Lecture 4. Exercise 1
Let

$$
\begin{aligned}
& d X_{t}=a_{t} X_{t} d t+b t d w_{t} \\
& d X_{t}=A_{t} X_{t} d t+B t d V_{t}
\end{aligned}
$$

x_{0}, x_{0} indegendent of W, V, and all x carfficient, a, d, A, B keing detenministic.
Asunve klet X_{0}, Y_{0} are iuch 从let $\hat{E}\left[X_{0} \mid y_{0}\right]=0$ Pal. then $E\left[X_{t}\right)=0$ and $\hat{E}\left[X_{t}\left(Y_{0}\right]=0 \quad P_{(a,)}\right.$.
Let $z_{t}=\exp \left\{\int_{0}^{t} c_{s} d s\right\}$, then $d z_{t}=c_{t} z_{t} d t$, $d\langle X, z\rangle_{t} \equiv 0$ and

$$
\begin{aligned}
d\left(x_{t} z_{k}\right) & =x_{t} d z_{t}+z_{t} d x_{t}+d\langle x, z)_{k} \\
& =x_{t} c_{t} z_{t} d t+z_{t} a t x_{t} d t+z_{t} b_{k} d w_{t} \\
& =z_{*} b_{t} d w_{t}
\end{aligned}
$$

$c_{t}: \uparrow=-a t \quad\left(\right.$ ct andiluy fundiaar ir $L^{1}([0, T])$

$$
\begin{aligned}
\Rightarrow X_{1} z_{k} & =x_{0} z_{0}+\int_{0}^{t} z_{s} b s d w_{s} \\
X_{t} & =X_{0} z_{t}^{-1}+\int_{0}^{1} \frac{z_{s}}{z_{k}} b s d w_{s}
\end{aligned}
$$

By the preqution of the atte ganal pajection we

$$
\hat{E}\left[x_{k} \mid y_{0}\right]=0 \Rightarrow E\left[x_{*}\right]=0
$$

sirce

$$
E\left[x_{*}\right]=E\left[\frac{\left.\hat{E}\left[x_{*} \mid y_{*}\right]\right]}{\dddot{c}}=0\right.
$$

On the otle bard, we tave tlet

$$
\begin{aligned}
\hat{E}\left[x_{t} \mid y_{0}\right] & =\hat{E}\left[x_{0} t_{t}^{-2} \mid y_{0}\right]+\hat{E}\left[\left.\left.\right|_{0} ^{+} \frac{z_{1}}{z_{t}} \operatorname{br} d w_{,} \right\rvert\, y_{0}\right] \\
& =(1)+(2)
\end{aligned}
$$

(1)

$$
\hat{E}\left[x_{c} z_{t}^{2} \mid x_{0}\right]=z_{k}^{-L} \underbrace{\hat{E} \text { By a mmoplion }}_{\because \quad}\left[x_{0} \mid y_{0}\right]=0
$$

(2) We will have tlet $\int_{0}^{1} \frac{z_{1}}{z_{t}} b_{1} d w_{s} \perp h^{y_{0}}$

$$
\Rightarrow E\left[\left.\int_{0}^{A} \frac{z_{s}}{z_{k}} b_{1} d w_{,} \right\rvert\, y_{c}\right] \equiv c
$$

We have thet

$$
\begin{aligned}
& E\left[\left(\int_{0}^{t} \frac{z_{j}}{z_{k}} l, d w_{2}\right)\left(c_{0}+c_{2} y_{0}\right)\right]= \\
& =E\left[\int_{0}^{+} \frac{z_{3}}{z_{k}} d s d W_{1}\right] E\left[c_{0}+c_{2} y_{0}\right]=0
\end{aligned}
$$

$\int_{0}^{E x} I t z$ inlegal las O expectation

$$
\Rightarrow \int_{0}^{1} \frac{z_{3}}{z_{t}} \operatorname{los} d x_{1} \perp f^{1 / 0}
$$

