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To pass the assignment you need a score of at least 50p. All questions have equal

weight.

Problem 1. Describe the setup seen in class for the linear filtering problem in

discrete time and its solution. That is, provide the assumptions on the signal and

observation process as well as the Kalman-Bucy filter.

Problem 2. (taken from R. Kalman [1]) A number of particles leaves the origin at

time j = 0 with random velocities; after j = 0, each particle moves with a constant

(unknown velocity). Suppose that the position of one of these particles is measured,

the data being contaminated by stationary, additive, correlated noise. What is the

optimal estimate of the position and velocity of the particle at the time of the last

measurement ? Let x1(j) be the position and x2(j) the velocity of the particle;

x3(j) is the noise. The problem is then represented by the model:

x1(j + 1) = x1(j) + x2(j),

x2(j + 1) = x2 (j) ,

x3 (j + 1) = Ïx3 (j) + u (j) ,

y (j) = x1 (j) + x3 (j) ,

and the additional conditions

E
Ë
x2

1(0)

È
= E [x2(0)] = 0, E [x2(0)] = a2 > 0.

E [u (j)] = 0, E
Ë
u2

(j)

È
= b2 > 0.

1. Derive the Kalman-Bucy filter equations for the signal

Xj = (x1 (j) , x2 (j) , x3 (j))
T .

2. Derive the Kalman-Bucy filter equations for the signal

Xj = (x2 (j) , x3 (j))
T ,

using the obvious relation x1 (j) = jx2 (j) = jx2 (0) .

3. Solve the Riccati equation from 2. explicitly.

4. Show that for Ï ”= 1 (both |Ï| < 1 and |Ï| > 1), the mean square errors of

the velocity and position estimates converge to 0 and b2
respectively. Find

the convergence rate for the velocity error.

5. Show that for Ï = 1 the mean square error for the estimate of the position

diverges.

1



6. Define the new observation sequence

”y(j + 1) = y(j + 1) ≠ Ïy(j), j Ø 0

and ”y (0) = y (0). Then,

span {”y (j) , 0 Æ j Æ n} = span {y (j) , 0 Æ j Æ n} .

Derive the Kalman-Bucy filter for the signal Xj = x2 (j) and observations

”yj. Verify your answer in 5.

Problem 3. Consider a signal/observation pair (◊, ›j)jØ1, where ◊ is a random

variable distributed uniformly on [0, 1] and (›j) is a sequence generated by:

›j = ◊Uj,

where U = (Uj)jØ1 is a sequence of i.i.d. random variables with uniform distribution

on [0, 1]. ◊ and U are independent.

1. Consider the recursive filtering estimate

1
◊̃j

2

jØ0
defined by

◊̃j = max

1
◊̃j≠1, ›j

2
, ◊̃0 = 0.

Find the corresponding mean square error, Qj = E
51

◊ ≠ ◊̃j

226
.

2. Show that Qj converges to 0 and find the rate of convergence, that is, find

r (j) such that limjæŒ r (j) Qj exists, is finite and positive.

3. Find the optimal estimate ◊̄ = E
Ë
◊| F ›

j

È
.

[1] R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems,

Trans. ASME Ser. D. J. Basic Engrg. 82 1960 35–45.
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Solution Problem 1

We consider a pair of processes (X, Y ) = (Xj, Yj)jØ0 , generated by the linear

recursive equations

Xj = a0 (j) + a1 (j) Xj≠1 + a2 (j) Yj≠1 + b1 (j) Áj + b2 (j) ›j, (1)

Yj = A0 (j) + A1 (j) Xj≠1 + A2 (j) Yj≠1 + B1 (j) Áj + B2 (j) ›j, (2)

where

• Xj and Yj has values in Rm
and Rn

, respectively.

• Á = (Áj)jØ1 and (›j)jØ1 are orthogonal discrete time white noises with values

in Rl
and Rk

. That is,

E [Áj] = 0, E
Ë
ÁjÁ

T
i

È
=

I
I, i = j
0, i ”= j

œ Rl◊l,

E [›j] = 0, E
Ë
›j›

T
i

È
=

I
I, i = j
0, i ”= j

œ Rk◊k,

and E
Ë
Áj›T

i

È
= 0,for all i, j Ø 0.

• The coe�cients a0 (j) , a1 (j) , etc. are deterministic (known) sequences

of matrices of appropriate dimensions. In what follows we will drop the

dependence of the coe�cients on time, to lighten the notation.

• The equations are solved subject to possibly random initial conditions X0
and Y 0, uncorrelated with the noises Á and ›, whose means and covariances

are known.

We denote the optimal linear estimate of Xj given LY
j = span {1, Y1, ..., Yj} by

X̂j = E
Ë
Xj| LY

j

È
and the corresponding error covariance matrix by

Pj = E
51

Xj ≠ X̂j

2 1
Xj ≠ X̂j

2T
6

.

Theorem. The estimate X̂j and the error covariance Pj satisfy the equations

X̂j = a0 + a1X̂j≠1 + a2Yj≠1

+

1
a1Pj≠1A

T
1 + b ¶ B

2 1
A1Pj≠1A

T
1 + B ¶ B

2ü 1
Yj ≠ A0 ≠ A1X̂j≠1 ≠ A2Yj≠1

2
,

(3)

3



and

Pj = a1Pj≠1a
T
1 + b ¶ b

≠
1
a1Pj≠1A

T
1 + b ¶ B

2 1
A1Pj≠1A

T
1 + B ¶ B

2ü 1
a1Pj≠1A

T
1 + b ¶ B

2T
, (4)

where

b ¶ b = b1b
T
1 + b2b

T
2 , b ¶ B = b1B

T
1 + b2B

T
2 , B ¶ B = B1B

T
1 + B2B

T
2 ,

and

X̂0 = E [X0] + cov (X0, Y0) cov (Y0)
ü

(Y0 ≠ E [Y0]) ,

P0 = cov (X0) ≠ cov (X0, Y0) cov (Y0)
ü

cov (X0, Y0)
T .
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and (�Y )0 = Y0. Then,

span{(�Y )j, 0  j  n} = span{Yj, 0  j  n}.

Derive the Kalman-Bucy filter for the signal Xj = (X2)j and observa-
tions �Yj. Verify your answer in 5.

Solution to Problem 2, 1. Moreover, let E[(X3)20] = 0. This already
implies, that (X3)0 = 0 almost surely. The same argument shows (X1)0 = 0.
Moreover, one finds Y0 = (X1)0 + (X3)0 = 0. The process X3 shall represent
noise later on. Therefore let b > 0 be the positive square root of b2 and
set Uj := b"j, such that Uj = b"j ⇠ N (0, b2). Then, the linear recursive
equations for the discrete Kalman-Bucy filter read as

Xj =

0

@
1 1 0
0 1 0
0 0 �

1

A

| {z }
=(a1)j

Xj�1 +

0

@
0
0
b

1

A

| {z }
=(b1)j

"j,

Yj =
�
1 0 1

�
Xj =

�
1 1 �

�
| {z }

=(A1)j

Xj�1 + b|{z}
=(B1)j

"j.

From (X1)0 = (X3)0 = 0 follows that the only non-zero entry of cov(X0)
is cov(X2)0 = E[((X2)0 � E[(X2)0])2] = E[(X2)20] = a2 > 0. Moreover,
E[(X1)0] = E[(X3)0] = 0. With cov(Y0)� = 0 and E[(X2)0] = 0, the initial
values are

X̂0 = E[X0] + cov(X0, Y0) cov(Y0)
�(Y0 � E[Y0]) = (0, 0, 0)>,

P0 = cov(X0)� cov(X0, Y0) cov(Y0)
� cov(X0, Y0)

> =

0

@
0 0 0
0 a2 0
0 0 0

1

A .

With Theorem 2.5 the Kalman-Bucy filter equations are given as

X̂j = (a0)j| {z }
=0

+(a1)jX̂j�1 + (a2)j| {z }
=0

Yj�1 + ((a1)jPj�1(A1)
>
j + b �B)·

((A1)jPj�1(A1)
>
j +B �B)�(Yj � (A0)j| {z }

=0

�(A1)jX̂j�1 � (A2)j| {z }
=0

Yj�1),

Pj = (a1)jPj�1(a1)
>
j + b � b+ ((a1)jPj�1(A1)

>
j + b �B)·

((A1)jPj�1(A1)
>
j +B �B)�((a1)jPj�1(A1)

>
j + b �B)>.
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By plugging in the determined values, the Kalman-Bucy filter equations are

X̂j =

0

@
1 1 0
0 1 0
0 0 �

1

A X̂j�1 +

"0

@
1 1 0
0 1 0
0 0 �

1

APj�1

0

@
1
1
�

1

A+

0

@
0
0
b2

1

A
#
·

"
�
1 1 �

�
Pj�1

0

@
1
1
�

1

A+ b2
#�

(Yj �
�
1 1 �

�
X̂j�1),

Pj =

0

@
1 1 0
0 1 0
0 0 �

1

APj�1

0

@
1 0 0
1 1 0
0 0 �

1

A+

0

@
0 0 0
0 0 0
0 0 b2

1

A�
"0

@
1 1 0
0 1 0
0 0 �

1

APj�1

0

@
1
1
�

1

A+

0

@
0
0
b2

1

A
#
·

"
�
1 1 �

�
Pj�1

0

@
1
1
�

1

A+ b2
#�"0

@
1 1 0
0 1 0
0 0 �

1

APj�1

0

@
1
1
�

1

A+

0

@
0
0
b2

1

A
#>

Solution to Problem 2, 2. Claim: (X1)j = j(X2)j�1 for j � 1.

Proof of Claim: Since (X1)0 = 0, it holds (X1)1 = (X1)0 + (X2)0 = 1 · (X2)0.
Suppose the statement is true for j � 1 2 N. Then, with using the equation
(X2)j�1 = (X2)j�2, it holds

(X1)j = (X1)j�1 + (X2)j�1 = (j � 1)(X2)j�2 + (X2)j�1 = j(X2)j�1.

From this, one finds

Yj = (X1)j + (X3)j = j(X2)j�1 + �(X3)j�1 + Uj,

such that the linear recursive equations read as

Xj =

✓
1 0
0 �

◆

| {z }
=(a1)j

Xj�1 +

✓
0
b

◆

|{z}
=(b1)j

"j, Yj =
�
j �

�
| {z }
=(A1)j

Xj�1 + b|{z}
=(B1)j

"j.

The initial values are similarly computed as before and given as

X̂0 = E[X0] + cov(X0, Y0) cov(Y0)
�(Y0 � E[Y0]) = (0, 0)>,

P0 = cov(X0)� cov(X0, Y0) cov(Y0)
� cov(X0, Y0)

> =

✓
a2 0
0 0

◆
.
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With Theorem 2.5 the discrete Kalman-Bucy filter equations are given as

X̂j = (a0)j| {z }
=0

+(a1)jX̂j�1 + (a2)j| {z }
=0

Yj�1 + ((a1)jPj�1(A1)
>
j + b �B)·

((A1)jPj�1(A1)
>
j +B �B)�(Yj � (A0)j| {z }

=0

�(A1)jX̂j�1 � (A2)j| {z }
=0

Yj�1),

Pj = (a1)jPj�1(a1)
>
j + b � b+ ((a1)jPj�1(A1)

>
j + b �B)·

((A1)jPj�1(A1)
>
j +B �B)�((a1)jPj�1(A1)

>
j + b �B)>.

By plugging in the determined values, the Kalman-Bucy filter equations are

X̂j =

✓
1 0
0 �

◆
X̂j�1 +

"✓
1 0
0 �

◆
Pj�1

✓
j
�

◆
+

✓
0
b2

◆#
·

"
�
j �

�
Pj�1

✓
j
�

◆
+ b2

#�

(Yj �
�
j �

�
X̂j�1),

Pj =

✓
1 0
0 �

◆
Pj�1

✓
1 0
0 �

◆
+

✓
0 0
0 b2

◆
�
"✓

1 0
0 �

◆
Pj�1

✓
j
�

◆
+

✓
0
b2

◆#
·

"
�
j �

�
Pj�1

✓
j
�

◆
+ b2

#�"✓
1 0
0 �

◆
Pj�1

✓
j
�

◆
+

✓
0
b2

◆#>

Solution to Problem 2, 3. The Riccati equation for Pj can be solved
explicitly. By calculating the first two or three values P1, P2, P3 one can
recognize a reoccurring scheme. Then one has to claim the formula and
prove it by induction.

Claim: Define the recursive sequence

aj :=
b2

b2

aj�1
+ (j � (j � 1)�)2

for j � 1 with initial value a0 := a2. Then, for j � 1, it holds

Pj = aj

✓
1 �j
�j j2

◆
.

Proof of Claim. For j = 1 the Riccati equation should read as

P1 =
b2

b2

a2 + 1

✓
1 �1
�1 1

◆
.
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3 Problem

3.1 Mean Square Error Formula

First, note that

✓̃0 = 0 (57)

✓̃1 = max{0, ⇠1} = ⇠1 (58)

✓̃2 = max{⇠1, ⇠2} (59)

✓̃3 = max{max{⇠1, ⇠2}, ⇠3} = max{⇠1, ⇠2, ⇠3} (60)

In general for j � 1

✓̃j = max(✓̃j�1, ⇠j) = max{⇠1, . . . , ⇠j} (61)

= ✓ ·max{U1, . . . , Uj} (62)

Using the independence of ✓ and Uj , we see that Qj can be rewritten as:

Qj = E[(✓ � ⇠j)
2] = E[(✓ � ✓max{U1, . . . Uj})2] (63)

= E[✓2] · E[(1�max{U1, . . . Uj})2] (64)

The first term is E[✓2] = 1
12 + 1

4 = 4
12 = 1

3 , using basic formulas for mean and variance of Uni[0, 1].
The second term can be calculated manually by noticing that the maximum of independent uniform
distributions has a nice distribution function:

P(max{U1, . . . Uj} < t) = tj (65)

meaning the density function for it (in the interval [0,1]) is

f(x) = j · xj�1 (66)

Now, we can calculate the expectation:

Z 1

0
(1� x)2 · jxj�1dx =

Z 1

0
jxj�1dx

| {z }
1

� 2j

j + 1

Z 1

0
(j + 1)xjdx

| {z }
1

+
j

j + 2

Z 1

0
(j + 2)xj+1dx

| {z }
1

(67)

So, overall we get that

Qj =
1

3
·
✓
1� 2j

j + 1
+

j

j + 2

◆
(68)
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3.2 Rate of Convergence

One can see that this converges to 0, because

lim
j!1

Qj =
1

3
· (1� 2 + 1) = 0 (69)

For the rate of convergence let’s bring Qj to a common denominator.

Qj =
1

3
· (j + 1)(j + 2)� 2j(j + 2) + j(j + 1)

(j + 1)(j + 2)
(70)

=
1

3
· j

2 + 3j + 2� 2j2 � 4j + j2 + j

(j + 1)(j + 2)
(71)

=
1

3
· 2

j2 + 3j + 2
(72)

We can see that if we multiply Qj by r(j) = j2, then

lim
j!1

Qjr(j) = lim
j!1

1

3
· 2j2

j2 + 3j + 2
(73)

= lim
j!1

1

3
· 2

1 + 3j�1 + 2j�2
=

2

3
(74)

The limit is finite and positive, so the rate of convergence is r(j) = j2.
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3.3 Optimal Estimate

To find the optimal estimate, we use the Bayes formula for the conditional expectation of ✓ given the
vector (⇠1, . . . , ⇠j) (Corollary 3.5 in [Chigansky, 2005]). It can be used because '(✓) = ✓ is between
0 and 1 a.s., so it is finite. ”PX(du)” is just f✓(x)dx and r is the conditional density function of the
⇠’s, given ✓ = x.

E[✓ | F⇠
j ] =

Z

R
s

f⇠1,...,⇠j |✓(⇠1, . . . , ⇠j ; s)f✓(s)R
R f⇠1,...,⇠j |✓(⇠1, . . . , ⇠j ;x)f✓(x)dx

ds (75)

• ✓ is just Uni[0, 1], so the density f✓(s) is just 1, with support on [0, 1].

• If ✓ = s, then the ⇠i values are just independent random variables on Uni[0, s]. Individually,
they are f⇠;✓(x; s) = 1{x 2 [0, s]}s�1, so after multiplying them together we get:

f⇠1,...,⇠j |✓(⇠1, . . . , ⇠j ; s) = s�j
jY

i=1

1{⇠i 2 [0, s]} (76)

Combined, our equation is

E[✓ | F⇠
j ] =

Z 1

0

s�j+1
Qj

i=1 1{⇠i 2 [0, s]}
R 1
0 x�j

Qj
i=1 1{⇠i 2 [0, x]}dx

ds (77)

If any of the ⇠i are larger than s, then the product of indicators becomes 0. So, it has support
when all ⇠i are less than s, in other words, the maximum of them is less than s. Let us denote
⇠jmax = max{⇠1, . . . , ⇠j}, then we only need to look at s greater than the maximum, but less than 1:

E[✓ | F⇠
j ] =

R 1
⇠jmax

s�j+1ds
R 1
⇠jmax

x�jdx
(78)

If j = 1, then this is equal to

E[✓ | F⇠
1 ] =

R 1
⇠1
1ds

R 1
⇠1
x�1dx

=
1� ⇠1

� log(⇠1)
(79)

If j = 2, then this is equal to

E[✓ | F⇠
2 ] =

R 1
⇠2max

s�1ds
R 1
⇠2max

x�2dx
=

� log(⇠2max)

�1(1� (⇠2max)
�1)

(80)

If j � 3, this type of integral can be calculated as follows, because n 6= �1

Z b

a
xndx =


xn+1

n+ 1

�b

a

=
bn+1 � an+1

n+ 1
(81)

So,

✓̃ = E[✓ | F⇠
j ] =

1� j

2� j
· 1� (⇠jmax)

2�j

1� (⇠jmax)1�j
(82)
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