Leclme 4. Exercive 2
Shaw thel the innaration pracels

$$
\bar{W}_{t}=\int_{0}^{*} \frac{1}{B_{s}}\left(d y_{s}-A_{s} \hat{x}_{s} d s\right)
$$

Saliifies
a) $\hat{E}\left[\bar{W}_{*} \mid f^{y},\right]=\bar{W}_{s}$
b) $E\left[\left(\bar{w}_{t}-\bar{w}_{s}\right)^{2}\right]=t-s$
c) Derive lle Kolmarn-Bucy equationt alluming thet \bar{W} is a Wiores pracell (in Me wide lerke) and wet $\widehat{E}\left[x_{t} \mid f_{k}^{y}\right]=\int_{0}^{t} \Gamma(1,1) d \bar{W}_{s}$ far some $\Gamma(t, 1)$. (Tas lang)
We are aluming the madel

$$
\begin{array}{ll}
d X_{t}=a t X_{t} d t+b t d W_{t} & V \text { and } W \text { dve } \\
d X_{t}=A+X_{t} d t+B_{t} d V_{t} & \text { indep. } B \cdot m .
\end{array}
$$

Find rate tlat

$$
\begin{aligned}
\bar{W}_{t} & =\int_{0}^{t} \frac{1}{B_{s}}\left(d y_{s}-A_{s} \hat{x}_{s} d_{s}\right) \\
& =\int_{0}^{t} \frac{1}{B_{s}}\left\{d y_{s}-A_{s} x_{s} d s-A_{s}\left(\hat{x}_{s}-x_{s}\right) d s\right\} \\
& =V_{t}+\int_{0}^{t} \frac{A_{s}}{B_{s}}\left(x_{s}-\hat{x}_{s}\right) d s
\end{aligned}
$$

ar

$$
\bar{W}_{k}-\bar{W}_{s}=V_{t}-V_{s}+\int_{s}^{t} \frac{A_{n}}{B_{n}}\left(X_{n}-\hat{x}_{n}\right) d u
$$

Mareaven,
$E\left[x_{\mu}-\hat{x}_{r} \mid h_{\mu}^{y}\right] \equiv 0 \quad$ by the definition of allogand projedion and using the tavern law far artlagonal prajedion we get

$$
\begin{aligned}
& \hat{E}\left[\left.\int_{s}^{*} \frac{A_{n}}{B_{n}}\left(x_{n}-\hat{x}_{n}\right) d n \right\rvert\, \hat{h}_{s}^{y}\right] \\
= & \hat{E}\left[\int_{0}^{t} \frac{A_{r}}{B_{n}} \frac{\hat{E}\left[x_{n}-\hat{x}_{r} \mid f_{n}^{y}\right]}{c_{c}^{\prime \prime}}\right.
\end{aligned}
$$

a)

$$
\begin{gathered}
\hat{E}\left[\bar{w}_{*} \mid h^{y} s\right]=\bar{w}_{s} \Leftrightarrow \hat{E}\left[\bar{w}_{t}-\bar{w}_{s} \mid f_{s}^{y}\right]=0 \\
\text { linearity of } \hat{E}\left[\cdot\left[f_{s}^{\prime}\right]\right. \text { and } \\
\bar{w}_{s} \in \mathcal{L}_{s}^{y}
\end{gathered}
$$

By the puliminery reasoning l be love Met

$$
\hat{E}\left[\bar{w}_{t}-\bar{w}_{s} \mid \mathfrak{k}_{s}^{y}\right]=E\left[v_{k}-V_{s} \mid h_{s}^{y}\right]
$$

Nave, far org nav. t, ae love plat
therefore, we only meed to clech that

$$
\begin{aligned}
& E\left[\int_{0}^{s} \lambda_{n} d y_{m}\left(V_{k}-V_{s}\right)\right]=0 \quad \forall \lambda \in L^{\infty}([0,5]) . \\
& -E\left[\int_{0}^{3} \lambda_{n} d y_{m}\left(V_{k}-V_{s}\right)\right]=E\left[\int_{0}^{s} \lambda_{m} A_{m} X_{m} d_{n}\left(V_{k}-V_{s}\right)\right] \\
& +E\left[\int_{0}^{5} \lambda_{m} B_{n} d V_{m}\left(V_{k}-V_{s}\right)\right]=(1)+(0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) }=E\left[\int_{0}^{1} \lambda_{n} B_{m} d V_{\mu} E\left[V_{k}-y /\left.\right|_{0} ^{v}\right]=0\right.
\end{aligned}
$$

b) We have Met

$$
\left.E\left[\left(\bar{w}_{*}-\bar{w}_{s}\right)^{2}\right]=E\left[\left(\bar{w}_{k}\right)^{2}\right]-2 E\left[\bar{w}_{k} \bar{w}_{s}\right]+E\left(\bar{w}_{s}\right)\right]
$$

and

$$
E\left[\bar{w}_{*} \bar{w}_{s}\right]=E\left(\left(\bar{w}_{t}-\bar{w}_{s}\right) \bar{w}_{s}\right]+E\left[\bar{w}_{s}^{2}\right] .
$$

Hence,

$$
E\left[\left(\bar{w}_{t}-\bar{w}_{s}\right)^{2}\right]=E\left[\left(\bar{w}_{k}\right)^{2}\right]-E\left[\left(\bar{w}_{s}\right)^{2}\right]-2 E\left[\left(\bar{w}_{k}-\bar{w}_{s}\right) \bar{w}_{s}\right]
$$

and the vemll follaces of ve pare llat
(a) $E\left[\left(\bar{w}_{k}\right)^{2}\right]=t$
(b) $E\left[\left(\bar{w}_{t}-\bar{w}_{s}\right) \bar{w}_{s}\right]=0$

Since $\bar{w}_{s} \in h^{\prime}$, (e) fellams form the prof of a) whe we harve laver the $\bar{w}_{A}-\bar{w}_{1} \perp h^{y}$,
(a) Nate tlet \bar{W}_{A} is a renarratiingel (ar on H_{i} procenl will differatial

$$
\begin{aligned}
& d \bar{W}_{k}=d V_{t}+\frac{A_{t}}{B_{t}}\left(X_{k}-\hat{X}_{k}\right) d t \\
& \text { and } d\langle\bar{W}\rangle_{t}=d\langle V\rangle_{t}=d t
\end{aligned}
$$

Hence, by inleguetion ly parti

$$
\begin{aligned}
d \bar{w}_{*}^{2} & =2 \bar{w}_{k} d \bar{w}_{t}+d\langle\bar{w})_{t} \\
& =2 \bar{w}_{*} d \bar{w}_{t}+d t
\end{aligned}
$$

since \bar{w}_{t} has artlagend incoument,
$E\left[\int_{0}^{t} \bar{W}_{s} d \bar{W}_{s}\right]=0$ (Dinuti.ee the indegl) and werecon conclude that $E\left[\bar{W}_{A}^{2}\right]=t$.

