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MAT4800	–	Complex	Analysis	
	

Some	real	analysis	

𝒐	and	𝑶-notation	
Suppose	𝑓	is	defined	in	a	neighborhood	𝑉	of	0 ∈ 𝐑!,	𝑓 ∶ 𝑉 → 𝐑!.	

𝑓 = 𝑜 𝑥 ! 	iff	lim!→!
! !
! ! = 0.	(The	case	𝑘 = 0	is	called	𝑜 1 .)	

𝑓 = 𝑂 𝑥 ! 	iff	∃𝐶 > 0	such	that	 𝑓 𝑥 ≤ 𝐶 𝑥 ! 	for	𝑥	small.	

Definition	
𝑓	is	differentiable	at	𝑎	if	there	is	a	linear	map	𝐿 ∶ 𝐑! → 𝐑!	such	that	

lim
!→!

𝑓 𝑎 + 𝑥 − 𝑓 𝑎 − 𝐿 𝑥
𝑥

= 0.	

Equivalently,	𝑓 𝑎 + 𝑥 = 𝑓 𝑎 + 𝐿 𝑥 + 𝑜 𝑥 .	

𝐿	is	called	the	derivative	of	𝑓	at	𝑎,	and	is	denoted	by	d𝑓!.	

If	𝑓	is	differentiable	at	𝑎,	then	the	partial	derivatives	!!!
!!!

𝑎 	exist	and	satisfy	

d𝑓! 𝑣 =
𝜕𝑓!
𝜕𝑥!

𝑎 𝑣!

!

!!!

𝑒!

!

!!!

	

d𝑓 =

𝜕𝑓!
𝜕𝑥!

⋯
𝜕𝑓!
𝜕𝑥!

⋮  ⋮
𝜕𝑓!
𝜕𝑥!

⋯
𝜕𝑓!
𝜕𝑥!

	

The	last	matrix	is	called	the	Jacobian	matrix.	

If	 the	 partial	 derivatives	
!!!
!!!

	 exist	 in	 a	 neighborhood	 of	 𝑎	 and	 are	 continuous	 at	 𝑎,	 then	 𝑓	 is	

differentiable	at	𝑎.		

	

𝐶 Ω = 𝑓 ∶ Ω → 𝐂 ; 𝑓 is continuous 		

𝐶! Ω = 𝑓 ∶ Ω → 𝐂 ; !"
!!!

∈ 𝐶 Ω , 𝑖 = 1,… , 𝑛 		

𝐶! Ω = 𝑓 ∶ Ω → 𝐂 ; all partial derivatives of order ≤ 𝑘 are continuous 		

Order	does	not	matter	
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𝛼 = 𝛼!,… ,𝛼! ∈ 𝐍!	multiindex	

𝛼 = 𝛼! +⋯+ 𝛼!,	order	of	the	multiindex.	

D!𝑓 = ! ! !
!!!

!!!!!
!!…!!!

!! 		

𝐶! Ω =∩! 𝐶! Ω 		

	

Complex	function	of	a	complex	variable,	Ω ⊂ 𝐂.		

𝑓 ∶ Ω → 𝐂,	𝑧 = 𝑥 + i𝑦,	𝑓 = 𝑢 + i𝑣.	

𝑓 𝑧 = 𝑓 𝑥, 𝑦 = 𝑢 𝑥, 𝑦 + i𝑣 𝑥, 𝑦 	

As	a	real	function	𝑓 ∶ Ω → 𝐑!,	where	Ω ⊂ 𝐑!,	𝑓 = 𝑢, 𝑣 .	

Let	𝜆 = 𝛼 + i𝛽 ∈ 𝐂 ≅ 𝐑!.	What	is	d𝑓 𝜆 ?	

d𝑓 𝜆 =

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

𝛼
𝛽 =

𝜕𝑢
𝜕𝑥

𝛼 +
𝜕𝑢
𝜕𝑦

𝛽

𝜕𝑣
𝜕𝑥
𝛼 +

𝜕𝑣
𝜕𝑦

𝛽
=

𝜕𝑢
𝜕𝑥

𝛼 +
𝜕𝑢
𝜕𝑦

𝛽 + i
𝜕𝑣
𝜕𝑥
𝛼 +

𝜕𝑣
𝜕𝑦

𝛽 = 𝛼
𝜕𝑓
𝜕𝑥

+ 𝛽
𝜕𝑓
𝜕𝑦

	

We	want	to	express	this	in	terms	of	𝜆.	

𝛼 = Re 𝜆 = !
!
𝜆 + 𝜆 ,	𝛽 = Im 𝜆 = !

!!
𝜆 − 𝜆 	

d𝑓 𝜆 =
1
2
𝜆 + 𝜆

𝜕𝑓
𝜕𝑥

+
1
2i

𝜆 − 𝜆
𝜕𝑓
𝜕𝑦

=
1
2
𝜕𝑓
𝜕𝑥

− i
𝜕𝑓
𝜕𝑦

𝜆 +
1
2
𝜕𝑓
𝜕𝑥

+ i
𝜕𝑓
𝜕𝑦

𝜆 =:
𝜕𝑓
𝜕𝑧
𝜆 +

𝜕𝑓
𝜕𝑧
𝜆	

The	 first	 term	 is	 complex	 linear,	 𝐿 𝑐𝜆 = 𝑐𝐿 𝜆 ,	 the	 second	 term	 is	 complex	 antilinear,	 𝐿 𝑐𝜆 =
𝑐𝐿 𝜆 .	

We	have	that	d𝑓	is	𝐂-linear	iff	!"
!!
= 0.	

!"
!!
= 0	is	called	the	Cauchy-Riemann	equations,	i.e.,	!"

!"
= −i !"

!"
.	On	real	form,	we	get	

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

,
𝜕𝑢
𝜕𝑦

= −
𝜕𝑣
𝜕𝑥
.	

Exercise	

(a) Show	that	 !
!"
	and	 !

!!
	satisfy	Leibniz	rule!	

(b) Suppose	𝐿 ∶ 𝐂! → 𝐂!	is	𝐑-linear.	Show	that	𝐿	is	𝐂-linear	iff	𝐿 i𝑣 = i𝐿(𝑣)	for	all	𝑣 ∈ 𝐂!,	and	
that	𝐿	is	𝐂-antilinear	iff	𝐿 i𝑣 = −i𝐿 𝑣 	for	all	𝑣 ∈ 𝐂!.	

(c) Show	that	every	𝐑-linear	𝐿 ∶ 𝐂! → 𝐂!	splits	uniquely	in	a	𝐂-linear	and	a	𝐂-antilinear	part	
	

𝐿 = 𝐿𝐂 + 𝐿𝐂	
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where	

𝐿𝐂 𝑣 =
1
2
𝐿 𝑣 − i𝐿 i𝑣 , 𝐿𝐂 =

1
2
𝐿 𝑣 + i𝐿 i𝑣 	

Definition	
𝑓 ∶ Ω → 𝐂	is	called	𝐂-differentiable	at	𝑎	if	

lim
!→!

𝑓 𝑎 + 𝜆 − 𝑓 𝑎
𝜆

	

exists.	This	is	denoted	by	𝑓! 𝑎 .		

𝑓	is	𝐂-differentiable	at	𝑎	iff	𝑓 𝑎 + 𝜆 = 𝑓 𝑎 + 𝑓! 𝑎 𝜆 + 𝑜 𝜆 	iff	𝑓	is	differentiable	at	𝑎	and	d𝑓!	is	
𝐂-linear.	

Definition	
Let	Ω	be	an	open	subset	of	𝐂.	We	say	that	a	complex	 function	𝑓 𝑧 	defined	 in	Ω	 is	holomorphic	 if	
𝑓 ∈ 𝐶! Ω 	 and	𝑓	 is	 complex	 differentiable	 at	 all	 points	 in	Ω,	 i.e.,	𝑓	 satisfies	 the	 Cauchy-Riemann	
equations.	

The	set	of	holomorphic	functions	is	denoted	by	𝒪 Ω .	

It	is	not	necessary	to	assume	𝑓 ∈ 𝐶! Ω 	(this	follows	automatically	when	𝑓	is	𝐂-differentiable),	but	it	
makes	things	easier,	because	we	can	use	Green’s	theorem	in	the	plane.	

Green’s	theorem	in	the	plane	
If	Ω ⊂⊂ 𝐑!	is	an	open	set	with	piecewise	smooth	boundary	𝜕Ω	and	𝑀,𝑁	are	two	𝐶!	functions	in	
Ω = Ω ∪ 𝜕Ω,	then	

𝑀d𝑥 + 𝑁d𝑦
!!

=
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

d𝑥d𝑦
!

	

Remarks	
1. 𝜕Ω	is	oriented	such	that	Ω	lies	to	the	left	of	𝜕Ω.	

	
2. It	does	not	matter	if	𝑀	and	𝑁	are	real	or	complex	valued.	
3. 𝑀d𝑥 + 𝑁d𝑦!! 	is	computed	by	parametrizing	𝜕Ω	by	 𝑥 𝑡 , 𝑦 𝑡 ,	𝑎 ≤ 𝑡 ≤ 𝑏.	Then	

𝑀d𝑥 + 𝑁d𝑦
!!

= 𝑀 𝑥 𝑡 , 𝑦 𝑡 𝑥! 𝑡 + 𝑁 𝑥 𝑡 , 𝑦 𝑡 𝑦! 𝑡 d𝑡
!

!
	

i.e.	d𝑥 = 𝑥! 𝑡 d𝑡	and	d𝑦 = 𝑦! 𝑡 d𝑡.	
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If	𝛾 ⊂ 𝐂	is	a	curve	parametrized	by	𝑧 𝑡 = 𝑥 𝑡 + i𝑦 𝑡 ,	𝑎 ≤ 𝑡 ≤ 𝑏,	and	𝑓	is	a	complex	function	on	𝛾,	
then	the	complex	line	integral	is	defined	by	

𝑓 𝑧 d𝑧
!

= 𝑓 𝑥 𝑡 + i𝑦 𝑡 𝑧! 𝑡 d𝑡
!

!
= 𝑓 𝑥 𝑡 + i𝑦 𝑡 𝑥! 𝑡 + i𝑦! 𝑡 d𝑡

!

!
= 𝑓d𝑥 + i𝑓d𝑦

!
.	

If	𝛾 = 𝜕Ω	is	as	in	Green’s	theorem,	we	get	

𝑓d𝑧
!!

= i
𝜕𝑓
𝜕𝑥

−
𝜕𝑓
𝜕𝑦

d𝑥d𝑦
!

= 2i
𝜕𝑓
𝜕𝑧
d𝑥d𝑦

!
	

(Complex	form	of	Green’s	theorem.)	

Remarks	
1. If	𝑓	is	holomorphic,	we	get	Cauchy’s	theorem,	

𝑓d𝑧
!!

= 0	

2. If	𝛾	is	the	circle	𝑧 = 𝜁 + 𝑟e!!,	then	d𝑧 = i𝑟e!!d𝜃	and	
𝑓 𝑧
𝑧 − 𝜁

d𝑧
!

=
𝑓 𝜁 + 𝑟e!!

𝑟e!!
⋅ i𝑟e!!d𝜃

!!

!
= i𝑓 𝜁 + 𝑟e!! d𝜃

!!

!

= 2𝜋i ⋅ (average value of 𝑓 on 𝛾) ≅ 2𝜋i𝑓 𝜁 	
3. Integral	of	a	gradient;	If	𝛾	is	a	curve	from	𝑎	to	𝑏	and	𝑓	is	𝐶!	on	𝛾,	then	

𝑓 𝑏 − 𝑓 𝑎 =
𝜕𝑓
𝜕𝑥

d𝑥 +
𝜕𝑓
𝜕𝑦

d𝑦
!

=
𝜕𝑓
𝜕𝑧
d𝑧 +

𝜕𝑓
𝜕𝑧
d𝑧

!
	

If	𝑓	is	holomorphic,	then	𝑓 𝑏 − 𝑓 𝑎 = 𝑓! 𝑧 d𝑧! .	

If	 𝑓! 𝑧 ≤ 𝑀	on	𝛾,	then	 𝑓 𝑏 − 𝑓 𝑎 ≤ 𝑀ℓ 𝛾 .	

Cauchy-Stokes’	formula	
Assume	 that	𝑓	 is	𝐶!	 in	Ω,	 as	 in	Green’s	 theorem,	and	 let	𝜁 ∈ Ω.	 For	 small	𝑟,	 let	Ω! = Ω ∖ 𝐷 𝑎, 𝑟 .	
Then	𝜕Ω! = 𝜕Ω ∪ 𝜕𝐷 𝑎, 𝑟 ,	where	𝜕𝐷 𝑎, 𝑟 	is	oriented	clockwise.		

	

Applying	the	complex	form	of	Green’s	theorem	to	! !
!!!

	in	Ω!,	we	get	

𝑓 𝑧
𝑧 − 𝜁

d𝑧
!!

− i 𝑓 𝜁 + 𝑟e!! d𝜃
!!

!
= 2i

𝜕𝑓/𝜕𝑧
𝑧 − 𝜁

d𝑥d𝑦
!!

	

The	second	integral	will	→ 2𝜋i𝑓 𝜁 	as	𝑟 → 0,	and	the	RHS	will	→ 2i !"/!!
!!!

d𝑥d𝑦! 	as	𝑟 → 0.	(In	the	

limit	to	the	right,	we	have	used	the	fact	that	 !
!!!

	has	a	 finite	 integral	over	Ω,	 i.e.,	 is	 integrable,	see	

Lemma	2	on	page	99	of	Narasimhan).	This	proves	the	following	

𝜁	
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Theorem	
If	𝑓	is	𝐶!	in	Ω	and	𝜁 ∈ Ω	then	

𝑓 𝜁 =
1
2𝜋i

𝑓 𝑧
𝑧 − 𝜁

d𝑧
!!

−
1
𝜋

𝜕𝑓/𝜕𝑧
𝑧 − 𝜁

 d𝑥d𝑦
!

	

In	particular,	if	𝑓	is	holomorphic,	we	get	Cauchy’s	formula	

𝑓 𝜁 =
1
2𝜋i

𝑓 𝑧
𝑧 − 𝜁

d𝑧
!!

	

Another	particular	case	is	if	𝑓 ∈ 𝐶! 𝐂 	has	compact	support,	then	

𝑓 𝜁 = −
1
𝜋

𝜕𝑓/𝜕𝑧
𝑧 − 𝜁

d𝑥d𝑦
𝐂

	

for	all	𝜁 ∈ 𝐂.	

Some	consequences	of	the	integral	formulas	
The	first	integral	in	the	previous	theorem	is	defined	for	all	𝑓 ∈ 𝐶 𝜕Ω .	It	is	called	the	Cauchy	integral	
of	 𝑓.	 It	 is	 actually	 holomorphic	 for	 any	 curve.	 The	 following	 result	 follow	 immediately	 by	
differentiating	under	the	sign	of	integration.	

Proposition	
Let	𝛾 ⊂ 𝐂	be	a	piecewise	smooth	(𝐶!)	curve	and	let	𝑓 ∈ 𝐶 γ .	Then	the	function	

𝑓 𝜁 =
1
2𝜋i

𝑓 𝑧
𝑧 − 𝜁

 d𝑧
!

	

is	holomorphic	in	𝐂 ∖ 𝛾.	Moreover,	𝑓	is	𝐶!-smooth,		𝑓!	is	holomorphic	in	𝐂 ∖ 𝛾,	and	

𝑓 ! 𝑧 =
𝑘!
2𝜋i

𝑓 𝑧
𝑧 − 𝜁 !!!  d𝑧

!
	

Definition	
We	say	that	a	sequence	of	functions	 𝑓! !!!

! 	on	Ω	converges	uniformly	on	compacts	in	Ω	if	there	is	a	
function	𝑓	 such	 that	 for	any	compact	 set	𝐾 ⊂ Ω	 and	𝜖 > 0	 there	 is	an	 integer	𝑁	 (= 𝑁 𝐾, 𝜖 )	 such	
that	

𝑓! 𝑧 − 𝑓 𝑧 < 𝜖 for all 𝑛 ≥ 𝑁 and 𝑧 ∈ 𝐾.	

Proposition	
Let	𝑓! ∈ 𝒪 Ω 	and	assume	that	𝑓! → 𝑓	uniformly	on	compacts	in	Ω.	Then	𝑓 ∈ 𝒪 Ω 	and	𝑓!

! → 𝑓 ! 	
uniformly	on	compacts	in	Ω	for	any	𝑘 ∈ 𝐍.	

Proof	
Enough	to	prove	on	closed	discs	𝐷 𝑎, 𝑟 ⊂ Ω.	This	follows	since	𝑓	 is	given	by	an	integral	formula	in	
𝐷 𝑎, 𝑟 	as	in	the	previous	proposition.	
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Definition	
We	 say	 that	 a	 function	 𝑓	 on	Ω	 is	 analytic	 if	 𝑓	 is	 given	 by	 a	 power	 series	 in	 all	 discs	 in	Ω,	 i.e.	 if	
𝐷 𝑎, 𝑟 ⊂ Ω	then	

𝑓 𝑧 = 𝑐! 𝑧 − 𝑎 !
!

!!!

 for all 𝑧 ∈ 𝐷 𝑎, 𝑟 	

Proposition	
If	𝑓	is	analytic	in	Ω	then	𝑓 ∈ 𝒪 Ω .	

Proof	
Enough	to	prove	that	𝑓	is	holomorphic	in	some	disc	𝐷 𝑎, 𝑡 	for	all	𝑎 ∈ Ω.	For	simplicity	of	notation,	
assume	 𝑎 = 0	 and	 that	𝐷! = 𝑧 < 𝑟 ⊂ Ω.	 If	 0 < 𝑡 < 𝑠 < 𝑟,	 then	 there	 exists	𝑀 > 0	 such	 that	
𝑐!𝑠! < 𝑀	for	all	𝑗 ∈ 𝐍.	Then	for	all	𝑧 ∈ 𝐷!	we	have	

𝑐!𝑧!
!

!!!

≤ 𝑐!𝑠!
!

!!!

𝑡
𝑠

!
≤ 𝑀

𝑡
𝑠

!!

!!!

	

The	 geometric	 series	 on	 the	 right	 converges.	 This	 shows	 that	 𝑓	 is	 the	 limit	 of	 a	 sequence	 of	
polynomials	on	𝐷!,	hence	𝑓	is	holomorphic	in	𝐷!	by	proposition	3.2.	

Proposition	(Cauchy	estimates)	
If	𝑓 ∈ 𝒪 𝐷! ∩ 𝐶 𝐷! 	then	

𝑓 ! 0 ≤
𝑘! 𝑓 !!!

𝑟!
	

Proof	
By	(3.2)	we	have	that	

𝑓 ! 0 ≤
𝑘!
2𝜋

𝑓 𝑧
𝑧!!!

d𝑧
!!!

=
𝑘!
2𝜋

𝑓 𝑟e!!

𝑟e!! !!! i𝑟e
!! d𝑡

!!

!
≤
𝑘! 𝑓 !!!

𝑟!
	

Corollary	(Simple	Maximum	principle	for	a	disc)	
Let	𝑓 ∈ 𝒪 𝐷! ∩ 𝐶 𝐷! .	Then	 𝑓 0 ≤ 𝑓 !!!.	

Theorem	(Montel)	
Let	Ω ⊂ 𝐂	be	an	open	set,	and	ℱ	be	a	family	of	holomorphic	functions	on	Ω	with	the	property	that	
for	each	compact	set	𝐾 ⊂ Ω	there	exists	a	constant	𝐶! > 0	such	that	 𝑓 ! ≤ 𝐶! 	for	all	𝑓 ∈ ℱ.	Then	
for	 any	 sequence	 𝑓! !∈𝐍

⊂ ℱ	 there	 exists	 a	 subsequence	 𝑓! ! 	 such	 that	 𝑓! ! → 𝑓 ∈ 𝒪 Ω 	

uniformly	on	compact	subsets	of	Ω.		

Proof	
Let	 𝐴 ⊂ Ω	 be	 a	 dense	 sequence	 of	 points,	 and	 let	 𝑓! ⊂ ℱ	 be	 a	 sequence	 such	 that	 𝑓! 𝑎 	 is	

convergent	 for	 all	𝑎 ∈ 𝐴.	We	 claim	 that	 the	 sequence	 𝑓! 	 converges	 to	 a	 holomorphic	 function	𝑓	
uniformly	on	compact	subsets	of	Ω.	Choose	an	exhaustion	of	Ω	by	compact	sets	𝐾! ⊂ 𝐾!!!∘ .	For	any	𝑗	
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we	have	that	 𝑓! !! ≤ 𝑀! 	for	all	𝑖.	By	the	Cauchy	estimates	there	is	a	constant	𝑁! 	such	that	 𝑓!! !! <
𝑁! 	for	all	𝑖.	

Now	we	fix	𝐾! 	and	show	that	 𝑓! ∣!! 	 is	a	Cauchy	sequence.	Note	that	by	the	Mean	Value	Theorem	

we	have	for	𝑧, 𝑧! ∈ 𝐾!!!	that	 𝑓! 𝑧 − 𝑓! 𝑧! ≤ 𝑁!!! 𝑧 − 𝑧! .	Given	any	𝜖 > 0	we	may	choose	a	finite	

subset	 	𝐴 ⊂ 𝐾!!!	 of	 𝐴	 such	 that	 for	 any	 𝑧 ∈ 𝐾!,	 there	 exists	 an	 𝑎 ∈ 𝐴	 with	 𝑧 − 𝑎 < !
!!!!!

.	

Furthermore,	 since	 𝑓! ∣!	 is	 Cauchy,	 we	 may	 find	 𝑁 ∈ 𝐍	 such	 that	 𝑓ℓ 𝑎 − 𝑓! 𝑎 < !
!
	 for	 all	

ℓ,𝑚 ≥ 𝑁.	So	given	any	𝑧 ∈ 𝐾! 	we	may	pick	𝑎 ∈ 𝐴	to	see	that	

𝑓ℓ 𝑧 − 𝑓! 𝑧 ≤ 𝑓ℓ 𝑧 − 𝑓ℓ 𝑎 + 𝑓ℓ 𝑎 − 𝑓! 𝑎 + 𝑓! 𝑎 − 𝑓! 𝑧 ≤ 2𝑁!!! 𝑧 − 𝑎 +
𝜖
2
< 𝜖	

for	all	ℓ,𝑚 ≥ 𝑁,	hence	 𝑓! ∣!! 	is	a	Cauchy	sequence.	

Theorem	
Let	𝑓 ∈ 𝒪 Ω 	and	𝐷 𝑎, 𝑟 ⊂ Ω.	Then	

𝑓 𝜁 = 𝑐! 𝜁 − 𝑎 !
!

!!!

	

in	𝐷 𝑎, 𝑟 ,	where	

𝑐! =
1
2𝜋i

𝑓 𝑧
𝑧 − 𝑎 !!! d𝑧

!!!
	

Proof	

We	may	assume	𝑎 = 0.	Note	that	 !
!!!

= !

! !!!!
= !

!
!
!

!!
!!! 	as	long	as	 𝜁 < 𝑧 ,	and	plug	this	into	

Cauchy’s	integral	formula.		

Proposition	(Identity	principle)	
Let	𝑓 ∈ 𝒪 Ω ,	where	Ω ⊂ 𝐂	 is	connected.	If	Z 𝑓 = 𝑧 ∈ Ω: 𝑓 𝑧 = 0 	has	non-empty	interior,	then	
𝑓 ≡ 0	on	Ω.	

Proof	
For	each	𝑎 ∈ Ω	we	have	 that	𝑓 𝑧 = 𝑐! 𝑎 𝑧 − 𝑎 !!

!!! 	on	a	 small	enough	disk	centered	at	𝑎.	By	
the	formula	above	we	see	that	𝑐! 𝑎 	is	continuous	in	𝑎	for	all	𝑗.	So	the	set	of	points	 𝑎 ∈ Ω: 𝑐! 𝑎 =
0 for all 𝑗 ∈ 𝐍 	is	non-empty,	open,	and	closed	in	Ω.	

Proposition	
Let	𝑓 ∈ 𝒪 Ω .	Then	Z 𝑓 	is	discrete	unless	𝑓	is	constantly	equal	to	zero.	

Proof	
We	 assume	 that	 𝑓	 is	 not	 constant.	 Near	 a	 point	 𝑎 ∈ Ω	 with	 𝑓 0 = 0	 we	 have	 that	
𝑓 𝑧 = 𝑐! 𝑧 − 𝑎 !!

!!! ,	𝑘 ≥ 1,	𝑐! ≠ 0,	so	we	can	write	𝑓 𝑧 = 𝑧 − 𝑎 ! 𝑐! + 𝑐!!! 𝑧 − 𝑎 !!
!!! .	

Definition	
Let	𝒪∗ Ω = 𝑓 ∈ 𝒪 Ω : 𝑓 𝑧 ≠ 0 for all 𝑧 ∈ Ω .		
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Theorem	
Let	 𝐷 = 𝐷 𝑎, 𝑟 	 be	 a	 disc.	 If	 𝑓 ∈ 𝒪 𝐷 ,	 then	 𝑓	 has	 a	 holomorphic	 antiderivative,	 i.e.,	 there	 is	
𝐹 ∈ 𝒪 𝐷 	such	that	𝐹! = 𝑓.	If	𝑓 ∈ 𝒪∗ 𝐷 	then	𝑓	has	a	holomorphic	logarithm	and	𝑚-th	root	of	any	
order.	

Proof	
We	know	that	𝑓 = 𝑐! 𝑧 − 𝑎 !!

!!! 	in	𝐷.	Let	𝐹 = !!
!!!

𝑧 − 𝑎 !!!!
!!! .		

If	𝑓 ∈ 𝒪∗ 𝐷 ,	then	!
!

!
∈ 𝒪 𝐷 	and	there	is	𝐹 ∈ 𝒪 𝐷 	such	that	𝐹! = !!

!
.	Then	𝑔 = 𝑓e!! ∈ 𝒪∗ 𝐷 	and	

𝑔! = 𝑓!e!! + 𝑓e!! − !!

!
= 0,	 hence	 𝑔 = 𝑐 ≠ 0,	 a	 constant.	 Pick	 𝛼 ∈ 𝐂	 such	 that	 e! = 𝑐.	 Then	

𝑓 = e!!!,	 so	𝐺 = 𝐹 + 𝛼	 is	 a	 holomorphic	 logarithm	 and	 e
!
!! 	 is	 a	 holomorphic	𝑚-th	 root	 for	 any	

𝑚 ∈ 𝐍.	

Remark	
This	result	is	true	in	any	simply	connected	domain	Ω.	

Theorem	
If	Ω	is	a	domain	and	𝑓 ∈ 𝒪 Ω 	is	nonconstant,	then	𝑓 Ω 	is	open.	

Proof	
Pick	 𝑎 ∈ Ω.	We	 have	 to	 show	 that	 𝑓 Ω 	 contains	 a	 neighborhood	 of	 𝑓 𝑎 .	We	may	 assume	 that	
𝑎 = 0 = 𝑓 𝑎 .	Ω	contains	a	disc	𝐷 = 𝐷 0, 𝑟 ,	and	𝑓	is	not	constant	in	𝐷.	If	𝑓 𝐷 	does	not	contain	a	

neighborhood	of	0,	 there	exist	𝑎! → 0	 such	that	𝑓 𝑧 ≠ 𝑎! 	 in	𝐷,	 i.e.	𝑔! =
!

!!!!
∈ 𝒪 𝐷 .	 If	𝑟! < 𝑟	 is	

such	that	𝑓 𝑧 ≠ 0	for	all	𝑧	with	 𝑧 = 𝑟!,	then	 𝑔! 	is	uniformly	bounded	on	this	circle,	but	 𝑔! 0 =
!
!!
→ ∞	as	𝑗 → ∞.	This	contradicts	the	maximum	principle	on	a	disc.	

Corollary	(Maximum	principle)	
If	Ω	is	a	domain,	𝑓 ∈ 𝒪 Ω 	and	𝑎 ∈ Ω	is	such	that	 𝑓 𝑧 ≤ 𝑓 𝑎 	for	all	𝑧 ∈ Ω,	then	𝑓	is	constant.	

Proof	
This	follows	from	Open	Mapping	Theorem.	

Proposition	(Hurwitz’	theorem)	
If	Ω	is	a	domain,	𝑓! ∈ 𝒪∗ Ω ,	and	𝑓! → 𝑓	uniformly	on	compacts	then	either	𝑓 ∈ 𝒪∗ Ω 	or	𝑓 ≡ 0	in	Ω.		

Proof	
If	𝑓 𝑎 = 0	and	𝑓 ≢ 0,	pick	𝑟 > 0	such	that	𝑓 𝑧 ≠ 0	when	 𝑧 − 𝑎 = 𝑟.	Then	 𝑓 𝑧 ≥ 𝛿 > 0	when	
𝑧 − 𝑎 = 𝑟,	hence	 𝑓! 𝑧 ≥ !

!
𝛿	when	 𝑧 − 𝑎 = 𝑟	for	sufficiently	large	𝑗.	Therefore	𝑔! =

!
!!
∈ 𝒪 Ω 	

and	 𝑔! 𝑧 ≤ !
!
	when	 𝑧 − 𝑎 = 𝑟.	But	this	is	impossible,	since	𝑔! 𝑎 = !

!! !
→ ∞	when	𝑗 → ∞.		

Definitions	
Punctured	disc	around	𝑎:	𝐷∗ 𝑎, 𝑟 = 𝑧 ∈ 𝐂 ∶ 0 < 𝑧 − 𝑎 < 𝑟 .		

If	𝑎 ∈ Ω	and	𝑓 ∈ 𝒪 Ω ∖ 𝑎 ,	we	say	that	𝑓	has	a	pole	of	order	𝑘 ∈ 𝐍	at	𝑎	if	in	some	punctured	disc	
around	𝑎	we	have	
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𝑓 𝑧 =
𝑔 𝑧
𝑧 − 𝑎 ! 	

where	𝑔 𝑧 ≠ 0	in	𝐷∗ 𝑎, 𝑟 .	We	then	have	

𝑓 𝑧 = 𝑐!! 𝑧 − 𝑎 !! + 𝑐!!!! 𝑧 − 𝑎 !!!! +⋯ = 𝑐! 𝑧 − 𝑎 !
!

!!!!

	

in	𝐷∗ 𝑎, 𝑟 .	

The	residue	of	𝑓	at	𝑎	is	defined	by		

res!𝑓 = 𝑐!!	

In	𝐷∗ 𝑎, 𝑟 	we	then	have	

𝑓 𝑧 =
𝑐!!
𝑧 − 𝑎

+
d
d𝑧

𝑐!
𝑛 + 1

𝑧 − 𝑎 !!!
!

!!!! 
!!!! 

	

Hence	for	𝑟! < 𝑟	we	have	

𝑓 𝑧 d𝑧
!!! !!!

= 2𝜋i𝑐!! = 2𝜋i res! 𝑓 	

Proposition	
If	Ω ⊂⊂ 𝐂	has	piecewise	smooth	𝐶!	boundary,	𝑓 ∈ 𝒪 Ω ∩ 𝐶! Ω ,	except	 for	poles	𝑎!,… , 𝑎! ∈ Ω,	
then		

1
2𝜋i

𝑓 d𝑧
!!

= res!!𝑓
!

!!!

	

(This	is	called	the	residue	theorem).	

Proof	
Let	 𝐷!,… ,𝐷!	 be	 disjoint	 small	 discs	 around	 𝑎!,… , 𝑎!	 and	 put	 Ω! = Ω ∖∪!!!! 𝐷!.	 Then	 Cauchy’s	
theorem	gives	

0 =
1
2𝜋i

𝑓 dz
!!!

=
1
2𝜋i

𝑓 d𝑧
!!

−
1
2𝜋i

𝑓 d𝑧
!!!

!

!!!

=
1
2𝜋i

𝑓 d𝑧
!!

− res!!𝑓
!

!!!

	

Definition	
We	say	that	𝑓 ∈ 𝒪 Ω ∖ 𝑎 	has	order	𝑘	at	𝑎	 if	𝑓 𝑧 = 𝑧 − 𝑎 !𝑔 𝑧 ,	where	𝑔 ∈ 𝒪 Ω 	and	𝑔 𝑎 ≠
0.	

If	𝑘 > 0	then	we	call	𝑎	a	zero	of	order	𝑘.	If	𝑘 < 0	then	𝑎	is	a	pole	of	order	−𝑘.	

It	follows	that	!
!

!
= !

!!!
+ !!

!
	near	𝑎,	and	hence	res!

!!

!
= 𝑘 = ord!𝑓.	
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Corollary	
If	Ω ⊂⊂ 𝐂	is	as	above,	𝑓 ∈ 𝒪 Ω ∩ 𝐶! Ω 	with	𝑓 𝑧 ≠ 0	on	𝜕Ω,	then	

𝑓!

𝑓
d𝑧

!!
= 2𝜋i ord!𝑓

!∈!

	

If	𝑓	only	has	simply	zeroes	and	poles,	this	is	

= #zeroes − #poles	

This	is	also	called	the	argument	principle.	

	

𝑓!

𝑓
d𝑧

!!
=

1
𝑧
d𝑧

!
= 2𝜋i ⋅ winding number of 𝛾 around zero 	

This	is	still	true	if	𝑓	has	poles	in	Ω.	

If	𝑓 𝑧 ≠ 𝑤	on	𝜕Ω,	i.e.,	𝑤 ∉ 𝛾,	we	have	that	the	number	of	solutions	of	the	equation	𝑓 𝑧 = 𝑤	in	Ω,	
counted	with	multiplicity,	is	given	by	

1
2𝜋i

𝑓!

𝑓 − 𝑤
d𝑧

!!
=

1
2𝜋i

d𝑧
𝑧 − 𝑤!

= winding number of 𝛾 around 𝑤	

In	 the	 figure	 above,	𝑓! 𝑧 = 𝑤	 has	 two	 solutions	 in	 the	 component	 of	 zero	 of	𝐂 ∖ 𝛾,	 none	 in	 the	
unbounded	component,	and	one	in	each	of	the	remaining	components.		

Theorem	(Rouché’s	theorem)	
Let	Ω ⊂⊂ 𝐂	be	as	above,	𝑓,𝑔 ∈ 𝒪 Ω ∩ 𝐶! 𝐷 	such	that	 𝑓 𝑧 − 𝑔 𝑧 < 𝑓 𝑧 	for	all	𝑧 ∈ 𝜕Ω.	Then	
𝑓	and	𝑔	have	the	same	number	of	zeroes	in	Ω,	i.e.,		

ord!𝑓
!∈!

= ord!𝑔
!∈!

	

Proof	

Clearly	𝑓	has	no	zeroes	on	𝜕Ω	and	 1 − ! !
! !

< 1	on	𝜕Ω,	so	𝐹 = !
!
	takes	values	in	the	disc	𝐷 1,1 	on	

𝜕Ω	and	therefore	has	a	holomorphic	logarithm	near	𝜕Ω.	We	have	

𝑓	

𝜕Ω 
𝛾 
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log𝐹 ! =
𝐹!

𝐹
=

𝑔!𝑓 − 𝑓!𝑔
𝑓!
𝑓
𝑔

=
𝑔!

𝑔
−
𝑓!

𝑓
	

Hence	

0 = log𝐹 !d𝑧
!!

=
𝑔!

𝑔!!
−

𝑓!

𝑓!!
= ord!𝑔

!∈!

− ord!𝑓
!∈!

	

Proposition	
If	Ω	is	a	domain,	𝑓! ∈ 𝒪 Ω 	are	injective	for	all	𝑗,	and	𝑓! → 𝑓	uniformly	on	compacts,	then	either	𝑓	is	
injective	or	𝑓	is	constant.	

Proof	
Assume	that	𝑎, 𝑏 ∈ Ω	and	that	𝑓 𝑏 = 𝑓 𝑎 .	Let	𝑔! 𝑧 = 𝑓! 𝑧 − 𝑓! 𝑎 .	Then	𝑔! ∈ 𝒪∗ Ω ∖ 𝑎 	and	
𝑔! → 𝑓 − 𝑓 𝑎 	 uniformly	 on	 compacts.	 Then	 either	𝑓 − 𝑓 𝑎 	 is	 constant,	 which	must	 be	 zero,	 so	
𝑓 ≡ 𝑓 𝑎 ,	or	𝑓 − 𝑓 𝑎 	is	without	zeroes,	which	contradicts	the	fact	that	𝑓 𝑏 = 𝑓 𝑎 .	

Proposition	
If	 𝑓 ∈ 𝒪 Ω 	 is	 injective,	 then	 𝑓! 𝑧 ≠ 0	 for	 all	 𝑧 ∈ Ω	 and	 𝑓	 has	 a	 holomorphic	 inverse	 𝑓!! ∈
𝒪 𝑓 Ω .		

Proof	
We	may	assume	that	𝑧 = 0	and	that	𝑓 𝑧 = 0.	We	shall	show	that	𝑓	has	a	zero	of	order	1	at	0.	We	
have	 that	𝑓 𝑧 = 𝑧!𝑔 𝑧 	with	𝑔 ∈ 𝒪 Ω ,	𝑔 0 ≠ 0,	𝑘 ∈ 𝐍.	 In	 a	 disc	𝐷!,	𝑔	 has	 a	 holomorphic	𝑘th	

root,	 i.e.,	 there	 is	 ℎ ∈ 𝒪 𝐷! 	 with	 𝑔 𝑧 = ℎ 𝑧 ! 	 and	 ℎ 0 ≠ 0.	 We	 get	 𝑓 𝑧 = 𝑧 ℎ 𝑧 !
.	 The	

function	𝑧ℎ 𝑧 	is	nonconstant,	hence	open.	But	then	𝑓	takes	values	in	a	small	disc	at	least	𝑘	times	in	
𝐷!.	Hence	𝑘 = 1.	

By	the	inverse	mapping	theorem	𝑓	has	a	𝐶!	smooth	inverse	𝑓!! ∶ 𝑓 Ω → Ω.	The	derivative	d𝑓!!	is	
the	inverse	of	d𝑓,	hence	it	is	complex	linear	and	𝑓!!	is	holomorphic.	

Define	𝐴 𝑟, 𝑠 = 𝜁 ∈∶ 𝑟 < 𝜁 < 𝑠 	for	0 ≤ 𝑟 < 𝑠 ≤ ∞.	

Proposition	(Laurent	expansion)	
If	𝑓 ∈ 𝒪 𝐴 𝑟, 𝑠 	then	𝑓	has	a	unique	Laurent	series	expansion	in	𝐴 𝑟, 𝑠 ,	

𝑓 𝜁 = 𝑐!𝜁!
!

!!!!

	

where	𝑐! =
!
!!!

! !
!!!!

d𝑧! !! ,	any	𝜌 ∈ 𝑟, 𝑠 .	The	series	 𝑐!𝜁!!!! 	converges	for	 𝜁 < 𝑠,	and	the	series	

𝑐!𝜁!!!! 	converges	for	 𝜁 > 𝑟.	

Proof	

The	Cauchy	 theorem	gives	 that	 ! !
!!!!

d𝑧! !! 	 is	 independent	 of	𝜌 ∈ 𝑟, 𝑠 .	 Let	𝜁 ∈ 𝐴 𝑟, 𝑠 	 and	 pick	

𝑟!, 𝑠!	such	that	
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𝑟 < 𝑟! < 𝜁 < 𝑠! < 𝑠	

By	the	Cauchy-Stokes	formula,	we	have	

𝑓 𝜁 =
1
2𝜋i

𝑓 𝑧
𝑧 − 𝜁

d𝑧
! !!!

−
1
2𝜋i

𝑓 𝑧
𝑧 − 𝜁

d𝑧
! !!!

 

=
1
2𝜋i

𝑓 𝑧
𝑧

1

1 − 𝜁𝑧
d𝑧

! !!!
+

1
2𝜋i

𝑓 𝑧
𝜁! !!!

1

1 − 𝑧
𝜁
d𝑧 = 𝐼 + 𝐼𝐼	

𝐼 =
1
2𝜋i

𝑓 𝑧
𝑧

𝜁
𝑧

!!

!!!

d𝑧
! !!!

=
1
2𝜋i

𝑓 𝑧
𝑧!!!! !!!

𝜁!
!

!!!

	

𝐼𝐼 =
1
2𝜋i

𝑓 𝑧
𝜁

𝑧
𝜁

!!

!!!

d𝑧
! !!!

=
1
2𝜋i

𝑓 𝑧 𝑧!d𝑧
! !!!

𝜁! !!!
!

!!!

=
1
2𝜋i

𝑓 𝑧 𝑧! !!!! d𝑧
! !!!

𝜁!!

!!!!

	

where	𝑗! = −(𝑗 + 1).	

Exercise	
If	𝑟 = 0,	𝐴 𝑟, 𝑠 	is	the	punctured	disc	𝐷!∗ = 𝜁 ∶ 0 < 𝜁 < 𝑠 .	𝑓	has	a	singularity	at	0.	There	are	three	
types:	

(1) Removable	singularity:	𝑎! = 0	for	𝑛 < 0.	This	happens	iff	𝑓	is	bounded	in	𝐷!∗.	
(2) Pole	of	order	𝑘:	𝑎!! ≠ 0,	𝑎! = 0	for	𝑛 < −𝑘.	This	happens	iff	 𝑓 → ∞	when	𝑧 → 0.	
(3) Essential	singularity:	𝑎! ≠ 0	 for	 infinitely	many	𝑛 < 0.	This	happens	 iff	𝑓 𝐷!∗ 	 is	dense	 in	𝐂	

for	all	0 < 𝑡 ≤ 𝑠.	

Liouville’s	theorem	
If	𝑓 ∈ 𝒪 𝐂 	is	bounded,	then	𝑓	is	constant.	

This	follows	easily	from	Cauchy	estimate	of	𝑓!.	
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Partitions	of	unity	
If	𝑈 ⊂ 𝐑!	 is	open,	 then	 there	exists	an	exhaustion	 𝐾! !!!

!
	of	𝑈	by	compacts	 such	 that	𝐾! ⊂ 𝐾!!!∘ ,	

∪! 𝐾! = 𝑈.	

Proof	
If	𝑈 = 𝐑!	this	is	trivial.	If	not,	let	𝐾! = 𝑧 ∈ 𝑈 ∶ d 𝑧,𝐑! ∖ 𝑈 ≥ !

!
∩ 𝐵(𝑗).	

	

Definition	
We	say	that	a	family	ℱ	of	subsets	of	𝐑!	 is	locally	finite	if	every	𝑎 ∈ 𝐑!	has	a	neighborhood	𝐵 𝑎, 𝑟 	
such	that	𝐵 𝑎, 𝑟 ∩ 𝐸 ≠ ∅	for	only	a	finite	number	of	sets	𝐸 ∈ ℱ.	

This	is	equivalent	to	𝐾 ∩ 𝐸 ≠ ∅	for	only	a	finite	number	of	sets	𝐸 ∈ ℱ	for	any	compact	𝐾.	

Let	𝒰 = 𝑈! !∈! 	be	a	collection	of	open	sets.	We	say	that	𝒱 = 𝑉! !∈!
	is	a	refinement	of	𝒰	if	for	each	

𝑉! 	there	is	a	𝑈! 	with	𝑉! ⊂ 𝑈! 	and	∪!∈! 𝑉! =∪!∈! 𝑈!.	

Theorem	
If	𝒰 = 𝑈! 	is	an	open	covering	of	𝑈	(i.e.,	𝑈 =∪ 𝑈!),	then	there	is	a	locally	finite	refinement	𝒱 = 𝑉! 	
of	𝒰	and	compacts	𝐿! ⊂ 𝑉! 	such	that	∪!∈! 𝐿! = 𝑈.	

Proof	
Let	 𝐾! !!!

! be	an	exhaustion	of	𝑈.	We	shall	divide	𝑈	into	compact	“rings”	𝑀!	like	this:	

𝑀! = 𝐾!, 𝑀!!! = 𝐾!!! ∖ 𝐾!∘ , so ∪!!!! 𝑀! = 𝑈	

We	then	define	open	sets	𝑊!	containing	𝑀!	which	can	only	intersect	the	previous	and	next	ring:	

𝑊! = 𝐾!∘, 𝑊! = 𝐾!∘, 𝑊! = 𝐾!!!∘ ∖ 𝐾!!! for 𝑛 ≥ 3	
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Now	𝒱! = 𝑉!,! = 𝑈! ∩𝑊! 	 is	 an	 open	 cover	 of	𝑀!	 and	 there	 exist	𝑉!!,! ∈ 𝒱!,	 𝑗 = 1,… , 𝑝!	 which	
cover	 𝑀!.	 Then	 there	 is	 some	 𝛿 = 𝛿 𝑛 	 such	 that	 for	 any	 𝑥 ∈ 𝑀!	 there	 is	 some	 𝑖! 	 such	 that	
𝐵 𝑥, 𝛿  ⊂ 𝑉!!,!.	This	gives	that	the	compacts	

𝐿!!,! = 𝑥 ∈ 𝑀! ∶ d 𝑥,𝐑! ∖ 𝑉!!,! ≥ 𝛿 ⊂ 𝑉!!,!	

cover	𝑀!.	Now,	let	

𝒱 = 𝑉!!,! ∶ 𝑛 ∈ 𝐍, 𝑗 = 1,… , 𝑖! 	

𝒱	 is	 a	 refinement	 of	𝒰	 and	 since	 any	 compact	𝐾	 is	 contained	 in	 some	𝐾!	 and	 therefore	will	 not	
intersect	any	𝑉!!,!	when	𝑚 > 𝑛 + 1,	 it	is	locally	finite.	The	corresponding	𝐿!!,!	cover	𝑀!	and	hence	

𝑈.	

	

If	𝜙	is	a	function	defined	on	𝑈,	we	define	supp 𝜙 = 𝑥 ∶ 𝜙 𝑥 ≠ 0 ,	where	we	take	the	closure	in	𝑈.	

𝐶!! 𝑈 = 𝜙 ∈ 𝐶! 𝑈 ∶ 𝜙 is real and supp 𝜙 is a compact subset of 𝑈 .	

Definition.	Partition	of	unity	relative	to	𝓤.	
If	𝒰 = 𝑈! !∈! 	 is	an	open	cover	of	𝑈,	 then	a	partition	of	unity	relative	to	𝒰	 is	a	family	𝜙! ∈ 𝐶! 𝑈 	
such	that	𝜙! ≥ 0,	𝑆! = supp 𝜙! ⊂ 𝑈!,	𝑆! 	of	𝜙! 	is	locally	finite,	∑𝜙! ≡ 1	in	𝑈.	

Lemma	
If	𝑈	is	open,	𝐾 ⊂ 𝑈	is	compact,	then	there	is	a	positive	function	𝜙 ∈ 𝐶!! 𝑈 	such	that	𝜙 𝑥 > 0	for	
𝑥 ∈ 𝐾.	

Proof	
The	function		

𝜓 𝑡 = e!!/ !!! , 𝑡 ≤ 1
0,                        𝑡 ≥ 1

	

	 	 	

	       
  

  
  

𝑉!!,!	

𝑀! 
𝑀! 

𝑀! 𝑀! 
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is	in	𝐶! 𝐑 .		

	

There	exists	𝛿 > 0	such	that	dist 𝐾,𝐑! ∖ 𝑈 ≥ 2𝛿.	There	are	a	finite	number	of	points	𝑎!,… , 𝑎! ∈
𝐾	such	that	𝐾 =∪!!!! 𝐵 𝑎! , 𝛿 .	Let	

𝜙 𝑥 = 𝜓
𝑥 − 𝑎! !

𝛿!

!

!!!

	

Theorem	
If	𝒰 = 𝑈! !∈! 	is	an	open	cover	of	𝑈,	then	there	is	a	partition	of	unity	relative	to	𝑈.	

Proof	
Let	𝒱 = 𝑉! !∈!

	be	a	locally	finite	refinement	of	𝒰	and	𝐿! ⊂ 𝑉! 	compacts	which	cover	𝑈.	Then	there	

are	𝜓! ∈ 𝐶!! 𝑉! ⊂ 𝐶! 𝑈 	such	that	𝜓! > 0	in	𝐾!.	

Let	𝜓 = 𝜓!! .	The	sum	is	locally	finite,	hence	𝜓 ∈ 𝐶! 𝑈 	and	𝜓 > 0	in	𝑈.	If	we	let	𝜒! = 𝜓!/𝜓,	then	
𝜒! 	is	a	partition	of	unity	relative	to	𝑉!.	For	each	𝑗 ∈ 𝐽	pick	𝜏 𝑗 ∈ 𝐼	such	that	𝑉! ⊂ 𝑈! ! 	and	for	each	
𝑖 ∈ 𝐼	define	𝜙! = 𝜒!!∈!!! ! ∈ 𝐶! 𝑈 .	Clearly,	 supp 𝜙! 	is	locally	finite.	

If	𝑥 ∈ 𝑈 ∖ 𝑈! 	 there	 is	a	neighborhood	𝑉	of	𝑥	 such	 that	𝐶 ∩ supp 𝜒! ≠ ∅	 for	only	 finitely	many	𝑗.	 If	
𝑗 ∈ 𝜏!! 𝑖 	 then	 supp 𝜒! 	 is	 a	 compact	 subset	 of	 𝑈!,	 hence	 𝜙! ≡ 0	 in	 𝑉 ∖∪!∈!!! ! supp 𝜒! 	 and	
𝑥 ∉ supp 𝜙!.	This	proves	that	supp 𝜙! ⊂ 𝑈!.	

Theorem	(Separation	of	closed	sets)	
If	Ω ⊂ 𝐑!	 is	 open,	𝑋 ⊂ Ω	 closed	 (relatively),	𝑋 ⊂ 𝑈	 open,	 then	 there	 exists	𝜙 ∈ 𝐶! Ω 	 such	 that	
0 ≤ 𝜙 ≤ 1,	𝜙 ! = 1,	𝜙 !∖! = 0.	

Proof	
Let	𝜙!,	𝜙! 	 be	 a	 partition	 of	 unity	 relative	 to	 the	 covering	 𝑈,𝑉 	 with	𝑉 = Ω ∖ 𝑋.	We	must	 have	
𝜙! ! = 0,	so	𝜙! = 1	on	𝑋.	Also	𝜙! = 0	in	Ω ∖ 𝑈.		

1	
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Theorem	(Patching	𝑪!	functions	on	disjoint	closed	sets)	
If	 Ω ⊂ 𝐑!	 is	 open,	 𝑋!,𝑋! ⊂ Ω	 two	 disjoint	 closed	 sets	 and	 𝜙!,𝜙! ∈ 𝐶! Ω ,	 then	 there	 exists	
𝜙 ∈ 𝐶! Ω 	such	that	𝜙 !! = 𝜙!,	𝜙 !! = 𝜙!.	

Proof	
Pick	𝛼 ∈ 𝐶! Ω ,	0 ≤ 𝛼 ≤ 1,	𝛼 !! = 1,	𝛼 !! = 0,	and	let	𝜙 = 𝛼𝜙! + 1 − 𝛼 𝜙!.		

The	𝝏-equation,	𝝏𝒖
𝝏𝒛
= 𝝓.	

Recall	Cauchy-Stokes	formula	in	Ω ⊂ 𝐂.	(𝑧 = 𝑥 + i𝑦,	𝜁 = 𝜉 + i𝜂)	

If	𝑓 ∈ 𝐶! Ω ,	𝑧 ∈ Ω	then	𝑓 𝑧 = !
!!!

! !
!!!

d𝜁!! − !
!

!"/!!
!!!

d𝜉d𝜂! .	

If	𝑓	is	also	holomorphic	in	Ω	then	𝑓 𝑧 = !
!!!

! !
!!!

d𝜁!! .	

If	𝑓 ∈ 𝐶!! 𝐂 ,	𝑧 ∈ 𝐂	then	𝑓 𝑧 = − !
!

!"/!!
!!!

d𝜉d𝜂𝐂 .	

Given	𝜙 ∈ 𝐶!! 𝐂 ,	we	want	to	find	𝑓	such	that	!"
!!
= 𝜙.	It	is	natural	to	try	

𝑓 𝑧 = −
1
𝜋

𝜙 𝜁
𝜁 − 𝑧

d𝜉d𝜂
𝐂

= −
1
𝜋

𝜙 𝜁 + 𝑧
𝜁

d𝜉d𝜂
𝐂

	

If	we	can	differentiate	under	the	sign	of	integration,	then	

𝜕𝑓
𝜕𝑧

= −
1
𝜋

𝜕𝜙
𝜕𝑧 𝜁 + 𝑧

𝜁
d𝜉d𝜂

𝐂
= 𝜙 𝑧 	

Differentiation	is	allowed.	Differentiate	with	respect	to	𝑥,	let	ℎ ∈ 𝐑.	

𝑓 𝑧 + ℎ − 𝑓 𝑧
ℎ

= −
1
𝜋

1
ℎ 𝜙 𝜁 + 𝑧 + ℎ − 𝜙 𝜁 + 𝑧

𝜁𝐂
d𝜉d𝜂 → −

1
𝜋

𝜕𝜙
𝜕𝑥 𝜁 + 𝑧

𝜁
d𝜉d𝜂

𝐂
	

Ω	

𝜙 ≡ 1 

𝜙 ≡ 0 

𝑋 

𝑈 

𝑉 
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by	the	dominated	convergence	theorem,	since	!
!
∈ L!"#! (𝐑!).	We	can	do	the	same	in	the	𝑦-direction,	

and	hence	we	have	proved	

Theorem	(Solving	𝝏	with	compact	support)	
If	𝜙 ∈ 𝐶!! 𝐂 	and		

𝑓 𝑧 = −
1
𝜋

𝜙 𝜁
𝜁 − 𝑧

d𝜉d𝜂
𝐂

	

then	𝑓 ∈ 𝐶! 𝐂 	and	!"
!!
= 𝜙.	

Notice	that	in	general	𝑓	does	not	have	compact	support,	since	for	large	𝑅	

0 = 𝑓d𝑧
! !!

= 2i
𝜕𝑓
𝜕𝑧
d𝑥d𝑦

! !!
= 2𝑖 𝜙d𝑥d𝑦

! !!
	

would	imply	that	 𝜙d𝑥d𝑦𝐂 = 0.	

Theorem	(Smeared	out	Cauchy	integral	formula)	
If	𝐾 ⊂ Ω	is	compact,	𝑓 ∈ 𝒪 Ω 	and	𝛼 ∈ 𝐶!! Ω 	is	≡ 1	on	𝐾,	then	for	𝑧 ∈ 𝐾	

𝑓 𝑧 = −
1
𝜋

𝑓 𝜁
𝜕𝛼
𝜕𝜁

1
𝜁 − 𝑧

d𝜉d𝜂
!

	

In	particular,	 𝑓 𝜁 !"
!!
d𝜉d𝜂! = 0.	

Proof	
Apply	Cauchy-Stokes	to	𝜙 = 𝛼𝑓.	

	

Definition	
Let	𝐾 ⊂ 𝐂	be	compact.	Then	

𝒪 𝐾 = 𝑓 ∈ 𝒪 𝑈! ∶ 𝑈!  open neighborhood of 𝐾 	

Example	

𝐾 = 𝑧 =
1
2
	

Then	𝑓 𝑧 = 𝑧	and	𝑔 𝑧 = !
!
	are	both	in	𝒪 𝐾 .	

	
𝐾	

𝑆 = supp 𝛼 ∖𝐾 
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The	Runge	problem	
Let	𝐾 ⊂ Ω	be	compact	and	𝑓 ∈ 𝒪 𝐾 .	Is	it	possible	to	approximate	𝑓	on	𝐾	by	𝑓! ∈ 𝒪 Ω ?	

Example	
Let	𝐾,	𝑓	and	𝑔	be	as	above.	

(a) Let	Ω = 𝐷 = 𝑧 < 1 .	 Then	𝑓 ∈ 𝒪 Ω ,	 so	 there	are	no	problems	with	𝑓.	We	claim	 that	𝑔	
cannot	be	approximated:	If	ℎ ∈ 𝒪 𝐷 	and	ℎ ∼ 𝑔	on	𝐾	(close	to),	then	

1 = 𝑧𝑔 𝑧 ∼ 𝑧ℎ 𝑧  on 𝐾	

If	𝑘 𝑧 = 𝑧ℎ 𝑧 	 is	close	to	1	on	𝐾,	 then	 it	also	 is	close	on	𝐷!
!
= 𝑧 < !

!
	by	the	maximum	

modulus	theorem.	But	this	is	not	true,	since	𝑘 0 = 0.	
(b) Let	 Ω = 𝐷∗ = 𝐷 ∖ 0 .	 Then	 both	 𝑓	 and	 𝑔	 are	 in	 𝒪 Ω ,	 so	 there	 are	 no	 problems	 with	

approximation.	

The	problem	 in	 (a)	 is	 that	Ω ∖ 𝐾	has	a	component,	𝐷!
!
,	which	 is	 relatively	compact	 in	Ω.	 In	 (b),	 the	

corresponding	component	is	𝐷!
!
∖ 0 ,	which	is	not	relatively	compact	since	it	goes	all	the	way	up	to	

0 ∈ 𝜕Ω.	

Exercise	
Let	Ω ⊂ 𝐂	be	open,	let	𝐾 ⊂ Ω	be	compact,	and	let	𝑈	be	a	bounded	connected	component	of	Ω ∖ 𝐾.	
Then	the	following	are	equivalent:	

(1) ∃𝛿 > 0	such	that	 𝑧 − 𝑤 ≥ 𝛿	for	all	𝑧 ∈ 𝑈,	𝑤 ∉ Ω	
(2) 𝑈 ⊂⊂ Ω	
(3) 𝜕𝑈 ⊂ 𝐾	
(4) 𝑈	is	also	a	connected	component	of	𝐂 ∖ 𝐾	

If	we	negate	this,	the	following	are	equivalent:	

(1) For	all	𝛿 > 0	there	exist	𝑧 ∈ 𝑈	and	𝑤 ∉ Ω	such	that	 𝑧 − 𝑤 < 𝛿	
(2) 𝑈	is	not	relatively	compact	in	Ω	
(3) 𝜕𝑈 ∩ 𝐂 ∖ 𝐾 ≠ ∅	
(4) The	 connected	 component	 𝑈!	 of	 𝐂 ∖ 𝐾	 containing	 𝑈	 is	 not	 contained	 in	 Ω,	 i.e.,	 𝑈! ∩

𝐂 ∖ Ω ≠ ∅	

	

Theorem	(Runge)	
Let	Ω ⊂ 𝐂	be	open	and	𝐾 ⊂ Ω	compact.	The	following	are	equivalent:	

(1) 𝒪 Ω ! 	is	dense	in	𝒪 𝐾 .	
(2) No	connected	component	of	Ω ∖ 𝐾	is	relatively	compact	in	Ω.	
(3) ∀𝑎 ∈ 𝐂 ∖ 𝐾	there	is	𝑓 ∈ 𝒪 Ω 	such	that	 𝑓 𝑎 > 𝑓 !.	

Proof	
(1) ⇒ (2)	If	𝑈	is	a	connected	component	of	Ω ∖ 𝐾	which	is	relatively	compact	in	Ω,	then	𝜕𝑈 ⊂ 𝐾,	

because	otherwise	we	could	attach	a	disc	to	𝑧 ∈ 𝜕𝑈 ∖ 𝐾	to	obtain	a	bigger	connected	set.	If	
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𝑧! ∈ 𝑈	 and	𝑓 𝑧 = !
!!!!

∈ 𝒪 𝐾 ,	 then	𝑓	 cannot	be	approximated	by	𝑓! ∈ 𝒪 Ω ,	 because	 if	
!

!!!!
− 𝑓! → 0	on	𝐾,	 then	𝑔! = 1 − 𝑧 − 𝑧! 𝑓! → 0	on	𝐾,	but	𝑔! 𝑧! = 1.	This	violates	the	

maximum	modulus	theorem,	since	𝜕𝑈 ⊂ 𝐾.	
(2) ⇒ (1)	We	must	 prove	 that	 every	 𝑓 ∈ 𝒪 𝐾 	 can	 be	 approximated	 uniformly	 on	𝐾	 by	 𝑓! ∈

𝒪 Ω .	Pick	𝑓 ∈ 𝒪 𝑊 	for	some	open	neighborhood	𝑊	of	𝐾.	
Step	1.	Approximation	of	𝑓	by	rational	functions	with	poles	outside	𝐾.	
Pick	𝛼 ∈ 𝐶!! 𝑊 	such	that	𝛼 = 1	 in	a	neighborhood	𝑊!	of	𝐾.	For	𝑧 ∈ 𝐾	we	have	by	Cachy-
Stokes	formula		

𝑓 𝑧 =
1
𝜋

𝑓 𝜁
𝜕𝛼
𝜕𝜁

1
𝑧 − 𝜁

d𝜁d𝜂
𝐂

=
1
𝜋

𝑓 𝜁
𝜕𝛼
𝜕𝜁

1
𝑧 − 𝜁

d𝜉d𝜂
!!!"## !∖!!

	

If	 we	 subdivide	 𝐂	 by	 small	 squares	 and	 form	 the	 corresponding	 Riemann	 sums	 for	 the	
integral,	

1
𝜋

𝑓 𝑧!
𝜕𝛼
𝜕𝜁

𝑧!
1

𝑧 − 𝑧!!

	

Then	these	Riemann	sums	will	approximate	the	integrals,	uniformly	on	𝐾,	since	the	integrand	
is	 compactly	 supported,	 hence	 uniformly	 continuous	 in	 𝐂.	 The	 𝑧!’s	 will	 be	 close	 to	 𝐿 =
supp 𝛼 ∖𝑊!,	 hence	 in	Ω ∖ 𝐾.	 It	 follows	 that	𝑓	 can	 be	 approximated	on	𝐾	 by	 a	 finite	 sum	

𝑐!
!

!!!!! 	with	𝑧! ∈ Ω ∖ 𝐾.	

Step	2.	We	now	look	at	terms	of	the	form	 !
!!!

	with	𝑎 ∈ Ω ∖ 𝐾.	We	shall	approximate	these	by	

functions	which	are	holomorphic	in	Ω	by	“pushing	the	poles	out	of	Ω”.	
Examples	

	
Therefore,	let	𝑎 ∈ Ω ∖ 𝐾	and	let	𝑈	be	the	connected	component	of	𝐂 ∖ 𝐾	containing	𝑎.	Let	

𝑈! = 𝑤 ∈ 𝑈 ;
1

𝑧 − 𝑎
 can be approximated on 𝐾 by polynomials in

1
𝑧 − 𝑤

	

We	will	 show	that	𝑈! = 𝑈.	We	will	do	 this	by	 showing	 that	𝑈!	 is	both	open	and	closed	 in	
𝐂 ∖ 𝐾.	

	

	

	

Ω	

Ω 
𝑎 

	
𝑤 

𝑎 

𝐾 𝐾 

𝐷(𝑤, 𝑟) 

!
!!!

	is	holomorphic	outside	𝐷(𝑤, 𝑟)	
and	is	given	there	by	a	power	series	in	
!

!!!
.	

The	pole	𝑎	can	be	gradually	
pushed	out	of	Ω.	
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𝑈!	 is	 open:	 Suppose	 𝑤 ∈ 𝑈!	 and	 𝐷 𝑤, 𝑟 ∩ 𝐾 = ∅.	 If	 𝑃! 	 is	 a	 polynomial	 in	 !
!!!

	 which	

approximates	𝑓	on	𝐾	and	𝑤! ∈ 𝐷 𝑤, !
!
,	then	𝑃!

!
!!!

	is	holomorphic	outside	𝐷 𝑤!, !
!
	and	

can	therefore	be	developed	in	a	power	series	in	 !
!!!!	there.	A	finite	sum	of	this	power	series	

will	approximate	𝑃! 	on	the	compact	𝐾 ⊂ 𝐂 ∖ 𝐷 𝑤!, !
!
.	

𝑈!	is	closed	in	𝐂 ∖ 𝐾:	Assume	𝑤! ∈ 𝑈!	and	𝑤! → 𝑤 ∈ 𝐂 ∖ 𝐾.	Then	there	is	a	disc	𝐷 𝑤, 𝑟 ⊂
𝐂 ∖ 𝐾	and	a	𝑤! ∈ 𝐷 𝑤, 𝑟 .	 !

!!!
	can	be	approximated	on	𝐾	by	polynomials	in	 !

!!!!
.	These	are	

holomorphic	outside	𝐷 𝑤, 𝑟 	and	the	same	argument	as	above	gives	that	𝑤 ∈ 𝑈!.	
This	proves	the	claim.	

We	now	prove	that	 !
!!!

	can	be	approximated	on	𝐾	by	a	function	which	is	holomorphic	in	Ω.	
If	 𝑈!	 is	 bounded,	 then	 we	 claim	 that	 𝑈! ∩ 𝐂 ∖ Ω ≠ ∅.	 Otherwise,	 𝑈! ⊂ Ω	 and	 𝑈!is	 a	
connected	component	of	Ω ∖ 𝐾.	But	𝜕𝑈! ⊂ 𝐾,	hence	𝑈!	would	be	relatively	compact	 in	Ω,	
which	 is	 impossible.	 Hence	 there	 is	 some	 𝑤 ∈ 𝑈! ∖ Ω	 and	 by	 definition	

!
!!!

	 can	 be	

approximated	by	a	polynomial	in	 !
!!!

,	which	is	holomorphic	in	Ω.	

If	𝑈!	 is	 unbounded,	 then	 there	 is	𝑤 ∈ 𝑈!	 with	 𝑤 > sup 𝑧 , 𝑧 ∈ 𝐾 .	 Let	 𝑟 = 𝑤 .	 In	 this	

case	a	polynomial	in	 !
!!!

	is	holomorphic	in	the	disc	𝐷 0,𝑅 ,	hence	is	given	by	a	power	series	

there,	and	can	be	approximated	by	a	polynomial	on	𝐾.	
(3) ⇒ (2)	 is	 analogous	 with	 (1) ⇒ (2):	 If	 𝑈 ⊂⊂ Ω	 is	 a	 connected	 component	 of	 Ω ∖ 𝐾,	 then	

𝜕𝑈 ⊂ 𝐾	 and	 for	 all	 𝑎 ∈ 𝑈	 we	 have	 by	 the	 maximum	modulus	 principle	 𝑓 𝑎 ≤ 𝑓 !" ≤
𝑓 ! 	which	contradicts	(3).	

(2) ⇒ (3)	If	𝑎 ∈ Ω ∖ 𝐾,	then	𝐿 = 𝐾 ∪ 𝑎 	has	the	same	property	and	by	the	implication	(2) ⇒ (1),	
𝒪 Ω !	 is	dense	 in	𝒪 𝐿 .	 If	𝑈	 and	𝑉	 are	disjoint	open	 sets,	𝐾 ⊂ 𝑈,	𝑎 ∈ 𝑉	 and	𝜙	 is	defined	by	
𝜙 = 0	in	𝑈,	𝜙 = 1	in	𝑉,	then	𝜙 ∈ 𝒪 𝐿 ,	hence	there	exists	𝑓 ∈ 𝒪 Ω 	such	that	 𝑓 − 𝜙 ! <

!
!
.	But	

then	 𝑓 ! <
!
!
< 𝑓 𝑎 .	

This	completes	the	proof	of	the	theorem.	

Remark	
From	the	implication	(2) ⇒ (1)	we	get	that	if	

• No	connected	component	of	Ω ∖ 𝐾	is	relatively	compact	in	Ω	
• 𝐴 ⊂ 𝐂	is	a	set	which	contains	at	least	one	point	in	every	bounded	component	of	𝐂 ∖ Ω	
• 𝑓 ∈ 𝒪 𝐾 	

then	𝑓	can	be	approximated	uniformly	on	𝐾	by	rational	functions	with	poles	in	𝐴.	

The	polynomials	are	dense	in	𝒪 𝐂 .	Hence	if	we	let	Ω = 𝐂	in	Runge’s	theorem,	we	get:	

Corollary	
For	a	compact	set	𝐾 ⊂ 𝐂	the	following	are	equivalent:	

(1) Every	𝑓 ∈ 𝒪 𝐾 	can	be	approximated	by	polynomials.	
(2) 𝐂 ∖ 𝐾	is	connected	(i.e.,	𝐾	has	no	holes).	
(3) For	any	𝑧 ∉ 𝐾	there	is	a	polynomial	𝑃	such	that	 𝑃 𝑧 > 𝑃 !.	
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Such	𝐾	are	called	polynomially	convex.	

Definition	
Let	𝐾 ⊂ Ω	be	compact.	The	holomorphically	convex	hull	of	𝐾	in	Ω	is	defined	by	

𝐾! = 𝑧 ∈ Ω ∶ 𝑓 𝑧 ≤ 𝑓 !  for all 𝑓 ∈ 𝒪 Ω 	

Condition	 (3)	 in	 Runge’s	 theorem	 states	 that	 𝐾! = 𝐾,	 in	 which	 case	 we	 call	 𝐾	 holomorphically	

convex	 in	Ω.	We	have	𝐾! = 𝐾!.	We	 shall	 see	 that	𝐾!	 fills	 in	 the	holes	 in	𝐾	which	do	not	 contain	
holes	in	Ω.	

Example	

	

𝐾!	fills	in	the	hole	to	the	right,	not	the	left.	(Ω	does	not	contain	the	dashed	little	hole.)	

Exercise	
𝐾!	does	not	get	closer	to	𝜕Ω,	i.e.,	d 𝐾!, 𝜕Ω = d 𝐾, 𝜕Ω .	

𝐾!	is	compact.	

Theorem	
𝐾!	is	the	union	of	𝐾	and	all	relatively	compact	components	of	Ω ∖ 𝐾.	

Proof	
	If	𝑈	is	such	a	component,	then	𝜕𝑈 ⊂ 𝐾	and	therefore	𝑈 ⊂ 𝐾!	by	the	maximum	modulus	theorem.	
This	shows	that	

𝐾! ≔ 𝐾 ∪ ∪!!⊂⊂! 𝑈! ⊂ 𝐾!	

Also,	 Ω ∖ 𝐾! =∪!!⊂⊂! 𝑈! 	 is	 open,	 hence	 𝐾!	 is	 closed	 in	 Ω	 and	 therefore	 compact.	 Also,	 no	
components	 of	 Ω ∖ 𝐾!	 are	 relatively	 compact.	 Runge’s	 theorem	 gives	 that	 any	 𝑧 ∉ 𝐾!	 can	 be	
separated	 from	𝐾!	 (and	 hence	𝐾)	 by	 a	 holomorphic	 function	 in	Ω.	 This	 proves	 that	 𝑧 ∉ 𝐾!,	 i.e.,	
𝐾! ⊂ 𝐾!.	

Lemma	
If	Ω ⊂ 𝐂	is	open,	then	

𝐾! = 𝑧 ∈ Ω ; d 𝑧,𝐂 ∖ Ω ≥
1
𝑛
, 𝑧 ≤ 𝑛 	

		𝐾	

Ω 
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is	a	holomorphically	convex	exhaustion	of	Ω.	

Theorem	(Classical	Runge	theorem)	
If	Ω ⊂ 𝐂	 is	open,	𝐴 ⊂ 𝐂	 is	a	set	which	contains	one	point	from	each	bounded	component	of	𝑪 ∖ 𝛺,	
then	every	𝑓 ∈ 𝒪 Ω 	can	be	approximated	uniformly	on	compacts	by	rational	functions	with	poles	in	
𝐴.	

Proof	
Pick	 𝑓 ∈ 𝒪 Ω 	 and	 a	 compact	 set	 𝐾 ⊂ Ω.	 Replacing	 𝐾	 by	 𝐾!,	 we	 may	 assume	 that	 𝐾	 is	
holomorphically	convex	in	Ω.	The	result	follows	from	the	remark	to	Runge’s	theorem.	

Mittag-Leffler’s	theorem	

Definition	
Let	𝐂!∗ = 𝐂 ∖ 𝑎 .	The	set	𝐂!∗ 	is	denoted	by	𝐂∗.	

If	𝑓	is	holomorphic	in	a	punctured	disc	around	𝑎,	we	have	

𝑓 𝑧 = 𝑐! 𝑧 − 𝑎 !
!

!!!!

	

The	 negative	 powers	𝑝! = 𝑐! 𝑧 − 𝑎 !!!
!!!! 	 is	 called	 the	 principal	 part	 of	𝑓	 at	𝑎.	We	have	𝑝! ∈

𝒪 𝐂!∗ .	

Theorem	1	(Mittag-Leffler)	Prescribing	principal	parts	
If	𝐸 ⊂ Ω	 is	 discrete	 and	 for	 every	𝑎 ∈ 𝐸	 there	 is	 given	 a	 principal	 part	𝑝! ∈ 𝒪 𝐂!∗ ,	 then	 there	 is	
𝑓 ∈ 𝒪 Ω ∖ 𝐸 	such	that	𝑓 − 𝑝!	is	holomorphic	in	a	neighborhood	of	𝑎	for	all	𝑎 ∈ 𝐸.	

Proof	
Let	 𝐾! 	be	a	holomorphically	 convex	exhaustion	of	Ω	 and	put	𝐾! = ∅.	 Let	𝐸! = 𝐸 ∩ 𝐾! ∖ 𝐾!!! .	
Each	𝐸!	is	finite.	Put	

𝑔! = 𝑝!
!∈!!

∈ 𝒪 𝐂 ∖ 𝐸! ⊃ 𝒪 𝐾!!! 	

Let	𝑓! = 𝑔!.	Then	𝑓! − 𝑝!	is	holomorphic	in	𝑎	for	all	𝑎 ∈ 𝐸!	and	is	holomorphic	outside	𝐾!.	We	would	
like	 to	 add	 𝑔!,	 but	 the	 problem	 is	 convergence.	 However,	 since	 𝑔! ∈ 𝒪 𝐾! 	 and	 𝐾!	 is	
holomorphically	 convex,	 we	 can	 find	ℎ! ∈ 𝒪 Ω 	 such	 that	 𝑔! − ℎ! !! < 2!!.	 If	 we	 let	𝑓! = 𝑔! +
𝑔! − ℎ! ,	then	𝑓! − 𝑝!	is	holomorphic	at	all	𝑎 ∈ 𝐸! ∪ 𝐸!.	We	proceed	inductively	to	find	ℎ! ∈ 𝒪 Ω 	
such	that	 𝑔! − ℎ! !!!! < 2!!.	It	follows	that	

𝑓 = lim 𝑓! = 𝑔! + 𝑔! − ℎ!

!

!!!

	

solves	the	problem.	

If	every	𝑝! ∈ℳ 𝐂 ,	i.e.,	only	has	a	pole	at	𝑎,	then	𝑓 ∈ℳ Ω .	

It	is	enough	to	assume	that	𝑝! ∈ 𝒪 𝐷∗ 𝑎, 𝑟 	for	some	𝑟 > 0.	
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Equivalent	formulation:	

Theorem	1’	
If	𝐸 ⊂ Ω	is	discrete,	Ω =∪!∈! 𝑈! 	and	𝑔! ∈ 𝒪 𝑈! ∖ 𝐸 	are	such	that	𝑔! − 𝑔! ∈ 𝒪 𝑈! ∩ 𝑈! 	for	all	𝑗, 𝑘,	
then	there	is	𝑔 ∈ 𝒪 Ω ∖ 𝐸 	such	that	𝑔 − 𝑔! ∈ 𝒪 𝑈! 	for	all	𝑗.	

(1’)	⇒	(1):	Put	𝐸 = 𝑧! ,	𝑈! = Ω ∖ 𝐸 ∪ 𝑧! 	and	𝑔! = 𝑝!!.	

(1)	⇒	(1’):	For	𝑎 ∈ 𝐸,	pick	𝑗 𝑎 	such	that	𝑎 ∈ 𝑈! ! 	and	let	𝑝!	be	the	principal	part	of	𝑔! ! 	at	𝑎.	This	
is	 independent	of	 the	 choice	of	 𝑗 𝑎 .	 If	𝑔 ∈ 𝒪 Ω ∖ 𝐸 	 such	 that	𝑔 − 𝑝!	 is	 holomorphic	 at	𝑎	 for	 all	
𝑎 ∈ 𝐸,	then	𝑔 − 𝑔! ∈ 𝒪 𝑈! .	

In	 theorem	 1’,	 suppose	 we	 can	 find	 the	 “holomorphic	 correction	 terms”,	 𝑓! = 𝑔 − 𝑔! ∈ 𝒪 𝑈! 	
directly.	How	can	we	be	sure	that	they	patch	together	to	a	global	𝑔?	We	must	have	

𝑓! + 𝑔! = 𝑓! + 𝑔!  in 𝑈! ∩ 𝑈! ∖ 𝐸	

𝑓! − 𝑓! = 𝑔! − 𝑔!  in 𝑈! ∩ 𝑈! 	

Let	𝑓!" = 𝑔! − 𝑔! ∈ 𝒪 𝑈! ∩ 𝑈! .	The	existence	of	𝑓! 	follows	from:	

Theorem	2	
If	 𝑈! !!!

!
	is	an	open	covering	of	Ω	and	𝑓!" ∈ 𝒪 𝑈! ∩ 𝑈! 	satisfy	the	cocycle	condition	

𝑓!" + 𝑓!" + 𝑓!" = 0 in 𝑈! ∩ 𝑈! ∩ 𝑈! 	

for	all	indices	𝑖, 𝑗, 𝑘.	Then	there	exist	𝑓! ∈ 𝒪 𝑈! 	such	that	𝑓!" = 𝑓! − 𝑓! 	in	𝑈! ∩ 𝑈! 	for	all	𝑖, 𝑗.	

Notice	that	the	cocycle	condition	implies	that	𝑓!! = 0	and	𝑓!" = −𝑓!" 	for	all	𝑖, 𝑗.	

The	argument	above	shows	that	Theorem	2	⇒	Theorem	1’.	

We	shall	now	prove	Theorem	2.	

Step	1	
We	first	prove	that	there	are	smooth	solutions	to	the	problem,	i.e.,	there	are	𝜙! ∈ 𝐶! 𝑈! 	such	that	
𝑓!" = 𝜙! − 𝜙! 	in	𝑈! ∩ 𝑈!.	For	this,	it	is	sufficient	that	𝑓!" ∈ 𝐶! 𝑈! ∩ 𝑈! .	

Proof		
Let	𝛼! 	be	a	partition	of	unity	relative	to	𝒰 = 𝑈! 	and	define	in	𝑈! 	

𝜙! = 𝛼!𝑓!"
!

	

This	is	in	𝐶! 𝑈! ,	since	supp 𝛼! ⊂ 𝑈! 	and	the	sum	is	locally	finite.	In	𝑈! ∩ 𝑈! 	we	have	

𝜙! − 𝜙! = 𝛼! 𝑓!" − 𝑓!"
!

= 𝛼!𝑓!"
!

= 𝑓!" 	
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Step	2	
We	 now	 correct	 the	 𝜙! 	 to	 make	 a	 holomorphic	 solution.	 Notice	 that	 since	 𝜙! − 𝜙! 	 differ	 by	 a	
holomorphic	function	on	𝑈! ∩ 𝑈!,	the	function	

𝜓 𝑧 =
𝜕𝜙!
𝜕𝑧

 for 𝑧 ∈ 𝑈! 	

is	globally	defined	in	Ω.	If	we	can	find	𝑢 ∈ 𝐶! Ω 	such	that	

𝜕𝑢
𝜕𝑧

= 𝜓	

then	 𝑓! = 𝜙! − 𝑢 ∈ 𝒪 𝑈! 	 and	 solves	 the	 problem.	 Hence	 Theorem	 2	 follows	 from	 the	 following	
result:	

Theorem	(Solution	of	𝝏-equation)	

If	𝜓 ∈ 𝐶! Ω 	then	there	exist	𝑢 ∈ 𝐶! Ω 	such	that	!"
!!
= 𝜓.	

Proof	
Notice	that	we	can	solve	the	equation	in	a	neighborhood	of	any	compact	set	𝐾 ⊂ Ω.	Just	chop	off	𝜓	
with	a	smooth	function.	The	solution	is	in	𝐶! 𝐂 .		

We	 shall	 now	 build	 the	 solution	 inductively	 as	 in	 Mittag-Leffler’s	 theorem.	 Let	 𝐾! !!!
! 	 be	 a	

holomorphically	convex	exhaustion	of	Ω.	First,	solve	!!!
!!

= 𝜓	in	an	open	neighborhood	𝑉!	of	𝐾!,	and	

get	𝑢! ∈ 𝐶! 𝐂 .	We	now	want	to	correct	𝑢!	so	the	equation	is	satisfied	in	an	open	neighborhood	𝑉!	

of	𝐾!.	Let	𝜙 = 𝜓 − !!!
!!

.	Then	𝜙 ∈ 𝐶! Ω 	and	𝜙 = 0	 in	𝑉!.	Now	solve	
!!!
!!

= 𝜙	 in	𝑉!,	𝑣! ∈ 𝐶! 𝐂 ∩
𝒪 𝑉! .	 Then	𝑢! + 𝑣!	 solves	 the	 problem	 in	𝑉!,	 but	we	want	 the	 process	 to	 converge,	 so	we	 pick	
𝑓! ∈ 𝒪 Ω 	such	that	 𝑣! − 𝑓! !! < 2!!	and	let	𝑢! = 𝑣! − 𝑓!.	

Now,	proceed	to	find	𝑢!,… , 𝑢! ∈ 𝐶! 𝐂 	and	open	neighborhoods	𝑉! 	of	𝐾!,	𝑗 = 3,… , 𝑛,	such	that	

𝑢! ∈ 𝒪 𝑉!!! , 𝑢! !!!!
< 2!! 	

𝜕𝑢!
𝜕𝑧

+⋯+
𝜕𝑢!
𝜕𝑧

= 𝜓 in 𝑉!	

Then	𝑢 = 𝑢!!
!!! 	is	the	required	solution.	
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The	winding	number	
Let	𝛾	be	a	closed	piecewise	𝐶!	curve	in	𝐂.	Then	for	𝑧 ∈ 𝐂 ∖ 𝛾,	

Ind 𝛾, 𝑧 =
1
2𝜋i

d𝜁
𝜁 − 𝑧!

	

is	called	the	winding	number	of	𝛾	around	𝑧.	Clearly,	Ind 𝛾, 𝑧 ∈ 𝒪 𝐂 ∖ 𝛾 .	

Lemma	
Ind 𝛾, 𝑧 ∈ 𝐙		

Proof	
Assume	𝛾	is	parametrized	over	[0,1],	so	𝛾 0 = 𝛾 1 .	Then	

d
d𝑡

exp 𝜁! 𝑢
𝜁 𝑢 − 𝑧 d𝑢

!
!

𝜁 𝑡 − 𝑧
=
exp ⋅ 𝜁! 𝑡

𝜁 𝑡 − 𝑧 ⋅ 𝜁 𝑡 − 𝑧 − exp ⋅ 𝜁! 𝑡

𝜁 𝑡 − 𝑧 ! = 0	

Hence	it	is	constant,	which	must	be	 !
! ! !!

.	Then	

exp
𝜁! 𝑠

𝜁 𝑠 − 𝑧
d𝑠

!

!
=
𝜁 1 − 𝑧
𝜁 0 − 𝑧

= 1	

And	hence	 !! !
! ! !!

d𝑠!
! = 2𝜋i ⋅ 𝑛	for	some	𝑛 ∈ 𝐙.		

Ind 𝛾, 𝑧 	is	constant	in	each	connected	component	of	𝐂 ∖ 𝛾	and	it	is	0	in	the	unbounded	component.	

Definition	
Ω	is	simply	connected	if	any	closed	curve	is	homotopic	to	a	constant	curve.	

Exercise	
The	following	are	equivalent:	

(1) Ω	is	simply	connected	
(2) Any	two	curves	between	two	points	𝑎	and	𝑏	are	homotopic.	
(3) For	any	closed	curve	𝛾 ⊂ Ω	and	𝑧 ∉ Ω,	Ind 𝛾, 𝑧 = 0.	
(4) 𝐂 ∖ Ω	has	no	compact	components	
(5) 𝐏! ∖ Ω	is	connected	

Lemma	
Suppose	𝑔 ∈ 𝒪∗ Ω .	Then	the	following	are	equivalent:	

(1) 𝑔	has	a	holomorphic	logarithm	in	Ω	(e! = 𝑔)	

(2) !
!

!
	has	a	holomorphic	primitive	in	Ω	

(3) !!

!
d𝑧! = 0	for	all	closed	curves	in	Ω	

Proof	

(1)	⇒	(2)	If	e! = 𝑔	then	!
!

!
= 𝑓!	
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(2)	⇒	(1)	If	!
!

!
= 𝑓!,	let	ℎ = e!!𝑔.	Then	ℎ! = e!! 𝑔! − 𝑓!𝑔 = 0,	hence	ℎ ≡ 𝑐,	so	𝑔 = 𝑐e! = e!!! 	

The	equivalence	of	(2)	and	(3)	is	well	known	from	calculus.	

If	Ω	is	simply	connected	then	𝑔	has	a	holomorphic	logarithm	because	(3)	holds.	

Lemma	
If	𝑧!	and	𝑧!	are	in	the	same	component	of	𝐂 ∖ 𝐾,	then	𝑔 𝑧 = !!!!

!!!!
	has	a	holomorphic	logarithm	in	a	

neighborhood	 of	 𝐾.	 If	 𝑧!	 is	 in	 the	 unbounded	 component	 of	 𝐂 ∖ 𝐾	 then	 𝑔 𝑧 = 𝑧 − 𝑧!	 has	 a	
holomorphic	logarithm.	

Proof	
Pick	a	neighborhood	Ω	of	𝐾	such	that	𝑧!, 𝑧!	are	in	the	same	component	of	𝐂 ∖ Ω.	Then	

𝑔! 𝑧
𝑔 𝑧

=
1

𝑧 − 𝑧!
−

1
𝑧 − 𝑧!

	

Hence	if	𝛾 ⊂ Ω	is	a	closed	curve,	then	

𝑔! 𝑧
𝑔 𝑧

d𝑧
!

=
d𝑧

𝑧 − 𝑧!!
−

d𝑧
𝑧 − 𝑧!

= Ind 𝛾, 𝑧! − Ind 𝛾, 𝑧! = 0	

For	𝑧!	in	the	unbounded	component,	!
! !
! !

= !
!!!!

,	so	

𝑔! 𝑧
𝑔 𝑧

d𝑧
!

=
d𝑧

𝑧 − 𝑧!!
= Ind 𝛾, 𝑧! = 0	

Pushing	zeroes	

	

Let	 𝑓 𝑧 = log !!!!
!!!!

∈ 𝒪 𝐾 .	 Then	 𝑧 − 𝑧! = e! ! 𝑧 − 𝑧! .	 Now,	 approximate	 𝑓	 on	 𝐾	 by	 𝑓 𝑧 ∈

𝒪 𝐂 ∖ 𝑧! ,	so	𝑧 − 𝑧! ∼ e! ! 𝑧 − 𝑧! 	on	𝐾.	

	
𝑧!	

𝑧! 
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Let	𝑓 𝑧 = log 𝑧 − 𝑧! ∈ 𝒪 𝐾 .	Then	𝑧 − 𝑧! = e! ! .	Approximate	𝑓	on	𝐾	by	𝑓 ∈ 𝒪 𝐂 ,	so	𝑧 − 𝑧! ∼
e! ! 	on	𝐾.	Thus	we	have	approximated	𝑧 − 𝑧!	on	𝐾	by	a	zero	free	entire	function.	

Theorem	
If	𝐾 ⊂ Ω	is	holomorphically	convex,	i.e.,	𝐾𝒪 ! = 𝐾,	then	𝒪∗ Ω ∣! 	is	dense	in	𝒪∗ 𝐾 .	

Proof	
Let	𝑓 ∈ 𝒪∗ 𝐾 	 and	 let	𝜖 > 0,	𝜖 < min 𝑓 𝑧 ; 𝑧 ∈ 𝐾 .	Then	 there	exists	a	 rational	 function	𝑅 𝑧 =
! !
! !

∈ 𝒪 Ω 	such	that	 𝑓 − 𝑅 ! <
!
!
𝜖.	𝑃	has	no	zeroes	on	𝐾.	Let	𝑎!,… , 𝑎! 	be	the	zeroes	of	𝑃	in	the	

bounded	component	of	𝐂 ∖ 𝐾,	and	let	𝑎!!!,… , 𝑎!	be	the	zeroes	of	𝑃	in	the	unbounded	component	
of	𝐂 ∖ 𝐾,	and	pick	𝑏!,	𝑗 = 1,… , 𝑘,	𝑏! ∉ Ω,	in	the	same	component	as	𝑎!.	We	may	assume	that	

𝑃 𝑧 = 𝑧 − 𝑎!
!!

!

!!!

	

Then		

𝑔 𝑧 = 𝑚! log
𝑧 − 𝑎!
𝑧 − 𝑏!

!

!!!

+ 𝑚! log 𝑧 − 𝑎!

!

!!!!!

∈ 𝒪 𝐾 	

and	

e! ! =
𝑃 𝑧

𝑧 − 𝑏!
!!!

!!!
=
𝑃 𝑧
𝑃! 𝑧

	

We	have	min 𝑄 𝑧 = 𝛿 > 0.	Let	𝑀 = max!∈! 𝑃! 𝑧 ,	𝑁 = max!∈! e! ! ,	and	let	𝜇 > 0	be	given.	
If	ℎ ∈ 𝒪 Ω ,	 ℎ − 𝑔 ! < log 1 + 𝜇 ,	then	 e!!! − 1 ! < 𝜇.	Hence	for	𝑧 ∈ 𝐾,	

𝑅 𝑧 −
𝑃! 𝑧 e! !

𝑄 𝑧
=

𝑃! 𝑧 e! !

𝑄 𝑧
−
𝑃! 𝑧 e! !

𝑄 𝑧
≤
𝑀
𝛿
e! ! − e! ! ≤

𝑀
𝛿
e! ! 1 − e! ! !! !

≤
𝑀𝑁
𝛿

⋅ 𝜇 <
1
2
𝜖	

when	𝜇	is	sufficiently	small.	Therefore	𝑅! 𝑧 = !! !
! !

e! ! ∈ 𝒪∗ Ω 	is	the	required	approximation.	 	

	
𝑧!	
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Weierstrass’	theorem	
We	 shall	 prove	 a	 result	 on	 prescription	 of	 zeroes	 and	 poles.	 For	 this	 we	 need	 to	 study	 infinite	
products.	

Let	 𝑎! ⊂ 𝐂.	We	say	that	 𝑎!!
!!! 	is	convergent	if	𝑝! = 𝑎!!

!!! 	is	a	convergent	sequence,	and	we	
set	

𝑎!

!

!!!

= lim
!→!

𝑝!	

If	this	limit	is	nonzero,	it	is	clearly	necessary	that	lim!→! 𝑎! = 1.	We	shall	consider	products	

1 + 𝑢!

!

!!!

 with 𝑢! → 0	

Sloppy	calculation:	

log 1 + 𝑢!

!

= log 1 + 𝑢!

!

≈ 𝑢!

!

	

Hence	it	follows	that	the	convergence	of	∏ 1 + 𝑢! 	is	related	to	the	convergence	of	the	series	∑𝑢!.		

Correct	calculation:	Use	the	inequality	log 1 + 𝑥 ≤ 𝑥	to	obtain	

𝑝! ≤ 1 + 𝑢!

!

	

log |𝑝!| ≤ log 1 + 𝑢!

!

≤ 𝑢!

!

	

𝑝! ≤ e !! 	

Hence	 𝑝! 	is	bounded	if	 |𝑢!|! < ∞.	

𝑝! − 1	is	a	polynomial	in	𝑢!,… , 𝑢!,	without	constant	term.	This	gives	

𝑝! − 1 ≤ 1 + 𝑢!

!

− 1 ≤ e∑ !! − 1	

Lemma	1	
If	 𝑢! 𝑧 	are	bounded	functions	on	a	set	𝐸	such	that	∑ 𝑢! 𝑧 	converges	uniformly	on	𝐸,	then	

𝑓 𝑧 = 1 + 𝑢! 𝑧
!

	

converges	uniformly	on	𝐸,	and	𝑓 𝑧! = 0	iff	𝑢! 𝑧! = −1	for	some	𝑛.	

Proof	
It	follows	from	 𝑝! 𝑧 ≤ e∑ !! ! 	that	 𝑝! 𝑧 	 is	uniformly	bounded	on	𝐸,	 i.e.,	 𝑝! 𝑧 ≤ 𝐶	for	all	
𝑧 ∈ 𝐸.	For	𝑀 > 𝑁	we	have		
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𝑝! 𝑧 − 𝑝! 𝑧 = 𝑝! 𝑧 1 + 𝑢! 𝑧 − 1
!

!!!

≤ 𝐶 e !! !!
!!! − 1 → 0	

as	𝑁,𝑀 → ∞,	which	proves	that	 𝑝! 𝑧 	converges	uniformly	on	𝐸.	The	inequality	also	shows	that	

𝑝! 𝑧 ≥ 𝑝! 𝑧 1 − 𝜖 	

for	𝑁	 sufficiently	 large	and	𝑀 > 𝑁.	Hence,	 the	 infinite	product	has	 a	 zero	at	𝑧!	 iff	 some	 finite	𝑝!	
does.	

Theorem	
If	Ω	is	connected,	𝑓! ∈ 𝒪 Ω ,	no	𝑓!	is	identically	equal	to	zero	and	∑ 1 − 𝑓! 𝑧 	converges	uniformly	
on	 compacts	 in	 Ω,	 then	 𝑓 𝑧 = 𝑓! 𝑧! 	 converges	 uniformly	 on	 compacts	 and	 ord! 𝑓 =

ord! 𝑓!!
!!! .	

Theorem	Weierstrass	
If	𝐸 ⊂ Ω	is	discrete	and	for	every	𝑎 ∈ 𝐸	there	is	given	an	integer	𝑘! ∈ 𝐙,	then	there	is	a	holomorphic	
function	𝑓 ∈ 𝒪∗ Ω ∖ 𝐸 	such	that	 𝑧 − 𝑎 !!!𝑓 𝑧 	is	holomorphic	and	nonzero	in	a	neighborhood	of	
𝑎	for	all	𝑎 ∈ 𝐸.		

Proof	
Let	 𝐾! 	 be	 a	 holomorphically	 convex	 exhaustion	of	Ω	 and	 let	𝐸! = 𝐸 ∩ 𝐾! ∖ 𝐾!!! ,	𝐾! = ∅.	 Let	
𝑔! = 𝑧 − 𝑎 !!!∈!! .	Then	𝑔!	has	the	required	property	 for	𝑎 ∈ 𝐸!.	We	would	 like	to	multiply	by	
𝑔!,	but	 the	problem	 is	 convergence.	Notice	however	 that	𝑔! ∈ 𝒪∗ 𝐾! ,	hence	 there	 is	ℎ! ∈ 𝒪∗ Ω 	
such	that	 𝑔!ℎ! − 1 !! < 2!!	and	𝑔! ⋅ 𝑔!ℎ! 	has	the	required	property	for	𝑎 ∈ 𝐸! ∪ 𝐸!.	

Inductively,	we	can	find	ℎ! ∈ 𝒪∗ Ω 	such	that	 𝑔!ℎ! − 1 !!!! < 2!!.	This	implies	that	

𝑓 = 𝑔! ⋅ 𝑔!ℎ!

!

!!!

	

has	the	required	properties.	

Exercise	
The	analogous	version	of	Theorem	2	for	Weierstrass’	theorem	is	the	following:	

If	 𝑈! !!!
!

	 is	an	open	covering	of	Ω	and	𝑓!" ∈ 𝒪∗ 𝑈! ∩ 𝑈! 	satisfy	the	cocycle	condition	𝑓!"𝑓!"𝑓!" = 1	

in	𝑈! ∩ 𝑈! ∩ 𝑈! 	then	there	exist	𝑓! ∈ 𝒪∗ 𝑈! 	such	that	𝑓!" =
!!
!!
	in	𝑈! ∩ 𝑈! 	for	all	𝑖, 𝑗.	

Show	that	this	implies	Weierstrass’	theorem.	

Theorem	(Interpolation	in	a	discrete	set)	
If	 𝐸 ⊂ Ω	 is	 discrete	 and	 for	 every	 𝑎 ∈ 𝐸	 is	 given	 𝜙! ∈ 𝒪 𝐷∗ 𝑎, 𝑟! 	 and	 𝑘! ≥ 0.	 Then	 there	 is	
𝑓 ∈ 𝒪 Ω ∖ 𝐸 	such	that	𝑓 − 𝜙!	is	holomorphic	at	𝑎	and	ord! 𝑓 − 𝜙! > 𝑘!	for	all	𝑎 ∈ 𝐸.	
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Proof	
By	Weierstrass’	 theorem	there	 is	𝑔 ∈ 𝒪 Ω 	 such	 that	Z 𝑔 = 𝐸	 and	ord!𝑔 = 𝑘! + 1	 for	all	𝑎 ∈ 𝐸.	

Then	!!
!
∈ 𝒪 𝐷∗ 𝑎, 𝑟! 	for	all	𝑎 ∈ 𝐸	and	my	Mittag-Leffler	there	is	ℎ ∈ 𝒪 𝐷 ∖ 𝐸 	such	that	

ℎ −
𝜙!
𝑔
= O 1  as 𝑧 → 𝑎 for all 𝑎 ∈ 𝐸	

Then	ℎ = !!
!
+ O 1 	and	𝑓 = ℎ𝑔 = 𝜙! + O 𝑧 − 𝑎 !!! 	as	𝑧 → 𝑎.		

Notice	that	ℎ	can	have	zeroes	outside	𝐸.	

If	each	𝜙!	is	meromorphic	then	we	can	find	such	𝑓	without	other	zeroes:	

Theorem	
If	𝐸 ⊂ Ω	 is	discrete	and	for	every	𝑎 ∈ 𝐸	 there	 is	given	𝜙! ∈ 𝒪 𝐷∗ 𝑎, 𝑟! 	such	that	ord!𝜙! > −∞.	
Then	there	is	𝑓 ∈ℳ Ω ∩ 𝒪∗ Ω ∖ 𝐸 	such	that	ord! 𝑓 − 𝜙! > 𝑘!	for	all	𝑎 ∈ 𝐸.	

Proof	
𝐸! = 𝑎 ∶ 𝜙! ≢ 0 	

𝑚! = ord!𝜙! for 𝑎 ∈ 𝐸!	

By	Weierstrass	we	can	find	𝑔 ∈ℳ Ω 	such	that	

ord!𝑔 = 𝑚! for 𝑎 ∈ 𝐸!	

ord!𝑔 > 𝑘!  for 𝑏 ∈ 𝐸 ∖ 𝐸!	

𝑔 ∈ 𝒪∗ Ω ∖ 𝐸 	

If	 ℎ ∈ 𝒪 Ω 	 and	 𝑓 = 𝑔e! ! 	 then	 everything	 hold	 except	 possibly	 ord! 𝑓 − 𝜙! > 𝑘!	 for	 𝑎 ∈ 𝐸!.	

How	 can	 we	 achieve	 this?	 Notice	 that	 !!
!
	 is	 holomorphic	 and	 nonzero	 near	 𝑎,	 so	 there	 is	 ℎ! ∈

𝒪 𝐷∗ 𝑎, 𝑟! 	such	that	e!! = !!
!
.	Then	

ord! 𝑔e! − 𝜙! = ord!𝑔 e! −
𝜙!
𝑔

= ord!𝑔 e! − e!! = ord!𝑔e!! e!!!! − 1

= 𝑚! + ord! ℎ − ℎ! 	

By	the	preceding	theorem,	there	 is	ℎ ∈ 𝒪 Ω 	such	that	ord! ℎ − ℎ! > 𝑚! + 𝑘!.	This	completes	
the	proof.	
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Automorphisms	of	the	disc	

Definition	
An	automorphism	of	an	open	set	Ω ⊂ 𝐂	is	a	biholomorphic	map	of	Ω	onto	itself,	i.e.,	a	holomorphic	
map	𝑓 ∶ Ω → Ω	which	has	a	holomorphic	inverse.	The	set	of	automorphisms	on	Ω	is	denoted	by	
Aut Ω .	This	is	a	group.	

𝐷 = 𝐷 0,1 = 𝑧 < 1 	is	the	unit	disc,	and	𝑇 = 𝜆 ∶ 𝜆 = 1 .	

Theorem	(Schwarz	lemma)	
If	𝑓 ∈ 𝒪 𝐷 ,	 𝑓 𝑧 ≤ 1	for	all	𝑧 ∈ 𝐷,	and	𝑓 0 = 0,	then	 𝑓! 0 ≤ 1	and	 𝑓 𝑧 ≤ 𝑧 .	

Equality	holds	for	some	𝑧 ∈ 𝐷	iff	𝑓 𝑧 = 𝜆𝑧	for	some	 𝜆 = 1.	

Proof	

Let	 𝑔 𝑧 = ! !
!
,	 𝑔 0 = 𝑓! 0 .	 Then	 𝑔 ∈ 𝒪 𝐷 	 and	 limsup!→!∈! 𝑔 𝑧 ≤ 1,	 hence	 the	 maximum	

modulus	 theorem	 implies	 that	 either	 𝑔 𝑧 < 1	 for	 all	 𝑧 ∈ 𝐷	 or	 𝑔 𝑧 ≡ 𝜆 ∈ 𝑇.	 In	 the	 first	 case	
𝑓 𝑧 < 𝑧 	and	 𝑓! 0 < 1,	in	the	second	case	𝑓 𝑧 = 𝜆𝑧.	

For	𝑎 ∈ 𝐷,	let	𝜙! 𝑧 = !!!
!!!!

.	Then	𝜙! 𝑎 = 0	and	𝜙! 0 = −𝑎.		

	

If	 𝑧 = 1	then	

𝜙! 𝑧 =
𝑧 − 𝑎
1 − 𝑎𝑧 𝑧

=
𝑧 − 𝑎
𝑧 − 𝑎

= 1	

Hence	𝜙! ∶ 𝐷 → 𝐷.	It	is	easy	to	see	that	𝜙!!! = 𝜙!!,	and	that	𝜙!	is	an	automorphism.	

Theorem	
Every	automorphism	of	𝐷	is	of	the	form	𝜓 𝑧 = 𝜆𝜙! 𝑧 	for	some	𝜆 ∈ 𝑇.		

Proof	
If	 𝜓 0 = 0	 then	 𝜓!! ! 0 ⋅ 𝜓! 0 = 1.	 Since	 𝜓,𝜓!! ∈ Aut(𝐷)	 and	 both	 are	 0	 at	 0,	 their	
derivatives	at	zero	must	be	≤ 1	in	absolute	value.	Strict	inequality	is	impossible,	so	 𝜓! 0 = 1	and	
𝜓 = 𝜆𝑧	by	the	Schwarz	lemma.	

In	 general,	 if	𝜓 𝑎 = 0,	 consider	𝜙 = 𝜓 ∘ 𝜙!!.	 Then	𝜙 ∈ Aut 𝐷 ,	𝜙 0 = 0,	 so	𝜙 𝑧 = 𝜆𝑧,	 hence	
𝜓 𝑧 = 𝜆𝜙! 𝑧 .	

	

	

𝜙!	𝑎 

−𝑎 
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Riemann	mapping	theorem	

Theorem	
If	Ω ≠ 𝐂	is	simply	connected	(and	connected),	then	Ω	is	biholomorphic	to	𝐷.	

We	shall	see	that	this	follows	from	the	fact	that	every	𝑓 ∈ 𝒪 Ω ,	𝑓	without	zeros,	has	a	holomorphic	
square	 root.	 This	 is	 true	 in	 a	 simply	 connected	 domain	 since	 𝑓	 has	 a	 holomorphic	 logarithm.	 If	

𝑔 = e
!
! !"#!,	then	𝑔! = 𝑓.	

𝑓 ∶ Ω → 𝐂	is	biholomorphic	onto	its	image	iff	𝑓	is	injective.	

The	square	root	property	is	invariant	under	biholomorphism.	

If	𝑓 ∶ Ω → Ω′	 is	biholomorphic	and	has	a	holomorphic	 square	 root,	 then	 𝑓	 is	 also	biholomorphic.	

Also,	if	𝑤 ∈ Im 𝑓 ,	then	−𝑤 ∉ Im 𝑓 .	

Proposition	(Koebe)	
If	0 ∈ Ω ⊂ 𝐷,	Ω ≠ 𝐷	is	connected	and	has	the	square	root	property,	then	there	is	a	𝐻 ∈ 𝒪 Ω 	such	
that	

(i) 𝐻 0 = 0,	𝐻 Ω ⊂ 𝐷,	
(ii) 𝐻	is	injective,	
(iii) 𝐻 𝑧 > 𝑧 	for	all	𝑧 ∈ 𝐷,	𝑧 ≠ 0.	

Proof	
Pick	𝑎 ∈ 𝐷 ∖ Ω.	

	

Let	𝐻 = 𝜙! ∘ 𝑧 ∘ 𝜙!.	 Then	 (i)	 and	 (ii)	 holds.	𝐻!!	 is	 defined	 in	 all	 of	𝐷	 and	 is	 2-1	 (except	 at	−𝑏),	
therefore	 𝐻!! 𝑤 < |𝑤|	for	all	𝑤 ≠ 0,	so	 𝐻 𝑧 > 𝑧 	for	all	𝑧 ≠ 0.	

Proof	of	Theorem	
We	know	that	Ω	has	the	square	root	property.	

Step	1.	To	map	Ω	biholomorphically	onto	a	bounded	domain.	

Pick	 𝑎 ∈ 𝐂 ∖ Ω	 and	 𝑔 ∈ 𝒪 Ω 	 such	 that	 𝑔! 𝑧 = 𝑧 − 𝑎.	 If	 𝐷 𝑤, 𝑟 ⊂ 𝑔 Ω 	 (which	 is	 open),	 then	
𝐷 −𝑤, 𝑟 ∩ 𝑔 Ω = ∅	and	

	 	 	

𝜙! 	

𝜙!! 

𝜙! 

𝜙!! 𝑧! 

√𝑧 

	 	

	
	

	

𝑎 

𝑏 
−𝑏 
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𝜓 𝑧 =
1

𝑔 𝑧 + 𝑤
	

is	biholomorphic	in	Ω	and	 𝜓 𝑟 < !
!
.	

For	 small	𝜖,	ℎ 𝑧 = 𝜖 𝜓 𝑧 − 𝜓 𝑧! 	 is	 biholomorphic	onto	0 ∈ Ω! ⊂ 𝐷.	Observe	 that	Ω!	 has	 the	
square	root	property.	

Step	2.	We	shall	produce	a	biholomorphic	map	Ω! → 𝐷	which	is	“maximal”.	Let	

ℱ = 𝑓 ∶ Ω! → 𝐷 ; 𝑓 is holomorphic, injective, and 𝑓 0 = 0 	

Let	𝑧! ∈ Ω!,	𝑧! ≠ 0	and	put	

𝛼 = sup
!∈ℱ

𝑓 𝑧! ∈ 0,1 	

and	 pick	 𝑓! ∈ ℱ	 such	 that	 lim!→! 𝑓! 𝑧! = 𝛼.	 By	 Montel’s	 theorem	 there	 is	 a	 convergent	
subsequence,	 i.e.,	 we	 may	 assume	 𝑓! → 𝑓	 u.o.c.	 Since	 𝑓 0 = 0	 and	 𝑓 𝑧! = 𝛼 > 0,	 𝑓	 is	 not	
constant.	By	 corollary	of	Hurwitz	 theorem,	𝑓	 is	 injective,	 so	𝑓	 is	 a	biholomorphism	𝑓 ∶ Ω! → Ω! =
𝑓 Ω! ⊂ 𝐷.	We	cannot	have	Ω! ≠ 𝐷,	because	by	Koebe’s	 theorem	there	 is	a	𝐻 ∶ Ω! → 𝐷	 injective	
such	that	 𝐻 𝑓 𝑧! > 𝑓 𝑧! = 𝛼,	contradicting	the	definition	of	𝛼.	

It	is	instructive	to	read	Theorem	1	of	section	7.3	in	Narasimhan.	
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Schwarz-Pick	and	Ahlfors	lemma	
𝜙! 𝑧 =

𝑧 − 𝑎
1 − 𝑎𝑧

	

𝜙!! 𝑧 =
1 − 𝑎 !

1 − 𝑎𝑧 !	

𝜙!! 0 = 1 − 𝑎 !	

𝜙!! 𝑎 =
1

1 − 𝑎 !	

If	𝑓 ∶ 𝐷 → 𝐷	is	holomorphic	and	𝑧 ∈ 𝐷,	let		

𝑔 = 𝜙! ! ∘ 𝑓 ∘ 𝜙!!	

Then	𝑔 0 = 0	and		

𝑔! 0 = 𝜙! !
! 𝑓 𝑧 ⋅ 𝑓! 𝑧 ⋅ 𝜙!!! 0 =

1
1 − 𝑓 𝑧 ! ⋅ 𝑓

! 𝑧 ⋅ 1 − 𝑧 ! 	

We	get	

Theorem	
If	𝑓 ∶ 𝐷 → 𝐷	is	holomorphic,	then	

𝑓! 𝑧
1 − 𝑓 𝑧 ! ≤

1
1 − 𝑧 !	

Equality	at	one	point	implies	that	𝑓	is	an	automorphism.	

Proof	
The	last	statement	follows	from	𝑔 𝑤 = 𝜆𝑤,	so	

𝑓 𝑤 = 𝜙!! ! 𝜆𝜙! 𝑤  ⇒ 𝑓 = 𝜙!! ! ∘ 𝜆𝜙! 	

This	formulation	is	equivalent	to	the	Schwarz	lemma.	Pick	gave	an	invariant	definition	of	this:	

Consider	the	(Kähler)	metric	

d𝑠!! =
d𝑧d𝑧

1 − 𝑧 ! !	

on	𝐷,	i.e.,	for	a	tangent	vector	𝑋 ∈ T!𝐷,	𝑝 ∈ 𝐷,	

d𝑠!! 𝑋 =
𝑋 !

1 − 𝑧 ! !	

Then	

𝑓∗ d𝑠!! =
𝑓! 𝑧 !

1 − 𝑓 𝑧 ! ! d𝑧d𝑧 ≤
d𝑧d𝑧

1 − 𝑧 ! ! = d𝑠!!	
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i.e.	𝑓∗ d𝑠!! ≤ d𝑠!!	

with	equality	at	one	point	iff	𝑓	is	an	automorphism.	

We	can	define	length	of	curves	𝛾: 𝑎, 𝑏 → 𝐷	using	the	metric	d𝑠!:	

L 𝛾 = d𝑠! 𝛾 𝑡 , 𝛾! 𝑡 d𝑡
!

!
	

It	follows	that	holomorphic	functions	decrease	the	length	of	curves,	

L 𝑓 ∘ 𝛾 ≤ L 𝛾 	

and	automorphisms	preserve	length.		

This	defines	a	distance	on	𝐷	by	

𝜌! 𝑧!, 𝑧! = inf L 𝛾 , 𝛾 curve from 𝑧! to 𝑧!	

Holomorphic	 functions	 are	 distance	 decreasing,	 and	 automorphisms	 preserve	 distances.	 It	 follows	
that	

𝜌! 𝑧!, 𝑧! = 𝜌! 0, 𝜙!! 𝑧! 	

𝜌 0, 𝑎 =
d𝑡

1 − 𝑡!
!

!
=
1
2
log

1 + 𝑎
1 − 𝑎

	

so		

𝜌! 𝑧!, 𝑧! =
1
2
log

1 + 𝜙!! 𝑧!
1 − 𝜙!! 𝑧!

	

Theorem	
If	𝑓 ∶ 𝐷 → 𝐷	is	holomorphic,	then	

(1) 𝑓∗ d𝑠! ≤ d𝑠!	
(2) 𝜌! 𝑓 𝑧 , 𝑓 𝑤 ≤ 𝜌! 𝑧,𝑤 	

Equality	in	one	point	in	(1)	or	on	one	pair	𝑧 ≠ 𝑤	in	(2)	implies	that	𝑓	is	an	automorphism.	We	call	d𝑠!	
the	Poincaré	metric	and	𝜌!	the	Poincaré	distance.	

The	curvature	of	a	metric	ℎd𝑧d𝑧	is	defined	by	

𝐾! = −
2
ℎ
𝜕!

𝜕𝑧𝜕𝑧
log ℎ = −

1
2ℎ
Δ log ℎ 	

For	ℎ = !
!! ! ! !	we	get	
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𝐾! = −2 1 − 𝑧 ! ! 𝜕!

𝜕𝑧𝜕𝑧
log 1 − 𝑧 ! !! = 4 1 − 𝑧 ! ! 𝜕!

𝜕𝑧𝜕𝑧
log 1 − 𝑧𝑧

= 4 1 − 𝑧 ! ! 𝜕
𝜕𝑧

−𝑧
1 − 𝑧𝑧

= 4 1 − 𝑧 ! ! ⋅
−1 1 − 𝑧𝑧 − −𝑧 ⋅ −𝑧

1 − 𝑧𝑧 !

= 4 1 − 𝑧 ! ! ⋅  −
1

1 − 𝑧𝑧 ! = −4	

If	d𝑠! = ℎd𝑧d𝑧	is	metric	on	Ω	and	𝑓 ∶ 𝑈 → Ω	satisfies	𝑓! 𝑧 ≠ 0	everywhere,	then	

𝑓∗ d𝑠!! = 𝑓! 𝑧 !ℎ 𝑓 𝑧 d𝑧d𝑧	

and	

𝐾!∗ !!! 𝑧 = 𝐾!!! 𝑓 𝑧 	

Thus	curvature	is	a	conformal	invariant.	

The	metric	

d𝑠!! =
4𝑎!

𝐴
d𝑧d𝑧

𝑎! − 𝑧 ! !  on 𝐷! = 𝑧 < 𝑎 	

has	curvature	−𝐴.	The	previous	theorem	generalizes	to	

Theorem	(Ahlfors	lemma)	
If	𝑀	 is	a	Riemann	surface	with	metric	d𝑠!! 	with	curvature	≤ −𝐵,	where	𝐵 > 0,	and	𝑓 ∶ 𝐷! → 𝑀	 is	
holomorphic,	then	

𝑓∗ d𝑠!! ≤
𝐴
𝐵
d𝑠!!	

Proof	

Define	𝑢 ≥ 0	 on	𝐷!	 by	𝑓∗ d𝑠!! = 𝑢d𝑠!! = 𝑢 𝑧 !!!!!!!
! !!! ! ! !.	 For	𝑟 ≤ 𝑎,	𝑢! 	 is	defined	by	𝑓∗ d𝑠!! =

𝑢!d𝑠!!	on	𝐷!.	So	𝑢 = 𝑢!	and	

𝑢! 𝑧 = 𝑢 𝑧
𝑎! 𝑟! − 𝑧 !

𝑟! 𝑎! − 𝑧 ! 	

So	𝑢! → 𝑢	when	𝑟 → 𝑎.	It	is	therefore	sufficient	to	prove	that	𝑢! 𝑧 ≤ !
!
	for	𝑧 ∈ 𝐷!.	

By	 the	 formula	 above,	 𝑢! 𝑧 = 0	 when	 𝑧 = 𝑟.	 If	 𝑢! 𝑧 ≡ 0	 we	 are	 done.	 Otherwise,	 𝑢! 	 has	 a	
maximum	at	some	𝑧! ∈ 𝐷!.	Then	𝑓	defines	local	coordinates	around	𝑧!,	i.e.,	there	is	a	neighborhood	
𝑈	of	𝑧!	with	𝑓! 𝑧 ≠ 0	for	𝑧 ∈ 𝑈	and	we	can	compute	the	curvature	of	d𝑠!! 	by	computing	it	in	𝑈.	

We	have	

𝑓∗ d𝑠!! = 𝑢!d𝑠!! = 𝑢! 𝑧
4𝑟!d𝑧d𝑧

𝐴 𝑟! − 𝑧 ! ! =: ℎ 𝑧 d𝑧d𝑧	

so	
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𝐾! = −
2
ℎ
𝜕!

𝜕𝑧𝜕𝑧
log ℎ = −

2
ℎ
𝜕!

𝜕𝑧𝜕𝑧
log 𝑢! + log

4𝑟!

𝐴 𝑟! − 𝑧 ! ! = −
2
ℎ

𝜕!

𝜕𝑧𝜕𝑧
log 𝑢! +

2𝑟!

𝑟! − 𝑧 ! !

= −
2
ℎ
𝜕!

𝜕𝑧𝜕𝑧
log 𝑢! −

𝐴
𝑢!

≤ −𝐵	

Hence	 !
!

!!

!"!!
log 𝑢! ≥ 𝐵 − !

!!
,	 but	 !!

!"!!
log 𝑢! 𝑧! = !

!
Δ log 𝑢! 𝑧! ≤ 0	 since	𝑧!	 is	 a	maximum.	 This	

gives	𝑢! 𝑧! ≤ !
!
.	

Which	𝑀	can	have	a	metric	with	negative	curvature?	

1. 𝐂	does	not	have	such	at	metric.	

Proof	

If	d𝑠𝐂!	is	such	a	metric,	let	𝑓 ∶ 𝐷 → 𝐂	be	defined	by	𝑓 𝑧 = 𝑎𝑧.	Then	

𝑓∗d𝑠𝐂! 0 = 𝑎 !d𝑠𝐂! 0 	

Hence	 no	 such	 inequality	 can	 hold.	 The	metric	 1 + 𝑧 ! d𝑧d𝑧	 has	 curvature	𝐻 = − !
!! ! !	

and	is	complete.	

2. 𝐂∗ = 𝐂 ∖ 0 	does	not	have	such	a	metric,	since	𝑓 𝑧 = e!	is	a	covering	𝐂 → 𝐂∗,	hence	if	𝐂∗	

had	 a	 metric	 with	 negative	 curvature,	 so	 would	 𝐂.	 The	 metric	 !!!!
!"# !! ! ! 	 has	 curvature	

𝐾 = − !
!! ! ! !

! !

!"# !! ! ! − 1 < 0	and	is	complete.	

3. The	upper	half	plane	𝐂!	has	such	a	metric	since	 it	 is	biholomorphic	 to	𝐷.	A	biholomorphic	

map	is	𝑓 𝑧 = !!!
!!!

	with	𝑓! 𝑧 = !!
!!! !

	and	

𝑓∗
d𝑧d𝑧

1 − 𝑧 ! ! =
𝑓! 𝑧 !

1 − 𝑓 𝑧 ! ! d𝑧d𝑧 =
4

𝑧 + i ! 1 − 𝑧 − i
𝑧 + i

! ! d𝑧d𝑧

=
4

𝑧 + i ! − 𝑧 − i ! ! d𝑧d𝑧 =
4d𝑧d𝑧

𝑥! + 𝑦 + 1 ! − 𝑥! + 𝑦 − 1 ! !

=
4d𝑧d𝑧
4𝑦 ! =

1
4𝑦!

d𝑧d𝑧	

4. The	 punctured	 disc	𝐷∗	 has	 such	 a	 metric.	 We	 have	 a	 covering	 map	 𝑝:𝐂! → 𝐷∗	 given	 by	
𝑝 𝑧 = e!!.	This	has	local	inverses	𝑝!! 𝑤 = !

!
log𝑤	and	

𝑝!! ∗ d𝑧d𝑧
4𝑦!

=
𝑝!! ! 𝑤 !d𝑤d𝑤

4 Im 𝑝!! 𝑤
! =

d𝑤d𝑤
4 𝑤 ! log 𝑤 ! =

d𝑤d𝑤
𝑤 ! log 𝑤 ! ! =: d𝑠!∗

! 	

This	metric	is	also	complete.	If	0 < 𝑟 < 𝑅 < 1,	then	

𝜌!∗ 𝑟,𝑅 =
d𝑡

𝑡 − log 𝑡!
!

!
= −

1
2

d𝑡
𝑡 log 𝑡

!

!
= −

1
2
log − log 𝑡 ∣!!

=
1
2
log log

1
𝑟
− log log

1
𝑅

→ ∞	

when	𝑟 → 0	or	𝑅 → 1.	The	circle	𝛾 𝑡 = 𝑟e!!	has	length	
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ℓ 𝛾 =
𝑟d𝑡

𝑟 − log 𝑟!
!!

!
=

𝜋
2

log 1
𝑟!

→ 0	

when	𝑟 → 0. 	
5. The	 doubly	 punctured	 plane	 𝐂 ∖ 𝑧!, 𝑧! 	 has	 a	 metric	 ℎ 𝑧 d𝑧d𝑧	 with	 curvature	 bounded	

above	by	a	negative	constant.	

Proof	

We	may	assume	𝑧! = 0,	𝑧! = 1.	We	shall	prove	that	

ℎ 𝑧 =
1 + 𝑧 !

𝑧 ! ⋅
1 + 𝑧 − 1 !

𝑧 − 1 ! 	

has	the	required	property	for	suitable	𝛼	and	𝛾.	

The	expression	for	the	Laplacian	of	a	radial	function	𝑓 𝑟 	is	

Δ𝑓 𝑟 =
𝜕!𝑓
𝜕𝑟!

+
1
𝑟
𝜕𝑓
𝜕𝑟

 	

(check	this!).	This	gives	

Δ log
1 + 𝑟!

𝑟!
= Δ log 1 + 𝑟! − 𝛾 log 𝑟 = Δ log 1 + 𝑟 	

𝜕
𝜕𝑟
log 1 + 𝑟! =

𝛼𝑟!!!

1 + 𝑟!
	

𝜕!

𝜕𝑟!
log 1 + 𝑟! = 𝛼

𝛼 − 1 𝑟!!! 1 + 𝑟! − 𝑟!!! ⋅ 𝛼𝑟!!!

1 + 𝑟! ! =
𝛼𝑟!!!

1 + 𝑟! ! 𝛼 − 1 − 𝑟! 	

Hence	

Δ log 1 + 𝑟! =
𝛼𝑟!!!

1 + 𝑟! ! 𝛼 − 1 − 𝑟! +
1
𝑟
⋅
𝛼𝑟!!!

1 + 𝑟!
=

𝛼𝑟!!!

1 + 𝑟! ! 𝛼 − 1 − 𝑟! + 1 + 𝑟!

=
𝛼!𝑟!!!

1 + 𝑟! !	

This	gives	

𝐾! = −
1
2ℎ
Δ log ℎ = −

𝛼!

2
𝑧 ! 𝑧 − 1 !

1 + 𝑧 ! 1 + 𝑧 − 1 !
𝑧 !!!

1 + 𝑧 ! ! +
𝑧 − 1 !!!

1 + 𝑧 − 1 ! ! 	

	 Hence	𝐾! 𝑧 < 0	for	all	𝑧 ≠ 0, 1.	

	 Assuming	𝛾 > 0	and	0 < 𝛼 < 2,	we	have	for	𝑧 → 0:	

                                     𝐾! 𝑧 ∼ −
𝛼!

2
𝑧 !!!!!

2
→ −∞          if 𝛾 + 𝛼 − 2 < 0                  (1)	

	 This	also	gives	𝐾! 𝑧 → −∞	when	𝑧 → 1.	If	|𝑧| → ∞,	we	have	
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𝐾! 𝑧 ∼ −
𝛼!

2
𝑧 !!!!!!

𝑧 !! = −
𝛼!

2
𝑧 !!!!!!! → −∞        if 2𝛾 − 3𝛼 − 2 > 0              (2)	

We	see	that	𝛾 = 1.6	and	𝛼 = 0.2	will	satisfy	both	these	 inequalities.	This	 implies	that	𝐾!	 is	
bounded	above	by	a	negative	constant,		

𝐾! 𝑧 ≤ −𝑘	

	 for	all	𝑧 ≠ 0, 1.	

This	metric	is	actually	sufficient	to	prove	Picard’s	big	theorem	to	follow.	The	metric	is	not	complete,	
however.	The	points	0,	1,	∞	are	all	at	finite	distance	and	this	cannot	be	fixed	by	using	different	𝛼	and	
𝛾.	We	shall	add	a	function	𝑓	to	ℎ	to	make	it	complete.	This	requires	a	result	on	the	curvature	𝐾!!!.	
The	following	lemma	is	used	to	do	this:	

Lemma	
Let	𝜙	and	𝜓	be	two	strictly	positive	𝐶!	functions	in	some	open	set	in	𝐂.	Then	

𝜙Δ log𝜙 + 𝜓Δ log𝜓 ≤ 𝜙 + 𝜓 Δ log𝜙 + 𝜓 	

Proof	
A	small	computation	gives	

𝜙Δ log𝜙 = Δ𝜙 −
4
𝜙
𝜕𝜙
𝜕𝑧

!

	

Another	computation	then	gives	

𝜙 + 𝜓 Δ log𝜙 + 𝜓 − 𝜙Δ log𝜙 − 𝜓Δ log𝜓 =
4

𝜙𝜓 𝜙 + 𝜓
𝜙
𝜕𝜓
𝜕𝑧

− 𝜓
𝜕𝜙
𝜕𝑧

!

≥ 0	

which	proves	the	inequality.	

In	terms	of	curvatures,	the	inequality	is	given	by	

𝜙 + 𝜓 !𝐾!!! ≤ 𝜙!𝐾! + 𝜓!𝐾!	

Hence,	if	we	know	that	𝐾! ≤ −𝑘!	and	𝐾! ≤ −𝑘!,	we	get	

𝐾!!! ≤ −
𝜙!

𝜙 + 𝜓 ! 𝑘! +
𝜓!

𝜙 + 𝜓 ! 𝑘! = −
𝑘!𝑘!
𝑘! + 𝑘!

+
𝜙𝑘! − 𝜓𝑘! !

𝜙 + 𝜓 ! 𝑘! + 𝑘!
≤ −

𝑘!𝑘!
𝑘! + 𝑘!

	

We	shall	now	construct	𝑓.	The	metric	will	be	given	by	ℎ + 𝑐𝑓	for	some	small	constant	𝑐.	Near	0,	1,	
and	∞,	 𝑓	 will	 be	 the	 function	 of	 example	 4.	 This	 means	 that	 𝐾! = −4	 near	 these	 points,	 and	
completeness	of	 ℎ + 𝑐𝑓 d𝑧d𝑧	 follows	 immediately.	To	construct	𝑓,	pick	 first	a	𝐶!	 cutoff	 function	

𝜇(𝑧)	such	that	𝜇 ≡ 1	in	 𝑧 ≤ !
!
	and	𝜇 ≡ 0	in	 𝑧 ≥ !

!
.	Then	let	

𝑠 𝑧 =
𝜇 𝑧

𝑧 ! log 𝑧 ! !	

𝑓	is	then	given	by	



40	
	

𝑓 𝑧 = 𝑠 𝑧 + 𝑠 𝑧 − 1 + 1/ 𝑧 !𝑠
1
𝑧
,
1
𝑧

	

Notice	that	the	metric	 !
! ! 𝑠

!
!
, !
!
d𝑧d𝑧	in	 𝑧 > 4 	is	the	pullback	of	𝑠 𝑧 d𝑧d𝑧	under	the	map	!

!
.	

In	Ω = 𝑧 < !
!

 or 𝑧 − 1 < !
!

 or 𝑧 > 4 	 we	 have	𝐾! = −4	 and	𝐾!" = − !
!
.	 The	 inequality	 above	

then	gives	

𝐾!!!" ≤ −
4
𝑐 ⋅ 𝑘
4
𝑐 + 𝑘

= −
4𝑘

4 + 𝑐𝑘
< −

4𝑘
4 + 𝑘

< 0	

In	the	compact	set	𝐂 ∖ Ω	we	apply	the	first	inequality	with	𝜙 = 1 − 𝑐 ℎ	and	𝜓 = 𝑐 ℎ + 𝑓 	to	get	

𝐾!!!" ≤
1

ℎ + 𝑐𝑓 ! 1 − 𝑐 !ℎ!𝐾 !!! ! + 𝑐! ℎ + 𝑓 𝐾! !!!

=
1

ℎ + 𝑐𝑓 ! 1 − 𝑐 ℎ!𝐾! + 𝑐 ℎ + 𝑓 𝐾!!!

≤
1

ℎ + 𝑐𝑓 ! − 1 − 𝑐 ℎ!𝑘 + 𝑐 ℎ + 𝑓 𝐾!!! → −𝑘	

uniformly	 as	𝑐 → 0	 by	 compactness.	Hence	 for	 small	𝑐,	𝐾!!!"	 is	 bounded	 above	 everywhere	 by	 a	
negative	constant.	This	completes	the	construction.	

Comment	
The	modular	function	𝜆 𝑧 	is	a	covering	map	𝜆 ∶ 𝐂! → 𝐂 ∖ 0, 1 	whose	covering	transformations	all	

preserve	the	metric	 !
!!!

d𝑧d𝑧.	Hence,	as	in	example	4,	we	may	push	this	metric	down	to	𝐂 ∖ 0, 1 	to	

obtain	 a	 complete	 metric	 with	 constant	 negative	 curvature	−4.	 The	 construction	 of	 the	 modular	
function	is	quite	complicated.	

	

We	also	get	Ahlfors	lemma	for	maps	from	𝐷∗.	(We	have	put	𝐴 = 1.)	

Theorem	(Ahlfors	lemma	for	𝑫∗)	
If	𝑀	 is	 a	 Riemann	 surface	with	metric	d𝑠!! 	 with	 curvature	≤ −𝐵,	 with	𝐵 > 0,	 and	𝑓 ∶ 𝐷∗ → 𝑀	 is	
holomorphic,	then	

𝑓∗ d𝑠!! ≤
4
𝐵
d𝑠!∗

! 	

Proof	
We	have	d𝑠!∗

! = 𝑝!! ∗d𝑠!! .	The	map	𝑓 ∘ 𝑝 ∶ 𝐷 → 𝑀	is	holomorphic,	so	by	the	Ahlfors	lemma	for	𝐷	
we	have	

𝑓 ∘ 𝑝 ∗ d𝑠!! = 𝑝∗ 𝑓∗ d𝑠!! ≤
4
𝐵
d𝑠!! 	

which	gives	
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𝑓∗ d𝑠!! = 𝑝!! ∗ 𝑝∗ 𝑓∗ d𝑠!! ≤ 𝑝!! ∗ 4
𝐵
d𝑠!! =

4
𝐵
d𝑠!∗

! 	

Theorem	
Suppose	Ω ⊂ 𝐂	has	a	metric	with	curvature	≤ −𝐵.	Then	

(a) There	is	no	nonconstant	holomorphic	map	𝑓 ∶ 𝐂 → Ω.	
(b) No	holomorphic	function	𝑓 ∶ 𝐷∗ → Ω	can	have	an	essential	singularity	at	0.	

Proof	
(a) Restricting	to	a	disc	of	radius	𝑎	(with	𝐴 = 1),	the	Schwarz	lemma	gives	

𝑓∗ d𝑠!! ≤
1
𝐵
d𝑠!! =

1
𝐵

4𝑎!

𝑎! − 𝑧 ! ! d𝑧d𝑧 → 0	

when	𝑎 → 0.	Since	𝑓∗ d𝑠!! = 𝑓! 𝑧 !ℎ 𝑓 𝑧 d𝑧d𝑧,	this	gives	𝑓! 𝑧 = 0,	so	𝑓	is	constant.	

To	prove	(b),	we	use	the	following		

Lemma	
If	𝑓 ∈ 𝒪 𝐷∗ 	has	an	essential	singularity	at	0,	then	𝑓 𝐷∗ 	is	dense	in	𝐂.	

Proof	
If	 not,	 there	 is	 𝑎 ∈ 𝐂	 and	 𝛿 > 0	 such	 that	 𝑓 𝑧 − 𝑎 ≥ 𝛿	 for	 all	 𝑧 ∈ 𝐷∗.	 But	 then	𝑔 𝑧 = !

! ! !!
	

satisfies	 𝑔 𝑧 ≤ !
!
,	 hence	has	 a	 removable	 singularity	 at	0.	 But	 then	𝑓 𝑧 = !

! !
+ 𝑎	 either	has	 a	

pole	or	a	removable	singularity	at	0.	

To	prove	(b),	notice	that	if	𝑓 𝐷∗ → Ω	has	an	essential	singularity	at	0,	then	𝑓 𝐷!∗ 	is	dense	in	𝐂	for	all	
𝑟 > 0,	hence	there	is	a	sequence	𝑧! → 0	such	that	𝑓 𝑧! → 𝑝 ∈ Ω.	If	𝜌	is	the	metric	defined	by	d𝑠!,	
i.e.,	

𝜌 𝑧,𝑤 = inf d𝑠! 𝛾! 𝑡 d𝑡
!

!
: 𝛾: 0,1 → Ω, 𝛾 0 = 𝑧, 𝛾 1 = 𝑤 	

and	 𝐵 𝑝, 𝑟 ⊂ Ω,	 then	 inf 𝜌 𝑝, 𝑧 : 𝑝 − 𝑧 = 𝑟 = 𝛿 > 0.	 If	 𝜌 𝑝, 𝑓 𝑧! < !
!
𝛿	 and	 𝛾	 is	 a	 curve	 of	

length	≤ !
!
𝛿	starting	at	𝑓(𝑧!),	then	𝛾 ⊂ 𝐵 𝑝, 𝑟 ,	hence	 𝛾 𝑡 ≤ 𝑝 + 𝑟 = 𝐶	for	all	𝑡.	

We	 may	 assume	 that	 𝑟! = 𝑧! 	 decrease	 strictly	 to	 zero.	 Since	 𝑓 𝑧! → 𝑝	 there	 is	 𝑁	 such	 that	
𝜌 𝑝, 𝑓 𝑧! < !

!
𝛿	for	𝑛 ≥ 𝑁.	

Let	𝛾!	be	the	circle	 𝑧 = 𝑟!.	Then	

L 𝑓 ∘ 𝛾! ≤
1
𝐵
L 𝛾! ≤

2𝜋

𝐵 log 1𝑟!!
→ 0	

when	𝑛 → ∞.	Hence	for	large	𝑛,	L 𝑓 ∘ 𝛾! ≤ !
!
𝛿.	This	implies	that	 𝑓 𝑧 ≤ 𝐶	for	all	𝑧	with	 𝑧 = 𝑟!.	

This	 means	 that	 𝑓 𝑧 ≤ 𝐶	 for	 all	 𝑧	 in	 the	 annuli	 𝐴! = 𝑟!!! ≤ 𝑧 ≤ 𝑟! 	 and	 therefore	 in	 a	
punctured	disc	𝐷!.	Hence	𝑓	has	a	removable	singularity	at	0.	
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Theorem	
(a) Picard’s	small	theorem:	A	nonconstant	entire	function	cannot	omit	more	than	one	value.	
(b) Picard’s	big	theorem:	If	a	holomorphic	function	has	an	essential	singularity	at	𝑎,	then	𝑓	takes	

all	complex	values	except	possibly	one	in	any	punctured	disc	around	𝑎.	

Proof	
(a) If	 𝑓	 omits	 two	 values	 𝑧!	 and	 𝑧!	 then	 𝑓 ∶ 𝐂 → Ω = 𝐂 ∖ 𝑧!, 𝑧! .	 Since	Ω	 has	 a	 metric	 with	

curvature	≤ −𝐵,	this	follows	from	1.4	(a).	
(b) Follows	in	the	same	way	from	1.4	(b).	

We	will	now	use	the	complete	metric	on	𝐂 ∖ 𝑧!, 𝑧! 	constructed	in	example	5	above.	

Theorem	(Schottky’s	Theorem)	
Given	𝑅! > 0	and	𝑟 < 1,	 then	there	 is	a	constant	𝑀 = 𝑀 𝑅!, 𝑟 	 such	that	 if	𝑓 ∶ 𝐷 → 𝐂 ∖ 𝑧!, 𝑧! 	 is	
holomorphic	and	 𝑓 0 ≤ 𝑅!,	then	 𝑓 𝑧 ≤ 𝑀	for	all	𝑧	with	 𝑧 ≤ 𝑟.	

Proof	

Let	 𝛾	 be	 the	 curve	 𝛾 𝑡 = 𝑡𝑧.	 By	 Ahlfors	 lemma,	 L 𝑓 ∘ 𝛾 ≤ !
!
L 𝛾 = !

!
log !! !

!! !
≤ !

!
log !!!

!!!
.	 It	

follows	that	𝑓 𝑧 	must	be	bounded	since	d! 𝑓 0 ,𝑤 → ∞	as	 𝑤 → ∞.	

It	follows	that	𝑓 𝑧 	must	also	stay	away	from	𝑧!	and	𝑧!,	i.e.,	 𝑓 𝑧 − 𝑧! ≥ 𝑀!	and	 𝑓 𝑧 − 𝑧! ≥ 𝑀!.	

The	 same	 proof	 can	 be	 used	 to	 prove	 bounds	 on	 maps	 𝑓 ∶ 𝐷∗ → 𝐂 ∖ 𝑧!, 𝑧! 	 on	 either	 annular	
regions	or	circles.	Here	is	the	circle	version:	

Theorem	(Schottky’s	Theorem	in	𝑫∗)	
Given	𝑅! > 0	and	𝑟 < 1,	there	is	a	constant	𝑀	such	that	if	𝐹 ∶ 𝐷∗ → 𝐂 ∖ {𝑧!, 𝑧!}	is	holomorphic	and	
𝑓 𝑧 ≤ 𝑅!	for	some	𝑧	with	 𝑧 ≤ 𝑟,	then	 𝑓 𝜁 ≤ 𝑀	for	all	𝜁	with	 𝜁 = 𝑧 .	

Proof	
We	use	the	curve	𝛾 𝑡 = 𝑧e!!,	0 ≤ 𝑡 ≤ 2𝜋,	whose	length	is	

𝜋

2 log 1
𝑧 !

≤
𝜋

2 log 1
𝑟!

	

and	Ahlfors	lemma	for	𝐷∗.	


