UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Discrete time linear filtering.

 a (weight 10p)

Describe the setup for the Kalman-Bucy filter and state the main result (No proof).

\mathbf{b} (weight 10p)

Let $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^m$ be random vectors. Prove that

 $\widehat{\mathbb{E}}\left[X|\mathcal{L}^Y\right] = \mathbb{E}\left[X\right] + \text{cov}\left(X,Y\right)\text{cov}\left(Y\right)^\oplus\left(Y - \mathbb{E}\left[Y\right]\right).$

Hint: You can use without proof the orthogonal projection theorem and you may assume that $cov(Y)$ is non singular.

c (weight 10p)

Find the recursions for \widehat{X}_j , the best linear prediction of X_j given \mathcal{L}_j^Y := $\overline{\text{span}}\left\{1, Y_1, ..., Y_j\right\}$, and its error $P_j := \mathbb{E}\left[\left(X_j - \widehat{X}_j\right)^2\right]$ when

$$
X_j = aX_{j-1} + bY_j + \varepsilon_j, \qquad j \ge 1
$$

$$
Y_j = cX_{j-1} + \xi_j, \qquad j \ge 1,
$$

where $\{\varepsilon\}_{j\geq 1}$ and $\{\xi\}_{j\geq 1}$ are two independent sequences of orthogonal real valued white noises and $\overline{X}_0 = Y_0 = 0$.

(Continued on page 2.)

Problem 2

Discrete time nonlinear filtering.

a (weight 10p)

Let (Ω, \mathcal{F}, P) be a probability space carrying a random variable X and let G be a sub σ -algebra of F. Assume that there exists a regular conditional probability measure $P(d\omega|X=x)$ on G and it has Radon-Nikodym density $\rho(\omega, x)$ with respect to a σ -finite measure λ (on \mathcal{G}):

$$
P(d\omega|X = x) = \int_B \rho(\omega, x) \lambda(d\omega).
$$

Prove that, then, for every $\varphi : \mathbb{R} \to \mathbb{R}$, such that $\mathbb{E} [|\varphi(X)|] < \infty$ we have that

$$
\mathbb{E}\left[\varphi\left(X\right)|\mathcal{G}\right] = \frac{\int_{\mathbb{R}} \varphi\left(u\right) \rho\left(\omega, u\right) P_X\left(du\right)}{\int_{\mathbb{R}} \rho\left(\omega, u\right) P_X\left(du\right)},
$$

where P_X is the law of X.

b (weight $10p$)

Describe the setup for finding the nonlinear filter via the Bayes formula and state the main result.

c (weight 10p)

Let $X_j = \varepsilon_j/\varphi(X_{j-1})$ and $Y_j = X_j + \xi_j$ where φ is a function bounded away from 0 $(\varphi(x) \geq c > 0)$. The sequences $(\varepsilon_j)_{j \geq 1}$ and $(\xi_j)_{j \geq 1}$ are independent of each other and i.i.d.. Moreover, ε_1 and ξ_1 have densities p and \tilde{q} with respect to the Lebesgue measure (and enough integrability of its moments). Find a recursion for the random measure $\pi_i(dx)$ satisfying

$$
\int_{\mathbb{R}} f(x) \pi_j(dx) = \mathbb{E} \left[f(X_j) | \mathcal{F}_j^Y \right].
$$

Problem 3

Continuous time linear filtering.

Suppose we want to estimate the value of a constant parameter θ , based on observations Y_t satisfying

$$
dY_t = \theta M_t dt + N_t dB_t,
$$

where M_t and N_t are known deterministic functions and B is a Brownian motion.

(Continued on page 3.)

a (weight 10p)

Find the equations for $\hat{\theta}$, the best linear estimator of θ using the values of the process Y up to time t, and $P_t = \mathbb{E}\left[\left(\theta - \widehat{\theta}_t\right)^2\right].$

\mathbf{b} (weight 10p)

Check that $P_t = \left(P_0^{-1} + \int_0^t M_s^2 N_s^{-2} ds\right)^{-1}$ solves the equation for P_t and prove that

$$
\widehat{\theta}_t = \frac{\widehat{\theta}_0 P_0^{-1} + \int_0^t M_s N_s^{-2} dY_s}{P_0^{-1} + \int_0^t M_s^2 N_s^{-2} ds}.
$$

Problem 4

Continuous time nonlinear filtering.

a (weight 10p)

Describe the general setup for the nonlinear filtering problem in continuous time and the main result (No proof).

 \mathbf{b} (weight 10p)

State and sketch the proof of Zakai equation. By sketching I mean that there is no need to justify some applications of dominated convergence in the proof.