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CHAPTER 1

Fundamental Properties of Holomorphic Functions

1. Basic definitions

Definition 1.1. Let Ω ⊂ C be an open set, and let f = u+ iv ∈ C1(Ω),
where u, v are real functions. We say that f is holomorphic on Ω is for any
point a ∈ Ω we have that

(1.1)
∂u

∂x
(a) =

∂v

∂y
(a) and

∂u

∂y
(a) = −∂v

∂x
(a).

The equations (1.1) are called the Cauchy-Riemann equations. We define
the following differential operators:

Definition 1.2. Let Ω ⊂ C be an open set, and let f = u + iv be
differentiable at every point of Ω. We set

(1.2)
∂f

∂z
(a) :=

1
2

(
∂f

∂x
(a)− i∂f

∂y
(a)) and

∂f

∂z
(a) :=

1
2

(
∂f

∂x
(a) + i

∂f

∂y
(a))

We see that the condition that ∂f
∂z (a) = 0 is satisfied is equivalent to the

conditions (1.1) being satisfied.

Lemma 1.3. Let f ∈ C1(Ω) and let a ∈ Ω. Then

(1.3) f(z) = f(a) +
∂f

∂z
(a) · (z − a) +

∂f

∂z
(a) · (z − a) +O(|z|2).

Proof. This follows from Taylor’s Theorem for maps from R2 to R2

writing it on complex form. �

Using this it is not hard to see that a C1-smooth function f on Ω is
holomorphic if and only if the limit

(1.4) lim
δ→0

f(a+ δ)− f(a)
δ

exists for all a ∈ Ω.

If a function f is holomorphic on an open set Ω the expression ∂f
∂z (a)

is called the (complex) derivative of f at a ∈ Ω, and we denote this also
by f ′(a). We denote the set of holomorphic functions on Ω by O(Ω), and
we note that O(Ω) is an algebra, i.e., if f, g ∈ O(Ω) then f + g, f − g, f · g
are holomorphic on Ω. If f is non-zero on Ω then 1/f is holomorphic on Ω.
Moreover, the usual rules of differentiation hold: (f + g)′ = f ′+ g′, (f · g)′ =

5



6 1. FUNDAMENTAL PROPERTIES OF HOLOMORPHIC FUNCTIONS

f · g′ + f ′ · g, (1/g)′ = −g′/g2. If f ∈ O(Ω1) and g ∈ O(Ω2) and f(a) ∈ Ω2,
then the composition g◦f is holomorphic at a, and (g◦f)′ = g′(f(a)) ·f ′(a).

Example 1.4. A polynomial P (z) = an·zn+···+a1·z+a0 is holomorphic.

2. Integration and Integral formulas

We will start by proving the fundamental result that if f ∈ C1(D) and
if f is holomorphic on D then

(2.1) f(a) =
1

2πi

∫
bD

f(a)
z − a

dz,

for all a ∈ D. Actually we will prove the more general result that if Ω is a
bounded C1-smooth domain and if f ∈ C1(Ω), then

(2.2) f(a) =
1

2πi

∫
bΩ

f(z)
z − a

dz − 1
π

∫ ∫
Ω

∂f
∂z (z)
z − a

dxdy.

Definition 2.1. Let f, g ∈ Ck(Ω). We call the expression ω(z) = f(z) ·
dx+g(z) ·dy a differentiable 1-form of class Ck. We denote the vector space
of differentiable 1-forms on Ω by E1(Ω).

Definition 2.2. We set

(2.3) dz := dx+ i · dy and dz := dx− i · dy.

Definition 2.3. Let ω ∈ E1(Ω) be a continuous 1-form, and let γ :
[0, 1]→ Ω be a C1-smooth map. We set

(2.4)
∫
γ
ω :=

∫ 1

0
f(γ(t)) · γ′1(t) + g(γ(t)) · γ′2(t)dt.

Proposition 2.4. Let γ, σ : [0, 1] → Ω be two parametrizations of the
same curve, i.e., γ = σ ◦ φ where φ : [0, 1] → [0, 1] is a strictly increasing
C1-smooth function, φ(0) = 0, φ(1) = 1. Then for ω ∈ E1(Ω) continuous, we
have that

(2.5)
∫
γ
ω =

∫
σ
ω.

Proof. We have that∫ 1

0
f(γ(t)) · γ′1(t)dt =

∫ 1

0
f(σ ◦ φ(t)) · (σ1 ◦ φ)′(t)dt

=
∫ 1

0
f(σ ◦ φ(t)) · σ′1(φ(t)) · φ′(t)dt

=
∫ 1

0
f(σ(t)) · σ′1(t)dt,

where the last equation follows from the change of variables formula in one
variable, and the same holds if you exchange f by g and γ1, σ1 by γ2, σ2. �
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This allows us to define integration of 1-forms on oriented curves in C,
and furthermore on the boundaries of (piecewise) C1-smooth domains in C,
as long as we orient the boundary components. The following theorem is
fundamental, and is the basic ingredient to prove (2.2):

Theorem 2.5. (Stokes) Let Ω be a bounded (piecewise) C1-smooth do-
main in C and let ω = fdx+ gdy ∈ E1(Ω) be of class C1. Then

(2.6)
∫
bΩ
ω =

∫
Ω

(
∂g

∂x
− ∂f

∂y
)dxdy.

Proof. We give a complete proof only when Ω is the square [0, 1]×[0, 1].

∫
Ω

(
∂g

∂x
− ∂f

∂y
)dxdy =

∫ 1

0
(
∫ 1

0

∂g

∂x
(x, y)dx)dy −

∫ 1

0
(
∫ 1

0

∂f

∂y
(x, y)dy)dx

=
∫ 1

0
g(1, y)− g(0, y)dy −

∫ 1

0
f(x, 1)− f(x, 0)dx

=
∫
bΩ
ω.

�

Note that if ω is a 1-form ω(z) = f(z) · dz, then (2.6) reads

(2.7)
∫
bΩ
ω = 2i ·

∫ ∫
Ω

∂f

∂z
dxdy

In particular we get the following result:

Proposition 2.6. Let Ω ⊂ C be a bounded C1-smooth domain and let
ω ∈ E1(Ω) be C1-smooth holomorphic on Ω, i.e., ω(z) = f(z) ·dz, f ∈ O(Ω).
Then

(2.8)
∫
bΩ
ω = 0.

Theorem 2.7. (Genrealized Cauchy Integral Formula) Let Ω ⊂ C be a
bounded C1-smooth domain and let f ∈ C1(Ω). Then for each a ∈ Ω we have
that

(2.9) f(a) =
1

2πi

∫
bΩ

f(z)
z − a

dz − 1
π

∫ ∫
Ω

∂f
∂z (z)
z − a

dxdy.

Proof. We prove first that the last integral is well defined:

Lemma 2.8.
∫ ∫

D∗
1
|z| = 2π.

Proof.
∫ ∫

D∗
1
|z| =

∫ 1
0

∫ 2π
0

1
|reit| · rdtdθ = 2π. �

Now for ε small enough such that Dε(a) ⊂⊂ Ω we set Ωε = Ω \ Dε(a).
Stoke’s Theorem gives us that

(2.10)
1

2πi

∫
bΩε

f(z)
z − a

dz =
1
π

∫ ∫
Ωε

∂f
∂z

z − a
dxdy,
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and furthermore

(2.11)
∫
bΩε

f(z)
z − a

dz =
∫
bΩ

f(z)
z − a

dz −
∫
bDε(a)

f(z)
z − a

dz,

and we see that the last rightmost integral approaches 2πif(a) uniformly as
ε→ 0. �

3. Some consequences of the integral formulas

Proposition 3.1. Let Ω ⊂ C be a bounded C1-smooth domain and let
f ∈ C(bΩ). Then the function

(3.1) f̃(ζ) =
1

2πi

∫
bΩ

f(z)
z − ζ

dz

is holomorphic on Ω. Moreover, f̃ is C∞-smooth, f̃ ′ is holomorphic, and we
have that

(3.2) f̃ (k)(ζ) =
k!

2πi

∫
bΩ

f(z)
(z − ζ)k+1

dz

Proof. This follows by differentiating under the integral sign. �

Proposition 3.2. Let fj ∈ O(D) ∩ C(D) for j ∈ N, and assume that
fj → f uniformly on D as j → ∞. Then f ∈ O(D), and f

(k)
j → f (k)

uniformly on compact subsets of D as j →∞.

Proof. Note that f is given by a integral formula as in the previous
proposition. �

Definition 3.3. We say that a function f on Dr(0) is analytic if f(z) =∑∞
j=0 cj · zj for all z ∈ Dr.

Proposition 3.4. If f is analytic on Dr then f ∈ O(Dr).

Proof. Fix a 0 < t < s < r, and note that there exists M > 0 such
that |cj · sj | < M for all j ∈ N. Then for all z ∈ Dt we have that

(3.3) |
∞∑
j=N

cj · zj | ≤
∞∑
j=N

|cj · sj | · (
t

s
)j ≤M

∞∑
j=N

(
t

s
)j .

By the convergence of geometric series, this shows that f is the limit of a
sequence of polynomials on Dt for all t < r, hence f is holomorphic on Dr

by Proposition 3.4 �

Proposition 3.5. (Cauchy Estimates) Let f ∈ O(Dr) ∩ C(Dr). Then

(3.4) |f (k)(0)| ≤ k! · ‖f‖bDr
rk

.
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Proof. By (3.2) we have that

|f (k)(0)| ≤ k!
2π
|
∫
bDr

f(z)
zk+1

dz|

=
k!
2π
|
∫ 2π

0

f(reit)
(reit)k+1

ireitdt|

≤ k! · ‖f‖bDr
rk

.

�

Corollary 3.6. (Simple Maximum principle for a disk) Let f ∈ O(Dr)∩
C(Dr). Then |f(0)| ≤ ‖f‖bDr .

Theorem 3.7. (Montel) Let Ω ⊂ C be an open set, and F be a family
of holomorphic functions on Ω with the property that for each compact set
K ⊂ Ω there exists a constant CK > 0 such that ‖f‖K ≤ CK for all f ∈ F .
Then for any sequence {fj}j∈N ⊂ F there exists a subsequence {fn(j)} such
that fn(j) → f ∈ O(Ω) uniformly on compact subsets of Ω.

Proof. Let A ⊂ Ω be a dense sequence of points, and let {fj} ⊂ F
be a sequence such that fj(a) → ã ∈ C for all a ∈ A. We claim that the
sequence {fj} converges to a holomorphic function f uniformly on compact
subsets of Ω. Choose an exhaustion of Ω by compact sets Kj ⊂ K◦j+1. For
any j we have that ‖fi‖Kj ≤Mj for all i. By the Cauchy estimates there is
a constant Nj such that ‖f ′i‖Kj < Nj for all i.

Now we fix Kj and show that {fi}|Kj is a Cauchy sequence. Note that
by the Mean Value Theorem we have for z, z′ ∈ Kj+1 that |fi(z)− fi(z′)| ≤
Nj+1|z − z′|. Given any ε > 0 we may choose a finite subset Ã ⊂ Kj+1

of A such that for any z ∈ Kj , there exists an a ∈ Ã with |z − a| <
ε

4Nj+1
. Furthermore, since {fi}|Ã is Cauchy, we may find N ∈ N such that

|fl(a) − fm(a)| < ε
2 for all m,n ≥ N . So given any z ∈ Kj we may pick

a ∈ Ã to see that

|fl(z)− fm(z)| ≤ |fl(z)− fl(a)|+ |fl(a)− fm(a)|+ |fm(a)− fm(z)|
≤ 2Nj+2|z − a|+ ε/2 < ε,

for all l,m ≥ N , hence {fi}|Kj is a Cauchy sequence. �

Theorem 3.8. Let f ∈ O(Dr). Then we have that

(3.5) f(ζ) =
∞∑
j=0

cj · ζj ,

where

(3.6) cj =
1

2πi

∫
bDr

f(z)
zj+1

dz.
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Proof. Note that 1
z−ζ = 1

z(1−ζ/z) = 1/z
∑∞

j=0( ζz )j as long as |ζ| < |z|,
and plug this into Cauchy’s Integral Formula. �

Proposition 3.9. (Identity principle) Let f ∈ O(Ω). If Z(f) = {z ∈
Ω : f(z) = 0} has non-empty interior, then f ≡ 0 on Ω.

Proof. For each a ∈ Ω we have that f(z) =
∑∞

j=0 cj(a)(z − a)j on a
small enough disk centered at a. By (3.6) we see that cj(a) is continuous
in a for all j. So the set of points {a ∈ Ω : cj(a) = 0 for all j ∈ N} is
non-empty, open and closed in Ω. �

Proposition 3.10. Let f ∈ O(Ω). Then Z(f) is discrete unless f is
constantly equal to zero.

Proof. We assume that f is not constant. Near a point a ∈ Ω with
f(0) = 0 we have that f(z) =

∑∞
j=k cj(z−a)j , k ≥ 1, ck 6= 0, so we can write

f(z) = (z − a)k(ck +
∑∞

j=1 ck+j(z − a)j). �

Theorem 3.11. (Open Mapping Theorem) Let f ∈ O(D) be noncon-
stant. Then f(D) is an open set.

Proof. Assume that f(0) = 0 but that there are points aj → 0 such
that f(z) 6= aj for all j ∈ N. Set gj(z) := 1

f(z)−aj . Choose r > 0 such
that f(z) 6= 0 for all |z| = r. Then |gj | is uniformly bounded on bDr but
g(0) → ∞ as j → 0 which contradicts the simple maximum principle for a
disk. �

Corollary 3.12. (Maximum principle) Let Ω ⊂ C be a domain, and
let f ∈ O(Ω). If |f(a)| = sup

z∈Ω
{|f(z)|}, a ∈ Ω, then f is constant.

Proposition 3.13. Let Ω ⊂ C be a domain. Let fj ∈ O∗(Ω) for j =
1, 2, ..., and assume that fj → f uniformly on compact subsets of Ω as
j →∞. Then either f ∈ O∗(Ω) of f is constantly equal to zero.

Proof. Same proof as for Theorem 3.11. �

Proposition 3.14. Let Ω ⊂ C be a bounded C1-smooth domain, let
f ∈ O(Ω) ∩ C1(Ω), and assume that f(z) 6= 0 for all z ∈ bΩ. Then

(3.7) 2πi
∑
a∈Ω

orda(f) =
∫
bΩ

f ′(z)
f(z)

dz.

Proof. Set Z(f) = {a1, ..., am}, choose ε > 0 such that the closure of
the disks Dε(aj) are pairwise disjoint and contained in Ω. Then

(3.8)
∫
bΩ

f ′(z)
f(z)

dz =
m∑
j=1

∫
bDε(aj)

f ′(z)
f(z)

dz.

For each j we may write f(z) = (z − aj)k(j) · g(z) with g(aj) 6= 0, where
k(j) = ordaj (f). So f ′(z)

f(z) = k(j)
(z−aj) + g′(z)

g(z) , and so by possibly having to

decrease ε we see that
∫
bDε(aj)

f ′(z)
f(z) dz =

∫
bDε(aj)

k(j)
z−aj dz = 2πik(j). �
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Theorem 3.15. (Rouchet) Let Ω ⊂ C be a bounded C1-smooth domain,
and let f ∈ O(Ω) ∩ C1(Ω), f(z) 6= 0, z ∈ bΩ. If g ∈ O(Ω) ∩ C1(Ω) and if
|g(z)| < |f(z)| for all z ∈ bΩ, then

(3.9)
∑
z∈Ω

ordz(f) =
∑
z∈Ω

ordz(f + g).

Proof. Note that the functions ht := f + t · g, t ∈ [0, 1] are all nonzero
on bΩ by the assumption. By (3.7) the function ϕ(t) =

∑
z∈Ω ordz(ht) is

continuous on [0, 1] and integer valued, hence the result follows. �

Proposition 3.16. Let Ω ⊂ C be open, let f ∈ O(Ω), and assume that
f is injective. Then f ′(z) 6= 0 for all z ∈ Ω.

Proof. Fix a ∈ Ω. Without loss of generality we assume a = f(a) =
0 and write f(z) =

∑
j≥k cj(z − a)j , ck 6= 0. Choose r > 0 such that

Z(f) ∩Dr = {0} and such that Z(f ′) ∩Dr is non-empty or the origin. For
|c| < ‖f‖bDr we have that

∑
z∈Dr ordz(f − c) = k. So there are points

a1, ..., ak ∈ Dr with f(aj) = c, where the aj ’s a priori are not necessarily
distinct. But f ′(aj) 6= 0 for each j, so by the inverse function theorem f is
injective near aj for each j. So the aj ’s are all distinct, hence k = 1.

�

Proposition 3.17. Let Ω be a domain, let fj ∈ O(Ω), and assume that
fj → f uniformly on compacts in Ω. If each fj is injective, then either f is
constant or f is injective.

Proof. Assume to get a contradiction that there are two distinct points
a1, a2 ∈ Ω with f(a1) = f(a2) = 0. Choose a smoothly bounded domain
Ω̃ ⊂⊂ Ω with f(z) 6= 0 for all z ∈ Ω̃. If j is large enough we have that∑

z∈Ω̃ ordz(fj) =
∑

z∈Ω ordz(f) > 1. �

Proposition 3.18. Let Ω ⊂ C be open, let f ∈ O(Ω), and assume that
f is injective. Then f ′(z) 6= 0 for all z ∈ Ω.

Proof. Fix a ∈ Ω. Without loss of generality we assume f(a) = 0 and
write f(z) =

∑
j≥k cj(z − a)j , ck 6= 0. If r > 0 is small enough we have that

|
∑

j≥k+1 cj(z − a)j | < ck(z − a)k, and so orda(f) = orda((z − a)k). Since f
is injective we have k = 1, and f ′(z) = c1 6= 0. �

Proposition 3.19. Let Ω ⊂ C, let f ∈ O(Ω), and assume that f is
injective. Then f−1 ∈ O(Ω).

Proof. For any point a ∈ Ω it follows from the inverse mapping theo-
rem that df−1(a) = 1

f ′(a)dz. �

Theorem 3.20. (Laurent Series Expansion) Let f ∈ O(A(r, s)) where
A(r, s) := {ζ ∈ C : r < |ζ| < s}, 0 ≤ r < s ≤ ∞. Then there is a unique
sequence cj ∈ Z such that

(3.10) f(ζ) =
∞∑

j=−∞
cjζ

j , ζ ∈ A(r, s),
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and for any r < ρ < s we have that

(3.11) cj =
1

2πi

∫
bDρ

f(z)z−j−1dz

Proof. Choose r < ρ1 < ρ2 < s. We have that

(3.12) f(ζ) =
1

2πi

∫
bDρ2

f(z)
z − ζ

dz − 1
2πi

∫
bDρ1

f(z)
z − ζ

dz.

We have considered the first integral in the proof that holomorphic func-
tions are analytic, so lets look at the second. We have that −1/(z − ζ) =
1/ζ(1− (z/ζ)) = 1/ζ

∑∞
j=0(z/ζ)j =

∑∞
j=0 z

jζ−j−1 for |ζ| > |z|. By uniform
convergence as in the the proof that holomorphic functions are analytic we
may interchange summation and integration and get that

(3.13) − 1
2πi

∫
bDρ1

f(z)
z − ζ

dz =
∞∑
j=0

(
1

2π

∫
bDρ1

f(z)zj)ζ−j−1

for |ζ| > ρ1. By Stoke’s Theorem the formula for the cj ’s is independent of
the choiceof ρ1, ρ2. Uniqueness follows from the residue theorem. �

Theorem 3.21. Let f ∈ O(D∗) and assume that f is bounded. Then f
extends to a holomorphic function on D.

Proof. We consider the Laurent series coefficients cj for j < 0 and get
that

(3.14) 2πicj =
∫
bDε

f(z)z−j−1dz =
∫ 2π

0
f(εeit)iεeitdt →

ε→0
0

since |f | is bounded. By Abel’s Lemma we have that f extends to D. �



CHAPTER 2

Runge’s Theorem

1. Partitions of unity

This can be read in Narasimhan’s book, Chapter 5., Section 1.

2. Smeared out Cauchy Integral Formula

Theorem 2.1. Let Ω ⊂ C be a domain, let f ∈ O(K), i.e., there exists
an open neighborhood U ⊂ Ω of K with f ∈ O(U), and let α ∈ C∞0 (U) with
α ≡ 1 near K. Then for all ζ ∈ K we have that

(2.1) f(ζ) = − 1
π

∫ ∫
C

∂α
∂z (z) · f(z)
z − ζ

dxdxy, z = x+ iy.

Proof. This is immediate from the generalized Cauchy Integral For-
mula, since α · f is compactly supported in C and ∂

∂z (α · f) = ∂α
∂z · f since f

is holomorphic. �

3. Runge’s Theorem

Definition 3.1. Let Ω ⊂ C be a domain, and let U ⊂ Ω be a subset.
We say that U is relatively compact in Ω and write U ⊂⊂ Ω, if clΩ(U) is
compact.

Lemma 3.2. Let Ω ⊂ C be a domain, and let K ⊂ Ω be compact. Let U
be a connected component of Ω \K and let Ũ be the connected component of
C \K containing U . Then the following are equivalent

(1) U ⊂⊂ Ω,
(2) U is bounded and U = Ũ , and
(3) U is bounded and bCU ⊂ K.

Proof. (1) ⇒ (2) Clearly U is bounded, and if U 6= Ũ there is a
sequence of points {zj} ⊂ U converging to a point z ∈ Ũ \U , hence clΩU is
not compact.

(2)⇒ (3) Let z ∈ bU . If z /∈ K there exists a disk Dr(z)∩K = ∅, hence
Ũ 6= U .

(3) ⇒ (1) bCU ⊂ K ⇒ clC(U) ⊂ Ω ⇒ clC(U) = clΩ(U), and we know
that a closed and bounded set is compact. �

13
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Definition 3.3. Let Ω ⊂ C be a domain and let K ⊂ Ω be compact.
We set

(3.1) K̂O(Ω) := {z ∈ Ω : |f(z)| ≤ ‖f‖K for all f ∈ O(Ω)}.

The set K̂O(Ω) is called the holomorphically convex hull of K.

Lemma 3.4. Let Ω ⊂ C be a domain and let K ⊂ Ω be compact. Then
K̂O(Ω) is compact.

Proof. It is clear that K̂O(Ω) is a closed subset of Ω. Since K ⊂ BR for
a large enough R > 0 is also clear that K̂O(Ω) is bounded. To see that K̂O(Ω)

is a closed subset of C let a ∈ bΩ and set δ := dist(K, bΩ). If Ω 6= C we have
that 0 < δ < ∞. For any point a ∈ bΩ we have that f(z) = 1

z−a satisfies
‖fa‖K ≤ 1

δ , and for any point in the set S := {z ∈ Ω : dist(z, bΩ) ≤ δ
2} there

exists an fa with |fa(z)| ≥ 2
δ . �

Proposition 3.5. (Pushing poles) Let K ⊂ C be a compact set and let
U ⊂ C \ K be a connected component. Let a ∈ U be any point, and let Ũ
denote the set of points b ∈ U such that the function fa(z) = 1

z−a may be
approximated uniformly on K by functions of the form

(3.2) fb(z) =
N∑

j=−N
cj(z − b)j .

Then Ũ = U .

Proof. By assumption we have that Ũ is non-empty. It is not hard
using Laurent series expansion to show that Ω is also open and closed (Do
it!). �

Corollary 3.6. Let Ω ⊂ C be a domain, and let K ⊂ Ω be a compact
set. Then K̂O(Ω) is the union of K and all the components of Ω \K which
are relatively compact in Ω.

Proof. If U ⊂ Ω \K is relatively compact in Ω it follows form Lemma
3.2 and the maximum principle that U ⊂ K̂O(Ω). On the other hand, let
U ⊂ Ω \K not be relatively compact in Ω and let a ∈ U . Then U \ {a} is
a connected component of Ω \ {K ∪ {a}} which is not relatively compact.
Hence, by Lemma 3.2 and Propositon 3.5 any z 7→ 1

z−b , b ∈ U \ {a} my
be approximated on K by functions holomorphic on Ω. Considering b close
enough to a this shows that a /∈ K̂O(Ω). �

Proposition 3.7. Let K ⊂ C be a compact set, and let f ∈ O(K).
For any ε > 0 there exist aj , cj ∈ C \K, j = 1, ..., N = N(ε) such that the
function

(3.3) r(z) =
N∑
j=1

cj
z − aj

,



3. RUNGE’S THEOREM 15

satisfies ‖r − f‖K < ε.

Proof. Let U be an open set containing K such that f ∈ O(U) and
let α ∈ C∞0 (U) with α ≡ 1 near K. Write g(z) := ∂α

∂z · f(z) and choose an
open set S with S disjoint from K such that Supp(g) ⊂ S. It follows from
Theorem 2.1 that

(3.4) f(ζ) = − 1
π

∫ ∫
S

g(z)
z − ζ

dxdy,

for all ζ ∈ K. Choose a sequence {4j
k}, j ∈ N, 1 ≤ k ≤ m(j) of disjoint

open squares of radius r(k, j) ≤ 1/j whose closures cover Supp(g) and pick
a point zjk in each square. For each fixed ζ we know that the sequence of
Riemann sums

(3.5) Rj(ζ) :=
m(j)∑
k=1

g(zjk)
zjk − ζ

converges uniformly to f(ζ) for ζ ∈ K as j → ∞. By compactness of K
and since S is disjoint from K it follows that the convergence is uniform
independently of ζ ∈ K. �

Theorem 3.8. (Runge’s Theorem) Let Ω ⊂ C be a domain and let
K ⊂ Ω be compact. The following are equivalent:

(1) O(Ω) is dense in O(K),
(2) Ω \K has no relativly compact components in Ω, and
(3) K̂O(Ω) = K.

Proof. The equivalense (2)⇔ (3) is Corollary 3.6. We show first (2)⇒
(1). By Proposition 3.7 it is enough to show that we may approximate the
function r(z) = 1

z−a for any point a ∈ Ω \K. There are two posibilites: (i)
a is in a bounded connected component U of C \K. By Lemma 3.2 there is
a point in U \ Ω so we can use Proposition 3.5. (ii) a is in the unbounded
component of C \K. By Proposition 3.5 we may assume that |a| > ‖z‖K ,
and then it follows by Taylor series expansion.

Finally we show (1) ⇒ (2). Suppose that (2) does not hold. Then by
Lemma 3.2 there is a connected component U of Ω \ K with bCU ⊂ K.
Pick a point a ∈ U and define r(z) = 1

z−a . Suppose there exists a sequence
fj ∈ O(Ω) such that fj → r(z) uniformly on K. Then by the maximum
principle fj → f ∈ O(U) ∩ C(U) with f = r on bU . So g = (z − a) · f is a
holomorphic function on U which is identically one on U , hence g ≡ 1. This
is a contradiction since g(a) = 0.

�

3.0.1. Runge’s Theorem for non-vanishing holomorphic functions.

Theorem 3.9. Let Ω ⊂ C be a domain, and let K ⊂ Ω be a compact set,
K̂O(Ω) = K. Then for any f ∈ O∗(K) and any ε > 0 there exists F ∈ O∗(Ω)
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with

(3.6) ‖F − f‖K < ε.

Proof. Using Proposition 3.7 we will now assume that f is of the form

(3.7) f(z) =
N∑
j=1

cj
z − aj

= c ·ΠM
j=1(z − bj)mj ,

with c, bj ∈ C, bj /∈ K,mj ∈ Z. It is then enough to show that each function
(z− bj) can be approximated arbitrarily well on K by non-zero holomorphic
functions on Ω.

The idea is as follows: Ideally, if log(z − bj) exists near K we could
approximate log(z − bj) by some function g using the ordinary Runge’s
Theorem, and then use eg as an approximation of log(z − bj) on K. Such
a logarithm does not exist in general, so we will do the following: since K
is holomorphically convex we are in one of two situations, either (i) there
exists a point dj in the same connected component of C\K as bj with dj /∈ Ω
(Lemma 3.2), or (ii) there is a point dj in the same connected component
of C \K as bj with |dj | > ‖z‖K . In any case, we may write

(3.8) (z − bj) = (
z − bj
z − dj

) · (z − dj).

So it is enough to show that we may approximate both factors in the right
hand side product but non-vanishing holomorphic functions. In situation
(i) the function (z − dj) is already non-vanishing on Ω, and in situation (ii)
the function log(z− dj) exists near K, so it is enough to show that the first
factor may be approximated. For this it is enough to show that log( z−bjz−dj )
exists near K. To see this we show the following:

Lemma 3.10. Let ft : K → C∗ be a homotopy of continuous maps,
t ∈ [0, 1]. If arg(f0) exists on K then arg(ft) exists on K for all t ∈ [0, 1].

Proof. For each t and each z ∈ K we define arg(ft(z)) to be the angle
you get by continuing arg from arg(f0(z)). We need to show that this
function is continuous for each t. By compactness there exists a δ > 0 such
that the following holds: for any t ∈ [0, 1] and any z ∈ K, the difference
|arg(ft(z))−arg(ft′(z))| < π/2 for all |t−t′| ≤ δ, if arg(ft′(z)) is the branch
you get by continuing from arg(ft(z)). It follows that arg(ft′) is continuous
if arg(ft) is: we get

|arg(ft′(z))− arg(ft′(z′))| ≤ |arg(f ′t(z)− arg(ft)(z))|
+ |arg(ft(z))− arg(ft(z′))|
+ |arg(ft(z′))− arg(f ′t(z

′))|
≤ |arg(ft(z))− arg(ft(z′))|+ π,

from which the result follows since arg is always continuous modulo 2π. �
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The claim that log( z−bjz−dj ) exists now follows from the fact that bj and dj
lie in the same path-connected component of C \K. �





CHAPTER 3

Applications of Runge’s Theorem

1. The ∂-equation

Proposition 1.1. Let Ω ⊂ C be a domian, and let u ∈ C1
0(Ω). Then

there exists f ∈ C1(Ω) solving the equation

(1.1)
∂f

∂z
(ζ) = u(ζ), z = x+ iy.

for all ζ ∈ Ω.

Proof. We define

(1.2) f(ζ) := − 1
π

∫
C

u(z)
z − ζ

dxdy, z = x+ iy.

for ζ ∈ C. This is well defined since u has compact support. Note that

(1.3) f(ζ) = − 1
π

∫
C

u(z + ζ)
z

dxdy

Differentiating with respect to the x-variable we consider real δ’s, and we
get that

lim
δ→0

f(ζ + δ)− f(ζ)
δ

= lim
δ→0
− 1
π

∫
C

1
δ

u(z + ζ + δ)− u(z + ζ)
z

dxdy

= − 1
π

∫
C

lim
δ→0

1
δ

u(z + ζ + δ)− u(z + ζ)
z

dxdy

= − 1
π

∫
C

∂u
∂x(z)
z − ζ

dxdy.

Differentiating with respect to the y-variable can be computed similarly, and
so we get that

(1.4)
∂f

∂z
(ζ) = − 1

π

∫
C

∂u
∂z (z)
z − ζ

dxdy = u(ζ),

where the last equality follows from the generalized Cauchy Integral For-
mula. �

Theorem 1.2. Let Ω ⊂ C be a domain, and let u ∈ C1(Ω). Then there
exists f ∈ C1(Ω) satisfying the equation

(1.5)
∂f

∂z
(ζ) = u(ζ),

for all ζ ∈ Ω.

19



20 3. APPLICATIONS OF RUNGE’S THEOREM

Proof. Let Kj ⊂ Kj+1 be a normal exhaustion of Ω. For each j let
αj ∈ C∞0 (Ω) such that αj ≡ 1 near Kj . Let uj := αj · u. We will solve
∂fj
∂z = uj by induction. Assume that we have solved ∂fk

∂z = uk. Let f̃k+1 be

a solution to the equation ∂f̃k+1

∂z = uk+1. Then f̃k+1 − fk ∈ O(Km) so by
Runge’s Theorem there exists gk+1 ∈ O(Ω) with ‖f̃k+1 − gk+1 − fk‖Km <

(1/2)k+1. We set fk+1 := f̃k+1− gk+1. Now it is clear that {fj} is a Cauchy
sequence on each Ki and so fj → f ∈ C(Ω). For each fixed i we see that
f − fi ∈ O(K◦i ), and so f ∈ C1(Ω) and solves our equation. �

2. The theorems of Mittag-Leffler and Weierstrass

Theorem 2.1. (Mittag-Leffler) Let Ω ⊂ C be a domain, let A = {aj} be
a discrete set of points, and for each j ∈ N let pj be a prescribed principle
part at aj

(2.1) pj(z) =
m(j)∑
j=1

cj · (z − aj)−j .

Then there exists f ∈ O(Ω \A) such that f − pj is holomorphic near aj for
all j.

We will leave it as an excercise to prove this theorem in a similar manner
as the previous theorem, and we give here two different proofs.

Proof no. 1 of Theorem 2.1: Choose pairwise disjoint disks Dδ(a)(a) ⊂
Ω, a ∈ A, and let φa ∈ C∞0 (Dδ(a)(a)) be constantly equal to 1 near a. Then

f̃ :=
∑

a φapa is a smooth solution to our problem. Now ∂f̃
∂z extends to a

smooth function u on Ω and we may solve ∂g = u on Ω. So f − g is a
holomorphic solution.

�

Lemma 2.2. Let Ω ⊂ Rn be a domain, and let U = {Uα}α∈I be an open
covering of Ω. Furthermore, let fαβ ∈ C∞(Uα ∩ Uβ) for all α, β ∈ I such
that

(2.2) fαβ + fβγ + fγα = 0 on Uα ∩ Uβ ∩ Uγ for all α, β, γ ∈ I.

Then there exist fα ∈ C∞(Uα) for all α ∈ I such that fαβ = fα − fβ on
Uα ∩ Uβ for all α, β ∈ I.

Proof. Let {φα} be a partition of unity with respect to the cover U .
We define fα :=

∑
γ∈I φγ · fαγ and note that fα ∈ C∞(Uα) since fαα = 0 by
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(2.4). On Uα ∩ Uβ we have that

fα − fβ =
∑
γ

φγfαγ − φγfβγ

=
∑
γ

φγ(fαγ + fγβ)

=
∑
γ

φγfαβ

= fαβ.

�

Theorem 2.3. Let Ω ⊂ C be a domain, and let U = {Uα}α∈I be an open
covering of Ω. Furthermore, let fαβ ∈ O(Uα ∩Uβ) for all α, β ∈ I such that

(2.3) fαβ + fβγ + fγα = 0 on Uα ∩ Uβ ∩ Uγ for all α, β, γ ∈ I.

Then there exist fα ∈ O(Uα) for all α ∈ I such that fαβ = fα − fβ on
Uα ∩ Uβ for all α, β ∈ I.

Proof. We have seen that there exist fα ∈ C∞(Uα) which solve the
problem. Then fα−fβ ∈ O(Uα∩Uβ) for all α, β ∈ I and so u := ∂fα is well
defined on Ω. Let f solve ∂f = u. Then fα − f solves the problem. �

Proof no. 2 of Theorem 2.1: For each a ∈ A let Ua = Ω \ (A \ {a}). On
Ua∩Ub set fab = pa−pb. Then fab ∈ O(Ua∩Ub), and clearly fab+fbc+fca = 0.
Let fa ∈ O(Ua) for all a such that fab = fa − fb. Define f := pa − fa on Ua
and note that f is now well defined. �

Theorem 2.4. (Weierstrass) Let Ω ⊂ C be a domain, let A = {aj} be
discrete, and for each j ∈ N let mj ∈ Z. Then there exists f ∈ O∗(Ω \ A)
such that f · (z − aj)−mj is holomorphic and nonzero near aj for all j.

Proof. Copy the proof of Theorem 2.1 based on the proof of Theo-
rem 1.2 using products instead of sums, and Runge’s theorem for non-zero
approximation.

Alternatively, copy the second proof of Theorem 2.1 using Theorem 2.5
instead of Theorem 2.3. �

Theorem 2.5. Let Ω ⊂ C be a domain, and let U = {Uα}α∈I be an
open covering of Ω by simply connected domains. Furthermore, let fαβ ∈
O∗(Uα ∩ Uβ) for all α, β ∈ I such that

(2.4) fαβ · fβγ · fγα = 1 on Uα ∩ Uβ ∩ Uγ for all α, β, γ ∈ I.

Then there exist fα ∈ O∗(Uα) for all α ∈ I such that fαβ = fα/fβ on Uα∩Uβ
for all α, β ∈ I.



22 3. APPLICATIONS OF RUNGE’S THEOREM

Proof. From topology we know that there exists a continuous solution
{gα}. For each α choose a branch hα = log gα, and set f̃αβ = hα − hβ =
log fαβ. Then f̃αβ ∈ O(Uα ∩ Uβ) and the condition (2.4) is satisfied. By
Theorem 2.3 there are functions gα ∈ O(Uα) such that f̃αβ = gα − gβ. So
fα := egα solves the problem. �



CHAPTER 4

Piccard’s Theorem

This can be read in Narasimhans book, Chapter 4.
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CHAPTER 5

Riemann mapping theorem

This can be read in Narasimhans book, Chapter 7, pp 139–144.
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CHAPTER 6

Some exercises fro Narasimhan/Nievergelt

48, 104, 105, 106, 117, 119, 126, 226, 241, 242, 248, 297.
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CHAPTER 7

From Forster’s Book, Lectures on Riemann
Surfaces

1. Basics on Riemann surfaces, page 1–8.
2. Elementary properties of holomorphic mappings, page 10–13.
3. Branched and unbranched coverings, 20–30.
4. Sheaves, 40–43
5. Differential forms, 59–68.
6. Integration of differential forms, page 68–71, page 76–80.
7. Compact Riemann surfaces, 96–116.
8. The exact cohomology sequence, 118–126.
9. Riemann-Roch, 126–131.

10. Serre Duality, 132–140.
11. DeRham-Hodge Theorem, page 157 (with a more ad hoc proof).
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