (s)− w20(s)

• W (s) is the wind speed on day s
• Daily average wind speed
• Typically measured at specific hours during a day

• w20(s) is the 20-year average wind speed for day s

• [τ1, τ2] measurement period, typically a month or a season
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Stochastic models for temperature and wind
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A continuous-time AR(p)-process

• Dynamics of daily average wind and temperatures are
well-described by autoregressive time series models
(AR-models)

• Purpose of pricing derivatives: continuous-time model
• Futures prices vary over the day.....

• Define the Ornstein-Uhlenbeck process X(t) ∈ Rp

dX(t) = AX(t) dt + epσ(t) dB(t) ,

• ek : k ’th unit vector in Rp, σ(t) “volatility”

• A: p × p-matrix

A =

[
0 I
−αp · · · −α1

]
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• Explicit solution of X(s), given X(t):

X(s) = exp (A(s − t))X(t)+

∫ s

t
exp (A(s − u)) epσ(u) dB(u) ,

• Define a continuous-time AR(p)-process as

X1(t) = e′1X(t)

• Basic buidling blocks for describing the temperature and wind
dynamics

• Named a CAR(p)-process
• Subclass of the CARMA(p, q)-processes
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Why is X1 a CAR(p) process?

• Consider p = 3

• Do an Euler approximation of the X(t)-dynamics with time
step 1

• Substitute iteratively in X1(t)-dynamics
• Use B(t + 1)− B(t) = ε(t)

• Resulting discrete-time dynamics

X1(t + 3) ≈ (3− α1)X1(t + 2) + (2α1 − α2 − 1)X1(t + 1)

+ (α2 − 1 + (α1 + α3))X1(t) + σ(t)ε(t) .
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• Empirical analysis suggests the following models for
temperature and wind:

• Temperature dynamics T (t) defined as

T (t) = Λ(t) + X1(t)

• Wind dynamics W (t) defined as (Box-Cox transform)

W (t) =

{
(λ(Λ(t) + X1(t)) + 1)1/λ , λ 6= 0
exp (Λ(t) + X1(t)) , λ = 0

• Λ(t) seasonality function



Weather markets Models Empirical analysis

Empirical analysis of temperature and wind data
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Empirical study of Stockholm temperature data

• Daily average temperatures from 1 Jan 1961 till 25 May 2006
• 29 February removed in every leap year
• 16,570 recordings

• Last 11 years snapshot with seasonal function
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• Fitting of model goes stepwise:

1. Fit seasonal function Λ(t) with least squares
2. Fit AR(p)-model on deseasonalized temperatures
3. Fit seasonal volatility σ(t) to residuals
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1. Seasonal function

• Suppose seasonal function with trend

Λ(t) = a0 + a1 t + a2 cos (2π(t − a3)/365)

• Use least squares to fit parameters
• May use higher order truncated Fourier series

• Estimates: a0 = 6.4, a1 = 0.0001, a2 = 10.4, a3 = −166
• Average temperature increases over sample period by 1.6◦C



Weather markets Models Empirical analysis

2. Fitting an auto-regressive model

• Remove the effect of Λ(t) from the data

Yi := T (i)− Λ(i) , i = 0, 1, . . .

• Claim that AR(3) is a good model for Yi :

Yi+3 = β1Yi+2 + β2Yi+1 + β3Yi + σiεi ,
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• The partial autocorrelation function for the data suggests
AR(3)

• Estimates β1 = 0.957, β2 = −0.253, β3 = 0.119 (significant at
1% level)

• R2 is 94.1% (higher-order AR-models did not increase R2

significantly)
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3. Seasonal volatility

• Consider the residuals from the AR(3) model

• Close to zero ACF for residuals

• Highly seasonal ACF for squared residuals
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• Suppose the volatility is a truncated Fourier series

σ2(t) = c +
4∑

i=1

ci sin(2iπt/365) +
4∑

j=1

dj cos(2jπt/365)

• This is calibrated to the daily variances
• 45 years of daily residuals
• Line up each year next to each other
• Calculate the variance for each day in the year
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• A plot of the daily empirical variance with the fitted squared
volatility function

• High variance in winter, and early summer

• Low variance in spring and late summer/autumn

• Same observation for other cities (Berlin, US, Norway,
Lithuania)
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• Dividing out the seasonal volatility from the regression
residuals

• ACF for squared residuals non-seasonal
• ACF for residuals unchanged
• Residuals become (close to) normally distributed
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• Conclusion: fitted an AR(3)-model with seasonal variance to
deseasonalized daily temperatures

• Apply the link between CAR(3) and AR(3) to derive the
continuous-time parameters α1, α2 and α3

α1 = 2.043, α2 = 1.339, α3 = 0.177

• Seasonality Λ and variance σ given

• The fitted CAR(3)-model is stationary (to a normal
distribution)

• Eigenvalues of A have negative real parts
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Empirical study of New York wind speed data

• Daily average wind speed data from New York wind farm
region 1 from Jan 1 1987 till Sept 7 2007.

• 7,550 daily recordings, after leap year data were removed

• Figure shows 5 years from 1987
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• Fitting wind speed model to data follows (almost) the same
scheme as temperature

1. Transform data to symmetrize
2. Fit seasonal function
3. Find AR(p)-model to deseasonalized data
4. Find volatility structure of residuals
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1. Symmetrization of data

• Wind speed histogram (left), Box-Cox power transformed
speeds (right) with λ̂ = 0.2

• Box-Cox transform

y (λ) =

{
yλ−1
λ , λ 6= 0

ln y , λ = 0
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2. Seasonal function

• Seasonality function with annual and biannual periodicity

Λ(t) = a0 + a1 cos(2πt/365) + a2 sin(2πt/365) + a3 cos(4πt/365)

+ a4 sin(4πt/365)

• Nonlinear least squares (using matlab) on transformed data
gives

a0 = 1.91, a1 = 0.26, a2 = 0.08, a3 = −0.04, a4 = −0.07
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• Consider the ACF before and after estimated seasonality has
been removed

• We see (right plot) that the ACF of deseasonalized data does
not show any periodic pattern
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3. Fitting an AR(p)-model

• Partial ACF for deseasonalized data suggests a higher-order
AR(MA) structure

• AR(4) best according to Akaike’s Information Criterion
• ...best among ARMA(p ≤ 5, q ≤ 5)
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• Estimated regression parameters in the AR(4) model

zt = β1zt−1 + β2zt−2 + β3zt−3 + β4zt−4

β1 = 0.355, β2 = −0.104, β3 = 0.010, β4 = 0.027

• All except β3 are found to be significant
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4. Volatility structure

• Estimated daily empirical variance, and fitted a truncated
Fourier series

• ...as for temperature

σ2(t) = c0 +
3∑

k=1

ck cos(2πkt/365)
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• Fitting using (nonlinear) least squares in Matlab

• Estimated parameters

c0 = 0.208, c1 = 0.033, c2 = −0.019, c3 = −0.010

• Note:

• Wind variance goes down in summer, temperature goes up
• High in spring and autumn, where it is low for temperature
• Temperature high variance in winter
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Relation to CAR(4)-model X1(t)

• Using Euler approximation on dynamics of X1(t)

X1(t) ≈ (4− α1)X1(t − 1) + (3α1 − α2 − 6)X1(t − 2)

+ (4 + 2α2 − α3 − 3α1)X1(t − 3)

+ (α3 − α4 − α2 + α1 − 1)X1(t − 4)

• Knowing the β’s yield

α1 = 3.645, α2 = 5.039, α3 = 3.133, α4 = 0.712

• Eigenvalues of A have negative real part, thus stationary
dynamics
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