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Changes:

A lot of minor and stupid errors corrected

Thank’s to all that have contributed by finding errors!

(.) A a domain in the complex plane Ω is an open non-empty and connected subset
of C. Recall that a subset A of C (or any topological space for that matter) is said to be
connected if it is not the union of two disjoint open sets. Equivalently one may require
that A not be the union of two disjoint closed sets. The set A is pathwise connected if
any two of its points can be joined by a continuous path, clearly a pathwise connected
set is connected, but for general topological spaces the converse dos not hold; but
luckily, it holds true for open subsets of the complex plane; so an open subset Ω of C
is connected if and only if it is pathwise connected.

(.) The union of two connected sets is connected provided the two sets are not di-
sjoint. Hence any point in A is contained in a maximal connected set. These maximal
sets called a connected component of A, and they form a partition of A—they are pair-
wise disjoint and their union equals the whole space. Connected components are always
closed subsets, but not necessarily open. An everyday example being the rationals Q
with the topology inherited from the reals. As every non-empty open interval contains
real numbers, the connected components of Q are just all the points. One says that Q
is totally disconnected .

The path-component of a point z consists of all the point in the set A that can be
joined to z by a continuous path. The different path-components form, just like the


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connected components, a partition of the space.

Problem ..

a) Show that a path-wise topological space is connected.

b) A space is called locally pathwise connected if every point admits a neigbourhood
basis consisting of open and path-wise connected sets; equivalently for every point p
and every open set U containing p, one may find an open and path-wise connected set
contained in U and containing p. Show that if a space is locally pathwise connected, it
is connected if and only if it is pathwise connected.

X

Domains can be very complicated and their geometric complexity and subtleties
form now and again significant parts of the theory— or at least, are the reasons behind
long and tortuous proofs of statements seeming obvious in simple situations one often
has in mind—like slightly and nicely deformed disk with a whole or two. So a few
example are in place:

Example .. If Z is any closed subset of the real axis not being the whole axis. Then
clearly C \ Z is open and connected (one can pass from the upper to the lower half
plane by sneaking through R \ Z ) Two specific examples of interesting closed sets Z
can be { 1/n | n ∈ N } ∪ 0 and the Cantor set c. e

Example .. For each rational number p/q in reduced form, let Lp/q be the (closed)
line segment of length 1/q emanating from the origin forming the angle 2πp/q with
the positive real axis; i.e., the points of Lp/q are of the form te2πpi/q with 0 ≤ t ≤ 1/q.
Let L =

⋃
p/q Lp/q. Then L is closed. This is not completely obvious (so prove it!). It

hinges on the fact that only finitely many of the segments Lp/q appear in the vicinity of
a point z different from the origin. The complement U of L is therefore open, and it is
connected (the ray from the origin through a point in U has just the origin in common
with L, and z can be connected to points outside the unit disk, and as L is contained in
the closed unit disk, this suffices) so it is a domain. The set U is not simply connected
but has the homotopy type of a circle. e

Example .. This example is a variant of the previous example; the origin and the
point at infinity are just exchanged via z → 1/z. Here it comes: Let Lp/q consist of the
points te2πip/q with t real and |t| > q, and let U be the complement of

⋃
p/q Lp/q. On

shows that U is open as in the previous example. The line segment joining the origin
to a point z in U is contained in U , and this shows that U is connected; in fact, it even
shows that U is contractible. e

Problem .. Let U be the complement of the product c× c in the open unit square
(0, 1)× (0, 1). Show that U is a domain. X

—  —
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Derivatives and the Cauchy-Riemann equations

In this section Ω will be a domain and f will be a complex valued function defined in Ω.
The function f has two components, the real-valued functions u(z) = Re f(z), called
the real part of f , and v(z) = Im f(z), the imaginary part of f . With this notation one
writes f = u+ iv.

The complex variable z is of course of the form z = x + iy with x and y real, so
any function f(z) may as well be regarded as a function of the the two real variables x
and y. All results about real functions of (some regularity class) from Ω to R2 apply to
complex functions—but imposing the condition of holomorphy (that is, differentiability
in the complex sense) on a function f makes it very special indeed, its properties will
by far be stronger than those of general C∞-function (or even real analytic functions).

(.) We adopt the convention of indicating partial derivatives by the use of sub-
scripts, like e.g., ux, uy. Taking a partial derivative is of course a differential operator
and as such it will now and again be denoted by ∂∗ with ∗ an appropriate subscript;e.g.,
ux will be denoted ∂xu and uy by ∂yu.

Clearly one has fx = ux+ ivx and fy = uy + ivy, or in terms of differential operators
∂x = ∂xu + i∂xv and ∂yf = ∂yu + i∂yv. It turns out to be very convenient to use the
differential operators ∂z and ∂z defined as

∂z = (∂x − i∂y)/2 ∂z = (∂x + i∂y)/2.

One verifies easily that ∂z∂z = ∂z∂z at least when applied to functions for which ∂x
and ∂y commute;e.g., function being C1. Another important formula, valid whenever
∂x and ∂y commute, is

4∂z∂z = ∆

where ∆ is the Laplacian operator ∆ = ∂2
x + ∂2

y ; indeed, one finds

(∂x − i∂y)(∂x + i∂y) = ∂2
x + i∂x∂y − i∂y∂x − i2∂2

y = ∂2
x + ∂2

y .

Example .. As a simple illustration let us compute ∂zz and ∂zz. One finds ∂zz =
(∂x(x+ iy)− i∂y(x+ iy))/2 = (1− i · i)/2 = z and similarly ∂zz = (∂x(x+ iy) + i∂y(x+
iy))/2 = (1 + i · i)/2 = 0. e

Problem .. Show that ∂z and ∂z satisfy Leibnitz’ rule for products. X

The constituting definition — differentiability
The concept of holomorphy, that we are about to introduce, is constituting for the

course, everything we shall do will hover about holomorphic functions, so the definitions
in this paragraph are therefore the most important ones.

The notion we shall introduce is that of a differentiable function in in the complex
sense, or C-differentiable for short, and their derivatives. As f is a function of two real

—  —
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variables as well, there is also the notion of f being differentiable as such. In that case
we shall call f differentiable in the real sense, or R-differentiable—the long annotated
names are there to distinguish the two notions. Function being R-differentiable but not
C-differentiable are however rear creature in our story, so we shall pretty soon drop the
annotations in the complex case, just keeping them the in the real case.

(.) To tell when a complex differentiable1 function is differentiable at a point a ∈ C
and to define its derivative there, we mimic the good old definition of the derivative of
a real-valued function. One forms the complex differential quotient associated to two
nearby points, and tries to take the limit as the two points coalesce:

Defenition . Let a be a point in Ω. We say that f is differentiable at a if the
following limit exists:

lim
h→0

(f(a+ h)− f(a))/h. (.)

If so is the case, the limit is denoted by f ′(a) and is called the derivative of f at a. If
f is differentiable at all points in Ω one says that f is holomorphic in Ω. A function
holomorphic in the entire complex plane (i.e., if Ω = C) is said to be entire.

An equivalent way of formulating this definition is to say that there exists a complex
number f ′(a) such that for z in a vicinity of a one has

f(z) = f(a) + f ′(a)(z − a) + ε(z), (.)

where the function ε(z) is such that |ε(z)/(z − a)| → 0 as z → a.

(.) The usual elementary rules for computing derivatives that one learned once
upon a time during calculus courses, are still valid in this context, and the proofs are
mutatitis mutandis the same.

Taking derivatives is a complex linear operation: For complex constants α and β
the linear combination αf + βg is differentiable at a when both f and g are, and it
holds true that (αf + βg)′(a) = αf ′(a) + βg′(a).

Leibnitz’ rule for a product still holds: If f and g are differentiable at a, the product
fg is as well, and one has (fg)′(a) = f ′(a)g(a) + f(a)g′(a). Similarly for a fraction:
Assume f and g differentiable at a and that g(a) 6= 0, then the fraction f/g is diffe-
rentiable and (f/g)′(a) = (g(a)f ′(a)− g′(a)f(a))/g(a)2.

The third important principle is the chain rule. If f is differentiable at a and g
at f(a), then the composition g ◦ f is differentiable at a with derivative given as
(g ◦ f)′(a) = g′(f(a))f ′(a).

1The annotation in the complex case did not survive particularly long!

—  —
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(.) An obvious consequence of the elementary rules is that a polynomial P (z) is
holomorphic in the entire complex plane. Almost the same applies to rational functions.
They are quotients P/Q between two polynomials P and Q and are holomorphic where
they are defined; that is at at least2 in the points where the denominator Q does not
vanish.

The Cauchy-Riemann equations

Any function from Ω to C is also a function of two real variables taking values in R2

with component functions being the real part u and the complex part v of f . For such
functions the derivative at the point z = α + iβ is an R-linear map Daf : R2 → R2,
that is a map Daf : C→ C being linear over the reals.

The derivative, if it exists, satisfies a condition very much like condition (??) in the
complex case, namely for z close to a one has

f(z) = f(a) +Daf(z − a) + ε(z), (.)

where ε(z) is a function with |ε(z)/(z − a)| tending to zero when z tends to a. The
difference from the condition (??) lies in the second term to the right: For f to be
C-differentiable, the map real linear Daf : C→ C must be multiplication by a complex
number!

(.) Casting a glance on the two definitions (??) and (??) it seems clear that a
C-differentiable function is R-differentiable as well. The Cauchy-Riemann equations
are a pair of differential equations that guarantee that a R-differentiable function is
C-differentiable, and they are in essence contained in the last sentence of the previous
paragraph—that Daf be multiplication by a complex number. To give the equations
a concrete form however, we must exhibit the matrices of the derivative-maps in the
two cases, in both cases relative to the semi-canonical basis for C as a real vector
space—i.e., the basis the numbers 1 and i constitute3.

Multiplication by at complex number c = α+ iβ send 1 to α+ iβ and i to −β+ iα,
hence its matrix is (

α β
−β α

)
. (.)

In the calculus courses (surely, calculus of several variables) we learned that the
matrix of the derivative-map Daf in the semi-canonical basis is just the Jacobian
matrix : (

ux(a) vx(a)
uy(a) vy(a)

)
. (.)

2Why “at least”!
3Why “semi-canonical”?

—  —
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Comparing the two matrices, one sees that a function f , being differentiable in the real
sense, is C-differentiable if and only if the derivatives of its two component functions
satisfy the relations

ux(a) = vy(a) uy(a) = −vx(a).

These are the famous Cauchy-Riemann equations. Remembering that ∂xf = ∂xu+i∂xv
and ∂yf = ∂yu+ i∂yv, one observes they being equivalent to the single equation

∂xf(a) = −i∂yf(a), (.)

and, of course, this common values equals f ′(a).

(.) So far we have considered differentiability in a point, but being C-differentiable
e.g., in solely one isolated point, has no serious implications. If, for example, both
partials of f vanishes there, the Cauchy-Riemann equations are trivially satisfied, and
the only implication is that both the real and the imaginary part of f has a stationa-
ry point. The full weightiness of being differentiable4 comes into play only when the
function is differentiable5 everywhere in a domain, that is, it is holomorphic. So, when
summing up, we formulate the Cauchy-Riemann equations in that context:

Proposition . Let Ω be a domain in C and let f = u + iv be a complex valued
function in Ω. Then f is differentiable throughout Ω if and only if it is differentiable
in the real sense throughout Ω, and the real and imaginary parts satisfy the Cauchy-
Riemann equations

∂xu = ∂yv ∂yu = −∂xv (.)

in Ω. If f is differentiable in Ω, one has

f ′ = ∂xf = −i∂yf. (.)

(.) Recall the differential operators ∂z and ∂z we defined by

∂z = (∂x − i∂y)/2 ∂z = (∂x + i∂y)/2.

In view of equation (??) the Cauchy-Riemann equations when formulated in terms of
the operators ∂z and ∂z, translate into the following proposition, the simplicity of the
equation appearing is one virtue of the ∂z and ∂z notation:

4in the complex sense
5ditto

—  —
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Proposition . An R-differentiable function f in the domain Ω is holomorphic in
Ω if and only if it satisfies

∂zf = 0,

and in that case the derivative of f is given as f ′ = ∂zf .

Proof: This is indeed a simple observation. One has ∂zf = (∂xf + i∂yf)/2, which
vanishes precisely when (??) is satisfied. One has ∂zf = (∂xf − i∂yf)/2 which equals
∂xf (and ∂yf as well) whenever ∂zf = 0, i.e., whenever ∂xf = −i∂yf . o

Power series
Rational functions are, although they form very important class of functions, very

special. A rather more general class of functions are those given by power series—and
indeed, as we shall see later on, it comprise all functions holomorphic in a disk.

(.) Recall that a power series f(z) =
∑

n≥0 an(z− a)n has a radius of convergence

given as R−1 = lim sup n
√
|an|. That is, the series converges absolutely for |z − a| < R,

and the convergence is uniform on compact sets included in |z − a| < R; e.g., closed
disks given by |z − a| ≤ ρ < R. For short we say that the convergence is normal .

Indeed, if |z − a| < ρ < R, choose ε with 0 < ε ≤ (R − ρ)/Rρ. By definition one
has n

√
|an| < 1/R + ε for n >> 0, and this gives

n
√
|an| |z − a| < ρ/R + ρε < 1.

Thus we may appeal to Weierstrass M -test comparing with the series
∑

n≥0M
n where

M = ρ/R + ρε.

(.) It is a theorem of Abel’s that f is holomorphic in the disk of convergence and
that the derivative may be found by termwise differentiation:

Theorem . Assume that the power series f(z) =
∑

n≥0 an(z − a)n has radius of
convergence equal to R. Then f is holomorphic in the disk D centered at a and with
radius R, and the derivative is given as

f ′(z) =
∑
n≥1

nan(z − a)n−1. (.)

that is, the power series can differentiated term by term.

Proof: We may assume that a = 0. Since limn→∞
n
√
n = 1, the derived series has the

same radius of convergence as the one defining f . Let R be the radius of convergence
and denote by D the disk where the convergence takes place; that is, the disk given by
|z − a| < R and fix a point z ∈ D.

—  —
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By the binomial theorem one has (z + h)n − zn = nzn−1h + h2Rn(z, h). It follows
that the series

∑
n≥1 anRn(z, h) converges normally for those h with z + h ∈ D, since

both the series for f and the derived series converge normally in D.
Hence the sum

∑
n≥1 anRn(z, h) is continuous and therefore bounded on a closed

disk centered at z sufficiently small to be contained in D. We deduce that for h close
to zero it holds true that

f(z + h)− f(z) = h
∑
n≥1

anz
n−1 + h2

∑
anRn(z, h),

where the term
∑
anRn(z, h) is bounded, and the claim follows. o

(.) Successive applications of Abel’s theorem shows that a function f(z) i given
by a power series has derivatives of all orders, and by an easy induction argument one
finds the series

f (k)(z) =
∑
n≥k

n(n− 1) . . . (n− k + 1)an(z − a)n−k

for the k-derivative of f . The constant term of this series equals k!ak, so substituting
a for z gives k!ak = f (k)(a). Hence we have the following result, which may informally
be stated as if f has a power series expansion, the expansion is the Taylor series of f .

Proposition . A function f given as a power series

f(z) =
∑
n≥0

an(z − a)n

converging normally a disk D centered at a, has derivatives of all orders, and it hold
true that

an =
f (n)(a)

n!
.

Problem .. Prove the Cauchy-Riemann equations by letting h approach zero through
respectively real and purely imaginary values in (??) . X

Problem .. Assume that f = u+iv is holomorphic in the domain Ω. Use the Cauchy-
Riemann equations to show that the gradient of u is orthogonal to the gradient of v
and conclude that the level sets of the real part of f are orthogonal to the level sets of
the imaginary part. X

Problem .. Assume that V is a complex vector space and that A : V → V is an
R-linear map. One says that A is C-anti-linear if A(zv) = zA(v) for all z ∈ C and
all v ∈ V . Show that A is C-anti-linear if and only if A(iv) = −iA(v) for all vectors
v ∈ V . Show that any A may be decomposed in a unique way as a sum A = A+ +A−,
where A+ is C-linear and A− is C-anti-linear. Hint: Let A+(v) = (A(v)− A(iv))/2
and A−(v) = (A(v) + A(iv))/2. X

—  —
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Problem .. Assume that V is a one-dimensional complex vector space and that
A : V → V is an R-linear map. Show that A is multiplication by a complex number if
and only if its C-anti-linear part vanishes; i.e., A− = 0. X

Problem .. Show that complex conjugation z is not C-differentiable at any point.
X

Problem .. Show that for any complex R-differentiable function it holds that ∂zf =
∂zf . X

Problem .. Show that ∂zz = 1 and that ∂zz = 0. X

Problem .. A function f R-differentiable in the domain Ω is called anti-holomorphic
if ∂zf = 0 throughout Ω. Show that f(z) is anti-holomorphic if and only if f(z) is

holomorphic. X

Integration and Cauchy’s formula

Recall that a line integral is an integral on the form
∫
γ
pdx+qdy where γ is a path in the

complex plane and p and q are two functions, real or complex, defined and continuous
along the path γ. The path γ is a parametrization of a curve in C, i.e., a function
γ : [α, β]→ C that in our context always will be piecewise C1; that is, in addition to γ
being continuous, there should be a partition of the parameter-interval [α, β] such that
γ is continuously differentiable on each of the closed subintervals.

Now and then, as a shortcut, we shall specify a curve C instead of a path in the
integral; in that case it should be clearly understood from the context which way the
curve should be parametrized. A frequently occurring example, is that of a circle C.
The implied parametrization will be γ(t) = a+ reit with the parameter t running from
0 to 2π and a being the center and r the radius of C—the circle is traversed once
counterclockwise. Circles appear frequently in the disguise as boundaries of disks D;
that is, as ∂D.

Differential forms

The integrand in a line integral, that is the expression ω = pdx + qdy is called a
differential form, more precisely one should say a differential one form, since, as the
name indicates, there are also two-forms and even n-forms for any natural number n.
We shall make use two-forms, but no n-form with n larger than two will appear.

(.) You will find no mystery in the definition of a line integral if the path γ is C1

and given as γ(t) = x(t) + y(t)i with t ∈ [α, β]. One simply proceeds in the direction
the nose points, replacing x and y in the functions p and q with x(t) and y(t), and
replacing dx and dy with x′(t)dt and y′(t)dt. This gives a conventional integral over

—  —
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the interval [α, β]:∫
γ

ω =

∫
γ

pdx+ qdy =

∫ β

α

p(γ(t))x′(t)dt+ q(γ(t))y′(t)dt.

In case γ is just piecewise C1, one follows this procedure for each of the subintervals
where γ is C1, and at the end sums the appearing integrals.

(.) Given a real valued function u in the domain Ω. The differential du of u is the
one-form

du = ∂xdx+ ∂yudy,

and forms of tis type are said to be exact forms . It is particularly easy to integrate
exact forms, they behave just like derivatives (in some sense, they are derivatives). One
has ∫

γ

du = u(γ(β))− u(γ(α)), (.)

The integral is just the difference between the values of u at the two ends of the path
and does not depend on which path one follows, as long as it starts and ends where
at the same places as γ. In particular if a path γ is closed, the integral of du round γ
vanishes.

The formula ?? follows from the fundamental theorem of analysis and the chain
rule. The chain rule immediately gives

d

dt
u(γ(t)) = ux(γ(t))x′(t) + uy(γ(t))y′(t),

and one finishes off with fundamental theorem.

(.) Speaking about two-forms, in our case they are just expressions pdx ∧ dy
where p is a function of the appropriate regularity (e.g., continuously differentiable)
in the domain Ω where the form lives. The “wedge product” is anti-commutative, i.e.,
dx∧dy = −dy∧dx, a feature that becomes natural when one defines the integral of w.
To do this, let r(s, t) = u(r, s) + iv(r, s) be a parametrization of Ω; i.e., a continuously
differentiable homeomorphism from some open set U ⊆R2 (of course life could be as
simple as U being equal to Ω and r being the identity). With the parametrization in
place, one has the Jacobian determinant

∂(u, v)

∂(s, t)
= det

(
us ut
vs vt

)
,

and one defines the integral
∫

Ω
ω as∫

Ω

ω =

∫∫
U

p(r(s, t))
∂(u, v)

∂(s, t)
dudv (.)

Exchanging u and v changes the sign of the Jacobian determinant and by consequence
the sign the double integral to the right in (??) . So the definition is consistent with
du ∧ dv = −dv ∧ du, i.e., the wedge product being anti-commutative.

—  —
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(.) A one form ω = pdx+ qdy in Ω with p and q C1-functions, has a derivative d
which is a two-form. It is given by the rules

d2 = 0 d(uω) = du ∧ ω + udω (.)

Hence with ω = pdx+ qdy we find

dω = dp ∧ dx+ pd2x+ dq ∧ dy + qd2y

= (∂xpdx+ ∂ypdy) ∧ dx+ (∂xqdx+ ∂yqdy) ∧ dy
= (∂xq − ∂yp)dx ∧ dy.

Complex integration
(.) Now, let f(z) be a complex function defined in the domain Ω whose real part
is u and imaginary part is v, so that f(z) = u(z) + iv(z). We want to make sense of
integrals of the form ∫

γ

f(z)dz,

where the complex differential dz is defined as dz = dx + idy. Introducing this into
the expression f(z)dz, multiplying out and separating the real and imaginary parts,
we find ∫

γ

f(z)dz =

∫
γ

(udx− vdy) + i(vdx+ udy), (.)

which is just a combination of two ordinary real integrals.

(.) It is a fundamental principle (universally valid only interpreted with care6)
principle “that integrating the derivative of a function gives us the function back”,
and in our context it remains in force—frankly speaking, any thing else would be
unthinkable. A complex function f differentiable in the domain Ω whose derivative is
continuous7 satisfies the equality∫

γ

f ′(z)dz = f(b)− f(a), (.)

where γ is any path joining the point a to the point b. The chain rule and the Cauchy-
Riemann equations give

du =uxdx+ uydy = uxdx− vxdy
dv =vxdx+ vydy = vxdx+ uxdy

6There are increasing real functions having a derivative that vanishes almost everywhere
7One of the marvels of complex function theory is, as we soon shall se, that this is always true

—  —
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combining this with the definition of the integral (??) we obtain f ′(z)dz = du + idv,
and the formula follows by the corresponding formula for exact real forms.

For a closed path γ with parameter running from α to β one has γ(α) = γ(β), and
consequently the integral around γ vanishes. We have

Proposition . If f is differentiable in the domain Ω with a continuous derivative,
and γ is a closed path in Ω, then ∫

γ

f ′ = 0.

Cauchy’s integral theorem—the corner stone of complex function theory—states
that under certain topological condition on the closed path γ and the domain Ω, a
similar statement is valid for any holomorphic function—that is, its integral along γ
vanishes. We are going to establish this, step by step in progressively more general
variants. The start being the case when γ is the circumference of a triangle.

(.) As an illustration we cast a glance on the rational functions. Every polynomial
P (z) trivially has a primitive (as you should know, the derivative of zn+1/(n+1) equals
zn), and therefore

∫
γ
P (z)dz = 0 as long as the path γ is closed. The same is true for any

rational function of the type c(z−a)−n where n ≥ 2 (a primitive being (z−a)1−n/(1−n),
as you should know). The only obstruction for a rational function having a primitive
is therefore the occurrence of terms of type c/(z − a) in its decomposition in partial
fractions. When being free of such terms, the rational function F (z) satisfies∫

γ

F (z)dz = 0

for closed paths γ avoiding the points where F is not defined.

(.) The converse of proposition ?? above also holds. One has

Proposition . Let f(z) be continuos in the domain Ω and assume that
∫
γ
f(z)dz =

0 whenever γ is a closed path in Ω. Then f(z) has primitive in Ω, in other words, there
is a function F (z) defined in Ω with F ′(z) = f(z).

Proof: We begin with choosing a point z0 in Ω. Since the integral of f round any
closed path vanishes, we may define a function F (z) by declaring

F (z) =

∫
γ

f(z)dz,

where γ is any path from z0 to z; Indeed, the integral has the same value whatever
path of integration we chose, as long as it connects z0 to z: If γ1 and γ2 are two of the
kind, the path γ1γ

−1
2 is closed, and thus we have

0 =

∫
γ1γ
−1
2

f(z)dz =

∫
γ1

f(z)dz −
∫
γ2

f(z)dz.
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We have to verify that F is differentiable and that the equality F ′(z) = f(z) holds.
The difference F (z + h) − F (z) can be computed by integrating f(z) along any path
leading from z til z + h. As h is small in modulus, we may assume that z + h lies in a
disk centered at z. Then the line segment parametrized as γ(t) = z+ th with 0 ≤ t ≤ 1
is contained in Ω. Now, dz = ht along γ, and we find the following expression for the
differential quotient of F :

h−1
(
F (z + h)− F (z)

)
= h−1

∫
γ

f(z)dz =

∫ 1

0

f(z + th)dt

It is a well known matter, and trivial to prove, that limh→0

∫ 1

0
f(z + th)d = f(z) when

f is continuous at the point z, and with that, we are through. o

(.) Cauchy’s approach to the his theorem was via what is now called Green’s
theorem, which by the way never is mentioned in any of Green’s writings. The first
time the statement occurs is in a paper by Cauchy from 1846. However Cauchy does
not prove it, he promised a proof that never appeared, and the first proof was given by
Riemann. For an extensive history of these matters one may consult [?]. The theorem
is today stated in calculus courses as∫∫

Ω

(∂xq − ∂yp)dxdy =

∫
∂Ω

pdx+ qdy

where ∂Ω is the border of the domain Ω, and this form is very close to the way Cauchy
stated it. In terms differential forms, it it takes the following appealing look:∫

Ω

dω =

∫
∂Ω

ω,

a formula that obtained by substituting the equality dω = (∂xq − ∂yp)dx ∧ dy from
paragraph (??) in formula in Green’s theorem.

There are two fundamental assumptions in Green’s theorem. One about the func-
tions involved, they must continuously differentiable (in the real sense) and one on the
geometry. The border ∂Ω must be a curve that has a piecewise parametrized by conti-
nuously differentiable functions in a way that Ω lies to the left of ∂Ω. This the current
“calculus way” to state Green’s theorem, but there are stronger versions around.

The general geometrical assumptions are notoriously fuzzy, and the proof in the
general case is involved, but of course in simple concrete situations proof is simple.
Just a combination of Fubini’s theorem about iterated integration and the fundamen-
tal theorem of analysis. We shall not dive into general considerations about Green’s
theorem, but will only use it in clear cut situations.

(.) It is interesting to give Green’s theorem a formulation adapted to the specific
context of complex function theory; i.e., a formulation in terms of the differential
operators ∂z and ∂z: As d2z = 0 and dz ∧ dz = 0, one has

d(fdz) = (∂zfdz + ∂zfdz) ∧ dz = ∂zfdz ∧ dz
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which gives

−
∫

Ω

∂zfdz ∧ dz =

∫
∂Ω

f.

In view of the equality dz ∧ dz = 2idx ∧ dy, one obtains∫
∂Ω

f(z)dz = 2i

∫∫
Ω

∂zf(z)dxdy

In view of the ∂z-formulation of the Cauchy-Riemann equations as in theorem ?? on
page ??; that is ∂z = 0 for holomorphic f ’s the form of Greens theorem in the form
above, one obtains a version of the Cauchy’s theorem:

Theorem . Let f be a function that is holomorphic with continuous derivative in
a domain Ω for which Green’s theorem is valid; i.e., the border ∂Ω has a piecewise
C1-parametrization. Then it holds true that∫

∂Ω

f(z)dz = 0.

This is of course a very nice result, but it is not entirely satisfying. In the days
of Cauchy a holomorphic function had a continuous derivative by assumption, but
nowadays that condition is dropped—as in our definition. The reason one can do this,
is that Cauchy’s theorem remains valid when the continuity of the derivative is not
assumed; a result due to Edouard Jean-Baptiste Goursat, and which is the topic of the
next section.

Moore’s proof of Goursat’s lemma
As announced, this paragraph is about Goursat’s lemma the vanishing of integrals of

holomorphic functions round triangles, of course without assumptions about continuity
of the derivative. Goursat published this in , and the simple and beautiful proof
we give—really one of the gems in mathematics—is now standard and was found by
Eliakim Hastings Moore in [?] from 1900 , and it is not due to Goursat as claimed in
many texts. There is a point of exception occurring in the statement, which makes it
easy to deduce Cauchy’s formula from the lemma (which by the way we have promoted
to a theorem).

Theorem . Let Ω be a domain containing the triangle ∆ and let p ∈ Ω be a point.
Let f be a function continuous in Ω and differentiable through out Ω \ {p}. Then∫

∂∆

f(z)dz = 0.

Proof: In the first, and essential part, of the proof the special point p is assumed to
lie outside the triangle ∆.

We shall describe a process that when fed with a triangle ∆, returns a new triangle
∆′ contained in ∆ and having the the following two properties:
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1.
∣∣∫
∂∆
f(z)dz

∣∣ ≤ 4
∣∣∫
∂∆′

f(z)dz
∣∣

2. Both the diameter and the perimeter of ∆′ is half of those of ∆.

Let the corners of ∆ be a, b and c; and denote by c′ the midpoint of the edge of ∆ from a
to b, by b′ the midpoint of the edge from a to c and by a′ the midpoint of the edge from
b to c. These six points serve as corners of four new triangles that subdivide ∆; say ∆i

with 1 ≤ i ≤ 4. As the new corners are the midpoints of the old edges, the perimeter
of each of the triangles ∆i is half that of ∆, and similarly for the diameters, they all
equal half the diameter of ∆. So any of the four ∆i-s satisfies the second requirement
above.

ba

c

b′ a′

c′

∆′

Figur .: A triangles ∆ = abc and the ∆′ = a′b′c′

So to the first requirement. In the sum to the right in (??) below, the integrals of f
along edges sheared by two of the four triangle cancel, and hence the equality in (??)
is valid: ∫

∂∆

f(z)dz =
∑
i

∫
∂∆i

f(z)dz, (.)

∣∣∣∣∫
∂∆

f(z)dz

∣∣∣∣ ≤∑
i

∣∣∣∣∫
∂∆i

f(z)dz

∣∣∣∣ .
Among the four triangles ∆i-s we pick the one for which

∣∣∫
∂∆i f(z)dz

∣∣ is maximal
as the new triangle ∆′, the output of the process. One obviously has

∣∣∫
∂∆
f(z)dz

∣∣ ≤
4
∣∣∫
∂∆′

f(z)dz
∣∣, and the second requirement above is fulfilled as well.

Iterating this process one constructs a sequence of triangles ∆n all contained in Ω
having the three properties below (where as usual λ(A) stands for the perimeter of a
figure A and d(A) for the diameter)

� ∆n+1⊆∆n;

�
∣∣∫
∂∆
f(z)dz

∣∣ ≤ 4n
∣∣∣∫∂∆n

f(z)dz
∣∣∣;

� λ(∆n) < 2−nλ(∆);
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� d(∆n) < 2−nd(∆).

The triangles form a descending sequence of compact sets with diameters shrinking to
zero; their intersection is therefore one point, say a. By assumption f is differentiable
at a, and we may write

f(z) = f(a) + f ′(a)(z − a) + ε(z − a)

where |ε(z − a)/(z − a)| tends towards zero when z approaches a; so if η > 0 is a given
number, |ε(z − a)| < η |z − a| for z sufficiently close to a; that is for z ∈ ∆n for n >> 0.
As the integrals of both the constant f ′(a) and of f ′(a)(z − a) around any closed path
vanish, one finds ∫

∂∆n

f(z)dz =

∫
∂∆n

ε(z − a)dz,

and hence

4−n
∣∣∣∣∫
∂∆

f(z)dz

∣∣∣∣ ≤ ∣∣∣∣∫
∂∆n

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
∂∆n

ε(z − a)dz

∣∣∣∣ ≤
≤
∫
∂∆n

η |z − a| |dz| ≤ η · 2−nd(∆) · 2−nλ(∆),

Things are now so beautifully constructed that factor 4−n cancels, and the inequality
becomes ∣∣∣∣∫

∂∆

f(z)dz

∣∣∣∣ < ηd(∆)λ(∆)

The positive number η being arbitrary, we conclude that
∫
∂∆
f(z)dz = 0.

Finally, if the point p is among the corners of ∆, we may subdivide ∆ in two
triangles ∆′ and ∆′′, one of them, say ∆′, containing the special point p and having
perimeter as small we want. As the point p lies outside ∆′′, the integral of f round ∂∆′′

vanishes by what we have already done; hence
∫
∂∆
f(z)dz =

∫
∂∆′

f(z)dz. This integral
can be maid arbitrarily small since f is bounded in ∆ and the perimeter of ∆′ can
maid arbitrarily small.

At the very end, we get away with the case of p lying inside ∆, but not being a
corner, by decomposing ∆ into three (or two if p lies on an edge of ∆) new triangles,
each having p as one corner and two of the corners of ∆ as the other two. o

Problem .. Let Ω be a domain and f a continuous function in Ω. Assume that
for a finite set P of points in Ω, the function f is differentiable in Ω \ P . Prove that∫
∂∆
f(z)dz = 0 for all triangles ∆ in Ω. Hint: Induction and decomposition. X

Problem .. Let Ω be a domain and f continuous and holomorphic in Ω \ P as in
exercise ??. Show that the conclusion of ?? holds even if one only assumes that P is a
closed subset without accumulation points in Ω. Hint: Triangles are compact. X
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Cauchy’s theorem in star-shaped domains
To continue the development of the Cauchy’s theorem and expand its validity, we

now pass to arbitrary closed paths in a star-shaped domains domain. Recall that the
domain Ω is star-shaped if there is one point c, called the apex, such that for any z i Ω
the line segment joining c to z is entirely contained in Ω. The point c is not necessarily
unique, many domains have several apices.

Of course all convex domains are star-shaped, and this includes circular disks, the
by far most frequently occurring domains in the course. The idea is to show that
differentiable functions have primitives just by integrating them along line segments
emanating from a fixed point. This is very close to the fact that continuous functions
whose integral round any closed path vanishes, has a primitive (proposition ?? on ??),
in star-shaped domains the vanishing of integrals round triangles suffices.

(.) So assume that f is continuous throughout a star-shaped domain Ω with apex
c and assume that f is differentiable everywhere in Ω except possibly at one point p.

For any two points a and b belonging Ω, we denote by L(a, b) the line segment
joining a to b, and we assume tacitly that it is parametrized in the standard way; that
is as (1 − t)a + tb with the parameter t running from 0 to 1. The domain Ω being
star-shaped with apex c by assumption the segment L(c, a) is entirely contained in Ω.
Now, we define a function F in Ω by integrating f along L(c, z), that is we set

F (z) =

∫
L(c,z)

f(z)dz. (.)

The claim is that F is continuos throughout Ω and differentiable except at p with
derivative equal to f ; in other words, the function F is what one usually calls a primitive
for f :

Proposition . Let Ω be a star-shaped domain and let p be a point in Ω. A continuous
function f in Ω which is differentiable away from p, has a primitive in Ω \ {p}.

Proof: The task is to prove that F (z) as defined by equation (??) is differentiable
and that the derivative equals f . The proof is very close to the proof of proposition ??
(in fact, it is mutatis mutandis the same).

The obvious line of attack is to study the difference F (a+ h)− F (a) where a is an
arbitrary point in Ω different from p and h is complex number with a small modulus.
We fix disk centered at a contained in Ω. If a+h lies in D, the line segment L(a, a+h)
lies in Ω as well.

We find

F (a+ h)− F (a) =

∫
L(c,a+h)

f(z)dz −
∫
L(c,a)

f(z)dz =

∫
L(a,a+h)

f(z)dz, (.)

the last and crucial equality holds true since the integral of f around the triangle with
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corners c, a and a+ h vanishes by Goursat’s lemma (theorem ?? on page ??).
The path L(a, a+ h) is parametrized as a+ th with the parameter t running from

0 to 1. Hence dz = hdt along L(a, a+ h), and we find∫
L(a,a+h)

f(z)dz = h

∫ 1

0

f(a+ th)dt.

The function f being continuous at a implies that given ε > 0 there is δ > 0 such that

|f(a+ h)− f(a)| < ε

whenever |h| < δ. Hence

F (a+ h) = F (a) + hf(a) + h

∫ 1

0

(f(a+ th)− f(a))dt

where ∣∣∣∣∫ 1

0

(f(a+ th)− f(a))dt

∣∣∣∣ < ∫ 1

0

|f(a+ th)− f(a)| dt < ε,

once |h| < δ. o

(.) Combining the theorem with the fact that the integral of a derivative round a
loop vanishes, one obtains as an immediate corollary Cauchy’s formula for star-shaped
domains, namely:

Corollary . If f is a function continuous in the star-shaped domain Ω and holo-
morphic in Ω \ {p}, then

∫
γ
f(z)dz = 0 for all closed paths γ in Ω.

Cauchy’s formula in a star-shaped domain
By far the most impressive tool in the toolbox of complex function theory is Cau-

chy’s formula, expressing the value of f at a point as the integral round a loop circling
the point. Taking a step in the direction towards the general case, we proceed to es-
tablish this formula for star-shaped domains. This includes Cauchy’s formula for disks.
Albeit a modest version, it has rather strong implications for the local behavior of
holomorphic functions. A crucial feature in the proof is the exceptional point p allowed
in corollary ?? above—and this is the sole reason for including the exceptional point
in the hypothesis of ??.

(.) The setting is as follows: The domain Ω is star-shaped and a is any point Ω.
Furthermore γ a closed path in Ω not passing through a and f is function holomorphic
throughout Ω.

The auxiliary function

g(z) =


f(z)− f(a)

z − a
when z 6= a

f ′(a) when z = a
(.)
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is continuous at a since f is differentiable there, and in Ω \ {a} it is obviously holo-
morphic. Hence g fulfills the hypothesis in Cauchy’s theorem (corollary ?? on page ??)
and the integral of f round closed paths vanish. As a is not lying on the path γ it holds
true that ∫

γ

f(z)− f(a)

z − a
dz = 0,

from which one easily deduces∫
γ

f(z)(z − a)−1dz = f(a)

∫
γ

(z − a)−1dz. (.)

The integral
∫
γ
(z − a)−1dz is, as we shall see later on, an integral multiple of 2πi, and

we defines the integer n(γ, a) by setting

n(γ, a) =
1

2πi

∫
γ

(z − a)−1dz.

It is called the winding number of g round a. We have thus establish the following
version of Cauchy’s formula for star-shaped domains:

Theorem . Let f be holomorphic in the star-shaped domain Ω and a a point in Ω.
For any closed path γ, one has

1

2πi

∫
γ

f(z)(z − a)dz = n(γ, a)f(a).

Of course this formula comes to its full force only when the winding number n(γ, a)
is known. Hence it is worth while using some time and energy in studying the winding
number and establish some of its general properties. We do that in the next paragraph.

(.) The following lemma is just a rephrasing in the lingo of function theory of a
small lifting lemma from topology saying that any continuous map from an interval to
the circle S1 lifts to universal cover R of S1. It is simple but crucial in our context, so
we offer a proof.

Lemma . Any path γ(t) satisfying |γ(t)| = 1 for all values t of the parameter, may
be brought on form γ(t) = eiφ(t).

If you wonder what kind of path γ is, it si just a movement on the unit circle. The
function φ is a logarithm of γ(t). So along portions of the path where the complex
logarithm is defined, it is trivial that φ(t) exists. The function φ is also only unique up
to additive constants of the form 2nπi with n ∈ Z.
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Proof: For simplicity, we assume that parameter interval of γ is the unit interval
[0, 1]. Let τ be the supremum of the numbers s such that φ(t) exists for over [0, s]. In a
neighbourhood U of γ(τ) the complex logarithm logw is well defined. We choose one of
the branches and let ψ(t) = log γ(t) for t ∈ γ−1(U). One of the connected components
of the inverse image γ−1(U) is an open interval J containing τ , and over [0, τ) ∩ J the
two functions φ and ψ differ only by an additive constant. Hence by adjusting ψ we
can make them agree, and φ can be extended beyond τ , contradicting the definition of
τ . o

The lemma allows paths to be parametrized with polar coordinates centered at points
not on the path. The radius vector is just r(t) = |γ(t)− a|, and the angular coordinate is
given as in the lemma; it is one of the functions φ(t) with eiφ(t) = (γ(t)−a) |γ(t)− a|−1.
Thus one has

γ(t) = a+ r(t)eiφ(t).

With this parametrization one finds γ′(t) = r′(t)eiφ(t) + ir(t)eiφ(t)φ′(t), and upon inte-
gration we arrive at∫

γ

(z − a)−1dz =

∫ β

α

(r′(t)r(t)−1 + iφ′(t))dt =

= log r(β)− log r(α) + (φ(β)− φ(α))i.

where log designates the good old and well behaved real logarithm. As the path γ is
closed, r(β) = r(α) and eiφ(β) = eiφ(α), the latter equality implying that φ(β)− φ(α) is
an integral multiple of 2π. We have establish

Lemma . The winding number n(γ, a) = 1
2πi

∫
γ
(z − a)−1dz is an integer.

Finally, we examine to which extent n(γ, a) varies with the point a, and we shall
prove
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Proposition . If a and b belong to the same connected component of C \ γ, then
n(γ, a) = n(γ, b), and the winding number n(γ, a) vanishes for a in the unbounded
component.

Assume that a and b are two different points and let z be any point in the plane.
An elementary geometric observation is that the point z lies on the line through a and
b if and only if the two vectors z − a and z − b are parallel or anti-parallel; phrased in
other words, one is a real multiple of the other. They point in opposite directions if z
belongs to the line segment L(a, b) joining a to b, and in the same direction if not. The
fractional linear transformation

A(z) =
z − a
z − b

therefore maps the line segment between a and b onto the negative real axis.
Now, the principal branch logw of the logarithm is well defined and holomorphic

in the split plane C−; that is in the complement of the negative real axis. Since the line
segment L(a, b) corresponds to the negative real axis under the map A, we conclude
that logA(z) = log(z− a)(z− b)−1 is well defined and holomorphic in the complement
C \ L(a, b).

Lemma . Let a and b bee different point in the complex plane and let γ be any closed
path in C. If γ does not intersect the line segment from a to b, the winding numbers of
γ around a and b are the same, that is n(γ, a) = n(γ, b).

Proof: The function g(z) = log(z − a)(z − b)−1 is defines and holomorphic along γ,
and its derivative is given as

g′(z) = (z − a)−1 − (z − b)−1.

As the integral of a derivative round a loop vanishes, we obtain

0 =

∫
γ

g′(z)dz =

∫
γ

(z − a)−1dz −
∫
γ

(z − b)−1dz

and we are happy! o

The proof of proposition ?? will be complete once we prove that any to points a and
b in same component U of C \ γ can be connected by a piecewise linear path.

Connect a and b by a continuous path δ, and cover d by finitely many disks Vj all
lying in U . By Lebesgue’s lemma there is a partition {ti} of the parameter interval ,
such the portions of the path with parameter in the subintervals [ti−1, ti] is contained
in one of the Vj-s. But Vj being convex, the line segments between δ(ti−1) and δ(ti) lie
in Vj and a fortiori in U . Thus any two points in U can be connected by a piecewise
path, and we are done.

As an illustration, be offer the nice curve drawn in figure xxx. It divides the plane
into four connected components and the corresponding winding numbers are indicated
in red ink. In two of the components the winding number is zero, and in two others
they are 1 and 2 respectively.
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Lemma . If D is a disk and a is any point in D, then n(∂D, a) = 1.

Proof: Winding numbers being constant throughout components (proposition ?? on
page ??) it suffices to check that winding number of ∂D round the center of the disk
equals one, so we take a to be the center of D and parametrize ∂D as z(t) = a + reit

with t running from 0 to 2π . One has dz = ireitdt and as z − a = reir the integral
becomes ∫

γ

(z − a)−1dz = i

∫ 2π

0

dt = 2πi,

and n(∂D, a) = 1. o

Problem .. Let C be the circle centered at a having radius r. Assume that γ is
the path a+ reint with n and integer and the parameter running from 0 to π—that is,
it traverses the circle C n times in the direction indicated by the sign of n—then the
winding number is n(γ, a) = n. X

(.) A special case of theorem ?? is the Cauchy’s formula for a circle:

Theorem . Let D be a disk centered at a and f a function holomorphic in a domain
containing the closure D. The one has

1

2πi

∫
∂D

f(z)(z − a)−1dz = f(a),

where the circumference ∂D is traversed once counterclockwise.

(.) In polar coordinates; i.e., z(t) = a+ reit this reads

f(a) =
1

2π

∫ 2π

0

f(a+ reit)dt

So the value of f at a equals the mean value of f along any circle centered at a on
which f is holomorphic.

Consequences of the local version Cauchy’s formula

The Cauchy formula has an impressive series of very strong consequences for holomorp-
hic functions; the most important is that they will be infinitely many times differen-
tiable; i.e., have derivatives of all orders. Other important results are the maximum
principle (which also has a global aspects) and the open mapping theorem, and finally
Liouvilles theorem. This definitively a global statement saying that a bounded entire
function is constant.
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Derivatives of all orders and Taylor series
The setting in this section is slightly more general than in the previous section.

Basically we introduce a way of getting hand on a lot of holomorphic functions by
integration along curves, and we show that these functions are analytic, i.e., they have
well behaved Taylor expansions round every point where they are defined, and finally,
by Cauchy’s formula any f holomorphic in a disk, is obtained in this way.

(.) We start out with a path γ and a function φ defined on γ. The only hypothesis
on φ is that it be integrable; that is the function φ(γ(t)) must be a measurable function

on the parameter interval [α, β], and the integral
∫
γ
|φ(z)| |dz| =

∫ β
α
|f(γ(t))γ′(t)| dt

must be a finite number. We reserve the letter M for that number. Integrating φ(z)(z−
w) along γ gives us a function Φ(z) defined at every point z not lying on γ; that is, we
have

Φ(z) =

∫
γ

φ(w)(w − z)−1dw

for z not on γ. We shall see that Φ has derivatives of all orders, and we are going to give
formula for the Taylor polynomials of Φ round any point a (not on γ) with a very good
and practical estimate for the residual term. From this, we extract formulas for the
derivatives of Φ analogous to Cauchy’s formula and show that Taylor series converges
to Φ.

Proposition . The function Φ(z) is holomorphic and has derivatives of all orders
off the path γ. Its n-th derivative is given as the integral

Φ(n)(z) = n!

∫
γ

φ(w)(w − z)−n−1dw.

The Taylor series of Φ at any point not on γ converges normally to Φ in the largest
disk centered at z not hitting γ.

Proof: We shall exhibit the Taylor series of Φ round any point a not lying on the
curve γ. The tactics are simple and clear: Expand (w− z)−1 in finite sum of powers of
(z − a) (with a residual term), multiply by φ(w), integrate along γ and hope that we
control the residual term sufficiently well.

We begin carrying out this plan by recalling a formula from the old days in high
school when one learned about geometric series, that is

1

1− u
= 1 + u+ · · ·+ un +

un+1

1− u
, (.)

where u is any complex number. We want to develop (w − z)−1 in powers of (z − a),
and to that end we observe that

1

w − z
=

1

(w − a)− (z − a)
=

1

(w − a)

1

1− z − a
w − a

,
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and in view of (??) above, we find by putting u = (z − a)(w − a)−1

1

w − z
=

n∑
k=0

(z − a)k

(w − a)k+1
+

(z − a)n+1

(w − z)(w − a)n+1
.

Multiplying through by φ(w) and integrating along the path γ yields

Φ(z) =
n∑
k=0

(z − a)k
∫
γ

φ(w)(w − a)−k−1dw +Rn(z)(z − a)n+1.

The factor Rn(z) in the residual term equals

Rn(z) =

∫
γ

φ(w)(w − z)−1(w − a)−n−1dw,

an expression that has a for our purpose a good upper bound. Indeed, let d = infw∈γ |w − a|
be the distance from a to the curve γ. It is strictly positive since γ is compact and a
does not lie on γ. Pick a positive number η with η < 1. For any z with |z − a| < ηd one
has |w − z| ≥ |w − a| − |z − a| ≥ (1 − η)d, and it is easily seen that these estimates
give

|Rn(z)| < (1− η)−1M/d−n−2.

Hence ∣∣Rn(z)(z − a)n+1
∣∣ < (1− η)−1d−1M

(z − a
d

)n+1
< (1− η)−1d−1Mηn+1.

The residual term tends uniformly to zero as n tends to infinity because η < 1, and
we have established that Φ(z) has a power series expansion in any disk centered at a
whose closure does not hit γ, and furthermore the n-th coefficient of the power series
equals ∫

γ

f(w)(w − z)−n−1dw.

F The theorem now follows now from the principle that “every power series is a Taylor
series” (proposition ?? on page ??). o

(.) In the theorem we assumed that γ parametrizes a compact curve, but the
proof goes through more generally at least for points having a positive distance to γ;
of course the main hypothesis is that φ be integrable along γ. For example, if γ is the
real axis (strictly speaking, the parametrization of the real axis with the identity) and
φ is any integrable function, the corresponding Φ is holomorphic off the axis.

Problem .. Let X ⊆C be a measurable subset and let φ be an integrable function
on X. Define

Φ(z) =

∫∫
X

φ(w)(w − z)−1dxdy

where dxdy is the two-dimensional Lebesgue measure. Show that Φ is holomorphic off
X. X
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Problem .. Assume that Γ is an “infinite contour”, that is a path parametrized
over the open interval I = (0,∞). Let φ(t) be an integrable function on Γ; that is, φ is
measurable and the integral

∫∞
0
|φ(Γ(t))Γ′(t)| dt is finite. Define

F (z) =

∫
Γ

φ(w)(w − z)−1dw,

for z not on Γ. Show that this is meaningful; i.e., both the real and the imaginary part
of the integral are convergent. Show that F (z) is a holomorphic function off Γ. X

(.) Our main interest in proposition ?? above are the implications it has for holo-
morphic functions. So let f be a function holomorphic in the domain Ω. For any point
z ∈ Ω and any disk D contained Ω with center at z, Cauchy’s local formula (theorem
?? on page ??) tells us that

f(z) =
1

2πi

∫
∂D

f(w)(w − z)−1dw.

As usual, the boundary ∂D is traversed once counterclockwise. Hence we are in a good
position to apply proposition ?? with the path γ being ∂D and the function φ being
the restriction of f to ∂D—indeed, from Cauchy’s formula we deduce that the function
Φ then equals f , and ?? translates into the fundamental and marvelous

Theorem . Assume that f is holomorphic in the domain Ω. Then f has derivatives
of all orders, and for the n-th derivative the following formula holds true

f (n)(z) =
n!

2πi

∫
∂D

f(w)(w − z)−n−1dw,

where D is any disk centered at z and contained in Ω, and where, as usual, ∂D is
traversed once counterclockwise. The Taylor series of f about any point z, converges
normally to f(z) in D.

Cauchy’s estimates and Liouville’s theorem
This paragraph is about entire functions; that is, functions being holomorphic in

the entire complex plane. For such functions one may apply Cauchy’s formula for the
higher derivatives from the previous paragraph over any disk in C. Using the disk
centered at a point a with radius R one obtains upper bounds for the modulus of the
higher derivative. These are famous the Cauchy estimates:∣∣f (n)(a)

∣∣ =
n!

2π

∫
∂D

∣∣f(w)(w − a)−n−1dw
∣∣ < n! sup

w∈∂D
|f(w)| /Rn, (.)

the perimeter of D being 2πR and |z − a| being equal R on the circumference ∂D. One
of the consequences of these estimates is that entire functions that are not constant must
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sustain a certain growth as z tends to infinity; they must satisfy growth conditions. The
simples case is known as Liouville’s theorem, and copes with bounded entire functions

Theorem . Assume that f is a bounded entire function. Then f is constant.

Proof: Assume that |f | is bounded above by M . For any complex number a, one has
the Cauchy estimate for the derivative of f , that is inequality (??) with n = 1,

|f ′(a)| ≤M/R,

valid for all positive numbers R, as large as one wants. Hence f ′(a) = 0, and conse-
quently f is constant. o

(.) The next application of the Cauchy estimates, which we include as an illust-
ration, is a slight generalization of Liouville’s theorem. Functions having a sublinear
growth musts be constant

Proposition . Assume that |f(z)| < A |z|α for some number α < 1. Then f is
constant.

Proof: The proof is mutatis mutandis the same as for Liouville’s theorem. The Cauchy
estimate on a disk with radius R and center a gives

|f ′(a)| < A sup
z∈∂D

|z|α /R < A(R + |a|)α/R.

The term to the right tends to zero as R tends to infinity since α < 1 (by l’Hôpital’s
rule, for example) , and hence f ′(a) = 0. Since a was arbitrary, we conclude that f is
constant. o

(.) The third application of Liouville’s theorem along this line, it a result say-
ing that entire functions with polynomial growth are polynomials; polynomial growth
meaning that |f | is bounded above by A |z|n for positive constant A and a natural
number n. One can even say more, f must be a polynomial whose degree is less than
n:

Proposition . Let f be an entire function and assume that for a natural number
n and a positive constant A one has |f(z)| ≤ A |z|n for all z. Then f is a polynomial
of degree at most n.

Proof: The proof goes by induction on n, the case n = 0 being Liouville’s theorem.
The difference f − f(0) is obviously a polynomial of degree at most n if and only if
f is, so replacing f by f − f(0), we may assume that f vanishes at the origin. Then
g(z) = f(z)/z is entire and satisfies the inequality |g| ≤ A |z|n−1. By induction g is a
polynomial of degree at most n− 1, and we are through. o
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(.) For any domain Ω it is important, but often challenging, to determine the
group Aut(Ω) of holomorphic automorphisms of Ω. It consists of maps φ : Ω→ Ω that
are biholomorphic, that is, they are bijective with the inverse being holomorphic as
well. It is a group under composition.

An illustrative example, but also an important result in it self, we shall show that
all the automorphisms of the complex plane are the affine functions; i.e., functions of
the type az + b:

Proposition . If φ : C → C is biholomorphic, then there are complex constants
such that φ(z) = az + b.

Proof: After having replaced φ by φ − φ(0) we can assume that φ(0) = 0, and have
to prove that φ(z) = az. The function φ(z)/z is holomorphic in the entire plane, and
will turn out to be bounded. By Liouvilles theorem, it is therefore constant, say equal
to a. Hence f(z) = az, and we are done.

It remains to see that ψ(z) is bounded. Let AR = { z | |z| > R }. Then φ(AR) ∩
φ(C \ AR) = ∅ and φ(C \ AR) is an open neighbourhood of 0. Hence φ does not have
an essential singularity at infinity, but must have a pole. It must be order one, if not φ
would not be injective, hence φ(z)/z is holomorphic at infinity and therefor bounded.

o

The maximum modulus principle and the open mapping theorem
We start out in a laid back manner and consider a real function f in one variable

defined on an open interval I. In general, there is no reason that f(I) should be open,
even if f is real analytic—any global maximum or minimum of f kills the openness of
f(I). A necessary criterion for f to be an open map (that is f(U) is open for any open
U) is that f have no local extrema, and in fact, this is also sufficient. Thus “having
local maxima and minima” or “being an open mapping” are close-knit properties of f .

For holomorphic functions f the situation is in one aspect very different. The modulus
of an holomorphic function never has local maxima, this is the renowned maximum
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modulus principle. The holomorphic functions are similar to real functions in the as-
pect that the maximum modulus principle is tightly knit to the functions being open
mapping; and since the maximum modulus principle holds, they are indeed open maps.

(.) The maximum modulus principle can be approached in several ways, we shall
present two. The first, presented in this paragraph, hinges on the Cauchy formula in
a disk, and is a clean cut and the reason why the maximums principle holds is quite
clear. The other one, which is in a sense simpler just using the second derivative test
for maxima, comes at the end of this section.

Theorem . (The maximum modulus principle) Let f be a function holomor-
phic in the domain Ω. Then |f(z)| has no local maximum unless f is constant.

Proof: The crankshaft in this proof is the Cauchy’s formula expressed in polar coor-
dinates. If Dr is a disk contained in Ω, centered at a and with r, one has

f(a) =
1

2πi

∫ 2π

0

f(a+ reit)dt. (.)

This follows quickly by substituting z = a+reit in Cauchy’s formula for a disk (theorem
?? on page ??), and the identity may be phrased as the “mean value of f on the
circumference equals the value at the center”.

Aiming for an absurdity, assume that a is a local maximum for the modulus |f |, and
chose r so small that |f(a)| ≥ |f(z)| for all z in Dr. Now, if |f(a)| = |f(z)| for all z ∈ Dr,
it follows that f is constant. Hence for at least one r there are points on the circle ∂Dr

where |f | assumes values less than |f(a)|, and by a well known and elementary property
of integrals of continuous functions, we get the following contradictory inequality:

|f(a)| ≤ 1

2πi

∫ 2π

0

∣∣f(a+ reit)
∣∣ dt < ∫ 2π

0

|f(a)| = |f(a)|

o

The following two offsprings of the maximum modulus theorem are immediate corol-
laries:

Corollary . Let f a function holomorphic in the domain Ω. Then for any point a
in Ω it holds true that |f(a)| < supz∈Ω |f(z)| unless f is constant.

Corollary . Let K ⊆Ω be compact and f a function holomorphic in Ω. Then f
achieves it maximum modulus at the boundary ∂K, and unless f is constant, the maxi-
mum is strict.
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(.) Knowing there is a maximum principle one is tempted to believe in a minimal
principle as well. And indeed, at least for non-vanishing functions, there is one. The
proof is obvious: As long as f does not vanish in Ω, the inverse function 1/f is holo-
morphic there, and the maximum modulus principle for 1/f yields a minimum modulus
principle for f .

Theorem . (The minimum modulus principle) Assume that the function f is
a non-vanishing and holomorphic in the domain Ω. Then f has no local minimum in
Ω unless f is constant.

(.) We have now come to the open mapping theorem, which we deduce from the
the minimum modulus principle:

Theorem . (Open mapping) Let Ω be a domain and let f be holomorphic in Ω.
Then f(Ω) is an open subset of C unless f is constant.

Of course if U ⊆Ω is open, it follows that f(U) is open; just apply the theorem with
Ω = U . So the theorem is equivalent to f being an open mapping.

Proof: Let a ∈ Ω be a point. We shall show that f(a) is an inner point of f(Ω).
After replacing f by f − f(a) we may assume that f(a) = 0, and since the zeros of

f are isolated, there are disks D about a where f has no other zeros than a, and whose
boundary is contained in Ω. Our function f does not vanish on boundary ∂D and has
a therefore a positive minimum ε there.

Now, let w be a point not in f(Ω) with |w| < ε/2. The difference f(z)−w does not
vanish in Ω, and on ∂D we have

|f(z)− w| ≥ |f(z)| − |w| ≥ ε− ε/2 = ε.

By the minimum modulus principle, |f(z)− w| ≥ ε/2 throughout D, in particular for
z = a, which gives the absurd inequality ε/2 ≤ |w| < ε. o

Problem .. Prove that the open mapping theorem implies the maximum modulus
principle. Hint: Every disk about f(a) contains points whose modulus are larger
than |f(a)|. X

(.) There is a simpler approach to the maximum modulus principle then the one
we followed above that does not depend on relatively deep results like Cauchy’s formula.
The principle can be proven just by the good old second derivative test for extrema
combined with the Cauchy-Riemann equations. We follow closely the presentation in
[?] pages 24–26.

You probably remember from high school, that for a real function φ of one variable
that is twice continuously differentiable the second derivative is non-positive at a local
maximum; i.e., if a ∈ I is a local maximum for φ, then φ′′(a) ≤ 0.

Now, if u is a twice continuously differentiable function of two variables defined in a
domain Ω⊆C and having a local maximum at a = (α, β), the Laplacian ∆u = uxx+uyy
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Figur 1.1:

is non-positive at a. Indeed, approaching a along lines parallel to the axes—that is
applying the second derivative test to the two functions u(α, x) and u(x, β)—one sees
that the second derivatives satisfy uxx(a) ≤ 0 and uyy(a) ≤ 0. With a small trick, this
leads to:

Lemma . Let the function u be defined and twice continuously differentiable in
Ω⊆C and assume that ∆u(z) ≥ 0 throughout Ω. Then for any disk D whose closure
is contained in Ω, one has u(a) ≤ supz∈∂D u(z) for any a ∈ D. By consequence u has
no local maximum in Ω.

Proof: To begin with, assume that ∆u(z) > 0 for all z ∈ Ω, and let u0 = supz∈D u(z).
If u(a) > supz∈∂D u(z), the maximum point z0 does not belong to the boundary ∂D
and thus lies in D. But this is impossible as u does not have any local maximum
after xxx above. If not, let ε > 0 and look at the function v(z) = u(z) + ε |z|2. Then
∆v = ∆u+ 4ε > 0, and we have

u(a) < sup
z∈∂D

(u(z) + ε |z|2) ≤ sup
z∈∂D

u(z) + ε sup
z∈∂D

|z|2 ,

and letting ε tend to zero, we are done. o

Finally, to arrive at the maximum principle, we observe that if u(z) = |f(z)|2, the
Laplacian ∆u is given as

∆u = ∂z∂zff = ∂z(f∂zf) = ∂zf∂zf = |f ′(z)|2 ≥ 0.

Problem .. Show that the Laplacian of the real and of the imaginary part of a
holomorphic function vanish identically. X

Problem .. Assume that f does not vanish in a Ω. Show that u(z) = log |f(z)| is
well defined and with its Laplacian vanishing throughout Ω. X
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Problem .. Recall that the Hesse-determinant of a function u of two variable is
uxxuyy − u2

xy. Use the Cauchy-Riemann equations to show that the Hesse-determinant
both of the real and of the imaginary part of a holomorphic function is non-positive.

X

The order of holomorphic functions
A polynomial P (z) has an order of vanishing at any point: The order is zero if

P does not vanish at a and equals the multiplicity of the root a in case P (a) = 0.
The order is characterized by being the largest number n with (z − a)n dividing P .
Holomorphic functions resemble polynomials in this respect, they possess an order at
every point where they are defined.

(.) Assume that f is a holomorphic function not vanishing identically near a. The
Taylor series of f at a converges towards f(z) in a vicinity of a, i.e., one has

f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (k)(a)/k!(z − a)n + . . . (.)

for z near a. Hence if f together with all its derivatives vanish at a, the function f itself
vanishes in a neigbourhood of a. So, if this is not the case, there is smallest non-negative
integer n for which the n-th derivative f (n)(a) is non-zero. This integer is called the
order of f at a and is written ordaf . The n first terms in the Taylor development will
all be zero, and the remaining terms will all have (z−a)n as a factor; hence the Taylor
series has the form

f(z) = (z − a)n
(
f (n)(a)/n! + f (n+1)(a)/(n+ 1)!(z − a) + . . .

)
,

where the series converges normally in a disk about a. We have proved

Proposition . Assume that f is holomorphic near a and does not vanish identi-
cally in the vicinity of a. Let n = ordaf denote the order of f at a. Then we may factor
f as

f(z) = (z − a)ng(z),

where g is a holomorphic function near a not vanishing at a. The order of f is the
largest non-negative integer for which such a factorization is possible.

Problem .. Assume that f and g are two functions holomorphic near a.

a) Show that ordaf = 0 if and only if f(a) 6= 0.

b) Show that ordafg = ordaf + ordag.

c) Show that ordaf + g ≥ min{ordaf, ordag}, with equality when the orders of f and
g are different. Give examples with strict inequality but with ordaf = ordag.

X
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(.) That holomorphic functions have factorizations like in ?? has some strong im-
plications. The first is that the zeros of f must be isolated in Ω, another way expressing
this is to say that the zero set Z = { a ∈ Ω | f(a) = 0 } can not have any accumulation
points in Ω. It might very well be infinite, even if Ω is a bounded domain, but its limit
points all are situated outside Ω. This is a fundamental property of holomorphic func-
tions, frequently use in sequel. It is called identity principle. An example is treated in
exercise ?? below which is about the function sin π(z−1)(z+1)−1 which is holomorphic
in the unit disk and has zeros at (1− n)/(1 + n) for n ∈ N . There are infinitely many
and they accumulate at −1.

Theorem . Let f be holomorphic in Ω. If the zero set Z of f has an accumulation
point in Ω, then f vanishes identically.

Proof: Assume that f does not vanish identically, and let aıΩ be any point. Our
function f has an order n at a and can be factored as f(z) = (z − a)ng(z), where g
is holomorphic and does not vanish at a. The function g being continuous does not
vanish in a vicinity of a, and of course z − a only vanishes at a. We deduce that there
is a neigbourhood of a where a is the only zero of f(z), and consequently a is not a
accumulation point of the zero set Z. o

The may be most frequently used form of the identity principle is the following, which
by some authors is called the principle of “solidarity of values”.

Corollary . Assume that f and g are two functions holomorphic in Ω, if they coin-
cide on a set with an accumulation point in Ω, they are equal.

Proof: Apply the identity principle ?? to the difference f − g. o

Problem .. Let f be holomorphic in Ω and assume that all but finitely many
derivatives of f vanish at a point in Ω. Show that f is a polynomial. X

Problem .. Show that Re(1− z)(1 + z)−1 = (1− |z|2) |1 + z|−2 and conclude that
the map given by z → (1− z)(1 + z)−1 sends the unit disk D into the right half plane.
Let f(z) = sin π(1−z)(1+z)−1. Show that f has infinitely many zeros in D with −1 as
an accumulation point. Hint: the zeros are those points in D such that (1−z)(1+z)−1

is an integer. X

Problem .. Assume that f is holomorphic in the domain Ω. Show that the fibre
f−1(a) is a discrete subset of Ω. Conclude that the fibre is at most countable. X

Problem .. Show that if f is holomorphic in D contained in Ω, and either Re f or
the imaginary part Im f is constant in a disk D⊆Ω, then f is constant. Hint: Use
Cauchy Riemann equations and the identity principle. X

Problem .. Show that if |f | is constant in a disk D⊆Ω, then f is constant.
Hint: Examine log f . X
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Isolated singularities
For a moment let R(z) = P (z)/Q(z) be a rational function expressed as the quotient

of two polynomials. It is of course defined in points where the denominator does not
vanish, however, if a is a common zero of the denominator and the enumerator, one
may cancel factors of the form z − a, and in case the multiplicity of a in numerator
happens to be the higher, the rational function R(z) has a well determined value even
at a—it has a removable singularity there. Of course this definite value equals the
limit limz→aR(z). this not to happen, it is sufficient and necessary that |R(z)| tends to
infinity when z tends to a. Similar phenomenon, which we are about to describe, can
occur for holomorphic functions.

Let Ω be a domain and a ∈ Ω a point. Suppose f is a function that is holomorphic
in Ω \ a. One sais that f has an isolated singularity . The isolated singularities come
in three flavours; Firstly f can have a removable singularity (and at the end a is not
a singularity at all). This is, as we shall see, equivalent to f being bounded near f .
Secondly, the reciprocal 1/f can have a removable singularity while f has not; then
one sais that f has a pole at a, and this occurs if and only if limz→a |f(z)| = ∞. In
third case, that is if neither of the two first occurs, one says that f has an essential
singularity .

(.) If f is holomorphic in a punctured disk D∗ centered at a, one says that f has
a removable singularity at a if it can be extended to a holomorphic function in D; that
is, there is a holomorphic function g defined in D whose restriction to D∗ equals f .
Clearly this implies that limz→a(z − a)f(z) = 0 since f has a finite limit at a, and
Riemann proved that also this is sufficient for f to be extendable. Nowadays this is
called the Riemann’s extension theorem:

Theorem . Assume that f is holomorphic in the punctured disk D∗ centered at
a. Then f can be extended to a holomorphic function in D if and only if limz→a(z −
a)f(z) = 0.

Proof: If f can be extended, f has a limit at a and hence limz→a(z − a)f(z) = 0.
To prove the other implication, one introduces the auxiliary function

h(z) =

{
(z − a)2f(z) when z 6= a,

0 when z = a.

Then h is holomorphic in the whole disk D and satisfies h′(a) = 0: For z 6= a this is
clear, and for z = a one has(

h(z)− h(a)
)
/(z − a) = (z − a)2f(z)/(z − a) = (z − a)f(z),

which by assumption tend to zero when z approaches a. It follows that the order of h
at a is at least two, and hence h(z) = (z − a)2g(z) with g holomorphic near a. Clearly
g extends f . o
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If the function f is bounded near a, one certainly has limz→a(z − a)f(z) = 0, and
the Riemann’s extension theorem shows that f can be extended. Riemann’s criterion
therefore has the following equivalent formulation:

Theorem . Assume that f is holomorphic in the punctured disk D∗ centered at a.
Then f can be extended to a holomorphic function in D if and only if f is bounded in
D∗.

A familiar example of a function having removable singularity at the origin, is the
function sin z/z, and a little more elaborated one is (2 cos z − 2− z2)/z4.

(.) A function f holomorphic in the punctured disk D∗ is said to be meromorphic
at a if 1/f(z) has a removable singularity there; or phrased equivalently: There is a
neigbourhood U of a such that in the punctured neigbourhood U∗ = U \ {a} one may
write f(z) = 1/g(z) where g(z) is holomorphic in U .

Two different cases can occur. If g(a) 6= 0, then f(z) is holomorphic at a and
nothing is new. On the other hand, if g vanishes at a, one says that f has a pole there,
and the order of vanishing of g is called the order of the pole or the pole-order . One
may factor g as

g(z) = (z − a)nh(z),

where n = ordag and h is holomorphic near a and h(a) 6= 0. Hence

f(z) = (z − a)−nh1(z),

where h1(z) = 1/h(z) is holomorphic and non-vanishing. The order of f at a is defined
to be −ordag, so that at poles the order is negative8. For any function meromorphic at
a this allows one to write

f(z) = (z − a)ordafg(z),

where g is holomorphic and non-vanishing at a.

(.) In this paragraph we study more closely the third case when the singularity of
f at a is an essential singularity, that is, it is neither removable nor a pole.

By the Riemann extension theorem 1/f has a removable singularity if and only
if f is bounded near a, which translates into f being bounded away from zero in a
neigbourhood of a. This is not the case if f has an essential singularity at a, meaning
that for any ε > 0 and any δ > 0 there will always be points with |z − a| < δ with
|f(z)| < ε. Phrased in a different manner: The function f comes as close to zero as one
wants as near a as one wants.

But even more is true. If α is any complex number, the difference f − α is mero-
morphic at a if and only if f is. This is trivial if f is holomorphic, and as the sequence

|f | − |α| ≤ |f − α| ≤ |f |+ |α|
8It is slightly contradictory that the order of f is the negative of the pole order, but it is common

usage.
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of inequalities shows, the difference f −α has a pole if and only if f has. So the end of
the story is that f has an essential singularity if and only if f − α has. In the light of
what we just did above, we have proven the following theorem, the Casorati-Weierstrass
theorem

Theorem . Assume that f has an essential singularity at a and let α be any
complex number. Given ε > 0 and δ > 0, then there exists points z with |z − a| < δ
and |f(z)− α| < ε.

Example .. The archetype of an essential singularity is the singularity of e1/z at the
origin. To get an idea of the behavior of e1/t we take a look at the function along the
line where Im z = Re z = t/2, i.e., where z = (t+ it)/2. As 1/(1 + i) = (1− i)/2, and
we find

e2/t(1+i) = e1/t(cos 1/t− i sin 1/t).

The ever accelerating oscillation of the trigonometric functions sin 1/t and cos 1/t as
t approaches zero is a familiar phenomenon, and combined with the growth of e1/t

illustrates eminently the Casorati-Weierstrass theorem. e

Problem .. Show that f(z) = sinπ(1 − z)/(1 + z) has an essential singularity at
z = −1. Show that for any real a with |a| < 1 there is a sequence {xn} of real numbers
converging to −1 such that f(xn) = a. Hint: Study the linear fractional transform
(1− z)/(1 + z). X

Problem .. Let g(z) = exp−(1 + z)/(1− z). Show that g has an essential singu-
larity at z = 1. Show that |g(z)| is constant when z approaches 1 through circles that
are tangent to the unit circle at 1, and that any real constant can appear in this way.
Show that g tends to zero when z approaches 1 along a line making an obtuse angle
with A the real axis. Hint: Study the fractional linear transformation (1+z)/(1−z).

X

An instructive example
The theme of this paragraph, organized through exercises, is an entire function F (z)

with peculiar properties constructed by Gösta Mittag-Leffler and presented by him at
the International Congress for Mathematicians in Heidelberg in . When z tends to
infinity, but stays away from a sector of the type Sα = { z | −α < Im y < α,Re z > 0 },
the function F (z) tends to zero. In addition limx→∞ F (x) = 0 where it is understood
that x is real. In particular the limit of F (z) is zero when z goes to ∞ along any ray
emanating from the origin.

The construction is based on an “infinite contour” Σ(u) where u is a positive real
number. The path is depicted below in figure ??. It has three parts: Σ1(u) is the segment
from x+πi to infinity, Σ2(u) the segment from∞ to x−πi and Σ0(u) the segment from
x− πi to x+ πi. All three are parametrized in the simplest way by linear functions.

As a matter of language we say that a point z lies inside Σ(u) if Re z > u and
−π < Im z < π; and of course, it lies outside Σ(u) if it lies neither inside nor on Σ(u).
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u

u+πi

u−πi

Figur .: The path Σ(u).

We begin working with an entire function f(z) merely assuming it be integrable along
Σ; that is the integrals

∫
Σi(u)
|f(z)| |dz| are finite for i = 1, 2. In the end we specialize

f , as Mittag-Leffler did, to be the function

f(z) = ee
z

e−e
ez

.

Problem .. Show that the integral∫
Σ(u)

f(w)(w − z)−1dw.

is independent of u as long as z lies outside Σ(u). X

Given an arbitrary complex number z and define a function

F (z) =
1

2πi

∫
Σ(u)

f(w)(w − z)−1dw. (.)

where u is any real number such that z lies outside the contour Σ(u). After the previous
exercise this is a meaningful definition.

Problem .. Show that F (w) is an entire function of w. Hint: See exercise ??
on page ??. X

Problem .. Let z = x+ iy be any point not on the contour Σ(u).

|w − z| ≥

{
|y − π| if y 6= 0,

|x− u| if y = 0.

Fix the number u and let z = reiφ. Show that

lim
r→∞

∫
Σ(u)

f(w)(w − z)−1dw = 0.

Show that F (z) tends to zero when z tends to infinity along any ray emanating from
the origin but being different from the positive real axis. Hint: For |z| sufficiently
large z stays outside of Σ(u) and formula (??) is valid. X

Now we study what happens on the positive real axis, so assume that z = x is real
and positive. Fix a real and positive constant u0 less than x, and let u be greater than
x, and introduce the rectangular path R as illustrated in figure ??.
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Problem .. Show that as chains Σu0 = R + Σ(u), and show that we have

F (x)− f(x) =
1

2πi

∫
Σ(u0)

f(w)(w − z)−1dw.

Use this to show that

lim
x→∞
|F (x)− f(x)| = 0.

X

u0 u

x

R

Figur .: The rectangle R .

In the last part of this exercise session, we specialize f to be the function f(z) =

ee
z
e−e

ez

.

Problem .. Show that the integrals∫
Σ(u)

ee
w

e−e
ew

dw

converge absolutely. Show that

lim
x→∞

ee
x

e−e
ex

= 0

and conclude that the associated function F (z) tends to zero along any ray emanating
from the origin. X

Problem .. Show that F is not identically zero. X

The argument principle

It is classical that the multiplicities of the different roots of a polynomial add up to
its degree. One can not hope for statements about holomorphic functions as strong as
this. Already, there is no notion of degree for a holomorphic function in general. The
order at a point is a sort of local degree; the degree of a polynomial is however a global
invariant, and there is counterpart for holomorphic functions. And the number of zeros
can very well be infinite, a simple example is sinπz, which vanishes at all integers.
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(.) However, there is a counting mechanism for the zeros, which goes under the
name of the argument principle, which now and then is extremely useful.

So let f be holomorphic in Ω, and let D be any disk whose closure is contained in
Ω. Then, as the zeros are isolated i Ω, there is at most finitely many of then in D.

Let a1, . . . , ar de the those of the zeros of f that are contained in the disk D, and
denote by n1,, . . . , nr their multiplicities, i.e., ni = ordaif . By repeated application of
proposition ??, one may write

f(z) =
∏
i

(z − ai)nig(z),

where the index i runs from 1 to r and where g is holomorphic an non-vanishing in D.
Taking the logarithmic derivative gives

d log f =
r∑

1≤i≤r

ni(z − ai)−1 + d log g.

(Recall that we write d log f for f ′/f). The integral of d log f around the circumference
∂D, becomes

1

2πi

∫
∂D

d log f =
∑

1≤i≤r

ni n(∂D, ai) +
1

2πi

∫
∂D

d log g.

Now, as g does not vanish in the disk D, it has a logarithm there, and hence
∫
γ
d log g =

0. Consequently the integral
∫
γ
d log f satisfies

1

2π
i

∫
∂D

d log f =
∑
i

ni n(∂D, ai) =
∑
i

ni. (.)

where the last equality holds since the winding nu,bers involved all equal one ∂D
being traversed once counterclockwise and the ai’s all lying within ∂D. With the right
interpretation the formula counts the total number of zeros of f contained in the disk
D.
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Problem .. Denote by Z the set of zeros of f in Ω and for each a ∈ Z, let
n(a) = ordaf . Show that ∫

∂D

d log f =
∑
a∈Z

n(a) n(∂D, a).

Hint: The sum is finite, even if it doesn’t look like. X

(.) If a is any complex numbers, the zeros of the difference f − a constitute the
fibre f−1(a). Hence the technic in the last paragraph can as well be used to count points
in fibres. Every point b in a fibre will contribute to the totality with a multiplicity equal
to the multiplicity of the zero b of f − a. Denoting this multiplicity by n(b) we have
the formula

1

2πi

∫
∂D

d log(f − a) =
∑

b∈f−1(a)∩D

n(b).

where of course d log(f − a) = f ′(z)(f(z)− a)−1dz.
If γ is a parametrization of ∂D, the composition f ◦ γ is parametrizes a path Γ in

C; i.e., we have Γ = f ◦ γ. The winding number n(Γ, a) is given by an integral, and
substituting w = f(z) this integral changes in the following way:

n(Γ, a) =
1

2πi

∫
Γ

(w − a)−1dw =
1

2πi

∫
γ

f ′(z)(f(z)− a)−1dz,

hence

n(Γ, a) =
∑

b∈f−1(a)∩D

n(b).

We sum up in the following proposition:

Proposition . Let f holomorphic in Ω and let D be a disk whose closure lies in Ω.
Let a be any complex number. The number of points in the fibre f−1(a) lying within the
disk D is finite, and counted with multiplicities, equals the winding number n(Γ, a) where
Γ is the image of the boundary circle ∂D under f , traversed once counterclockwise.

The winding number of a closed path is, as we saw, constant within each connected
component of the complement of the path. Applying this to the image Γ of ∂D under
f , we conclude that the number of points in f−1(a) ∩D and in f−1(b) ∩D—counted
appropriately—are the same as long as a and b belongs to the same connected compo-
nent of C \ Γ.

In particular, if A is a disk about a contained in the image of φ and not intersecting
Γ, the two sets f−1(a) ∩D and f−1 ∩D have equally many members. This leads to

Proposition . Assume that f is a holomorphic map and that a is a solution of
f(z) = f(a) of multiplicity n. Then there is a disk D about a such that for b sufficiently
close to f(a), all solutions of f(z) = b in D are simple and their number equals n.
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The theorem says that there are disks D and B about a and f(a) respectively such
that B lies in the image f(D), and such that the fibers f−1(b)∩D all are simple—that
is every point occurs with multiplicity one—except the central fibre f−1(a) ∩D which
reduces to just one point with multiplicity n.

Proof: As the derivative f ′ is holomorphic, its zeros are isolated and there is a disk D
about a where it does not vanish in other points than a. Making D smaller, if necessary,
it will also avoid the points in the fiber f−1(f(a)) other than a.

The image f(D) is open, and we chose a disk B containing f(a) and lying in a
connected component of the complement C \ ∂A. As f ′ has no zeros in D, except at
a, all fibers f−1(b) ∩D for b ∈ B, except f−1f(a) ∩D, are simple, and by proposition
?? above they all have n points, as fibers over points from the same component of
C \ f(∂A). o

(.) The case n = 1 in ?? is a very important special case. Then the statement
is that a functions f with f ′(a) 6= 0 is injective in a disk containing a. This is also a
consequence of the inverse function theorem, f ′(a) being the jacobian map at a of f ;
but there is a stronger statement that the inverse map f−1 is holomorphic. One has

Proposition . Let f be holomorphic in Ω and let a ∈ Ω be a point with f ′(a) 6= 0.
There is a disk D about a on which f is biholomorphic. That is f is injective and the
inverse map f−1 : f(D)→ D is holomorphic, moreover the its derivative at f(a) equals
1/f ′(a).

Proof: The inverse map f−1 is continuous since f is open, and the usual argument
for the existence of the derivative of f−1 we know from calculus goes trough, letting
w = f(z) and b = f(a) we have

(f−1(w)− f−1(b))/(w − b) = (z − a)/(f(z)− f(a)) (.)

and as w tends to b continuity of f−1 implies that z tends to a, and the right side of
(??) tends to 1/f ′(z). o

Another way of proving this, is to appeal to the inverse function theorem. It says that
f−1 is C∞ near f(a) and that its jacobian map at a point f(z) equals the inverse
of that of f . But of course, the inverse of multiplication by a complex number c is
multiplication by c−1, and we conclude by the Cauchy-Riemann equations.

(.) A biholomorphic map is frequently called conformal , a term coming from car-
tography and alluding to the fact that a holomorphic function with a non-vanishing
derivative at a point a infinitesimally preserves the angel and orientation between vec-
tors at a. This is due to the jacobian map being multiplication by f ′(a), so if f ′(a) = reiφ

all angels are shifted by φ, so the difference between the two is conserved. The propo-
sition ?? may be phrased as if f is holomorphic near a with non-vanishing derivative
at a, then f is biholomorphic near a.
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Problem .. Let γ and γ′ be two paths that pass by a both with a non-vanishing
tangents at a. Let ψ be the angle between the two tangents. Let f be holomorphic
near a with f ′(a) 6= 0. Show that the paths f ◦ γ and f ◦ γ′ both have non-vanishing
tangents at f(a) and that the angle between them equals ψ. X

(.) Now, consider the case that f(a) = 0 and that f ′(a) vanishes, say with multi-
plicity n, Then f may be factored near a as

f(z) = zng(z)

where g(z) is holomorphic and non-vanishing in a neigbourhood of a. It follows that g
has an n-th root in a disk about a; say g = hn. We may thus write

f(z) = (zh(z))n = ρ(z)n

where ρ(z) = zh(z). Now ρ′ = h(z) + zh′(z) does not vanish at a since g does not, and
hence ρ is biholomorphic near ρ. We therefore have

Proposition . Assume that f(a) has a zero of multiplicity n at a. Then there is
a biholomorphic map ρ defined in a neigbourhood U of a such that

f(z) = ρ(z)n

for z ∈ U . In particular, f is locally injective at a if and only if f ′(a) 6= 0.

Proof: Only the last sentence is not proven. We have seen that if n = 1, then f is
locally conformal and, in particular, it is locally injective. So assume that n > 1 and we
must establish that f is not injective. The map ρ is open so the image ρ(U) contains
a disk A about the origin. If ρ(z) ∈ A and η is an n-th root of unity, ηρ(z) lies in A as
well. Now, A being contained in ρ(U) one has ηρ(z) = ρ(z′) for some z′ ∈ U , and z′ is
different from z since ρ is injective. It follows that f(z′) = (ηf(z))n = f(z). o

Problem .. Show that

f−1(b) =

∫
∂D

zf ′(z)(f(z)− b)−1dz

X

The general argument principle
At the end of this section, we give generalization of the formula (??) on page ??.

extending it to meromorphic functions. In this case one is forced to take both poles
and zeros into account—it is their difference in number (with multiplicities) that is a
categorical quantity, or said in clear text, a quantity that can be computed formally.
This difference is just the sum ∑

a∈D

ordaf
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where D is a disk whose closure lies within the domain Ω. We can only count the zeros
and poles if they are finite in number, and D lying in Ω ensures this. Poles and zeros
are isolated—that is the points a where ordaf does not vanish—hence in the compact
disk D there can only finitely many of them.

A second generalization is the introduction of a closed path γ in D. Loosely speak-
ing, we count the difference of the number of poles and the number of zeros of f “lying
with in γ”. The precise meaning is the sum∑

a∈D

n(γ, a)ordaf.

where now D is any disk with encompassing γ and with D⊆Ω—and it essential that
f has neither poles nor zeros lying on the path γ. We can safely factor f as a product

f(z) =
∏
a∈D

(z − a)ordafg(z)

where g(z) is holomorphic and without zeros in D and, of the course, the product is
finite. Taking logarithmic derivatives we get the formula

d log f =
∑
a∈D

(z − a)−1ordaf + d log g (.)

and integrating along the closed path γ:

1

2πi

∫
γ

d log f =
∑

n(γ, a)ordaf,

as
∫
γ
d log g = 0, the function g having a logarithm in D.

(.) Let us now introduce a second holomorphic function h(z) in Ω, and consider
the integral

∫
γ
gd log f . Multiplying (??) on page ?? by h gives

d log f(z) =
∑
a∈D

h(z)(z − a)−1ordaf + h(z)d log g(z).

Now, g is holomorphic and without zeros and d log g(z) is holomorphic as well. Hence
h(z)d log g(z) is holomorphic and consequently its integrals round closed paths vanish
by the Cauchy theorem. To integrate the terms in the sum, we appeal to Cauchy’s
formula which can be applied since h is holomorphic. This gives

1

2πi

∫
γ

h(z)d log f(z) =
∑
a∈D

h(a) n(γ, a)ordaf, (.)

which one may interpret as a counting formula for zeros and poles, but this time they
are weighted by the function h. We sum up these computations in
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Theorem . Let f be a meromorphic function and h a holomorphic function in Ω.
Then for any disk D with D⊆Ω and any closed path γ in D, one has the equality

1

2πi

∫
γ

hd log f =
∑
a∈Ω

h(a) n(γ, a)ordaf.

There is a still more general version of this theorem. Working with paths being null-
homotopic, and this is the most natural hypothesis, one can get rid of the disk D, but
for the moment we do not know that integrals of holomorphic functions only depends
on the homotopy class of the integration path. Once that is established, the theorem
?? in its full force follows easily, but that is for the next section.

The Riemann sphere
The Riemann-sphere Ĉ or the extended complex plane is just the one point compac-

tification of the complex plane. We add one point at the infinity, naturally denoted by
∞, so as a set Ĉ = C ∪ {∞}. The topology is defined a for any one point compacti-
fication. The open sets containing ∞ are the sets Kc ∪ {∞} where K is any compact
subset of C (and Kc is its complement in C), and the rest of topology, i.e., those open
sets not containing the point at infinity, are the open sets in the finite plane C.

One has a coordinate function round ∞ defined by

w(P ) =

{
1/z P = z 6=∞
0 P =∞.

A disk DR centered at ∞ with radius R, that is {w | |w| < R } corresponds to
{∞} ∪ { z | |z| > R }, and it intersects the finite plane in { z | |z| > R−1 }.

By using the coordinate w we may extend all theory about the local behavior of a
complex function at a finite points, to be valid at infinity as well.

(.) Assume that f is a function defined for |z| > R−1. We say that f is holomorphic
at ∞ if f(w−1) has a removable singularity at w = 0. By the Riemann extension
theorem this is equivalent to f(z) being bounded as z → ∞, or if you want, to f(z)
having a limit when z →∞. And of course this limit is the value of f at ∞

In the same vain the function f has a pole at infinity if f(w−1) has one at the origin.
The pole has order n if f(w−1) = w−ng(w) where the function g(w) is holomorphic
and non-vanishing at the origin. Substituting w = z−1 we see that this becomes f(z) =
zng(z−1) where g(z−1) is bonded, but with a non-zero limit when z →∞. An of course,
f has a zero at infinity if f(z) = z−ng(z−1) where g has a non-zero limit as z tends to
infinity.

Example .. A polynomial of degree n has a pole of order n at infinity. Indeed, we
have assuming that polynomial p is monic,

P (z) = zn + an−1z
n−1 + · · ·+ a0 = zn(1 + an−1z

−1 + · · ·+ a0z
−n) = zng(z)

where g(z) tends to 1 as z →∞ e
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(.) In the last paragraph we discussed function defined at infinity, we take a closer
look at functions taking the value infinity. Saying that f has a pole at a is the same
a saying that limz→a |f(z)| =∞. This is equivalent to saying that f(z) tends to ∞ in
the Riemann-sphere Ĉ, so setting f(a) =∞ gives a continuous function into Ĉ.

Using the coordinate w = z−1 at infinity, the behavior of f is described, by the
behavior of 1/f(z), and it is easily seen that the order of vanishing of f at infinity
equals the pole order at a.

Finally, a function f might have a pole at infinity, and its behavior is described by
1/f(z−1).

The general homotopy version of Cauchy’s theorem

A type problems invariably arising in complex function theory are variants of the
following “patching problem”: Given a certain number of open subsets {Ui} indexed
by the set I and covering a domain Ω and for each Ui a function Fi holomorphic in
Ui. Assume that any pair Fi and Fj differ by constant on each connected component
of the intersection Ui ∩ Uj—e.g., a situation like this arises when Fi is a primitive for
a given function f holomorphic in the union Ω =

⋃
i Ui.

The big question is: When can one change each Fi by a constant such that any pair
Fi and Fj agree on the whole Ui ∩ Uj? Or phrased in precise manner: When can one
find complex constants ci such that for all pairs of indices the equality

Fi(z) + ci = Fj(z) + cj

holds true for all z ∈ Ui ∩ Uj? The condition is clearly necessary and sufficient for the
existence of a “patch” of the Fi’s, meaning a function F defined in the whole of Ω
restricting to Fi on each Ui. That is, F satisfy F |Ui

= Fi for each i in I.

The question is a non-trivial one; illustrated by the simple situation with just two
opens U1 and U2, but with the intersection Ui∩Uj being disconnected. In this situation
the answer is positive if and only if F1 and F2 differ by the same constant on all the
connected components of Ui ∩ Uj.

In the figure below, for example, F2 and F3 on the open sets U2 and U3 are easily
adjusted to coincide with F1 on the intersections U1 ∩ U2 and U3 ∩ U4. Of course one
can make F4 mach F2 on U2 ∩U4 but at the same time F4 matches F3 on U3 ∩U4, one
has extremely lucky or very clever at the choices of F2 and F3.
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Figur .:

This section offers a variation of this theme. In the bigger picture on has the coho-
mology groups invented precisely for tackling challenges as described this flavour, but
those will be for later.

We start out with a short recapitulation of a notion from topology, namely the
homotopy of paths, and proceed with the main theme, a general Cauchy type theorem,
stating that the integral of a holomorphic function only depends of the homotopy type
of the path of integration.

Homotopy
For a moment we take on a topologist glasses and review —in a short and dirty

manner — the notion of homotopy between two paths in a domain Ω of the complex
plane. Homotopy theory has grown to big theory, nowadays it is a lion’s share of al-
gebraic topology, but it originated in complex function theory, and a lot of the results
specific for elementary function theory of can be developed in an ad hoc manner wit-
hout any reference to homotopy. However, let what belongs to the king belong to the
king, and more important, pursuing the study of Riemann surfaces one will find that
fundamental groups are omnipresent.

For a more thorough treatment one may consult Allan Hatchers book [?].

(.) For a topologist a path in Ω is a continuous path, that is a continuous map
γ : [0, 1]→ Ω. It is convenient in this context to let all parameter intervals be the unit
interval I = [0, 1]. As [0, 1] is mapped homeomorphically onto any interval [α, β] by the
affine function (1− t)α + tβ, this does not impose any serious principal restriction.

Observe that with this definition a constant map γ(t) = a is path— a constant
path. The reverse path of γ denoted γ−1, is the path φ(1 − t). If γ1 and γ2 are two
paths such that the end-point of γ1 coincides with the starting point of γ2, one has the
composite path γ = γ2γ1 given as

γ(t) =

{
γ1(2t) when 0 ≤ t ≤ 1/2

γ2(2t− 1) when 1/2 < t ≤ 1,
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one first traverses γ1 and subsequently γ2.
Closed paths, i.e., loops ending where the started, are called loops in topology.

And one usually specifies the common end- and start-point and speaks about loops at
a point a. Two loops at a can always be composed.

(.) The intuitive meaning of two paths being homotopic in the domain Ω is that
one can be deformed continuously into the other without leaving Ω. Let γ0 and γ1 be
the two paths in the domain Ω. They are assumed to continuous and to have a common
starting point, say a, and a common end-point b. That is, one has γ0(0) = γ1(0) = a
and γ0(1) = γ1(1) = b. It is a feature of the notion of homotopy that the starting points
and the end-points stay fixed during the deformation.

The precise definition is as follows:

Defenition . Let γ0 and γ1 be two continuous paths in the domain Ω both with
starting point a and both with end-point b, are homotopic if there exists a continuous
function φ : I × I → Ω with φ(0, t) = γ0(t) and φ(1, t) = γ2(t) and φ(s, 0) = a and
φ(s, 1) = b.

In figure below we have depicted I × I with the behavior of the homotopy φ on the
boundary indicated.

a

γ1

b

γ2

Figur .: A homotopy

(.) It is common to write γ1 ∼ γ2 if γ1 and γ2 are homotopic, and it is not difficult
to show that homotopy is an equivalence relation. The algebraic operation of forming
the composite of two paths is compatible with homotopy. The composition is associative
up to homotopy meaning that (γ1γ2)γ3 ∼ γ1(γ2γ3) where of course it is understood that
the γi’s are mutually composabel, and one may show that the homotopy classes of loops
at a form a group under composition with the constant path as unit element and, of
course, with the inverse path as inverse. It is called the fundamental group of Ω at a
and it is written π1(Ω, a).

Example .. If Ω is star-shape, say with a as the central point, then every loop at a
is homotopic to the constant loop at a. Indeed, if γ is a loop, the convex combination
φ(s, t) = (1− s)γ(t) + sa is a homotopy as required. e

Example .. Assume that φ is a homotopy between γ1 and γ2, and assume that
the final point of γ coincides with the common initial point of γ1 and γ2. Show that
γ1γ ∼ γ2γ, and with the appropriate hypothesis on γ, that γγ1 ∼ γγ2. Conclude that
if γ′1 ∼ γ′2, and γ′i’s satisfy the right composability condition, one has γ1γ

′
1 ∼ γ2γ

′
2.
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Hint: Define a homotopy ψ by ψ(s, t) = γ(2t) for 0 ≤ t ≤ 1/2 and ψ(s, t) = φ(s, 2t−1)
for 1/2 < t ≤ 1.

e

(.) One can relax the condition on a homotopy and not require that the end-points
be fixed. In that case one speaks about freely homotopic paths . Although, if the two
paths are closed, one requires that the homotopy be a homotopy of closed paths; that
is, the deformed paths are all closed. To be precise, one requires that φ(s, 0) = φ(s, 1)
for all s. This implies that the two paths δ1(s) = φ(s, 0) and δ2(s) = φ(s, 1) are the
same.

δ

γ1

δ

γ2

(.) Let γ1 and γ2 be two piecewise C1-curves that are composable—the end-point
of the first being the start point of the other—and let γ the composite. Clearly γ is
also piecewise C1 and one has∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

In the same vain, if γ is piecewise C1, the inverse path γ−1 is as well, and one has∫
γ−1

f(z)dz = −
∫
γ

f(z)dz.

Integration behaves a little like a group homomorphism, so to speak. It takes composites
to sums and inverse to negatives. And in the next section the main result is that
integration of holomorphic functions also is compatible with homotopy—that is, the
integral only depends on the homotopy class of the path of integration.

Homotopy invariance of the integral I
We come to main concern in this section, the general Cauchy theorem. In the usual

setting, we are given a domain Ω and a function f holomorphic in Ω. The main result of
the section basically says that the integral of f along a path γ (that must be piecewise
C1 to serve as a path of integration) only depends on the homotopy class of γ, and this
means a homotopy that fixes the end points. There is also a version with the homotopy
being a free homotopy, but it is only valid for close curves.

From the homotopy invariance we extract the general Cauchy’s theorem and with
the use of a few results about homotopy groups (that we do not prove) we obtain the
general formulation of Cauchy’s formula and the counting formula for zeros and poles.
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Problem .. Give an example of two freely homotopic paths and a holomorphic
function whose integrals along the to paths differ. X

Problem .. Give an example of two homotopic paths (fixed end-homotopic) and
function that is not holomorphic whose integrals along the two paths differ. X

(.) It is slightly startling that although a homotopy between two piecewise C1-
curves is just required to be continuous (so no integration is allowed along the deformed
paths), the integral of f along them remains the same.

If the homotopy is continuously differentiable, however, the independence of the
integrals is not difficult to establish. Let φ : I × I → I denote the homotopy, and that
assume it to be C∞ in the interior of I×I and to restrict to piecewise-continuous paths
on the boundary ∂I × I.

We cover φ(I × I) with finitely many disks ( I × I is compact!). Furthermore we
choose a partition {ti}0≤i≤r of the unit interval I such that if Rij denotes the rectangle
[ti−1, ti]× [tj−1, tj], it holds true that each Rij is mapped into one of the covering disks.
The restriction of φ to the boundary ∂Rij is a closed path lying in the covering disk
in which the image of Rij lies, and we denote this path by φ(∂Rij). The function f is
holomorphic in the covering disk, so Cauchy’s theorem for disks gives us∫

φ(∂Rij)

f(z)dz = 0. (.)

By a simple and classical cancellation argument, which should be clear from the figure
?? below, it follows that∫

γ1

f(z)−
∫
γ2

f(z)−
∫
δ1

f(z)dz +

∫
δ2

f(z)dz =
∑
i,j

∫
φ(∂Rij)

f(z)dz = 0

the last equality stemming from (??) above. Hence we have∫
γ1

f(z)−
∫
γ2

f(z) =

∫
δ1

f(z)dz −
∫
δ2

f(z)dz. (.)

Now assume that the γi’s are closed paths. If we require that the the deformation
of γ1 into γ2 should be through closed paths, we must have δ1 and δ2 to be the same
paths. Then the right side in (??) above vanishes, and we can conclude that∫

γ1

f(z) =

∫
γ2

f(z).
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γ1

γ2

δ2δ1

Figur .:

Homotopy invariance of the integral II
We closely follow the presentation of Reinholdt Remmert (page 169–174 in the

book [?]), and proof is inspired by the proof of the so called van Kampen theorem in
algebraic topology—a important theorem used to compute the fundamental group of
unions—one would find in most textbooks in algebraic topology (e.g., in [?]).

(.) The proof we present seems long and complicated, but the core is very simple.
Most of it consists of rigging (which is the same rigging as we did in the case of a C∞

homotopy)—one might be tempted to compare it to assembling a full orchestra to play
a ten second jingle.

Theorem . If γ1 are γ2 are two homotopic piecewise C1-paths in the domain Ω
and f(z) is a holomorphic function in Ω, then one has the equality∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof: The basic rigging is as follows: Let {Uk} be cover of Ω by open disks. Then f
has a primitive function over each Uk; that is, there are functions Fk holomorphic in
Uk with F ′k = f in Uk, and these functions are unique up to an additive constant.

The inverse images φ−1(Uk) form an open cover of I × I and by Lebesgue’s lemma
there is a partition 0 = t0 < · · · < tr = 1 of I such that each of the subrectangles
Rij = [ti−1, ti] × [tj−1, tj] are contained in φ−1(Uk) for at least one k. We rename the
Rij’s and call them Rk indexed with k increasing t te left and upwards; that is, R0 is
the bottom left rectangle and Rn, say, the upper right one. The Uk’s are renumbered
accordingly. (Two Uk’ for different k’s can be equal).

The point of the proof is to construct a continuous function ψ : I × I → Ω with the
property

ψ(s, t) = Fk(φ(s, t)) for (s, t) ∈ Rk, (.)
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where each Fk is a primitive function for f in Uk. which is as close to finding a primitive
to f(φ(s, t)) we can come. A crucial fact is that in the intersections Ui ∩Uj, which are
connected, the functions Fi and Fj differ by a constant both being a primitive for f ,
and the salient point in the construction of ψ is to change the Fk’s by appropriate
constants (it might even happen that Uk and Uk′ are equal for k 6= k′ but the two
functions Fk and Fk′ are different).

Lemma . Once we have established the existence of a function ψ satisfying (??) the
theorem follows.

Proof: The map φ is just a continuous map, but on the boundary of I × I it restricts
to the two original piecewise C1-paths; so φ(0, t) is just the parametrization γ1. Hence
we get∫

γ1

f(z)dz =
r∑
i=1

∫ ti

ti−1

f(φ(0, t))φ′(0, t)dt =
r∑
i=1

∫ ti

ti−1

F ′i (φ(0, t))φ′(0, t)dt =

=
r∑
i=1

ψi(ti−1)− ψi(ti) = ψ(0, 0)− ψ(0, 1).

In a similar way, one finds ∫
γ2

f(z)dz = ψ(1, 0)− ψ(1, 1).

Now, the homotopy φ fixes the end-points, which means that ψ(s, 0) and ψ(s, 1) are
independent of s, in particular it follows that ψ(0, 1)−ψ(1, 1) = ψ(0, 0)−ψ(0, 1), and
in view of the computations above, that is exactly what we want. o

We carry on with the jingle, the construction of the mapping ψ so as to satisfy the
condition (??) above. The tactics consist in using induction and successive extensions
to exhibit, for each m, a function ψm on the union

⋃
0≤k≤mRk extending ψm−1 and

satisfying (??) for k ≤ m. And at the end of the process, we let ψ be equal to ψr —
the last of the functions ψm.

So we assume that ψm is constructed on
⋃

0≤k≤mRk subjected to (??) and try to
extend it to ⋃

0≤k≤m+1

Rk = Rm+1 ∪
⋃

0≤k≤m

Rk.

The most difficult case is when Rm+1 is located in a corner, as depicted in the figure
below. We concentrate on that situation, leaving to the zealous student the easier case
when Rm is situated in the bottom row or at the leftmost boundary of I × I and only
intersects one of the previous rectangles in one edge.

The image of the edge Rm∩Rm+1 under φ is contained in Um∩Um+1. After possibly
having changed Fm+1 by a constant, we may assume that Fm and Fm+1 coincide in
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Um ∩ Um+1 (which is connected), and hence Fm(φ(s, t)) and Fm+1(φ(s, t)) are equal
along Rm ∩Rm+1.

By induction, Fs(φ(s, t)) and Fm(φ(s, t)) coincide in the corner Rm ∩ Rs ∩ Rs−1,
both being equal to ψm(s, t) there.

So along the edge Rm∩Rm+1 the functions Fm(φ(s, t)) and Fm+1(φ(s, t)) agree, and
along Rm ∩Rs the functions Fm(φ(s, t)) and Fm+1(φ(s, t)) agree, hence Fs(φ(s, t)) and
Fm+1(φ(s, t)) take the same value in the corner-point!

The salient point is to see that the functions Fs and Fm+1 agree along the edge
Rm+1∩Rs, because then they patch up to a continuous function on Rm+1∪

⋃
0≤k≤mRk.

Luckily, they differ only by a constant in the intersection Um+1∩Us, and the image
of the corner lies there. As Fm and Fs agree in the corner, as do Fm and Fm+1, it
follows that Fm+1 and Fs are equal in the corner. Since their difference in Um+1 ∩Us is
a constant, it follows that they are equal there, and in particular they coincide along
the edge Rm+1 ∩Rs. And that is what we were aiming for!

Rm+1

Rs−1 Rs Rs+1

Rm

o

(.) One can relax the condition on a homotopy and not require that the end-points
be fixed in which case one speaks about freely homotopic paths . Although, if the two
paths are closed, one requires that the homotopy be a homotopy of closed paths; that
is, the deformed paths are all closed. To be precise, one requires that φ(s, 0) = φ(s, 1)
for all s.

In general integrals are obviously not invariant under free homotopy for non-closed
paths, but for closed paths it holds true. One has

Theorem . Let γ1 and γ2 be two closed piecewise C1-paths in the domain Ω that
are freely homotopic. Let f be holomorphic in Ω. Then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof: The proof is the virtually same as for theorem ??, with only one small excep-
tion: The maps ψ(s, 0) and ψ(s, 1) are no longer constant. However, we know that
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φ(s, 0) = φ(s, 1) for all s, which is sufficient to save the proof. As a matter of notation
we let δ denote this path.

For each s it holds true that ψ(s, 0) = Fis(φ(s, 0)) for some index is, however this
index may change along the path δ. In an analogous manner, ψ(s, 1) = Fjs(φ(s, 1))
with the index js possibly varying with s. Now, φ(s, 0) = φ(s, 1) and the Fk’s differ
only by constants. Therefore the difference ψ(s, 0)− ψ(s, 1) is locally constant along δ
and hence constant by continuity. It follows that

ψ(0, 0)− ψ(0, 1) = ψ(1, 0)− ψ(1, 1),

and by reference to the proof of lemma ?? we are done. o

(.) As an example, but important example, let us show that any closed path γ(t)
in the star-shaped domain Ω with apex a is freely homotopic to any circle contained
in Ω and centered at a —traversed a certain number of times, in any direction. That γ
is freely homotopic to a path of the form reit, the parameter t running from 0 to 2nπ
and n being an integer and r sufficiently small so the circle lies in Ω. Express the path
γ(t) in polar coordinate as

γ(t) = a+ r(t)eiφ(t),

with t running from 0 to 2nπ. Define a homotopy Φ by

Φ(s, t) = (1− s)r(t)ei(1−s)φ(t) + sreist,

where t runs from 0 to 2nπ—since the segment from a to γ(t) is contained in Ω, clearly
the segment from a + reit is as well. This shows that two closed curves are freely
homotopic in Ω if and only if their winding numbers about a are equal.

(.) The previous example can be generalized using van Kampen’s theorem. One
may show that if Ω is any domain and Ω′ is obtained from Ω by removing a point a
(or a closed disk D) contained in Ω, there is an exact sequence of fundamental groups

1 // Z α // π1(Ω′) // π1(Ω) // 1 (.)

and where the map α sends the generator 1 of Z to a circle around a contained in Ω
and being traversed once counterclockwise, so a closed path γ lying in Ω′ and being
null-homotopic in Ω, has a homotopy class in Ω′ that is a multiple of α(1); that is, the
path is homotopic in Ω′ to a small circle round a traversed a certain number of times,
in one direction or the other.

General Cauchy theorem
From the invariance of the integral, we immediately obtain the following fundamen-

tal theorem:
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Theorem . Let Ω be a domain and f a function holomorphic in Ω and let γ be a
piecewise closed C1-path in Ω. Assume that γ is null-homotopic. Then∫

γ

f(z)dz = 0.

Proof: Let α be “half” the path γ, that is α(t) = γ(t/2) for t ∈ [0, 1], and let β be
the other half, that is the one given by β(t) = γ(t/2 + 1/2). Then of course γ is the
composite βα. The composite being null-homotopic implies that α ∼ β−1, and hence
by theorem ?? one has ∫

α

f(z)dz = −
∫
β

f(z)dz,

but then ∫
γ

f(z)dz =

∫
α

f(z)dz +

∫
β

f(z)dz = 0.

o

For simply connected domains we get the general Cauchy theorem as an immediate
corollary

Corollary . Let Ω be a simply connected domain and let f be holomorphic ion Ω.
Then for any closed path γ it holds true that∫

γ

f(z)dz = 0.

(.) An in view of the existence criterion for primitives (proposition ?? on page
??) we see holomorphic functions in simply connected domains all have primitives:

Corollary . If f is a holomorphic function in the simply connected domain Ω, then
f has a primitive.

(.) In particular, and of particular interest, this applies to the logarithm. Any
holomorphic function f vanishing nowhere in the simply connected Ω has a logarithm;
i.e., there is a function, which we denote by log f , and that satisfies the equation

exp ◦ log f = f (.)

throughout Ω. Indeed, as f is without zeros in Ω, the logarithmic derivative f ′/f is
holomorphic there and, Ω being simply connected, has a primitive there. We tempora-
rily denote this primitive by L (as long as (??) is not verified, it does not deserve to be
titled log f). A small and trivial computation using standard rules for the derivative,
shows that

∂zf
−1(z) exp(L(z)) = 0.
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Hence exp(Lz) = Af(z) for some constant A. Of course it might be that A 6= 1, but
then we change the primitive L into L− logA, which is another primitive for f ′/f .

As usual log f is unique only up to whole multiples of 2πi.
When the logarithm log f is defined, the function f also possesses roots of all

types. More generally for any complex constant α, the power fα is defined; it is given
as fα = exp(α log f).

The Genral Cauchy formula
Using the remark in example ??, we obtain the general form of the formula of

Cauchy, valid for null-homotopic paths in any domain Ω:

Theorem . Assume that f is a holomorphic function in the domain Ω, and let
a ∈ Ω be a point. Then for any closed path γ being null-homotopic in Ω, it holds true
that

n(γ, a)f(a) =
1

2πi

∫
γ

f(z)(z − a)−1dz.

Proof: By the homotopy invariance of the integral (theorem ?? on page ??) and the
remark in paragraph ??, the integral in the theorem equals

1

2πi

∫
n∂D

f(z)(z − a)−1dz

for a certain integer n. In this integral D denotes a disk whose closure is contained in
Ω, and n∂D indicates the path that is the boundary circle of D traversed n times. o

(.) There is also a generalization of the argument principle—giving us the ultimate
formulation. However, it needs some preparation, the first being a common technic,
which as well will be useful later, called exhausting by compacts . Recall the notation
A◦ for the set of interior points of a set A.

Lemma . Assume that Ω is a domain in the complex plane.Then there exists a
sequence of compact sets Kn all contained in Ω satisfying the two properties

� The sequence is increasing: Kn⊆Kn+1;

� Their interiors cover Ω, that is:
⋃
nK

◦
n = Ω.

Proof: For each n we put

Kn = { z ∈ Ω | d(z, ∂D) ≥ 1/n } ∩ { z | |z| ≤ n }.

Then Kn is closed and bounded (the distance function being continuos) and the Kn-s
form an increasing sequence. For every point z in Ω one has d(z, ∂D) > 1/n and |z| < n
for n sufficiently large, hence the interiors of the Kn cover Ω. o
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Figur .: One of the compact exhausting sets.

(.) The reason we are interested in this process of exhausting by compacts at
this stage, is that it guaranties there only being finitely poles and zeros of f having
non-vanishing winding number with respect to a given closed path γ in Ω.

Indeed, γ is compact and hence must be contained in some Kn. Points outside Kn

belong to the unbounded component of the complement C\γ and the winding numbers
of γ round them vanish. But zeros and poles of f are isolated, so in compact sets there
is only finitely many. Hence

Lemma . Assume that γ is a closed path in the domain Ω and that f is meromorphic
in Ω. Then there is only a finite number of points a ∈ Ω such that n(γ, a) 6= 0.

(.) The second preparation is a formula from homotopy theory analogous to the
exact sequence in example ?? on page ??, but involving not only one point, and just
as is the case with ??, it hinges on the van Kampen theorem. We shall not prove it, so
if you do not know the van Kampen theorem, you have no choice but trusting us.

Given a finite number a1, . . . , ar of points in the domain Ω and given r little disks
Di, centered at ai respectively and so little that they are contained in the domain Ω.
LetΩ′ be Ω with the r given points deleted; i.e., Ω′ = Ω \ {a1, . . . , ar}.

Denote by ci the homotopy class in Ω′ of the boundary circle ∂Di traversed once
counterclockwise. Then there is an exact sequence

Z ? · · · ? Z // π1(Ω′) // π1(Ω) // 1.

Don’t let the stars frighten you, they stand for something called a free product of
groups. If you want to dig into these questions Alan Hatchers book [?] can be recom-
mended. In clear text the sequence means that the fundamental group π1(Ω) equals
the quotient of π1(Ω) by the normal subgroup generated by the r classes ci.

The form of this statement, useful for us, is that if γ is a closed path null-homotopic
in Ω and avoiding the points ai, its homotopy class equals an integral combination
n1c1 + · · · + nrcr of the classes of the little circles round the ai-s. By applying the
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homotopy invariance to the different integrals
∫
γ
(z−ai)−1dz, one sees that ni = n(γ, ai),

so in the fundamental group of Ω′, one has the equality

[γ] =
∑
i

n(γ, ai)ci

whenever γ is a closed and null-homotopic path in Ω (and [γ] denotes its homotopy
class); indeed, one has

1

2πi

∫
ci

(z − aj)−1dz = δij.

(.) We have come to the scene of the ultimate formula in the context of counting
poles and zeros: The setting is a domain Ω, a function f meromorphic in Ω and a
function g holomorphic there. Finally, a closed path null-homotopic in Ω is an important
player, and here comes the hero of the play, the ultimate formula:

1

2πi

∫
γ

g(z)d log f(z) =
∑
a∈Ω

g(a) n(γ, a)ordaf (.)

This formula looks suspiciously like the formula (??) on page ??, but the difference
is of course the relaxed conditions on the domain and the path. The proof is simple
once the preparations are in place.

We know that only for only finitely many points a1, . . . , ar in Ω the following product
n(γ, a)ordaf is non-zero, hence the sum in the formula is finite. We know that γ is
homotopic to an an integral combination c =

∑
i nici, with ci = n(γ, a)i, and by

the homotopy invariance of the integral we can replace
∫
γ
gd log f by

∑
i ni
∫
ci
gd log f .

Finally, in each of the terms in the latter sum the integral equals g(a)ordaif by Cauchy’s
formula for a disk.

Laurent series

Recall that an annulus is a region in the complex plane bounded by two concentric
circle. If the two radii are R1 and R2 with R1 the smaller, and a is their common
center, the annulus consists of the points z satisfying R1 < |z − a| < R2. In case
R1 = 0 or R2 =∞, the annulus is degenerate and equals to either the punctured disk
0 < |z − a| < R2, the complement of a closed disk R1 < |z − a| or the whole complex
plane (in case R1 = 0 and R2 =∞).

This section is about functions that are holomorphic in an annulus. They have a
development into a double series analogous to the Taylor development of a function
holomorphic in a disk.
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(.) Let an be a sequence of complex numbers that is indexed by Z; that is n can
take both positive and negative integral values. Consider the double series∑

n∈Z

an(z − a)n, (.)

which for the moment is just a formal series. It can be decomposed in the sum of two
series , one comprising the terms with non-negative indices, and the other the terms
having negative indices. That is we one has∑

n∈Z

an(z − a)n =
∑
n<0

an(z − a)n +
∑
n≥0

an(z − a)n. (.)

One says that the series Σ is convergent for the values of z belonging to set S if and
only if each of the two series in the decomposition above converges for z in the given
S, and we say that the convergence is uniform on compacts if it is for each of the two
decomposing series.

In case the series (??) converges for z in the set S, the “positive” and the “negative”
series in (??) converges to functions f+ and f− respectively, and we say that double
series converges to the function f = f+ + f−.

The “positive”series ∑
n≥0

an(z − a)n

is an ordinary power series centered at the point a, and has, as every power series
has, a radius of convergence. Call it R2. The series thus converges in the disk DR2

given by |z − a| < R2, and diverges in the region |z − a| > R2. It converges uniformly
on compact sets contained in DR2 , and as we know very well, defines a holomorphic
function there.

On the other hand, the “negative” series∑
n<0

an(z − a)n

is a power series in w = (z − a)−1; indeed, performing this substitution we obtain the
expression ∑

n>0

a−nw
n

for the “negative” series. This power series has a radius of convergence, that we for
a reason soon to become clear call R−1

1 , so it converges for |w| < R−1
1 and diverges

if |w| > R−1
1 . Translating these conditions on w into conditions on z, we see that

the “negative” series converges for |z − a| > R1 and diverges for |z − a| < R1. The
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convergence is uniform on compacts and therefore the sum of the series is a holomorphic
function f− in the region |z − a| > R1.

The interesting constellation of the two radii of convergence is that R1 < R2,
in which case the double series converges in the region sandwiched between the two
circles centered at a and having radii R1 and R2 respectively, and there it represents
the holomorphic function f = f+ + f−.

(.) Now, let R1 < R2 be two positive real numbers and let a be a complex number.
We shall work with a function f that is holomorphic in the annulus A(R1, R2), and
we are going to establish that f has what is called a Laurent series in A, that , it can
be represented as double series like the one in (??). We shall establish the following
result:

Theorem . Assume that f is holomorphic in the annulus A = A(R1, R2). Then f
is represented by a double series

f(z) =
∑
n∈Z

an(z − a)n

which converges uniformly on compacts in A. The coefficients an are given by

an =
1

2πi

∫
cr

f(w)(w − a)−n−1dw

where cr is any circle centered at a and having a radius r with R1 < r < R2.

Proof: To begin with, we let r1 and r2 be two real numbers with R1 < r1 < r2 < R2.
The two circles c1 and c2 centered at a and with radii r1 and r2 respectively (and
both traversed once counterclockwise) are clearly two freely homotopic paths in A, a
homotopy being φ(s, t) = sc1(t) + (1 − s)c2(t) (where ci as well denotes the standard
parametrization of ci). Hence for any z lying between c1 and c2 the general Cauchy
formula gives

f(z) =
1

2πi

∫
c2

f(w)(w − z)−1dw − 1

2πi

∫
c1

f(w)(w − z)−1dw (.)

indeed, the winding number of the composite path c2 − c1 round z equals one.
Now, the point is that the two integrals appearing in (??) above, will be the two

functions f+ and f−. To see this we shall apply the proposition ?? on page ?? twice.
We start be examining the first integral, whose path of integration is c2, and we

take φ(w) = f(w) in proposition ??. Hence

f+(z) =
1

2πi

∫
c2

f(w)(w − z)−1dw
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is holomorphic in the disk |z − a| < c2, and its Taylor series about a has the coefficients

an =
1

2πi

∫
c2

f(w)(w − a)−n−1dw.

According to proposition ??, the Taylor series converges in the largest disk not hitting
the path of integration, that is the disk |z − a| < c2.

z

aR2 R1

r1

r2

Figur .: The annulus and the two auxiliary circles

Next we the examine the second integral, and to do this, we perform the substitution
u = (w − z)−1. Then dw = −u−2du, and the new path of integration is |u| = r−1

1 , a
circle centered at the origin which designate by d. Upon the substitution, the integral
becomes

f−(z) =
1

2πi

∫
c1

f(w)(w − z)−1dw = − 1

2πi

∫
d

f(u−1 + z)u−1du

Applying once more the proposition ??, this time with φ(u) = −f(u−1 + z) and the
path of integration equal to d (positively oriented), we conclude that the integral is a
holomorphic function in the disk |u| < r−1

1 , or equivalently for |z − a| > r1. Its Taylor
series about the origin has, according to proposition ??, coefficients bn given by the
integrals below, where we as well, reintroduce the variable w:

bn = − 1

2πi

∫
d

f(u−1 + a)u−n−1du =
1

2πi

∫
c1

f(w)(w − a)n−1dw,

And in fact, that will be all! o

Problem .. Determine the Laurent series of the function f(z) = (z−a)−1(z− b)−1

in the annulus A(|a| , |b|) centered at the origin. X

Problem .. Determine the Laurent series of f(z) = (z − a)−1(z − b)−1 in the
annulus A(0, |b− a|) centered at a. X

Problem .. Let f have an isolated singularity in a and be holomorphic for 0 <
|z − a| < r. Show that f has a pole at a if and only if the series for f− in the Laurent
development of f in annulus the A(0, r) centered at a has a finite number of terms. X
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