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1. Del

Simple aspects of complex
functions

Version 0.62 — Monday, September 26, 2016 9:16:18 AM

Still preliminary version prone to errors. At least for some time it will not be changed (except may

be for correction of stupid errors)

Changes:

A lot of minor and stupid errors corrected

Thank’s to all that have contributed by finding errors!

(.) A a domain in the complex plane Ω is an open non-empty and connected subset
of C. Recall that a subset A of C (or any topological space for that matter) is said to be
connected if it is not the union of two disjoint open sets. Equivalently one may require
that A not be the union of two disjoint closed sets. The set A is pathwise connected if
any two of its points can be joined by a continuous path, clearly a pathwise connected
set is connected, but for general topological spaces the converse dos not hold; but
luckily, it holds true for open subsets of the complex plane; so an open subset Ω of C
is connected if and only if it is pathwise connected.

(.) The union of two connected sets is connected provided the two sets are not
disjoint. Hence any point in A is contained in a maximal connected set. These max-
imal sets called a connected component of A, and they form a partition of A—they
are pairwise disjoint and their union equals the whole space. Connected components
are always closed subsets, but not necessarily open. An everyday example being the
rationals Q with the topology inherited from the reals. As every non-empty open in-
terval contains real numbers, the connected components of Q are just all the points.
One says that Q is totally disconnected .

The path-component of a point z consists of all the point in the set A that can be
joined to z by a continuous path. The different path-components form, just like the


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connected components, a partition of the space.

Oppgave ..

a) Show that a path-wise topological space is connected.

b) A space is called locally pathwise connected if every point admits a neigbourhood
basis consisting of open and path-wise connected sets; equivalently for every point p
and every open set U containing p, one may find an open and path-wise connected set
contained in U and containing p. Show that if a space is locally pathwise connected,
it is connected if and only if it is pathwise connected.

X

Domains can be very complicated and their geometric complexity and subtleties
form now and again significant parts of the theory— or at least, are the reasons behind
long and tortuous proofs of statements seeming obvious in simple situations one often
has in mind—like slightly and nicely deformed disk with a whole or two. So a few
example are in place:

Eksempel .. If Z is any closed subset of the real axis not being the whole axis.
Then clearly C \ Z is open and connected (one can pass from the upper to the lower
half plane by sneaking through R \Z ) Two specific examples of interesting closed sets
Z can be { 1/n | n ∈ N } ∪ 0 and the Cantor set c. e

Eksempel .. For each rational number p/q in reduced form, let Lp/q be the (closed)
line segment of length 1/q emanating from the origin forming the angle 2πp/q with
the positive real axis; i.e., the points of Lp/q are of the form te2πpi/q with 0 ≤ t ≤ 1/q.
Let L =

⋃
p/q Lp/q. Then L is closed. This is not completely obvious (so prove it!). It

hinges on the fact that only finitely many of the segments Lp/q appear in the vicinity
of a point z different from the origin. The complement U of L is therefore open, and
it is connected (the ray from the origin through a point in U has just the origin in
common with L, and z can be connected to points outside the unit disk, and as L is
contained in the closed unit disk, this suffices) so it is a domain. The set U is not
simply connected but has the homotopy type of a circle. e

Eksempel .. This example is a variant of the previous example; the origin and the
point at infinity are just exchanged via z → 1/z. Here it comes: Let Lp/q consist of the
points te2πip/q with t real and |t| > q, and let U be the complement of

⋃
p/q Lp/q. On

shows that U is open as in the previous example. The line segment joining the origin
to a point z in U is contained in U , and this shows that U is connected; in fact, it even
shows that U is contractible. e

Oppgave .. Let U be the complement of the product c× c in the open unit square
(0, 1)× (0, 1). Show that U is a domain. X

—  —
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1.1 Derivatives and the Cauchy-Riemann equations

In this section Ω will be a domain and f will be a complex valued function defined in Ω.
The function f has two components, the real-valued functions u(z) = Re f(z), called
the real part of f , and v(z) = Im f(z), the imaginary part of f . With this notation one
writes f = u+ iv.

The complex variable z is of course of the form z = x + iy with x and y real, so
any function f(z) may as well be regarded as a function of the the two real variables x
and y. All results about real functions of (some regularity class) from Ω to R2 apply to
complex functions—but imposing the condition of holomorphy (that is, differentiability
in the complex sense) on a function f makes it very special indeed, its properties will
by far be stronger than those of general C∞-function (or even real analytic functions).

(.) We adopt the convention of indicating partial derivatives by the use of sub-
scripts, like e.g., ux, uy. Taking a partial derivative is of course a differential operator
and as such it will now and again be denoted by ∂∗ with ∗ an appropriate subscript;e.g.,
ux will be denoted ∂xu and uy by ∂yu.

Clearly one has fx = ux+ ivx and fy = uy + ivy, or in terms of differential operators
∂x = ∂xu + i∂xv and ∂yf = ∂yu + i∂yv. It turns out to be very convenient to use the
differential operators ∂z and ∂z defined as

∂z = (∂x − i∂y)/2 ∂z = (∂x + i∂y)/2.

One verifies easily that ∂z∂z = ∂z∂z at least when applied to functions for which ∂x
and ∂y commute;e.g., function being C1. Another important formula, valid whenever
∂x and ∂y commute, is

4∂z∂z = ∆

where ∆ is the Laplacian operator ∆ = ∂2
x + ∂2

y ; indeed, one finds

(∂x − i∂y)(∂x + i∂y) = ∂2
x + i∂x∂y − i∂y∂x − i2∂2

y = ∂2
x + ∂2

y .

Eksempel .. As a simple illustration let us compute ∂zz and ∂zz. One finds ∂zz =
(∂x(x+ iy)− i∂y(x+ iy))/2 = (1− i · i)/2 = z and similarly ∂zz = (∂x(x+ iy) + i∂y(x+
iy))/2 = (1 + i · i)/2 = 0. e

Oppgave .. Show that ∂z and ∂z satisfy Leibnitz’ rule for products. X

1.1.1 The constituting definition — differentiability
The concept of holomorphy, that we are about to introduce, is constituting for the

course, everything we shall do will hover about holomorphic functions, so the definitions
in this paragraph are therefore the most important ones.

The notion we shall introduce is that of a differentiable function in in the complex
sense, or C-differentiable for short, and their derivatives. As f is a function of two real

—  —
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variables as well, there is also the notion of f being differentiable as such. In that case
we shall call f differentiable in the real sense, or R-differentiable—the long annotated
names are there to distinguish the two notions. Function being R-differentiable but
not C-differentiable are however rear creature in our story, so we shall pretty soon drop
the annotations in the complex case, just keeping them the in the real case.

(.) To tell when a complex differentiable1 function is differentiable at a point a ∈ C
and to define its derivative there, we mimic the good old definition of the derivative of
a real-valued function. One forms the complex differential quotient associated to two
nearby points, and tries to take the limit as the two points coalesce:

ComplexDiff

Definisjon . Let a be a point in Ω. We say that f is differentiable at a if the
following limit exists:

lim
h→0

(f(a+ h)− f(a))/h. (.)

If so is the case, the limit is denoted by f ′(a) and is called the derivative of f at a. If
Diff1

f is differentiable at all points in Ω one says that f is holomorphic in Ω. A function
holomorphic in the entire complex plane (i.e., if Ω = C) is said to be entire.

An equivalent way of formulating this definition is to say that there exists a complex
number f ′(a) such that for z in a vicinity of a one has

f(z) = f(a) + f ′(a)(z − a) + ε(z), (.)

where the function ε(z) is such that |ε(z)/(z − a)| → 0 as z → a.
Diff2

(.) The usual elementary rules for computing derivatives that one learned once
upon a time during calculus courses, are still valid in this context, and the proofs are
mutatitis mutandis the same.

Taking derivatives is a complex linear operation: For complex constants α and β
the linear combination αf + βg is differentiable at a when both f and g are, and it
holds true that (αf + βg)′(a) = αf ′(a) + βg′(a).

Leibnitz’ rule for a product still holds: If f and g are differentiable at a, the
product fg is as well, and one has (fg)′(a) = f ′(a)g(a) + f(a)g′(a). Similarly for a
fraction: Assume f and g differentiable at a and that g(a) 6= 0, then the fraction f/g
is differentiable and (f/g)′(a) = (g(a)f ′(a)− g′(a)f(a))/g(a)2.

The third important principle is the chain rule. If f is differentiable at a and
g at f(a), then the composition g ◦ f is differentiable at a with derivative given as
(g ◦ f)′(a) = g′(f(a))f ′(a).

1The annotation in the complex case did not survive particularly long!

—  —
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(.) An obvious consequence of the elementary rules is that a polynomial P (z) is
holomorphic in the entire complex plane. Almost the same applies to rational functions.
They are quotients P/Q between two polynomials P and Q and are holomorphic where
they are defined; that is at at least2 in the points where the denominator Q does not
vanish.

1.2 The Cauchy-Riemann equations

Any function from Ω to C is also a function of two real variables taking values in R2

with component functions being the real part u and the complex part v of f . For such
functions the derivative at the point z = α + iβ is an R-linear map Daf : R2 → R2,
that is a map Daf : C→ C being linear over the reals.

The derivative, if it exists, satisfies a condition very much like condition (.) in
the complex case, namely for z close to a one has

f(z) = f(a) +Daf(z − a) + ε(z), (.)

where ε(z) is a function with |ε(z)/(z − a)| tending to zero when z tends to a. The
DiffReell

difference from the condition (.) lies in the second term to the right: For f to be
C-differentiable, the map real linear Daf : C→ C must be multiplication by a complex
number!

(.) Casting a glance on the two definitions (.) and (.) it seems clear that a
C-differentiable function is R-differentiable as well. The Cauchy-Riemann equations
are a pair of differential equations that guarantee that a R-differentiable function is
C-differentiable, and they are in essence contained in the last sentence of the previous
paragraph—that Daf be multiplication by a complex number. To give the equations
a concrete form however, we must exhibit the matrices of the derivative-maps in the
two cases, in both cases relative to the semi-canonical basis for C as a real vector
space—i.e., the basis the numbers 1 and i constitute3.

Multiplication by at complex number c = α+ iβ send 1 to α+ iβ and i to −β+ iα,
hence its matrix is (

α β
−β α

)
. (.)

JacComplex

In the calculus courses (surely, calculus of several variables) we learned that the
matrix of the derivative-map Daf in the semi-canonical basis is just the Jacobian
matrix : (

ux(a) vx(a)
uy(a) vy(a)

)
. (.)

2Why “at least”!
3Why “semi-canonical”?
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Comparing the two matrices, one sees that a function f , being differentiable in the real
JackReal

sense, is C-differentiable if and only if the derivatives of its two component functions
satisfy the relations

ux(a) = vy(a) uy(a) = −vx(a).

These are the famous Cauchy-Riemann equations. Remembering that ∂xf = ∂xu+i∂xv
and ∂yf = ∂yu+ i∂yv, one observes they being equivalent to the single equation

∂xf(a) = −i∂yf(a), (.)

and, of course, this common values equals f ′(a).
CR3

(.) So far we have considered differentiability in a point, but being C-differentiable
e.g., in solely one isolated point, has no serious implications. If, for example, both
partials of f vanishes there, the Cauchy-Riemann equations are trivially satisfied, and
the only implication is that both the real and the imaginary part of f has a stationary
point. The full weightiness of being differentiable4 comes into play only when the
function is differentiable5 everywhere in a domain, that is, it is holomorphic. So, when
summing up, we formulate the Cauchy-Riemann equations in that context:

Setning . Let Ω be a domain in C and let f = u+ iv be a complex valued function
in Ω. Then f is differentiable throughout Ω if and only if it is differentiable in the
real sense throughout Ω, and the real and imaginary parts satisfy the Cauchy-Riemann
equations

∂xu = ∂yv ∂yu = −∂xv (.)

in Ω. If f is differentiable in Ω, one has
CR1

f ′ = ∂xf = −i∂yf. (.)

CR2

(.) Recall the differential operators ∂z and ∂z we defined by

∂z = (∂x − i∂y)/2 ∂z = (∂x + i∂y)/2.

In view of equation (.) the Cauchy-Riemann equations when formulated in terms of
the operators ∂z and ∂z, translate into the following proposition, the simplicity of the
equation appearing is one virtue of the ∂z and ∂z notation:

CauchyRiemannDBar

4in the complex sense
5ditto
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Setning . An R-differentiable function f in the domain Ω is holomorphic in Ω if
and only if it satisfies

∂zf = 0,

and in that case the derivative of f is given as f ′ = ∂zf .

Bevis: This is indeed a simple observation. One has ∂zf = (∂xf + i∂yf)/2, which
vanishes precisely when (.) is satisfied. One has ∂zf = (∂xf − i∂yf)/2 which equals
∂xf (and ∂yf as well) whenever ∂zf = 0, i.e., whenever ∂xf = −i∂yf . o

1.2.1 Power series
Rational functions are, although they form very important class of functions, very

special. A rather more general class of functions are those given by power series—and
indeed, as we shall see later on, it comprise all functions holomorphic in a disk.

(.) Recall that a power series f(z) =
∑

n≥0 an(z − a)n has a radius of convergence

given as R−1 = lim sup n
√
|an|. That is, the series converges absolutely for |z − a| < R,

and the convergence is uniform on compact sets included in |z − a| < R; e.g., closed
disks given by |z − a| ≤ ρ < R. For short we say that the convergence is normal .

Indeed, if |z − a| < ρ < R, choose ε with 0 < ε ≤ (R − ρ)/Rρ. By definition one
has n

√
|an| < 1/R + ε for n >> 0, and this gives

n
√
|an| |z − a| < ρ/R + ρε < 1.

Thus we may appeal to Weierstrass M -test comparing with the series
∑

n≥0M
n where

M = ρ/R + ρε.

(.) It is a theorem of Abel’s that f is holomorphic in the disk of convergence and
that the derivative may be found by termwise differentiation:

AbelLeddvisDiff

Teorem . Assume that the power series f(z) =
∑

n≥0 an(z − a)n has radius of
convergence equal to R. Then f is holomorphic in the disk D centered at a and with
radius R, and the derivative is given as

f ′(z) =
∑
n≥1

nan(z − a)n−1. (.)

that is, the power series can differentiated term by term.
PowSeriesDerivative

Bevis: We may assume that a = 0. Since limn→∞
n
√
n = 1, the derived series has the

same radius of convergence as the one defining f . Let R be the radius of convergence
and denote by D the disk where the convergence takes place; that is, the disk given by
|z − a| < R and fix a point z ∈ D.
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By the binomial theorem one has (z + h)n − zn = nzn−1h + h2Rn(z, h). It follows
that the series

∑
n≥1 anRn(z, h) converges normally for those h with z + h ∈ D, since

both the series for f and the derived series converge normally in D.
Hence the sum

∑
n≥1 anRn(z, h) is continuous and therefore bounded on a closed

disk centered at z sufficiently small to be contained in D. We deduce that for h close
to zero it holds true that

f(z + h)− f(z) = h
∑
n≥1

anz
n−1 + h2

∑
anRn(z, h),

where the term
∑
anRn(z, h) is bounded, and the claim follows. o

(.) Successive applications of Abel’s theorem shows that a function f(z) i given by
a power series has derivatives of all orders, and by an easy induction argument one
finds the series

f (k)(z) =
∑
n≥k

n(n− 1) . . . (n− k + 1)an(z − a)n−k

for the k-derivative of f . The constant term of this series equals k!ak, so substituting
a for z gives k!ak = f (k)(a). Hence we have the following result, which may informally
be stated as if f has a power series expansion, the expansion is the Taylor series of f .

TaylorPowerSeries

Setning . A function f given as a power series

f(z) =
∑
n≥0

an(z − a)n

converging normally a disk D centered at a, has derivatives of all orders, and it hold
true that

an =
f (n)(a)

n!
.

Oppgave .. Prove the Cauchy-Riemann equations by letting h approach zero through
respectively real and purely imaginary values in (.) . X

Oppgave .. Assume that f = u + iv is holomorphic in the domain Ω. Use the
Cauchy-Riemann equations to show that the gradient of u is orthogonal to the gradient
of v and conclude that the level sets of the real part of f are orthogonal to the level
sets of the imaginary part. X

Oppgave .. Assume that V is a complex vector space and that A : V → V is an
R-linear map. One says that A is C-anti-linear if A(zv) = zA(v) for all z ∈ C and
all v ∈ V . Show that A is C-anti-linear if and only if A(iv) = −iA(v) for all vectors
v ∈ V . Show that any A may be decomposed in a unique way as a sum A = A+ +A−,
where A+ is C-linear and A− is C-anti-linear. Hint: Let A+(v) = (A(v)− A(iv))/2
and A−(v) = (A(v) + A(iv))/2. X
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Oppgave .. Assume that V is a one-dimensional complex vector space and that
A : V → V is an R-linear map. Show that A is multiplication by a complex number if
and only if its C-anti-linear part vanishes; i.e., A− = 0. X

Oppgave .. Show that complex conjugation z is not C-differentiable at any point.
X

Oppgave .. Show that for any complex R-differentiable function it holds that ∂zf =
∂zf . X

Oppgave .. Show that ∂zz = 1 and that ∂zz = 0. X

Oppgave .. A function f R-differentiable in the domain Ω is called anti-holomorphic
if ∂zf = 0 throughout Ω. Show that f(z) is anti-holomorphic if and only if f(z) is

holomorphic. X

1.3 Integration and Cauchy’s formula

Recall that a line integral is an integral on the form
∫
γ
pdx + qdy where γ is a path

in the complex plane and p and q are two functions, real or complex, defined and
continuous along the path γ. The path γ is a parametrization of a curve in C, i.e.,
a function γ : [α, β] → C that in our context always will be piecewise C1; that is, in
addition to γ being continuous, there should be a partition of the parameter-interval
[α, β] such that γ is continuously differentiable on each of the closed subintervals.

Now and then, as a shortcut, we shall specify a curve C instead of a path in the
integral; in that case it should be clearly understood from the context which way the
curve should be parametrized. A frequently occurring example, is that of a circle C.
The implied parametrization will be γ(t) = a+ reit with the parameter t running from
0 to 2π and a being the center and r the radius of C—the circle is traversed once
counterclockwise. Circles appear frequently in the disguise as boundaries of disks D;
that is, as ∂D.

1.3.1 Differential forms

The integrand in a line integral, that is the expression ω = pdx + qdy is called a
differential form, more precisely one should say a differential one form, since, as the
name indicates, there are also two-forms and even n-forms for any natural number n.
We shall make use two-forms, but no n-form with n larger than two will appear.

(.) You will find no mystery in the definition of a line integral if the path γ is C1

and given as γ(t) = x(t) + y(t)i with t ∈ [α, β]. One simply proceeds in the direction
the nose points, replacing x and y in the functions p and q with x(t) and y(t), and
replacing dx and dy with x′(t)dt and y′(t)dt. This gives a conventional integral over
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the interval [α, β]:∫
γ

ω =

∫
γ

pdx+ qdy =

∫ β

α

p(γ(t))x′(t)dt+ q(γ(t))y′(t)dt.

In case γ is just piecewise C1, one follows this procedure for each of the subintervals
where γ is C1, and at the end sums the appearing integrals.

(.) Given a real valued function u in the domain Ω. The differential du of u is the
one-form

du = ∂xdx+ ∂yudy,

and forms of tis type are said to be exact forms . It is particularly easy to integrate
exact forms, they behave just like derivatives (in some sense, they are derivatives).
One has ∫

γ

du = u(γ(β))− u(γ(α)), (.)

The integral is just the difference between the values of u at the two ends of the path
IntExactForm

and does not depend on which path one follows, as long as it starts and ends where
at the same places as γ. In particular if a path γ is closed, the integral of du round γ
vanishes.

The formula . follows from the fundamental theorem of analysis and the chain
rule. The chain rule immediately gives

d

dt
u(γ(t)) = ux(γ(t))x′(t) + uy(γ(t))y′(t),

and one finishes off with fundamental theorem.

(.) Speaking about two-forms, in our case they are just expressions pdx∧ dy where
p is a function of the appropriate regularity (e.g., continuously differentiable) in the
domain Ω where the form lives. The “wedge product” is anti-commutative, i.e., dx ∧
dy = −dy ∧ dx, a feature that becomes natural when one defines the integral of w. To
do this, let r(s, t) = u(r, s) + iv(r, s) be a parametrization of Ω; i.e., a continuously
differentiable homeomorphism from some open set U ⊆R2 (of course life could be as
simple as U being equal to Ω and r being the identity). With the parametrization in
place, one has the Jacobian determinant

∂(u, v)

∂(s, t)
= det

(
us ut
vs vt

)
,

and one defines the integral
∫

Ω
ω as∫

Ω

ω =

∫∫
U

p(r(s, t))
∂(u, v)

∂(s, t)
dudv (.)

Exchanging u and v changes the sign of the Jacobian determinant and by consequence
DefIntTwoForm

the sign the double integral to the right in (.) . So the definition is consistent with
du ∧ dv = −dv ∧ du, i.e., the wedge product being anti-commutative.
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DiffOfOneForm

(.) A one form ω = pdx + qdy in Ω with p and q C1-functions, has a derivative d
which is a two-form. It is given by the rules

d2 = 0 d(uω) = du ∧ ω + udω (.)

Hence with ω = pdx+ qdy we find

dω = dp ∧ dx+ pd2x+ dq ∧ dy + qd2y

= (∂xpdx+ ∂ypdy) ∧ dx+ (∂xqdx+ ∂yqdy) ∧ dy
= (∂xq − ∂yp)dx ∧ dy.

1.3.2 Complex integration
(.) Now, let f(z) be a complex function defined in the domain Ω whose real part
is u and imaginary part is v, so that f(z) = u(z) + iv(z). We want to make sense of
integrals of the form ∫

γ

f(z)dz,

where the complex differential dz is defined as dz = dx + idy. Introducing this into
the expression f(z)dz, multiplying out and separating the real and imaginary parts,
we find ∫

γ

f(z)dz =

∫
γ

(udx− vdy) + i(vdx+ udy), (.)

which is just a combination of two ordinary real integrals.
KompleksIntegral

(.) It is a fundamental principle (universally valid only interpreted with care6)
principle “that integrating the derivative of a function gives us the function back”,
and in our context it remains in force—frankly speaking, any thing else would be
unthinkable. A complex function f differentiable in the domain Ω whose derivative is
continuous7 satisfies the equality∫

γ

f ′(z)dz = f(b)− f(a), (.)

where γ is any path joining the point a to the point b. The chain rule and the Cauchy-
FundFact

Riemann equations give

du =uxdx+ uydy = uxdx− vxdy
dv =vxdx+ vydy = vxdx+ uxdy

6There are increasing real functions having a derivative that vanishes almost everywhere
7One of the marvels of complex function theory is, as we soon shall se, that this is always true
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combining this with the definition of the integral (.) we obtain f ′(z)dz = du+ idv,
and the formula follows by the corresponding formula for exact real forms.

For a closed path γ with parameter running from α to β one has γ(α) = γ(β), and
consequently the integral around γ vanishes. We have

IntegralAvDerivertForsvinner

Setning . If f is differentiable in the domain Ω with a continuous derivative, and
γ is a closed path in Ω, then ∫

γ

f ′ = 0.

Cauchy’s integral theorem—the corner stone of complex function theory—states
that under certain topological condition on the closed path γ and the domain Ω, a
similar statement is valid for any holomorphic function—that is, its integral along γ
vanishes. We are going to establish this, step by step in progressively more general
variants. The start being the case when γ is the circumference of a triangle.

(.) As an illustration we cast a glance on the rational functions. Every polynomial
P (z) trivially has a primitive (as you should know, the derivative of zn+1/(n + 1)
equals zn), and therefore

∫
γ
P (z)dz = 0 as long as the path γ is closed. The same

is true for any rational function of the type c(z − a)−n where n ≥ 2 (a primitive
being (z − a)1−n/(1 − n), as you should know). The only obstruction for a rational
function having a primitive is therefore the occurrence of terms of type c/(z − a) in
its decomposition in partial fractions. When being free of such terms, the rational
function F (z) satisfies ∫

γ

F (z)dz = 0

for closed paths γ avoiding the points where F is not defined.

(.) The converse of proposition . above also holds. One has

EksistensAvPrimitiveSetning . Let f(z) be continuos in the domain Ω and assume that
∫
γ
f(z)dz = 0

whenever γ is a closed path in Ω. Then f(z) has primitive in Ω, in other words, there
is a function F (z) defined in Ω with F ′(z) = f(z).

Bevis: We begin with choosing a point z0 in Ω. Since the integral of f round any
closed path vanishes, we may define a function F (z) by declaring

F (z) =

∫
γ

f(z)dz,

where γ is any path from z0 to z; Indeed, the integral has the same value whatever
path of integration we chose, as long as it connects z0 to z: If γ1 and γ2 are two of the
kind, the path γ1γ

−1
2 is closed, and thus we have

0 =

∫
γ1γ
−1
2

f(z)dz =

∫
γ1

f(z)dz −
∫
γ2

f(z)dz.
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We have to verify that F is differentiable and that the equality F ′(z) = f(z) holds.
The difference F (z + h) − F (z) can be computed by integrating f(z) along any path
leading from z til z + h. As h is small in modulus, we may assume that z + h lies in a
disk centered at z. Then the line segment parametrized as γ(t) = z+ th with 0 ≤ t ≤ 1
is contained in Ω. Now, dz = ht along γ, and we find the following expression for the
differential quotient of F :

h−1
(
F (z + h)− F (z)

)
= h−1

∫
γ

f(z)dz =

∫ 1

0

f(z + th)dt

It is a well known matter, and trivial to prove, that limh→0

∫ 1

0
f(z + th)d = f(z) when

f is continuous at the point z, and with that, we are through. o

(.) Cauchy’s approach to the his theorem was via what is now called Green’s the-
orem, which by the way never is mentioned in any of Green’s writings. The first time
the statement occurs is in a paper by Cauchy from 1846. However Cauchy does not
prove it, he promised a proof that never appeared, and the first proof was given by
Riemann. For an extensive history of these matters one may consult [?]. The theorem
is today stated in calculus courses as∫∫

Ω

(∂xq − ∂yp)dxdy =

∫
∂Ω

pdx+ qdy

where ∂Ω is the border of the domain Ω, and this form is very close to the way Cauchy
stated it. In terms differential forms, it it takes the following appealing look:∫

Ω

dω =

∫
∂Ω

ω,

a formula that obtained by substituting the equality dω = (∂xq − ∂yp)dx ∧ dy from
paragraph (1.4) in formula in Green’s theorem.

There are two fundamental assumptions in Green’s theorem. One about the func-
tions involved, they must continuously differentiable (in the real sense) and one on the
geometry. The border ∂Ω must be a curve that has a piecewise parametrized by con-
tinuously differentiable functions in a way that Ω lies to the left of ∂Ω. This the current
“calculus way” to state Green’s theorem, but there are stronger versions around.

The general geometrical assumptions are notoriously fuzzy, and the proof in the gen-
eral case is involved, but of course in simple concrete situations proof is simple. Just a
combination of Fubini’s theorem about iterated integration and the fundamental the-
orem of analysis. We shall not dive into general considerations about Green’s theorem,
but will only use it in clear cut situations.

(.) It is interesting to give Green’s theorem a formulation adapted to the specific
context of complex function theory; i.e., a formulation in terms of the differential
operators ∂z and ∂z: As d2z = 0 and dz ∧ dz = 0, one has

d(fdz) = (∂zfdz + ∂zfdz) ∧ dz = ∂zfdz ∧ dz
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which gives

−
∫

Ω

∂zfdz ∧ dz =

∫
∂Ω

f.

In view of the equality dz ∧ dz = 2idx ∧ dy, one obtains∫
∂Ω

f(z)dz = 2i

∫∫
Ω

∂zf(z)dxdy

In view of the ∂z-formulation of the Cauchy-Riemann equations as in theorem . on
page ; that is ∂z = 0 for holomorphic f ’s the form of Greens theorem in the form
above, one obtains a version of the Cauchy’s theorem:

Teorem . Let f be a function that is holomorphic with continuous derivative in
a domain Ω for which Green’s theorem is valid; i.e., the border ∂Ω has a piecewise
C1-parametrization. Then it holds true that∫

∂Ω

f(z)dz = 0.

This is of course a very nice result, but it is not entirely satisfying. In the days
of Cauchy a holomorphic function had a continuous derivative by assumption, but
nowadays that condition is dropped—as in our definition. The reason one can do this,
is that Cauchy’s theorem remains valid when the continuity of the derivative is not
assumed; a result due to Edouard Jean-Baptiste Goursat, and which is the topic of the
next section.

1.3.3 Moore’s proof of Goursat’s lemma
As announced, this paragraph is about Goursat’s lemma the vanishing of integrals of

holomorphic functions round triangles, of course without assumptions about continuity
of the derivative. Goursat published this in , and the simple and beautiful proof
we give—really one of the gems in mathematics—is now standard and was found by
Eliakim Hastings Moore in [?] from 1900 , and it is not due to Goursat as claimed in
many texts. There is a point of exception occurring in the statement, which makes it
easy to deduce Cauchy’s formula from the lemma (which by the way we have promoted
to a theorem).

GoursatLemma
Teorem . Let Ω be a domain containing the triangle ∆ and let p ∈ Ω be a point.
Let f be a function continuous in Ω and differentiable through out Ω \ {p}. Then∫

∂∆

f(z)dz = 0.

Bevis: In the first, and essential part, of the proof the special point p is assumed to
lie outside the triangle ∆.

We shall describe a process that when fed with a triangle ∆, returns a new triangle
∆′ contained in ∆ and having the the following two properties:
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1.
∣∣∫
∂∆
f(z)dz

∣∣ ≤ 4
∣∣∫
∂∆′

f(z)dz
∣∣

2. Both the diameter and the perimeter of ∆′ is half of those of ∆.

Let the corners of ∆ be a, b and c; and denote by c′ the midpoint of the edge of ∆ from
a to b, by b′ the midpoint of the edge from a to c and by a′ the midpoint of the edge
from b to c. These six points serve as corners of four new triangles that subdivide ∆;
say ∆i with 1 ≤ i ≤ 4. As the new corners are the midpoints of the old edges, the
perimeter of each of the triangles ∆i is half that of ∆, and similarly for the diameters,
they all equal half the diameter of ∆. So any of the four ∆i-s satisfies the second
requirement above.

ba

c

b′ a′

c′

∆′

Figur .: A triangles ∆ = abc and the ∆′ = a′b′c′
label

So to the first requirement. In the sum to the right in (.) below, the integrals of f
along edges sheared by two of the four triangle cancel, and hence the equality in (.)
is valid: ∫

∂∆

f(z)dz =
∑
i

∫
∂∆i

f(z)dz, (.)

IntCancels
∣∣∣∣∫
∂∆

f(z)dz

∣∣∣∣ ≤∑
i

∣∣∣∣∫
∂∆i

f(z)dz

∣∣∣∣ .
Among the four triangles ∆i-s we pick the one for which

∣∣∫
∂∆i f(z)dz

∣∣ is maximal as
the new triangle ∆′, the output of the process. One obviously has

∣∣∫
∂∆
f(z)dz

∣∣ ≤
4
∣∣∫
∂∆′

f(z)dz
∣∣, and the second requirement above is fulfilled as well.

Iterating this process one constructs a sequence of triangles ∆n all contained in Ω
having the three properties below (where as usual λ(A) stands for the perimeter of a
figure A and d(A) for the diameter)

� ∆n+1⊆∆n;

�
∣∣∫
∂∆
f(z)dz

∣∣ ≤ 4n
∣∣∣∫∂∆n

f(z)dz
∣∣∣;

� λ(∆n) < 2−nλ(∆);
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� d(∆n) < 2−nd(∆).

The triangles form a descending sequence of compact sets with diameters shrinking to
zero; their intersection is therefore one point, say a. By assumption f is differentiable
at a, and we may write

f(z) = f(a) + f ′(a)(z − a) + ε(z − a)

where |ε(z − a)/(z − a)| tends towards zero when z approaches a; so if η > 0 is a given
number, |ε(z − a)| < η |z − a| for z sufficiently close to a; that is for z ∈ ∆n for n >> 0.
As the integrals of both the constant f ′(a) and of f ′(a)(z − a) around any closed path
vanish, one finds ∫

∂∆n

f(z)dz =

∫
∂∆n

ε(z − a)dz,

and hence

4−n
∣∣∣∣∫
∂∆

f(z)dz

∣∣∣∣ ≤ ∣∣∣∣∫
∂∆n

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
∂∆n

ε(z − a)dz

∣∣∣∣ ≤
≤
∫
∂∆n

η |z − a| |dz| ≤ η · 2−nd(∆) · 2−nλ(∆),

Things are now so beautifully constructed that factor 4−n cancels, and the inequality
becomes ∣∣∣∣∫

∂∆

f(z)dz

∣∣∣∣ < ηd(∆)λ(∆)

The positive number η being arbitrary, we conclude that
∫
∂∆
f(z)dz = 0.

Finally, if the point p is among the corners of ∆, we may subdivide ∆ in two
triangles ∆′ and ∆′′, one of them, say ∆′, containing the special point p and having
perimeter as small we want. As the point p lies outside ∆′′, the integral of f round
∂∆′′ vanishes by what we have already done; hence

∫
∂∆
f(z)dz =

∫
∂∆′

f(z)dz. This
integral can be maid arbitrarily small since f is bounded in ∆ and the perimeter of ∆′

can maid arbitrarily small.
At the very end, we get away with the case of p lying inside ∆, but not being a

corner, by decomposing ∆ into three (or two if p lies on an edge of ∆) new triangles,
each having p as one corner and two of the corners of ∆ as the other two. o

Oppgave .. Let Ω be a domain and f a continuous function in Ω. Assume that
FiniteP

for a finite set P of points in Ω, the function f is differentiable in Ω \ P . Prove that∫
∂∆
f(z)dz = 0 for all triangles ∆ in Ω. Hint: Induction and decomposition. X

Oppgave .. Let Ω be a domain and f continuous and holomorphic in Ω \ P as in
exercise .. Show that the conclusion of . holds even if one only assumes that P
is a closed subset without accumulation points in Ω. Hint: Triangles are compact.

X
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1.3.4 Cauchy’s theorem in star-shaped domains
StarShaped

To continue the development of the Cauchy’s theorem and expand its validity, we
now pass to arbitrary closed paths in a star-shaped domains domain. Recall that the
domain Ω is star-shaped if there is one point c, called the apex, such that for any z i Ω
the line segment joining c to z is entirely contained in Ω. The point c is not necessarily
unique, many domains have several apices.

Of course all convex domains are star-shaped, and this includes circular disks, the
by far most frequently occurring domains in the course. The idea is to show that
differentiable functions have primitives just by integrating them along line segments
emanating from a fixed point. This is very close to the fact that continuous functions
whose integral round any closed path vanishes, has a primitive (proposition . on ),
in star-shaped domains the vanishing of integrals round triangles suffices.

(.) So assume that f is continuous throughout a star-shaped domain Ω with apex
c and assume that f is differentiable everywhere in Ω except possibly at one point p.

For any two points a and b belonging Ω, we denote by L(a, b) the line segment
joining a to b, and we assume tacitly that it is parametrized in the standard way; that
is as (1 − t)a + tb with the parameter t running from 0 to 1. The domain Ω being
star-shaped with apex c by assumption the segment L(c, a) is entirely contained in Ω.
Now, we define a function F in Ω by integrating f along L(c, z), that is we set

F (z) =

∫
L(c,z)

f(z)dz. (.)

The claim is that F is continuos throughout Ω and differentiable except at p with
Primitive

derivative equal to f ; in other words, the function F is what one usually calls a primitive
for f :

CauchyConcex

Setning . Let Ω be a star-shaped domain and let p be a point in Ω. A continuous
function f in Ω which is differentiable away from p, has a primitive in Ω \ {p}.

Bevis: The task is to prove that F (z) as defined by equation (.) is differentiable
and that the derivative equals f . The proof is very close to the proof of proposition
. (in fact, it is mutatis mutandis the same).

The obvious line of attack is to study the difference F (a+ h)− F (a) where a is an
arbitrary point in Ω different from p and h is complex number with a small modulus.
We fix disk centered at a contained in Ω. If a+h lies in D, the line segment L(a, a+h)
lies in Ω as well.

We find

F (a+ h)− F (a) =

∫
L(c,a+h)

f(z)dz −
∫
L(c,a)

f(z)dz =

∫
L(a,a+h)

f(z)dz, (.)

the last and crucial equality holds true since the integral of f around the triangle with
TriangleFormula
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corners c, a and a+ h vanishes by Goursat’s lemma (theorem . on page ).
The path L(a, a+ h) is parametrized as a+ th with the parameter t running from

0 to 1. Hence dz = hdt along L(a, a+ h), and we find∫
L(a,a+h)

f(z)dz = h

∫ 1

0

f(a+ th)dt.

The function f being continuous at a implies that given ε > 0 there is δ > 0 such that

|f(a+ h)− f(a)| < ε

whenever |h| < δ. Hence

F (a+ h) = F (a) + hf(a) + h

∫ 1

0

(f(a+ th)− f(a))dt

where ∣∣∣∣∫ 1

0

(f(a+ th)− f(a))dt

∣∣∣∣ < ∫ 1

0

|f(a+ th)− f(a)| dt < ε,

once |h| < δ. o

(.) Combining the theorem with the fact that the integral of a derivative round a
loop vanishes, one obtains as an immediate corollary Cauchy’s formula for star-shaped
domains, namely:

CauchyInteFortmel

Korollar . If f is a function continuous in the star-shaped domain Ω and holo-
morphic in Ω \ {p}, then

∫
γ
f(z)dz = 0 for all closed paths γ in Ω.

1.3.5 Cauchy’s formula in a star-shaped domain
StrShap

By far the most impressive tool in the toolbox of complex function theory is
Cauchy’s formula, expressing the value of f at a point as the integral round a loop
circling the point. Taking a step in the direction towards the general case, we proceed
to establish this formula for star-shaped domains. This includes Cauchy’s formula for
disks. Albeit a modest version, it has rather strong implications for the local behavior
of holomorphic functions. A crucial feature in the proof is the exceptional point p
allowed in corollary . above—and this is the sole reason for including the exceptional
point in the hypothesis of ..

(.) The setting is as follows: The domain Ω is star-shaped and a is any point Ω.
Furthermore γ a closed path in Ω not passing through a and f is function holomorphic
throughout Ω.

The auxiliary function

g(z) =


f(z)− f(a)

z − a
when z 6= a

f ′(a) when z = a
(.)
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is continuous at a since f is differentiable there, and in Ω \ {a} it is obviously holo-
morphic. Hence g fulfills the hypothesis in Cauchy’s theorem (corollary . on page
) and the integral of f round closed paths vanish. As a is not lying on the path γ it
holds true that ∫

γ

f(z)− f(a)

z − a
dz = 0,

from which one easily deduces∫
γ

f(z)(z − a)−1dz = f(a)

∫
γ

(z − a)−1dz. (.)

The integral
∫
γ
(z − a)−1dz is, as we shall see later on, an integral multiple of 2πi, and

CauchY00

we defines the integer n(γ, a) by setting

n(γ, a) =
1

2πi

∫
γ

(z − a)−1dz.

It is called the winding number of g round a. We have thus establish the following
version of Cauchy’s formula for star-shaped domains:

CauchyStarShaped

Teorem . Let f be holomorphic in the star-shaped domain Ω and a a point in Ω.
For any closed path γ, one has

1

2πi

∫
γ

f(z)(z − a)dz = n(γ, a)f(a).

Of course this formula comes to its full force only when the winding number n(γ, a)
is known. Hence it is worth while using some time and energy in studying the winding
number and establish some of its general properties. We do that in the next paragraph.

(.) The following lemma is just a rephrasing in the lingo of function theory of a
small lifting lemma from topology saying that any continuous map from an interval to
the circle S1 lifts to universal cover R of S1. It is simple but crucial in our context, so
we offer a proof.

Lemma . Any path γ(t) satisfying |γ(t)| = 1 for all values t of the parameter, may
be brought on form γ(t) = eiφ(t).

If you wonder what kind of path γ is, it si just a movement on the unit circle. The
function φ is a logarithm of γ(t). So along portions of the path where the complex
logarithm is defined, it is trivial that φ(t) exists. The function φ is also only unique
up to additive constants of the form 2nπi with n ∈ Z.
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Bevis: For simplicity, we assume that parameter interval of γ is the unit interval
[0, 1]. Let τ be the supremum of the numbers s such that φ(t) exists for over [0, s]. In a
neighbourhood U of γ(τ) the complex logarithm logw is well defined. We choose one of
the branches and let ψ(t) = log γ(t) for t ∈ γ−1(U). One of the connected components
of the inverse image γ−1(U) is an open interval J containing τ , and over [0, τ) ∩ J the
two functions φ and ψ differ only by an additive constant. Hence by adjusting ψ we
can make them agree, and φ can be extended beyond τ , contradicting the definition of
τ . o

The lemma allows paths to be parametrized with polar coordinates centered at points
not on the path. The radius vector is just r(t) = |γ(t)− a|, and the angular coordin-
ate is given as in the lemma; it is one of the functions φ(t) with eiφ(t) = (γ(t) −
a) |γ(t)− a|−1. Thus one has

γ(t) = a+ r(t)eiφ(t).

With this parametrization one finds γ′(t) = r′(t)eiφ(t) + ir(t)eiφ(t)φ′(t), and upon integ-
ration we arrive at∫

γ

(z − a)−1dz =

∫ β

α

(r′(t)r(t)−1 + iφ′(t))dt =

= log r(β)− log r(α) + (φ(β)− φ(α))i.

where log designates the good old and well behaved real logarithm. As the path γ is
closed, r(β) = r(α) and eiφ(β) = eiφ(α), the latter equality implying that φ(β)− φ(α) is
an integral multiple of 2π. We have establish

Lemma . The winding number n(γ, a) = 1
2πi

∫
γ
(z − a)−1dz is an integer.

Finally, we examine to which extent n(γ, a) varies with the point a, and we shall
prove
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WindNumbConnComp

Setning . If a and b belong to the same connected component of C\γ, then n(γ, a) =
n(γ, b), and the winding number n(γ, a) vanishes for a in the unbounded component.

Assume that a and b are two different points and let z be any point in the plane.
An elementary geometric observation is that the point z lies on the line through a and
b if and only if the two vectors z − a and z − b are parallel or anti-parallel; phrased in
other words, one is a real multiple of the other. They point in opposite directions if
z belongs to the line segment L(a, b) joining a to b, and in the same direction if not.
The fractional linear transformation

A(z) =
z − a
z − b

therefore maps the line segment between a and b onto the negative real axis.
Now, the principal branch logw of the logarithm is well defined and holomorphic in

the split plane C−; that is in the complement of the negative real axis. Since the line
segment L(a, b) corresponds to the negative real axis under the map A, we conclude
that logA(z) = log(z− a)(z− b)−1 is well defined and holomorphic in the complement
C \ L(a, b).

Lemma . Let a and b bee different point in the complex plane and let γ be any closed
path in C. If γ does not intersect the line segment from a to b, the winding numbers
of γ around a and b are the same, that is n(γ, a) = n(γ, b).

Bevis: The function g(z) = log(z − a)(z − b)−1 is defines and holomorphic along γ,
and its derivative is given as

g′(z) = (z − a)−1 − (z − b)−1.

As the integral of a derivative round a loop vanishes, we obtain

0 =

∫
γ

g′(z)dz =

∫
γ

(z − a)−1dz −
∫
γ

(z − b)−1dz

and we are happy! o

The proof of proposition . will be complete once we prove that any to points a and
b in same component U of C \ γ can be connected by a piecewise linear path.

Connect a and b by a continuous path δ, and cover d by finitely many disks Vj all
lying in U . By Lebesgue’s lemma there is a partition {ti} of the parameter interval ,
such the portions of the path with parameter in the subintervals [ti−1, ti] is contained
in one of the Vj-s. But Vj being convex, the line segments between δ(ti−1) and δ(ti) lie
in Vj and a fortiori in U . Thus any two points in U can be connected by a piecewise
path, and we are done.

As an illustration, be offer the nice curve drawn in figure xxx. It divides the plane
into four connected components and the corresponding winding numbers are indicated
in red ink. In two of the components the winding number is zero, and in two others
they are 1 and 2 respectively.
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Lemma . If D is a disk and a is any point in D, then n(∂D, a) = 1.

Bevis: Winding numbers being constant throughout components (proposition . on
page ) it suffices to check that winding number of ∂D round the center of the disk
equals one, so we take a to be the center of D and parametrize ∂D as z(t) = a + reit

with t running from 0 to 2π . One has dz = ireitdt and as z − a = reir the integral
becomes ∫

γ

(z − a)−1dz = i

∫ 2π

0

dt = 2πi,

and n(∂D, a) = 1. o

Oppgave .. Let C be the circle centered at a having radius r. Assume that γ is
the path a+ reint with n and integer and the parameter running from 0 to π—that is,
it traverses the circle C n times in the direction indicated by the sign of n—then the
winding number is n(γ, a) = n. X

(.) A special case of theorem . is the Cauchy’s formula for a circle:

LocalCauchy Teorem . Let D be a disk centered at a and f a function holomorphic in a domain
containing the closure D. The one has

1

2πi

∫
∂D

f(z)(z − a)−1dz = f(a),

where the circumference ∂D is traversed once counterclockwise.

(.) In polar coordinates; i.e., z(t) = a+ reit this reads

f(a) =
1

2π

∫ 2π

0

f(a+ reit)dt

So the value of f at a equals the mean value of f along any circle centered at a on
which f is holomorphic.

1.4 Consequences of the local version Cauchy’s for-
mula

The Cauchy formula has an impressive series of very strong consequences for holo-
morphic functions; the most important is that they will be infinitely many times differ-
entiable; i.e., have derivatives of all orders. Other important results are the maximum
principle (which also has a global aspects) and the open mapping theorem, and finally
Liouvilles theorem. This definitively a global statement saying that a bounded entire
function is constant.
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1.4.1 Derivatives of all orders and Taylor series
DerivativesOfAllOrders

The setting in this section is slightly more general than in the previous section.
Basically we introduce a way of getting hand on a lot of holomorphic functions by
integration along curves, and we show that these functions are analytic, i.e., they have
well behaved Taylor expansions round every point where they are defined, and finally,
by Cauchy’s formula any f holomorphic in a disk, is obtained in this way.

(.) We start out with a path γ and a function φ defined on γ. The only hypothesis
on φ is that it be integrable; that is the function φ(γ(t)) must be a measurable function

on the parameter interval [α, β], and the integral
∫
γ
|φ(z)| |dz| =

∫ β
α
|f(γ(t))γ′(t)| dt

must be a finite number. We reserve the letter M for that number. Integrating φ(z)(z−
w) along γ gives us a function Φ(z) defined at every point z not lying on γ; that is, we
have

Φ(z) =

∫
γ

φ(w)(w − z)−1dw

for z not on γ. We shall see that Φ has derivatives of all orders, and we are going
to give formula for the Taylor polynomials of Φ round any point a (not on γ) with a
very good and practical estimate for the residual term. From this, we extract formulas
for the derivatives of Φ analogous to Cauchy’s formula and show that Taylor series
converges to Φ.

AuxFuncPhi

Setning . The function Φ(z) is holomorphic and has derivatives of all orders off
the path γ. Its n-th derivative is given as the integral

Φ(n)(z) = n!

∫
γ

φ(w)(w − z)−n−1dw.

The Taylor series of Φ at any point not on γ converges normally to Φ in the largest
disk centered at z not hitting γ.

Bevis: We shall exhibit the Taylor series of Φ round any point a not lying on the
curve γ. The tactics are simple and clear: Expand (w − z)−1 in finite sum of powers
of (z − a) (with a residual term), multiply by φ(w), integrate along γ and hope that
we control the residual term sufficiently well.

We begin carrying out this plan by recalling a formula from the old days in high
school when one learned about geometric series, that is

1

1− u
= 1 + u+ · · ·+ un +

un+1

1− u
, (.)

where u is any complex number. We want to develop (w − z)−1 in powers of (z − a),
GeomSeries

and to that end we observe that

1

w − z
=

1

(w − a)− (z − a)
=

1

(w − a)

1

1− z − a
w − a

,
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and in view of (.) above, we find by putting u = (z − a)(w − a)−1

1

w − z
=

n∑
k=0

(z − a)k

(w − a)k+1
+

(z − a)n+1

(w − z)(w − a)n+1
.

Multiplying through by φ(w) and integrating along the path γ yields

Φ(z) =
n∑
k=0

(z − a)k
∫
γ

φ(w)(w − a)−k−1dw +Rn(z)(z − a)n+1.

The factor Rn(z) in the residual term equals

Rn(z) =

∫
γ

φ(w)(w − z)−1(w − a)−n−1dw,

an expression that has a for our purpose a good upper bound. Indeed, let d =
infw∈γ |w − a| be the distance from a to the curve γ. It is strictly positive since γ
is compact and a does not lie on γ. Pick a positive number η with η < 1. For any z
with |z − a| < ηd one has |w − z| ≥ |w − a| − |z − a| ≥ (1− η)d, and it is easily seen
that these estimates give

|Rn(z)| < (1− η)−1M/d−n−2.

Hence ∣∣Rn(z)(z − a)n+1
∣∣ < (1− η)−1d−1M

(z − a
d

)n+1
< (1− η)−1d−1Mηn+1.

The residual term tends uniformly to zero as n tends to infinity because η < 1, and
we have established that Φ(z) has a power series expansion in any disk centered at a
whose closure does not hit γ, and furthermore the n-th coefficient of the power series
equals ∫

γ

f(w)(w − z)−n−1dw.

F The theorem now follows now from the principle that “every power series is a Taylor
series” (proposition . on page ). o

(.) In the theorem we assumed that γ parametrizes a compact curve, but the proof
goes through more generally at least for points having a positive distance to γ; of course
the main hypothesis is that φ be integrable along γ. For example, if γ is the real axis
(strictly speaking, the parametrization of the real axis with the identity) and φ is any
integrable function, the corresponding Φ is holomorphic off the axis.
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Oppgave .. Let X ⊆C be a measurable subset and let φ be an integrable function
on X. Define

Φ(z) =

∫∫
X

φ(w)(w − z)−1dxdy

where dxdy is the two-dimensional Lebesgue measure. Show that Φ is holomorphic off
X. X

Oppgave .. Assume that Γ is an “infinite contour”, that is a path parametrized
nyoppgave1

over the open interval I = (0,∞). Let φ(t) be an integrable function on Γ; that is, φ
is measurable and the integral

∫∞
0
|φ(Γ(t))Γ′(t)| dt is finite. Define

F (z) =

∫
Γ

φ(w)(w − z)−1dw,

for z not on Γ. Show that this is meaningful; i.e., both the real and the imaginary part
of the integral are convergent. Show that F (z) is a holomorphic function off Γ. X

(.) Our main interest in proposition . above are the implications it has for holo-
morphic functions. So let f be a function holomorphic in the domain Ω. For any point
z ∈ Ω and any disk D contained Ω with center at z, Cauchy’s local formula (theorem
. on page .) tells us that

f(z) =
1

2πi

∫
∂D

f(w)(w − z)−1dw.

As usual, the boundary ∂D is traversed once counterclockwise. Hence we are in a good
position to apply proposition . with the path γ being ∂D and the function φ being
the restriction of f to ∂D—indeed, from Cauchy’s formula we deduce that the function
Φ then equals f , and . translates into the fundamental and marvelous

CauchyNthDerivative

Teorem . Assume that f is holomorphic in the domain Ω. Then f has derivatives
of all orders, and for the n-th derivative the following formula holds true

f (n)(z) =
n!

2πi

∫
∂D

f(w)(w − z)−n−1dw,

where D is any disk centered at z and contained in Ω, and where, as usual, ∂D is
traversed once counterclockwise. The Taylor series of f about any point z, converges
normally to f(z) in D.

1.4.2 Cauchy’s estimates and Liouville’s theorem
This paragraph is about entire functions; that is, functions being holomorphic in

the entire complex plane. For such functions one may apply Cauchy’s formula for the
higher derivatives from the previous paragraph over any disk in C. Using the disk
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centered at a point a with radius R one obtains upper bounds for the modulus of the
higher derivative. These are famous the Cauchy estimates:∣∣f (n)(a)

∣∣ =
n!

2π

∫
∂D

∣∣f(w)(w − a)−n−1dw
∣∣ < n! sup

w∈∂D
|f(w)| /Rn, (.)

the perimeter of D being 2πR and |z − a| being equal R on the circumference ∂D. One
CauchyEstimate

of the consequences of these estimates is that entire functions that are not constant must
sustain a certain growth as z tends to infinity; they must satisfy growth conditions. The
simples case is known as Liouville’s theorem, and copes with bounded entire functions

Teorem . Assume that f is a bounded entire function. Then f is constant.

Bevis: Assume that |f | is bounded above by M . For any complex number a, one has
the Cauchy estimate for the derivative of f , that is inequality (.) with n = 1,

|f ′(a)| ≤M/R,

valid for all positive numbers R, as large as one wants. Hence f ′(a) = 0, and con-
sequently f is constant. o

(.) The next application of the Cauchy estimates, which we include as an illus-
tration, is a slight generalization of Liouville’s theorem. Functions having a sublinear
growth musts be constant

Setning . Assume that |f(z)| < A |z|α for some number α < 1. Then f is constant.

Bevis: The proof is mutatis mutandis the same as for Liouville’s theorem. The Cauchy
estimate on a disk with radius R and center a gives

|f ′(a)| < A sup
z∈∂D

|z|α /R < A(R + |a|)α/R.

The term to the right tends to zero as R tends to infinity since α < 1 (by l’Hôpital’s
rule, for example) , and hence f ′(a) = 0. Since a was arbitrary, we conclude that f is
constant. o

(.) The third application of Liouville’s theorem along this line, it a result say-
ing that entire functions with polynomial growth are polynomials; polynomial growth
meaning that |f | is bounded above by A |z|n for positive constant A and a natural
number n. One can even say more, f must be a polynomial whose degree is less than
n:

Setning . Let f be an entire function and assume that for a natural number n
and a positive constant A one has |f(z)| ≤ A |z|n for all z. Then f is a polynomial of
degree at most n.

—  —
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Bevis: The proof goes by induction on n, the case n = 0 being Liouville’s theorem.
The difference f − f(0) is obviously a polynomial of degree at most n if and only if
f is, so replacing f by f − f(0), we may assume that f vanishes at the origin. Then
g(z) = f(z)/z is entire and satisfies the inequality |g| ≤ A |z|n−1. By induction g is a
polynomial of degree at most n− 1, and we are through. o

(.) For any domain Ω it is important, but often challenging, to determine the group
Aut(Ω) of holomorphic automorphisms of Ω. It consists of maps φ : Ω → Ω that are
biholomorphic, that is, they are bijective with the inverse being holomorphic as well.
It is a group under composition.

An illustrative example, but also an important result in it self, we shall show that
all the automorphisms of the complex plane are the affine functions; i.e., functions of
the type az + b:

Setning . If φ : C → C is biholomorphic, then there are complex constants such
that φ(z) = az + b.

Bevis: After having replaced φ by φ − φ(0) we can assume that φ(0) = 0, and have
to prove that φ(z) = az. The function φ(z)/z is holomorphic in the entire plane, and
will turn out to be bounded. By Liouvilles theorem, it is therefore constant, say equal
to a. Hence f(z) = az, and we are done.

It remains to see that ψ(z) is bounded. Let AR = { z | |z| > R }. Then φ(AR) ∩
φ(C \ AR) = ∅ and φ(C \ AR) is an open neighbourhood of 0. Hence φ does not have
an essential singularity at infinity, but must have a pole. It must be order one, if not φ
would not be injective, hence φ(z)/z is holomorphic at infinity and therefor bounded.

o

1.4.3 The maximum modulus principle and the open mapping theorem

We start out in a laid back manner and consider a real function f in one variable
defined on an open interval I. In general, there is no reason that f(I) should be open,
even if f is real analytic—any global maximum or minimum of f kills the openness of
f(I). A necessary criterion for f to be an open map (that is f(U) is open for any open
U) is that f have no local extrema, and in fact, this is also sufficient. Thus “having
local maxima and minima” or “being an open mapping” are close-knit properties of f .

—  —
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For holomorphic functions f the situation is in one aspect very different. The modulus
of an holomorphic function never has local maxima, this is the renowned maximum
modulus principle. The holomorphic functions are similar to real functions in the
aspect that the maximum modulus principle is tightly knit to the functions being open
mapping; and since the maximum modulus principle holds, they are indeed open maps.

(.) The maximum modulus principle can be approached in several ways, we shall
present two. The first, presented in this paragraph, hinges on the Cauchy formula in
a disk, and is a clean cut and the reason why the maximums principle holds is quite
clear. The other one, which is in a sense simpler just using the second derivative test
for maxima, comes at the end of this section.

Teorem . (The maximum modulus principle) Let f be a function holomor-
phic in the domain Ω. Then |f(z)| has no local maximum unless f is constant.

Bevis: The crankshaft in this proof is the Cauchy’s formula expressed in polar co-
ordinates. If Dr is a disk contained in Ω, centered at a and with r, one has

f(a) =
1

2πi

∫ 2π

0

f(a+ reit)dt. (.)

This follows quickly by substituting z = a+reit in Cauchy’s formula for a disk (theorem
MeanValue

. on page ), and the identity may be phrased as the “mean value of f on the
circumference equals the value at the center”.

Aiming for an absurdity, assume that a is a local maximum for the modulus |f |,
and chose r so small that |f(a)| ≥ |f(z)| for all z in Dr. Now, if |f(a)| = |f(z)| for
all z ∈ Dr, it follows that f is constant. Hence for at least one r there are points
on the circle ∂Dr where |f | assumes values less than |f(a)|, and by a well known
and elementary property of integrals of continuous functions, we get the following
contradictory inequality:

|f(a)| ≤ 1

2πi

∫ 2π

0

∣∣f(a+ reit)
∣∣ dt < ∫ 2π

0

|f(a)| = |f(a)|

—  —
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o

The following two offsprings of the maximum modulus theorem are immediate co-
rollaries:

Korollar . Let f a function holomorphic in the domain Ω. Then for any point a
in Ω it holds true that |f(a)| < supz∈Ω |f(z)| unless f is constant.

Korollar . Let K ⊆Ω be compact and f a function holomorphic in Ω. Then f
achieves it maximum modulus at the boundary ∂K, and unless f is constant, the max-
imum is strict.

(.) Knowing there is a maximum principle one is tempted to believe in a minimal
principle as well. And indeed, at least for non-vanishing functions, there is one. The
proof is obvious: As long as f does not vanish in Ω, the inverse function 1/f is holo-
morphic there, and the maximum modulus principle for 1/f yields a minimum modulus
principle for f .

Teorem . (The minimum modulus principle) Assume that the function f is a
non-vanishing and holomorphic in the domain Ω. Then f has no local minimum in Ω
unless f is constant.

(.) We have now come to the open mapping theorem, which we deduce from the
the minimum modulus principle:

Teorem . (Open mapping) Let Ω be a domain and let f be holomorphic in Ω.
Then f(Ω) is an open subset of C unless f is constant.

Of course if U ⊆Ω is open, it follows that f(U) is open; just apply the theorem with
Ω = U . So the theorem is equivalent to f being an open mapping.

Bevis: Let a ∈ Ω be a point. We shall show that f(a) is an inner point of f(Ω).
After replacing f by f − f(a) we may assume that f(a) = 0, and since the zeros of

f are isolated, there are disks D about a where f has no other zeros than a, and whose
boundary is contained in Ω. Our function f does not vanish on boundary ∂D and has
a therefore a positive minimum ε there.

Now, let w be a point not in f(Ω) with |w| < ε/2. The difference f(z) − w does
not vanish in Ω, and on ∂D we have

|f(z)− w| ≥ |f(z)| − |w| ≥ ε− ε/2 = ε.

By the minimum modulus principle, |f(z)− w| ≥ ε/2 throughout D, in particular for
z = a, which gives the absurd inequality ε/2 ≤ |w| < ε. o

Oppgave .. Prove that the open mapping theorem implies the maximum modulus
principle. Hint: Every disk about f(a) contains points whose modulus are larger
than |f(a)|. X

—  —
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Figure 1.1:

(.) There is a simpler approach to the maximum modulus principle then the one we
followed above that does not depend on relatively deep results like Cauchy’s formula.
The principle can be proven just by the good old second derivative test for extrema
combined with the Cauchy-Riemann equations. We follow closely the presentation in
[?] pages 24–26.

You probably remember from high school, that for a real function φ of one variable
that is twice continuously differentiable the second derivative is non-positive at a local
maximum; i.e., if a ∈ I is a local maximum for φ, then φ′′(a) ≤ 0.

Now, if u is a twice continuously differentiable function of two variables defined in a
domain Ω⊆C and having a local maximum at a = (α, β), the Laplacian ∆u = uxx+uyy
is non-positive at a. Indeed, approaching a along lines parallel to the axes—that is
applying the second derivative test to the two functions u(α, x) and u(x, β)—one sees
that the second derivatives satisfy uxx(a) ≤ 0 and uyy(a) ≤ 0. With a small trick, this
leads to:

Lemma . Let the function u be defined and twice continuously differentiable in
Ω⊆C and assume that ∆u(z) ≥ 0 throughout Ω. Then for any disk D whose clos-
ure is contained in Ω, one has u(a) ≤ supz∈∂D u(z) for any a ∈ D. By consequence u
has no local maximum in Ω.

Bevis: To begin with, assume that ∆u(z) > 0 for all z ∈ Ω, and let u0 = supz∈D u(z).
If u(a) > supz∈∂D u(z), the maximum point z0 does not belong to the boundary ∂D
and thus lies in D. But this is impossible as u does not have any local maximum
after xxx above. If not, let ε > 0 and look at the function v(z) = u(z) + ε |z|2. Then
∆v = ∆u+ 4ε > 0, and we have

u(a) < sup
z∈∂D

(u(z) + ε |z|2) ≤ sup
z∈∂D

u(z) + ε sup
z∈∂D

|z|2 ,

and letting ε tend to zero, we are done. o

—  —
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Finally, to arrive at the maximum principle, we observe that if u(z) = |f(z)|2, the
Laplacian ∆u is given as

∆u = ∂z∂zff = ∂z(f∂zf) = ∂zf∂zf = |f ′(z)|2 ≥ 0.

Oppgave .. Show that the Laplacian of the real and of the imaginary part of a
holomorphic function vanish identically. X

Oppgave .. Assume that f does not vanish in a Ω. Show that u(z) = log |f(z)| is
well defined and with its Laplacian vanishing throughout Ω. X

Oppgave .. Recall that the Hesse-determinant of a function u of two variable is
uxxuyy − u2

xy. Use the Cauchy-Riemann equations to show that the Hesse-determinant
both of the real and of the imaginary part of a holomorphic function is non-positive.

X

1.4.4 The order of holomorphic functions
The order

A polynomial P (z) has an order of vanishing at any point: The order is zero if
P does not vanish at a and equals the multiplicity of the root a in case P (a) = 0.
The order is characterized by being the largest number n with (z − a)n dividing P .
Holomorphic functions resemble polynomials in this respect, they possess an order at
every point where they are defined.

(.) Assume that f is a holomorphic function not vanishing identically near a. The
Taylor series of f at a converges towards f(z) in a vicinity of a, i.e., one has

f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (k)(a)/k!(z − a)n + . . . (.)

for z near a. Hence if f together with all its derivatives vanish at a, the function f
itself vanishes in a neigbourhood of a. So, if this is not the case, there is smallest
non-negative integer n for which the n-th derivative f (n)(a) is non-zero. This integer
is called the order of f at a and is written ordaf . The n first terms in the Taylor
development will all be zero, and the remaining terms will all have (z−a)n as a factor;
hence the Taylor series has the form

f(z) = (z − a)n
(
f (n)(a)/n! + f (n+1)(a)/(n+ 1)!(z − a) + . . .

)
,

where the series converges normally in a disk about a. We have proved
OrderTheorem

Setning . Assume that f is holomorphic near a and does not vanish identically in
the vicinity of a. Let n = ordaf denote the order of f at a. Then we may factor f as

f(z) = (z − a)ng(z),

where g is a holomorphic function near a not vanishing at a. The order of f is the
largest non-negative integer for which such a factorization is possible.

—  —
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Oppgave .. Assume that f and g are two functions holomorphic near a.

a) Show that ordaf = 0 if and only if f(a) 6= 0.

b) Show that ordafg = ordaf + ordag.

c) Show that ordaf + g ≥ min{ordaf, ordag}, with equality when the orders of f and
g are different. Give examples with strict inequality but with ordaf = ordag.

X

(.) That holomorphic functions have factorizations like in . has some strong
implications. The first is that the zeros of f must be isolated in Ω, another way
expressing this is to say that the zero set Z = { a ∈ Ω | f(a) = 0 } can not have
any accumulation points in Ω. It might very well be infinite, even if Ω is a bounded
domain, but its limit points all are situated outside Ω. This is a fundamental property
of holomorphic functions, frequently use in sequel. It is called identity principle. An
example is treated in exercise . below which is about the function sin π(z−1)(z+1)−1

which is holomorphic in the unit disk and has zeros at (1−n)/(1+n) for n ∈ N . There
are infinitely many and they accumulate at −1.

IdPrinsipp1

Teorem . Let f be holomorphic in Ω. If the zero set Z of f has an accumulation
point in Ω, then f vanishes identically.

Bevis: Assume that f does not vanish identically, and let aıΩ be any point. Our
function f has an order n at a and can be factored as f(z) = (z − a)ng(z), where g
is holomorphic and does not vanish at a. The function g being continuous does not
vanish in a vicinity of a, and of course z − a only vanishes at a. We deduce that there
is a neigbourhood of a where a is the only zero of f(z), and consequently a is not a
accumulation point of the zero set Z. o

The may be most frequently used form of the identity principle is the following, which
by some authors is called the principle of “solidarity of values”.

IdPrinsipp2

Korollar . Assume that f and g are two functions holomorphic in Ω, if they coin-
cide on a set with an accumulation point in Ω, they are equal.

Bevis: Apply the identity principle . to the difference f − g. o

Oppgave .. Let f be holomorphic in Ω and assume that all but finitely many
derivatives of f vanish at a point in Ω. Show that f is a polynomial. X

Oppgave .. Show that Re(1− z)(1 + z)−1 = (1− |z|2) |1 + z|−2 and conclude that
NullPSin

the map given by z → (1− z)(1 + z)−1 sends the unit disk D into the right half plane.
Let f(z) = sinπ(1 − z)(1 + z)−1. Show that f has infinitely many zeros in D with
−1 as an accumulation point. Hint: the zeros are those points in D such that
(1− z)(1 + z)−1 is an integer. X
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Oppgave .. Assume that f is holomorphic in the domain Ω. Show that the fibre
f−1(a) is a discrete subset of Ω. Conclude that the fibre is at most countable. X

Oppgave .. Show that if f is holomorphic in D contained in Ω, and either Re f or
the imaginary part Im f is constant in a disk D⊆Ω, then f is constant. Hint: Use
Cauchy Riemann equations and the identity principle. X

Oppgave .. Show that if |f | is constant in a disk D⊆Ω, then f is constant.
Hint: Examine log f . X

1.4.5 Isolated singularities
RiemannExtensionAndCW

For a moment let R(z) = P (z)/Q(z) be a rational function expressed as the quotient
of two polynomials. It is of course defined in points where the denominator does not
vanish, however, if a is a common zero of the denominator and the enumerator, one
may cancel factors of the form z − a, and in case the multiplicity of a in numerator
happens to be the higher, the rational function R(z) has a well determined value even
at a—it has a removable singularity there. Of course this definite value equals the
limit limz→aR(z). this not to happen, it is sufficient and necessary that |R(z)| tends
to infinity when z tends to a. Similar phenomenon, which we are about to describe,
can occur for holomorphic functions.

Let Ω be a domain and a ∈ Ω a point. Suppose f is a function that is holomorphic
in Ω \ a. One sais that f has an isolated singularity . The isolated singularities come
in three flavours; Firstly f can have a removable singularity (and at the end a is not
a singularity at all). This is, as we shall see, equivalent to f being bounded near f .
Secondly, the reciprocal 1/f can have a removable singularity while f has not; then
one sais that f has a pole at a, and this occurs if and only if limz→a |f(z)| = ∞. In
third case, that is if neither of the two first occurs, one says that f has an essential
singularity .

(.) If f is holomorphic in a punctured disk D∗ centered at a, one says that f has a
removable singularity at a if it can be extended to a holomorphic function in D; that
is, there is a holomorphic function g defined in D whose restriction to D∗ equals f .
Clearly this implies that limz→a(z − a)f(z) = 0 since f has a finite limit at a, and
Riemann proved that also this is sufficient for f to be extendable. Nowadays this is
called the Riemann’s extension theorem:

RiemannExtension

Teorem . Assume that f is holomorphic in the punctured disk D∗ centered at a.
Then f can be extended to a holomorphic function in D if and only if limz→a(z −
a)f(z) = 0.

Bevis: If f can be extended, f has a limit at a and hence limz→a(z − a)f(z) = 0.

—  —
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To prove the other implication, one introduces the auxiliary function

h(z) =

{
(z − a)2f(z) when z 6= a,

0 when z = a.

Then h is holomorphic in the whole disk D and satisfies h′(a) = 0: For z 6= a this is
clear, and for z = a one has(

h(z)− h(a)
)
/(z − a) = (z − a)2f(z)/(z − a) = (z − a)f(z),

which by assumption tend to zero when z approaches a. It follows that the order of h
at a is at least two, and hence h(z) = (z − a)2g(z) with g holomorphic near a. Clearly
g extends f . o

If the function f is bounded near a, one certainly has limz→a(z − a)f(z) = 0, and
the Riemann’s extension theorem shows that f can be extended. Riemann’s criterion
therefore has the following equivalent formulation:

Teorem . Assume that f is holomorphic in the punctured disk D∗ centered at a.
Then f can be extended to a holomorphic function in D if and only if f is bounded in
D∗.

A familiar example of a function having removable singularity at the origin, is the
function sin z/z, and a little more elaborated one is (2 cos z − 2− z2)/z4.

(.) A function f holomorphic in the punctured disk D∗ is said to be meromorphic
at a if 1/f(z) has a removable singularity there; or phrased equivalently: There is a
neigbourhood U of a such that in the punctured neigbourhood U∗ = U \ {a} one may
write f(z) = 1/g(z) where g(z) is holomorphic in U .

Two different cases can occur. If g(a) 6= 0, then f(z) is holomorphic at a and
nothing is new. On the other hand, if g vanishes at a, one says that f has a pole there,
and the order of vanishing of g is called the order of the pole or the pole-order . One
may factor g as

g(z) = (z − a)nh(z),

where n = ordag and h is holomorphic near a and h(a) 6= 0. Hence

f(z) = (z − a)−nh1(z),

where h1(z) = 1/h(z) is holomorphic and non-vanishing. The order of f at a is defined
to be −ordag, so that at poles the order is negative8. For any function meromorphic
at a this allows one to write

f(z) = (z − a)ordafg(z),

where g is holomorphic and non-vanishing at a.

8It is slightly contradictory that the order of f is the negative of the pole order, but it is common
usage.

—  —
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(.) In this paragraph we study more closely the third case when the singularity of
f at a is an essential singularity, that is, it is neither removable nor a pole.

By the Riemann extension theorem 1/f has a removable singularity if and only
if f is bounded near a, which translates into f being bounded away from zero in a
neigbourhood of a. This is not the case if f has an essential singularity at a, meaning
that for any ε > 0 and any δ > 0 there will always be points with |z − a| < δ with
|f(z)| < ε. Phrased in a different manner: The function f comes as close to zero as
one wants as near a as one wants.

But even more is true. If α is any complex number, the difference f − α is mero-
morphic at a if and only if f is. This is trivial if f is holomorphic, and as the sequence

|f | − |α| ≤ |f − α| ≤ |f |+ |α|

of inequalities shows, the difference f −α has a pole if and only if f has. So the end of
the story is that f has an essential singularity if and only if f − α has. In the light of
what we just did above, we have proven the following theorem, the Casorati-Weierstrass
theorem

Teorem . Assume that f has an essential singularity at a and let α be any complex
number. Given ε > 0 and δ > 0, then there exists points z with |z − a| < δ and
|f(z)− α| < ε.

Eksempel .. The archetype of an essential singularity is the singularity of e1/z at
the origin. To get an idea of the behavior of e1/t we take a look at the function along
the line where Im z = Re z = t/2, i.e., where z = (t + it)/2. As 1/(1 + i) = (1− i)/2,
and we find

e2/t(1+i) = e1/t(cos 1/t− i sin 1/t).

The ever accelerating oscillation of the trigonometric functions sin 1/t and cos 1/t as
t approaches zero is a familiar phenomenon, and combined with the growth of e1/t

illustrates eminently the Casorati-Weierstrass theorem. e

Oppgave .. Show that f(z) = sinπ(1 − z)/(1 + z) has an essential singularity at
z = −1. Show that for any real a with |a| < 1 there is a sequence {xn} of real numbers
converging to −1 such that f(xn) = a. Hint: Study the linear fractional transform
(1− z)/(1 + z). X

Oppgave .. Let g(z) = exp−(1 + z)/(1− z). Show that g has an essential singu-
larity at z = 1. Show that |g(z)| is constant when z approaches 1 through circles that
are tangent to the unit circle at 1, and that any real constant can appear in this way.
Show that g tends to zero when z approaches 1 along a line making an obtuse angle
with A the real axis. Hint: Study the fractional linear transformation (1+z)/(1−z).

X
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1.4.6 An instructive example
MLEx

The theme of this paragraph, organized through exercises, is an entire function F (z)
with peculiar properties constructed by Gösta Mittag-Leffler and presented by him at
the International Congress for Mathematicians in Heidelberg in . When z tends to
infinity, but stays away from a sector of the type Sα = { z | −α < Im y < α,Re z > 0 },
the function F (z) tends to zero. In addition limx→∞ F (x) = 0 where it is understood
that x is real. In particular the limit of F (z) is zero when z goes to ∞ along any ray
emanating from the origin.

The construction is based on an “infinite contour” Σ(u) where u is a positive real
number. The path is depicted below in figure .. It has three parts: Σ1(u) is the
segment from x + πi to infinity, Σ2(u) the segment from ∞ to x − πi and Σ0(u) the
segment from x−πi to x+πi. All three are parametrized in the simplest way by linear
functions.

As a matter of language we say that a point z lies inside Σ(u) if Re z > u and
−π < Im z < π; and of course, it lies outside Σ(u) if it lies neither inside nor on Σ(u).

u

u+πi

u−πi

Figur .: The path Σ(u).
MLVei

We begin working with an entire function f(z) merely assuming it be integrable along
Σ; that is the integrals

∫
Σi(u)
|f(z)| |dz| are finite for i = 1, 2. In the end we specialize

f , as Mittag-Leffler did, to be the function

f(z) = ee
z

e−e
ez

.

Oppgave .. Show that the integral∫
Σ(u)

f(w)(w − z)−1dw.

is independent of u as long as z lies outside Σ(u). X

Given an arbitrary complex number z and define a function

F (z) =
1

2πi

∫
Σ(u)

f(w)(w − z)−1dw. (.)

where u is any real number such that z lies outside the contour Σ(u). After the previous
MittagLefflerFu

exercise this is a meaningful definition.
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Oppgave .. Show that F (w) is an entire function of w. Hint: See exercise .
on page . X

Oppgave .. Let z = x+ iy be any point not on the contour Σ(u).

|w − z| ≥

{
|y − π| if y 6= 0,

|x− u| if y = 0.

Fix the number u and let z = reiφ. Show that

lim
r→∞

∫
Σ(u)

f(w)(w − z)−1dw = 0.

Show that F (z) tends to zero when z tends to infinity along any ray emanating from
the origin but being different from the positive real axis. Hint: For |z| sufficiently
large z stays outside of Σ(u) and formula (.) is valid. X

Now we study what happens on the positive real axis, so assume that z = x is real
and positive. Fix a real and positive constant u0 less than x, and let u be greater than
x, and introduce the rectangular path R as illustrated in figure ..

Oppgave .. Show that as chains Σu0 = R + Σ(u), and show that we have

F (x)− f(x) =
1

2πi

∫
Σ(u0)

f(w)(w − z)−1dw.

Use this to show that
lim
x→∞
|F (x)− f(x)| = 0.

X

u0 u

x

R

Figur .: The rectangle R .
Rekt

In the last part of this exercise session, we specialize f to be the function f(z) =

ee
z
e−e

ez

.

Oppgave .. Show that the integrals∫
Σ(u)

ee
w

e−e
ew

dw

converge absolutely. Show that

lim
x→∞

ee
x

e−e
ex

= 0

and conclude that the associated function F (z) tends to zero along any ray emanating
from the origin. X

Oppgave .. Show that F is not identically zero. X
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1.4.7 The argument principle
It is classical that the multiplicities of the different roots of a polynomial add up to

its degree. One can not hope for statements about holomorphic functions as strong as
this. Already, there is no notion of degree for a holomorphic function in general. The
order at a point is a sort of local degree; the degree of a polynomial is however a global
invariant, and there is counterpart for holomorphic functions. And the number of zeros
can very well be infinite, a simple example is sinπz, which vanishes at all integers.

(.) However, there is a counting mechanism for the zeros, which goes under the
name of the argument principle, which now and then is extremely useful.

So let f be holomorphic in Ω, and let D be any disk whose closure is contained in
Ω. Then, as the zeros are isolated i Ω, there is at most finitely many of then in D.

Let a1, . . . , ar de the those of the zeros of f that are contained in the disk D, and
denote by n1,, . . . , nr their multiplicities, i.e., ni = ordaif . By repeated application of
proposition ., one may write

f(z) =
∏
i

(z − ai)nig(z),

where the index i runs from 1 to r and where g is holomorphic an non-vanishing in D.
Taking the logarithmic derivative gives

d log f =
r∑

1≤i≤r

ni(z − ai)−1 + d log g.

(Recall that we write d log f for f ′/f). The integral of d log f around the circumference
∂D, becomes

1

2πi

∫
∂D

d log f =
∑

1≤i≤r

ni n(∂D, ai) +
1

2πi

∫
∂D

d log g.

Now, as g does not vanish in the disk D, it has a logarithm there, and hence
∫
γ
d log g =

0. Consequently the integral
∫
γ
d log f satisfies

1

2π
i

∫
∂D

d log f =
∑
i

ni n(∂D, ai) =
∑
i

ni. (.)
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where the last equality holds since the winding nu,bers involved all equal one ∂D
ArgPrin1

being traversed once counterclockwise and the ai’s all lying within ∂D. With the right
interpretation the formula counts the total number of zeros of f contained in the disk
D.

Oppgave .. Denote by Z the set of zeros of f in Ω and for each a ∈ Z, let
n(a) = ordaf . Show that ∫

∂D

d log f =
∑
a∈Z

n(a) n(∂D, a).

Hint: The sum is finite, even if it doesn’t look like. X

(.) If a is any complex numbers, the zeros of the difference f−a constitute the fibre
f−1(a). Hence the technic in the last paragraph can as well be used to count points in
fibres. Every point b in a fibre will contribute to the totality with a multiplicity equal
to the multiplicity of the zero b of f − a. Denoting this multiplicity by n(b) we have
the formula

1

2πi

∫
∂D

d log(f − a) =
∑

b∈f−1(a)∩D

n(b).

where of course d log(f − a) = f ′(z)(f(z)− a)−1dz.
If γ is a parametrization of ∂D, the composition f ◦ γ is parametrizes a path Γ in

C; i.e., we have Γ = f ◦ γ. The winding number n(Γ, a) is given by an integral, and
substituting w = f(z) this integral changes in the following way:

n(Γ, a) =
1

2πi

∫
Γ

(w − a)−1dw =
1

2πi

∫
γ

f ′(z)(f(z)− a)−1dz,

hence

n(Γ, a) =
∑

b∈f−1(a)∩D

n(b).

We sum up in the following proposition:
NumberInFibreIsWind

Setning . Let f holomorphic in Ω and let D be a disk whose closure lies in Ω. Let
a be any complex number. The number of points in the fibre f−1(a) lying within the disk
D is finite, and counted with multiplicities, equals the winding number n(Γ, a) where Γ
is the image of the boundary circle ∂D under f , traversed once counterclockwise.

The winding number of a closed path is, as we saw, constant within each connec-
ted component of the complement of the path. Applying this to the image Γ of ∂D
under f , we conclude that the number of points in f−1(a) ∩ D and in f−1(b) ∩ D—
counted appropriately—are the same as long as a and b belongs to the same connected
component of C \ Γ.

In particular, if A is a disk about a contained in the image of φ and not intersecting
Γ, the two sets f−1(a) ∩D and f−1 ∩D have equally many members. This leads to

—  —
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SameNuberInFibre

Setning . Assume that f is a holomorphic map and that a is a solution of f(z) =
f(a) of multiplicity n. Then there is a disk D about a such that for b sufficiently close
to f(a), all solutions of f(z) = b in D are simple and their number equals n.

The theorem says that there are disks D and B about a and f(a) respectively such
that B lies in the image f(D), and such that the fibers f−1(b)∩D all are simple—that
is every point occurs with multiplicity one—except the central fibre f−1(a) ∩D which
reduces to just one point with multiplicity n.

Bevis: As the derivative f ′ is holomorphic, its zeros are isolated and there is a disk
D about a where it does not vanish in other points than a. Making D smaller, if
necessary, it will also avoid the points in the fiber f−1(f(a)) other than a.

The image f(D) is open, and we chose a disk B containing f(a) and lying in a
connected component of the complement C \ ∂A. As f ′ has no zeros in D, except at
a, all fibers f−1(b) ∩D for b ∈ B, except f−1f(a) ∩D, are simple, and by proposition
. above they all have n points, as fibers over points from the same component of
C \ f(∂A). o

(.) The case n = 1 in . is a very important special case. Then the statement
is that a functions f with f ′(a) 6= 0 is injective in a disk containing a. This is also a
consequence of the inverse function theorem, f ′(a) being the jacobian map at a of f ;
but there is a stronger statement that the inverse map f−1 is holomorphic. One has

LocalConform

Setning . Let f be holomorphic in Ω and let a ∈ Ω be a point with f ′(a) 6= 0.
There is a disk D about a on which f is biholomorphic. That is f is injective and the
inverse map f−1 : f(D)→ D is holomorphic, moreover the its derivative at f(a) equals
1/f ′(a).

Bevis: The inverse map f−1 is continuous since f is open, and the usual argument
for the existence of the derivative of f−1 we know from calculus goes trough, letting
w = f(z) and b = f(a) we have

(f−1(w)− f−1(b))/(w − b) = (z − a)/(f(z)− f(a)) (.)

and as w tends to b continuity of f−1 implies that z tends to a, and the right side of
DiffOfInvers

(.) tends to 1/f ′(z). o

Another way of proving this, is to appeal to the inverse function theorem. It says
that f−1 is C∞ near f(a) and that its jacobian map at a point f(z) equals the inverse
of that of f . But of course, the inverse of multiplication by a complex number c is
multiplication by c−1, and we conclude by the Cauchy-Riemann equations.

—  —
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(.) A biholomorphic map is frequently called conformal , a term coming from car-
tography and alluding to the fact that a holomorphic function with a non-vanishing
derivative at a point a infinitesimally preserves the angel and orientation between
vectors at a. This is due to the jacobian map being multiplication by f ′(a), so if
f ′(a) = reiφ all angels are shifted by φ, so the difference between the two is conserved.
The proposition . may be phrased as if f is holomorphic near a with non-vanishing
derivative at a, then f is biholomorphic near a.

Oppgave .. Let γ and γ′ be two paths that pass by a both with a non-vanishing
tangents at a. Let ψ be the angle between the two tangents. Let f be holomorphic
near a with f ′(a) 6= 0. Show that the paths f ◦ γ and f ◦ γ′ both have non-vanishing
tangents at f(a) and that the angle between them equals ψ. X

(.) Now, consider the case that f(a) = 0 and that f ′(a) vanishes, say with multi-
plicity n, Then f may be factored near a as

f(z) = zng(z)

where g(z) is holomorphic and non-vanishing in a neigbourhood of a. It follows that g
has an n-th root in a disk about a; say g = hn. We may thus write

f(z) = (zh(z))n = ρ(z)n

where ρ(z) = zh(z). Now ρ′ = h(z) + zh′(z) does not vanish at a since g does not, and
hence ρ is biholomorphic near ρ. We therefore have

Setning . Assume that f(a) has a zero of multiplicity n at a. Then there is a
biholomorphic map ρ defined in a neigbourhood U of a such that

f(z) = ρ(z)n

for z ∈ U . In particular, f is locally injective at a if and only if f ′(a) 6= 0.

Bevis: Only the last sentence is not proven. We have seen that if n = 1, then f is
locally conformal and, in particular, it is locally injective. So assume that n > 1 and we
must establish that f is not injective. The map ρ is open so the image ρ(U) contains
a disk A about the origin. If ρ(z) ∈ A and η is an n-th root of unity, ηρ(z) lies in A as
well. Now, A being contained in ρ(U) one has ηρ(z) = ρ(z′) for some z′ ∈ U , and z′ is
different from z since ρ is injective. It follows that f(z′) = (ηf(z))n = f(z). o

Oppgave .. Show that

f−1(b) =

∫
∂D

zf ′(z)(f(z)− b)−1dz

X

—  —
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1.4.8 The general argument principle
At the end of this section, we give generalization of the formula (.) on page .

extending it to meromorphic functions. In this case one is forced to take both poles
and zeros into account—it is their difference in number (with multiplicities) that is a
categorical quantity, or said in clear text, a quantity that can be computed formally.
This difference is just the sum ∑

a∈D

ordaf

where D is a disk whose closure lies within the domain Ω. We can only count the zeros
and poles if they are finite in number, and D lying in Ω ensures this. Poles and zeros
are isolated—that is the points a where ordaf does not vanish—hence in the compact
disk D there can only finitely many of them.

A second generalization is the introduction of a closed path γ in D. Loosely speak-
ing, we count the difference of the number of poles and the number of zeros of f “lying
with in γ”. The precise meaning is the sum∑

a∈D

n(γ, a)ordaf.

where now D is any disk with encompassing γ and with D⊆Ω—and it essential that
f has neither poles nor zeros lying on the path γ. We can safely factor f as a product

f(z) =
∏
a∈D

(z − a)ordafg(z)

where g(z) is holomorphic and without zeros in D and, of the course, the product is
finite. Taking logarithmic derivatives we get the formula

d log f =
∑
a∈D

(z − a)−1ordaf + d log g (.)

and integrating along the closed path γ:
ArgIntForm

1

2πi

∫
γ

d log f =
∑

n(γ, a)ordaf,

as
∫
γ
d log g = 0, the function g having a logarithm in D.

(.) Let us now introduce a second holomorphic function h(z) in Ω, and consider
the integral

∫
γ
gd log f . Multiplying (.) on page  by h gives

d log f(z) =
∑
a∈D

h(z)(z − a)−1ordaf + h(z)d log g(z).

—  —
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Now, g is holomorphic and without zeros and d log g(z) is holomorphic as well. Hence
h(z)d log g(z) is holomorphic and consequently its integrals round closed paths vanish
by the Cauchy theorem. To integrate the terms in the sum, we appeal to Cauchy’s
formula which can be applied since h is holomorphic. This gives

1

2πi

∫
γ

h(z)d log f(z) =
∑
a∈D

h(a) n(γ, a)ordaf, (.)

which one may interpret as a counting formula for zeros and poles, but this time they
GeneralArguementPrinciple

are weighted by the function h. We sum up these computations in
GenerllArgumentPrinsipp

Teorem . Let f be a meromorphic function and h a holomorphic function in Ω.
Then for any disk D with D⊆Ω and any closed path γ in D, one has the equality

1

2πi

∫
γ

hd log f =
∑
a∈Ω

h(a) n(γ, a)ordaf.

There is a still more general version of this theorem. Working with paths being null-
homotopic, and this is the most natural hypothesis, one can get rid of the disk D, but
for the moment we do not know that integrals of holomorphic functions only depends
on the homotopy class of the integration path. Once that is established, the theorem
. in its full force follows easily, but that is for the next section.

1.4.9 The Riemann sphere
The Riemann-sphere Ĉ or the extended complex plane is just the one point com-

pactification of the complex plane. We add one point at the infinity, naturally denoted
by ∞, so as a set Ĉ = C ∪ {∞}. The topology is defined a for any one point compac-
tification. The open sets containing∞ are the sets Kc∪{∞} where K is any compact
subset of C (and Kc is its complement in C), and the rest of topology, i.e., those open
sets not containing the point at infinity, are the open sets in the finite plane C.

One has a coordinate function round ∞ defined by

w(P ) =

{
1/z P = z 6=∞
0 P =∞.

A disk DR centered at ∞ with radius R, that is {w | |w| < R } corresponds to
{∞} ∪ { z | |z| > R }, and it intersects the finite plane in { z | |z| > R−1 }.

By using the coordinate w we may extend all theory about the local behavior of a
complex function at a finite points, to be valid at infinity as well.

(.) Assume that f is a function defined for |z| > R−1. We say that f is holomorphic
at ∞ if f(w−1) has a removable singularity at w = 0. By the Riemann extension
theorem this is equivalent to f(z) being bounded as z → ∞, or if you want, to f(z)
having a limit when z →∞. And of course this limit is the value of f at ∞

—  —
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In the same vain the function f has a pole at infinity if f(w−1) has one at the origin.
The pole has order n if f(w−1) = w−ng(w) where the function g(w) is holomorphic
and non-vanishing at the origin. Substituting w = z−1 we see that this becomes
f(z) = zng(z−1) where g(z−1) is bonded, but with a non-zero limit when z →∞. An
of course, f has a zero at infinity if f(z) = z−ng(z−1) where g has a non-zero limit as
z tends to infinity.

Eksempel .. A polynomial of degree n has a pole of order n at infinity. Indeed, we
have assuming that polynomial p is monic,

P (z) = zn + an−1z
n−1 + · · ·+ a0 = zn(1 + an−1z

−1 + · · ·+ a0z
−n) = zng(z)

where g(z) tends to 1 as z →∞ e

(.) In the last paragraph we discussed function defined at infinity, we take a closer
look at functions taking the value infinity. Saying that f has a pole at a is the same
a saying that limz→a |f(z)| =∞. This is equivalent to saying that f(z) tends to ∞ in
the Riemann-sphere Ĉ, so setting f(a) =∞ gives a continuous function into Ĉ.

Using the coordinate w = z−1 at infinity, the behavior of f is described, by the
behavior of 1/f(z), and it is easily seen that the order of vanishing of f at infinity
equals the pole order at a.

Finally, a function f might have a pole at infinity, and its behavior is described by
1/f(z−1).

1.5 The general homotopy version of Cauchy’s the-
orem

A type problems invariably arising in complex function theory are variants of the
following “patching problem”: Given a certain number of open subsets {Ui} indexed
by the set I and covering a domain Ω and for each Ui a function Fi holomorphic in
Ui. Assume that any pair Fi and Fj differ by constant on each connected component
of the intersection Ui ∩ Uj—e.g., a situation like this arises when Fi is a primitive for
a given function f holomorphic in the union Ω =

⋃
i Ui.

The big question is: When can one change each Fi by a constant such that any pair
Fi and Fj agree on the whole Ui ∩ Uj? Or phrased in precise manner: When can one
find complex constants ci such that for all pairs of indices the equality

Fi(z) + ci = Fj(z) + cj

holds true for all z ∈ Ui ∩ Uj? The condition is clearly necessary and sufficient for
the existence of a “patch” of the Fi’s, meaning a function F defined in the whole of Ω
restricting to Fi on each Ui. That is, F satisfy F |Ui = Fi for each i in I.

The question is a non-trivial one; illustrated by the simple situation with just two
opens U1 and U2, but with the intersection Ui∩Uj being disconnected. In this situation

—  —
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the answer is positive if and only if F1 and F2 differ by the same constant on all the
connected components of Ui ∩ Uj.

In the figure below, for example, F2 and F3 on the open sets U2 and U3 are easily
adjusted to coincide with F1 on the intersections U1 ∩ U2 and U3 ∩ U4. Of course one
can make F4 mach F2 on U2 ∩U4 but at the same time F4 matches F3 on U3 ∩U4, one
has extremely lucky or very clever at the choices of F2 and F3.

Figur .:

This section offers a variation of this theme. In the bigger picture on has the
cohomology groups invented precisely for tackling challenges as described this flavour,
but those will be for later.

We start out with a short recapitulation of a notion from topology, namely the
homotopy of paths, and proceed with the main theme, a general Cauchy type theorem,
stating that the integral of a holomorphic function only depends of the homotopy type
of the path of integration.

1.5.1 Homotopy
For a moment we take on a topologist glasses and review —in a short and dirty

manner — the notion of homotopy between two paths in a domain Ω of the complex
plane. Homotopy theory has grown to big theory, nowadays it is a lion’s share of
algebraic topology, but it originated in complex function theory, and a lot of the results
specific for elementary function theory of can be developed in an ad hoc manner without
any reference to homotopy. However, let what belongs to the king belong to the
king, and more important, pursuing the study of Riemann surfaces one will find that
fundamental groups are omnipresent.

For a more thorough treatment one may consult Allan Hatchers book [?].

(.) For a topologist a path in Ω is a continuous path, that is a continuous map
γ : [0, 1]→ Ω. It is convenient in this context to let all parameter intervals be the unit
interval I = [0, 1]. As [0, 1] is mapped homeomorphically onto any interval [α, β] by
the affine function (1− t)α+ tβ, this does not impose any serious principal restriction.

—  —



MAT4800 — Høst 2016

Observe that with this definition a constant map γ(t) = a is path— a constant
path. The reverse path of γ denoted γ−1, is the path φ(1 − t). If γ1 and γ2 are two
paths such that the end-point of γ1 coincides with the starting point of γ2, one has the
composite path γ = γ2γ1 given as

γ(t) =

{
γ1(2t) when 0 ≤ t ≤ 1/2

γ2(2t− 1) when 1/2 < t ≤ 1,

one first traverses γ1 and subsequently γ2.
Closed paths, i.e., loops ending where the started, are called loops in topology.

And one usually specifies the common end- and start-point and speaks about loops at
a point a. Two loops at a can always be composed.

(.) The intuitive meaning of two paths being homotopic in the domain Ω is that
one can be deformed continuously into the other without leaving Ω. Let γ0 and γ1 be
the two paths in the domain Ω. They are assumed to continuous and to have a common
starting point, say a, and a common end-point b. That is, one has γ0(0) = γ1(0) = a
and γ0(1) = γ1(1) = b. It is a feature of the notion of homotopy that the starting
points and the end-points stay fixed during the deformation.

The precise definition is as follows:

Definisjon . Let γ0 and γ1 be two continuous paths in the domain Ω both with
starting point a and both with end-point b, are homotopic if there exists a continuous
function φ : I × I → Ω with φ(0, t) = γ0(t) and φ(1, t) = γ2(t) and φ(s, 0) = a and
φ(s, 1) = b.

In figure below we have depicted I × I with the behavior of the homotopy φ on the
boundary indicated.

a

γ1

b

γ2

Figur .: A homotopy

(.) It is common to write γ1 ∼ γ2 if γ1 and γ2 are homotopic, and it is not difficult to
show that homotopy is an equivalence relation. The algebraic operation of forming the
composite of two paths is compatible with homotopy. The composition is associative
up to homotopy meaning that (γ1γ2)γ3 ∼ γ1(γ2γ3) where of course it is understood
that the γi’s are mutually composabel, and one may show that the homotopy classes
of loops at a form a group under composition with the constant path as unit element
and, of course, with the inverse path as inverse. It is called the fundamental group of
Ω at a and it is written π1(Ω, a).

—  —
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Eksempel .. If Ω is star-shape, say with a as the central point, then every loop at a
is homotopic to the constant loop at a. Indeed, if γ is a loop, the convex combination
φ(s, t) = (1− s)γ(t) + sa is a homotopy as required. e

Eksempel .. Assume that φ is a homotopy between γ1 and γ2, and assume that
the final point of γ coincides with the common initial point of γ1 and γ2. Show that
γ1γ ∼ γ2γ, and with the appropriate hypothesis on γ, that γγ1 ∼ γγ2. Conclude that
if γ′1 ∼ γ′2, and γ′i’s satisfy the right composability condition, one has γ1γ

′
1 ∼ γ2γ

′
2.

Hint: Define a homotopy ψ by ψ(s, t) = γ(2t) for 0 ≤ t ≤ 1/2 and ψ(s, t) = φ(s, 2t−1)
for 1/2 < t ≤ 1.

e

(.) One can relax the condition on a homotopy and not require that the end-points
be fixed. In that case one speaks about freely homotopic paths . Although, if the two
paths are closed, one requires that the homotopy be a homotopy of closed paths; that
is, the deformed paths are all closed. To be precise, one requires that φ(s, 0) = φ(s, 1)
for all s. This implies that the two paths δ1(s) = φ(s, 0) and δ2(s) = φ(s, 1) are the
same.

δ

γ1

δ

γ2

(.) Let γ1 and γ2 be two piecewise C1-curves that are composable—the end-point
of the first being the start point of the other—and let γ the composite. Clearly γ is
also piecewise C1 and one has∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

In the same vain, if γ is piecewise C1, the inverse path γ−1 is as well, and one has∫
γ−1

f(z)dz = −
∫
γ

f(z)dz.

Integration behaves a little like a group homomorphism, so to speak. It takes compos-
ites to sums and inverse to negatives. And in the next section the main result is that
integration of holomorphic functions also is compatible with homotopy—that is, the
integral only depends on the homotopy class of the path of integration.

—  —
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1.5.2 Homotopy invariance of the integral I
We come to main concern in this section, the general Cauchy theorem. In the

usual setting, we are given a domain Ω and a function f holomorphic in Ω. The main
result of the section basically says that the integral of f along a path γ (that must be
piecewise C1 to serve as a path of integration) only depends on the homotopy class of
γ, and this means a homotopy that fixes the end points. There is also a version with
the homotopy being a free homotopy, but it is only valid for close curves.

From the homotopy invariance we extract the general Cauchy’s theorem and with
the use of a few results about homotopy groups (that we do not prove) we obtain the
general formulation of Cauchy’s formula and the counting formula for zeros and poles.

Oppgave .. Give an example of two freely homotopic paths and a holomorphic
function whose integrals along the to paths differ. X

Oppgave .. Give an example of two homotopic paths (fixed end-homotopic) and
function that is not holomorphic whose integrals along the two paths differ. X

(.) It is slightly startling that although a homotopy between two piecewise C1-
curves is just required to be continuous (so no integration is allowed along the deformed
paths), the integral of f along them remains the same.

If the homotopy is continuously differentiable, however, the independence of the
integrals is not difficult to establish. Let φ : I × I → I denote the homotopy, and that
assume it to be C∞ in the interior of I×I and to restrict to piecewise-continuous paths
on the boundary ∂I × I.

We cover φ(I × I) with finitely many disks ( I × I is compact!). Furthermore we
choose a partition {ti}0≤i≤r of the unit interval I such that if Rij denotes the rectangle
[ti−1, ti]× [tj−1, tj], it holds true that each Rij is mapped into one of the covering disks.
The restriction of φ to the boundary ∂Rij is a closed path lying in the covering disk
in which the image of Rij lies, and we denote this path by φ(∂Rij). The function f is
holomorphic in the covering disk, so Cauchy’s theorem for disks gives us∫

φ(∂Rij)

f(z)dz = 0. (.)

By a simple and classical cancellation argument, which should be clear from the figure
CCauchy

. below, it follows that∫
γ1

f(z)−
∫
γ2

f(z)−
∫
δ1

f(z)dz +

∫
δ2

f(z)dz =
∑
i,j

∫
φ(∂Rij)

f(z)dz = 0

the last equality stemming from (.) above. Hence we have∫
γ1

f(z)−
∫
γ2

f(z) =

∫
δ1

f(z)dz −
∫
δ2

f(z)dz. (.)
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FinalEqiality

Now assume that the γi’s are closed paths. If we require that the the deformation
of γ1 into γ2 should be through closed paths, we must have δ1 and δ2 to be the same
paths. Then the right side in (.) above vanishes, and we can conclude that∫

γ1

f(z) =

∫
γ2

f(z).

γ1

γ2

δ2δ1

Figur .:

Fig10

1.5.3 Homotopy invariance of the integral II
We closely follow the presentation of Reinholdt Remmert (page 169–174 in the

book [Rem]), and proof is inspired by the proof of the so called van Kampen theorem
in algebraic topology—a important theorem used to compute the fundamental group
of unions—one would find in most textbooks in algebraic topology (e.g., in [?]).

(.) The proof we present seems long and complicated, but the core is very simple.
Most of it consists of rigging (which is the same rigging as we did in the case of a C∞

homotopy)—one might be tempted to compare it to assembling a full orchestra to play
a ten second jingle.

GenerelCauchy

Teorem . If γ1 are γ2 are two homotopic piecewise C1-paths in the domain Ω and
f(z) is a holomorphic function in Ω, then one has the equality∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Bevis: The basic rigging is as follows: Let {Uk} be cover of Ω by open disks. Then
f has a primitive function over each Uk; that is, there are functions Fk holomorphic in
Uk with F ′k = f in Uk, and these functions are unique up to an additive constant.

The inverse images φ−1(Uk) form an open cover of I × I and by Lebesgue’s lemma
there is a partition 0 = t0 < · · · < tr = 1 of I such that each of the subrectangles
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Rij = [ti−1, ti] × [tj−1, tj] are contained in φ−1(Uk) for at least one k. We rename the
Rij’s and call them Rk indexed with k increasing t te left and upwards; that is, R0 is
the bottom left rectangle and Rn, say, the upper right one. The Uk’s are renumbered
accordingly. (Two Uk’ for different k’s can be equal).

The point of the proof is to construct a continuous function ψ : I × I → Ω with the
property

ψ(s, t) = Fk(φ(s, t)) for (s, t) ∈ Rk, (.)

where each Fk is a primitive function for f in Uk. which is as close to finding a primitive
NokkelLigning

to f(φ(s, t)) we can come. A crucial fact is that in the intersections Ui ∩ Uj, which
are connected, the functions Fi and Fj differ by a constant both being a primitive for
f , and the salient point in the construction of ψ is to change the Fk’s by appropriate
constants (it might even happen that Uk and Uk′ are equal for k 6= k′ but the two
functions Fk and Fk′ are different).

SmallLemma
Lemma . Once we have established the existence of a function ψ satisfying (.)
the theorem follows.

Bevis: The map φ is just a continuous map, but on the boundary of I × I it restricts
to the two original piecewise C1-paths; so φ(0, t) is just the parametrization γ1. Hence
we get∫

γ1

f(z)dz =
r∑
i=1

∫ ti

ti−1

f(φ(0, t))φ′(0, t)dt =
r∑
i=1

∫ ti

ti−1

F ′i (φ(0, t))φ′(0, t)dt =

=
r∑
i=1

ψi(ti−1)− ψi(ti) = ψ(0, 0)− ψ(0, 1).

In a similar way, one finds ∫
γ2

f(z)dz = ψ(1, 0)− ψ(1, 1).

Now, the homotopy φ fixes the end-points, which means that ψ(s, 0) and ψ(s, 1) are
independent of s, in particular it follows that ψ(0, 1)−ψ(1, 1) = ψ(0, 0)−ψ(0, 1), and
in view of the computations above, that is exactly what we want. o

We carry on with the jingle, the construction of the mapping ψ so as to satisfy the
condition (.) above. The tactics consist in using induction and successive extensions
to exhibit, for each m, a function ψm on the union

⋃
0≤k≤mRk extending ψm−1 and

satisfying (.) for k ≤ m. And at the end of the process, we let ψ be equal to ψr —
the last of the functions ψm.

So we assume that ψm is constructed on
⋃

0≤k≤mRk subjected to (.) and try to
extend it to ⋃

0≤k≤m+1

Rk = Rm+1 ∪
⋃

0≤k≤m

Rk.
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The most difficult case is when Rm+1 is located in a corner, as depicted in the figure
below. We concentrate on that situation, leaving to the zealous student the easier case
when Rm is situated in the bottom row or at the leftmost boundary of I × I and only
intersects one of the previous rectangles in one edge.

The image of the edge Rm∩Rm+1 under φ is contained in Um∩Um+1. After possibly
having changed Fm+1 by a constant, we may assume that Fm and Fm+1 coincide in
Um ∩ Um+1 (which is connected), and hence Fm(φ(s, t)) and Fm+1(φ(s, t)) are equal
along Rm ∩Rm+1.

By induction, Fs(φ(s, t)) and Fm(φ(s, t)) coincide in the corner Rm ∩ Rs ∩ Rs−1,
both being equal to ψm(s, t) there.

So along the edge Rm∩Rm+1 the functions Fm(φ(s, t)) and Fm+1(φ(s, t)) agree, and
along Rm ∩Rs the functions Fm(φ(s, t)) and Fm+1(φ(s, t)) agree, hence Fs(φ(s, t)) and
Fm+1(φ(s, t)) take the same value in the corner-point!

The salient point is to see that the functions Fs and Fm+1 agree along the edge
Rm+1∩Rs, because then they patch up to a continuous function on Rm+1∪

⋃
0≤k≤mRk.

Luckily, they differ only by a constant in the intersection Um+1∩Us, and the image
of the corner lies there. As Fm and Fs agree in the corner, as do Fm and Fm+1, it
follows that Fm+1 and Fs are equal in the corner. Since their difference in Um+1 ∩Us is
a constant, it follows that they are equal there, and in particular they coincide along
the edge Rm+1 ∩Rs. And that is what we were aiming for!

Rm+1

Rs−1 Rs Rs+1

Rm

o

(.) One can relax the condition on a homotopy and not require that the end-points
be fixed in which case one speaks about freely homotopic paths . Although, if the two
paths are closed, one requires that the homotopy be a homotopy of closed paths; that
is, the deformed paths are all closed. To be precise, one requires that φ(s, 0) = φ(s, 1)
for all s.

In general integrals are obviously not invariant under free homotopy for non-closed
paths, but for closed paths it holds true. One has

HomotopyInvariance
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Teorem . Let γ1 and γ2 be two closed piecewise C1-paths in the domain Ω that are
freely homotopic. Let f be holomorphic in Ω. Then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Bevis: The proof is the virtually same as for theorem ., with only one small
exception: The maps ψ(s, 0) and ψ(s, 1) are no longer constant. However, we know
that φ(s, 0) = φ(s, 1) for all s, which is sufficient to save the proof. As a matter of
notation we let δ denote this path.

For each s it holds true that ψ(s, 0) = Fis(φ(s, 0)) for some index is, however this
index may change along the path δ. In an analogous manner, ψ(s, 1) = Fjs(φ(s, 1))
with the index js possibly varying with s. Now, φ(s, 0) = φ(s, 1) and the Fk’s differ
only by constants. Therefore the difference ψ(s, 0)−ψ(s, 1) is locally constant along δ
and hence constant by continuity. It follows that

ψ(0, 0)− ψ(0, 1) = ψ(1, 0)− ψ(1, 1),

and by reference to the proof of lemma . we are done. o

(.) As an example, but important example, let us show that any closed path γ(t)
in the star-shaped domain Ω with apex a is freely homotopic to any circle contained in
Ω and centered at a —traversed a certain number of times, in any direction. That γ
is freely homotopic to a path of the form reit, the parameter t running from 0 to 2nπ
and n being an integer and r sufficiently small so the circle lies in Ω. Express the path
γ(t) in polar coordinate as

γ(t) = a+ r(t)eiφ(t),

with t running from 0 to 2nπ. Define a homotopy Φ by

Φ(s, t) = (1− s)r(t)ei(1−s)φ(t) + sreist,

where t runs from 0 to 2nπ—since the segment from a to γ(t) is contained in Ω, clearly
the segment from a + reit is as well. This shows that two closed curves are freely
homotopic in Ω if and only if their winding numbers about a are equal.

vamKampen1

(.) The previous example can be generalized using van Kampen’s theorem. One
may show that if Ω is any domain and Ω′ is obtained from Ω by removing a point a
(or a closed disk D) contained in Ω, there is an exact sequence of fundamental groups

1 // Z α // π1(Ω′) // π1(Ω) // 1 (.)

and where the map α sends the generator 1 of Z to a circle around a contained in Ω
and being traversed once counterclockwise, so a closed path γ lying in Ω′ and being
null-homotopic in Ω, has a homotopy class in Ω′ that is a multiple of α(1); that is, the
path is homotopic in Ω′ to a small circle round a traversed a certain number of times,
in one direction or the other.
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1.5.4 General Cauchy theorem
From the invariance of the integral, we immediately obtain the following funda-

mental theorem:

Teorem . Let Ω be a domain and f a function holomorphic in Ω and let γ be a
piecewise closed C1-path in Ω. Assume that γ is null-homotopic. Then∫

γ

f(z)dz = 0.

Bevis: Let α be “half” the path γ, that is α(t) = γ(t/2) for t ∈ [0, 1], and let β be
the other half, that is the one given by β(t) = γ(t/2 + 1/2). Then of course γ is the
composite βα. The composite being null-homotopic implies that α ∼ β−1, and hence
by theorem . one has ∫

α

f(z)dz = −
∫
β

f(z)dz,

but then ∫
γ

f(z)dz =

∫
α

f(z)dz +

∫
β

f(z)dz = 0.

o

For simply connected domains we get the general Cauchy theorem as an immediate
corollary

Korollar . Let Ω be a simply connected domain and let f be holomorphic ion Ω.
Then for any closed path γ it holds true that∫

γ

f(z)dz = 0.

(.) An in view of the existence criterion for primitives (proposition . on page )
we see holomorphic functions in simply connected domains all have primitives:

Korollar . If f is a holomorphic function in the simply connected domain Ω, then
f has a primitive.

(.) In particular, and of particular interest, this applies to the logarithm. Any
holomorphic function f vanishing nowhere in the simply connected Ω has a logarithm;
i.e., there is a function, which we denote by log f , and that satisfies the equation

exp ◦ log f = f (.)

throughout Ω. Indeed, as f is without zeros in Ω, the logarithmic derivative f ′/f is
ExpLog

holomorphic there and, Ω being simply connected, has a primitive there. We temporar-
ily denote this primitive by L (as long as (.) is not verified, it does not deserve to be
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titled log f). A small and trivial computation using standard rules for the derivative,
shows that

∂zf
−1(z) exp(L(z)) = 0.

Hence exp(Lz) = Af(z) for some constant A. Of course it might be that A 6= 1, but
then we change the primitive L into L− logA, which is another primitive for f ′/f .

As usual log f is unique only up to whole multiples of 2πi.
When the logarithm log f is defined, the function f also possesses roots of all

types. More generally for any complex constant α, the power fα is defined; it is given
as fα = exp(α log f).

1.5.5 The Genral Cauchy formula
Using the remark in example 1.4, we obtain the general form of the formula of

Cauchy, valid for null-homotopic paths in any domain Ω:

Teorem . Assume that f is a holomorphic function in the domain Ω, and let a ∈ Ω
be a point. Then for any closed path γ being null-homotopic in Ω, it holds true that

n(γ, a)f(a) =
1

2πi

∫
γ

f(z)(z − a)−1dz.

Bevis: By the homotopy invariance of the integral (theorem . on page ) and the
remark in paragraph 1.4, the integral in the theorem equals

1

2πi

∫
n∂D

f(z)(z − a)−1dz

for a certain integer n. In this integral D denotes a disk whose closure is contained in
Ω, and n∂D indicates the path that is the boundary circle of D traversed n times. o

(.) There is also a generalization of the argument principle—giving us the ultimate
formulation. However, it needs some preparation, the first being a common technic,
which as well will be useful later, called exhausting by compacts . Recall the notation
A◦ for the set of interior points of a set A.

Exhausting

Lemma . Assume that Ω is a domain in the complex plane.Then there exists a
sequence of compact sets Kn all contained in Ω satisfying the two properties

� The sequence is increasing: Kn⊆Kn+1;

� Their interiors cover Ω, that is:
⋃
nK

◦
n = Ω.

Bevis: For each n we put

Kn = { z ∈ Ω | d(z, ∂D) ≥ 1/n } ∩ { z | |z| ≤ n }.

Then Kn is closed and bounded (the distance function being continuos) and the Kn-s
form an increasing sequence. For every point z in Ω one has d(z, ∂D) > 1/n and |z| < n
for n sufficiently large, hence the interiors of the Kn cover Ω. o
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Figur .: One of the compact exhausting sets.

(.) The reason we are interested in this process of exhausting by compacts at this
stage, is that it guaranties there only being finitely poles and zeros of f having non-
vanishing winding number with respect to a given closed path γ in Ω.

Indeed, γ is compact and hence must be contained in some Kn. Points outside Kn

belong to the unbounded component of the complement C\γ and the winding numbers
of γ round them vanish. But zeros and poles of f are isolated, so in compact sets there
is only finitely many. Hence

Lemma . Assume that γ is a closed path in the domain Ω and that f is meromorphic
in Ω. Then there is only a finite number of points a ∈ Ω such that n(γ, a) 6= 0.

(.) The second preparation is a formula from homotopy theory analogous to the
exact sequence in example 1.4 on page , but involving not only one point, and just
as is the case with 1.4, it hinges on the van Kampen theorem. We shall not prove it,
so if you do not know the van Kampen theorem, you have no choice but trusting us.

Given a finite number a1, . . . , ar of points in the domain Ω and given r little disks
Di, centered at ai respectively and so little that they are contained in the domain Ω.
LetΩ′ be Ω with the r given points deleted; i.e., Ω′ = Ω \ {a1, . . . , ar}.

Denote by ci the homotopy class in Ω′ of the boundary circle ∂Di traversed once
counterclockwise. Then there is an exact sequence

Z ? · · · ? Z // π1(Ω′) // π1(Ω) // 1.

Don’t let the stars frighten you, they stand for something called a free product of
groups. If you want to dig into these questions Alan Hatchers book [?] can be recom-
mended. In clear text the sequence means that the fundamental group π1(Ω) equals
the quotient of π1(Ω) by the normal subgroup generated by the r classes ci.

The form of this statement, useful for us, is that if γ is a closed path null-homotopic
in Ω and avoiding the points ai, its homotopy class equals an integral combination
n1c1 + · · · + nrcr of the classes of the little circles round the ai-s. By applying the
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homotopy invariance to the different integrals
∫
γ
(z−ai)−1dz, one sees that ni = n(γ, ai),

so in the fundamental group of Ω′, one has the equality

[γ] =
∑
i

n(γ, ai)ci

whenever γ is a closed and null-homotopic path in Ω (and [γ] denotes its homotopy
class); indeed, one has

1

2πi

∫
ci

(z − aj)−1dz = δij.

(.) We have come to the scene of the ultimate formula in the context of counting
poles and zeros: The setting is a domain Ω, a function f meromorphic in Ω and
a function g holomorphic there. Finally, a closed path null-homotopic in Ω is an
important player, and here comes the hero of the play, the ultimate formula:

1

2πi

∫
γ

g(z)d log f(z) =
∑
a∈Ω

g(a) n(γ, a)ordaf (.)

TheUltimateArgPrinc

This formula looks suspiciously like the formula (.) on page , but the difference
is of course the relaxed conditions on the domain and the path. The proof is simple
once the preparations are in place.

We know that only for only finitely many points a1, . . . , ar in Ω the following product
n(γ, a)ordaf is non-zero, hence the sum in the formula is finite. We know that γ is
homotopic to an an integral combination c =

∑
i nici, with ci = n(γ, a)i, and by

the homotopy invariance of the integral we can replace
∫
γ
gd log f by

∑
i ni
∫
ci
gd log f .

Finally, in each of the terms in the latter sum the integral equals g(a)ordaif by Cauchy’s
formula for a disk.

1.6 Laurent series

Recall that an annulus is a region in the complex plane bounded by two concentric
circle. If the two radii are R1 and R2 with R1 the smaller, and a is their common
center, the annulus consists of the points z satisfying R1 < |z − a| < R2. In case
R1 = 0 or R2 =∞, the annulus is degenerate and equals to either the punctured disk
0 < |z − a| < R2, the complement of a closed disk R1 < |z − a| or the whole complex
plane (in case R1 = 0 and R2 =∞).

This section is about functions that are holomorphic in an annulus. They have a
development into a double series analogous to the Taylor development of a function
holomorphic in a disk.
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(.) Let an be a sequence of complex numbers that is indexed by Z; that is n can
take both positive and negative integral values. Consider the double series∑

n∈Z

an(z − a)n, (.)

which for the moment is just a formal series. It can be decomposed in the sum of two
DobbelSeries

series , one comprising the terms with non-negative indices, and the other the terms
having negative indices. That is we one has∑

n∈Z

an(z − a)n =
∑
n<0

an(z − a)n +
∑
n≥0

an(z − a)n. (.)

One says that the series Σ is convergent for the values of z belonging to set S if and
DekompSeries

only if each of the two series in the decomposition above converges for z in the given
S, and we say that the convergence is uniform on compacts if it is for each of the two
decomposing series.

In case the series (.) converges for z in the set S, the “positive” and the “neg-
ative” series in (.) converges to functions f+ and f− respectively, and we say that
double series converges to the function f = f+ + f−.

The “positive”series ∑
n≥0

an(z − a)n

is an ordinary power series centered at the point a, and has, as every power series
has, a radius of convergence. Call it R2. The series thus converges in the disk DR2

given by |z − a| < R2, and diverges in the region |z − a| > R2. It converges uniformly
on compact sets contained in DR2 , and as we know very well, defines a holomorphic
function there.

On the other hand, the “negative” series∑
n<0

an(z − a)n

is a power series in w = (z − a)−1; indeed, performing this substitution we obtain the
expression ∑

n>0

a−nw
n

for the “negative” series. This power series has a radius of convergence, that we for
a reason soon to become clear call R−1

1 , so it converges for |w| < R−1
1 and diverges

if |w| > R−1
1 . Translating these conditions on w into conditions on z, we see that

the “negative” series converges for |z − a| > R1 and diverges for |z − a| < R1. The
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convergence is uniform on compacts and therefore the sum of the series is a holomorphic
function f− in the region |z − a| > R1.

The interesting constellation of the two radii of convergence is that R1 < R2,
in which case the double series converges in the region sandwiched between the two
circles centered at a and having radii R1 and R2 respectively, and there it represents
the holomorphic function f = f+ + f−.

(.) Now, let R1 < R2 be two positive real numbers and let a be a complex number.
We shall work with a function f that is holomorphic in the annulus A(R1, R2), and
we are going to establish that f has what is called a Laurent series in A, that , it can
be represented as double series like the one in (.). We shall establish the following
result:

Teorem . Assume that f is holomorphic in the annulus A = A(R1, R2). Then f
is represented by a double series

f(z) =
∑
n∈Z

an(z − a)n

which converges uniformly on compacts in A. The coefficients an are given by

an =
1

2πi

∫
cr

f(w)(w − a)−n−1dw

where cr is any circle centered at a and having a radius r with R1 < r < R2.

Bevis: To begin with, we let r1 and r2 be two real numbers with R1 < r1 < r2 < R2.
The two circles c1 and c2 centered at a and with radii r1 and r2 respectively (and
both traversed once counterclockwise) are clearly two freely homotopic paths in A, a
homotopy being φ(s, t) = sc1(t) + (1 − s)c2(t) (where ci as well denotes the standard
parametrization of ci). Hence for any z lying between c1 and c2 the general Cauchy
formula gives

f(z) =
1

2πi

∫
c2

f(w)(w − z)−1dw − 1

2πi

∫
c1

f(w)(w − z)−1dw (.)

indeed, the winding number of the composite path c2 − c1 round z equals one.
DiffEqua

Now, the point is that the two integrals appearing in (.) above, will be the two
functions f+ and f−. To see this we shall apply the proposition . on page  twice.

We start be examining the first integral, whose path of integration is c2, and we
take φ(w) = f(w) in proposition .. Hence

f+(z) =
1

2πi

∫
c2

f(w)(w − z)−1dw
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is holomorphic in the disk |z − a| < c2, and its Taylor series about a has the coefficients

an =
1

2πi

∫
c2

f(w)(w − a)−n−1dw.

According to proposition ., the Taylor series converges in the largest disk not hitting
the path of integration, that is the disk |z − a| < c2.

z

aR2 R1

r1

r2

Figur .: The annulus and the two auxiliary circles

Next we the examine the second integral, and to do this, we perform the substitution
u = (w − z)−1. Then dw = −u−2du, and the new path of integration is |u| = r−1

1 , a
circle centered at the origin which designate by d. Upon the substitution, the integral
becomes

f−(z) =
1

2πi

∫
c1

f(w)(w − z)−1dw = − 1

2πi

∫
d

f(u−1 + z)u−1du

Applying once more the proposition ., this time with φ(u) = −f(u−1 + z) and the
path of integration equal to d (positively oriented), we conclude that the integral is a
holomorphic function in the disk |u| < r−1

1 , or equivalently for |z − a| > r1. Its Taylor
series about the origin has, according to proposition ., coefficients bn given by the
integrals below, where we as well, reintroduce the variable w:

bn = − 1

2πi

∫
d

f(u−1 + a)u−n−1du =
1

2πi

∫
c1

f(w)(w − a)n−1dw,

And in fact, that will be all! o

Oppgave .. Determine the Laurent series of the function f(z) = (z−a)−1(z− b)−1

in the annulus A(|a| , |b|) centered at the origin. X

Oppgave .. Determine the Laurent series of f(z) = (z − a)−1(z − b)−1 in the
annulus A(0, |b− a|) centered at a. X

Oppgave .. Let f have an isolated singularity in a and be holomorphic for 0 <
|z − a| < r. Show that f has a pole at a if and only if the series for f− in the Laurent
development of f in annulus the A(0, r) centered at a has a finite number of terms. X

—  —
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Sometimes it is inestimably useful to be able to approximate functions by polynomi-
als. A local study of differentiable functions is unthinkable without Taylor polynomials.
In a somehow more global and advanced setting, the Weierstrass approximation the-
orem is fundamental. It tells us that any real continuous function on a compact set in
euclidean space Rn can be uniformly approximated by real polynomials to any degree
of accuracy.

Our primary primary concern are the holomorphic functions, and the question
naturally becomes this: Given a holomorphic function in a domain Ω and a compact
set K ⊆Ω. When can can f be approximated by polynomials uniformly on K? That
is, when can one to any ε > 0 find a polynomial P (z) with supz∈K |f(z)− P (z)| < ε?

The first comment is that a positive answer to this, is both a stronger and weaker
statement than in Weierstrass’ theorem. Complex polynomials are very special com-
pared to the real polynomials, and there are a lot less. The dimension of the real vector
space of real polynomials in two variable whose degree is less than n is quadratic in
n, but the complex ones form a vector space of real dimension 2n. Their properties
are also very different. The real and complex part of complex polynomials only have
saddle points, whereas real ones of course can have local extrema of any kind.

On the other hand, we suppose that f is holomorphic on an open set containing
K, whereas in Weierstrass one assumes only that f is continuous on K. There is fam-
ous theorem proved by Sergei Nikitovich Mergelyan io , generalizing Weierstrass’s
result in this respect. It says that if the complement C \K is connected, any function
f continuous in K and holomorphic in the interior K◦ of K, can be approximated


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uniformly by complex polynomials. There are also versions where the approximat-
ing functions can be rational, e.g., if the complement of K only has finitely many
components one can approximate with rational functions.

The second comment is that the answer to our question is not a clear yes or no, it
depends on the topology of K. A illustrative example is the closed annulus A centered
at the point a with radii 1 and 3 say. Then (z− a)−1 is holomorphic in A, but can not
be approximated uniformly in A. Indeed, if P (z) is a polynomial, it holds true that∫
C
f(z)dz = 0, whereas

∫
C

(z − a)−1dz = 2πi. So an inequality∣∣P (z)− (z − a)−1
∣∣ < ε < 1

for points z ∈ A, leads to the contraction

2π =

∣∣∣∣∫
C

P (z)− (z − a)−1

∣∣∣∣ < 2πε < 2π.

And in fact, to some extent, this a constituting example. It describes very well the
obstructions to yes being the answer of our question. And it also indicates the next
natural question: When can a function holomorphic in K be approximated uniformly
by rational functions, holomorphic in Ω? We must alow poles in the “holes” of K, and
for the rational function to be holomorphic in Ω, in every hole in K there must be a
“hole” in Ω where we can put the pole!, but as long as we comply with that rule we
can be very specific about where to locate the poles

Problem .. Let A an annulus and a a point in the “inner circle”. Show that any
function holomorphic in A can be approximated uniformly by rational functions with
only a pole at a. Hint: Treat first the case with a being the center of A; Laurent
series is then the key-word. X

2.1 A few preparations

We begin with some preparations about the space of holomorphic functions H(K) and
we recall some basic facts about the connected components of complements.

2.1.1 Function spaces
To begin with, let K be a compact subset of C and recall that a function f is said

to be holomorphic in K if it is defined and holomorphic in a domain containing K.
In the present context the domain is irrelevant, and does not appear in the notation.
The set of functions holomorphic on K is denoted by H(K). One has to be precise
about this, H(K) is the set of continuous functions which are restrictions of functions
holomorphic in an open set containing K.

The space H(K) is a complex algebra, closed under linear combinations and under
product (two functions holomorphic inK are defined and holomorphic on a common do-
main containing K, e.g., the intersection of the domains where either is holomorphic).

—  —
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The space K has a topology induced by the norm

‖f‖K = sup
K
|f(z)| ;

one easily verifies this is a norm, i.e., the triangle inequality is satisfied, and the norm
axiom ‖fg‖K ≤ ‖f‖K ‖g‖K is as well. The latter inequality will be strict when the
maximum of the two functions occur at different points, which would a priori bet
at. This topology is called the topology of uniform convergence, and one sees almost
by definition that a sequence {fn}n converges in H(K) precisely when it converges
uniformly on K. Both addition and multiplication in H(K) are continuous in this
topology and the H(K) qualifies to be what is called a normed algebra.

Problem .. Describe H(K) if K = {a1, . . . , ar}. X

Problem .. Assume that K is connected and has interior points. Two functions
holomorphic in open neighbourhoods of K that restrict to the same continuous function
on K must be equal on a neigbourhood of K. X

Problem .. One may define the space germs G(K) of holomorphic functions around
a compact set K in the following way. The starting point is the set of pairs (f, U) where
U is an open set containing K and f is holomorphic in U . Two pairs (f, U) and (g, V )
are equivalent if there is an open, non-empty subset W ⊆U ∩ V such that f |W = g|W ,
and the set G(K) of germs is defined to be the set of equivalence classes. Show that
G(K) is an algebra. If K has a non-void interior, show that G(K) is a normed algebra.

X

Problem .. Describe G(K) when K = {a1, . . . , ar}. X

(.) If A is a subclass of functions in K, we say that every holomorphic function on
K can be uniformly approximated by functions from the class A, if A is dense in with
H. Written out, this means that for any function f holomorphic on K and any ε > 0
given, there is a function g ∈ A with

‖f − g‖K < ε.

The following little lemma is now and then useful:

LilleNyttigLemma

Lemma . Suppose H is normed algebra and that A⊆H is a subalgebra. Then the
closure A is a subalgebra as well.

Proof: Elements in the closure A are limits of sequences from A, and we get away
with the following reasoning: If ai → a and bi → b, then ai + bi → a+ b and aibi → ab.

o

(.) For open sets the topology of uniform convergence on H(Ω) is slightly more
complicated to define.

—  —
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2.1.2 Connected components
The connected components of complements C \ A of subsets A of C— A mostly

being compact or open—play a prominent role in the Runge-theory, so it is worth while
saying a few words about them.

(.) Recall that subset of a topological space is connected if it is not the disjoint
union of two open sets, or equivalently, it is not the disjoint union of two closes sets.

A connected component of the topological space X is a maximal connected subset.
As the intersection of two connected sets is connected, the connected components of
X form a partition of X; that is the space X is the disjoint union of its connected
components.

Connected components are always closed subsets of X; for ifC is one and x belongs
to the boundary of C, any open neigbourhood of x has points in common with C, and
whence X ∪ {x} is connected. It follows that x ∈ C since C is a maximal connected
subset.

However components are not always open. For example, the topological space
Q⊆R consisting of the rational numbers with the topology induced from the reals R,
the only connected subsets are the singletons {q}: Two different rational numbers q of
q′, can always be separated by an open interval. Just chose a real number r between
them; then (−∞, r) ∩Q and (r,∞) ∩Q are two disjoint open sets either containing q
or q′. A space having this property—that the points are the connected components—is
said to be totally disconnected .

Luckily the connected components of an open subset Ω⊆C are all open. This
follows from disks being connected: If C is one of the components of Ω and x ∈ C is a
point, there is a disk D centered at x contained in Ω. The union C ∪D is connected
—both D and C are, and their intersection is non-empty— so D⊆C by the maximality
of C.

Problem .. Show that the Cantor-set c is totally disconnected. X

Problem .. Let Zp∞ ⊆S1 denote the subset whose points are all the pr-te roots of
unity for a natural number r; i.e., those on the form exp(2πia/pr) for a ∈ Z. Show
that Zp∞ is totally disconnected. X

(.) The complement C\K of a compact set is of course an open set, and its connec-
ted component are all open subsets of C. There is a unique one that is unbounded; if
there where two, K being compact, they would shear a connected neigbourhood of the
point at infinity, e.g., the complement C \D for a disk D of sufficiently large radius.

The other components, have compact closures being compact, but they can very well
be infinite in number. Any sequence of disjoints disks whose radii diminish sufficiently
quickly, and contained in a compact, would give an example. To be concrete let Dn

be the disk centered at 1/n and with radius 1/3n. Then D =
⋃
nDn is an open set

contained in the square I × I, and I × I \ D is compact with all the disks Dn as
components of the complement.

—  —
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We do not put any further hypothesis on the compact sets, so they need not be
connected, and can have uncountable many connected components; like e.g., c × c
where we as usual c stands for the Cantor set. And they do not necessarily have
interior points.

(.) Recall that a subset Y of a topological space X is called relatively compact if

the closure Y of Y in X is compact. This is equivalent to Y being contained in a
compact subset of X.

If Ω is a domain and K ⊆Ω is a compact subset, the connected components of Ω\K
are all open in Ω. They come in two flavors. They can be relatively compact in Ω or
not, and this distinction is very important in Runge-theory. Let us agree to use the
colloquial—but descriptive—term hole for a bounded component of the complement
C \ A of a set A⊆C.

In figure . below we have depicted a domain Ω containing a compact set K. The
complement Ω \K has three components A, B and C of which only one is relatively
compact, namely B. Among the two others, A is the intersection of the unbounded
component of K with Ω, and this is generally one way of obtaining components that
are not relatively compact. The other way is illustrated by C; heuristically one may
describe that phenomenon as a “hole in the hole”; that is Ω has a hole contained in a
hole of K.

Ω

A

K

B C

Figur .: A domain Ω and a compact subset K

One also observes that the part of the boundary ∂Ω that is contained in Ω—in the
figure the boundary of the region B—is contained in K. This is general; one has

BoudaryComp

Lemma . Let K ⊆Ω be a compact within a domain and let C be a connected compact
of the complement Ω \K. Then ∂C ∩ Ω⊆K. If C is a bounded component, it holds
true that C is relatively compact if and only if ∂C ⊆K.

—  —
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Proof: Let z be a point in the intersection ∂C∩Ω and assume that z does not belong
to K. Then there is a disk D about z contained in Ω \K. Now, D ∪ C is connected
so D must be contained in C. But C is open in Ω and consequently z does not belong
to the boundary ∂C, which is absurd.

A bounded component C is relatively compact if and only its closure in Ω equals
its closure in C, which is equivalent to the boundary ∂C being contained in Ω. o

2.1.3 An interesting example
The example we are about to describe was found by the Swiss mathematician Alice

Roth in  and described in her article [?]. Subsequently it got the nickname “Roth’s
Swiss cheese “, which you will find appropriate after having seen the construction (take
look at figure . below). Most of the work is left as exercises.

Alice Roth made this example as a counterexample to certain hypothesis about
polynomial approximations by rational functions. It is part of the story that her
example was forgotten and rediscovered by the armenian mathematician Mergelyan;
whose famous approximation theorem we alluded to in the beginning of this chapter.

There is a stronger version of Mergelyan theorem saying that if the diameter of the
bounded components of the complement of K are bounded away from zero, uniform
approximation by rational functions is possible; and the Roth’s Swiss cheese, is an
example that the boundedness condition is necessary.

The construct of the example is a compact subset K of the closed annulus A = { z |
1 ≤ |z| ≤ 3 } which is nowhere dens in A and has Lebesgue measure as close to 8π as
one wants. The complement is a union of disjoint disks. Additionally the intersection1

C2 ∩K is nowhere dens in C2 and of measure zero.
We begin by choosing a sequence {zn} in the open ring A◦ which is dens in A, and

such that subsequence of {zn} lying on the circle C2 forms a dens subset of C2. We
then chose a sequence of positive numbers εn satisfying

∑
n εn = ρ < 1/2.

The construction is of course recursive. The first step being to chose a disk D1

centered at z1 and contained in A◦ having a radius η1 less than ε1, and such none of
the points z2, z3, . . . lie on the boundary.

The recursive step is as follows. Assume that D1, . . . , Dn are constructed. In case
zn+1 lies in the union

⋃
k≤nDk, we let Dn+1 = ∅. If this is not the case, we let Dn+1 be

a disk contained in A◦ , disjoint from all the previously chosen disks , centered at zn+1

and having a radius ηn+1 less than εn+1. Furthermore none of the points zn+2, zn+3, . . .
should lie on the boundary. Finally, the “swiss cheese” is as announced defined by
K = A \

⋃
k∈NDk

Problem .. Show that K is nowhere dense in A and that the two-dimensional
Lebesque measure µK satisfies µ(K) ≥ 8π − π

∑
k η

2
k. Show that we K can have a

measure as close as we want to 8π. Show that the total length of the circumferences
of ∂Dn is at most π, that is

∑
n Λ(∂Dn) < π. X

1 We denote by Crthe circle centered at the origin and having radius r.
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Problem .. Show that K ∩ C2 is nowhere dense in C2. X

Problem .. Assume that f(z) is a rational function without poles in the set K.
Show, by using Cauchy’s residue formula, that∫

C1

f(t)t−1dt−
∫
C3

(f(t)− 1)t−1dt+
∑
n

∫
∂Dn

f(t)t−1 = 2πi.

X

Problem .. Show there is no rational function f(z) such that

� |f(z)| < 1 for z ∈ K,

� |f(z)| < 1/4 for z ∈ C1,

� |f(z)− 1| < 1/4 for z ∈ C3.

X

Problem .. Show there are continuous functions on K that can not be uniformly
approximated by rational functions. Hint: Find an appropriates linear combination
α |z|+ β. X

Figur .: The Swiss cheese of Alice Roth.

—  —



MAT4800 — Høst 2016

2.2 Runge for compacts

We shall follow the exposition of Reinholdt Remmert as in a book [Rem] closely. He
bases the theory on so called step-polygons This gives an easy to follow and rather
elementary proof of Runge’s theorem. Additionally it gives a certain “spin off” in
some near by contexts. A draw back is that the method is kind of sensitive to the
context, and does not generalize easily, e.g., to Riemann surfaces.

2.2.1 The formulation of Runge’s theorem for compacts
The example in the beginning of this chapter can be generalizes easily. If a is any

point in the complement of K belonging to one of the bounded components, say C,
the function (z− a)−1 can not be approximated by polynomials on K (or holomorphic
functions for that matter). Indeed, we may chose ε according to the prescription
ε < supK |z − a|

−1, which is finite (since K is compact) and positive (as a is not lying
in K). Now, if there were a polynomial p(z) such that |(z − a)−1 − p(z)| < ε for z ∈ K,
we would have |1− (z − a)p(z)| < ε |z − a| < 1, for all z ∈ C. And this is a flagrant
contradiction as a lies in C.

(.) The arguments from the previous paragraph show that in order to have a general
approximation theorem, it is necessary to alow poles in every bounded component of
C \K, and Runge tells us that this is sufficient as well:

KompaktRunge
Theorem . Let K a compact subset and P ⊆C be a subset. Every function f holo-
morphic in K can be approximated uniformly by rational functions whose poles all lie
in P if and only if P meets every one of the bounded components of C \K

The proof will occupy the rest of this section and it has three distinct parts. In one
we establish a nice version of Cauchy’s formula allowing us to represent the function f
as a certain integral. In the second, certain Riemann sums for this integral give us some
an approximation by rational function, and finally, a process called “pole-pushing” lets
us conclude.

(.) But before starting on the proof, we formulate two corollaries:

Corollary . Assume that K ⊆C is compact. Every function holomorphic on K can
be approximated uniformly with the help of polynomials if and only if C\K is connected

Proof: As C \K has no bounded component, the set P is empty. o

Corollary . Let Ω be a domain and K ⊆Ω a compact subset. Every function holo-
morphic in K can be approximated uniformly by rational functions holomorphic in Ω
if and only if every connected component of C \K meets C \ Ω.

Proof: To find a set P to use, chose in every component of C \K chose a point not
belonging to Ω. o
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2.2.2 A useful version of Cauchy’s formula
Recall that a polygon is a closed subset of C whose boundary consists of finite

number of line segments [ai, ai+1], called edges , that do not meet anywhere else then
in the vertices ai. One also requires that the edges close up, that is for some k it holds
that a1 = ak+1.

Given a grid in the plane with mesh-width δ. The grid has squares, edges and
vertices, the vertices being the points (nδ,mδ) and the edges and the squares are what
common usage tell you.

A step step polygon is a polygon whose edges are either horizontal or vertical. The
step polygons we shall most frequently shall meet, will fit a grid; that is, all their edges
are edges of the grid as well. The vertices of a step polygon is therefore of the form
an,m = (nδ,mδ).

(.) To begin with we prove a very special case of Cauchy’s theorem. The setting is
as follows. We are given a domain Ω and a compact subset K. Our first objective is to
construct a closed chain σ in Ω disjoint from the compact K, such that any function
holomorphic in Ω has a representation à la Cauchy, that is, is an integral along σ.

FirKantLemma

Lemma . Given a compact K contained in the domain Ω, one may find a cycle in
Ω \K satisfying

f(z) =
1

2πi

∫
σ

f(w)

w − z
dw

for all z ∈ K and for all functions f holomorphic in Ω.

The chain σ will be a sum σ = τ1 + · · ·+ τk where the terms τi are closed step polygons
fitting a grid.

Proof: We start by choosing a grid whose mesh-width δ is smaller than the distance
from K to the boundary of Ω, that is, it satisfies 0 < δ < d(∂Ω, K)/

√
2.The boundary

of the squares in the grid has a natural orientation, given by going counterclockwise
round the square.

Our chain σ will be constructed as a sum of edges from the grid, and it will be part
of the construction to give these edges a good orientation.

To proceed with the construction, we let Q be the collection of the squares in the
grid that meet the compact set K. It is a finite set K being compact. Our interest is
primarily in the edges of the grid lying on exactly one of the squares from Q, and we
reserve the notation S for the set of those. They have a natural orientation, the one
they inherit from the unique square in Q they lie on.

The chain σ we are seeking, is the sum of the edges from S oriented in the natural
way; that is we have

σ =
∑
s∈S

s.

—  —



MAT4800 — Høst 2016

The orientation an edge of the grid inherits from the two squares it lies on are opposite,
and therefore it holds true that

σ =
∑
Q∈Q

∂Q.

indeed, if s lies on two squares from Q it appears twice in the sum with opposite
orientations.

Now, the chain σ is disjoint from K: If a point a lies one on an edges s it would
lie on both the squares having s as an edge and would thence not be in S. And, σ is
contained in Ω: The distance from s to K is less than the diameter

√
2δ of the squares,

and in its turn, the diameter is (by choice of the mesh-width δ) less than the distance
d(∂Ω, K) from K to the boundary ∂Ω.

We proceed by attacking the formula for the integral in the lemma, and start out
with a point z lying in the interior of one of the squares Q0 from Q. Cauchy’s formula
then gives us

f(z) =
1

2πi

∫
∂Q0

f(w)dw

w − z
=
∑
Q∈Q

1

2πi

∫
∂Q

f(w)dw

w − z
=

1

2πi

∫
σ

f(w)dw

w − z
. (.)

IntFormell

In case z is located on an edge between two squares from Q, we chose a sequence
of points {zn} from the interior of one of the squares that converges towards z. Then
the equality in (.) holds for each of the points zn, and by continuity, it will still hold
in the limit.

Finally, we must show that s is a cycle. One may write ∂σ =
∑

s∈S ∂s =
∑

c∈C ncc
where the coefficients nc are integers only finitely many of which are non-zero. Suppose
one of the coefficients is non-zero, say nc0 6= 0. Let P (z) be a polynomial with P (c0) = 1
and vanishing in all the other points c where nc 6= 0. By the integral formula in the
lemma applied to the function (z − a)P ′(z), where a is any point in K, we find

0 =

∫
σ

P ′(w)dw =
∑
c

ncP (c) = nc0P (c0) = nc0 .

o

K

Figur .: Part of the compact K and the chain σ

—  —
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Be aware that the chain s can have several distinct connected cycles. This happens if
there are “holes” in the compact set K, at least if the mesh-width is small compared
to the diameter of the hole, so that some squares from the grid are entirely contained
in the hole. In case K has infinitely many holes, the cycle will only encompass finitely
many of them, indeed, there will only be finitely many holes with diameter larger than
a given positive constant.

Problem .. Show that if K ⊆Ω is compact and Z ⊆Ω is closed in C, there is a
cycle σ with n(σ, a) = 0 for a ∈ Z and n(σ, a) = 1 for a ∈ K. X

Corollary . Suppose that the complement of the domain Ω has a compact compon-
ent. Then Ω is not simply holomorphically connected; i.e., there is a function f(z)
holomorphic in Ω and a cycle γ with

∫
γ
f(z)dz 6= 0.

Proof: Let K be the actual compact component and let σ be a cycle like in lemma
., and pick a ∈ K. Then (z − a)−1 is holomorphic in Ω, and we have∫

σ

dw

w − a
= 2πi.

o

Problem .. Let K be the compact subset of the closed unit disk D obtained by
removing a countable sequence {Dn} of pairwise disjoint open disks from D. Show
that if Ω is s domain in which K is contained, then Dn will be entirely contained in Ω
except for finitely many indices n. X

Problem .. Let K = c⊆ [0, 1] denote the Cantor set and let Ω = C. Make a sketch
of the chain σ for small values of δ, and convince yourself that Cauchy’s formula holds.

X

Problem .. Show Jordan’s curve theorem for closed, connected step polygons; i.e.,
if τ is a step polygon then the complement C\τ has exactly two connected components.
Hint: Use induction on the number of edges (or vertices). X

2.2.3 Et approximation lemma
The lemma we are about to establish, is by no means deep, it is simply just an

explicit description of some of the Riemann sums for the integrals appearing in lemma
., but to be kind to the students, we shall do it in detail.

(.) The lemma answers in a way the questions we posed in the introduction, but
the answer is unsatisfactory in the sense that we do not control the location of the
poles, except they are lying on the chain σ. We shall regain that control pretty well in
the next section, but the prise to pay will be that the rational functions appearing in
the approximation no more will have simple poles, as they have in the present lemma.

—  —
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(.) Here comes the announced result:

ApproxLemma
Lemma . Let Ω⊆C be a domain and K ⊆Ω a compact subset. If σ is a chain like
in lemma . above, every function holomorphic in Ω, can be approximated uniformly
on K by rational functions of the form∑

k

ck(z − ak)−1

where the ck-s are complex constants and all the poles ak lie on σ.

Proof: The function f(w)(w− z)−1 is uniformly continuous in the variables w and z
as long as w ∈ σ and z ∈ K (the product σ ×K is compact). Hence if ε > 0 is given,
there is a δ > 0 with the following property: If si are the segments that constitute σ,
and we chop them up in smaller segments sij all of length at most δ, then∣∣f(w)(w − z)−1 − f(wij)(wij − z)−1

∣∣ ≤ ε

for every choice of constants wij from sij, and for every w ∈ sij and z ∈ K. Integrating
over sij and summing over i and j, we find∣∣∣∣∣f(z)−

∑
ij

cij(z − wij)−1

∣∣∣∣∣ < λε

where λ denotes the total length of σ and cij = −f(wij). Reindexing and rebaptizing
the w-s to a-s, gives the lemma. o

2.2.4 Pole-pushing
The technic—with the euphonious name ‘pole-pushing”—we are about to describe,

is the third ingredient in the proof of Runge’s theorem. It was invented by Carl
Runge and published in his famous paper from  where his approximation theorem
appeared for the first time.

(.) We are literally going to push the poles around, but only within each connected
component of C \ K. The salient point is to push all the poles appearing in one
component into one specific point in that same component.

PolForskyvning

Lemma . Let K ⊆C be compact and let C denote one of the components of the
complement C \ K. If a and b are two points in C the function (z − a)−1 can be
approximated uniformly on K with polynomials in (z − b)−1.

Proof:
Let Ua denote the set of points b in C such that (z− a)−1can be uniformly approx-

imated over K with the help of polynomials in (z − b)−1. An elementary observation
is that if b ∈ Ua, then Ub⊆Ua; (use lemma . if you want).

—  —
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The tactics are to show that Ua is both open and closed, it then equals C, the set
C being connected by hypothesis. It is open since we have the geometric series

1

z − a
=
∑
n≥0

(a− b)n

(z − b)n+1
,

to our disposal. The series converges—uniformly on compacts— whenever |b− a| <
|z − b|, so as long as |b− a| < d(b,K) it converges for all z in K. Hence the disk with
center a and radius d(a,K)/2 lies within Ua, which combined with the elementary
observation shows that Ua is open.

To see that Ua is closed, assume that b lies on the boundary of Ua in C, and let D be
a disk with radius d(b,K)/3 centered at b. I meets Ua, so let c ∈ D ∩ Ua. Observation
above implies that Uc⊆Ua. Then if D′ is a disk about c with radius d(c,K)/2, then
D′⊆Uc by what we did above. By the triangle inequality we get

d(c,K) ≥ d(b,K)− |b− c| ≥ 2d(b,K)/3,

hence
|b− c| ≤ d(c,K)

and b ∈ D′⊆Ua, and we are through. o

Problem .. Let a and b be points with a ∈ D and b ∈ C \D. Assume that g(z) is
a polynomial in (z − b)−1.

a) Show that ∫
∂D

(
(z − a)−1 − g(z)

)
dz = 2πi

b) Show that
sup
z∈∂D

∣∣(z − a)−1 − g(z)
∣∣ ≥ 1,

and conclude that (z−a)−1 can not be approximated uniformly on ∂D by polynomials
in (z − b)−1.

X

2.2.5 Finishing the proof of Runge’s theorem for compact sets
Recall the theorem we want to prove:

Theorem . Let K be a compact subset and let P be a set that meets every bounded
component of C \ K. Then every function holomorphic in K can be approximated
uniformly with rational functions whose poles all lie in P .

Proof: The rational functions having poles only in P form obviously a subalgebra
AP of H(K). If a lies in a bounded component of the complement of K, the function
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(z − a)−1 belongs to the closure AP by pole-pushing, the assumption that P hits the
component of C\K where a lies, and the little lemma . on page  that tells us that
the closure AP is an algebra. A pole lying in the unbounded component of Ω\K can be
push outside a disk centered at the origin and containing the compact K. The resulting
rational function can be uniformly approximated on K by its Taylor polynomials, and
hence (z − a)−1 belongs to AP .

Let f be a function that is holomorphic in a domain containing K. By choosing
a chain σ like in lemma . and appealing to lemma ., we conclude that f can be
approximated uniformly on K by function being linear combinations of terms of the
type (z−a)−1 where a does not belong to K. But all these lie in the closure AP ; hence
f lies there as well, and we are through. o

2.2.6 Runge’s main theorem for compacts
HoloKonvex

Lemma . Assume that C is a bounded component of Ω\K that is relatively compact.
Then for any holomorphic function f in Ω, one has supz∈C |f(z)| ≤ supz∈K |f(z)|.

Proof: This is just the maximum principle. Since C is relatively compact by lemma
. on page  it holds true that ∂C ⊆Ω. The function f is therefore holomorphic in C,
hence supz∈C |f(z)| < supz∈∂C |f(z)| by the maximums principle. Clearly supz∈∂C |f(z)| ≤
supz∈K |f(z)|, and we are done. o

Recall that a subset X in a topological space Y is relatively compact if the closure
of X in Y is compact. In our situation with K ⊆Ω a pair of a compact set contained
in a domain; the bounded components of Ω \K can be relative compact or not. If C
is a component, the boundary ∂C

RungeMain

Theorem . The following three conditions are equivalent

1. None of the components of Ω \K are relatively compact;
Main1

2. Every holomorphic function in K can be approximated by rational functions holo-
morphic in Ω;

Main2

3. For every point c ∈ Ω \ K there is an f holomorphic in Ω such that one has
|f(c)| > supz∈K |f(z)|.

Main3

We start by proving the equivalence between 1) and 2 in the theorem. To that end,
recall that the second statement is equivalent to the following

� Every bounded component of C \K intersects C \ Ω.

—  —
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Proof: We start by proving the implication 1⇒ 2:

So, assume * to be false; i.e., one of the components C of C \ K is contained in Ω.
Then C is a component of Ω\K as well, and as obviously ∂C lies in K, we conclude by
lemma . on page  that C is a relatively compact component in Ω\K, contradicting
the first statement.

We then proceed to prove 2⇒ 1:

Let C be a component of Ω \K that is relatively compact. Choose a point a ∈ C and
let δ be any number with δ > supa∈K |z − a|. The function (z−a)−1 is holomorphic on
K and can by assumption be approximated by a rational function f(z) holomorphic
on Ω to any accuracy, so there is such an f with∣∣(z − a)−1 − f(z)

∣∣ < δ−1,

for all z ∈ K. This gives

|1− (z − a)f(z)| < 1 (.)

for all z ∈ K. In particular (.) holds on ∂C as ∂C lies in K by lemma ., the
SalientInqe

component C being relatively compact in Ω. By the maximum principle it follows that
(.) holds for all z ∈ C as well, but that is absurd, since putting z = a we would get
1 < 1.

Then comes the implication 3⇒ 1:
To that end, assume that C is a relatively compact component of Ω \ K. By lemma
. it follows that |f(c)| ≤ supK |f(z)| for all c ∈ C and all f holomorphic in Ω, and
this contradicts the first statement.

Finally, we prove that 1⇒ 3
The set K ∪{c} is compact and contained in Ω, and its complement in Ω has the same
connected components as Ω \K except that c has been deleted from one of them, but
this does not make that component relatively compact. The auxiliary function given
by

g(z) =

{
0 if z ∈ K
1 if z = c

is holomorphic on K ∪ {c} and can be approximated by functions holomorphic on Ω;
hence there is an f ∈ H(Ω) with

|f(z)− g(z)| < 1/2

from which it easily follows that |f(c)| > supK |f(z)|.

o
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2.3 Runge for domains

Recall that an exhaustion of a domain by compacts is an ascending chain of compacts
Kn such that the two following properties are satisfied

� Kn⊆K◦n+1 for all n;

�
⋃
nKn = Ω.

Every domain has many exhaustion like this, one can for example use the following

Kn = { z ∈ Ω | d(z, ∂Ω) ≥ n−1 and |z| ≤ n }.

(.) We start with a few words about the space H(Ω) of holomorphic functions on a
domain Ω. It has topology, the topology of uniform convergence on compact sets, also
called the compact-open topology. A sequence fn in H(Ω) converges to g if and only
if it converges uniformly on compacts. It is a metric space with the metric given as

d(f, g) =
∑
n

dn(f, g)

1 + dn(f, g)
2−n.

A subset A of H(Ω) is dense if and only if for every f ∈ HΩ, for every compact set
K ⊆Ω and every ε > 0, there is a function g ∈ A with ‖f − g‖K < ε.

2.3.1 The Runge hull
The setting in this paragraph is the usual one with Ω a domain andK ⊆Ω a compact

set. The components Ω \K are of two types. Some of them are relatively compact in
Ω and some are not. We let K denote the set of the connected components in Ω \K
that are relatively compact in Ω, and we define the Runge hull of K in Ω to be

K̂Ω = K ∪
⋃
C∈K

C

that is, it is the union K and all the relatively compact components in the difference
Ω \K.

When we try to approximate functions holomorphic on K by functions holomorphic
in Ω the obstructions are precisely the components in K. The idea is to replace K by
K̂Ω and in that way plug in those holes that create problems, so that the obstructions
vanish, but of course we need K̂Ω to be compact.

Proposition . The Runge hull K̂C is compact.

Proof: The first observation is that K̂Ω is closed since the complement Ω \ K̂Ω is the
union of the components of Ω \ K not in K; so our task reduces to establishing that
the Runge hull K̂Ω is a bounded set.
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Let U be an open and bounded set containing K whose closure is contained in Ω
and. Such creatures exist; e.g., let U be the set of the points z in Ω with d(z,K) <
d(K, ∂Ω)/2.

The boundary ∂U is covered by the connected components of Ω \ K. These are
all open and ∂U being compact is contained in finitely many of them. Among these
say that C1, . . . , Cr are the relatively compact ones. We shall see that all the other
components in K must be contained in U : Indeed, let C be one. It has an empty
intersection with the boundary ∂U since ∂U is covered by components different from
C, and different components are disjoint. The component C being relatively compact
it follows from lemma . on page  that ∂C ⊆K, and hence C ∩ U 6= ∅ as C is an
open neigbourhood of the points in ∂C ∩ K. Because C ∩ ∂U is empty, one has the
representation

C = (C ∩ U) ∪ (C ∩ C \ U)

of C as the union of two disjoint open sets. Since C is connected, and C ∩ U is not
empty, it follows that C ∩ (C \ U) = ∅ and hence C ⊆U . Thus

K̂Ω⊆U ∪ C1 ∪ · · · ∪ Cr,

and because all the sets in the union to the right are bounded sets, K will be bounded.
o

Problem .. Show that if K ⊆L are two compacts contained in Ω then K̂Ω⊆ L̂Ω.
Show that if K ⊆L◦, then K̂Ω⊆ (L̂Ω)◦. X

Problem .. Show that the operation of taking the Runge hull is idempotent; that
is, if you apply it seconds, you don’t anything new; formally, one has

K̂Ω = (̂K̂Ω)Ω.

X

Problem .. What is the Runge hull of the unit circle ∂D in C? X

2.3.2 Classical Runge
Theorem . Let Ω1⊆Ω2 be two domains and let P be a closed subset of C set in-
tersecting all bounded components of the difference Ω2 \ Ω1. Then H(Ω2) is dense in
H(Ω1).

We are a little sloppy in formulation as H(Ω2) is not contained in the space H(Ω2),
but it is canonically isomorphic (as a topological algebra) to one, the isometry being
the restriction map.

The conclusion of the theorem can be formulated as follows. For any compact
subset K of Ω1 and any function holomorphic in Ω1, and any ε there is a g ∈ H(Ω2 \P )
with

sup
K
|f(z)− g(z)| < ε.

—  —



MAT4800 — Høst 2016

Proof: We want to use Runge’s theorem xxx for the pair K ⊆Ω2, but we merely
know that P meets the bounded components of Ω2 \Ω1 and not those of Ω2 \K. The
trick as we shall see, will be to replace K by the Runge hull K̂Ω1 .

Let D be a component of Ω2 \K relatively compact i Ω2. If D intersects Ω2 \ Ω1,
it contains a component of the latter which obviously will be relative compact in Ω2.
Hence P meets D. In case D does not meet Ω2 \ Ω1 it is a component of Ω1 \ K.
Hence after having replacing K by K̂Ω1 there will be no such component. By xxx there
therefore is a g with supK̂Ω1

|f − g| < ε, and hence also supK |f − g| < ε o

Theorem . Assume that Ω1⊆Ω2 are two domains. If there is no compact compon-
ent in the difference Ω2 \ Ω1, then H(Ω2) is dense in H(Ω1).

2.4 Some applications of Runge

The setting will be as follows. We are given a sequence of disks Dn all centered at
the origin with strictly increasing radii;so that satisfy the inclusions Dn⊆Dn+1 for all
n ∈ N. The disks will eventually form an exhaustion of the unit disk, but for the
moment there are no more constraints. We denot by D the union of the disks Dn.

The second ingredient is a sequence of compacts sets Σn. They are subjected to
two conditions. Firstly, their complements should all be connected, and secondly,
they should “lie in-between” the circles ∂Dn and ∂Dn+1; in clear text the inclusions
Σn⊆Dn+1 \Dn should be valid.

The third ingredient of set up is a sequence of functions σn each σn being holo-
morphic on the compact set Σn, which by convention means it defined and holomorphic
in an open set containing Σn.

Using Runge1s approximation theoren, we shall show the following

Proposition . Given η > 0. There exists a function φ holomorphic in D such one
has for any n the following

‖φ− σn‖Σn < 2−nη.

Proof: The idea is to recursively construct a sequence {φn} of polynomials subjected
to the two conditions below where sn denotes the partial sum sn =

∑
k≤n φk.

� ‖φn‖Dn < 2−nη;

� for all k ≤ n oner has ‖sn − σk‖Σk < (2−(k−1) − 2−n)η.

So assume such a sequence of functions has been constructed for k = n− 1. Since
C \ Dn \ Σn is connected and Dn and Σn are disjoint compact sets, we may define
a function on their union by letting it be σn on Σn and zero on Dn. By Runge’
approximation theorem there is a poly φn approximating this function uniformly on
Σn ∪Dn to any degree of accuracy. Hence we may have

‖φn‖Dn < 2−nη and ‖φn + sn−1 − σn‖Σn < 2−nη.
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Let k < n. Since Σk is contained inDn one obtains by induction the surch for inequality:

‖sn − σk‖Σk = ‖φn + sn−1 − σk‖Σk ≤ (2−n + 2−(k−1) − 2−(n−1))η = (2−(k−1) − 2−n)η

o

(.) If f is a function that is holomorphic in the unit disk, there is no reason why

it should be possible to extend it to a continuous function on the closure D. The
boundary behavior can be very complicated. Let w ∈ ∂D be a boundary point, and
for different sequences from D that converges to w the sequences {f(an)} can behave
very differently; some may converge an some may not, and if they converges they can
have all kinds of different limits. One introduces the so called cluster set C(f, w). The
points of the cluster set are the points in the extended complex plane Ĉ that occur
as limits of sequences {f(an)} when an run through the sequences in D converging to
the point w. A slightly smaller set then the cluster set is the set of radial limits at
w, which is obtained similarly but the sequences {an} are confined to lie on the ray
emanating from the origin and passing by w.

With the help of Runge’s approximation theorem one may construct examples of
functions with bad boundary behavior, and we intend do illustrate that with one ex-
ample. For the function f of the example all the cluster sets are equal to Ĉ, and even
the radial limit set at every point w ∈ ∂D will equal Ĉ!

Lemma . The cluster set C(f, w) is closed.

Proof: This follows from the equality

C(f, x) =
⋂
r

closure { f(z) | |z − w| ≤ r }.

o

(.) Let Σr,I be the circular arc obtained by deleting the set { reiy | t ∈ I } from the
full circle about the origin and of radius r. That is one has

Σr,I = { reit | t ∈ [−π, π] \ I }

We choose any sequence of positive numbers {rn} the only requirement is that they
tend to one as n → ∞. The choice of the intervals is slightly more juicy: Let αn be
a sequence of positive numbers in [−π, π] monotonically decreasing to zero, and let In
be a sequence of disjoint, open intervals centered at αn.

With this in place, it easy to find disks Dn that together with the just introduced
compacts Σn = Σrn,In satisfy the hypothesis in the begining of this section. The
functions σn will all be constant, and we choose them in the following way. Let Q⊆C
be any enumerable dense subset (for instance Q×Q) listed in any way you want; say
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Figure 2.1:

Q = {cn}. Then we let σn be contsnat equal to c1 in every other of the n’s, equal to c2

in every other of the remaing n’s etc.
The salient point is that any radius of D with at most one exception intersetcs each

Σn in exactly one point. Indeed, if the angle the radius makes with the real axis is at
most in one of the intevervals, say In0 , and all the other Σn’s meet the radius.

Proposition . There are functions f holomorphic in the unit disk such that cluster
sets C(f, w) all equals Ĉ.

Proposition .

2.5 The Mittag-Leffler theorem

2.5.1 Polar parts
We saw in xxx that a function f with an isolated singularity in a point a can be

developed in Laurent series. Such a series is split into two parts, a so to say negative
part where the summation indices run through negative values, and positive part where
they are non-negative. Denote these two parts respectively by f+ and f−. The two
parts have representation

f− =
∑
n≥1

a−n(z − a)−n f+ =
∑
n≥0

an(z − a)n,

the sum for f− converges for all z 6= a hence defines a function holomorphic in C \ {a},
additionally since the f− is deprived of the constant term, it tends to zero as z tends
to infinity, and of course f = f+ + f− in a punctured disk about a. We call f− the
principal part of f at a.
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The principal part is the only function g holomorphic in C\{a} and tending to zero
when z tends to∞ and with the property that f−g is holomorphic in neigbourhood of
a. Indeed, if g1 and g2 both are functions like that, their difference would be entire and
having limit zero when zgoes to ∞. Thence the difference is bounded and by Liouville
it is constant. Taking the limit when z →∞, one sees that the constant is zero.

It is convenient to call any function p that is holomorphic in C\{a} with limz→∞ f(z) =
0 a principal part at a.

2.5.2 Recap on normally convergent series
Given a series

∑
k≥0 fk(z) where the terms are functions in with only isolated sin-

gularities in a domain Ω and suppose that total set of singularities (all singularities for
all ff included) does not have an accumulation point in Ω. Thence a compact subset
K of Ω will contain only finitely many of the singularities. In the compact K on may
consider the series ∑

k≥n

fk(z) (.)

where n is so large that the terms in (.) all are holomorphic in K, and one can
smallsum

require that it converges absolutely and uniformly in K. If this holds for all compacts
K of Ω one says that the series converges normally in Ω. By standard technics (e.g.,
integration term by term combined with Morera’s theorem) it follows that the sum is
holomorphic in Ω except for possibly isolated singularities where one of fk’s has one.

2.5.3 The Mittag-Leffler theorem
The question that was pose and answered by Mittag-Leffler was to which extent one

prescribe principal parts. More precisely, given a set A⊆C, and for each point a ∈ A
a principal part pa. Can one find a function holomorphic in C \A whose principal part
at a equals the given pa?

Of course the set A is forced to be locally finite, that is every of its points have a
neigbourhood not meeting A in any other point from A. It can still accumulate and
there is no hope having f defined and holomorphic in any of the accumulation points
of A. The natural domain of definition for f is therefore C \A where A as usual is the
closure of A.

The result named Mittag-Lefflers theorem is as follows. It was proven in its final
form by Weierstrass in , but most of the background was laid by Mittag-Leffler.
There are several approaches to the proof. We follow the one by Runge which appeared
in his seminal paper from .

Theorem . Given a locally finite set A⊆C and for each a ∈ A a principal part pa.
Then there exists a function f holomorphic in C \ A whose principal part at a equals
pa for a ∈ A.

Proof:
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The natural region to work with is Ω = C \A′, and one may clearly assume that Ω
is connected. To begin with, we chose an exhaustion of Ω by compact sets Kn. This is
an ascending chain of compacts {Kn} in Ω subjected to the three requirements

� Kn⊆K◦n+1;

�
⋃
nKn = Ω;

� (̂Kn)Ω = (Kn)Ω.

For simplicity of the presentation we assume2 that the difference Kn+1\Kn contains
exactly one element from A, which we naturally denote by an and to simplify the
notation the corresponding principal part will be pn.

The principal part pn is holomorphic in Kn and since (̂Kn)Ω = Kn we can apply
Runge and find a function holomorphic in Ω satisfying

‖pn − fn‖Kn < 2−n.

We claim that the series ∑
n

(pn − fn)

converges normally in Ω and has the prescribed principal parts.
Any compact K is contained in some Kr so it suffices to show normal convergence

on Kr. We take a look at the truncated series∑
k≥r

(pk − fk) (.)

all whose terms are holomorphic in Kr. As Kr⊆Kn for n ≥ r one has
trunkSeries

‖pk − fk‖Kr ≤ ‖pk − fk‖Kk < 2−k

This shows that the series
∑

k≥r |pk − fk| is dominated by
∑

k≥r 2−k and the series in
(.) converges absolutely and uniformly in Kr, that is, it converges normally in Ω to
a holomorphic function in Ω.

Since the functions fk all are holomorphic in Ω, this shows that f is holomorphic
outside of A and for a ∈ A has the principal part pa at a. o

Lemma . We may assume that Kn+1 \Kn has exactly one point from A.

Proof: Coming up o

2By slight modifications of the compacts one can realism this situation.
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Problem .. Determine the principal part of (ez − z − z2/2)z−6 at the origin. X

Problem .. Show that fro each natural number k the series

Ak =
∞∑
m=0

1

m!(m+ k)!

converges. Show that the principal part of eze1/z at the origin is given as∑
k≥1

Akz
−k.

X

Problem .. Let η = exp 2πiα where α is an irrational number. Show that the
PowersDens

set { ηn | n ∈ N } of positive powers of η is dense in the unit circle S1. Hint:
Use Dirichlet’s theorem on rational approximation that says that for infinitely many
natural numbers p and q on has |qα− p| < q−1. X

Problem .. Let rn be a sequence of positive real numbers tending to 1 as n→∞.
Let η = e2πiα where α is not a rational number, and let A = { rnηn | n ∈ N }.
a) Show that A accumulates at every point on the unit circle, that is A′ = ∂D.

b) Show that C\A is not connected. Hint: By exercise . the powers ηn are dense
on the circle.

c) Show that there is function meromorphic in D having principal part (z − an)−1 at
an = rnη

n and is holomorphic everywhere else in the unit disk.

X

Problem .. Let g be meromorphic function in the unit D disk all whose poles are
of order one and all whose residues are integers.

a) Show that if γ is closed path in D not passing by any of the poles of g, then the
integral

∫
γ
g(z)dz is an integral multiple of 2πi.

For a point z in D let σz be any path joining 0 to z that does not pass by any of
the poles of g.

b) Show that

G(z) = exp

∫
σz

g(z)dz

is a well defined (that is, it is independent of the choice of the path σz) and meromorphic
function in D whose logarithmic derivative equals g.

c) Show that if all the residues of g are positive, then G is holomorphic.

X
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Problem .. Let rn be a sequence of positive real numbers tending to 1 as n growths
ant η = exp 2πiα where α is a rational number. Let an = rnη

n. Show that there is a
function h holomorphic in the unit disk that has a simple zero at an for n ∈ N and no
other zeros. X

Problem .. Let u(z) be the series

u(z) =
∑
k∈Z

(z + k)−2

and let et R be the square R = [−1/2, 1/2]×[−y, y] where y is any positive real number.
Further let v(z) denote the function (z) = π2 sin−2 πz.

a) Show that series u(z) converges normally in C, and that it is periodic with period
one.

b) Show that one has |z + k| ≥ |k| /2 for all k, and conclude that one has∣∣u(z)− z−2
∣∣ ≤ 2π2/3

if z ∈ R is nonzero.

c) Show that |sin πz| ≤ 16π on the boundary ∂R and use the maximum principle to
conclude that v(z)− z2 is bounded on R.

d) Show the identity

π2 sin−2 πz =
∞∑

k=−∞

(z + k)−2.

X

2.6 Inhomogeneous Cauchy Riemann

Given a domain Ω in the complex plane and a function φ of class C∞ in Ω. The
differential equation

∂h = φ (.)

has many important applications, and it goes under the name of either the “∂-equation”
dBarEqua

or the “inhomogeneous Cauchy Riemann equation”. The explanation of the last name
being that homogeneous equation associated to (.), i.e., the case when φ = 0, is
just the Cauchy Riemann equation. Split into its real and imaginary parts the Cauchy
Riemann equations are two couples first order differential equations. When the func-
tions h and φ are split in their real and imaginary parts; that is h = u + iv and
φ = ξ + iη, they become

∂xu− ∂yv = ξ

∂xv + ∂yu = η.

—  —
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The solutions of the ∂-equation (.) are not unique. The Cauchy Riemann equa-
tions tell us that ∂f = 0 when and only when f is a holomorphic function, hence the
solutions of the ∂-equation are only unique up to the addition of holomorphic functions.

(.) The only aim of the present section is to show that the ∂-equation always has
a solution; that is, we shall demonstrate the following.

dBar

Theorem . Given a domain Ω in the complex plane and a function φ of class C∞

in Ω. Then there exists a function h of class C∞ in Ω such that

∂h = φ.

There is a slightly sharper version of this theorem. One may relax the regularity
condition on φ and only assume it be Ck for some k ≥ 2; but then, of course, one
merely gets the weaker conclusion that h is Ck. The proof is basically the same as for
C∞-functions, and we prefer to stick with these.

The proof is a two-step process. The initial step is two solve the ∂-equation with
the additional hypothesis that φ be a function with compact support, and the final
step consists of choosing a compact exhaustion of the domain Ω and Runge’s theorem
to patch together solutions from each compact of the exhaustion.

2.6.1 The case of compact support
In this paragraph the function φ will be of compact support, that is vanishes identic-

ally outside of a compact subset K, and it will of class C∞ that is, twice continuously
differentiable. The solution of (.) will be given by an explicit integral formula. The
proof relies on an argument using Greens’ integral formula and the fact that under
mild regularity condition on the functions involved, one can differentiate an integral
depending on a parameter by differentiating the integrand.

Green’s theorem in the complex setting takes the form∫
A

∂f(w)dw ∧ dw =

∫
∂A

f(w)dw.

Lest A is a domain of a simple kind, one must be careful with how to interpret the
boundary ∂A; in our present situation, however, A will just be an annulus. We also
remind you that the differential operator ∂ comply to Leibnitz’ rule for the derivative
of a product. It follows that ∂(fg) = f∂g whenever f is holomorphic, since in that
case ∂f = 0.

(.) Our first observation is of an elementary nature. The function (w − z)−1 is
integrable over any compact set K, as one sees by switching to polar coordinates; that
is, putting w = r+reit. The chain rule gives dw = eit dr+rieit dt, and upon conjugating
one finds dw = e−it dr − rie−it dt so that dw ∧ dw = 2ir dr ∧ dt. Thence∣∣∣∣∫

K

(w − z)−1dw ∧ dw
∣∣∣∣ ≤ ∫

K

|w − z|−1 |dw ∧ dw| = 2

∫
K

drdt = 2µ(K),

—  —
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where as usual µ(K) denotes the area of K. With this in mind we can formulate the
first step in the two-step process, the function h in the statement is well defined by
what we just did:

dBarKompSupp

Proposition . Let φ be a function of class C∞ with compact support. The function
h(z) defined by

h(z) =
i

2π

∫
C
φ(w)(w − z)−1dw ∧ dw

is of class C∞ and satisfies the equation ∂f = φ.

(.) The main ingredient in the proof of the proposition . just formulated, is a
representation of φ as an integral, resembling the Cauchy formula for holomorphic
functions. We prefer to give as a lemma:

dBarKompFundLemma

Lemma . Assume that φ is a C∞-function with compact support. Then∫
C
∂φ(w)(w − z)−1dw ∧ dw = −2πiφ(z)

Proof: Fix a complex number z.
Let r < R be two positive real numbers and let A = A(r, R) be the annulus

centered at z. The radius R is chosen so big that the compact K where φ is supported
is contained in the disk DR = {w | |w − z| < R }. The smaller radius r will be very
small, and eventually we shall let it tend to zero. We put Dr = {w | |w − z| ≤ r }.
Under these circumstances the following holds true:∫

C
∂φ(w)(w − z)−1dw ∧ dw =

=

∫
A

∂φ(w)(w − z)−1φ(w)dw ∧ dw +

∫
Dr

∂φ(w)(w − z)−1dw ∧ dw (.)

the latter integral is bounded above by 4πr2M where M = supK
∣∣∂φ∣∣, and hence tends

to zero when r → 0.
The two circles bounding A will be denoted by CR and Cr. They are parametrized in

the standard manner so that the boundary chain of A equals ∂A = CR−Cr. Applying
Green’s theorem and observing that ∂(φ(w)(w − z)−1) = ∂φ(w)(w − z)−1, we obtain
the equality∫

A

∂φ(w)(w − z)−1dw ∧ dw = −
∫
Cr

φ(w)(w − z)−1dw = −i
∫ 2π

0

φ(z + reit)dt,

since the function φ vanishes along CR. The integral to the right tends to φ(z) as r
tends to zero (verifying this is standard and we leave it to the zealous student), and in
view of equation (.) above, the announced identity in the lemma is established. o

—  —
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This ends the proof of the proposition . since the integrand is C∞, we can appeal
to xxx in the appendix and switch integration and derivation. That gives indeed

∂h(z) =
i

2π
∂
( ∫

C
φ(w)(w − z)−dw ∧ dw

)
=

i

2π

∫
C
∂φ(w)(w − z)−1dw ∧ dw = φ(z).

2.6.2 Proof in the general case
Now let Ω by any domain and let φ be a C∞-function in Ω. The thing to do is to

chose an exhaustion of Ω by compacts Kn such that

� Kn⊆K◦n+1

�
⋃
nK

◦
n = Ω

� K̂nΩ = Kn

Secondly, we need a sequence of auxiliary compacts Ln with Kn⊆Ln⊆Ln+1, and for
each index n we choose a C∞-function αn of compact support with αn|Ln = 1—that is,
αn is identically equal to one on Ln—and we let φn = αnφ. The important things are
that φn has compact support and coincides with φ on Kn. By the previous paragraph
we can solve the equation ∂hn = φn

On Kn one has ∂(hn+1 − hn) = φn+1 − φn = 0 since both coincide with φ on Kn.
Hence the difference hn+1− hn is holomorphic on Kn and by Runge there is a function
gn holomorphic on Ω satisfying the inequality

|hn+1(z)− hn(z)− gn(z)| < 2−n

for z in the compact Kn. The series
∑

m≥n(hn+1 − hn − gn) is dominated by the con-
vergent series

∑
2−n on Kn and converges uniformly in Kn to a holomorphic function

there.
We looking for a function h on Ω solving the ∂-equation. The clue is to write down

a formula for h on each of compacts Kn, however, for this to be legitimate one must
of course verify that the two definitions coincide on Kn ∩Km, and the Kn forming an
ascending chain it suffices to do this when m = n− 1.

On Kn we put

h = hn +
∑
m≥n

(hm+1 − hm − gm)−
∑
i<n

gi. (.)

On Kn−1 one has
DefSolut

h = hn−1 +
∑

m≥n−1

(hm+1 − hm − gm)−
∑
i<n−2

gi =

= hn−1 + (hn − hn−1 − gn−1) +
∑
m≥n

(hm+1 − hm − gm)−
∑
i<n

gi =

= hn +
∑
m≥n

(hm+1 − hm − gm)−
∑
i<n

gi.
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Since hn is C∞ clearly h is C∞ in K◦n for all n, hence in Ω, and over K◦n one has
∂h = ∂hn = φn = φ as both series in (.) above are holomorphic in K◦n. This finishes
the proof of theorem ..

2.6.3 Convolution
We end this section by a paragraph that more has the flavour of an appendix than

main stream part of the course. We treat in our restricted context, the problem of
smoothing

h(z) =

∫
C
α(w + z)β(x)dw ∧ dw

where we suppose that β is integrable over the entire complex. For example if β has
compact support this is certainly the case. For the sake of α we suppose from the
outset that it is twice differentiable. T

(.) The letter D stands for a first order differential operator with constant coeffi-
cients. Any complex linear combination of the partial derivative operators ∂x and ∂y
will do, of particular interest is the ∂-operator.

Lemma . If α is C2, then h(z) is C1 and

Dh(x) =

∫
C
Dα(w + z)β(w)dw ∧ dw

that is, we can compute the derivative of the integral by differentiating the integrand.

Proof: Assume that D is the derivative in the direction of the vector ξ in the plane
(e.g., either ∂x or ∂y). That α is D-differentiable at w+ z means that is an expression

f(w + z + tξ) = f(x+ z) +Dξ(w + z)tξ + ε(w + z, t)t

were the salient point is that |ε(w + z, t)| tends to zero when t → 0. This limit is in
fact uniform in both w and t as long as w is restricted to a compact set.

Integrating gives∫
C
f(w + z + tξ)β(w)dw ∧ dw =

=

∫
C
f(x+ z)β(w)dw ∧ dw + t

∫
C
Dξ(w + z)β(w)dw ∧ dw + t

∫
C
ε(w + z, t)β(w)dw ∧ dw,

and we are trough once we know that the absolute value of the last integral to right
tends to zero with t, but as |ε(w + z, t)| tends uniformly to zero, this is certainly the
case. o

A successive application of this lemma shows that in case α is of class C∞, the integ-
ral will be as well, and we may compute any derivative of any order by differentiating
the integrand.

—  —
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(.) The second point we want to make is the existence of a smooth function α with
compact support being constant equal to one on a given compact K. It is easy to find
a continuous function with these properties. Just use

ψK(z) = max{1− d(z,K), 0}.

The tactics is then to smoothen this function by convolution, i.e., integrating it against
a smooth bell shaped function κ of unit mass supported on a (small) disk Dr about
the origin (the convolution is smooth by the previous lemma). That is, we define α by
the integral

α(z) =

∫
C
κ(w − z)ψK(w)dw ∧ dw,

well, almost! It is convenient to replace the compact K by the slightly lager compact
set L of the points whose distance to K is less than or equal to a small chosen threshold
r, and let

α(z) =

∫
C
κ(w − z)ψL(w)dw ∧ dw.

If the disk Dr is centered at K, it is entirely contained in L. Thence ψL is constant
and equal to unity in Dr, and we get∫

C
κ(w − z)ψL(w)dw ∧ dw =

∫
Dr

κ(w)dw ∧ dw = 1.

On the other hand, the disk Dr is entirely contained in the complement of L when z
belongs to the compact {w | d(L,w) ≤ 1 + r }, and as then ψL vanishes identically in
Dr, the convolution α vanishes in z.

Problem .. Let κa be a positive smooth function of one real variable such that
κ(a) = 0 for t ≥ a. Let K(t) = κ(t)κ(−t)).
a) Show that K is smooth and vanishes outside the interval < −a, a >. Show that
K(t)eiθ is a smooth function supported in the disk {w | |w| < a }.

b) Show that function

κ(t) =

{
exp(−(t− a)−2) for t ≤ a,

0 for t > a,

is smooth.

X
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2.7 Weierstrass products

The first infinite product to appear in the history of mathematics seems to be the
Viéte’s formula for π:

2

π
=

√
2

2

√
2 +
√

2

2

√
2 +

√
2 +
√

2

2
. . . .

Francois Viéte published this in . He was a french lawyer (as an other famous
french mathematician) and we can thank him for having introduces the use of letters
like x and y in the algebraic notation. The formula is a special case of the identity

sinx

x
= cos

x

2
cos

x

4
cos

x

8
. . . (.)

due to Euler. Nowadays infinite products have large number of applications, and there
EulerId

are many peculiar identities. In the the end of this section we’ll give a few of the
most known and may be most frequently applied products. Their influence in the
realm of holomorphic functions, comes from they making it possible to construct holo-
morphic functions with prescribed zeros. They were first systematically exploited by
Weierstrass, in an article from , where he introduced the so called “convergence
producing” factors to force convergence of products. This works has had an enorm-
ous influence and, to site Reinholdt Remmert, revolutionized the thinking of function
theorist. ([Rem], page 79)

2.7.1 Infinite products
There seems to be no standard of introducing the infinite products. The different

text deviate substantially. We follow to a large extent Rudin in his book [?]—it is a
short way to the Weierstrass products.

(.) Consider a sequence a1, a2, . . . of complex numbers. When can one give a
reasonable meaning to the infinite product

∏
i ai = a1a2 . . . ? The obvious try is,

in analogy to what one does with infinite series, to consider the partial products
pn =

∏
i≤n ai = a1 . . . an and the require that the sequence

{pn} they form converges. However this approach has some flaws; the most serious
one being that the limit can vanish without any of the factors vanishing. So if we insist
on keeping the good old rule that a a product whose factors are non-zero do not vanish,
we must proceed slightly differently.

The clue is to disregard any finite number of factors when taking the limit; the
formal way to do this is by the modified partial products belonging to the sequence
{ai}. They are defined as pm,n =

∏
m≤i≤n ai. With those in place, we are ready to

define what convergence of a product should mean and what the limit should be:

Defenition . The product
∏

i ai of a sequence {ai} of complex numbers is said to
converges if for some m the modified partial product {pm,n} converges to a value dif-
ferent from zero. If P is this value, we let product

∏
i ai be equal to a1, . . . , am−1P .

—  —
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The first obvious comment is that only finitely many of the ai’s can be zero when
the product converges. The second is that the number m occurring only plays an
auxiliary role; as long as it is big enough any natural number will do and will give the
same value of the product—and big enough means am being beyond the last vanishing
ai; i.e., m is such that ai 6= 0 for i ≥ m. With this in mind, one is convinced that the
good old principle survive: The product

∏
i ai vanishes if and only one of the factors

ai equals zero.

Example .. The product
∏

2≤i(1 − 1/i) diverges to zero. To use a term from the
theory of series as taught in calculus course, it is “telescoping”:

pn =
∏

2≤i≤n

(i− 1)/i = 1/n.

On the other hans
∏

2≤i(1−1/i2) converges to 1/2. By an easy induction one finds the
partial products to be given by

pn =
n+ 1

2n
.

e

Problem .. Prove the identity . by establishing that

sinx = 2n sin 2−nx
∏

1≤k≤n

cos 2−kx

and use that sinx/x→ 1 when x→ 1. X

(.) A necessary condition for convergence of the product is that an tend to one as
n→∞. Indeed, or m >> 0 one clearly has an = pm,n/pm,n−1, and pm,n and pm,n−1 tend
to the same non-zero limit. Writing ai = 1 +ui, the necessary condition translates into
the condition limi→∞ ui = 0. It turns out that convergence of the product

∏
i(1 + ui)

is narrowly related to the convergence of the series
∑

i ui. To exploit that relation, the
following technical lemma will be crucial.

dette TregngsOgs

Lemma . Let pn =
∏

i≤n(1 + ui) and let p̃m =
∏

i≤n(1 + |ui|). The one has

1. |pn| ≤ exp(
∑

i≤n |un|);
DenneTrengs

2. |pn − 1| ≤ p̃n − 1.

Proof: Recall the inequality 1 + x ≤ ex which you learned in your first calculus
course. Immediately it gives∏

i≤n

(1 + ui) ≤
∏
i≤n

(1 + |ui|) ≤
∏
i≤n

exp |ui| = exp
∑
i≤n

|ui| .
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The second estimate is slightly more subtle, and we resort to induction to prove it. For
n = 1 the inequality reduces to |u1| ≤ |u1|, so assume |pk − 1| ≤ p̃k − 1. One finds

pk+1 − 1 = (pk − 1)(1 + uk) + uk ≤ |pk − 1| (1 + |uk|) + |uk|
≤ (p̃k − 1)(1 + |uk|) + |uk| = p̃k+1 − 1.

o
SumProd

Proposition . When the series
∑

i |ui| converges, then product
∏

i(1+ui) converges.

Proof: We study the modified partial product with M > N > m

|pm,N − pm,M | = |pm,N | |pN+1,M − 1| ≤ |pm,N | (p̃N+1,M − 1) ≤ |pm,N | (e
∑
N+1≤i≤M ui − 1).

(.)
By the first inequality in lemma . it follows that pm,N is bounded; that is |pm,N | < eA

NyttigUlik

where A =
∑

i |ui|. Given ε there is—since the exponential function is continuous—an
η such that one has (et− 1) < e−Aε once 0 ≤ t ≤ η, and we may of course require that
η < 1/2. By assumption the series

∑
i |ui| converges. This means that for N sufficiently

big one has
∑

N≤i≤M |ui| < η, and it follows that the modified partial products form a
Cauchy sequence. It remains to bee seen that its limit is non-zero. Since |ui| tends to
zero when i→∞, only finitely many of the ui’s can equal −1; hence for m large none
of the partial products pm,N vanish. From (.) above we find

|pm,M | ≥ |pm,N | (2− eη) ≥ (1− 2η) |pm,N | > 0

as η < 1/2 and ex ≤ 1 + 2x for x < 1. o

(.) In this course we mostly concerned with holomorphic functions and their infinite
products of functions are of interest. The proof of proposition . in the previous
paragraph works mutatis mutandis in a setting where {ui} is a sequence of functions
in a domain Ω, and it gives the following result:

KonvergensProp

Proposition . Given a sequence of functions holomorphic in a domain Ω.Assume
that the series

∑
i |ui(z)| converges uniformly on compacts in Ω. Then the product∏

i(1 + ui(z)) converges uniformly on Ω to a holomorphic function p(z) in Ω. The
product p vanishes at a point if and only if one of the factors vanish there.

Example .. Let (1 +x2p) = (1 +x)(1 +x2)(1 +x4) . . . converges to (1−x)−1. Since∑
i x

2i converges absolutely, the product converges. For the partial products one has

(1 + x)(1 + x2) . . . 1 + x2n = 1 + x+ · · ·+ x2n+1−1

as is easily seen by induction:

(1 + x2n+1

)
∑

1≤i≤2n+1−1

xi =
∑

1≤i≤2n+1−1

xi +
∑

1≤i≤2n+1−1

xi+2n+1

=
∑

1≤i≤2n+2−1

xi.

e
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2.8 Weierstrass products

We come to important question of finding holomorphic functions with prescribed zeros.
The must be interpreted in the wide sense including multiplicities of the zeros. Zero
sets are isolated in the domain of definition, so we start with gibing a set A that is
discrete in a domain Ω and to each point a ∈ A we give a natural number m(a).
The big question is: Can one find a function holomorphic in Ω having a zero at a of
multiplicity m(a) for each a in A and no other zeros?

The question can be phrased in a slightly different way by use of the order function.
Given a function m in Ω whose values are non-negative integers, and whose support is
locally finite (i.e., every point in Ω has a neighbourhood where m vanishes except in
a finite set). Can one find a function f holomorphic in Ω with ordaf = m(a) for all
a ∈ Ω?

As Weierstrass showed and we shall see in this section, the answer is yes.

2.8.1 The Weierstrass factors
The convergence producing factors of Weierstrass are built on functions of type

En(z) = (1− z) exp(z + z2/2 + · · ·+ zn/n). (.)

WeierstrassEn

One recognizes the sum in the exponential as the initial part of the Taylor series
for log(1− z)−1; indeed, it holds true that

log(1− z)−1 =
∑
1≥i

zi

i
= z + z2/2 + · · ·+ zn/n+

∑
n<i

zi/i.

The exponential in . gets closer and closer to (1− z) as n grows, and hence En(z)
is close to one when n is large.

Lemma . E ′(z) = −zn exp(z + z2/2 + · · ·+ zn/n).

Proof: This could be an exercise in any first year calculus course; and the hint would
be to introduce tn(z) = z + z2/2 + · · ·+ tn/n and use that t′n(z)(1− t) = 1− zn. o

Lemma!WSums

Lemma . For |z| ≤ 1 one has the estimate

|En(z)− 1| ≤ |z|n+1 . (.)

ViktigUlikhet
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Proof: The trick is to use the formula

En(z)− 1 = z

∫ 1

0

E ′n(zt)dt.

Using that |ew| ≤ e|w| and that |tn(w)| ≤ tn(|w|) one finds∣∣∣∣∫ 1

0

E ′n(zt)dt

∣∣∣∣ ≤ ∫ 1

o

|E ′n(zt)| dt ≤ |zn|
∫ 1

0

tn |e(tn(zt))| dt ≤ |zn|
∫ 1

0

tne(tn(t))dt = |zn| ,

as the integrand in the last integral equals −E ′n(t) by lemma . above and thence
the integral equals one. o

(.) Now, let {ak} is a sequence of complex numbers tending to infinity. We search
for a holomorphic function vanishing precisely at the ak-s. The naive try would be
the product

∏
(z − ak) which obviously is a very bad try, as the general factor does

not approach one. A better try would be
∏

(1− z/ak). However, neither this works in
general. Just take ak = −k, thence the series

∑
k z/ak diverges, and by . the product

diverges as well.
The ingenuous idea of Weierstrass was to remedy this by introducing convergence

promoting factors, replacing the simple minded factors 1 − z/ak by smart factors
Enk(z/ak). The liberty to chose nk depending on the behavior of the sequence {ak} is
a clue to this ; choosing nk large enough will make Enk(z/ak) tend to 1 sufficiently fast
to make the product converge.

WProdMain1

Theorem . Assume that {ak} is a sequence of non-zero complex numbers tending
to ∞ as k tends to ∞. Assume that nk is a sequence of natural numbers such that the
series ∑

k

(r/ |ak|)nk

converges for all r. The the Weierstrass product∏
k

Enk(z/ak)

converges normally in C. The product defines an entire function whose zeros are
precisely the elements in the sequence {ak}, and the multiplicity of a zero a of the
product equals the number of times a appears in the sequence {ak}; i.e., one has
ordaf = #{ k | ak = a }.

The series in the theorem resembles a power series in r, and when it is, the condition
is that the radius of convergence be infinity. If nk all are equal, say to m, the condition
simply imposes that the series

∑
k |ak|

−m converge.

—  —
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Proof: We are to show that the product converges uniformly on compacts, and as
usual it suffices to consider disks about the origin. So let r > 0 be given, and let z
be a point with |z| < r. By hypothesis ak → ∞ as k → ∞, so one has |ak| > r
for k >> 0, and as

∑
k(r/ |ak|)nk converges, it follows that

∑
k(|z| / |ak|)nk converges.

By lemma . the series
∑

k |1− Enk(z/ak)| converges and consequently, appealing to
proposition . on page , we are through. o

(.) If the sequence {an} does not tend to∞, it must be finite; indeed, it is discrete
so no infinite subsequence can be bounded. In this case an appropriate polynomial will
have the prescribed zeros with the correct multiplicities.

For any sequence {ak} tending to infinity, there are plenty of sequences nk that
fulfill the condition of the theorem. For instance, one may take nk = k. To see this,
observe that ak > 2 |z| for k >> 0. Hence |z/ak|k < 2−k, and the the series

∑
k |z/ak|

k

converges, being dominated by the convergent series
∑

k 2−k.
Combined with theorem . these considerations give the following result.

PresCZeroEntire

Theorem . (Prescribed zeros) Let m(a) be a function in C taking non negative
integral values. Assume that m has locally finite support. There exists an entire func-
tions whose orders satisfy ordaf = m(a) for all a. Such a function is unique up to a
factor of the form eg(z) where g(z) is an entire function.

Proof: Most of this is done; it remains to allow for a zero at the origin. So if m = 0,
the search for function will be

f(z) = zm
∏
k

Ek(z/ak).

For the unicity statement, suppose that f1 and f2 have the same zeros with the same
multiplicities. Then the fraction f1/f2 vanishes nowhere in C, and consequently has a
logarithm in C, so we just put g(z) = log f1/f2. o

(.)

Proposition . Any function f in the plane meromorphic is the fraction f = g/h of
two entire functions.

Proof: Let h be the Weierstrass product formed by the poles of f . Then g = fh is
entire, since the zeros of h kill the poles of f . o

Proposition . Given an entire function f . A necessary and sufficient condition for
f to have an n-th root is that n|ordaf for all a.

Proof: Apply the theorem about prescribed zeros (theorem . on page ) to
the integral valued function m(a) = ordaf/n to find a Weierstrass product w with
nordaw = ordaf . The function f/wn is then entire and with out zeros and consequently
has as an n-root, say g. Thence wngn = f . The other implication is obvious: One has
ordaf

n = n ordaf . o

—  —
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2.8.2 Weierstrass products in domains
The next result we go form is the generalization to any domain Ω. So let m(a) be

any function whose values are non-negative integers with locally finite support. The
support A has no limit points in Ω but certainly can very well have such in C.

Example .. A good example is the following. Let A be the set of points q−1e2pπi/q
EtGodEksempel

where p and q are two relatively prime natural numbers. Then A is contained in the
open unit disk D and is locally finite: Given 0 < r < 10 there are only finitely many
natural numbers q with q−1 < r, and for each such q there are only finitely many
residue classes mod q. Hence in the disk Dr = { z | |z| < r } there are only finitely
many points from A. However, every point on unit circle ∂D is an accumulation point
for A; indeed if η = e2απi with α an irrational number, there will be infinitely may
natural numbers p and q such that |α− pq−1| < q−1. e

Figur .: 10 000 of the points in A.

Theorem . Given an open subset Ω of C, and a function m in Ω taking non-
negative integral values. Assume that m has a locally finite support in Ω. Then there
is a Weierstrass product f holomorphic in Ω with ordaf = m(a) for all a ∈ Ω.

Proof: To begin with we assume that the complement of Ω is compact. We may also
assume that the sequence {an} is bounded: Let R be so large that C \ Ω is contained
in |z| < R, and let {ank} be the subsequence of {an} with |ank | > R. Then {ank} tends
to infinity, (if not, there would be an accumulation point Ω), and we can take care of
the zeros located at that subsequence by theorem ..

Let {ak} be a listing of the points with m(ak) > 0 each one repeated m(ak) times.
Then d(ak,C \Ω)→ 0 as k →∞ (if this were not the case, the set {ak} would have a
limit point in Ω) and we may find a sequence {bk} of points not in Ω with |ak − bk| → 0
as k →∞.

—  —
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Let K be a compact in Ω, and let d = d(K,C\Ω). For k sufficiently large |ak − bk| <
2−1d, hence for such k’s we have |ak − bk| < 2−1 |z − ak| for all z ∈ K. This gives∣∣(ak − bk)(z − bk)−1

∣∣k < 2−k

and the series
∑

k |(ak − bk)(z − bk)|
k converges. By . and ?? the Weierstrass product∏

k

Ek((ak − bk)(z − bk)−1)

converges normally in K. The factors in the product have the form

Ek((ak − bk)(z − bk)−1) =
z − ak
z − bk

exp(tk((ak − bk)(z − bk)−1))

so they vanish simply in ak, and we are through since each ak is repeated the correct
number of times.

Finally, if the complement of Ω is not bounded, pick a point a ∈ Ω and let Ω′ =
{ (z−a)−1 | z ∈ Ω, z 6= a }. Then C\Ω′ is bounded, indeed let |z − a| < ε be disk in Ω,
then the points w with |w| > ε−1 all lie in Ω′. Do the construction for Ω′ with discrete
function m(w−1 + a) to find a function f(w) solving the problem. Then f((z − a)−1)
will solve the problem for m and Ω. o

2.8.3 Domains of holomorphy
As an application of the Weierstrass products we discuss the concept of “domain

of holomorphy”. When f is a holomorphic function in a domain Ω it is a frequently
surfacing question whether f can be extended to a holomorphic function in a lager
domain. For example a Weierstrass product W associated to the set A in example .,
can not be extended across the boundary ∂D to bigger open set. The point is that
the zeros of W accumulate at every point of the boundary: So if there were a domain
Ω containing D and a holomorphic function W1 extending W , at least one boundary
point would be contained in Ω, and the zeros of W1 would accumulate in that point.
This is impossible because zeros of holomorphic functions are isolated.

One says that a domain Ω is a domain of holomorphy if there is a holomorphic
function in Ω that does not extend to any larger domain. One may show that all
domains in Ω are domains of holomorphy. One technic to show this is similar to what
we did for the unit disk with the set A, and we shall illustrate this by showing the
relatively compact case

Proposition . Every domain Ω in C is a domain of holomorphy

Proof(for the compact case): Assume that ∂Ω is compact. For each natural
number k we cover ∂Ω by finitely many disks Di,k. They shall be centered at a point
in ∂Ω, and their diameter shall be 1/k. Each one of these disks meets Ω, and we may
pick a point aik in Dik ∩ Ω.

—  —



MAT4800 — Høst 2016

The first salient point is that the sequence {aij} is locally finite in Ω. Indeed; for
any natural number n the set Un = { z ∈ Ω | d(z, ∂Ω) > 1/n } is open and can contain
only those aik with k < n, and those are finite in number. The second salient point is
that the aik-s accumulate at every point in the boundary ∂Ω: For every k at least one
of the disks Dik contains a given point a ∈ ∂Ω and Dik contains the point aik as well.

The same argument as we gave for the case of the set A in the unit disk, works
generally. A Weierstrass product constructed with basis in the set {aij} does not extend
to any open set larger than Ω. o

2.8.4 Blaschke products

—  —
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3.1 Convergence uoc

(.) Frequently one encounters sequences of functions that are not defined in the
same domain but nevertheless one wants to have the limit-functions at one’s disposal.
At first sight this might seem paradoxical, but it is meaningful under certain conditions.
To be more precise, let the functions be {fν} with fn defined in the domain Ων , and
let Ω =

⋃
ν Ων . Of course, for our search for a limit to have a meaning, there must be

tight relations between the domains Ων—in the extreme case they being disjoint, for
instance, there is not much hope. The crucial assumption is that any point z ∈ Ω has
a neigbourhood Uz which from a certain index on lies in all the Ωn-s; that is, there is
an Nz with Uz ⊆Ων for ν ≥ Nz.

When this condition is fulfilled, any result about convergence which is local in
nature, is applicable to the sequence {fν}ν≥Nz in the neighbourhood Uz. For instance,
saying that the sequence {fν} converges uoc is meaningful: Any compact K ⊆Ω is
covered by finitely may of the open sets Uz above. Hence K ⊆Ων for ν >> 0, and the
good old definition of uniform convergence applies. When the all the functions fν are
holomorphic from the start, for these ν-s all functions fν are holomorphic on K, and
the limit function will be holomorphic by Weierstrass convergence theorem.

One common situation when the crucial condition is fulfilled is when the domains
Ωn form an ascending chain, that is, Ων ⊆Ων+1 for all ν.

Another situation that that one continually meet is that the functions are not
holomorphic everywhere in the domain Ω, but have isolated singularities. The condition


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then becomes that every point z has neighbourhood where all but finitely, many of the
functions are holomorphic.

(.) The impact of Weierstrass’ work during the last quarter of the 19-th century
on the theory function was immense, and among the many result of his we recall one
that is fundamental in function theory (and in fact, we have already used it several
times). We call it the Weierstrass convergence theorem, and its statement is the very
natural that uoc-limits of holomorphic functions are holomorphic, and more over, the
sequence of derivatives converges uoc to the derivative of the limit function. The
grounds behind such a theorem are rather clear: As order of the integration and the
limit process is immaterial when the convergence is uoc, any property expressible in
terms integrals will be inherited by the limit.

Theorem . If the sequence {fν} of functions holomorphic in Ω converges uoc to-
wards f , then f is holomorphic throughout Ω. The sequence f ′ν of derivatives converges
to f ′ uoc in Ω.

Proof: The first part follows from Morera’s theorem. Let γ be a closed path in Ω.
The convergence being uniform on γ limits and integrals can be swapped, thence it
holds true that

0 = lim
ν

∫
γ

fν(ζ)dζ =

∫
γ

(lim
ν
fν(ζ))dζ =

∫
γ

f(ζ)dζ.

The statement about the derivatives is derived by the help of Cauchy’s formula for the
derivative. When γ is the boundary, of a small disk in Ω encompassing z, traversed
once counterclockwise, his formula reads

f ′(z) =
1

2πi

∫
γ

f(ζ)

(ζ − z)2
dζ =

1

2πi

∫
γ

lim
ν

fν(ζ)

(ζ − z)2
dζ =

=
1

2πi
lim
ν

∫
γ

fν(ζ)

(ζ − z)2
dζ = lim

ν
f ′ν(z).

o

(.) By repeatedly applying this theorem one sees that the sequence {f (k)
ν } of de-

rivatives of any order k converges uoc to f (k). With anti-derivatives the situation is
slightly more complicated as there are constants of integration involved, which seen
from the point of view of the derived series are quit arbitrary. For instance, the series
fn(z) = n does not converge, but of course, the derived series does. However if the
constants are taken care of, there are nice results, like:

Problem .. Given a sequence {fν} of holomorphic functions that converges uoc to
f . For each ν let Fν be a primitive for fν . Show by an example that the sequence {Fν}
dos not necessarily converge. Assume further that for one point a ∈ Ω the sequence
{F ′ν(a)} converges to f(a). Show that the sequence {Fν(z)} then converges uoc to a
primitive of f . X

—  —
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3.1.1 Hurwitz about limit values
Pursuing the philosophy that properties expressible by integrals pass to uniform

limits, one can prove a series of strong and useful results. We are about to give a few,
all due to Adolf Hurwitz, and circling about relations between values of the limit and
values of the functions in the sequence.

(.) The first Hurwitz’ theorem that we shall cite is about zeros of the limit, and it is
easily extended to a statement about values: Any value taken by the limit is eventually
taken by the functions in the sequence, but to begin with, we treat only the zeros:

Theorem . Let the sequence {fν} of holomorphic functions converge uoc to f in
the domain Ω. If all the functions fν are without zeros in Ω, then f is without zeros
in Ω as well unless it vanishes identically.

Proof: Assume that f is not identically zero. The logarithmic derivative d log f =
f ′/f is then meromorphic in Ω, and we may count the number n(f,D) zeros of f in
any (small) disk D⊆Ω by the formula

n(f,D) =
1

2πi

∫
∂D

d log f.

The sequence of derivatives {f ′ν} converges toward f ′, and hence d log fν converges
toward d log f . Integrating along ∂D we find, swapping the limit and the integral, the
equalities

0 = lim
ν

∫
∂D

d log fν =

∫
∂D

d lim
ν
d log fν =

∫
∂D

d log f.

o

Applying theorem . above to the sequence fν − f(a) one obtains on the fly the
version of Hurwitz’s theorem about values alluded to the top of the paragraph:

Theorem . For any a ∈ Ω and any neigbourhood U of a there are points aν in U
such that fν(aν) = f(a) for ν >> 0.

Proof: As already indicated, use the previous theorem with Ω = U and with {fν −
f(a)} as sequence of functions. o

(.) Hurwitz has also a result about injectivity of the limit; the uoc-limit of injective
functions is injective or constant:

Theorem . Let {fn} be a sequence of holomorphic functions in the domain Ω con-
verging uoc toward f . Assume that the functions fν are injective for ν >> 0, then f
is either constant or injective.
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Proof: The clue is to apply . to the domain Ω \ {a}. Since fν are supposed to be
injective in Ω, the functions fν − fν(a) are without zeros in Ω \ {a}, and they clearly
converge uoc toward f − f(a). Thence, by ., f − f(a) is either without zeros in
Ω\{a}, in which case f is injective, or vanishes identically, in which case f is constant.

o

Problem .. Assume that {fν} converges uoc toward f in Ω. Show that for any
disk D⊆Ω there is a natural number ND such that∑

z∈D

ordzf =
∑
z∈D

ordzfn

for n > ND. X

Problem .. Let {fν} be a sequence of holomorphic functions in the domain Ω
converging uoc to f and let a ∈ Ω be a point.

a) By studying the function fν − f(c) show that in any disk D contained in Ω and
containing a, there is a natural number Nd and points aν such that fν(aν) = f(a) for
ν > ND

b) Show that there is sequence of points aν in Ω converging to a with f(aν) = f(a).

X

Problem .. Show by exhibiting examples of sequences of real analytic functions,
that neither of the three theorems of Hurwitz’ above is valid in a real setting, that is,
for real functions of a real variable. X

3.2 Arsela-Ascoli

The classical Bolzano-Weierstrass-theorem tells us that every bounded sequence of
numbers—real or complex— possesses a convergent subsequence. It is natural to won-
der wether a similar result applies to sequences of functions as well, and this question
was answered by the two Italian mathematicians Cesare Arzelà and Giulio Ascoli.
Among the two, Ascoli was the first contribute. He established the sufficient condition,
and about ten years later Arzelà tidied up the formulation and proved the necessity.

Their famous result gives a necessary and sufficient condition for a sequence of
functions to have convergent subsequences, and of course, by convergence we then
understand uniform convergence on compacts. We intend to describe this result—
which strictly speaking belongs to real analysis— without giving the proof, and we
shall do that in a rather general setting. The Arzelà and Ascoli is precursor of Montel’s
criterion for convergence which is a corner-stone in the theory of holomorphic functions.

—  —
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(.) Let X and Y de two metric whose metrics are dX and dY respectively. We
assume that X locally compact and that Y be complete, innoxious assumptions for
us as in the applications we have in mind X will be a domain in the complex plane
equipped with the usual euclidean metric and Y will be an open subsets of the Riemann-
sphere Ĉ with spherical metric.

The concepts of uniform convergence on compacts is meaningful in this general
setting, the definitions are word for word the same as in the case of complex functions,
but with the metrics dX and dY replacing the good old distance function |z − w|. The
set of C(X, Y ) of continuous functions from X to Y has a topology called the topology
of uniform convergence with the property that a sequence of functions converges in
that topology if and only if it converges uoc. A subset, or as we shall say, a family
F ⊆ C(X, Y ) is called normal if every sequence of elements from F has a convergent
subsequence. This means that the closure of F is compact, and In more topological
terms one says that F is precompact or relatively compact . One do not request that
limit function lie in F , but of course it will be continuous.

Example .. As a first example we let the domain Ω be the unit disk D and let the
family F consist of the fractional linear transformations

φν(z) =
z − cν
cνz − 1

where cν is a sequence in the unit disk converging to a point c ∈ D. If c belongs to the
boundary ∂D, observing that c = c−1 one realizes swiftly that {φν} converges uoc to
the constant function with value c.

However, if the point c does not lie on the boundary but in the (open) unit disk
itself, the limit is the function φ(z) = (z − c)(cz − 1)−1. e

(.) The Arzelà-Ascoli theorem involves the concept of equicontinuous families . If
F is a family of functions from X to Y — in other words a subset of C(X, Y )— it is
said to be equicontinuous in a set A ⊂ X if there for any ε > 0 is possible to find a
δ > 0 such that the implication

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε

holds true for all pair of points x, y in A and all functions f from the family F . Loosely
expressed, in a slogan-like manner: “The same δ works everywhere in X and for all
members f of the family”. As we shall see, the sufficient condition in the Arzelà-Ascoli-
theorem will be that F be equicontinuous on every compact subset of X.

(.) An observation that occasionally is useful is at being equicontinuous on compact
sets is a local property of a family: Once one can establish that F is equicontinuous in
all members of an open covering of X, one knows it to be equicontinuous on compact
sets.

—  —



MAT4800 — Høst 2016

Lemma . Let K ⊆X be a compact set and F a family of continuous functions from
X to Y . If there exists an open covering U of K such that F is equicontinuous on
every member U ∈ U , then F is equicontinuous in K.

Proof: The set K being compact, we may assume that U is finite. The covering has
a so called Lebesgue-number, that is a ρ > 0 with the property that any open ball in X
of diameter less than ρ intersects K in set contained in one of opens from the covering.

If now ε > 0 is given. For each U ∈ U there is a δU with dY (f(x), f(y)) < ε once
dX(x, y) < δ for any f from the family. It is then clear that any positive number δ less
than ρ and less than all the δU -s (which are finite in number) works! o

(.) Finally we have come to the Arzelà-Ascoli-theorem, and as we said, we content
ourselves with the formulation of the theorem and do not give the proof:

Theorem . Let X and Y be two metric spaces and assume that Y is complete.
Assume that F is a family of continuous maps from X to Y . Then F is a normal
family if and only if the following to conditions are satisfied.

� F is equicontinuous on compacts;

� For every point x ∈ X the set of values { f(x) | f ∈ F } is contained in a compact
set.

3.3 Montel’s criterion for normal families

The french mathematician Paul Montel was the one who introduced the name “normal
families” in a paper in . His thesis from  was about families of holomorphic
functions, and subsequently he devoted a large part of his scientific life to the study
of such families. One of his famous result, if not the most famous, is that family of
holomorphic functions whose values avoid two numbers form a normal family, and we
shall come back to that in due course. This section is about a necessary and sufficient
condition for a family to be normal, proven by Montel in his thesis.

(.) Before starting on the Montel criterion, we recall a few nuances about bounded
families. A family F of functions in a domain Ω is uniformly bounded , or for short
just bounded , in a set A if its members have a common upper bound in A; that is, for
a suitable constant MA it holds true that |f(z)| ≤ MA for all z ∈ A and all f ∈ F .
Expressed in sup-norm-lingo this reads ‖f‖A < MA for all members f of the family.

The family is said to be locally bounded in Ω if one around every point may find a
neighbourhood over which F is uniformly bounded. This implies that F is bounded in
all compacts; indeed, a compact K is covered by finitely many such neighbourhoods,
and the largest of the corresponding upper bounds will be a common upper bound for
all functions in F .

—  —
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(.) With these nuances in place, we are ready for Montel’s criterion for normality,
one of the more important results in function theory, and which will be used over and
over again.

Theorem . If a family F of holomorphic functions in a domain Ω is locally bounded,
it is normal.

Proof: As announced this relies on the Arzelà-Ascoli-theorem. There are two con-
ditions to be checked. The first one comes for free, the family is obviously point-
wise bounded being locally bounded. Our concern is therefore to show that a locally
bounded family is equicontinuous on compacts. Equicontinuity on compacts being a
local property, we can restrict ourself to disks. So let D be disk in Ω whose radius we
denote by r, and let M be a common upper bound over D for the functions in F .

Cauchy’s integral formula gives

f(z)− f(z′) =
1

2πi

∫
∂D

f(w)((w − z)−1 − (w − z′)−1)dw = (.)

=
z − z′

2πi

∫
∂D

f(w)(w − z)−1(w − z′)−1dw (.)

for two points z, z′ ∈ D. When w ∈ ∂D and z is confined to the disk D′ that is
concentric withD and with radius r/2, the inequality |w − z| > r/2 is valid. Combining
this with . we obtain the estimate

|f(a)− f(b)| < |a− b| 4M/r2.

The bound 4M/r2 does not depend on f and F is equicontinuous in D′, and it is clear
that the disks D′ corresponding to the disks D from an appropriate covering of Ω,
cover Ω. o

Example .. The family consisting of all holomorphic functions in Ω having a com-
mon upper bound is normal, while the family whose members are the bounded holo-
morphic functions is not normal. e

(.) A sequence of numbers converges if and only its many subsequences all converge
to the same value. It is even fairly easy to see that it suffices that all convergent sub-
sequences converges to the same point, for in that case the set of accumulation points
is reduced to a singleton, which means that sequence converges. The corresponding
statement is true for sequences of holomorphic functions as well, a result that goes
under the name of Montel’s criterion for convergence:

Theorem . A locally bounded sequence of holomorphic functions all of whose uoc-
convergent subsequences converge to the same function, is uoc-convergent.

—  —
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Proof: Let the sequence be {fn} and assume it does not converges uoc to f . Then
there is a compact K, an ε > 0 and a subsequence {fnk} with ‖f − fnk‖K > ε.

After Montel’s normality criterion (theorem . on page ) the sequence {fnk}
has a subsequence that converges uoc, and we can as well assume that the sequence
{fnk} it self converges uoc. Thence fnk → f uniformly on compacts per hypothesis .
Of course this implies that limk ‖f − fnk‖K = 0, in flagrant contradiction with the
inequality ‖f − fnk‖K > ε, valid for all k. o

(.) Montel’s criterion has a consequence that many might find astounding. Se-
quences of holomorphic functions has a clear tendency to converge, at least convergence
frequently can be contagious as Reinholdt Remmert writes in [Rem], it can spread
from a subset to the entire domain of definition, and he cites George Pólya and Gàbor
Zsegö who gave a pertinent characterization of the phenomenon: “The propagation of
convergence can be compared to the spread of an infection”. One striking example is
Vitali’s convergence theorem, convergence on set with an accumulation point implies
convergence everywhere:

Theorem . Let {fn} be a locally bounded sequence of holomorphic functions in the
domain Ω. Suppose that the set A of those z i Ω where the limit limn fn(z) exists,has
an accumulation point. Then the sequence {fn} converges uoc i Ω.

Proof: The limits of two convergent subsequences must coincide on the set A, since
the whole sequence converges there. Both are holomorphic in Ω by Weierstrass’ conver-
gence theorem (theorem . on page ), and coinciding on the set A, which possesses
an accumulation point, they are equal by the identity theorem. Hence the sequence
converges uoc after Montel’s criterion for convergence. o

Problem .. Let F be a pointwise bounded family of complex valued continuous
functions in the domain Ω. The aim of this exercise is to demonstrate that there exists
a subdomain U ⊆Ω such that F is locally bounded over U .

a) Under the assumption that F is not locally bounded, show that one might find a
sequence of functions {gν} from F and a descending chain of compact disks Kν with
‖gν‖Kν > ν.

b) If F is not locally bounded, exhibit a point a ∈ Ω such that |gν(a)| > ν.

c) Finally, show that there exists a subdomain U ⊆Ω such that F is locally bounded
over U .

X

Problem .. The aim of this exercise is to show the following result due to American
mathematician William Fogg Osgood. If {fν} is a sequence of holomorphic functions
converging to a continuous function in the domain Ω, there is an open, dense subset
U ⊆Ω over which the sequence converges uoc.
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a) Let D⊆Ω be any disk. Use problem . above to find an open subset UD of D
where the sequence {fν} is locally bounded.

b) Show that U =
⋃
D UD is an open, dense subset of Ω where {fν} converges uoc.

X

Problem .. In this exercise the task is to exhibit an example of a sequence of entire
functions that do converge to a continuous function in C but do not converge uoc
everywhere in C.

Recall the Mittag-Leffler function F (z) constructed in problem xxx. It is an entire
function whose limit at ∞ along any ray emanating from the origin equals zero, that
is limr→∞ F (reit) = 0 for every t. Let fn(z) = F (nz)/n

a) Show that limn→∞ fn(z) = 0 for all z.

In the rest of the exercise, we assume that sequence {fn} is bounded near 0 ( with
the intention to arrive at an absurdity)

b) Show (with the assumption above) that there are constants r > 0 and M > 0 with
|F (z)| ≤ nM for |z| ≤ nr and all n.

c) Denote by ak the k-th Taylor coefficient of F about the origin. Use Cauchy’s
estimates to prove that the inequality

|ak| ≤ nM/(nr)k,

holds for all k ≥ 0 and n ≥ 1.

d) Show that ak = 0 for k ≥ 2 and arrive at a contradiction.

X

3.4 Spherical convergence

So far we have mostly spoken about families of holomorphic functions,but it is quite
natural and of great interest to extend the theory to comprise families of meromorphic
functions as well. Habitually we think about meromorphic functions as functions
mapping Ω to the Riemann sphere Ĉ, and the Riemann sphere comes equipped with
the spherical metric —the distance function inherited from the standard metric on unit
sphere in R3 through the stereographic projection—and this metric turns out to be a
convenient tool for studying families of meromorphic function.

3.4.1 The spherical metric
The metric on S2 is the one used by navigators for centuries; the distance between

two points being the angular measure of the smaller great circle arc connecting the two
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points. Transporting this metric to the Riemann sphere requires some computations,
not very intricate though, but sufficiently draggy (and in our context uninteresting)
to make us skip them. Instead we just give an expression for the metric and argue
directly that it has the properties we want, i.e., that it gives the correct topology on
the extended plane and is equivalent to the euclidean metric in the finite part.

(.) When describing the stereographic projection we prefer to identify R3 with
C × t and in the latter the points are (z, t). The unit sphere is given by the equation
|z|2 + t2 = 1. The north pole N is the point (0, 1).

The stereographic projection Ψ sends a point on the unit sphere, other than the
north pole, to the point where the complex plane (that is the plane t = 0) meets the
line joining the point to the north pole. The north pole is sent to the point at infinity
in Ĉ. One easily verifies that this defines a homeomorphism between Ĉ and S2.

N

Ψ(p)

C

R

Figur .: A sectional view of the stereographic projection

Problem .. If Φ denotes the inverse of the stereographic projection, show that

Φ(z) = (2z(1 + zz)−1, (zz − 1)(zz + 1)−1). (.)

Show that the great circles on the sphere projects to the (generalized) circles in Ĉ given
by

zz + az + az = 1,

and show that for such a circle the centre is −a and the radius equals (1 + |a|2)1/2.
Show that the pairs of points z and −z−1 in Ĉ (with a liberal interpretation if z =∞)
correspond to the pairs of antipodal1 points on the sphere. X

(.) The spherical length of a path γ in Ĉ is given by the integral

Λ(γ) =

∫
γ

2 |dz|
1 + |z|2

, (.)

which is easily seen to converge in case one (or both) of the end points lies at infinity.

1This involve all of the three natural involutions on C, and would make any semi-serious cosmologist
with conspiratorial tendencies smile widely
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Indeed, the change of variable z = w−1 gives dz = −w−2dw, and this substitution does
not alter the form of the integral, i.e., it becomes

Λ(γ) =

∫
γ′

2 |dw|
1 + |w|2

. (.)

The spherical distance between two points z and z′ is determined as the infimum
of the spherical lengths of paths joining the two points:

ρ(z, z′) = inf
γ

Λ(γ),

where as we said, the infimum is taken over connecting paths.

(.) The spherical metric is equivalent to the euclidean metric in the finite part of

Ĉ (but of course, they are not equal). The argument goes like this: Let z and z′ be
two points both lying in a disk D of radius R about the origin, and let γ be a path in
D connecting the two, then the inequalities beneath holds

l(γ)

1 +R2
<

∫
γ

2 |dz|
1 + zz

< l(γ),

where l(γ) denotes the good old euclidean length of the path γ. Taking infimum
over paths and keeping in mind that the shortest path between the two points in the
euclidean sense is the line segment joining them, we obtain the inequalities

|z − z′|
1 +R2

< ρ(z, z′) < |z − z′| .

By this we have established that the two metrics are equivalent in the finite part of the
extended plane; but as the form of the integral giving the spherical metric is insensitive
to the change of variables w = z−1, the argument is even valid in neighbourhoods about
the point at infinity. Hence the two metrics are topologically equivalent.

Problem .. Verify that ρ(z, z′) satisfies the axioms for a metric. That is, it is
symmetric, the identity of indecernibles holds, and the triangle inequality is fulfilled.

X

(.) Great circles through the north pole—also called meridians our hour circles—
project onto lines through the origin, and their spherical length is particular easy to
compute. As an illustration we offer the following computation∫ ∞

a

2dz

1 + zz
=

∫ ∞
|a|

2du

1 + u2
= π − 2 arctan |a| = 2 arctan 1/ |a|

giving the spherical length from a point a to the point at infinity. We recommend the
students to verify that this coincides with the polar distance of the corresponding point
on the sphere, i.e., the angular measure along the meridian from the north pole to the
point. This also explains the factor 2 in the formula for the spherical distance.
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Problem .. Consider the fractional linear transformation ψ given by

ψ(z) =
az + b

−bz + a
,

where a and b are two complex constants satisfying |a|2 + |b|2 = 1. Show that the
spherical metric is invariant under ψ; that is, show that for any path in Ĉ one has
Λ(ψ ◦ γ) = Λ(γ). X

3.4.2 Weierstrass’ spherical convergence theorem
The general concepts of convergence, and of the more specific convergence uoc, of

sequences of maps between metric spaces applies to the current situation. A sequence
of meromorphic functions in a domain Ω is viewed as sequence of maps Ω → Ĉ with
Ĉ equipped with the spherical metric, and we can speak about convergence uoc in
this situation. To distinguish this concept from the habitual concept of convergence
uoc, we shall refer to it as spherical convergence uoc. Any holomorphic function may
be considered being meromorphic, so in the case all the functions in the sequence are
holomorphic we have two concepts of convergence, and the two differ slightly — a stupid
example being the sequence of the constant functions fn(z) = n, which clearly diverges
in the finite plane, but converges uoc to the the point ∞ in the extended plane. The
sequence {zν} gives a somewhat more substantial example when considered on the
domain { z | |z| > 1 }. There it converges uoc in the spherical sense to the constant
function with value ∞, but since high-school we learned that it diverges when viewed
as a sequence of maps into C.

One word of warning. One must be very careful about the derivative of members
of a spherically normal family, they do necessarily form a spherically normal sequence.
You will find an example in exercise . on page  below,

(.) Before attacking the spherical Weierstrass version, we make an obvious general
observation. Let {fν} be a sequence of continuous functions from one metric space X
into another Y , and assume it converges uoc toward the function f . Let a ∈ X be
a point. Denote by U an open neighbourhood of the image point f(a) and choose a
compact subset K of the inverse image f−1(U) containing a in its interior. It then
holds that fν(K)⊆U for ν >> 0. To verify this just perform a classical ε-δ exercise
(or may be one should say an ε-δ-ν exercise) with ε equal to the distance from f(a) to
the boundary ∂U .

(.) A fundamental tool on which we up to now have based the theory, is the Wei-
erstrass convergence theorem, and to pursue the development we need a version for
spherical convergence. The slight discrepancy between the two types of convergence
for holomorphic functions—depending upon they being viewed as maps into C or into
Ĉ—deserves an explanation. The two examples above are illustrative; in the spherical
world functions are allowed to converges to the constant infinity.
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Proposition . Let {fν} be a family of meromorphic functions in the domain Ω in
the finite plane, and assume that it converges spherically uoc to the function f . Then
it hods true that

� the function f is meromorphic in Ω;

� if all the functions fν are holomorphic in Ω then either f is holomorphic or
constant equal to ∞.

Proof: Let a ∈ Ω be a point. There are two cases to treat.
Firstly, assume that f(a) 6=∞. Choose a disc U about f(a) not containing∞, and

let D be a disk about a whose closure is contained in the inverse image f−1(U). By the
obvious observation in paragraph (3.1) above it holds that fν(D)⊆U for ν >> 0, and
consequently the functions fν are all holomorphic in D. The spherical and euclidean
metrics being equivalent in D the sequence converges uoc in the euclidean sense in D,
and by the habitual Weierstrass’ convergence theorem (theorem . on page ), the
limit is holomorphic.

Secondly, assume that f(a) = ∞. In a similar manner as in the first case, fix a
disk U about the point at infinity that does not contain the origin, and choose a disk
D about a with fν(D)⊆U for ν >> 0. For such ν’s the functions fν will be uniformly
bounded away from zero in D. Hence their inverses 1/fν are all holomorphic there and
form a bounded sequence that converges towards 1/f , uoc in the euclidean sense. By
the classical Weierstrass’ convergence theorem 1/f is holomorphic in D; that is, f is
meromorphic near a.

Finally, assume additionally that all the functions fν are holomorphic. This means
that the inverse functions 1/fn(z) have no zeros in D, and by Hurwitz’ theorem of
zeros (theorem . on page ) we conclude that either 1/f is constant equal to zero
or without zeros in D. Correspondingly, f is either constant equal to∞ or holomorphic.

o

3.4.3 The spherical derivative
The setting is a domain Ω in the finite plane where our function f is meromorphic.

Like the derivative, the spherical derivative is not insensitive to the change of variables
w = z−1, there will be a factor |w|2 appearing. Hence, to keep life reasonably simple,
we shall stick to the setting described and only work with domains in the finite plane.

As a start we define the spherical derivative in points where f is holomorphic, and
the definition goes as follows.

f ](z) =
|f ′(z)|

1 + |f(z)|2
.

We observe that (1/f)] = f ] in points where f does not vanish; indeed the little
calculation beneath shows this:

(1/f)] =
|−f ′/f 2|

1 + |1/f |2
= f ].
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We exploit that equality, to define the spherical derivative at poles of f , by defining f ]

to be (1/f)] near a pole. The spherical derivative f ] is a function with real positive
values defined and continuous throughout the domain Ω where f is meromorphic.

(.) To acquaint ourself with the spherical derivative, let us examine when it van-
ishes. Clearly at points where f is holomorphic this happens where and only where the
derivative f ′(z) vanishes. We shall see that it vanishes at a pole if and only if the pole
has order at least two, and in case f has a simple pole at a, one has f ](a) = |resa f |−1.

We may clearly assume that a is the origin. So assume that f has a pole of order
n at the origin. Near the origin it holds that f(z) = z−ng(z) with n ≥ 1 and we find
by simple computations that

f ](z) =
|−nz−n−1g(z) + z−ng(z)|

1 + |z−ng(z)|2
=
|−nzn−1g(z) + zng′(z)|
|z|2n + |g(z)2|

.

If n > 1 the limit of this expression when z → 0 is equal to zero, but when n = 1 the
limit becomes equal to 1/ |g(0)|, and in fact this value equals |res0 f |−1.

Problem .. Show that (exp z)] = 2/ cosh Re z and that (exp iz)] = 2/ cosh Im z.
X

Problem .. Show that if α is a Möbius-transformation, then (α ◦ f)] = f ]. Find
an example such that (f ◦ α)] does not equal f ]. X

Problem .. Show that if f is meromorphic in a neighbourhood of∞, then limz→∞ f
](z) =

0. X

Problem .. Show that if we let w = z−1 and g(w) = f(1/w), then one has
g](w) = f ](1/w) |w|2 where the involved quantities are defined. X

(.) In the euclidean case integrating |f ′(z)| along a path γ gives us the euclidean
length l(f ◦ γ) of the image of γ under f . Correspondingly, in the spherical case the
integral of the spherical derivative f ](z) along γ gives half of the spherical length of
the image f ◦ γ, that is, one has the formula

2−1Λ(f ◦ γ) =

∫
γ

f ](z) |dz| .

Indeed, by the simple substitution w = f(z) it holds that

2−1Λ(f ◦ γ) =

∫
f◦γ

|dw|
1 + |w|2

=

∫
γ

|f ′(z)|
1 + |f(z)|2

|dz| =
∫
γ

f ](z) |dz| .

Problem .. Assume that f is meromorphic and injective in the A⊆Ω. Show that
the spherical area of f(A) equals 4−1

∫
A

(f ](z))2dzdz. X

—  —



MAT4800 — Høst 2016

3.4.4 Marty’s theorem
Marty’s theorem is the spherical version of Montel’s theorem of convergence:

Theorem . A family F of meromorphic functions in the domain Ω in the finite
plane is normal if and only if the family formed by the spherical derivatives f ] for
f ∈ F is bounded on compacts.

Proof:
We appeal once more to the theorem of Arzelà-Ascoli. As the Riemann sphere Ĉ is

compact the second condition of Arzelà and Ascoli is automatically fulfilled, and our
task reduces to checking that a family is equicontinuous on compacts in Ω when being
spherically bounded on such compacts.

Equicontinuity on compacts being a local property by lemma . on page  we
can concentrate on disks D whose closure lies in Ω. So let z and z′ be two points from
D and let denote by γ the standard parametrization of the line segment between them,
i.e., γ(t) = tz+ (1− t)z′. Furthermore, let M denote a common upper bound in D for
the functions in F . We find for f ∈ F the inequality

ρ(f(z), f(z′)) ≤
∫
f◦γ

|dz|
1 + zz

=

∫
γ

f ](z) |dz| ≤M

∫
γ

|dz| = M |z − z′| ,

from which the equicontinuity is evident (again we use that the two metrics are equi-
valent in the finite plane).

The other implication is standard. The family { f ] | f ∈ F } not being bounded
on compacts means that there is a compact K ⊆Ω and a sequence {fν} from F with
‖f ]ν‖K > ν. Replacing {fν} by a subsequence if necessary, we may assume that {fν}
converges uoc in Ω towards a function f that by the spherical version of Weierstrass’
convergence theorem is meromorphic. It is easy to see that the sequence {f ]ν} then
converges uoc to f ] and we can conclude that f ] is continuous on the compact K.
Therefore it has a maximum there, which contradicts that ‖f ]ν‖K > ν. o

Example .. The spherical derivatives of functions in the family {zν} are uniformly
bounded on compacts contained in Ω = { z | |z| > 1 }. Indeed, if |z| > R > 1 we find

(zν)] =
ν |z|ν−1

1 + |z2ν |
=

ν |z|−ν−1

|z|−2ν + 1
< νR−ν−1

which stays bounded as ν growths since xe−x logR → 0 as x → ∞ when R > 1.
Hence {zν} is a normal family in C \D in the spherical sense. The sequence converges
spherically uoc to the constant∞. However, the family is not normal in the traditional
euclidean sense since no subsequence converges uoc. e

Problem .. Is {zν} a normal family in the spherical sense in the disk |z + i| < 1?
What about the euclidean sense? X
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Problem .. This exercise is an example (borrowed from Carathéodory’s book
[Car54], page ) of spherically normal sequence such that the derived sequence is
not spherically normal. This should be contrasted with the traditional Weierstrass’
convergence theorem (theorem . on page ).

a) Show, by using Marty’s theorem, that sequence fν(z) = ν2/(1−ν2z2) of meromorphic
functions converges spherical uoc to f(z) = −z−2.

b) Compute the spherical derivatives of f ′ν(z) and show that the sequence they form
is not bounded at the origin. Conclude, again by Marty’s theorem that {f ′ν} is not a
spherically normal family. Hint: In pure mercy with the students, the derivative of
fν is: f ′ν(z) = −2ν4(1 + 3ν2z2)(1− ν2z2)−3 (Don’t trust me, check it!!).

X

3.5 Zalcman’s lemma of Bloch’s principle

Most of what we have done so far was developed in the last quarter of the nineteenth
century or the beginning of the twentieth. The scientific activity around those questions
had a golden age in the first haft of the twentieth century.

In his article [Zal98] from ,Lawrence Zalcman modestly says that he proved his
“little lemma” to give Bloch’s principle precise form. This he already in  in the
paper [Zal75]. Twenty years later the interest in normal families bloomed again, and
Zalcman’s lemma “proved amazingly versatile”, as he himself expresses it in [Zal98].

3.5.1 Zalcman’s lemma
Zalcman’s “little lemma”—now upgraded to the status of theorem—is a criterion

for a family not to be normal (and we speak about families normal in the spherical
sense). Marty’s theorem (theorem . on page ) is one of the main ingredients of
the proof. The lemma deals with families of functions in the unit disk, but normality
being a local property, this is sufficient for the applications.

(.) The statement in the lemma involves functions of type g(z) = f(a+ρz)—where
a is a complex constant and ρ a real number—deduces from a function f holomorphic
in a disk D about the origin by rescaling and translation. If D has radius r, the function
g will be holomorphic in the disk D′ given by |z| < (r − |a|)ρ−1, and provisionally we
denote the radius of D′ by R′; that is, R′ = (r−|a|)ρ−1. (In fact it will be holomorphic
in greater disk, whose centre is −ρ−1a and radius ρ−1r, but we shall be content with
using D′.)

The following easy estimate will be useful. Fix positive real number R with R < R′.
For points z satisfying |z| < R it holds true that

r − |a+ ρz| ≥ r − |a| − |ρz| ≥ r − |a| − ρR ≥ (r − |a|)(1− R

R′
). (.)
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(.) Here comes the lemma:

Theorem . Let F be a family of holomorphic (resp. meromorphic) functions in the
unit disk D that is not spherically normal. Then there exist a sequence {fν} of function
belonging to F , a positive real number r and a sequence of points {an} with |aν | < r,
and a sequence {ρν} of positive real numbers tending to zero such that following holds
true: The sequence formed by the functions

gν(z) = f(aν + ρνz)

converges to a non-constant entire (resp. meromorphic in C) function g with g](z) ≤
g](0) = 1.

Before starting the proof, we remark that the functions gν are not all defined in the
same domain. However, gν is defined in the disk Dν about the origin of radius Rν =
(r−|aν |)ρ−1

ν , and it will appear during the proof that the radii Rν tend to infinity with
ν. This implies that any point in the complex plane C eventually will be contained in
all the Dν ’s, that is will be lying in Dν for ν >> 0.

Proof: The family F not being normal, Marty’s theorem (theorem . on side )
tells us that the family formed by the spherical derivatives f ] of functions from F is
not bounded on compacts in D. In clear text this means that there is a compact K
contained in D and a sequence {fν} from F with the sequence of sup-norms ‖f ]ν‖K
tending to ∞ with ν. The compact K has a positive distance ρ to the boundary ∂D
strictly less than one, hence we may choose a radius r with r < 1 so that the disk Dr

given by |z| < r contains K.
The crux of the proof is to consider the spherical derivatives f ]ν modified by the

“cut-off-factor” (1− |z|2 /r2), and their maximum values in Dr. We put

Mν = max
z∈Dr

(1− |z|2 /r2)f ]ν(z),

and we let aν be a point in Dr where the maximum value is achieved. Since ‖f ]‖K →∞
one easily sees that Mν →∞ when ν →∞; indeed, one has Mν ≥ (1− ρ2/r2)‖f ]‖K .

We put ρν = 1/f ](aν), so that ρν = (1−|aν |2 /r2)/Mν . Hence ρν → 0 when ν →∞.
Furthermore it holds true that

Rν = (r − |aν |)/ρν = Mνr
2/(r + |aν |)→∞

as Mν growths beyond limits when ν → ∞, whereas the denominator in the fraction
to the right stays greater then r. The functions

gν(z) = fν(aν + ρνz),

are holomorphic in the disks Dν with radii Rν about the origin, and plan is to use
Marty’s convergence theorem to show that these functions form a normal family. To
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that end, observe using the chain rule that g]ν(z) = ρνf
]
ν(an+ρνz), and hence by simple

manipulations using the definitions we obtain the estimate:

g]ν(z) ≤ r2Mν

f ](aν)(r2 − |aν + ρνz|2)
≤ r − |aν |
r − |aν + ρνz|

· r + |aν |
r + |aν + ρνz|

(.)

The last factor clearly stays bounded as ν → ∞ and tends to one as ν → ∞.
Attacking the first factor we confine z to a given compact disk |z| ≤ R, thence Rν > R
if ν >> 0. For such ν the denominator stays uniformly bounded away from zero by
the estimate (.), and hence the first factor tends to one as well. Consequently g]ν is
bounded in the disk |z| < R, independently of ν.

The limit function g is thus entire (meromorphic in C) by Marty’s theorem. The
inequality g] ≤ 1 follows from (.) when we let ν go to infinity—both factors tend to
one. o

Example .. An illustrative example is the following. The domain will be the unit
disk and the family will be

F = { fν(z) = 2νzν | ν ∈ N }.

This family is not normal in the region |z| > 1/2, it is not even pointwise bounded there.
We short cut the recipe in the proof, and take aν = 1/2 for all ν and ρν = α/2ν, where
α is any real number. With this data we find gν(z) = (1 + αz/ν)ν which approaches
g(z) = eαz when ν →∞. e

3.5.2 Bloch’s principle
According to Robert Osserman as he tells in the very readable article [Oss99], that

André Bloch is probably best known on three counts, one is his tragic story. He killed
his brother, his aunt and his uncle and passe most of his life in a psychiatric hospital.
A second one called “Bloch’s principle”, which is a very vague statement. As Osserman
says, it is more a heuristic device than a result. it states in essence that whenever one
has a global result, there should be a stronger, finite version from which the global
result follows. The origin of Zalcman’s lemma seems to be his wish to make this foggy
principle into a theorem, and indeed he did. Below we give a very short description of
Zalcman’s version of Bloch’s principle.

(.) Let P be a property of holomorphic functions in domains U . Properly speaking,
it is a property of pairs (f, U) where f is holomorphic in the open set U . Such pairs are
frequently called function elements . Example of such a property could be “bounded
in U” or “injective in U” or “locally injective i U”— there are plenty of possibilities.
Formally one may say that a property P is just a set function elements; that is, of
pairs of the type (f, U) above.
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(.) There are three conditions on function elements that enter into Zalcman’s ver-
sion of Bloch’s principle.

� The first condition is that the property be compatible with restrictions . This
ought to be self-explanatory, but means that the restriction f |U ′ has the property
in U ′ whenever f has it in U and U ′ is any open subset of U . Or phrased
differently, if U ′⊆U and the function element (f, U) belongs to F , then (f |U ′ , U ′)
belongs to F as well.

� One may call the second compatibility with affine coordinate changes . This means
that if φ(z) = a+ρz is any affine change of coordinates with a ∈ C and ρ ∈ R, then
the function f(φ(z)) = f(a+ ρz) has the property in the open set ρ−1(U − a) =
φ−1(U) whenever f(z) has the property in U ; or phrased with functions elements:
If (f, U) belongs to F , then (f ◦ φ, φ−1(U)) belongs there also.

� The third and final property is somehow more subtle and one may call it compat-
ible with uoc-convergence. For any ascending chain {Uν} of open sets, and any
sequence {fν} of a function each holomorphic Uν and converging uoc toward f ,
the limit function fν is required to have the property on

⋃
ν Uν whenever each fν

has it in Uν .

These three conditions are of course made to perfectly match the setting coming out
of Zalcman’s lemma, and hence the following proposition—which is Zalcman’s version
of Bloch’s principle—is an immediate consequence of it.

Proposition . Assume that a property P fulfils the three requirements above. As-
sume further that the only entire functions having the property are the constants. Then
for any domain Ω the family of functions having the property P in Ω is spherically nor-
mal.

Problem .. Show that the family of derivatives of univalent functions in Ω is
normal. Hint: Show that any entire univalent function is of the form az + b, hence
has a constant derivative. X

3.6 Picard’s big and Montel’s second

We now turn to the second theorem of Montel’s which may be is the more famous one,
being equivalent to Picard’s big theorem. Recall, when we studied isolated singularities
we proved the theorem of Casorati and Weierstrass saying that a function comes ar-
bitrarily near every complex value in every neighbourhood of the singularity. Picard’s
big theorem is a significant strengthening of this result. It states that the function in
fact achieves every value, with at most one exception, infinitely often. The function
e1/z has no zeros, so one must accept an exception.
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(.) Frequently Picard’s big theorem is cited as a statement about entire functions,
and the conversion is not particularly deep. If f(z) is entire, the function f(1/z) has
an isolated singularity at the origin. This singularity is essential if and only if f(z) is
not a rational function—and non-rational functions go under name of transcendental
functions. So Picard’s big theorem about entire functions reads says that an entire,
transcendental function takes on all complex values infinitely often with at most one
exception.

(.) As there is a big Picard theorem, there must also be a little one. And indeed,
there is one: Given two different complex numbers a and b. If an entire function avoids
the two complex numbers, then it is constant. There is a version for meromorphic
functions as well, but in that case three values are need. If a, b and c are three complex
numbers and f a meromorphic functions avoiding all three, then f is constant. As any
two sets of three different complex numbers can be mapped to each other by a Möbius
transformation, both these statements are equivalent to the statement that the only
entire functions not assuming the values 0 and 1 are the constants.

3.6.1 Montel’s second theorem
With Picard’s theorem in mind, it quit natural to study the family of function in

a domain Ω avoiding the values 0 and 1, and one of Paul Montel’s main results is that
this is a normal family. Fairly easy and standard arguments, that we shall give below,
show that this implies Picard’s big theorem. But, for the moment it is about Montel’s
result:

Theorem . Let Ω be a domain. And letM be the family of holomorphic functions
in Ω avoiding 0 and 1; that is holomorphic functions f : Ω→ C \ {0, 1}. Then M is a
spherically normal family.

Proof: Since being normal is a local property of families we may very well assume that
Ω is a disk, and after a translation and a rescaling, we can without loss of generality
assume that the disk is the unit disk D.

For any natural number n one has the n-th roots of unity. They constitute a set
µn contained in the unit circle ∂D; one has µn = { z | zn = 1 }. Their union is dense
in the circle, and in fact for any prime p (for instant 2) the sets µpn form an ascending
chain whose union (frequently denoted by µp∞) is dense.

For a natural number n we let Mn be the family of holomorphic functions in D
that in addition to avoiding 0 avoid all the n-roots of unity; i.e., functions φ : D →
C \ µn ∪ {0}. It is clear that f ∈Mn if and only if fn ∈Mn.

Now, when |f(z)| is bounded by M in a set A clearly |f(z)n| is bounded by Mn.
It follows that the family Mn being locally bounded in D entails that M is locally
bounded as well. The converse holds equally true since members of M all avoid zero
and consequently have an n-th root. The end of the story is that M is normal if and
only if Mn is.
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So assume thatM is not normal. By Zalcman’s lemma there is for each n an entire
function gn which is the limit of scaled and translated versions of functions from Mn:

gn(z) = lim
k
fk(ak + ρkz).

They satisfy g]n(0)=1, and g]n(z) ≤ 1. So by Marty’s theorem they form a normal
family (in the spherical sense)!

We concentrate on the indices n being powers of 2. The functions g2k form a
normal family, and hence there is an entire function G being the spherical uoc-limit of
functions of this type; it is not constant since G](0) = g]2n(0) = 1 (hence it can not be
constantly equal ∞ either and is entire). Now, each gn avoids µn by Hurwitz’ theorem
on values (theorem . on page .), and as the µ2k-s form an ascending chain, the
function G must avoid all 2k-roots of unity, that is µ2∞ .

The image G(C) of G is an open set avoiding the set µ2∞ that is dense in ∂D, and
must therefore be disjoint from ∂D. It follows that G(C) is either contained in the
unit disk D or in its complement. In both cases Liouville’s theorem implies that G is
constant, which is a contradiction. o

3.6.2 Picard’s big theorem
There are several version of this theorem, the backbone being the following:

Theorem . Let f have an isolated and essential singularity et the point a ∈ C.
Then f assumes all complex values in every neighbourhood of a with at most one
exception.

Proof: We can without loosing generality assume that a = 0. If f is a function
for which the conclusion does not hold, there are two numbers b and c and a disk D
about the origin where f does not assume the value b and c. Clearly, replacing f by
(f − b)(c− b)−1, we can assume that the two values avoided by f are 0 and 1, and by
scaling the variable, we may also assume that D is the unit disk.

It therefore be suffices to see that if f avoids 0 and 1 in the unit disk, either f or
f−1 is bounded near the origin; indeed, this entails that f is regular or has a pole there,
and the singularity is not essential.

The family {f(z/n)}, being contained in the family of functions avoiding 0 and 1, is
spherically normal in the domain Ω\{0} by Montel’s second theorem, . Hence there is
subsequence, say {f(z/nk)}, that converges spherically uoc—either to a holomorphic
function or to the constant ∞.

The circle |z| = 1/2 is compact, and either f(z/nk) or 1/f(z/nk) is uniformly
bounded there; that is, there is a constant M such that either |f(z/nk)| < M or
1/f(z/nk) < M holds for |z| = 1/2. Indeed, if {f(z/nk)} converges uoc to a holo-
morphic function f this is clear as f has a maximum on |z| = 1/2. If f(z/nk) tends to
∞ uniformly on compacts, it holds that f(z/nk) > 1 for |z| = 1/2 and k > N for some
N .
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With is in place assume that |f(z/nk)| < M for |z| = 1/2. Hence |f(z)| < M
when z |z| = 1/2nk, and the by the maximum principle it holds that |f(z)| < M in the
annulus 1/2nk+1 ≤ |z| ≤ 1/2nk. As nk tends to infinity with k, it follows that |f(z)| is
bounded in ∂D \ {0}. The case that |f(z/nk)| < M on the circle |z| = 1/2 is treated
mutatis mutandis in the same way. o
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Riemann’s mapping theorem

version 0.21 — Tuesday, October 25, 2016 6:47:46 PM

very preliminary version— more under way.

One dares say that the Riemann mapping theorem is one of more famous theorem
in the whole science of mathematics. Together with its generalization to Riemann
surfaces, the so called Uniformisation Theorem, it is with out doubt the corner-stone
of function theory. The theorem classifies all simply connected Riemann-surfaces uo to
biholomopisms; and list is astonishingly short. There are just three: The unit disk D,
the complex plane C and the Riemann sphere Ĉ!

Riemann announced the mapping theorem in his inaugural dissertation1 which he
defended in Göttingen in . His version a was weaker than full version of today, in
that he seems only to treat domains bounded by piecewise differentiable Jordan curves.
His proof was not waterproof either, lacking arguments for why the Dirichlet problem
has solutions. The fault was later repaired by several people, so his method is sound
(of course!).

In the modern version there is no further restrictions on the domain than being
simply connected. William Fogg Osgood was the first to give a complete proof of the
theorem in that form (in ), but improvements of the proof continued to come
during the first quarter of the th century. We present Carathéodory’s version of the
proof by Lipót Fejér and Frigyes Riesz, like Reinholdt Remmert does in his book [Rem],
and we shall closely follow the presentation there.

This chapter starts with the legendary lemma of Schwarz’ and a study of the biho-
lomorphic automorphisms of the unit disk. In this course the lemma ended up in this

1The title of his thesis is “Grundlagen für eine allgemeine Theorie der Functionen einer veränder-
lichen complexen Grösse”. It starts with the Cauchy-Riemann equations and ends with the Mapping
Theorem.
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chapter. It certainly deserves a much broader treatment, but time is short these days!
Finally, it is may be not the worse place to include it.

The automorphisms of the disk play important role in the proof of the Mapping
theorem, as in many other branches of function theory.

4.1 Swartz’ lemma and automorphisms of the disk

Both these themes could be the subject of a book, if not several. So this modest
sections gives a short and bleak glimses of two utterly richt and manfold worlds.

We start by some examples of automorphism and then passe to prove Schwarz’
lemma. With that lemma establish, we determine the group Aut(D). It consists of
all Möbius transformations mapping the unit disk into itself, so the examples we gave
generate the group.

4.1.1 Some examples
We shall describe two classes of automorphisms of the unit disk, and in the end it

will turn that these two classes generate all the automorphism of D. To be precise, any
automorphism is a product of one from each class.

(.) The first class of examples are the obvious automorphisms, namely the rotations
about the origin. They are realized as multiplication by complex numbers of modulus
one, i.e., they are given as z 7→ η, and if η = eiθ the angle of rotation is θ. Such a
rotations is denoted by ρη so that ρη(z) = ηz. The rotations obviously form a subgroup
of Aut(D) canonically isomorphic to the circle group S1. They of course all have 0 as
a fixed point, and are, as we shall see, characterized by this.

(.) The other class of automorphism is less transparent, they will however all be
Möbius transformations of a special kind. For any a ∈ D we define the function

ψa(z) =
z − a
az − 1

.

It is a rational functions with a sole pol at a−1, and hence it is holomorphic in the unit
disk. There are several ways to check that ψa maps the unit disk into itself, one can
for instance resort to the maximum principle. A more elementary way is to establish
the inequality

1− |ψa(z)|2 =
(1− |z|2)(1− |a|2)

|az − 1|2
,

a matter of simple algebraic manipulations.
The map ψa has two fixed points, one lying in the unit disk and the other one

outside. The fixed points are determined by solving the equation ψa(z) = z, which is
equivalent to the quadratic equation

az2 − 2z + a = 0.

—  —
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So the fixed points are the two points a−1(1±
√

1− |a|2).

Clearly it holds true that ψa(a) = 0 and ψa(0) = a; so 0 and a are swapped by ψa.
Since a Möbius transformation that fixes three points equals the identity, it follows2

that ψa ◦ ψa = id. One says that ψa is an involution. The derivative ψ′a(z) is easily
computed and is given as

ψ′a(z) =
1− |a|2

(az − 1)2
. (.)

In particular we notice that the derivative at zero, ψ′a(0) = 1−|a|2, is real and positive.
It is worth noticing that the four most important points for ψa, that is the zero,

the pole and the two fixed points, all lie on same line through the origin. And in some
sense they are pairwise “conjugated”, the product of the pole and the zero, and the
product of the two fixed points are both unimodular and equal to aa−1.

Problem .. Show that if |η| = 1 one has ρη ◦ ψηa = ψa ◦ ρη. X

Problem .. Show that any Möbius transformation φ(z) = (az + b)(cz + d)−1 not
reduced to the identity, has at least one but at most two fixed points. Show that
it has one fixed point if and only if (a + d)2 6= 4(ad − bc). Prove that two Möbius
transformations coinciding in three points are equal. X

Problem .. Let ψ = ρη ◦ ψa with η unimodular. Show that the product of the two
fixed points equals ηaa−1, and conclude that ψ has at most one fixed point in D unless
it reduces to the identity. X

Problem .. Show that if ψ = ρη ◦ ψa where η is unimodular, one has

1− |ψ(z)|2 = (1− |z|2) |ψ′(z)|

for all z ∈ D. Show that if b is a fixed point for ψ, then the value ψ′a(b) of the derivative
at b is unimodular. X

Problem .. Show that the fixed points of −ψa are the two square roots of aa−1.
Hence these maps do not have fixed points in D. X

Problem .. Let f : D → D be holomorphic and assume that f(D) is realtively
compact in D (the closure in D is compact). Show that f has a fixed point. Hint:
Use Rouché’s theorem with the functiopns f(z) and f(z)− z. X

4.2 Schwarz’ lemma

Karl Hermann Amandus Schwarz have given many significant contributions to complex
function theory among them the result called “Schwarz’ lemma”. It appeared for the

2This could of course as well be viewed by a direct substitution.
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first time in  during a course Schwarz gave at ETH in Zürich about the Riemann
mapping theorem, which at that time, although being in its infancy, was the cutting
edge of mathematical science. It seems therefore appropriate to treat Schwarz’ lemma
in a chapter about Riemann’s mapping theorem; that said, Schwarz’ lemma has so
many applications and extension that it certainly would have deserved its own proper
chapter. Both the formulation and the proof of the lemma has developed, and it found
its modern form in , published by Carathéodory, though the proof of to day is due
to Erhardt Schmidt.

Theorem . (Schwarz’s lemma) Let f : D → D be a holomorphic map having 0
as a fixed point. Then it holds that |f(z)| < |z| and |f ′(0)| < unless f is a rotation,
i.e., on the form f(z) = ηz with |η| = 1.

Proof: The function z−1f(z) has a removable singularity at the origin since f vanishes
there. Hence if we let

g(z) =

{
z−1f(z) when z 6= 0

f ′(0) when z = 0,

g will be holomorphic in D. The idea is to apply the maximum principle to g in disks
Dr given by |z| < r with r < 1. On the boundary ∂Dr one has

|g(z)| = |f(z)| r−1 ≤ r−1,

and consequently it holds that |g(z)| ≤ r−1 for z ∈ Dr. In the limit when r tends to 1
one finds |g(z)| ≤ 1.

To finish the proof, assume that |g| takes the value 1 at a a ∈ D. Then the modulus
|g| has a maximum at a; indeed, if |g(b)| > 1 for some other point in the unit disk,
the above argument with r > max {1/ |g(b)| , |b|} would give |g(b)| < |g(b)|. So by the
maximum principle g is a constant η, and clearly |η| = 1. o

Problem .. Assume that f is holomorphic that maps D to D and vanishes to the
n-th order at the origin (that is f and the derivatives f (i) vanish at 0 for i < n). Show
that |f(z)| < |z|n unless f(z) = ηzn with |η| = 1. X

Problem .. Let f be a holomorphic map from D to D, and let a ∈ D be any point.
Study the function ψf(a) ◦ f ◦ ψa, which maps zero to zero, and prove that∣∣∣∣∣ f(z)− f(a)

1− f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a1− az

∣∣∣∣ .
Let z tend to a to obtain

|f ′(a)|
1− |f(a)|2

≤ 1

1− |a|2
.

What happens in case of equality in a point? X
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4.2.1 The automorphisms of D
Our first applications of Schwarz’ lemma is to determine all automorphisms of the

unit disk. They are all compositiuons of maps from the two calsses of examles we
begun with. ne has

Proposition . A biholomorphic map ψ : D → D can be factored as ψ(z) = ηψa(z)
in a unique way. The numbers a and η are invariants of ψ determined by a being the
only zero of ψ and ψ′(0) = η(1− |a|2).

Proof: Since ψ is bijective it has exactly one zero, call it a. Then the composition
ψ ◦ ψa maps D to D and takes zero to zero. Therefore it suffices to show that an
automorphism ψ fixing zero is a rotation. To do that we apply Schwarz’ lemma to
both ψ and to ψ−1 and obtain the two inequalities

|ψ(z)| ≤ |z| and
∣∣ψ−1(z)

∣∣ ≤ |z| .
Replacing z by ψ(z) in the first, we obtain

|z| =
∣∣ψ−1(ψ(z))

∣∣ ≤ |ψ(z)| ≤ |z| ,

and so |ψ(z)| = |z|. From Schwarz’ lemma we deduce then that ψ is a rotation. The
uniqueness follows since the function ψa is the only one in its class that vanishes at a.
The statemant about the derivative follows trivially from the formula (.) above. o

All elements in Aut(D) are therefore Möbius transformations, and Aut(D) can be
described as the group of Möbius transformations that leave the unit disk invariant.

(.) The rotations are precisely those automorphisms that have zero as fixed point.
A group theorist would say the the rotations constitute the isotropy group of the origin.
It is of course isomorphic to the circle group S1.

Any other point a in D has an isotropy group as well. It is denoted by Auta(D) and
consists of the automorphisms leaving a fixed. As generally true in groups acting trans-
itively, different points have conjugate isotropy groups. Hence Auta(D) is conjugated
to the group of rotations; indeed, ψa ◦ ψ ◦ ψa fixes 0 if and only if ψ fixes a.

Problem .. Show that the map Auta(D) → C defined by ψ 7→ ψ′(a) is a group
homomorphism which induces an isomorphism between Auta(D) and the circle group
S1. X

(.) The particular maps ψa can be characterized among all the automorphisms in
several ways. They are the only ones whose derivative at zero is real and positive.
Indeed, if ψ(z) = ηψa(z), one has ψ′(a) = ηψ′a(a) = η(1 − |a|2) which is real and
positive if and only if η = 1.

They are also the only involutions in Aut(D). To see this assume that ψ is an
involution, so that ψ ◦ ψ = id, and factor ψ as ψ = ρη ◦ ψa. Then ψ(a) = 0, and since
ψ is an involution, it follows that ψ(0) = ψ(ψ(a)) = a. This gives that a = ψ(0) =
ηψa(0) = ηa, and hence η = 1.
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Problem .. Show that if ψ and φ are two commuting automorphisms of D then
they have a common fixed point. Show that if ψ ∈ Auta(D) is of finite order (as a
group element) larger than 2, then ψ is conjugate to the rotation ρη with η a n-th root
of unity. X

4.3 The Riemann mapping theorem

The theorem states that any simply connected domain in the complex plane, that is not
the entire plane, is biholomorphic to the unit disk. Thinking about what enormously
number of different simply connected domains there are and that they can be almost of
infinite complexity, the theorem is at the least extremely deep and impressive. There
is a generalization, of even greater depth, called the “Uniformization Theorem” stating
that among the Riemann surfaces only D, C and the Riemann sphere Ĉ are simply
connected. So the universal cover of any domain in C is either C or D, and with
some exceptions (that is, those with have C as the universal cover, but they are not so
intricate) open sets in C are tightly connected to locally injective functions on D! A
clear indication that holomorphic function in D are worth a close study.

Camille Jordan was a great french mathematician, and proved the theorem that
any closed, simple curve divides the plane in two connected components, and the
bounded one is simply connected. Such curves are called Jordan curves , the theorem
is called “Jordan’s curve theorem”. The domains bounded by Jordan curves form a
very important class of simply connected domains, but they can also be extremely
complicated. There are Jordan curves having positive area! Well, one should say
positive two dimensional Lebesgue measure to be precise. In iteration theory beautiful
and intricate simply connected domains appear. They are called Siegel domains and
picture of them you can see everywhere (also here!)
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4.3.1 Examples
To give a modest indication of the depth of Riemann’s mapping theorem, we offer

a few concrete example of complicated simply connected domains — one could be
tempted to call it a “horror show” of domains except that the author finds these
examples as beautiful as the pictures! But, still, we can not resist showing John
Lennon as a Jordan curve! The big question is what lies outside and what lies inside?

Figur .: John Lennon as a Jordan curve

Example .. Let p/q be a positive rational number on reduced form so that p and q
are positive relatively prime integers. We also assume that p/q lies between zero and
one.

Denote by Lp/q the part of the ray making an angle 2πp/q with the real axis whose
points have a distance from the origin larger than q. That is one has Lp/q = { re2πip/q |
|z| ≥ q }.

Clearly Lp/q is closed, but the union L =
⋃
p/q Lp/q is also closed. The union being

an infinite union, this is slightly subtle; the point is that given any complex number
z not in L, there is only finitely many rationals p/q between zero and one such that
q ≤ |z|+ 1. Hence if D denotes the disk about z of radius one, the intersection L ∩D
is a finite union of closed subset, and consequently is closed in D.

The complement C \L is open and it is star-shaped with apex at the origin. Hence
it is simply connected.

If one wants a finite version of this example here is one. We remove a “hedgehog-
like” set from the open square Q = < −1, 1 >×< 0, 1 >. Let Mp/q be the ray { re2πip/q |
0 ≤ r ≤ 1/q } and let U be the sqaure Q with all the rays Mp/q that lie in Q removed.

e
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Example .. A similar construction is as follows. Take a copy of the cantor set c
lying on the unit circle (for instance the image of c by the standard parametisation)
and let Lc be the partial ray Lc = { rc | r ≥ 1 }. The Cantor set being closed, it is
not difficult to see that the union L =

⋃
c∈c Lc is a closed subset of C, even if it is a

uncountable union of closeds. And again, the complement C \ L is star-shaped with
the origin as apex.

This domain also has the virtue that its complement in the Riemann sphere Ĉ
is connected, removing the point at infinity, the complement disintegrates into an
uncountable union of components. e

Example .. The third example is the so called “comb-set”. We again start with an
open square, say Q = < 0, 1 > × < 0, 1 >. and the set to be removed is the union of
the sets Tn = { 1/n+ yi | 0 ≤ y ≤ 1/2 } for n ∈ N. The result is an open domain that
is simply connected being a deformatable to say the segment < 0, 1 >× {2/3}. e

4.3.2 A motivation
Sometimes it is good strategy to explore a hypothetical solution to problem, to

get a clue how to solve the problem. It turns out to be smart to somehow normalize
the situation: Fix a point a ∈ Ω and confine the maps we are interested inn to those
sending a to zero.

So assume that Ω is a simply connected domain and assume f is the solution we
are striving for; a biholomorphic map f : Ω→ D sending a to 0. We want to compare
it to any other holomorphic map g : Ω → D with f(a) = 0, and to that end, consider
the composition g ◦ f−1. It sends the disk D into it self and fixes the origin. Hence it is
prone to a treatment by Schwarz’ lemma, that gives the inequality g(f−1(z)) ≤ |z|, or
if one replaces z by f(z), it becomes |g(z)| ≤ |f(z)|. The solution we seek is therefore
a solution to a optimalisation problem: Find the function being maximal in modulus
among the those mapping Ω to D and sending a to 0.

4.3.3 The formulaton and the proof
After these preliminary skirmishes it is high time formulation the theorem in a pre-

cise manner. The formulation includes a uniqueness statement that basically says that
the Riemann mapping is unique up to automorphisms of the unite disk; so imposing
normalization requirement on the function it will be unique.

Theorem . (The Riemann mapping theorem) Let Ω be a simply connected plane
domain is not the entire plane and let a be a point in Ω. Then there is a unique biho-
lomorphic map φ : Ω→ D such that f(a) = 0 and f ′(a) > 0

Proof: The crux of this proof is to search for functions f : Ω → D having maximal
modulus in one point different from a. So choose a point b ∈ Ω other than a, and
consider the set

P = { f : W → D | f(a) = 0, anf f is injective }
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where we audaciously also insist on the functions being injective.
There are three steps on the road to the Riemann mapping theorem. i) Prove that

the set P above is non-empty, ii) show that there is a function f in P with |f(b)|
maximal, and iii) show that f is biholomorphic.

(.) We start by showing that P is non-empty, i.e., we are looking for an injective
holomorphic map f from Ω to D; The requirement that a maps to zero is easy to fulfil,
we just follow up by an appropriate Möbius transformation sending f(a) to 0.

Pick a point c outside Ω. Then z− c never vanishes in Ω and since Ω is supposed to
be a Q-domain, there is a well defined square root of z − c in Ω, that is a holomorphic
function q with q(z)2 = z − c.

We claim that q(Ω) and −q(Ω) are disjoint. Assume the contrary that is q(z) =
−q(w) for two points z and w from Ω. Squaring gives z = w, and hence z = c, which
is impossible since z lies in Ω but c does not.

The set −q(Ω) is open by the open mapping theorem and therefore contains a
diskD, say the disk |z − d| < R. Then the function h(z) = R(z − d)−1 is an injective
function, holomorphic for z 6= d and mapping the complement of D, where q(Ω) lies,
into D. The composition h ◦ q is a function like we want.

(.) The next step is to prove there is a function in P with |f(b)| maximal. By
definition of the supremum there is a sequence of functions fν in P with fν(p) converging
to α = supf∈P |f(p)|. Montel’s first theorem implies that the family P , which is
bounded, is a normal family. Hence there is subsequence of fν converging uoc in Ω,
and we may as well assume that the sequence fν itself converges. The limit function f is
holomorphic by Weierstrass’ convergence theorem, it is injective by Hurwitz’ injectivity
theorem since each fν is, and it takes values in D; a priori just in the closure D, but
f(Ω) is open. Of course f(a) = 0, since fν(a) = 0. So the limit function f is our guy!

(.) Finally, we have come to the point where to show that f is biholomorphic. By
definition f is injective so only the surjectivity is lacking. The salient point is that with
the help of a (potential) point d in D, but not in f(Ω), one can construct an expanding
map h : f(Ω)→ D. This is a holomorphic map sending fΩ to D whose main property
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is that |h(z)| > |z|, with the subsidiary properties of being injective and sending 0 to
0. Such a map would contradict the maximality of |f(b)|, since h ◦ f is a member of P
and |h(f(b))| > |f(b)|.

An obvious expanding map in the unit disk is the square root. However there is
the problem with the square root that it can not be a defined in the whole unit disk.
To remedy this, we introduce the Möbius transformation ψd. It has a sole zero at d
and hence does not vanish in f(Ω).

As ψd(f(Ω)) is a Q-domain, a branch q of the square root is well defined there; that
is, the composition q ◦ ψd is well defined in f(Ω). However, it does not send 0 to 0,
but the function h = ψ√d ◦ q ◦ψd does. This last function h has as inverse the function
ψd ◦ κ ◦ ψ√d (at least over f(Ω)) where κ is the quadratic function κ(z) = z2. One
easily checks this using that the ψa-s are involutions.

The inverse of a contracting map is expanding, and the function ψd ◦ κ ◦ ψ√d is
indeed contracting! By Schwarz’ lemma this is clear since it maps D into D, sends 0 to
0 and is not a rotation! Hence h is expanding, and it does the job. That finishes the
proof of the existence part of Riemann’s mapping theorem.

Finally the statement about the positivity of the derivative is easy to establish .One
just follows f by an appropriate rotation; one replaces f by the function ρω ◦ f with
θ = − arg f which will have a positive derivative at a.

(.) To prove the uniqueness statement of the theorem assume that f and g are
two biholomorphic maps from Ω to D, both sending a to 0 and both having maximal
modulus at b. Then of course |f(b)| = |g(b)|.

The composition f ◦ g−1 maps D to D and have 0 as a fixed point, and moreover
|f(g−1(g(b)))| = |f(b)| = |g(b)|. Due to the last equality we deduce from Schwarz’
lemma that the composition f◦g−1 is a rotation and one can write f(z) = f(g−1(g(z))) =
ηg(z) with η ∈ ∂D. Taking derivatives we obtain f ′(b) = ηg′(b) and as both f ′(b) and
g′(b) are real and positive, it follows that η = 1. o

Problem .. Show that ψ(x) = z2−i
z2+1

maps the first quadrant biholomorphically
onto the unit disk. Determine the inverse map. X

Problem .. Find a map that maps a half disk biholomorphically to a full disk. Do
the same for a quarter of a disk. X
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The idea of a Riemann surface surfaced already in Riemann’s inaugural dissertation
from . Functions defined by equations tend to be multivalued, as the old-timers
expressed it. This occurs even for the simples case w = z2 where the well known
ambiguity in sign appears. For other equations equation, for instance ew = z, the
situation can be more severe. As we know, there are infinitely many branches of the
logarithm. The Riemann surfaces were and are means to resolve this problem. They
furnish places where multivalued functions become single valued! In their infancy the
definitions of a Riemann surface, and there were a variety, reflected this point of view.
The modern definition was strongly promoted by Felix Klein, and it is now ubiquitous
in the literature; not only for defining Riemann surfaces, but is almost a universal
device for defining geometric structures.

The idea is to use local coordinate charts and impose conditions on how they patch
together. Doing calculations on such a space is a little like commanding a submarine.
There is no help in looking out of the window on the real world, you are forced to
navigate by the maps!

Of course, this idea goes far back in history at least to the Greeks. They understood
that it is impossible to have one flat map covering the entire globe. One needs an atlas,
that is a collection of maps.

To revert to a more serious tale, the Riemann sphere is an illustrative example. We
habitually use two sets of coordinates to describe functions on it. Near the origin—in
the southern part in the stereographic picture—we use the familiar coordinate z, but
close to north pole—in the vicinity of the point at infinity— we use a coordinate w
related to z by the equation w = z−1.


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5.1 The definition of a Riemann surface

With the example of the globe in mind, a Riemann surface has an underlying topological
space X. By a chart in X, or we understand an open set U and a homeomorphism zU
from U onto an open subset zU(U) of C. So the chart is the pair (U, zU). The open
set U will frequently be called a coordinate neighbourhood , or a coordinate patch. If
the open set zU(U) happens to be a disk, we shall sometimes refer to the chart as a
coordinate disk .

We call zU a coordinate of the chart, so zU is a map zU : U → zU(U)⊆C. In analogy
with the commonplace real world, one may think of U as part of the terrain and the
open subset zU(U) as the map1. The function zU gives us the coordinates of the points
in U , and the inverse function z−1

U gives the points on X when the coordinates are
known—the inverse coordinate function is sometimes called a parametrization.

As an example consider the Riemann sphere Ĉ. It has the two open sets U0 and
U∞, respectively the complement of {∞}, that is the finite plane, and the complement
of {0}. On the former one has the canonical coordinate z and on the latter one has
the coordinate w given as w = z−1 in the finite part of U∞ and equal 0 at infinity.

(.) Given two charts zU : U → zU(U) and zV : V → zV (V ) on X. They both survey
the intersection U ∩ V , and is of course of paramount interest to know which points of
the two maps correspond to the same point in the terrain! The answer to that question
is encoded in the so called transition function, that is the composition

zU ◦ z−1
V |zV (U∩V ) : zV (U ∩ V )→ zU(U ∩ V ).

Not to overload our notation we shall just write zU ◦ ZV for this function, with the
tacit understanding it is defined on zV (U ∩ V ).

We say that two charts are analytically compatible if the corresponding transition
function zU ◦ zV is holomorphic. This is perfectly meaningful, the transition function
being a map between two open subsets of C. As an example, on the intersection U0∩U∞
in the Riemann sphere, the transition function zU∞ ◦ z−1

U0
is the map z → z−1.

1In everyday language the map is frequently the piece of paper on which the map is printed, i.e.,
the set zU (U). For us, as in the real real life, the map, or the chart, is the pair (U, zU ).
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(.) By an atlas U on X we understand a collection of charts that together survey
the whole topological space X, that is U is an open covering of X. The atlas is said
to be an analytic atlas if additionally every two charts from the atlas are analytically
compatible. Phrased differently, all the transition function arising in the atlas are
holomorphic.

The set of analytical atlases on X are in the a natural way ordered by inclusion;
one atlas is smaller than another if every chart in the former also is a chart in the
latter. An analytic atlas is maximal if, well, it is maximal in this order. The existence
of maximal atlases is an easy consequence of Zorn’s lemma. If Ui is an increasing chain
of analytical atlases, the union will be one, and by Zorn there is then a maximal one.

Defenition . Let X be a connected, Hausdorff topological space. By an analytic
structure on X, we understand a maximal analytical atlas on X. The pair of the space
X and the maximal analytic atlas is called a Riemann surface.

There are several comments to be made. First of all, it is common usage to let
Riemann surfaces be connected by definition, mostly to avoid repeating the hypotheses
that X be connected all the time. Some authors incorporate the hypothesis that X
be second countable (that is, it has a countable basis2 for the topology) but most do
not, for the simple reason that universal covers of open plane sets are not a priori
second countable—an illustrative example can be the complement of the Cantor set.
It is however a relatively deep theorem of the Hungarian mathematician Tibor Radó
(1895–1965) in  that any Riemann surface is second countable. The third comment
is that our definition works in any dimensions, one only has to replace charts in C by
charts in Cn.

(.) Let U be an analytic atlas on X and let V and W be two charts with coordinate
functions zV and zW not necessarily belonging to the atlas U . Assume that each one
of them is analytically compatible with all charts from the atlas U . Below we shall see
that this implies that V and W are compatible as well, and and hence we can append
them to U and get a bigger analytical atlas. And not stopping there, we can adjoin to
U any chart being compatible with all charts in U . In that way we get a gigantesque
maximal atlas, and it is the unique maximal atlas containing U .

Proposition . Let X be a connected Hausdorff space. Every analytical atlas U on
X. is contained in a unique maximal atlas, and consequently gives X a unique structure
as a Riemann surface.

Proof: After what we said just before the proposition, the poof is reduced to checking
that if V and W are two charts both analytical compatible with all charts in U they

2There are many topological manifolds that are not second countable, even of dimension one!
Hausdorff’s so called “long line” is an example. In dimension two there are a great many examples,
but none of them can be given the structure of a Riemann surface. However, in dimension two or more
there are analytical spaces that do not have a countable basis for the topology. If you are interested
in these outskirts of geometry, [?] is a nice reference.
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are analytically compatible among themselves; that is, we must verify that zV ◦ z−1
W

is holomorphic on zW (V ∩ W ). But for any chart U from U we obviously have the
identity zV ◦ z−1

W = (zV ◦ z−1
U ) ◦ (zU ◦ z−1

W ) over zW (U ∩ V ∩W ), and as the coordinate
neighbourhoods from U cover V ∩W , and being holomorphic is a local property, we
are through. o

Two of the advantages with working with maximal atlases are that we are free to
shrink coordinate neighbourhoods at will and that we can perform arbitrary biholo-
morphic coordinate changes. However, these maximal atlases are awfully large. In the
complex plane for instance, the maximal analytical atlas consists of the pairs (U, φ)
where U is any open subset and φ is any function biholomorphic in U ! Luckily, results
like proposition . above allows us to work with very small atlas when we work ex-
plicitly; for example on C we have the canonical3 atlas with merely one chart, namely
(C, id)!

The Riemann sphere Ĉ has as we saw a small atlas consisting of the two open sets
U0 and U∞ with the coordinates z and w. On the intersection U0 ∩ U∞ the transition
function is given as w = z−1.

(.) When we are working in C, disks are in use all the time. Similarly on a Riemann
surface we shall frequently work with charts such that zU(U) is a disk, and for con-
venience we shall call such coordinate neighbourhoods for disks as well. If zU(U) is a
disk about the origin and x is point in the disk with zU(x) = 0 we say that U is disk
about x or a disk centered at x. And of course we shall drop the index U pretty soon
and only write z (or any other convenient letter) for the coordinate function.

(.) To analytic atlases are said to be equivalent if every chart in one is analytically
compatible with every chart in the other. Two equivalent atlases are contained in the
same maximal atlas, and hence they define the same structure as Riemann surface on
X.

5.1.1 Other geometric structures
In the definiton one may impose other conditions on the transistion functions. For

instance, the weaker condition that they C , gives us a structure of a smooth surface (or
manifold how higher doimenson if the charts take values in Rn) on X, and if addidinolly
the Jaboian determinants of zU ◦ z−1

V all are positive, the smooth surface is orientable,
and it becomes oriented once we make up our minds and choose one of the orientations
of the plane.

Riemann surfaces are orientable because the jacobian of a biholomorphic map is
positive. This follows by the Cauchy-Riemann equations, since

det

(
ux vx
uy vy

)
= u2

x + v2
y > 0

3Once you have chosen your favorite model for the complex numbers, this is rally canonical. Be
aware that the mapping idC is the function normally denoted by z in complex function theory.

—  —



MAT4800 — Høst 2016

where u and v are the real and the imaginary part fo the map.
One also strengthen the conditions on the transposition functions, and thus impose

further constraints on the surfaces. For example, one can request the transition func-
tions to be affine, that is of the form z 7→ az + b and one then speaks about an affine
structure subordinate to the given analytic structure. Or one may ask that they are
Möbius transformations. In that case the structure is called a projective structure.

As a final example, by a real analytic structure on a Riemann surface X, we under-
stand an analytic atlas such that the coordinate domains zU(U) are symmetric about
the real axis, and such if f(z) = zU ◦ z−1

V is a transition function, then f(z) = f(z).
This last condition means that the Taylor development of f about real points have real
coefficients.

Problem .. Show thatX has a real structure if and only if it has an anti-holomorphic
involution (Part of the exercise is to find out what this means!). X

Problem .. Let X be a Riemann surface with maximal atlas U with partchs (U, zU).
One defines the conjugate Riemann surface in the following way. The maximal atlas U
consists of the patches (U, zU) and the transitions functions are zU ◦ z−1

V . Check that
this is a Riemann surface. X

5.2 Holomorphic maps

The study of Riemann surfaces is to a great extend the study of maps between them,
and if the maps are going tell us anything about the relation between the analytic
structures on X and Y , these maps must be compatible with those structures. That
is, they must be holomorphic in some sense. Being holomorphic is a local concept, so
to tell what it means that a continuous map is holomorphic, is a local business, and
charts are made for that.

(.) Assume that X and Y are two Riemann surfaces and that f : X → Y is a
continuous map. Let V be a coordinate patch in Y and U one in X such that f(U)⊆V .
Thence one may consider the map zV ◦ f ◦ z−1

U which is a map from zU(U) to zV (V ).
Both these are open subsets of C so it is meaningful to require that zV ◦ f ◦ z−1

U be
holomorphic; and if there is a patch (V, zV ) in Y so that this is case, we say that f
is holomorphic in the patch (U, zU). This set up of coordinates patches round x and
y = f(x) adapted to f may be illustrated with a diagram like this

zU(U)

f̃
��

U �
�

//

f |U
��

zU

'oo X

f

��

zV (V ) V �
�

//
zV

'oo Y,

(.)

where f̃ = zV ◦ f ◦ z−1
U .
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The above definition is just an auxiliary definition, here comes the serious one:

Defenition . Let X and Y be two Riemann surfaces and f : X → Y a continuous
map between them. The map f is said to be holomorphic if it is holomorphic in every
coordinate patch of the maximal analytic atlas on X.

One says that f is biholomorphic or an isomorphism if f is bijective and the inverse
is holomorphic. The composition of two holomorphic maps is holomorphic. Once you
have grasped the definition this is quit clear, so it might be a good exercise to check
in detail.

Problem .. Show that a Riemann surface X has a real structure if and only it is
isomorphic to its conjugate surface X. X

(.) Just like for defining analytic structures small atlases can be used to check that
a map is holomorphic:

Proposition . Let X and Y be two Riemann surfaces and f : X → Y a continuous
map between them. If there is one analytic atlas U on X such that f is holomorphic
in every patch of U , then f is holomorphic.

Proof: If U ′⊆U , we have zV ◦ f ◦ z−1
U ′ = zV ◦ f ◦ z−1

U ◦ zU ◦ z
−1
U ′ o

(.) Local properties of traditional holomorphic functions we know from the begin-
ning of the course, frequently have a counterpart for maps between Riemann surfaces.
When being accustomed to the abstract definitions one transfers most local properties
to Riemann surfaces with ease, once you have the standard set up on the retina it goes
almost by itself, but we give detailed proofs at this stage of the course.

Transferring the ”Open mapping theorem”, gives us the following:

Proposition . A non-constant holomorphic map between two Riemann surfaces is
an open map.

Proof: This is just an exercise with the standard local set up, and of course, the
substance comes from the open mapping theorem. Let A be open in X and let y =
f(x) ∈ f(A) be any point. As f is holomorphic near x, there is a patch (U, zU) around
x where f is holomorphic and we can, by shrinking U if necessary, assume that U is
contained in A, thus we have the usual local set up like in .:

zU(U)

f̃
��

U �
�

//

f |U
��

zU

'oo X

f

��

zV (V ) V �
�

//
zV

'oo Y

(.)

where f̃ = zV ◦f ◦z−1
U and where U ⊆A. By the Open mapping theorem we know that

f̃ is an open map. Then f |U(U) is open, which is what we need since f(U)⊆A. o

—  —



MAT4800 — Høst 2016

An important corollary is when X is compact;

Corollary . Assume that f is a holomorphic map from a compact Riemann surface
X to a Riemann surface Y . Then f is surjective and Y is compact.

Proof: On one hand the image f(X) is closed X being compact, and on the other
hand, after the proposition f(X) is open. Hence f(X) is a connected component of Y ,
and as Y by definition is connected, it follows that f(X) = Y . o

Proposition . The fibres of a non-constant holomorphic map between Riemann sur-
faces are discrete.

Proof: Let x ∈ X and let y = f(x). It suffices to prove that x is isolated in
f−1(y); that we have to find an open U ⊆X such that U ∩ f−1(y) = {x}. Again we
resort to the standard set up with U a coordinate patch containing x. From before
we know that the fibers of f̃ are discrete, so there is an open U ′ in zU(U) intersecting
the fibre of f̃ in zU(x); and moving U ′ into X, we get our search for open set; i.e.,
z−1
U (U ′) ∩ f−1(y) = {x}. o

5.2.1 Tangent spaces and derivatives
The derivative of a map between two Riemann surfaces at point is not a number

like we are used to when studying functions of one variable, but like most derivatives
of functions of several variables it is a linear map, and since we are doing analysis over
C it turns out to be complex linear map—the subtle point is naturally between which
vector space. So to begin with, we must define the tangent space TX,x of a Riemann
surface X at a point x ∈ X. The definition follows the now standard lines for defining
tangent spaces in intrinsic geometry.

(.) Recall the ringOX,x of germs of holomorphic functions near x. The elements are
equivalence classes [(φ, U)] where U is an open neighbourhood of x and f a holomorphic
function in U , two such pairs (φ, U) and (ψ, V ) being equivalent if W ⊆U ∩V on which
f and g coincides; that is φ|U = ψ|V . One easily checks that this a ring with pointwise
addition and multiplication as operations.

Choosing a coordinate patch U with coordinate z centered at x (recall that this
means that z(x) = 0) one finds an isomorphism between OX,x and the ring C{z} of
powerseries in z with a positive radius of convergence. This i nothing more that the
fact that any holomorphic function near the origin can be developed in a Taylor series
and this series is unique.

The local ring is functorial. Given a holomorphic map f : X → Y and let y = f(x).
If [φ, U ] is a germ of holomorphic function near y, the composition φ◦f is holomorphic
on f−1(U) and induces a germ [φ ◦ f, f−1(U)] near x. It is left to the zealous students
to convince themselves that is a well defined and is a ring homomorphism.

The maximal ideal in OX,x consisting of functions that vanish at x will be denoted
by mx.
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(.) The tangent space TX,x is by definition the set of point derivations of OX,x, and
point derivation τ : OX,x → C is a C-linear map satisfying a product rule à la Leibnitz:

τ(αβ) = α(x)τ(β) + β(x)τ(α).

It follows that τ(1) = 0 (indeed, 1 ◦ 1 = 1!), and by linearity τ vanishes on constants.
A point derivation vanishes as well on the square m2

x of the maximal ideal mx; by
Leibnitz’s rule is obvious that if both α(x) = 0 and β(x) = 0, it holds that τ(αβ) = 0.
Consequently every point derivation induces a map mx/m

2
x → C and there is a map as

in the following lemma. It is a good exercise to prove that it is an isomorphism.

Lemma . There is a canonical isomorphism of complex vector spaces. TX,x =
HomC(mx/m

2
x,C,). In particular it holds that dimC TX,x = 1.

Proof: We have already define a map one way, so let us define a map the other
way; that is, a map from HomC(mx/m

2
x,C,) to the tangent space TX,x. Assume that

φ : mx/m
2
x → C is a C-linear map and let α ∈ OX,x be a germ. We are supposed to

associate a point derivation, say τφ, to φ. The germ α − α(x) obviously vanishes at x
and belongs to mx, so it is legitimate to put τφ(α) = φ(α−α(x)). One has the equality

(α− α(x))(β − β(x)) = (αβ − α(x)β(x))− α(x)(β − β(x))− β(x)(β − β(x)). (.)

Since φ vanishes on m2
x and the left side of equation (.) above lies in m2

x, we obtain

τφ(αβ) = α(x)τφ(β) + β(x)τφ(α),

that is Leibnitz’s rule, and hence τφ is a point derivation. It is left as an exercise to
show that one in this way obtains the inverse to the already defined map. o

(.) The map f ∗ induced a map, and that is the derivative of f at x, from TX,x → TY,y
simply by composition. That is we define the derivative Dx : TX,x → TY,y by the
assignment Dxf(τ) = τ ◦ f ∗. There is as always some checking to be done, but as
always we leave that to the zealous students.

(.) A n important point is that the derivative is functorial. Id f : X → Y and
g : Y → Z are two holomorphic maps with f(x) = y and γ(y) = z it holds true that

Dxf ◦ g = Dxf ◦Dyg.

The formula boils down to the traditional chain rule after the mappings having been
expressed in local coordinates. To become accustomed to the formalism of tangent
space and derivatives in the intrinsic setting it is a good exercise to check this in detail

—  —



MAT4800 — Høst 2016

(.) The choice of a local coordinate zU centered at the point x, i.e., coordinates
such that x corresponds to the origin, induces an isomorphism OX,x ' C{zU}, a germ
corresponding to the Taylor series of a function representing the germ. In this corres-
pondence the maximal ideal mx of functions vanishing at x corresponds to the ideal
(zU)C{zU}. Therefore mx/m

2
x is one dimensional with as basis the class of zU , that we

baptize dzU . The basis of TX,x induced by the isomorphism in . and dual to dzU is

denoted by ˆdzU .

(.) The usual set up of coordinates round x and y = f(x) is as follows

zU(U)

f̃
��

U �
�

//

f |U
��

zU

'oo X

f

��

zV (V ) V �
�

//
zV

'oo Y,

where zV is a local coordinate centered at the image point y of x valid in the vicinity V
of y. On the open zU(U) set in C the map f materializes as a function f̃ holomorphic
in zU(U), and the map f ∗ : OY,y → OX,x becomes the map C{zV } → C{zU} that sends
zV to f̃(zU).

We have the basis dzV for my/m
2
y. and writing f̃(z) = f̃ ′(0)z + z2g(z), we see that

dzV is sent to f̃ ′(0)dzU since the term z2g(z) belongs to m2
x.

Lemma . In local coordinates the derivative Dxf sends the basis element ˆdzU to
f ′(0) ˆdzV .

5.2.2 Local appearance of holomorphic maps
The first step of understanding a map is to understand its local behavior, so also

with holomorphic maps. The fist result in that direction is a version of the inverse
function theorem formulated in our setting.

Proposition . Let f : X → Y be a holomorphic map between two Riemann surfaces
and let x ∈ Xbe a point. Assume that the derivative Dxf does not vanish. Then there
exists an open neighbourhood U about x such that f |U : U → f(U) is an isomorphism
(i.e., biholomorphic).

Proof: The usual set up of coordinates round x and y = f(x) is

zU(U)

f̃
��

U �
�

//

f |U
��

zU

'oo X

f

��

zV (V ) V �
�

//
zV

'oo Y

where f̃ is the representative of f in the local coordinates. By the lemma in the previous
paragraph, Dxf is just multiplication by f̃ ′(0) in the basis dzU and dzV , hence f̃ ′(0) 6= 0,
and from the earlier theory we know that thence f̃ is biholomorphic in a vicinity of 0,
and shrinking U if necessary, the restriction f |U will be biholomorphic. o
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Points where the derivative vanishes are said to be ramification points or branch
points of the map f , and of course, it is unramified or unbranched at points where the
derivative does not vanish. So, one may formulate the previous proposition by saying
that a function is (locally) biholomorphic near points where it is unramified.

(.) Near a ramification point there is a local model for the behavior of f , depend-
ing on a number indx f called the ramification index ; which is closely related to the
vanishing multiplicity we know from before.

Proposition . Let x ∈ X be a point and let f : X → Y be a holomorphic map.
Then there exist coordinate patches (U, zU) and (V, zV ) around x and f(x) respectively,
with f(U)⊆V such that zV ◦ f ◦ z−1

U (z) = zn.

In short the result says that locally and after appropriate changes of coordinates both
near x and near y, the map f is given as the n-power map z → zn. But of course,
behind this is the formally precise but rather clumsy formulation of the proposition.

The integer n does not depend on the chosen coordinate, and is ramification index
hinted at, and is denote by indx f .

Proof: Again we start with a standard set up with the patches centered at x and
f(x), that is zU(x) = 0 as well as zV (f(x)) = 0. See diagram (.) below. By xxx is
part 1, there is a holomorphic function g in U such that f̃ = gn with g(0) = 0 and
g′(0) 6= 0. By shrinking U we may assume that g is biholomorphic in U , and therefore
can be use as a coordinate! Hence we introduce the new patch (U, g ◦ zU). For w lying
in this patch, we find f̃1 = f̃ ◦ g−1(w) = g(g−1(w))n = wn and are through.

g(zU(U))

f̃1 %%

zU(U)g
'oo

f̃
��

U �
�

//

f |U
��

zU

'oo X

f

��

zV (V ) V �
�

//
zV

'oo Y

(.)

o

Problem .. Show that tan: C → Ĉ is unramified, but not surjective.Hence it is
not a cover. Show that the image is Ĉ \ {±i}, and show that tan: C → Ĉ{±i} is a
covering. X

Problem .. Find the ramification points of the map f(z) = 1
2
(z + z−1). X

Problem .. Find the ramification points and the ramification indices of the f(z) =
zn + z−m, n and m two natural numbers. X

Problem .. Show that a holomorphic map between two compact Riemann surfaces
is either constant or surjective. Show that if the map is not constant, the fibres are all
finite. X
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5.3 Some quotient surfaces

This section starts with two examples. The second one is important, elliptic curves
being a central theme in several branches of mathematics. We end the section with a
general quotient construction valid for a wide class of very nice actions.

In all these cases the quotient map serve as a parametrisation of the quotient surface
X/G, except that points on X/G correspond to many values of the parameter—it is the
task of the group to keep account of the different values. This makes it particularity
easy to find coordinates, locally they are just the parameter values.

Example .. The cylinder. On way of giving the cylinder an analytic structure is
to consider it as the quotient of the plane by the action of the group generated by by
the map z → z + i. The topology on X is the quotient topology, the weakest topology
making the quotient map π : C→ X continuous.

We shall put an analytic structure on X and this is an illustration of how the
hocus-pocus with atlas and charts work, we shall do this in extreme detail. We shall
specify an atlas with two charts. One is the infinite strip A between the real axis and
the horizontal line Im z = 1, or rather the image π(A) in X. The quotient map π is a
homeomorphism from A to π(A), and the coordinate function on π(A) is the inverse of
this, we denote it by π−1

A . That is the coordinate of π(z) is z. The patch π(A) covers
most of the cylinder except the “seam”, the image of the two boundary lines.

The second patch is mutatis mutandis constructed in the same way but from the
different strip B between the horizontal lines Im z = 1 − t and Im z = −t where t is
any real number between zero and one. The coordinate patch is the image π(B) and
the coordinate π−1

B .

What happens then on the intersection π(A) ∩ π(B)? What is the transition func-
tion? Is it holomorphic? First of all in A the inverse image π−1

A (π(A) ∩ π(B)) of the
intersection is A with the line Im z = 1 − t removed since points on this line are not
equivalent under the action to points in B.

So π−1
A (π(A) ∩ π(B)) has to components. The one where 0 ≤ Im z < 1 − t lies

in B as well, and hence the transition function π−1
B ◦ π is the identity. The other

one, where 1 − t < Im z < 1, the composition π−1
B ◦ π equals the translation z 7→

z − i. In both cases the, the transition function is holomorphic and our two charts
are analytically compatible. They constitute an analytic atlas and give the cylinder a
complex structure.

—  —
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Figur .: The cylinder and the two coordinate patches.

In fact, the cylinder is biholomorphic to the punctured plane C∗. The biholomorph-
ism is induced by the exponential function e(z) = e2πz, that take values in C∗. Clearly
e(z+i) = e(z), so e invariant under the group action, and therefore by the properties of
the quotient space X, induces a continuous map ẽ : X → C∗. It is easy to check using
elementary properties of the exponential function (hence a task for zealous students)
that ẽ is a homeomorphism. The only thing left, is to check that it is holomorphic,
and this indeed comes for free: On the charts A and B the functions is be definition
equal to e2πz! The coordinate of a point π(z) belonging to π(A) (or π(B)) is z! e

Example .. The next example is of the same flavour as the first, but the group
action is more complicated—there will be two periods instead of just one –and the
examples infinitely more interesting.

The Riemann surfaces will be compact with underlying topological space what
topologists call a torus, a space homeomorphic to S1 × S1, which in bakeries is known
as a doughnut. This is a genuine new surface—it is not biholomorphic to any open
subset of the good old Riemann sphere Ĉ— and it is known as an “elliptic curve”. These
spaces entered the world of mathematics at a time when to compute the circumference
of an ellipse ( Very important question just after the discovery that the planets move
in ellipses!) was the cutting edge of science, and the length-computation ended up with
integrals related to bi-periodic functions, and as we shall see, bi-periodic functions lie
behind the group action defining this Riemann surface.

—  —
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Figur .: The atlas of the torus.

Let Λ be the lattice Λ = {n1ω + n2 | n1, n2 ∈ Z } (in the figure we have for
simplicity drawn ω as purely imaginary). It is an additive subgroup of the complex
numbers C, and we can form the quotient group C/Λ. This is also a topological space
when equipped with the quotient topology, and it is homeomorphic to the product
S1 × S1. We let π : C→ C/Λ be the quotient map, it is an open map.

We intend to define an analytic structure on C/Λ in an analogous way as with the
cylinder, by giving an atlas with two charts. The first is A = { s+ tω | 0 < s, t < 1 }, or
rather the subset π(A) of the torus. As no two points in A are congruent mod Λ, the
set A maps invectively, and π being open, homeomorphically onto the open set π(A)
in C/Λ. The coordinate of point π(z) in π(A) is simply z. The second chart is a small
perturbation B of A, say A = { s + tω | −ε < s, t < 1 − ε }, the image π(B) is open
and the coordinate of a point p(z) is still z, but this time it must be chosen to lie B.

On the intersection of the two patches, the transition function is holomorphic. A
quick (but incomplete) argument goes like this: Take a z in A whose image also lies in
π(B). Map it down to the torus and lift it back to a point w in B. Both z and the lift
w lie in the same fibre of π, so w is a translate of z. Hence the transition functions are
just translates, and we are tempted to say: which are holomorphic!

However, this is faulty since the difference w − z can depend on z, and in fact
it does!. One must assure oneself that this difference behaves holomorphically as a
function of z. Luckily, the differences turn out to locally constant, i.e., constant on
the connected components of the intersection, and that will settle the case.

Contemplating figure . above, you easily convince yourself that this is true. The
intersection manifests itself in A with four connected component, marked I, II, III
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and IV in the figure, and the different translations are the as follows: The identity
on IV , the map z → z − ω on III, the map z → z − 1 on II and finally the map
z → z − i− 1 in I. e

Problem .. The quotient C/Λ is a group. Show that both the addition and the
inversion maps are holomorphic. X

(.) Assume that G is a group acting holomorphically on a Riemann surface X.
This means that all the action maps maps x 7→ g(x) are holomorphic, and of course
the familiar axioms for an action must hold. If gh denotes the product of the two
elements g and h in G, it holds true that gh(x) = g(h(x)), and e(x) = x for all x where
e ∈ G is the unit. The set Gx = { g(x) | g ∈ G } is called the orbit of x, and the set
G(x) = { g ∈ G | g(x) = x } of group elements that leave the point x fixed is called the
isotropy group or the stabiliser of x.

The quotient X/G is as usual equipped with he quotient topology, a set in X/G
being open if and only of its inverse image in X is open. This is equivalent to the
quotient map π : X → X/G being open and continuos.

We concentrate on a class of particular nice actions called free and proper . They
have following two properties.

� For any pair of points x and x′ in X not in the same orbit, there are neighbour-
hoods U and U ′ of respectively x and x′ with U ∩ gU ′ for all g.

� About every point x ∈ X there is a neighbourhood disjoint from all its non-trivial
translates; that is, there is an open Ux with x ∈ Ux such that gUx ∩ Ux = ∅ for
all g 6= e.

The first condition guarantees that the quotient X/G is a Hausdorff space. Indeed,
if y and y′ are two points in X/G, lift them to points x and and x′ in X, and choose
neighbourhoods U and U ′ as in the condition. Then π(U) and πU ′ are disjoint, if not
there would be a point in U lying in the orbit a point in U ′, which is precisely what
the condition excludes. And both π(U) and π(U ′) are open and one contains y and
the other one y′ so they are disjoint open neighbourhoods of respectively y and y′.

We proceed to define an analytic atlas on X/G. To begin with we chose one on X
whose charts are (U, zU) satisfy gU ∩ U∅ when g 6= e (convince yourself that such an
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atlas may be found). The images V = π(U) are open, and π|U are homeomorphisms
onto U . The open patches of the atlas on X/G are the images V , and the coordinate
functions wV are given as let wV = zU ◦ π|−1

U . They take values in zU(U). We plan to
show that this is an analytic atlas.

To this end let (V,wV ) and (V ′, wV ′) be two patches of the newly defined atlas on
X/G. Our task is to show they are analytically compatible.

The part of π−1(V ∩ V ′) lying in U is equal to the union of the different open sets
U ∩g(U ′) as g runs through G. These sets are open and pairwise disjoint since the sets
g(U ′) are , and therefore they form an open partition of π−1(V ∩ V ′) ∩ U .

Now, there is only one partition of a locally connected set consisting of open and
connected sets, namely the partition into connected components. The sets U∩g(U ′) are
not necessarily connected, but it follows that they are unions of connected components
of π−1(V ∩ V ′) ∩ U .

It suffices to see that the transition function are holomorphic on each connected
component of zU(π−1(V ∩ V ′) ∩ U). But g−1 of course map maps U ∩ g(U ′) into the
connected component g−1(U) ∩ U ′ of π−1(V ∩ V ′) ∩ V ′, and the hence the transition
function equals the restriction of zU ′ ◦ g−1 ◦ zU on zU(U ∩ g(U ′)).

Problem .. Let a be a positive real number and let ηa de defined by ηa(z) = az. The
clearly ηa takes the upper half plane H into itself. Let G be the subgroup of Aut(H)
generated by ηa. The aim of the exercise is to show that G acts on H in a proper and
free manner, and that the resulting quotient H/G is biholomorphic to an annulus:

a) Show that lim infn6=0 |an − 1| (an + 1)−1 > 0.

b) Let z0 ∈ H and choose an ε with 0 < ε < lim infn6=0 |an − 1| (an + 1)−1 |z0|. Let U
be the disk |z − zo| < ε. Show that the disks anU all are disjoint from U when n 6= 0.
Conclude that the action is proper and free.

c) Show that the quotient H/G is a Riemann surface. Show that the function

f(z) = exp(2πi log z/ log a)

is invariant under the action of G and induces an isomorphism between H/G and the
annulus A = { z | r < |z| < 1 } where r = exp(−2π2/ log a).

X

5.4 Covering maps

Coverings play a prominent role in topology, and they have similar important role
in theory of Riemann surfaces. May be they even have a more central place there
due to the Uniformisation theorem. This fabulous theorem classifies all the simply
connected Riemann surfaces up to biholomorphic equivalency, and amazingly, there
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are only equivalence classes them, namely the class of the complex plane C, of the unit
disk4 D and of the Riemann sphere Ĉ.

As we shall see, every Riemann surface has a universal cover which is a Riemann
surface with a holomorphic covering map. Combining this with the Uniformisation
theorem, one obtains the strong statement that any Riemann surface is biholomorphic
to a free quotient of one of three on the list! This naturally has lead to an intense study
of the subgroups of the automorphism groups of the three. Neither the plane nor the
sphere have that many quotient, and most of the Riemann surfaces are quotients of the
disk. The corresponding subgroups of Aut(D) form an extremely rich class of groups
and can be very complicated.

It is also fascinating that the three classes of simply connected Riemann surfaces
correspond to the three different versions of non-Euclidean geometry. The plane with
the good old euclidean metric is a model for the good old geometry of Euclid and
the other greeks, and the sphere naturally is a model for the spherical geometry. We
already used the spherical metric when proving the Picard theorems. The renown
french polymath Henri Poincaré put a complete metric on the disk, making it a model
for the hyperbolic geometry, and naturally, that metric is called the hyperbolic metric.

(.) A covering map, or a cover , is a continuos map p between to topological spaces
X and Y which fulfils the following requirement. Every point y ∈ Y has an open
neighbourhood U such that the inverse image decomposes as p−1(U) =

⋃
α Uα where

the Uα’s are pairwise disjoint and are such that pU,α = p|Uα is a homeomorphism
between Uα and U . One says that the covering is trivialized over U ; and in fact,
it is trivial in the sense that there is an isomorphism p−1(U) ' U × A such that p
corresponds to the first projection, just send u ∈ p−1(U) to the pair (pU,α(u), α).

One usually assumes that Y is locally connected to have a nice theory. For us who
only work with Riemann surfaces, this is not a restriction at all as points in a Riemann
surface all have neighbourhoods being homeomorphic to disks. When the trivializing
open set U is connected, the decomposition of the inverse image p−1(U) =

⋃
α∈A Uα

coincides with the decomposition of p−1(U) into the union of its connected components,
which sometimes is useful.

(.) Covering maps have several good properties. For instance, there is a strong
lifting theorem. Maps from simply connected spaces into Y can be lifted to X, that is
one has the following theorem which we do not prove.

Proposition . Assume that p : X → Y is a covering and that f : Z → Y is a
continuous map where Z is simply connected. If z is a point in Z and x one in X such
that p(x) = f(z), there exists a unique continuous map f̃ : Z → X with f̃(z) = x and
f = p ◦ f̃ .

4or any Riemann surface biholomorphic to it. The upper half plane H is a very popular model.
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For diagrammaholics, the proposition may be formulated with the help of the following
diagram:

{z} ix //

iy
��

X

p

��

Z
f
//

f̃

>>

Y,

where ix and iy are the inclusion maps. One should read the diagrammatic message
in the following way: The solid errors are given such that the solid square commutes,
and the silent statement of the diagramm is that one can fill in a dotted arrow which
makes the two triangular parts of the diagramm commutative.

(.) Coverings are as we saw locally homeomorphic to a product of an open set
and a discrete space. And when the base Y is connected, this discrete space must up
to homeomorphisms be the same everywhere; that is, the cardinality is constant over
connected components of Y . One has:

Proposition . If Y is connected is and p : X → Y is a cover, then the cardinality
of the fibres p−1(y) is the same everywhere on Y .

Proof: Let WB be the set where p−1(y) is bijective to some given set B. Since p is
locally trivial, WB is open, and the same argument show that the complement Y \WB

is open as well (well, if the fibre is not bijective to B, it lies in some other WC). It
follows that WB = Y since Y is connected. o

In case all the fibres of p are finite, this can be phrased in a slightly different manner.
Sending y to #p−1(y) is a locally constant function on Y because p is locally trivial,
and locally constant functions with integral values are constant on connected sets. The
open sets Uα are frequently called the sheets or the branches over U , and if there are
n of them, one speaks about an n-sheeted covering .

Problem .. Show that the exponential map exp: C→ C∗ is a covering. Let a ∈ C∗
describe the largest disk over which exp is trivial. X

Problem .. Let f(z) = 1
2
(z + z−1). Consider f as a map from Ĉ to Ĉ. Show that

f induces a unbranched double covering (synonymous with a 2-sheeted covering) from
Ĉ \ {±1} to Ĉ \ {±1, 0}. X

Problem .. The tangent function tan z takes values in Ĉ \ {±i}. Show that
tan: C→ Ĉ\{±i} is a covering. Be explicit about trivializing opens. Hint: It might
be usefull that arctan z = (2i)−1 log(1 + iz)(1− iz)−1. X

Problem .. Show that a holomorphic covering between Riemann surfaces then has
a derivative which vanishes nowhere. Is the converse true? X
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(.) A universal covering of a topological space X is a covering p : Y → X such
that the space Y is simply connected, recall that tis means hat Y is path connecetd and
that π1(Y ) = 0. It is not difficult to see that such universal coverings are unique up to
a homeomorphism respecting the covering maps. That is, if p′ : Y ′ → X is another one,
there is a homeomorphism φ : Y ′ → Y with p′ = p ◦ φ; or diagrammatically presented,
there is a commutative diagram

Y ′
φ

//

p′ !!

Y

p
~~

X.

Not all topological spaces have a universal covering. The condition to have one is
rather long (close to a breathing exercise): The pace X must be connected, locally
path connected and semi-locally simply connected. But don’t panic, Riemann surface
all satisfies these conditions, as every point has a neighbourhood homeomorphic to a
disk.

Problem .. Let A = C \ { 1/n | n ∈ N }. Show A is not open and that that 0 ∈ A.
Show that any neighbourhood of 0 in A has loops that are not null-homotopic in A.
Show that A does not have a universal covering. X

Problem .. Let : Y → X be a universal cover. let AutX(Y ) be the set of homeo-
morphisms φ : Y → Y such that p ◦ φ = p, that is, the homeomorphism making the
diagram

Y
φ

//

p
  

Y

p
~~

X,

commutative. Show that AutX(Y ) is a group under composition. Fix a point x ∈ X.
Show that φ by restriction induces a self-map of the fibre p−1(x). Show that if this
self-map is the identity, then φ = idY . Show that AutX(Y ) is a naturally isomorphic
to a subgroup of the symmetric group Sym(φ−1(x)). Hint: Use the lifting theorem
(theorem . on page ). X

Problem .. Show that the action of AutX(Y ) is free and proper in the sense as in
xxx. Show that it acts transitively on each fibre. X

5.4.1 Coverings of Riemann surfaces
Assume that X is a Riemann surface and that p : Y → X is a covering where Y for

the moment is just a Hausdorff topological space. The analytic structure on Y is easily
transported to Y in a canonical way so that the projection p becomes holomorphic.
This is a very important result though it is almost trivial to prove.
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Proposition . Assume that X is a Riemann surface and that p : Y → X is a
covering. Then there is unique analytic structure on Y such that p is holomorphic. In
particular every Riemann surface has a universal cover that is a Riemann surface and
the projection is holomorphic.

Proof: Take any atlas U over X whose coordinate patches (U, zU) are such that the
opens U all trivialize p; that is, the inverse image p−1(U) decomposes in a disjoint
union

⋃
α∈A Uα with each πU,α : Uα → U being a homeomorphism. The atlas on X

we search for, consists of all the Uα’s for all the U ’s in U with the obvious choice of
zU ◦ pU,α for coordinate functions, and it turns out to be an analytic atlas. Indeed, on
Uα ∩ Vβ one has

(zU ◦ pU,α) ◦ (zV ◦ pV,β)−1 = zU ◦ pU,α ◦ p−1
V,β ◦ z

−1
V = zU ◦ z−1

V ˜

since both pU,α and pV,β are restrictions of same map p to Uα ∩ Uβ.
It is obvious that the projection map p is holomorphic, contemplate the diagram

below for a few seconds and you will be convinced:

Uα //

pU,α

��

zU(U)

id
��

U zU
// zU(U)

o

(.) Recall that if Z is any simply connected space a map Z → X can be lifted to

a map Z → X̃ which is unique once the image of one point in Z is given. When Z
is another Riemann surface and f is holomorphic, the lift will be holomorphic as well.
We even have slightly stronger statement:

Proposition . Assume that p : Y → X is a covering between Riemann surfaces
and that f : Z → Y is a continuous map such that p ◦ f is holomorphic, then f is
holomorphic.

Proof: Again the hart of the matter is to choose an atlas compatible with the given
data. Start with an atlas on Y whose coordinate neighbourhoods trivialize the covering
p. For each U and each z ∈ f−1(U) there is patch V on Z centered at z and contained
in f−1(V ). And as Z i locally connected we can find such V ’s that are connected.
Then f̃(V ) is contained in one of the UU,α’s, and one has f |V = pU,α ◦ f̃ |V . As pU,α is
biholomorphic in Uα this gives f̃ = f |V ◦p−1

U,α implying that f̃ is holomorphic in V , and
hence in Z since the V ’s cover Z. o

Problem .. Check that in proposition . above, it suffices to assume that p be
a local homeomorphism. X
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Problem .. Let Λ be a lattice in C. Show that the projection map C→ C/Λ is a
universal cover for the elliptic curve C/Λ. X

Problem .. Let Λ be a lattice. A function is Λ-periodic if f(z + ω) = f(z) for all
ω ∈ Λ and all z ∈ C. Show that any holomorphic Λ-periodic function is constant. X

Example .. We continue to explore the world of elliptic curves. In this example
we study the holomorphic maps between two elliptic curves C/Λ and C/Λ′, and shall
show that they are essentially linear, that is induced by linear function z → az + b
from C → C.

Let the f : C/Λ → C/Λ′ be holomorphic. The salient point is that p′ : C → C/Λ′
is the universal cover of C/Λ′, so that any holomorphic map from a simply connected
Riemann surfaces into C/Λ′ lifts to a holomorphic map into C by proposition .. We
apply this to the map f ◦ p and obtains a holomorphic function F : C → C that fits
into the commutative diagram

C F //

p

��

C
p′

��

C/Λ
f
// C/Λ′.

Fix for a moment a member ω of the lattice Λ and consider the difference F (z+ω)−
F (z). As a function of z it takes values in the discrete subset Λ′ of C. It is obviously
continuous (even holomorphic), and hence it must be constant. Taking derivatives
shows that F ′(z + ω) = F ′(z), so that the derivative is Λ-periodic, and from problem
. we conclude that F ′(z) is constant. Hence F (z) = az + b. e
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Figur .: Charts on a covering surface.

5.5 Proper maps

Recall that a proper map between two topological spaces is a continuous map whose
inverse images of compact sets are compact. A continuous map whose source space is
compact, is automatically proper, and of course. Notice that the target space can be
decisive for the map being proper or not; for instance, homeomorphisms are proper,
but open embeddings5 are usually not.

(.) Any proper, holomorphic maps between Riemann surfaces must have finite
fibres. The fibres are discrete by proposition . on page  and as f is proper,
they are compact as well.

Proper maps are always closed whether holomorphic or not. To see this, let b be
a point in the closure of the image f(A) of a closed a set A⊆X, and let {aν} be a
sequence in A such that {f(aν)} converges to b. The subset B = { f(an) | n ∈ N }∪{b}
of Y is compact. Hence the inverse f−1(B) is also compact because f is assumed to be
proper. As {an}⊆ f−1(B) ∩ A, there is a subsequence of {aν} converging to a point a
in A, and by continuity, f(a) = b. We have thus proven

Proposition . A proper, holomorphic map between two Riemann surfaces is closed
and have finite fibres.

5An open embedding is a map whose image is open and which is homeomorpic onto its immage.

—  —
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Problem .. Give an example of a smooth map between Riemann surfaces whose
fibres are not all finite. Give an example of an open imbedding that is not proper.
Give an example of an open imbedding (of topological spaces) that is proper, but not
a homeomorphism. X

Problem .. Show that the composition of two proper maps is proper. X

Problem .. Assume that f : X → Y is proper and that A⊆X is a closed, discrete
set. Show that f(A) is discrete. X

Problem .. If f : X → Y is proper and A⊆Y is closed, show that the restriction
f |X\f−1(A) : X \ f−1(A)→ Y \ A is proper. X

(.) Every covering map is a local homeomorphism by definition, but the converse
is not true. A cheap example being an open immersion; that is, the inclusion map of
an open set U in a space X. If U is not a component of X any point in the boundary
of U will not have a trivializing neigbourhood. If you want a surjective example, there
is an equally cheap one. Take any covering with more than two points in the fibres and
remove one point from one of the fibres.

If the map in addition to being a covering also is a proper map, it will be a covering:

Lemma . A proper, local homeomorphism f : X → Y is a covering map.

Proof: Take any point y ∈ Y . The fibre f−1(y) is finite because f is proper. Round
each point x in the fibre there is an open Ux which f maps homeomorphically onto an
open Vx in Y . By shrinking these sets we may assume they are pairwise disjoint, i.e.,
replace Ux with Ux \

⋃
x′ 6=x Ux′ and notice that x /∈ Ux′ if x′ 6= x since f is injective on

Ux′ .
The finite intersection V =

⋂
x∈f−1(y) Vx is an open set containing y, and clearly the

different sets f−1(V )∩Ux for x ∈ f−1(y) are open, disjoint sets mapping homeomorph-
ically onto V . o

5.5.1 The degree of a proper holomrphic maps
This section is about proper maps between Riemann surfaces and the cardinality

of their fibres. Their fibres are finite, and case the map is a cover, all fibres have the
same number of points as saw in prop xxx above. The theme of this paragraph is to
extend this result to maps having branch points, however the branch points counted
with a multiplicity which turns out to be equal to the ramification index indx f .

Proposition . Let : X → Y be a proper,holomorphic map between two Riemann
surfaces. Then the number

∑
f(x)=y indx f is independent of the point y ∈ Y and is

called the degree of f . If f is not branched in any point in f−1(y), it holds true that
#f−1(y) = deg f .

—  —
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So let f : X → Y be a proper map. The points in X where the derivative
DxF : TX,x → TY,f(x) vanishes are isolated points; indeed, locally in charts (U, zU)
of X and (V, zV ) on Y the function f is represented by the holomorphic function
f̃ = zV ◦ f ◦ zU , and the derivative f̃ ′ represents Dxf for x ∈ U . We know that f̃ ′ is
holomorphic and hence has isolated zeros.

Hence the set B = {x | Dxf } is a closed, discrete set in X called the branch locus
or ramification locus of f . The image f(Bf ) is closed and discrete as well, our map
f being proper, and on the open set W = Xf−1(f(Bf )) the map f is unramified.
Hence is a local homeomorphism there and since the restriction f |W : W → Y \ f(Bf )
is proper, it is covering by lemma . above.

Proposition . Let : X → Y be a proper,holomorphic map between two Riemann
surfaces. Then the number

∑
f(x)=y indx f is independent of the point y ∈ Y and is

called the degree of f . If f is not branched in any point in f−1(y), it holds true that
#f−1(y) = deg f .

Proof: Let B be the branch locus of f and put W = f−1(f(B)). Then f |W : W →
Y \ f(B) is a covering map. Moreover f(B) being a discrete set, the complement
Y \ f(B) is connected, and by . on page  the number of points in the fibres
f−1(y) is the same for all y ∈ Y \ f(B).

So we pass to examining the situation round a fibre containing branch points. Let
f−1(y) = {x1, . . . , xr} and let ni = indxi f , of course some of these can be one. By the
local description of branch points (proposition . on page ) we can find coordinate
patches Ui with coordinate zi round each xi and Vi round y such that in the patch Ui
one has f(zi) = znii .

Shrinking the Ui if necessary, they can be assumed to disjoint, and replacing V
with the intersection

⋂
i Vi, we can assume that V = f(Ui) for all i. With this in

place the inverse image f−1(V ) decomposes as the union
⋃
i Ui. Now, there are points

y′ in V such that the map f is unbranched over y′, thence #f−1(y′) decomposes as∑
i #(f−1(y′)∩Ui). Clearly this sum equals

∑
i ni, indeed, f is represented as f(zi) =

znii on the patches Ui and equations znii = ε has ni solutions. On the other hand all
unbranched fibres have the same number of points, so we are through. o

Problem .. Let f : X → Y and g : Y → Z be two proper holomorphic maps
between Riemann surfaces. Show that the composition g ◦ f is proper and that one
has deg g ◦ f = deg f deg g. X

Problem .. Let Λ⊆C be a lattice. Show that for each integer n the map z → nz
induces a proper map [n] : C/L→ C/Λ. Show that [n] is unramified and determine its
degree. Hint: Compute the derivative of [n]. X

—  —
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6.0.1 Differential forms
Let X be Riemann surface and let V ⊆X be an open set. By a 1-form on V we

mean a function

ω : U →
⋃
a∈V

T ∗a ,

where as usual T ∗a stands for the cotangent space of X at the point a.
When U ⊆V is a patch with coordinate z, the coordinate function z induces the

cotangents dz and dz in every one of the cotangent spaces T ∗a with a ∈ U and they form
a basis for all theswe spaces; Loosely speaking they constitute a uniform or common
basis for all the cotangent spaces in U . Therefore one may write

ω|U = pdz + qdz

where p and q are functions in U . As its stands they are just set theoretical functions,
but as the theory develops we shall impose different conditions on them. For instance,
if they are smooth one says that the 1-form is smooth, and if both p and q are of class
Cr, the form is of class Cr. In the other end of scale, they can be just Borel measurable
in that case the form said to be measurable.

In an analogous way one introduces a 2-form as function

ω : U →
2∧
T ∗a .


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Locally, in a patch (U, z), there is the basis dz ∧ dz ,so in the patch one has

ω|U = fdz ∧ dz.

where p is a function, which of course may subjected to different kinds of regularity
conditions. Now, suppose that (V,w) is another patch related to (U, z) with w = w(z)
as transition function on the intersection U ∩ V . Then dw = ∂zw dz and dw = ∂zw dz
In V the form ω has an expression ω|V = gdw ∧ dw and since the two expressions for
ω must agree on the intersection, the following relation holds on U ∩ V :

f = g∂zw ∂zw. (.)

PaaSnittet

AbsoluttVerdiTpForm(.) There is a slightly subtle observation we shall need later on when we define
integrals. In short, every 2-form has an “absolute value”; a feature that is specific for
forms of top degree on oriented manifolds. Since it holds that ∂zw = ∂zw the transition
factor in (.) satisfies

∂zw ∂zw = |∂zw|2

and hence it is real and positive. This means that taking absolute values in (.) gives

|f | = |g| ∂zw ∂zw.

Hence there is real 2-form on X which we denote |ω| and which is shaped like

|ω| = − i
2
|f | dz ∧ dz = |f | dx ∧ dy

on a patch where ω = fdz ∧ dz.
JacobianTwoForms

(.) The transition factor appearing in (.) above is nothing but the Jacobian
determinant of the transition function effectuating the coordinate change. To see this,
let w = w(z) and name the real and imaginary parts of z as z = x + iy and of w as
w = u + iv. Then ∂zw = ux + ivx and ∂zw = ux − ivx from which we deduce the
equalities

∂zw ∂zw = u2
x + v2

x = uxvy − uyvx,

having the Cauchy-Riemann equations ux = vy and uy = −vx in mind.

(.) For the sake of a unified terminology, one frequently calls a function a 0-form,
so we have 0-, 1- and 2-forms. On manifolds of higher dimension there are forms of
higher degree, which we are not concerned about in this course.

—  —
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6.0.2 Hodge decomposition
Dealing with analytic structures has certain advantages over just dealing with dif-

ferentiable manifolds. There are several important structure that only materializes for
analytic manifolds. One such structure is the Hodge decomposition of the vector space
of forms.

Let E1
X denote the vector space of 1-forms on X (of some regularity, but for the

moment we are intentionally vague on precise requirement) The Hodge decomposition
is a canonically decomposition of E1

X in a direct sum

E1
X = E1,0

X ⊕ E
0,1
X .

The forms belonging to the factors will be described locally, patch by patch, and it
is quit remarkable that this gives a global decomposition. The subspace E1,0

X consists
of forms which in the patches (U, z) only involve dz; that is, they have the shape p dz.
This is independent of the coordinate used since if z = z(w) is a holomorphic change
of coordinates, one has p dz = p ∂wz dw. Likewise, the space E0,1

X consists of forms
locally of shape q dz, and a similar argument as given for E1,0

X shows that neither this
condition depends on the coordinate used; indeed, it holds that dz = ∂wzdw.

(.) There are two important operations one can perform on 1-forms. One is the
usual complex conjugation, i.e., if ω = p dz + q dz, the conjugate form ω is given as

ω = q dz + p dz.

Obviously complex conjugation interchanges the two summands E1,0
X ands E0,1

X .
One says that a form ω is real if ω = ω and it is imaginary in case ω = −ω.

Inspecting the form ω in a chart, one finds that it is real when and only when it has
the shape ω = pdz + pdz. In the real coordinates given by z = x + iy a real form
ω is expressed as ω = 2udx + 2vdy, where u and v are respectively the real and the
imaginary part of p. Similarly, an imaginary form ω has the shape ω = pdz − pdz in a
patch, and thus looks like ω = 2i(vdx+ udy) in the real coordinates.

HodgeDualDefinisjon
(.) The other operation is the so called Hodge ∗-operation. In contrast to the

complex conjugation, it preserves the Hodge decomposition. The two spaces E1,0
X and

E0,1
X are the eigenspaces of ∗; the former corresponds to the eigenvalue −i and the

latter to eigenvalue i. In local coordinates one thus has

∗(p dz + q dz) = −ip dz + iq dz. (.)

This might appear fortuitous, but in expressed in real coordinates it is more transparent
hodge*

from where it comes. If the form is given as ω = p dx + q dy, a small computation
shows that thew Hodge-dual equals −q dx + p dy, and this is the familiar conjugate
differential from complex analysis and theory of harmonic functions. The ∗-operation
is not involutive, but satisfies ∗ ∗ ω = −ω.

—  —
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6.0.3 Exterior derivations
At the same time as we introduced the cotangent space, we introduced the differen-

tial df of a function f , which necessarily must be of class C1. In a patch (U, z) it takes
the form df = ∂zf dz + ∂zf dz. One may think about it as an avatar of the gradient of
f we know from calculus courses.

In the setting of differential forms a function is considered a form of degree zero,
and there is a construct for forms of higher degree similar to what we just did for
functions. The exterior derivative of an n-form is an n + 1-form, so in our setting,
where no non-zero 3-forms exists, the exterior derivative of a 2-form is forced to be
zero, and we need only care about the derivative of 1-forms.

(.) We shall work 1-forms on an open subset U of a Riemann surface X, so let ω
be one, and assume that ω is of class C1; that is, it is the coefficient functions in every
patch are continuously differentiable. Its exterior derivative dω is a 2-form that locally,
in a patch where ω = pdz + qdz, by the formula

dω = (∂zp− ∂zq)dz ∧ dz. (.)

extder

As usual when giving a defining a form patch by patch, it must verified that the
form does not depend on the patch. Expressing the form in another coordinate and
applying the defining formula . must lead to the same form. So assume that z = z(w)
is a holomorphic change of coordinates. Then one has dz = ∂wz dw and dz = ∂wz dw,
and in the new coordinate the expression for ω becomes

ω = p ∂wz dw + q ∂wz dw,

and applying the recipe . to it one arrives at the expression

dω =
(
∂w(p ∂wz)− ∂w(q ∂wz)

)
dw ∧ dw. (.)

Substituting dz = ∂wz dw and dz = ∂wz dw in the formula (.) one obtains the identity
ExtDerv2

dω = (∂zp− ∂zq)∂wz ∂wz dw ∧ dw,

whose right side is identical to the right side of equation (.) in view of the equalities
∂w(p ∂wz) = ∂wp ∂wz = ∂zp ∂wz ∂wz and ∂w(q ∂wz) = ∂wq ∂wz = ∂zq ∂wz ∂wz. Notice
that we draw on the coordinate change being holomorphic. This implies that ∂w∂wz =
∂w∂wz = 0 since z depends holomorphically on w whereas z is anti-holomorphic in w.

(.) The exterior derivative of an exact form df vanishes. Indeed locally one may
express df as df = ∂zf dz + ∂zf dz and one finds

d2f = (∂z∂zf − ∂z∂zf)dz ∧ dz = 0,

—  —
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as ∂z∂zf = ∂z∂zf . The formula below, which one may think of as an analogue to
Leibnitz’ rule for the derivative of product, is sometimes useful when dealing with
forms. It is straightforward to verify it, a verification that is left to the zealous student.

d(fω) = df ∧ ω + fdω. (.)

usefulformel

(.) The exterior derivative decomposes as a sum d = ∂+∂ where ∂ is the restriction

of d to the Hodge factor E1,0
X and ∂ up to sign the restrictions to E0,1

X , so they are given
locally as

∂(p dz + q dz) = ∂zpdz ∧ dz ∂(p dz + q dz) = −∂zqdz ∧ dz.

(.) To have a unified notation, we shall henceforth denote the derivative of a

function—that is of a zero form— with ∂f in stead of ∂zf dz and with ∂f in stead
of ∂zf dz. Thence one has the decomposition d = ∂ + ∂ for zero forms as well. The
following formulas are straightforward to verify by simple calculations

d2 = ∂2 = ∂
2

= 0,

and
∂∂ = −∂∂

(.) The operator ∂∂ is up to a constant factor a global version of the Laplacian.
Indeed, locally in a chart one computes

2∂(∂f) = 2∂(∂zf dz) = 2∂z∂zf dz ∧ dz = −i∆fdx ∧ dy (.)

since (we recall)
LaplacianDBarD

4∂z∂z = (∂x − i∂y)(∂x + i∂y) = (∂2
x + ∂2

y) = ∆

and dz ∧ dz = (dx− idy) ∧ (dx + idy) = 2idx ∧ dy. Another formula in this direction
whose flavour is more that of real forms is the following

d(∗df) = ∆fdx ∧ dy (.)

To establish is, write df = fxdx+fydy, Then ∗df = −fydx+fxdy, and hence one finds
Harmonicd*d

d(∗df) = −fyydy ∧ dx+ fxxdx ∧ dy = ∆fdx ∧ dy.

(.) These two derivations are maps

∂ : E1,0
X → E1,1

X and ∂ : E0,1
X → E1,1

X .

an
∂ : E0

X → E1,0
X and ∂ : E0

X → E0,1
X .
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6.0.4 Holomorphic and harmonic forms
Our main interest are the holomorphic forms on a Riemann surface, in some sense

they are the integrands in the integrals we are interested in. And under favourable
circumstances, they can be integrated to give us holomorphic functions on the surface.

(.) A 1-form is called holomorphic if it locally in patches (U, z) has the shape p dz
where p is a holomorphic function of z. Every holomorphic 1-form is closed. Indeed,
in a patch one has d(fdz) = ∂zf dz∧ dz, and so d(fdz) vanishes if and only if ∂zf = 0;
that is, if and only if f is holomorphic. This argument shows as well that a closed form
is holomorphic if and only if ∂ω = 0, which also is equivalent to the two equations
∂ω = ∂ω = 0 since d = ∂ + ∂.

Example .. There are no holomorphic one-forms on the Riemann sphere. Indeed,
assume that ω was one. Om the patch U0 = Ĉ \ {∞} one would have ω|U0 = f(z)dz
where f is an entire function, and om the patch U∞ = Ĉ \ {0} the form ω would have
the shape ω|U∞ = g(w)dw where g is an entire function of w. On the intersection
U0 ∩ U∞ one has dw = −z−2dz, and hence

f(z)dz = −g(z−1)z−2dz,

and therefore one has
z2f(z) = −g(z−1)

in C \ {0}. This is clearly impossible; it would imply that g(z−1) has a removable
singularity at 0 with the value zero. But it is regular at {∞} as well, so by Liouville it
would be constant and equal to zero. e

HarmonicFormsII

(.) The one-form ω is said to be harmonic if locally it is the differential of a har-
monic function; that is, the surface X has an atlas so that for every patch U one has
ω|U = df for a harmonic function in U . In view of equation . above a harmonic form
ω is at the same time both closed and co-closed; that is, it fulfils the two conditions
dω = d∗ω = 0.

With some very mild integrability conditions on the form ω the converse also holds.
This is a deep theorem that we certainly come back to; indeed, it is the hub of this
chapter. The proof hinges on a famous theorem of Hermann Weyl, the so called “Weyl’s
lemma”.

Locally in a patch (U, z) there is an expression ω = pdz+ qdz for ω, and by a small
computation one arrives at the following identity

d∗ω = i(∂zp+ ∂zq)dz ∧ dz

for d∗ω. Combining this with the expression dω = (∂zp−∂zq)dz∧dz for the derivative
dω, one sees that ω being closed and co-closed is equivalent to ∂zp = ∂zq = 0. In
other words, it holds that the functions p and q are respectively holomorphic and anti-
holomorphic. In terms of the Hodge decomposition of ω = α + β of ω, the (1, 0)-part
α of ω is holomorphic and the (1, 0)-part β is anti-holomorphic.

—  —
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(.) Assume that ω = df is an exact form. Then locally df = pdz+qdz with p = ∂zf
and q = ∂zf . From the discussion above we deduce the formula

d(∗df) = 2i∂z∂zfdz ∧ dz = 2−1∆fdx ∧ dy,

and conclude that df is a harmonic form if and only if both the real and the imaginary
part of f are (real) harmonic functions; in short, if f is harmonic.

The converse of this holds locally. One has

ClosedCoClsedHarmonic

Proposition . Let ω be a 1-form of class C1. Assume it is closed and co-closed.
Then ω is locally of the shape df for f a harmonic function; that is, it is harmonic.

Proof: Since ω is a closed form it is locally exact by the Poincaré lemma (lemma
. on page  below), and so for patches (U, z) of an atlas on X, one has ω|U = df
where f is a C2 function in U . Now ω is co-closed so d(∗df) = 0, but this is exactly
the condition ∆f = 0, so f is harmonic. o

6.1 Integration

The late danish mathematician Birger Iversen said once that in terms of junk food a
1-form feeds spaghetti and a 2-form feeds on pizza (and he added, a 3-form feeds on
hamburgers). There will be no hamburgers on our menu, but as a solace for the lovers
of exotic junk food we shall resort to a quadruple integral in the course of proving the
so called Weyl’s lemma about harmonic functions.

In more serious terms, this means that a 1-form can be integrated along a path
and a 2-form over a surface. The two are treated somehow differently in this text.
Although it is feasible to integrate 1-forms along non-compact (read infinite) paths, we
concentrate on compact paths, i.e., those parametrized over finite intervals. They will
be sufficient for our needs.

Concerning surface integrals, however, we shall frequently be using improper integ-
rals. The Riemann surfaces we study are not necessarily compact and it is paramount
to be able to integrate 2-forms over the whole surface. Of course just as with tradi-
tional improper integrals, not all forms have a finite integral so we need a concept of
integrable forms. At a few but crucial moments we use forms that are not continuous
in an essential way, but surely, they will be locally integrable.

6.1.1 Line integrals
Recall that a path γ in X is a piecewise continuosuly differentiable map γ : I → X

where I is an interval [a, b]. In what follows we shall give menaing to the integrtal
∫
γ
ω

where Ω is a 1-form on X.
There are two steps in the definition, the first being the case when the path γ is

entirely contained in a coordinate patch U with coordinate z. We are then in the

—  —
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familiar situation with a line integral of a form in an open disk in the complex plane,
and writing the form ω as ω = pdz + qdz in U , the integral is given as∫

γ

ω =

∫ b

a

(p(γ(t))γ′(t) + q(γ(t))γ(t)
′
)dt.

(Strictly speaking the integration takes place along the path z◦γ in ζ(U)). Any change
of coordinate in D brings along a corresponding reparametrization of the path, and
a straightforward application of the formula for the change of variable in an integral,
shows that the integral does not depend on the choice of coordinate.

In the second step, where γ can be any path piecewise of class C1 in X, one chooses
a finite open covering Di of the image γ(I) by coordinate disks which can be done
since γ(I) is compact. Applying Lebesgue’s lemma one finds a partition {ti} of the
interval I such that every one of the subintervals [ti−1, ti] is contained in the inverse
image γ−1(Dj) of one of the D′js. Let the restriction of γ to [ti−1, ti] be denoted by γi.
The integral of ω along γi is well defined by what we did in step one, and of course,
we put ∫

γ

ω =
∑
i

∫
γi

ω.

It remains to be checked that the integral neither depends on the choice of covering
nor on the choice of partition. This is small exercise involving a common refinement
of the two partitions, whose details are left to the zealous students to fill in.

(.) The integral of an exact form df is just the difference of the values f takes the
end points of γ. In particular the intregral does not depend on the path γ as longs the
end points are fixed. If f is a function of class C1 one has∫

γ

df = f(b)− f(a),

where γ is a path from a to b.
We have seen several instances of the converse being true when doing function

theory in the complex plane, and this holds true also for Riemann surfaces, and the
proof is the same of course with the necessary adjustments to notation and wording.

KlassikExact

Theorem . Let ω be a continuous 1-form on X. Assume that the integrals of ω
around closed paths all vanish. Then ω is exact, i.e., there is a function f of class C1

with df = ω.

Proof: Let x0 be a fixed point in X, and letx be any point in X and γx any path
from x0 to x. If γ′x is another one, the composite γ′x · γ−1

x is a loop at x0 and by the
hypothesis that integrals of ω around loops vanish, it holds true that

0 =

∫
γ′x·γ

−1
x

ω =

∫
γ′x

ω −
∫
γx

ω,
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and the integral of ω along a path leading from x0 to x has the same value whatever
the path is. Hence putting

f(x) =

∫
γx

ω

gives us a well defined function on X. A variant of a familiar argument shows that
df = ω. Indeed, let D be a coordinate disk centered at x, and let h be a complex
number with that x + h ∈ D. Choose a path γx joining x0 to x and let l be the line
segment from x to x+ h, then the composite l · γx is a path from x0 to x+ h. We find
using the parametrisation x+ th with 0 ≤ t ≤ 1 of l that

f(x+ h)− f(x) =

∫
l

ω = h

∫ 1

0

p(x+ th)dt+ h

∫ 1

0

q(x+ th)dt.

Since p and q are continuous, the two integrals tend respectively to p(x) and q(x) as
h tends to zero. Letting h approch zero through real values gives ∂xf = p + q, and
when h approches zero trough imaginary values one finds ∂yf = ip− iq. In view of the
equalities 2∂z = ∂x − i∂y and 2∂z = ∂x + i∂y this implies that ∂zf = p and ∂zf = q. o

The integrals
∫
γ
ω of ω around closed loops γ are traditionally called the periods

of the form ω, hence the name “theorem of vanishing periods” for the theorem. They
played prominent role when computing integrals where high tech (and they still do even
if the center of mass of the theory has shifted somehow); the periods of ω determine
all the integrals

∫
γ
omega where γ is any path, and gives a grip on the ambiguity of

integrals
∫
γx
ω where γx joins a base point x0 to x.

(.) The following corollary is a special case of general principle which one normally
contributes to Henri Poincaré, hence it is frequently called the Poincaré lemma.

PoincareLemma

Corollary . A closed 1-form ω is locally exact.

Proof: It suffices to prove that ω is exact over any disk D in X. One may define
a function f in D by integrating ω along the ray joining the origin of D to x. On a
triangle with corners 0, x and x + h, Stokes’ theorem holds and since ω is closed, it
follows that

f(x+ h)− f(x) =

∫
l

ω.

The rest of the proof is word for word the same as the last part of the proof of ??
above. o

(.) The following is a fundamental result. It is a variant for surfaces of one of the
main result in the calculus of forms on manifolds. The proof is mutatis mutandis the
same as the one we gave of . on page , just a few obvious changes in the notation
are necessary.
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HopotopiInvarIntegral

Theorem . Let γ and γ′ be two homotopic paths in X. Assume that either there is
a homotopy between them fixing the end points, or that both paths are closed. Let ω be
a continuous closed 1-form in X. Then it holds true that∫

γ

ω =

∫
γ′
ω.

In particular, integrals of closed forms along null-homotopic loops vanish. If you are
suspicious about integrating along constant paths, you can argue by dividing a closed
loop in two γ = γ · γ′. Then γ ∼ γ′, and∫

γ

ω =

∫
γ

ω +

∫
γ′
ω = 0

since by the theorem

−
∫
γ

ω =

∫
γ−1

ω =

∫
γ′
ω.

On a simply connected Riemann surface all loops are null-homotopic and the fol-
lowing corollary holds true:

Corollary . Every closed 1-form on a simply connected Riemann surface is exact.

In partr icular this applies to the universal covering X̃ of a Riemann surfaace X.

6.1.2 A classical view
This connects up to the classical view on Riemann surfaces associated to so called

multivalued functions.
Let Ω be a domain in the complex plane, and let U be a covering of Ω by open sets.

Assume given a holomorphic function fU for each U ∈ U ; this is what the old-timers
called a “function element”. Assume further that on the intersections U ∩ V of very
pair of opens U and V form U , the derivatives of the functions fU and fV coincide.
This amounts to the differences fU−fV all being constant. So the functions do not glue
together to make a function in Ω, but their derivatives patch up to a global holomorphic
1-form ω in Ω!

Now comes the salient point. The pullback to Ω̃ is exact! So there is a function,
unique up to an additive constant, such that dF = pi∗ω. In opens U ′ = π−1(U)⊆ Ω̃
where π is biholomorphic, one has fU ◦ π|U ′ = F |U ′ and F is in some sense a global
realization of the function elements {fU}.

6.2 Paths and homotopy

Every integral has two parts which are equally important. There is an integrand and a
path of integration. In many text books on Riemann surfaces the integrands —may be
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rightfully—receive most of the attention and the paths often come in the background.
They are however important and they pose some subtle issues not to complicated to
resolve, but some times requier some fiddling work.

We treat mostly paths and homotopy and touch the concept of chainsm for two
reasons. The students all have a mandatory course in general topoly the the basics of
paths and homotopy are tretaed, but not everyone has a course in algebraic topology
where homology os done. Covering spaces and the universal coverings are fundamental
concepts in the theory and of course they they are based on paths and homotopy.

6.2.1 Normal forms
The elements of π1(X) are homotopy classes [γ] of continuous paths, but continuous

paths can be extremely complicated. The Peano curve for instance, fills up a square
and the Osgood curve is a Jordan curve with a positive area. But the world is so well
shaped, that in every homotopy class there are well behaved paths. Every class has
smooth and regular representatives, and can be factored in a product of classes having
simple representatives, that is paths without self-crossings.

(.) We start making paths piecewise “linear” in the following sense:
Let (D, z) be a coordinated disk, and let L′⊆ z(D) be a line segment. The inverse

image L = z−1(L′) is called a linear segment in D. Any path γ contained in D is
homotopic to a linear segment having shearing end points a and b with γ. Indeed, the
genuine disk z(D) in the complex plane is convex and hence F (s, t) = szD◦γ+(1−s)L′
is a homotopy in z(D) fixing end points between the image of γ and the line segment
joining z(a) to z(b). Bringing things back to the Riemann surface gives us the homotopy
z−1 ◦ F (s, t) from γ to L in D.

A path is piecewise linear if it can be decomposed into a sequence of linear segments.
Notice that we do not require these segments to be disjoint, so there can be multiple
point on the path, i.e., points through which pass several of the linear segments. If
only two linear segments pass by the point we call it a double point .

Lineare veier

Lemma . Any γ is homotopic to a piecewise linear path whose only multiple points
are double points.

Proof: Let γ be a continuos path with the parameter running in the interval I. Pick
a finite covering of the image γ(I) by disks and let {tj} be a partition of I such that
the image of each subinterval [ti−1, ti] lies in Dj for some j. By what we just said, the
restriction of γ to [ti−1, ti] is homotopic in D to a linear segment. Performing these
homotopies for each subinterval in succession closes the argument for the first part of
the statement.

In a disk, if more than two line segments pass through the center, just move the
end points of the segments slightly, and the multiple point resolves into a bunch of
double points. There is, however, a rate of exchange; a point by which the path passes
n times is worth n(n− 1)/2 double points. o
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Problem .. In a disk any path is null-homotopic. Explain why the above proof
does not show that any path on X is null-homotopic. X

Problem .. Prove the statement that an n-tuple point can be deformed into n(n−
1)/2-double points. X

Smoothing out the corners where two linear segments meet is just a matter of
some elementary manipulation with smooth functions. One replaces a small part of
the corner by a smooth bend matching the two linear segments to the second order.
We leave the details to the ever-zealous students as a sequence of exercises (problems
.–. below).

(.) Recall that one says that a smooth path γ is regular if the derivative of γ never
vanishes. When a path is without multiple points—that is γ : I → X is injective—one
calls it simple and if additionally it is closed, it is a Jordan path. A regular path has
at any point a well defined tangent vector pointing in the forward direction. Being
smooth and regular is a property local in the parameter interval, so it is not excluded
that smooth regular curves have self-intersections, just as the piecewise linear paths can
have. However, the self-intersections can be reduced to double points by a homotopy
as the next lemma shows. The proof consists of smoothing the corners of the piecewise
linear paths one finds by lemma . above.

GlattRegHomotp

Lemma . Any path in X is homotopic to a smooth, regular path whose self inter-
sections are just double points.

(.) Bad examles Smooth paths can behave rather badly. They can have infinitely
many self intersections, (a path can for instance come back on itself even if it is smooth),
and there can be points through which the path passes infinitely often. Lemma .
shows that pathologies of this type can be removed by a homotopy, so they will not
bother us much in the future, but it is worthwhile having in the back of the mind that
even the smooth world can be exotically complicated.

Example .. Let f(t) be a smooth real function of a real variable t all whose deriv-
atives vanish at the origin. A path γ in C with parameter interval [−1/π, 1/π] is given
by

γ(t) =

{
(t2, f(t) sin 1/t) when t ∈ [0, 1/π]

(t2, 0) when [−1/π, 0]
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Then γ is a closed smooth path and for any natural number n the parameter values
1/nπ and −1/nπ give the same point in C. e

Example .. Let f(t) be as in the previous example. Define a path γ(t) by giving it
in polar coordinates as γ(t) = (f(t) sin 1/t)eit, with t ∈ [−1/π, 1/π]. Then γ is smooth
and passes infinitely often by the origin. e

Problem .. Show that there is a smooth path going to and fro along the interval
[0, 1] infinitely often. X

(.) Double points can not always be removed by a homotopy. The simples example
being a figure eight in the complex plane with to points removed, one inside each bend.
The figure eight F is parametrized as you write it, one bend traversed clockwise and
the other counterclockwise. This figure eight is what the topologist call a deformation
retract of X implying that π1(F ) = π1(X), and this group is free on two generators,
i.e., isomorphic to Z ∗ Z. It is a result in topology that a deformation retract stays
a deformation retract in a homotopy, so the figure eight can not be homotopic to a
simple closed curve since the latter is topologically a circle with fundamental group
equal to Z.

However any homotopy class can be factored as the product of finitely many ho-
motopy classes each one containing a smooth and regular Jordan path.

Lemma . Any loop γ is homotopic to a finite product γ1 . . . γ2 of loops that are
smooth, regular and simple.

Proof: The proof goes by induction on the total number of self crossings the path
has. We define with reparametrisation the path such that the initial point of the path
is a multiple point, and such that the parameter interval is [0, 1].

Let s be the time when γ first comes back to γ(0); that is, the first parameter value
for which γ(s) = γ(0). We denote by γ′ the first loop of γ; that is the path obtained
by confining the parameter to [0, s]. This clearly a simple path.

Let and γ′′ be the rest of ,path with the parameter running in [s, 1]. Then we have
the factorization γ = γ′ ·γ1 and the path γ′ is closed since γ′(s) = γ(0) = γ(1) = γ′′(1).
The path γ′′ has one crossing less than γ and by induction we can factorize [γ′′] as in
the lemma, and after shaping up the first loop γ′ by a smoothing and a regularization,
we are through. o

6.2.2 Tubular neighbourhoods or bands
Every closed, smooth, regular and simple path γ has a tubular neighbourhood . On

a surface this is a narrow band surrounding the path—on a three dimensional manifold
it would be a tube, hence the name. Since X is orientable the band decomposes into
two connected components when the path γ is removed; there is one part to the left of
the path and one to the right (no orientable surfaces contains Möbius bands).
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To construct a band B surrounding γ we choose a partition {ti} = {t0, . . . , tr} of
the parameter interval I with γ mapping the subintervals [ti−1, ti] into patches, and
as usual we let γi = γ|[ti−1,ti]. In the patches the paths γi have non-vanishing tangent
vectors Ti(t) and hence non-vanishing normals Ni(t) pointing to the left. Where the
paths γi and γi+1 meet—that is, at the point with parameter among the ti-s—there
are two normals, one defined using γi and one using γi+1. Since the tangent at γ(ti)
is non-zero, they have the same direction, but A priori there is no reason they should
have the same length. However, multiplicating the normals by appropriate smooth
functions one can make them agree.

In the patch where γi lives, the band Bi consists of the points with γi(t) + uNi(t)
and with |u| < ε, and since the the two normals Ni and Ni+1 coincide at the points ti
separating the subintervals, they match up to a band B. The boundary ∂B has two
components, both are closed, regular and smooth. If they are oriented in the canonical
way with B to the left, one is freely homotopic to γ and the other one to −γ.

Problem .. Convince yourself that this works, remember that the path is closed.
Hint: Let N1(t) and N2(T ) be parallel vector fields on the regular curve γ and γ(t0) a
point. Then there is a positive smooth function κ with 1−κ supported in a prescribed
small interval round t0 such that N1 = κ(t)N2. Finish off by induction on i, with
special care since γ(tr) = t(γ0). X

Problem .. Given two positive numbers d1 and d2 with d2 > d2. Given four real
Smooth1

numbers a1, a2 and b1, b2. Show that there exists an increasing functions u of class C∞

with u(di) = ai, u
′(di) = bi and u(j)(di) = 0 for j ≥ 2 and i = 1, 2. X

Problem .. Let γ be a path in a disk D centered at the origin in C. Assume that
Smooth2

γ is parametrized by [−1, 1] and consists of two different line segments meeting at the
origin. Show that γ is homotopic to a regular, smooth path δ with δ(t) = γ(t) for
|t| ≥ ε for any preassigned positive number ε. X

Problem .. Prove lemma .. X
smooth3

Problem .. Let X be the elliptic curve C/Λ where Λ is a square lattice gener-
ated by 1 and i, which also is called the lemniscate lattice. Let π : C → X be the
parametrization (i.e., the quotient map).

a) Show that the image in X of the line parametrized as (t, αt) is a closed curve if and
only if α is a rational number. Let γ1(t) = π(t, 0) and γ2(t) = π(0, t).

b) Show that the image of the line (t, αt) is homotopic to the path γp1 ◦γ
q
2 when a = p/q

is the reduced representation of α as the quotient of two natural numbers.

c) Show that any closed curve on X is homotopic to one of the curves γp1 ◦ γ
q
2 .

X
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6.2.3 De Rahm theory
In 1931 the Swiss mathematician George De Rahm proved a fundamental theorem

that connects the spaces smooth, real differential forms on a manifold with the co-
homology groups of the manifold with coefficients in R, and there is a version involving
complex forms and cohomology with complex coefficients that follows immediately from
the real case. Several proofs are around, and you can find many good references. A
nice introduction to general the De Rahm theory is in

www1.mat.uniroma1.it/people/piazza/deRham-thm.pdf

(.) To give a taste of the bigger theorem, we shall formulate De Rahm’s theorem
for 1-forms on Riemann surfaces but merely sketch a proof for the easy part of it. This
is in fact a fundamental and important result being the connection between the purely
topological invariant π1(X) of the Riemann surface X and the analytical invariant
H1
DR(X). More precisely, it is the dual group Hom(π1(X),C) of groups homomorph-

isms from the fundamental group into the complex numbers that relates to the De
Rahm H1

DR(X). By a handful of theorems in algebraic topology, this dual group is
isomorphic to the cohomology group H1(X,C), but for us the relation with π1(X) is
quit satisfactory.

The compact, connected and oriented smooth manifolds of dimension two are com-
pletely classified, and these are exactly the underlying smooth manifolds of the compact
Riemann surfaces. Up to diffeomorphism there is one such manifold Xg for each natural
number number g—the famous genus.

The fundamental groups π1(Xg) are all well known. They are not very complicated
groups (although infinite and non-abelian), but we do not dive into a closer description.
For us the important thing is that HomC(π1(Xg),C) is a vector space of complex
dimension 2g.

We are going to see that the Hodge-decomposition of E1 induces a decomposition
of H1

DR(H) into two spaces H1,0 and H0,1 both of dimension g.

(.) The De Rahm group H1
DR(X) we are most concerned about is defined as the

middle cohomology of the complex below (called the De Rahm complex, by the way)
where Ei

X stands for the vector space of smooth, complex i-forms:

0 // E0 d // E1 d // E2 // 0

That is H1
DR(X) = Ker d/Im d, or in words the vector space of closed smooth and

complex forms modulo the subspace of exact smooth and complex forms. Of course
one puts H0

DR(X) = Ker d0 and H2
DR(X) = Coker d2. Since our Riemann surfaces

are connected by convension, the group H0
DR(X) reduces to C; indeed if df = 0 the

function f must be constant. The space H2
DR(X) consists of all 2-forms modulo the

exact ones. This a more suble space, which we may be come back to.

(.) The main theorem in the previous paragraph shows that the integral
∫
γ
ω is

constant on the homotopy class c = [γ] containing γ. Of course this statement must
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be taken with a small grain of salt only being meaningful for the representatives of [γ]
being pointwise C1, but lemma . on  save us.

The isomorphism in De Rahm’s theorem comes from the most natural paring

π1(X)×H1
DR(X)→ C,

namely the one defined by integration a form agains a path:

([γ], [ω]) 7→
∫
γ

ω.

Certainly one must verify that the integral
∫
γ
ω does not depend on the chosen repres-

entatives γ and ω. We proved in . that the integral
∫
γ
ω does only depend on the

homotopy class of γ when ω is a closed form, and by it is a much simpler result that
integrals of exact forms round loops vanish. So, indeed, the pairing is well defined.

The pairing induces a map

Φ: H1
DR(X)→ HomC(π1(X),C)

which sends a class [ω] to the map sending [γ] to the integral
∫
γ
ω; that is Φ([ω])([γ]) =∫

γ
ω. Proposition ?? on page ?? tells us that if this map is identically zero, the form

ω is exact, in other words the class [ω] vanishes. Hence Φ is injective, and we have
proved half (confessedly, by far the easiest half) of the theorem:

Theorem . The map Φ is an isomorphism H1
DR(X) ' HomC(π1(X),C).

6.2.4 Surface integrals
The aim of this section is to define the integral over X of a 2-form ω, generalizing

the old acquaintances from calculus, the surface integrals. The Riemann surfaces X we
are interested in are not all compact (and for the moment not even second countable) so
we shall include improper integrals in the definition. This opens the way to L2-spaces
of forms, but the prise to pay is a definition with some nooks and the corners and some
laborious checking.

Just as for line integrals there are two steps. In the initial step, which is the easy
one, we define integrability and the integral of 2-forms supported in a coordinate patch.
In the second step we resort to partitions of unity to extend the definition to 2-forms
with some very mild restrictions on their support. The restrictions are kind of artificial
and rooted in that the topology of X is not a priori second countable — we simply
assume that the supports of the forms are second countable.

(.) We begin with the easy case that the two-form ω is supported in a coordinate
patch U with coordinate z. So we identify U and z(U) and assume that U is an open
subset of the complex plane. And as usual, we let let z = x + iy. In the plane open
set U the 2-form ω is expressed as ω|U = fdz ∧ dz = 2ifdx ∧ dy, and we say that ω is
integrable over U if the function f is integrable, that is f the function is measurable
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and the Lebesgue integral
∫
U
|f | dxdy is finite. In case ω is integrable, we define the

integral of ω as ∫
X

ω = 2i

∫
U

f dxdy. (.)

By the paragraph (6.2) on page  this condition is independent of the coordinate we
DefIntDisk

use, and by paragraph (6.1) on the same page, the integral in (.) has the same value
whatever change of coordinate we make. Hence the definition is legitimate.

(.) In the second step, we loosen the hypothesis and do not assume that ω has
support in a patch. We say that the 2-form ω is integrable if there is a countable
family of coordinate patches {Di} and a partition of unity {ηi} subordinate to that
family such that the following three conditions are fulfilled

IntegrabelBetingelser

� The form ω is supported in the union
⋃
iDi.

� Each ηiω is integrable in Di.

� The series
∑

i

∫
Di
|ηiω| is convergent.

And then, if ω is integrable, we define∫
X

ω =
∑
i

∫
Di

ηiω. (.)

Of course, it is necessary to establish that the notion of integrability and the definiton of
DefIntegral

the integral do not depend on the choices made, i.e., the choice of the family of patches
and of the partition of unity. To that end, assume that {εj} is a second partition of
unity subordinate to a family {D′j} of coordinate patches fulfilling the three conditions
above. Our task is to establish the following:

Lemma0DefInt

Lemma . With the two sets of data given above, the 2-form ω is integrable with
respect to {εi} and {Di} if and only if it is integrable with respect to {εj} and {D′j}.
In case it is, one has ∑

i

∫
X

ηiω =
∑
j

∫
X

εjω.

The proof will rely on two further lemmas that follow.

Lemma1DefInt

Lemma . The forms εjηiω are integrable over Dj ∩ D′i and one has the equality∫
Di
ηiω =

∑
j

∫
D′j∩Di

εjηiω.

—  —



MAT4800 — Høst 2016

Proof: This is basically a consequence of Lebesgue’s dominated convergence theorem.
Let ω = fdz ∧ dz in the patch Di, and then |ω| = |f | dx∧ dy there. By hypothesis ηiω
is integrable on Di meaning that ηiω is meseaurable and |ηif | has a finite integral over
Di. One has |εjηif | ≤

∑
j<m |εjηif | ≤ |ηif | since

∑
j<m εj ≤

∑
j εj = 1. Hence εjηif is

integrable and by Lebesgue’s dominated convergence theorem one deduces, using that∑
j εj = 1, the equality

∑
j

∫
D′j∩Di

εjηif =

∫
D′j∩Di

∑
j

εjηif =

∫
Di

ηif,

which is just the statement of the lemma, taking into account the definition in step
one of integrals over patches. o

Lemma2DefInt

Lemma . The double series
∑

i,j

∫
D′j∩Di

|εjηiω| converges.

Proof: Let M and N be two arbitrary natural numbers. Using that |εiηiω| = εjηi |ω|
one has the following self explanatory sequence of equalities and inequalities∑

i<N,j<M

∫
X

|ηiεjω| =
∑
i<N

∫
X

∑
j<M

ηiεj |ω| ≤
∑
i<N

∫
X

∑
j

ηiεj |ω| =

=
∑
i<N

∫
X

ηj |ω| <
∑
i

∫
X

ηj |ω| .

o

We proceed to finish the proof of lemma .. By lemma . the double series∑
i,j

∫
X

εiηjω

converges absolutely and the terms can be rearranged at will. In particular we have∑
i,j

∫
X

εjηiω =
∑
i

∑
j

∫
X

εjηiω =
∑
i

∫
X

ηiω

where the last equality was proven in lemma .. A analogous formula with the roles
of ηi and εj interchanged holds true by symmetry , and we conclude that∑

i

∫
X

ηiω =
∑
j

∫
X

εjω,

which is what we intended to establish.
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6.2.5 Stokes’ formula
In Green’s theorem, which is Stokes’ in the plane, there is an issue of the orientation

of the boundary; especially when the boundary disintegrates into several components
that may nested this can be slightly subtle. Normally it is solved by saying that the
the boundary must be traversed with the domain D lying to the port, as a sailor would
say; that is, it lies to the left when you look in the direction of the forward tangent.

When generalizing to a Riemann surface this issue persist, and it resolved in the
same way. The point being that Riemann surfaces are canonically oriented and this
orientation induces a canonical orientation of the boundary. The procedure is the same
as in the plane: Keep the domain to the port. However, on a Riemann surface it can be
challenging to keep track of the different boundary components and their orientations.

Figur .: A domain on a Riemann surface with boundary.

(.) We come to the formulation of Stoke’s theorem; we only need the special case for
1-forms with compact support. The theorem is part of the area of mathematics called
“calculus on differentiable manifolds” and a proof may be found in most text books
covering that area—but since we, contrary to most text books, work with surfaces that
are not a priori second countable, we briskly indicated the salient points of the proof.

Theorem . (Stoke’s theorem) Let D be region in X with a piecewise smooth
boundary ∂D. Let ω be a 1-form with compact support and of class C1. Then the
following equality holds true: ∫

D

dω =

∫
∂D

ω.

The boundary ∂D which appears is a possibly infinite chain, but the support of ω being
compact there are only finitely many non-zero terms to the left. The components of
the boundary ∂D are given the orientation they inherit from the canonical one on X,
i.e., they have the region D on their left. Notice that we do not assume that D is
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connected nor relatively compact. Whether D is open or closed or neither is not an
issue, neither the boundary nor the integral depends on such conditions.

Proof: The tactics are to reduce the theorem to Green’s theorem by use of a partition
of unity. As the support K of ω is compact, it has a finite covering {Di} by disks which
has a partition of unity ηi subordinate to it. Then it holds true that∫

∂D

ω =
∑
i

∫
∂D

ηiω and

∫
D

dω =
∑
i

∫
D

d(ηiω).

Corresponding terms in the two sums satisfy∫
∂D

ηiω =

∫
∂(D∩Di)

ηiω =

∫
D∩Di

d(ηiω) =

∫
D

d(ηiω),

where the equality in the middle comes from Green’s theorem in the plane. The salient
point is that boundary ∂(D ∩Di) can be split into two parts, one being ∂D ∩Di and
the other being contained in ∂Di. On the latter the form ηiω vanishes and we have∫

∂(D∩Di)
ηiω =

∫
∂D

ηiω.

o

Figur .: Randen til omr̊adet i en disk.

(.) We shall frequently use two corollaries of Stokes’ theorem. The first is what
one could call a partial integration formula. If ω is a 1-form and f a function, both of
class C1, one has the equality

d(fω) = df ∧ ω + f dω. (.)

When f and ω are integrable we may integrate over D to obtain the formula∫
D

d(fω) =

∫
D

df ∧ ω +

∫
D

f dω,

and when Stokes’s theorem is applicable, this in turn leads to the formula
PartialIntegration1 ∫

∂D

fω =

∫
D

df ∧ ω +

∫
D

f dω. (.)

PartialIntegrasiom
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(.) The second corollary is fundamental and often in use. It says that integrals
over X of derivatives of forms with compact support vanish. Comparing the statement
in the lemma with the one variable analogue can be instructive. If a smooth and real
function f on R has compact support then

∫
R f
′(x)dx = f(a)− f(b) where a and b lies

on either side of the support, and consequently the integral vanishes.

KompaktStotteForsvinner

Corollary . If ω is a 1-form of class C1 with compact support, one has
∫
X
dω = 0.

Proof: Let γ be a closed, smooth and regular path in X and let B be a tubular
neigbourhood of γ. Then X decomposes in two parts: The band B and its complement
Bc = X \ B. After a short moment of reflection, one realizes that if ∂B = γ1 − γ2,
where γ1 and γ2 are the two boudary components of the band, then ∂Bc = γ2 − γ1; to
put it simply, B and its complement Bc are on opposite sides of ∂B. Hence by Stokes’
formula,

∫
X
ω =

∫
B
ω +

∫
Bc
ω = 0. o

Figur .: A green Riemann surface with a red band

6.2.6 The class of a path
In modern geometry a common technic is to associate to “subgeometric objects” a

cohomology class in a cohomology theory (preferably your favorite one). This vague
statement is made precise in our context. We want to associate to any closed, smooth
path on X a class in the De Rahm cohomology group H1

DR(X). That is, to a closed
path γ, we associate the class of a closed 1-form χγ, which in fact will be smooth and
of compact support, and up to exact forms it should only depend on the homotopy
class of γ.

(.) The starting point is to chose a band B round the path γ, and then shrinking
the band a little to get a band in the band, that is a second and smaller band A lying
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within the first. The portions of A and B lying to the left of the curve are denoted by
A′ and B′, and we put D = B′ \ A′. It is a band lying some distance away and to the
left of the path γ (D is bluish on the figure).

Given the bands above, we define a function f with compact support on X in the
following manner. On A′ it is constant and equals 1, in D it decreases in a smooth
way to zero, and in the complement of B′ it takes the constant value 0. Notice that f
is not continuos. When γ is crossed from the left to the right f jumps from 1 to 0.

Figur .: The different bands surrounding the path γ.

ClassOfClosePath

(.) Then 1-form χγ associate to γ is defined by putting

χγ =

{
0 on γ

df off γ

The support of χγ is evidently contained in the blue band B′ and χγ is of class C∞.
It is exact off γ but not in the entire X, and it a closed form. Evidently the form χγ
depends on the several choices made, but the differences between forms arrising from
various choices wil be exact, so the class [χγ] in the De Rahm group is well defined.

ClassOfPathIntegral
Proposition . When α is a closed 1-form of class C1, one has the equality∫

γ

α = −
∫
X

α ∧ χγ.

In particular the integral
∫
X
α ∧ χγ does only depend on the free homotopy class of γ.

Proof: The support of χγ is contained in region D defined above, and the boundary
of D has two components. We push them a small amount to obtain paths. The one
farthest from γ is pushed slightly farther away into the region where f vanishes. And
the other is moved slightly closer to γ, into the region where f equals one. The resulting
paths are respectively named γ′ γ′′ and they are both homotopic to γ. We find using
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integration by parts, the insensitivity of the integral to homotopy and that fact that α
is closed, the sequence of equalities which finishes the proof:∫

γ

α =

∫
γ′
fα−

∫
γ′′
fα =

∫
X

d(fα) =

∫
X

df ∧ α +

∫
X

fdα =

∫
X

df ∧ α.

o

Finally, we have to see that χγ only depends on the homotopy class of γ:

Proposition . If γ and γ′ are two freely homotopic closed paths, it holds true that
[χγ] = [χγ′ ] in the De Rahm group H1

DR(X).

Proof: It suffices to show that
∫
δ
χγ =

∫
δ
χγ′ for all closed paths δ, since then by

proposition ?? on page ?? the difference χγ − χγ1 is exact. One finds∫
δ

(χ− χ′) =

∫
X

χδ ∧ (χ− χ′) =

∫
χ

χδ −
∫
χ′
χδ = 0,

using proposition . above and the insensitivity of the integral to homotopy. o

Problem .. Show that the class [χγ] does not depend on the choices of the bands
ChiUavhengig

A and B and the function f . Hint: Given two sets of bands, use the largest B and
narrowest A to find a common band for the two situations. If f ′ and f are two choices
of functions, the difference f − f ′ is smooth on the entire surface X. X

Problem .. Show the one dimensional analogue of proposition .: Given a point
a ∈ R define an integrable and positive function ga such that

∫
R fga = f(a) for all C1

functions f . Hint: Partial integration. X

6.2.7 Intersection of paths
From a naive view point two closee paths on X can of course intersected, and the

naive way of measuring how big the intersection is , is just to count the number of
common points. To be able to prove theorems about the intersection, we want the
“measure” or “the intersection product” to e.g., be invariant under homotopy.

Given two closed paths γ1 and γ2. One say that they intersect properly at a point
x if they both are regular near x and their tangents at the point are neither parallel
nor antiparallel. They are in general position if this happens in every point of their
intersection. Any pair of paths can be brought into general position by a homotopy.
Indeed, they can both be brought into piecewise linear paths, and after one has been
moved slightly, if necessary , they will have no common linear components and no com-
mon break points (points where linear components meet). If one insists on smoothing
them, one can do that as before but making the modifications so close to the break
points that smoothing out the corners does not affect the intersection points.
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The tangents to the two curves intersecting propely in a point x are different and
one defines the local intersection multiplicity (γ1, γ2)x at x as 1 or −1 according to the
principal angle1 between the tangents being positive or not. Then of course (γ1, γ2) =
−(γ2, γ1), since the angle from T2 to T1 is the negative of the one from T1 to T2.

Finally, one define the intersection product of the two paths γ1 and γ2 by summing
up all the local contributions; that is, one puts

(γ1, γ2) =
∑

x∈γ1∩γ2

(γ1, γ2)x.

The idea in this paragraph is to express the intersection product as integral of
forms, and in the way se that it is constant on homotopy classes (at least among the
piecewise smooth members) and in executing that Stokes’ theorem will be useful.

we want multiplisities at each intersecton so that sum is an invariant unde homotopy.
If the two curves are reasonably place As an application of Stokes’ we Let c1 and c2

be two homotopy classe and let γ1 γ2 be two paths representin the classes. We may
assume that γ1 both are

6.3 Quatdratic integrable forms

Recall that a 1-form α is measurable form if for any patch (U, z) the functions p and
q appearing in the expression α|U = pdz + qdz are Lebesgue-measurable. Another
measurable form β is equal to α almost everywhere if its component functions in every
patch coincide almost every where with those of α, that is if locally β = p′dz + q′dz
with p = p′ a.e and q = q′ a.e. A change of coordinates does not affect this, as p and
p′ (respectively q and q′) pick up the same factor when the coordinate change.

(.) Recall the two operations ∗α and α we introduced for 1-forms. The ∗-operation
and the conjugation anticommute; that is it holds that ∗(α) = −∗α. Indeed, in a patch
where α = pdz + qdb̀z one has

∗(α) = ∗(pdz + qdz) = −ipdz + iqdz

and on the other hand it holds true that

∗α = −ipdz + iqdz = ipdz − iqdz = −α.

Furthermore one can move the star through the wedge, that is it holds true that:

∗α ∧ β = α ∧ ∗β. (.)

starWedge
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DefNorm
(.) In the previous section we introduced the notion of integrable 2-forms. Now the
turn has come to 1-forms and we are about to explain what we mean by quadratically
integrable 1-forms. So let ω be a 1-form on X and consider the integral

‖ω‖2 =

∫
X

ω ∧ ∗ω. (.)

In case this integral is finite one says that ω is quadratically integrable over X and
DefNorm

(.) serves as the definition of the norm ‖ω‖. That the integral is positive2 unless ω
vanishes almost everywhere is seen as follows. In a patch where ω = pdz+ qdz one has
∗ω = ipdz − iqdz, and hence

ω ∧ ∗ω = (pdz + qd) ∧ (ipdz − iqdz) = (.)

= −i(pp+ qq)dz ∧ dz = 2(|p|2 + |q|2)dx ∧ dy, (.)

and this is a non-negative expression that vanishes if and only if the form ω vanishes
NrmPositiv

almost everywhere. We also observe that p and q are quadratically integrable in the
patch.

(.) It is a matter of easy computations to see that the parallelogram law holds.
That is, one has the equality

‖α + β‖2 + ‖α− β‖2 = 2 ‖α‖2 + 2 ‖β‖2 ,

the corresponding relation between the integrand holds even before we integrate. A
consequence is that the sum (and the difference) of two quadratically integrable 1-forms
is integrable, and hence the quadratically integrable forms form a complex vector space
that we shall denote L2(X).

(.) There is an inner product on the space L2(X) of quadratically integrable forms
that induces the norm we just defined. It is given by the following integral

(α, β) =

∫
X

α ∧ ∗β,

which is finite once both the forms α and β are quadratically integrable. This follows
for instance by integrating the two relations

2 Reα ∧ ∗β = (α + β) ∧ ∗(α + β)− α ∧ ∗α− β ∧ ∗β
2Imα ∧ ∗β = (α + β) ∧ ∗(α + iβ)− α ∧ ∗α− β ∧ ∗β.

1that is the one between −π and π
2Needless to say, the norm ‖ω‖ is the positive square root of the integral in (.).
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Switching the order of α and β results in conjugating the inner product, that is (α, β) =
(β, α), which the following small calculation one has using that ∗α = − ∗ α shows:

α ∧ ∗β = α ∧ ∗β = −β ∧ ∗α = β ∧ ∗α.

In paragraph (6.2) we showed that product is positive definite and we have defined
a genuine inner product.

Proposition . The product (α, β) is a positive definite complex inner product on
the space L2X of quadratically intergrable forms. Hence L2(X) is pre-Hilbert space.
One has (∗α, ∗β) = (α, β).

Proof: The only thing that is not already shown is the formula (α, β) = (∗α, ∗β). To
that end we offer the following computation∫

X

∗α ∧ ∗ ∗ β =

∫
X

∗α ∧ −β =

∫
X

α ∧ ∗(−β) =

∫
X

α ∧ ∗β.

o

(.) The space L2(X) of quadratic integrable 1-forms is in general not a complete
vector space. Our surfaces X are for the moment not even second countable, so we
must live with not knowing whether L2(X) is complete or not, that is can not assume
it is. However, this functions well with a little care.

Among the many situations when L2(X) is complete The easiest case to establish
is when X is compact. For the sake of completeness (!!) we sketch a proof in that
case. Any Cauchy sequence {ωn} in L2(X) of global forms induces in a any patch
U a Cauchy sequence in the space L2(U), and we know from real analysis that this
space is complete. Hence we get quadratically integrable function φU to which the
sequence {ωn|U} converges. The rest of the proof consists of checking that the ω|U can
be patched together to a global quadratically integrable form ω and that the original
sequence converges to ω in L2.

Proposition . If X is compact, the space L2X is complete, hence it is a Hilbert
space.

Proof: We have the Cauchy sequence {ωk} in L2(X); that is ‖ωn − ωm‖X → 0 when
n,m→∞. Let {Ui} be a family of patches, finite since X is compact, and let {ηi} be
a partition of unity subordinate to {Ui}. Then given ε > 0 we have

‖ωn − ωm‖X =
∑
i

‖ηiωn − ηiωm‖Ui

On the other hand we have ‖ωn − ωm‖Ui ≤ ‖ωn − ωm‖X hence {ωn|Ui} is a Cauchy se-
quence in the space L2(Ui). This space is complete and the sequence {ωn|Ui} converges
to a 2-form ωU in L2(Ui).
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On the intersections Ui ∩ Uj one obviously has that ωUi = ωUj a.e, since they are
L2-limits of the same sequence. A small argument implies that they can be altered on
a set of measure zero to patch together to a global 2-form ω. Indeed, if Kij denotes the
set in Uij where they disagree, the finite union K =

⋃
i,jKij is a set of measure zero.

Letting χK denote the characteristic function of K (the one that equals 1 on K and 0
off) one sees that the forms χKωUi agree on the intersections, and patch together to a
global measurable (even locally integrable) form ω.

It remains to see that ω is quadratically integrable and that the sequence {ωn}
converges to ω in L2(X). We find

‖ω − ωn‖X =
∑
i

‖ηiω − ηiωn‖X ≤
∑
i

‖ω − ωn‖Ui .

Given a positive ε there is an N such that ‖ω − ωn‖Ui < ε for n > N . A priori this N
depends on i, but the covering being finite the largest work for all i. Hence for n > N
one has

‖ω − ωn‖X < rε

where r is the number of patches, which is a constant in the context, and we are
through. o

6.4 A closer study of L2X

Weel technique, E1
∞(X) denote the set of smooth 1-forms on X with compact support.

There is an avatar of Stokes’ theorem for such functions, namely∫
X

d(ηω) = 0

for any C1 form ω, indeed Stokes gives

(.) We introduce two closed subspaces E and E∗ of L2(X). The first space E is the
closure of the subspace consisting of the exact forms dη where η runs through all smooth
functions with compact support; that is E is the closure of the set { dη | η ∈ C∞0 (X) }
in L2(X). This means that any form ω in E is the L2-limit of a sequence {dηi} of
differentials of smooth functions ηi with compact support.

The other subspace E∗ is analogously defined as the closure of the space whose
elements have the shape ∗dη for η smooth with compact support; that is, it is the
closure of the set { ∗dη | η ∈ C∞0 (X) }. So to say, the space E∗ is just the star of E.
The spaces E and E∗ are closed vector subspaces of L2(X).

SnittNull
Lemma . The two subspaces E and E∗ are orthogonal, in particular they have no
non-zero common element.

—  —



MAT4800 — Høst 2016

Proof: Let to begin with ε and η be two smooth functions whose supports are
compact. We compute using partial integration and obtain

(dε, ∗dη) = −
∫
X

dε ∧ dη = −
∫
X

d(εdη) = 0,

where the last equality holds since εdη has compact support (proposition . on page
). Assume now that α = limi εi and β = limj ∗ηj are elements in E and ∗E
respectively, so that the εi-s and the ηj-s all lie in C∞0 (X). As the inner product is
continuous in L2-norm, we get from the above that

(α, β) = (lim
i
εi, lim

j
ηj) = lim

i,j
(εi, ∗ηj) = 0.

o

(.) The orthogonal complements of E and E∗ are of basic interest. They consist
of what one respectively calls weakly closed and weakly co-closed forms. The elements
of E∗⊥ are by definition those integrable forms satisfying (ω, ∗dη) = 0, whereas those
in E⊥ are characterized by the relation (ω, dη) = 0; in both cases the equalities must
remain valid for all η ∈ C∞0 (X).

The reasons behind the names “weakly closed” and ”weakly co-closed” become clear
with the lemma below. It tells us that sufficiently regular forms in E∗⊥ are genuinely
closed, and those in E⊥ are genuinely co-closed:

WeaklyClosed

Lemma . Assume that ω is a quadratically integrable C1-form. Then ω belongs to
E∗⊥ if and only if ω is closed, and it belongs to E⊥ if and only if it is co-closed.

Proof: By partial integration the relation

(ω, ∗dη) = −
∫
X

ω ∧ dη =

∫
X

d(ηω)−
∫
X

ηdω,

holds for all smooth functions η with compact support. The support of η being compact
one has

∫
X
d(ηω) = 0 after corollary . on page .. This yields

(ω, ∗dη) = −
∫
X

ηdω.

The first part of the lemma now follows since the integral to the right vanishes for all
η ∈ C∞0 (X) if and only if dω = 0. The proof of the second part of the lemma is mutatis
mutandis the same as of the first. o
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(.) The orthogonal complement to the space spanned by smooth co-closed and
compactly support forms are the weakly exact forms. If such a form is of class C1 it is
genuinely exact.

WeaklyExactC1

Proposition . A quadratically integrable 1-form ω of class C1 is exact if and only
if (ω, β) = 0 for all smooth co-closed forms β with compact support.

Proof: Assume (α, β) = 0 for all co-closed, smooth and compactly supported forms
β. To see that ω is exact, it suffices by the theorem of vanishing periods (theorem .
on page ) to see that

∫
γ
ω = 0 for every loop γ. In paragraph (6.2) on page 

we constructed the De Rahm class of loops γ. They are represented by a real, smooth
and closed forms χγ with compact support, and their constituting property is that∫

γ

α =

∫
α ∧ χγ

for all closed C1-forms α. We deduce from this, using that ∗χγ is co-closed, the following

0 = (ω, ∗χγ) =

∫
X

ω ∧ ∗(∗χγ) = −
∫
X

ω ∧ χγ = −
∫
γ

ω,

and we are done.
The other implications follows easily by use of partial integration. Indeed,assume

ω to be exact and let ω = df where f is a C2-function on X. For any 1-form β being
smooth, co-closed and of compact support, we find

(df, β) =

∫
X

df ∧ ∗β =

∫
X

d(f (∗β))−
∫
X

f d(∗β) =

∫
X

d(f ∗β) = 0.

where we use that integrals over X of closed forms of compact support vanish (corollary
. on page ) and that ∗β is closed. o

Problem .. Show the “co-version” of proposition . above. That is ω is co-exact
if and only if (ω, β) = 0 for all closed β, smooth and of compact support. X

The space of harmonic forms
By far the most interesting subspace of L2(X) is the subspace H = E⊥ ∩ E∗⊥. By

trivial and elementary linear algebra one sees that (E ⊕ E∗)⊥ = E⊥ ∩ E∗⊥ This has
several consequences. First all, there is a direct sum decomposition

L2 = E ⊕ E∗ ⊕H.

Secondly, the technical lemma below shows that the space H is the subspace of L2(X)
consisting of the quadratic integrable forms one calls weakly harmonic, and combining
this with the miraculous Weyl’s lemma one concludes that the forms in H are genuinely
harmonic, and this is the main theorem of the present section. Such a result is serious
bootstrapping; we start out by forms that are merely measurable with finite integrals,
and end up concluding that they in fact are smooth.
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(.) A technical lemma The technical lemma is formulated in a real setting, which
possibly makes it a little more transparent. The setting is local and computations take
place in a patch U in X with coordinate z = x+ iy. We are given a form ω expressed
as ω = pdx + qdy which is integrable in U , and we shall make use of test-functions η
that are smooth and compactly supported in U . The point of the lemma is to express
the integral of p and q against the Laplacian ∆η of η in terms of the inner product on
L2(X) and thus preparing the ground for applications of Weyl’s lemma.

TekniskLemma

Lemma . Let η be a smooth and real function in a patch (U, z) whose support is
compact. Then one has the two equalities

(ω, dηx − ∗dηy) =

∫
U

p∆ηdx ∧ dy,

(ω, ∗dηx + dηy) =

∫
U

q∆ηdx ∧ dy.

Proof: This is a matter of some simple computations. One has

dηx = ηxxdx+ ηxydy and ∗ dηy = −ηyydx+ ηxydy

Hence the equality

dηx − ∗dηy = (ηxx + ηyy)dx = ∆ηdx,

which yields the first equation in the lemma:

(ω, dηx − ∗dηy) =

∫
X

ω ∧ ∗(∆ηdx) =

∫
U

p∆ηdx ∧ dy.

To show the second equation one applies the first to the form −(∗ω) = qdx − pdy
observing that

(−(∗ω), dηx − ∗dηy) = (ω, ∗dηx + dηy)

since (∗α, ∗β) = (α, β). o

(.) The impact of this technical lemma is that the Hodge-components of a form
α in H are weakly harmonic; in other words, if α = pdx + qdy in a patch (U, z), the
two component functions p and q are weakly harmonic. Indeed, for any smooth η with
compact support in U the two left integrals in lemma . vanish since α lies in both E⊥

and E∗⊥. Consequently the right integrals vanish also, and this is just the definition
of p and q being weakly harmonic.

By Weyl’s lemma xxx on page xxx, it follows that p and q are harmonic functions,
and we are more than half way in the proof of the following:

Theorem . Assume that ω is a quadratically integrable form. Then ω is harmonic
if and only if ω ∈ H.
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Proof: Assume that ω lies in H. We found out just before the theorem that the
local component functions of ω in any patch are harmonic. In particular, the form
ω is smooth. By lemma . it is therefore both closed and co-closed and hence is a
harmonic form, as follows from proposition . on page .

To establish the implication the other way let ω be a harmonic form. By the
observation in the paragraph about harmonic forms (paragraph 6.2 on page ) the
form ω is at the same time closed and co-closed, and being smooth it therefore belongs
to both E⊥ and E∗⊥ by lemma .. o

6.4.1 Relation with the De Rahm group
The main theorem about harmonic forms has several severe consequences and is

really the hub of the theory. For instance, it establishes a very close relation between
the space of harmonic forms and the De Rahm group.

Proposition . Any class [ω] in the De Rahm group H1
DR(X) is represented by a

harmonic form. In case X is compact, the harmonic representative of a class is unique,
hence H and H1

DR(X) are isomorphic vector spaces.

The proposition says that the canonical map H → H1
DR(X) sending a form α to its

class [α] always is surjective. In particular if the De Rahm group H1
DR(X) is non-zero,

on can conclude that there are harmonic forms on X. In the compact case the canonical
map is even an isomorphism.

For instance this implies that the classes of closed paths, i.e., classes of the shape
[χγ] are represented by harmonic forms αγ, which in the compact case is uniquely
defined by the free homotopy class of [γ]. In the non-compact case the map is not
injective, e.g., the derivative of any holomorphic function will lie in the kernel.

Proof: Pick any closed ω of class C1 (closed formes forcibly are). As L2(X) =
E⊕E∗⊕H the space of weakly closed forms E∗⊥ obviously satisfies E∗⊥ = E⊕H. The
form ω being closed is weakly closed and lies in E∗⊥. It can therefore be decomposed
as a sum

ω = β + α

with β ∈ E and α ∈ H. Harmonic forms are closed so it holds that 0 = dω = dβ+dα =
dβ. Hence β is closed, and being the difference between two forms of class C1 it is C1

as well.

Now, let γ be any loop in X. It has a closed form χγ associated with it and, β
being closed and C1, the first equality below holds true (by proposition . on page
) ∫

γ

β = (β, ∗χγ) = 0,

and the second holds since χγ is co-close and hence lies in E⊥. By the theorem of
vanishing periods, the form β is exact, and it follows that [ω] = [α].
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If the Riemann surface X is compact, it has no globally defined harmonic functions
on it, so harmonic forms can not be exact. In other words, the canonical map H →
H1
DR(X) is injective. o

Problem .. Assume that γ is loop in X that is non-separating meaning that the
complement X \ γ is connected. Show that there is harmonic form α on X such that∫
γ
α = 1. X

6.5 Existence of harmonic functions

It is of course a fundamental result that on any Riemann surface X there are non-
constant meromorphic function. The study of a Riemann surface is for most of its
parts based on understanding the meromorphic functions that live on it. Finding a
meromorphic function on a Riemann surface is not a trivial matter, and the result
is specific for Riemann surfaces, that is for analytic manifolds of complex dimension
one. Already in dimension two there are examples of manifolds without non-constant
meromorphic functions. Finally, Riemann surfaces turn out to have lots of meromorphic
functions, but to begin with, we will be happy to just find for one!

auxFu

(.) An auxiliary function We shall need the function h(z) = z−n + zn which is
harmonic for z 6= 0 being the sum of a holomorphic and an anti-holomorphic function.
It has the property that the angular part of its conjugate differential ∗dh vanishes on
the unit circle, so that by Stokes’ theorem we obtain:∫

D
d(η ∗dh) =

∫
∂C
η ∗dh = 0, (.)

for any η of class C1 around the unit disk. A little computation yields that
AuxOne

∗dh = niz−n
dz

z
+ nizn

dz

z
, (.)

and on the unit circle, where z = eit, we find dz/z = idt and dz/z = −idt, and (.)
AngularPart

reduces to the equality

∗dh|∂D = −n(z−n − zn)dt = 0

since z−1 = z on D.
The function we shall use is an avatar of the function h being h made smooth in

a smaller disk D′ about the origin. Let D′′⊆D′ be another small disk and choose a
smooth function in D that vanishes on D′′ and equals one in D⊆D′. Then g = ηh is
a smooth function in D which equals h in the annular region D \D′.
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(.) Let us agree to say that a complex harmonic function u in X \ {x} has a pole
of order n at the point x if there is a patch (U, z) centered at x such that for some
non-zero complex constant a the function u − az−n on U \ {x} can be extended to a
harmonic function in U . Of course, from the point of view of singular behavior the
real and the imaginary parts Reu and Imu resemble Re az−n and Im az−n near x. For
instance if the real part of a harmonic function behaves like (αx− βy)(x2 + y2)−1 near
a simple pole with a = α + iβ.

(.) The main theorem whose proof occupy the rest of this section is the following;
it asserts that we always can find a harmonic function on X with just one pole where
the singular behavior is prescribed:

HarmFuFinnes

Theorem . Let X be a Riemann surface and let x0 ∈ X and let x0 be a point. Let
n be a natural number. Then there exists a harmonic function u in X \ {x0} having a
pole of order n at x0. Furthermore there is a neighbourhood U of x0 such that

� u− z−n is harmonic in U ,

� ‖du‖X\U <∞,

� (du, dη) = (du, ∗dη) = 0 for all smooth η having compact support and vanishing
in U .

(.) The set up In this paragraph we describe set up and the main ingredients of
the proof of theorem . above. The situation is as follows. We fix a point x0 in the
Riemann surfaces X and additionally we fix two disks D′ and D both centered at x0

and D′ being the smaller. The open annulus D \D′ will be denoted by A.
Furthermore we are given a smooth function θ in a neighbourhood of D, harmonic

in the annulus A and havimg the property that the angular component of ∗dθ vanishes
along the boundary ∂D of D so that (.) holds for ∗dθ. Of course our favorite
example of such a function is the function g we studied in paragraph (6.1); which can
be transported to X once we choose a coordinate in D making D a disk of radius one.

(.) The main player and the first lemma The main player in the proof is the
1-form Θ on X defined by

Θ =

{
dθ in the closed disk D

0 outside the closed disk D i.e., in X \D

It certainly not smooth having a discontinuity across the boundary ∂D, but it evidently
lies in L2(X), since the norm ‖Θ‖X equals the integral

∫
D
|θ|2 which is finite. And

clearly Θ is of compact support.
Now, the Hilbert-space L2(X) of quadratic integrable forms on X decomposes in

the orthogonal direct sum E ⊕ E⊥ and consequently the form Θ nay be written as
Θ = α+ β where α ∈ E and β ∈ E⊥; recall that E⊥ = E ⊕E∗ ⊕H. The main lemma
in the proof of theorem . above is the following
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Lemma . The form α is harmonic off the smaller disk D′, that is, it is harmonic
in X \D′.

Proof: Once we have established that α is smooth, it follows from lemma . that α
is a closed form since α belongs to E and E ⊕ H = E∗⊥, and it will be co-closed as
well. Indeed, near points in the annulus A it holds true that α = dθ − β and dθ being
smooth β is smooth and both are co-closed since the function θ is harmonic in A and
β lies in E⊥. In the vicinity of points outside the disk D, one has α = −β, so when α
is smooth, β will be as well and hence both are co-closed by proposition . on page
.. It follows from proposition . on page  that α harmonic.

In the disk D we express α as α = pdx+ qdy. To prove that α is a smooth form we
once more appeal to Weyl’s lemma, and it will suffice to find a neighbourhoods round
all points not belonging to D′ where p and q are weakly harmonic. That is, we must
exhibit neighbourhoods U such that∫

U

p∆η =

∫
q∆η = 0

for all smooth functions η supported in U , and we can as well require the neighbour-
hoods to be disks. To this end we shall make use of the technical lemma . on page ,
and check that (α, dη) = (α, ∗dη) = 0 for all smooth functions η compactly supported
in U .

Since E⊆E∗⊥, the equality (α, ∗dη) = 0 is for free. For the other equality, one
observes that β ∈ E⊥, so that (β, dη) = 0 for all η ∈ C∞0 (X) , hence (α, dη) = (Θ, dη).

For any disk U in X \ D′ one may write U = U1 ∪ U2 with U1 = U ∩ A and
U2 = U ∩X \D. We find, by partial integration and Stokes’ theorem the equalities for
η is supported in U

(Θ, dη) =

∫
U

Θ ∧ ∗dη =

∫
U1

Θ ∧ ∗dη =

∫
U1

d(η ∗Θ) =

∫
∂U1

η ∗dθ = 0

where the last integral vanishes for the following reason: The boundary ∂U1 has two
components. One is part of ∂D, and there ∗dη vanishes by hypothesis, and the other
is disjoint from the support of η. Hence η ∗dθ vanishes there as well. o

(.) The second lemma The next lemma concerns the behavior of α near the
basepoint x0, that is the behavior in the smaller disk D′, We shall appela to lemma
.. Let η be smooth of compact support in D. Using that dθ and ∗dηy are orthogonal
we find

(dθ, dηx) =(dθ, dηx − ∗dηy) =

∫
θx∆η

(α, dηx) =

∫
p∆η
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and since θ − α = β ∈ E⊥ it holds true that∫
(p− θx)∆η = 0

for all η. A reasoning, mutatis mutandis the same, shows that∫
(q − θx)∆η = 0

for all η as well.
Hence by Weyl’s lemma α − dθ is smooth in D, and since θ is smooth, it follows

that α is smooth in the entire Riemann surface X.
Lemma2ExHarm

Lemma . The form α is smooth and exact in X, and α − Θ is harmonic in the
disk D.

Proof: We already established that α is smooth, and by a by now standard reasoning,
α−Θ is harmonic. It remains to see that α is exact. Now α ∈ E, and by lemma . on
page . all co-closed smooth forms are orthogonal to α. By proposition . on page
 we conclude that α being smooth, is exact. o

(.) Proof of theorem . So far the function θ was not explicit, however we use
a θ constructed with the help of the auxiliary function from paragraph 6.1.

The form α is exact, so let α = df where f is a smooth function on X which is
harmonic in the complement of the smaller disk D′. Let u be the function defined by

u =

{
f − θ + h in D \ {x0}
f in X \D′

In the intersection of the two domains, that is the annular region A, the two definitions
agree since h = θ there and consequently u is well defined everywhere away from
x0. It his clearly harmonic outside D′, since f harmonic there, and in D′ \ {x0}
lemma . tella us that f − θ is harmonic a priori the function h is harmonic, and
u− z−n = f − θ− h− z−n = f − θ− zn is clearly harmonic in D′. This proves the first
part of the theorem.

For the remaining two statements, take neighbourhood U to be D. outside D it
holds that du = α which lies in L2(X). As α lies in E it is orthogonal to forms of type
∗dη with η having compact support, and off D it holds true that α = −β which by
choice lies in E⊥.

6.6 Existence of meromorphic functions

The aim of this section is to show that every Riemann surfaces has a non-constant
meromorphic function; that is
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6.6.1 Recap on meromorphic forms
Recall that a 1-form on X is said to be meromorphic if there is an open dense set

V such that ω is holomorphic on V , and if there is a covering of X by patches (U, z)
such that ω = f(z)dz where f is meromorphic in U . The ω is properly defined away
from the poles of the f ’s, and these form a discrete set P in X. We may assume that
patches (U, z) are disks each containing just one pole at the origin.

(.) Assume now that ω is a given meromorphic form on X, and that (U, z) is a
coordinate patch around a point x in X. Let (V,w) be another patch around x. In the
intersection U ∩V the relation between the coordinates z and w has the form w = w(z)
where w is biholomorphic. In the patch (V,w) one has an expression ω = g(w)dw and
therefore ω = g(w(z))∂zw dz in U ∩ V . Hence the identity

g(w(z))∂zw = f(z)

holds true in U ∩ V and ∂zw vanishes nowhere in U ∩W the coordinate w depending
biholomorphically on z.

One observes that since ∂zw is biholomorphic it holds true that ordw(x)g(w) =
ordz(x)f(z). Hence one can speak about the order ordxω of the meromorphic differential
ω at x, and therefore also the divisor (ω) of the meromorphic form ω. It is given as
(ω) =

∑
x∈X ordxω. This divisors is positive if and only if ω is holomorphic, and it is

an easy exercise to check that (fω) = (f) + (ω) for any meromorphic function f on X.

(.) Given two non-zero meromorphic forms on the Riemann surfaces X. In some
sense their “quotient” is a meningfull construct, and it is a meromorphic function on
X. In a precise formulation; given two meromorphic forms ω1 and ω2 then there is
unique meromorphic function f such that ω1 = fω2, and f evidently merits the name
“the quotient of ω1 by ω2”.

Indeed, locally in a patch (U, z) the two forms satisfy relations like ωi = fi(z)dz
where the fi’s are meromorphic functions none of which vanishes identically. In another
coordinate patch (V,w) the forms are shaped like ωi = gi(w)dw, and the transition
relations on U ∩ V have the form

gi = fi∂zw.

Hence the quotients g1/g2 and f1/f2 coincide on the intersection U ∩ V and therefore
can be patched together to give a meromorphic function on U ∪ V . The quotient
formed on the patches in an atlas in this way, fit together to give a global meromorphic
function on X.

Example .. On the Riemann sphere Ĉ the form ω = dz is meromorphic. In the
patch C∗ = U∞ ∩ U0 the relation z = w−1 holds, so that dz = −w−2dw there. Hence
dz has a pole of order 2 at infinity. Every other meromorphic form on the Riemann
sphere is shaped like f(z)dz where f is any function meromorphic in Ĉ; that is, f is
any rational function. e
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6.6.2 Existence of meromorphic forms
The theorem xxx tells us that there are harmonic functions on X with a prescribed

singular behavior at a given point in X. Recall the way to obtain a holomorphic
function with a given real harmonic function u as real part in a domain Ω. One forms
the conjugate differential ∗du and tries to integrate it, and in case of success in writing
∗du = dv, the function f = u+ iv will be holomorphic.

We mimic this process mutatis mutandis to obtain a holomorphic 1-form from a
harmonic one. If α is harmonic, it is patchwise presented as α = pdz + qdz where p
and q are holomorphic. An easy computation shows that α + i ∗ α = 2pdz, and hence
α + i ∗ α is holomorphic.

To get hold of meromorphic 1-forms, we start with the function u given us in
theorem . that is harmonic in X \ {x} and behves like z−n near x. The differential
du is a harmonic form in X \{x} and near x it can be expresses as (−nz−n−1 +φ(z))dz
with φ harmonic in the vicinity of x. It follows that du+ i ∗du is holomorphic inan x.
We have thus established the following theorem

ExistenceOfMeroForms

Theorem . Let X be a Riemann Surface, x ∈ X a point and n a natural number.
Then there is a meromorphic 1-form on X having a pole of order n+ 1 at x as its sole
singularity.

(.) Now, we are ready for finding a non-constant meromorphic function on X, and
naturally, we shall exhibit it as the “quotient” of two meromorphic forms. To this end,
pick two different points x1 and x2 on the Riemann surface. By theorem . above X
affords to meromorphic forms ω1 and ω2 having a pole of order two respectively at x1

and x2 and having no singularities elsewhere. Then ω1 being holomorphic at a point
where ω2 has a pole, is not a constant multiple of ω2, and hence “quotient” f with
ω1 = fω2 is not constant. We thus proved

Theorem . Let X be a Riemann surface. Then X has a non-constant meromorphic
function. In other words, there is a non-constant holomorphic map f : X → Ĉ

Notice that even if we control the poles of the two forms completely, we have no
control at all on their zeros. Hence the fibre of f over the point at ∞ (or over 0 for
that matter) can contain several other points than x1, and it usually does. Indeed, any
zero of ω2 that is not cancelled by a zero of ω1 will be a pole of f .

In case X is compact it has a degree but the theorem says nothing of this degree.
For most Riemann surface it is not two. Those Riemann surfaces being double covers
of the Riemann sphere are called hyperelliptic and, expressed in a very vague way, they
form a “thin” part of all Riemann surfaces at least if the genus is as 3 or more. Compact
Riemann surfaces of genus g may be parametrized by a space of dimension 3g− 3 and
the hyperelliptic ones correspond to points in a subspace of dimension 2g − 1.

(.) The first consequence of having a meromorphic function, is that the topology
of X is second countable. One may even show that X is triangulable.
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Proposition . If X is a Riemann surface, then X is second countable

Knowing that there is a non-constant holomorphic function f : X → Ĉ, this is
an immediate consequence of the proposition lemma that usuallu goes under name of
the Poincaré-Volterra lemma—indeed a holomorphic map has discrete fibres (propo
xxxx). The Poincaré-Volterra lemma was proved independently by Poincaré and Vol-
terra in , but it seems that the statement is due Cantor. One consequence of the
proposition above is

Corollary . Let X be a Riemann surface and let X̃ be a universal cover. Then the
natural map X̃ → X has countable fibres. The fundamental group π1(X) is coutable.

Proof: In a second countable space discrete sets must be countable; indeed if D⊆X
is discrete, there is for each x ∈ D an open set U from any basis with U ∩D = {x}. o

(.) The old-timers expressed this by saying that a holomorphic function takes “at
most countably many values” in a point. This is a little like log z which we know
is defined only up to multiples 2πi. Frequently when a function is e.g., defined by
a differential equation or an algebraic equation in a domain Ω, there are several local
solutions. On the universal cover Ω̃ these patch together to a global solution f : Ω̃→ C,
and the different local values at a point z correspond to the fibre over z of the natural
map Ω̃→ Ω.

(.) Here comes the Poincaré-Volterra lemma; the proof is an exercise in general
topology:

Proposition . Assume that X is a connected topological manifold and that f : X →
Y is a continuous map to a Hausdorff space Y whose fibres are discrete. If Y is second
countable, then X is.

Proof: The proof has two stages. First we define a particular basis B for the topology
on X and secondly we show that this basis is countable.

In the first stage, we begin with a countable basis U for the topology on Y of open
sets. For any U from U the different connected components of f−1(U) can be second
countable or not, and we include those which are in B. So B of all components of
inverse images f−1(U) that are second countable. We claim that B is a basis for the
topology of X. Notice that since X is a locally connected space, the components of
the open sets f−1U are all open.

To this end, let x ∈ X and let V a open neighbourhood of x. We must come up
with a set B from B with x ∈ B⊆V . Using that X is a manifold, there is a relatively
compact W neighbourhood of x homeomorphic to a ball in some euclidean space, in
particular it is second countable, and since the fibre f−1(f(x)) where x belongs, is
discrete, we may choose W so that W ∩ f−1(f(x)) = {x}.

The image f(∂W ) of the boundary of W is compact and closed and contains x.
Hence there is an open set U from the basis U containing f(x) which is disjoint from
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f(∂W ). Let B be the connected component of f−1(U) where x lies. We claim that
B⊆W , and hence B is second countable and belongs to B. Since B ∩ ∂W = it holds
that

B = (B ∩W ) ∪ (B ∩X \B)

The two sets appearing in the union are open and the union is clearly disjoint. Hence
B, being connected, must equal one of the sets and the other is empty. As x ∈ B ∩X,
it must hold that B = B ∩X, and therefore B⊆W .

The second stages starts with the elementary observation that only countably many
of the connected components of f−1(U) can intersect a given B from B.

Let Bn be the subset of B of those B’s that can be connected with B0 theorug a
chain of sets from B of lebgth n+ 1: that is the sets for which there exsists a sequence
B0, . . . , Bn og sets from B with Bn = B and Bi ∩ Bi+1 6= ∅. Since X is connected it
holds true that

⋃
Bn = B. Evidently the union

⋃
B∈Bn,nB is open and connected and

therefore meets every element B from B. This implies that B meets some B′ in some
Bn hence B belongs to Bn+1.

To see that B is countable it suffices to see that each Bn is, and this follows by
induction: There are only countably many possible B’s from B that meets a given A
in Bn, and hence Bn+1 is countable if Bn is. o

Example .. Assume that X has a holomorphic 1-form that never vanishes. Show
that there is meromorphic function f2 and f3 with a double and a triple pole at x as
only singularities. Show that there is a non trivial cubic polynomial P (x, y) such that
P (f3, f2) = 0.

Problem .. Let D =
∑

x nxx be a positive divisor; i.e., nx ≥ 0 for all x and as
usual, the nx’s form a locally finite familly. Let L(D) be the space of meromrphic
functions f with (f) ≥ −D. Show that dim L(D) ≤ degD + 1. X
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7. Del

The uniformization theorem

On the road to the uniformisation theorem, we exploit theorem ?? to find a mero-
morphic function f on a simply connected Riemann surface X having a simple pole
as its sole singularity. This gives a holomorphic map f : X → Ĉ whose fibre over the
point ∞ is just one point and that point counts with multiplicity one. Hence when
f is proper it must be an open embedding as follows since the fibres of proper maps
all have the same number of points (counted with multiplicities). The image f(X) is
therefore a simply connected domain, so if is not the entire Riemann sphere Ĉ, and it
is either biholomorphic to C or D by Riemann mapping theorem. But properness of
the map, is quite sublet.

7.0.1 The point of departure
From what our study of harmonic functions in the previous chapter, we easyly

deduce that any Riemann surface carries non-constant meromorphic functions with
just one pole and that pole is simple, and this function is our point of departure, and
in the end of the day f will turn out to be an open immersion, that is it will be a
biholomorphic between X and f(X), and f(X) is an open subset of Ĉ by the Open
Mapping Theorem. This follows immediatly if we know that f is proper since fibres
of proper maps have the same number of points when counted with the appropriate
multiplicity, and the f one simple pole its fibre over ∞ has just one point. However
this a rather long way to go that we start on here.

Proposition . Let X be a simply connected Riemann surface and p0 ∈ X a point.
Then there is a meromorphic function f on X having a simple pole at p0 as sole
singularity. For any open U containing p the Diriclet norm of f satisfies ‖df‖X\U <∞
and forthermre it holds true that (df, dη) = (df, ∗dη) = 0 for any smooth function η of
compact support not meeting U .

Proof: From the existence theorem of harmonic functions . on page  we obtain
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a function g that is harmonic in the set X \ {p0} and has a singular behavior like z−1

at p0. Let u = Re g. The differential ω = du + i ∗du is holomorphic in X \ {p0} and
has the shape −z−2dz + φ near p0 where φ is holomorphic near p0.

We claim that ω is exact in X \ {p0}. Indeed, since X simply connected, either
X \{p0} is simply connected or its fundamental group is Z generated by a small circle c
round p0. But then

∫
c
ω =

∫
c
z−2dz+

∫
c
φ = 0, so by the Theorem of Vanishing Periods

one has ω = df for a holomorphic function on X \ {p0}, and clearly the principal part
of f at p0 equals z−1.

Notice that f = u+ iv where v is harmonic function such that dv = ∗du away from
p0.

As to the statement about the norm, a standard calculation using properties of the
inner product and that u is real one deduces that

(df, df) = 2(du, du)

and the statement about ‖df‖U follows from the theorem .. o

(.) One small observation is that if X is compact, the degree of f is one and hence f
is an isomorphism between X and the Riemann sphere. So the only compact Riemann
surface of genus zero is the Riemann sphere. Phrased in a slightly different manner,
there is up to isomorphism only one analytic structure on the two-sphere.

7.0.2 Notation
The proof centers around the subsets of X where either the imaginary part u of f or

the real part v of is bounded from one side, and it is convenient to introduce a notation
for these sets. So for α a real number we let Let Zα = u−1(−∞, α] = { p | u(p) ≤ α },
and Zα = u−1(−∞, α] = { p | u(v) ≥ α }. The corresponding sets where imaginary
part is bounded from either side are denoted by Wα and Wα.

An essential part of the proof is to control the asymptotic behavior of f(p), that is
when p is far away from the base point p0. The presise menaing of this is as follows.

The main ingredient in the proof is the following property

Proposition . The function u(x) tends to zero when x tends to infinity in X \D.
That is, for every ε > 0, there is a compact set K ⊆X \D such that |u(x)| < ε when
x /∈ K (but x ∈ X \D).

First of all, it suffices to show that the restriction of f to the inverse image of any
half plane is proper. Indeed, any compact set in Ĉ is contained in a half plane, and by
a benign coordinate shift in C we we can assume the half plane to be the upper half
plane.

Lemma . If u = Re f then for any ε > 0 there is a compact set K with x ∈ K such
that |u(z)| < ε when z /∈ K.

—  —
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(.) The lemma we prove in this paragraph is fairly general and is valid for any
continuous function u on a topological space X (which will be a Riemann surface for
us). We say that the function u tends to a value c when p tends to infinity if and only
if for any positive ε given, there is compact K in X such that |u(p)− c| < ε whenever
p /∈ K. In a similar manner we say u(p) teds to infinity, if there for any constant C
one may find a compact K in X with u(p) > C for all p not in K. We introduce some
notation and for constants c and d we let Xc = u−1(−∞, c] and Xd = u−1[d,∞)

Lemma . Let u be any real function on the topological space X. Either u(p) tends
to a value c when p tends to infinity, or u(p) tends to ±∞, or one may find α < β
such that neither Xα = u−1(−∞, α] nor Xβ = u−1[β,∞) is compact.

Proof: Assume that neither of two first three possibilities occur. If all the sets
Xα = u−1(−∞, α] were compact u(x) would evidently tend to infinity with x, and if
all Xβ = u−1[β,∞) were compact u(x) would tend towards −∞. Hence there is at
least one pair α, β with both sets Xα and Xβ non-compact. If α and β are different
we are through, so assume α = β. Given ε > 0. If Xα−ε or Xα+ε is non-compact we
are through; indeed, we may use one of the pairs Xα−ε, X

α or Xα, X
α+ε according to

the case. So we can assume that K = Xα+ε ∪Xα−ε is compact. In its complement it
holds that |u(x)− α| < ε, and hence u tends towards the constant α. o

(.) To apply this lemma we need to get rid of the cases that u(p) tends to ±∞.
We have our function u whose derivate is dα it is smooth and harmonic off a small but
fixed disk D about the base point p0. The conjugate differential ∗dα is closed and since
we work on a simply connected surface it is exact. Hence u has a conjugate function
v with dv = ∗α. It is smooth and harmonic where u is, that is off D. The constant
C = max(supp∈D |u| , supp∈D |v|) plays a role in what follows.

Lemma . The function v does not tend to ±∞ in Xc.

Proof: Assume that v tends to infinity in Xc. Let d > C, and let W = u−1[−∞, c)∩
v−1[d,∞) and assume that W is compact. Since d > C the disk D is lies in the exterior
of W . The boundary ∂W has two components B1 and B2. One, say B1, is part of level
curve v(p) = d and the other is part of the level curve u(p) = c. Stokes’ formula gives

0 =

∫
W

d(∗dv) =

∫
∂W

∗dv =

∫
B1

∗dv +

∫
B2

∗dv

The boundary ∂W has two components B1 and B2. The component B1 being part of
the level curve v(p) = c the form ∗dv is as we know from calculus courses tangent to
B1 and one has ∫

B1

∗dv > 0.

On the other hand along the second component B2 which is part of the level curve
u(p) = c, the form ∗dv = du is orthogonal to the tangent and the so the integral of ∗dv
along B2 vanishes. Contradiction! A similar argument with the set v−1(−∞, d] shows
that v does not go to −∞. o
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Similar resultas hold for all compinations of the sets Z’s, and the W ’s and with the
role of u and v interchanged.

Lemma . There are cinztants ci so that ψi = ηi+ ci with ψi converges to u in every
coordinate patch.

Proof: Fix ci so that ψi converges in L2(U) to u, the set of points x in X for which
ψi convegers to u in L2-norm over a coordinate beighbourhood is clearly open. But in
fact it is closed as well, for if x i a boundary point there is a neighbourhood V of x and
constants c′i such that ψi + c′i tend to u over V . But V contains an open set over which
φi tends to u as well, so c′i tends to zero, and ψi tends to u in the entire neighbourhood
V .

For any bunded, open and convex plane set Ω and any smooth ψ defined in a
neighbourhood of Ω with

∫
Ω
ψ = 0, one has teh following estimate

‖ψ‖2 ≤ CΩ ‖dψ‖2

where CΩ is a positive constant than only depends on the domain Ω.
Let ci =

∫
K
|ηi|2 dα ∧ ∗dαφ o

Lemma . Let β be given. Then v−1(β,∞) is a connected set.

Proof: Let H ′ a the connected component where p0 lies, and assume that H is another
connecetd component. Let ξ(t) and η(t) be two auxiliary functions both C∞, bounded
with bounded derivatives and are such that ξ(t) > 0 for t > 0 and ξ(t) = 0 when t ≤ 0
and such that η′(t) > 0 for all t. Clraly ξ(v − β)η(u) is a limit of smooth functions of
compact support. Define the function h on X by h(p) = ξ(v − β)η(u) for p ∈ H and
h(p) = 0 elswere. One finds in H by differentiating

hx =η′ξux + ξ′ηvx = η′ξux − ξ′ηuy
hy =η′ξuy + ξ′ηvy = η′ξuy + ξ′ηux

Off H and on ∂H all derivatives of h vanish (easy induction on the order of the
derivative) so h is smooth and has support in H. Assume that K is a compact subset
of H, for instance a path connecting two points. Then replace h by ηh where η is a
smooth function of compact support that takes the value one on a relative compact
open V neighbourhood of K and takes values between 0 and 1.

Then dh is of compact support and in side U we find

(du, dh) =

∫
X

(hxux + hyuy)dx ∧ dy > 0

since
hxux + hyuy = ηξ′(u2

x + u2
y) = ηξ′ |f ′(x)|

But by xxxx, the (du, dh) = 0.

o
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7.0.3 The commutative fundamental groups
Proposition . Assume that the imaginary part v(p) tends to zero when p tends to
infinity in Zα for all α. Then the maps f+ and f− are proper and hence biholomorphic.

Proof: We substantial point is that f+ and f− are proper. We know they are un-
ramified, so once we have established that they are proper, they will be coverings. But
H+ and H− are simply connected, so they are isomorphism.

To see that e.g., f+ is proper, let K ⊆H+ be a compact set. The imaginary part
of points in K are bounded below by say β, and the real parts are bounded above by
say α. Since v(p) tends to zero in Zα, there is a compact Kα such that for points p in
Kα ∩ Zα it holds that v(p) < β. But then f−1(K)⊆Kα ∩ Zα and consequently it is
compact. o

Lemma . One of the three cases occur:

There is a constant c so that for all α the imaginary part v(p) tend to c in Zα or in
Zα or the real part u(p) tends to c in Wα or Wα.

There exists α < β and γ < δ such that the four intersections

Zα ∩Wγ Zα ∩W δ Zβ ∩Wγ Zβ ∩W δ

are non-compact

Lemma . The imaginary part v does not tend to ±∞ in Zα nor in Zα. The real
part u does not tend to infinity in Wα nor in Wα.

Lemma . One of the following thwo cases occure:

� There is a constant c so that for all α the imaginary part v(p) tend to c in Zα or
in Zα or the real part u(p) tends to c in Wα or Wα.

� There exist real numbers α < β and γ < δ such that the four intersections

Zα ∩Wγ Zα ∩W δ Zβ ∩Wγ Zβ ∩W δ

are non-compact

—  —
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There a many proofs of the Uniformisation theorem
On the road to the uniformisation theorem, we exploit theorem ?? to find a mero-

morphic function f on a simply connected Riemann surface X having a simple pole
as its sole singularity. This gives a holomorphic map f : X → Ĉ whose fibre over the
point ∞ is just one point and that point counts with multiplicity one. Hence when
f is proper it must be an open embedding as follows since the fibres of proper maps
all have the same number of points (counted with multiplicities). The image f(X) is
therefore a simply connected domain, so if is not the entire Riemann sphere Ĉ, and it
is either biholomorphic to C or D by Riemann mapping theorem. But properness of
the map, is quite sublet.

7.0.1 The point of departure
From what our study of harmonic functions in the previous chapter, we easyly

deduce that any Riemann surface carries non-constant meromorphic functions with
just one pole and that pole is simple, and this function is our point of departure, and
in the end of the day f will turn out to be an open immersion, that is, it will be a
biholomorphic map between X and f(X), and the image f(X) is an open subset of Ĉ
by the Open Mapping Theorem. This follows immediatly if we know that f is proper
since fibres of proper maps have the same number of points when these are counted
with the appropriate multiplicity, and our function f having just one simple pole has
a fibre over ∞ with just one point. However it is a rather long way to go to see that
f is proper.

PointOfDep


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Proposition . Let X be a simply connected Riemann surface and p0 ∈ X a point.
Then there is a meromorphic function f on X having a simple pole at p0 as sole
singularity. For any open U containing p the Diriclet norm of f satisfies ‖df‖X\U <∞
and forthermre it holds true that (df, dη) = (df, ∗dη) = 0 for any smooth function η of
compact support not meeting U .

Proof: From the Existence Theorem of harmonic functions . on page  we obtain
a function g that is harmonic in the set X\{p0} and has a singular behavior like z−1

in a vicinity of p0. Let ũ = Re g. The differential ω = dũ + i ∗dũ is holomorphic in
X\{p0} and has the shape −z−2dz + φ near p0 where φ is holomorphic near p0.

We claim that ω is exact in X \{p0}. Indeed, since X simply connected, either
X\{p0} is simply connected or its fundamental group is Z generated by a small circle
c round p0. But then ∫

c

ω =

∫
c

z−2dz +

∫
c

φ = 0,

so by the Theorem of Vanishing Periods one has ω = df for a holomorphic function on
X\{p0}, and clearly the principal part of f at p0 equals z−1.

Notice that f = ũ + iṽ where ṽ is a harmonic function such that dṽ = ∗dũ away
from p0.

As to the statement about the norm, a standard calculation using properties of the
inner product and that u is real one deduces that

(df, df) = 2(dũ, dũ)

and the statement about ‖df‖X\U follows from the theorem .. o

CompactCase
(.) One small observation is that if X is compact the map f is automatically
proper and hence is a biholomorphic map between X and the Riemann sphere. The
only compact Riemann surface of genus zero is therefore the Riemann sphere. Phrased
in a slightly different manner, there is up to isomorphism only one analytic structure
on the Riemann sphere:

ThewCompact case

Theorem . If X is a compact simply connected Riemann surface, then X is biho-
lomorphic to the Riemann sphere.

This closes the case of compact, simply connected surfaces and henceforth we assume
that X is not compact.

(.) As stated in the proposition . the function f enjoys the property that ‖df‖X\U <
∞ for all open neigbourhood of the pole p0.

Recall that df ∧ ∗df = −i |J(f)| dz ∧ dz = |J(f)| dx ∧ dy, where J(f) denotes the
Jacobian of f , locally given as |f ′(z)|2. If A is a region in X where f is injective the
usual theorem about changing variables in the integral shows that

∫
A
df ∧∗df = ‖df‖2

A

—  —



MAT4800 — Høst 2016

equals there area of the image f(A). If f is not injective parts of f(A) can be covered
several times by f so the equality does not persist, however the inequality

area of (A) ≤
∫
A

df ∧ ∗df = ‖df‖2
A

is generally true (of course A must reasonably nice, e.g., a domain).
It follows that given ε > 0, there is a compact K in X so that ‖df‖K < ε. Indeed,

by definition of the integral there is partition of unity ηi with ηi supported in a compact
set Ki so that ∫

X\U
df ∧ ∗df =

∑
i

∫
Ki

ηidf ∧ ∗df =
∑
i

‖ηidf‖2
Ki
.

Since X is not compact the sum to the right is a genuine infinite sum, and that ‖df‖X\U
is finite means precisely that this sum converges. Hence there is an N so that

‖df‖2
X\UN =

∑
i>N

‖ηidf‖2
Ki
< ε

where UN = X\
⋃
i≤N Ki. We have thus established

Proposition . Given an ε > 0, there exists a compact set K such that for any
domain A in X disjoint from K the image f(A) has an area at most equal toε.

7.0.2 Notation and conventions
The proof centers around the subsets of X where either the imaginary part u or the

real part v of f is bounded from one side, and it is convenient to introduce a notation
for these sets. So for c a real number we let Zc = u−1(−∞, c] = { p | u(p) ≤ c }, and
Zc = u−1(−∞, c] = { p | u(v) ≥ c }. The corresponding sets where the imaginary part
is bounded from either side are denoted by Wc and W c. When c′ < c one obviously
have Zc′ ⊆Zc and Zc⊆Zc′ and the corresponding relations for Wc and W c hold.

An essential part of the proof is to control the asymptotic behavior of f(p), that is
the over all size of |f | when p is a point far away from the base point p0. The precise
meaning of this is as follows. In general, a continuos function φ on a topological X
space is said to tend to a constant c when p tends to infinity if for any ε > 0 one may
find a compact set K such that |φ(p)− c| < ε when p /∈ K. We say that φ tends to ∞
if for any c there is a compact set K such that one has φ(p) > c for p /∈ K, and finally,
φ to −∞ if for every c one has φ(p) < c for p not lying in a compact K.

The upper and lower half planes are denoted by H+ and H− respectively, and f+

and f− are the restrictions of f to respectively f−1(H+) and f−1(H−).

7.1 A connectedness theorem

This section is devoted to the proof of a basic connected result. The regions where
either the real part or the imaginary parts are bounded—from above or from below—by

—  —
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a constant, are connected. This is a basic ingredient The proof of the uniformisation
theorem we present is based on this result, but one nice corollary we include in this
section, is that function f is unramified. Like in Hitchcock film, the suspense increases
through out. We start with some words about a simple dipole, continue with a local
study of f and finally prove the global connectedness theorem.

(.) The simple dipole It is worth while casting a glans on the the simple function
1/z and its behavior near the origin. One has

1

z
=

z

|z|2
=

x− iy
x2 + y2

and the level sets of the real and imaginary parts are circles with centers one axis. The
locus where the real part takes the value c, for instance, is given by the equation

x = c(x2 + y2),

which describes a circle through the origin with centre at c−2/2. The regions u(z) > c
and u(z) < c are respectively the interior and the exterior of this circle. We have
depicted some level sets of the simple dipole z−1 in figure . where one of the regions
of type u > c coloured red and a region of the type u < c coloured blue.

Figur .: Level sets of the real part of the simple dipole z−1.

Dipol

(.) The picture near the pole This sounds like an entry in Fridjof Nansen’s
diary, but the substance is that locally near the pole of f , the configuration of the level
sets is a slight deformation of that of the simple dipole.

Indeed, if w is the standard coordinate on the Riemann sphere near the north pole
the relation w = f(z)−1 holds in a patch (U, z) near p0. Since the pole of f is simple,
the derivative ∂zw does not vanish at p0, and hence f induces a biholomorphic map
between U and the polar neighbourhood V = f(U) in Ĉ, and in V one has f(z) = w−1.

—  —
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The point is that w−1 is a simple dipole at the north pole (a simple polar dipole, one is
tempted to say), and hence locally the the “dipole” f(z) is biholomorphic to a simple
dipole. For instance, we immediately get the following lemma:

LocalConn

Lemma . Given a real number c. The four sets u−1(−∞, c), u−1(c,∞), v−1(−∞, c)
and v−1(c,∞) are locally connected near p0.

Proof: The statement is true for the corresponind sets in the simple dipole picture.
o

Another conclusion one can draw is that if c and d are real numbers whose absolute
values are sufficiently large, the level sets v(p) = c and u(p) = d have components
that are simple closed paths contained in the neigbourhood U . Indeed, the level sets
of a simple dipole will be contained in a given open neighbourhood once the levels are
sufficenetly large in absolute value.

Figur .: Level sets of the simple dipole z−1.

(.) The conectedness theorem We are now ready for the fundamental connec-
tedness result in this part of the story. It says that the sets from lemma . are not
only locally connected near p0, but in fact they are connected.

Connecte

Proposition . Let c be a given real number. The four loci u−1(−∞, c), u−1(c,∞),
v−1(−∞, c) and v−1(c,∞) are connected.

Notice that the statement is about open loci where u or v are bounded. Of course
the corresponding closed sets will also be connected, but since the closure of two dif-
ferent components of the open loci could have a common point, the statement in the
proposition is stronger.

Proof: We shall carry out the proof for the set v−1(c,∞), the proofs of other three
cases being mutatis mutandis the same.

Assume that v−1(c,∞) is not connected. Thence, as we know it is locally connected
near p0, v−1(c,∞) must have at least one connected component whose closure does not
contain p0. Pick your favorite one and call it H.

—  —
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We need two auxiliary real functions a(t) and b(t) of one real variable. They are
both smooth and bounded and have bounded derivatives, and additionally, they satisfy
the following properties: When t > 0 it holds that a(t) > 0 and a(t) = 0 when t ≤ 0
and the function b is positive everywhere. Notice that a being smooth, all its derivatives
vanish at the origin.

The main character of the piece is a function h that is defined on the Riemann
surface X by the assignment {

a(v − c)b(u) in H

0 off H.

As we soon shall see, the function h is smooth, its differential dh is quadratically
integrable and dh is the L2-limit of differentials of smooth functions of compact support.
Hence dh belongs to the space E from the previous chapter.

Computing derivatives of h in a small patch one finds— using that u and v are
harmonic conjugates—in the part of the patch lying within H that

hx =b′aux + a′bvx = b′aux − a′buy
hy =b′auy + a′bvy = b′auy + a′bux

On the boundary of H both a and a′ vanish, so the two partials vanish there as well.
This shows that h is of class C1, but in fact, an easy induction implies that the all
higher derivatives vanish as well. Therefore h is smooth.

The differential dh is the limit of forms of the shape dηi with ηi smooth of compact
support. Indeed, as H does not have the basepoint p0 in its closure, the form du is a
limit of forms dηi. Performing the construction above with ηi in place of u, i.e., letting
hi = a(Re ηi − c)b(Im ηi), it is easy to see that dhi tends to dh in L2-norm using that
a and b are bounded with bounded derivatives. It follows by xxx that

(du, dh) = 0 (.)

NullingAvIndreProd

On the other hand, in a patch U in H one finds that

hxux + hyuy = ba′(u2
x + u2

y)

which is positive almost everywhere in U , both a′ and b being positive there and u2
x+u2

y

only vanishing at the critical points of f which form a discrete set. Hence one has

(du, dh) =

∫
U

du ∧ ∗dh =

∫
U

(hxux + hyuy)dx ∧ dy > 0.

This being true for all patches in H it follows that

(du, dh) =

∫
X

du ∧ ∗dh > 0

which contradicts (.). o
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(.) The map f is unramified As announced, the following is a direct consequence
of the connectedness theorem:

Proposition . The holomorphic map f : X → Ĉ is unramified; i.e., its derivative
never vanishes.

Proof: At the point p0 this since the pole is simple, or if you want, it follows from
the formula (.) in exercise . below as well. So assume that p is point different from
p0 where the derivative vanishes. After changing f by an additive constant we may
assume that f(p) = 0.

After proposition xxx there is a patch (U, z), centered at p, where f has the shape
z 7→ zn with n ≥ 2. For simplicity we assume that n = 2, leaving the general case to
the zealous students

The set u−1(0,∞) is no more locally connected at p, it consists of the parts of the
first and third open quadrant lying in the patch. Choose a point z1 in one of these.
Then −z1 lies in the other, and since u−1(0,−∞) is connected by the Connectedness
theorem there is a path entirely contained in u−1(0,∞) connecting the two points. This
path can be closed up by adding the line segment between z1 and −z1. So in the end
of the day, we have a closed path γ1 in u−1(0,∞), shaped like a line at the origin.

In a similar fashion we produce a closed path γ2 in u−1(−∞, 0). The two paths in-
tersect at the origin, transversally since they they are shaped like different line segments
near the origin, and the local intersection number is therefore ±1, the sign depending
the orientations. Now, the origin is their only common point, the sets u−1(0,∞) > 0
and u−1(−∞, 0) > 0 being disjoint. So for the global intersection number we have
γ1 · γ2 = ±1 which is impossible as all intersection numbers on a simply connected
surface vanish. o

Problem .. Show that lemma . is not true for f(z) = z−n. X

Problem .. Given real numbers c and c′ with c′ < c. Show that the two sets
u−1(c′, c) and v−1(c′, c) are locally connected near p0. X

Problem .. Assue that f(z) = z−1 + φ(z) with φ holomorphic near 0. Show the
DerivExerc

equality

(f(z)−1)′ =
1− z2φ′(z)

(1 + zφ(z))2
. (.)

X
DeriveetAtPnull

Problem .. Given real numbers c′ < c. Show that the sets u−1(c′, c) and v−1(c′, c)
are connected. Hint: Find appropriate auxiliary functions. X
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7.1.1 Bounding the real and the imaginary part
We continue the praxis letting (U, z) be a patch near the pole p0 where f is biho-

lomorphic so the local configuration of the level sets in U is that of a simple dipole.

Proposition . Assume that Zc is not compact, then the imaginary part v does not
tend to infinity in Zc.

The corresponding statements for v on Zc and for u on W c and W c follows by applying
the proposition to the functions ±f and ±if .

Proof: Assume that v tends to infinity in Zc.
To begin with we choose d positive and so big that the level set v = c has a

component entirely contained in the neighbourhood U—it is shaped like a small circle
passing through p0, and we denote by D the disc it bounds. Locally near the pole the
set Wd ∩ U is the complement of D. Let A be a disc centered at 0 containing D and
contained in U . The situation is sketched in figur . below.

Now the set W = Zc ∩Wd is compact since v tends to infinity in Zc, and hence the
set W ′ = W \ A is compact as well.

Figur .: The situation at the pole.

LocalPictNeraPoe

In the set W ′ the functions u and v are conjugate harmonic functions, in particular
since v is harmonic one has

0 =

∫
W ′
d(∗dv) =

∫
∂W ′
∗dv. (.)

The contradiction we shall arrive at, is that the boundary integral to the right must
MainIntegral

be strictly positive. To evaluate that integral we observe that the boundary ∂W ′ can
be split into three parts.

The first part, which we call B1, is contained in the level set v = d. The disk D
where v > d in U being entirely enclosed in A, the boundary part B1 does not meet
the neigbourhood U , but since Zc ∩Wd is compact and Zc not, it must be non-empty.
Indeed, were it empty, the intersection Zc ∩Wd would be both open and closed in Zc,
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and Zc being connected it would follow that Zc = Zc ∩Wd. This is impossible since
Zc is assumed to be non-compact. Along the path B1, which is a part of the level set
v = d and oriented according to the rule from Stoke’s theorem, the form ∗dv is parallel
to the tangent. Hence the integral

∫
B1
∗dv is strictly positive:∫
B1

∗dv > 0.

The second part B2 is contained in the level set u = c. The functions u and v are
conjugate harmonic functions in W so it holds that ∗dv = du. Now from calculus we
know that the from du vanishes along the level set u = c (in calculus-lingo du is the
gradient and the gradient is normal to level curves) Hence the integral

∫
B1
∗dv vanishes:∫

B2

∗dv = 0.

The third and last part B3 is completely contained in the patch U , and is formed by
the sector of the circle ∂A where u > c. It is has two end points—say p1 and p2—both
lying on the level set u = c, we find∫

B3

du = u(p1)− u(p2) = c− c = 0.

And there we are. We have a contradiction, The integral in (.) is both zero and
strictly positive! (.) is both zero and strictly positive! o

Decay at infinity
Having the physics in mind and regarding f as an electric dipole on our surface,

it is pretty clear that the field induced must decay to zero at infinity. The effect of
the dipole is minimal at large distances. And indeed, this is true in the mathematical
setting as well, except for a constant, which physically is just reflects the choice of zero
for the units.

TendStoZero

Proposition . There is a number a so that the imaginary part v(p) tends to a in
Zc for every c.

Replacing f by f − a we may as well assume that v tends to zero in Zc. The rest
of the is devoted the proof of this proposition, but first shall see that it implies the
Uniformisation theorem:

(.) Proposition . implies the theorem. Indeed, f+ is proper, for if K is compact
subset of the upper half plane, then the real part is bounded above, say by c. The
imaginary part of the points in K is bounded away from zero, say by Im z > ε when z
lies in K. Since v tends to zero in Zc, t follows that f−1

+ (K) is contained in a compact
set, hence compact being closed.

—  —
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It follows that f+ being unramified by xxx, is biholomorphic to f−1
+ (H+) and H+,

ditto, f− is a biholomorphic from f−1
− (H−) and H−. If f(p1) = f(p2) = z , clearly

z is real, and there is a neighbourhood D of z and disjoint neighbourhoods Di of pi
mapping biholomorphically to D. Since f−1

− (H−)∪ f−1
+ (H+) is dense in X, parts of D1

and D2 both map to D ∩H+ contradicting that f+ is injective.
First of all, it suffices to show that the restriction of f to

KonstantExists

Lemma . Let u be any continuous real function on a topological space X. Either
u(p) tends to a value c when p tends to infinity, or u(p) tends to ±∞, or one may find
α < β such that neither Xα = u−1(−∞, α] nor Xβ = u−1[β,∞) is compact.

Proof: Assume that neither of two first three possibilities occur. If all the sets
Xα = u−1(−∞, α] were compact u(x) would evidently tend to infinity with x, and if
all Xβ = u−1[β,∞) were compact u(x) would tend towards −∞. Hence there is at
least one pair α, β with both sets Xα and Xβ non-compact. If α and β are different
we are through, so assume α = β. Given ε > 0. If Xα−ε or Xα+ε is non-compact we
are through; indeed, we may use one of the pairs Xα−ε, X

α or Xα, X
α+ε according to

the case. So we can assume that K = Xα+ε ∪Xα−ε is compact. In its complement it
holds that |u(x)− α| < ε, and hence u tends towards the constant α. o

Lemma . One of the following statemets holds:

� There real numbers α < β and γ < δ such that W γ ∩Zα, W δ ∩Zα, W γ ∩Zβ and
W δ ∩ Zβ are non-compact.

� The imaginary part v or the real part u tends to a constant either in Zα for all
α such that Zα is non compact, or in Zα for all α such that Zα is non-compact.

Proof: Assume the contrary to the second statement. Then u does not tend to
constant in X itself, so in view of xxx, lemma . above then gives us an α and a β
with α < β such that neiter Zα nor zβ is compact. Then we apply the lemma . to v
on Zα and Zβ and conlude that there exist two pairs γ < δ and γ′ < δ′ of real numbers
with Wγ ∩ Zα, W δ ∩ Zα, Wγ′ ∩ Zβ and W δ′ ∩ Zβ are all non-compact sets. Renaming
the smaller of the numbers γ and γ′ as γ and the bigger of δ and δ′ to δ, we are trough.

o

Finally, let ε be a numbef less that (β − α)(δ − γ) given and find a cmpact such
that the ‖XK‖df < ε. Pick points x1, x2, x3 and x4 in the sets W γ ∩ Zα, W δ ∩ Zα,
W γ ∩ Zβ and W δ ∩ Zβ.

Since the Z’s and the W ’s are connecetd, we can joint the points such tha the
enuong closed curve has an image enclosing the rectangle [α, β] × [γ, δ], and together
with xxxx this contradicts xxxx.

Lemma . Assume that there exists α such that Zα ∩W0 is compact for all β > α
one has Zβ ∩W0 compact. Then f− is proper.

—  —
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7.1.2 Abelian fundamental group
The fundamental group π1(X) acts on the universal cover X̃ of a Riemann surface

X. The action is free and proper meaning that for any x ∈ X̃ there is a neigbourhood
U such that gU ∩ U = ∅ for non-trivial g from π1(X).

Hence it is great interest to study subgroups of the automorphism groups Aut(X̃)
in the three cases.

(.) The Riemann sphere The autumorphism group of the sphere is Aut(Ĉ) =
PGl(2, C ) that is functions of the form ψ(z) = (az+b)(cz+d). They can be represented
by matrices whoce determinant is one, so lives in the exact sequence

1 // {±I} // Gl(2, C) // Aut(Ĉ) // 1

The fixed points of y is determined by ψ(z) = z which is a quadratic equation. It has
one or two solustions, dependig on the discrimant. The discriminant equals (trA)2− 4
when A is normalised so that detA = 1.

The action is homogenous, even three-point homogenous. Given z1,z2 and z3 dif-
ferent points all in the finite plane the following fractional linear map sends the triple
ξ = (z1, z2, z3) to the triple (0,∞, 1):

ψξ(z) =
z − z1

z − z2

z3 − z1

z3 − z2

The no non-trivial element act freely on the sphere and we have

Proposition . The only Riemann surface that have Ĉ as univeral cover is Ĉ itself.

(.) The finite plane C In this case the automorphisms are all of the form az+ b.
Hence the group Aut(C) sits in the exact sequence

0 // T // Aut(C) // R // 0

where T is the subgroup of traanslations, that is τb(z) = z+ b and R is the subgroup of
the so called dilations , i.e., automorphisms of the form ρa(z) = az. The gooup R acts
by conjugation on T by the formula ρa ◦ τb ◦ ρ−1

a = τab, and Aut(C) is the semidirect
product of the two.

If a 6= 1, the automorphism z 7→ az + b has a fixed point, since the equation
az + b = z in that case has aolution. One deduces that if G acts greely on C then all
elements in G are pure translations. Obviously two translations commute, hence G is
abelian. We shall see that it has at most two generators:

Proposition . Assume that GAut(C) acts freely. Then G is free abelain on at
most two geerators.

—  —
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Proof: Let Λ⊆G be a lattice group τλ(z) = z + n1ω1 + n2ω2. Assume that there is
an alement g(z) = z + c in γ not in Λ. Simultanions Dirichlet approximation gives us
to any given natural number k three integers N, p1 and p2 with∣∣c− piN−1

∣∣ < k−1N−1

hence for any ε > 0 we can find N and λ ∈ Λ⊆G such that∣∣gN(0)− λ(0)
∣∣ = |Nc− p1ω1 − p2ω2| < k−1 ≤ ε

This is impossible since the action is proper. o

So there are just two cases eithet π1(X) is free abelian of rank one, generated by
z 7→ z+b say with b 6= 0, or π1X is free abelina of rank two. In the latter case elements
are of the form z 7→ z + n1ω1 + n2ω2.

Proposition . Assume that X is a Riemann surface whose univeral cover is biho-
lomrphic to C. Then

� X is biholomorphic yo C;

� π1(X) ' Z and X is biholomorphic to C∗.

� π1(X) ' Z ⊕ Z and X is biholomorphic to an elliptic curve C/Λ where Λ is a
lattice in C.

In first case X is biholomorphic to C∗ (also known under the alias “the holomorphic
cylinder”). The function Φ(z) = exp(2πib−1z) is clearly invariant under G, its derivat-
ive is nowhere vanishing, and Φ(z) = Φ(z′) if and only if z and z′ are equivanet under
G.

Proposition . If f and g commute then f permutes the fixed points of g and g
permutes the fixed points of f .

Proof: If g(x) = x one has f(g(x)) = g(f(x)) = g(x) o

Hence if f has a unique fixed point x, thehn g has x as only fixed point as well.

Lemma . If f anfg g commutes, they either shear the fixed points or both are of
order two and one swaps the fixed points of the other.

Proof: Assume f has 0 and ∞ as fixed points, and g has 1. Then sends 0 to ∞ and
∞ to 0, i.e., og the shape bz−1. But 1 is fixed so b = 1. Hence f(z) = −z. o

—  —
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