MAT4800 - Complex Analysis

Some real analysis

and O-notation

Suppose f is defined in a neighborhood V of $0 \in \mathbb{R}^n$, $f: V \to \mathbb{R}^m$.

$$
f = o(|x|^k) \text{ iff } \lim_{x \to 0} \frac{|f(x)|}{|x|^k} = 0. \text{ (The case } k = 0 \text{ is called } o(1).)
$$

$$
f = O(|x|^k) \text{ iff } \exists C > 0 \text{ such that } |f(x)| \le C|x|^k \text{ for } x \text{ small.}
$$

Definition

f is *differentiable* at *a* if there is a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$
\lim_{x \to 0} \frac{|f(a+x) - f(a) - L(x)|}{|x|} = 0.
$$

Equivalently, $f(a + x) = f(a) + L(x) + o(|x|)$.

L is called the derivative of f at a, and is denoted by df_a .

If f is differentiable at a , then the partial derivatives $\frac{\partial f_j}{\partial x_i}(a)$ exist and satisfy

$$
df_a(v) = \sum_{j=1}^m \left(\sum_{i=1}^n \frac{\partial f_j}{\partial x_i} (a) v_i \right) e_j
$$

$$
df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}
$$

The last matrix is called the *Jacobian matrix*.

If the partial derivatives $\frac{\partial f_j}{\partial x_i}$ exist in a neighborhood of a and are continuous at a , then f is differentiable at a .

 $C(\Omega) = \{f : \Omega \to \mathbf{C} : f \text{ is continuous}\}\$

$$
C^{1}(\Omega) = \left\{ f : \Omega \to \mathbf{C} \; ; \frac{\partial f}{\partial x_{i}} \in C(\Omega), i = 1, ..., n \right\}
$$

 $C^{k}(\Omega) = \{f : \Omega \to \mathbf{C} \}$ all partial derivatives of order $\leq k$ are continuous}

Order does not matter

 $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ multiindex

 $|\alpha| = \alpha_1 + \cdots + \alpha_n$, order of the multiindex.

$$
D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_n^{\alpha_n}}
$$

$$
C^{\infty}(\Omega) = \cap_k C^k(\Omega)
$$

Complex function of a complex variable, $\Omega \subset \mathbb{C}$.

 $f: \Omega \to \mathbb{C}, z = x + iy, f = u + iv.$

$$
f(z) = f(x, y) = u(x, y) + iv(x, y)
$$

As a real function $f : \Omega \to \mathbf{R}^2$, where $\Omega \subset \mathbf{R}^2$, $f = (u, v)$.

Let $\lambda = \alpha + i\beta \in \mathbb{C} \cong \mathbb{R}^2$. What is $df(\lambda)$?

$$
df(\lambda) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} \alpha + \frac{\partial u}{\partial y} \beta \\ \frac{\partial v}{\partial x} \alpha + \frac{\partial v}{\partial y} \beta \end{pmatrix} = \left(\frac{\partial u}{\partial x} \alpha + \frac{\partial u}{\partial y} \beta \right) + i \left(\frac{\partial v}{\partial x} \alpha + \frac{\partial v}{\partial y} \beta \right) = \alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial y}
$$

We want to express this in terms of λ .

$$
\alpha = \text{Re}(\lambda) = \frac{1}{2}(\lambda + \bar{\lambda}), \beta = \text{Im}(\lambda) = \frac{1}{2i}(\lambda - \bar{\lambda})
$$

$$
\text{d}f(\lambda) = \frac{1}{2}(\lambda + \bar{\lambda})\frac{\partial f}{\partial x} + \frac{1}{2i}(\lambda - \bar{\lambda})\frac{\partial f}{\partial y} = \frac{1}{2}\left(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\right)\lambda + \frac{1}{2}\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right)\bar{\lambda} = \frac{\partial f}{\partial z}\lambda + \frac{\partial f}{\partial \bar{z}}\bar{\lambda}
$$

The first term is complex linear, $L(c\lambda) = cL(\lambda)$, the second term is complex antilinear, $L(c\lambda) =$ $\bar{c}L(\lambda)$.

We have that $\mathrm{d} f$ is C-linear iff $\frac{\partial f}{\partial \bar{z}}=0.$

 $\frac{\partial f}{\partial \bar z}=0$ is called the Cauchy-Riemann equations, i.e., $\frac{\partial f}{\partial x}=-{\rm i}\frac{\partial f}{\partial y}.$ On real form, we get

$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
$$

Exercise

- (a) Show that $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ satisfy Leibniz rule!
- (b) Suppose $L : \mathbb{C}^n \to \mathbb{C}^m$ is R-linear. Show that L is C-linear iff $L(iv) = iL(v)$ for all $v \in \mathbb{C}^n$, and that L is C-antilinear iff $L(iv) = -iL(v)$ for all $v \in \mathbb{C}^n$.
- (c) Show that every **R**-linear $L : \mathbb{C}^n \to \mathbb{C}^m$ splits uniquely in a C-linear and a C-antilinear part

$$
L = L_{\mathbf{C}} + L_{\overline{\mathbf{C}}}
$$

where

$$
L_{\mathbf{C}}(v) = \frac{1}{2} (L(v) - iL(iv)), \qquad L_{\overline{\mathbf{C}}} = \frac{1}{2} (L(v) + iL(iv))
$$

Definition

 $f : \Omega \to \mathbb{C}$ is called C-differentiable at a if

$$
\lim_{\lambda \to 0} \frac{f(a+\lambda) - f(a)}{\lambda}
$$

exists. This is denoted by $f'(a)$.

f is C-differentiable at a iff $f(a + \lambda) = f(a) + f'(a)\lambda + o(|\lambda|)$ iff f is differentiable at a and df_a is C-linear.

Definition

Let Ω be an open subset of C. We say that a complex function $f(z)$ defined in Ω is holomorphic if $f \in C^1(\Omega)$ and f is complex differentiable at all points in Ω , i.e., f satisfies the Cauchy-Riemann equations.

The set of holomorphic functions is denoted by $\mathcal{O}(\Omega)$.

It is not necessary to assume $f \in C^1(\Omega)$ (this follows automatically when f is C-differentiable), but it makes things easier, because we can use Green's theorem in the plane.

Green's theorem in the plane

If $\Omega \subset \subset \mathbb{R}^2$ is an open set with piecewise smooth boundary $\partial \Omega$ and M, N are two C^1 functions in $\overline{\Omega} = \Omega \cup \partial \Omega$, then

$$
\int_{\partial \Omega} M \mathrm{d}x + N \mathrm{d}y = \iint_{\Omega} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathrm{d}x \mathrm{d}y
$$

Remarks

1. $\partial\Omega$ is oriented such that Ω lies to the left of $\partial\Omega$.

- 2. It does not matter if M and N are real or complex valued.
- 3. $\int_{\partial\Omega} M dx + N dy$ is computed by parametrizing $\partial\Omega$ by $(x(t), y(t))$, $a \le t \le b$. Then

$$
\int_{\partial\Omega} M\mathrm{d}x + N\mathrm{d}y = \int_a^b M\big(x(t), y(t)\big)x'(t) + N\big(x(t), y(t)\big)y'(t)\mathrm{d}t
$$

i.e. $dx = x'(t)dt$ and $dy = y'(t)dt$.

If $\gamma \subset \mathbf{C}$ is a curve parametrized by $z(t) = x(t) + iy(t)$, $a \le t \le b$, and f is a complex function on γ , then the complex line integral is defined by

$$
\int_{\gamma} f(z)dz = \int_{a}^{b} f(x(t) + iy(t))z'(t)dt = \int_{a}^{b} f(x(t) + iy(t))(x'(t) + iy'(t))dt = \int_{\gamma} fdx + if dy.
$$

If $\gamma = \partial \Omega$ is as in Green's theorem, we get

$$
\int_{\partial\Omega} f dz = \iint_{\Omega} \left(i \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right) dxdy = 2i \iint_{\Omega} \frac{\partial f}{\partial \bar{z}} dxdy
$$

(Complex form of Green's theorem.)

Remarks

1. If f is holomorphic, we get Cauchy's theorem,

$$
\int_{\partial\Omega} f \mathrm{d} z = 0
$$

2. If γ is the circle $z = \zeta + re^{i\theta}$, then $dz = ire^{i\theta} d\theta$ and

$$
\int_{\gamma} \frac{f(z)}{z - \zeta} dz = \int_{0}^{2\pi} \frac{f(\zeta + re^{i\theta})}{re^{i\theta}} \cdot ire^{i\theta} d\theta = \int_{0}^{2\pi} if(\zeta + re^{i\theta}) d\theta
$$

- = 2π i · (average value of f on γ) \cong 2π if(ζ)
- 3. Integral of a gradient; If γ is a curve from a to b and f is C^1 on γ , then

$$
f(b) - f(a) = \int_{\gamma} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \int_{\gamma} \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}
$$

If f is holomorphic, then $f(b) - f(a) = \int_{\gamma} f'(z) dz$.

If $|f'(z)| \leq M$ on γ , then $|f(b) - f(a)| \leq M\ell(\gamma)$.

Cauchy-Stokes' formula

Assume that f is C^1 in $\overline{\Omega}$, as in Green's theorem, and let $\zeta \in \Omega$. For small r, let $\Omega_r = \Omega \setminus \overline{D}(a,r)$. Then $\partial \Omega_r = \partial \Omega \cup \partial D(a, r)$, where $\partial D(a, r)$ is oriented clockwise.

Applying the complex form of Green's theorem to $\frac{f(z)}{z-\zeta}$ in Ω_r , we get

$$
\int_{\partial\Omega} \frac{f(z)}{z-\zeta} dz - i \int_0^{2\pi} f(\zeta + re^{i\theta}) d\theta = 2i \iint_{\Omega_r} \frac{\partial f/\partial \bar{z}}{z-\zeta} dxdy
$$

The second integral will $\to 2\pi$ i $f(\zeta)$ as $r\to 0$, and the RHS will $\to 2$ i $\iint_\Omega \frac{\partial f/\partial \bar{z}}{z-\zeta}dxdy$ as $r\to 0$. (In the limit to the right, we have used the fact that $\frac{1}{z-\zeta}$ has a finite integral over Ω , i.e., is integrable, see Lemma 2 on page 99 of Narasimhan). This proves the following

Theorem If f is C^1 in $\overline{\Omega}$ and $\zeta \in \Omega$ then

$$
f(\zeta) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z - \zeta} dz - \frac{1}{\pi} \iint_{\Omega} \frac{\partial f/\partial \bar{z}}{z - \zeta} dxdy
$$

In particular, if f is holomorphic, we get Cauchy's formula

$$
f(\zeta) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z - \zeta} dz
$$

Another particular case is if $f \in C^1(\mathbb{C})$ has compact support, then

$$
f(\zeta) = -\frac{1}{\pi} \iint_C \frac{\partial f/\partial \bar{z}}{z - \zeta} dxdy
$$

for all $\zeta \in \mathbb{C}$.

Some consequences of the integral formulas

The first integral in the previous theorem is defined for all $f \in C(\partial \Omega)$. It is called the *Cauchy integral* of f. It is actually holomorphic for any curve. The following result follow immediately by differentiating under the sign of integration.

Proposition

Let $\gamma \subset \mathbb{C}$ be a piecewise smooth (C^1) curve and let $f \in C(\gamma)$. Then the function

$$
\tilde{f}(\zeta) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - \zeta} dz
$$

is holomorphic in $C \setminus \gamma$. Moreover, \tilde{f} is C^{∞} -smooth, \tilde{f}' is holomorphic in $C \setminus \gamma$, and

$$
\tilde{f}^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - \zeta)^{k+1}} dz
$$

Definition

We say that a sequence of functions $\{f_n\}_{n=1}^{\infty}$ on Ω converges uniformly on compacts in Ω if there is a function f such that for any compact set $K \subset \Omega$ and $\epsilon > 0$ there is an integer N (= $N(K, \epsilon)$) such that

$$
|f_n(z) - f(z)| < \epsilon \text{ for all } n \ge N \text{ and } z \in K.
$$

Proposition

Let $f_n\in\mathcal O(\Omega)$ and assume that $f_n\to f$ uniformly on compacts in $\Omega.$ Then $f\in\mathcal O(\Omega)$ and $f_n^{(k)}\to f^{(k)}$ uniformly on compacts in Ω for any $k \in \mathbb{N}$.

Proof

Enough to prove on closed discs $\overline{D}(a,r) \subset \Omega$. This follows since f is given by an integral formula in $D(a, r)$ as in the previous proposition.

Definition

We say that a function f on Ω is analytic if f is given by a power series in all discs in Ω , i.e. if $D(a, r) \subset \Omega$ then

$$
f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n
$$
 for all $z \in D(a, r)$

Proposition

If f is analytic in Ω then $f \in \mathcal{O}(\Omega)$.

Proof

Enough to prove that f is holomorphic in some disc $D(a, t)$ for all $a \in \Omega$. For simplicity of notation, assume $a = 0$ and that $D_r = \{ |z| < r \} \subset \Omega$. If $0 < t < s < r$, then there exists $M > 0$ such that $|c_i s^j|$ < *M* for all $j \in \mathbb{N}$. Then for all $z \in \overline{D}_t$ we have

$$
\left|\sum_{j=0}^{\infty} c_j z^j\right| \le \sum_{j=0}^{\infty} |c_j s^j| \left(\frac{t}{s}\right)^j \le M \sum_{j=0}^{\infty} \left(\frac{t}{s}\right)^j
$$

The geometric series on the right converges. This shows that f is the limit of a sequence of polynomials on \overline{D}_t , hence f is holomorphic in D_t by proposition 3.2.

Proposition (Cauchy estimates) If $f \in \mathcal{O}(D_r) \cap C(\overline{D}_r)$ then

$$
|f^{(k)}(0)| \le \frac{k! \, \|f\|_{\partial D_r}}{r^k}
$$

Proof

By (3.2) we have that

$$
\left| f^{(k)}(0) \right| \le \frac{k!}{2\pi} \left| \int_{\partial D_r} \frac{f(z)}{z^{k+1}} dz \right| = \frac{k!}{2\pi} \left| \int_0^{2\pi} \frac{f(re^{it})}{(re^{it})^{k+1}} ire^{it} dt \right| \le \frac{k! \left\| f \right\|_{\partial D_r}}{r^k}
$$

Corollary (Simple Maximum principle for a disc) Let $f \in \mathcal{O}(D_r) \cap C(\overline{D}_r)$. Then $|f(0)| \leq ||f||_{\partial D_r}$.

Theorem (Montel)

Let $\Omega \subset \mathbb{C}$ be an open set, and $\mathcal F$ be a family of holomorphic functions on Ω with the property that for each compact set $K \subset \Omega$ there exists a constant $C_K > 0$ such that $||f||_K \leq C_K$ for all $f \in \mathcal{F}$. Then for any sequence $\{f_j\}_{j\in \mathbf{N}}\subset \mathcal{F}$ there exists a subsequence $\{f_{n(j)}\}$ such that $f_{n(j)}\to f\in \mathcal{O}(\Omega)$ uniformly on compact subsets of Ω .

Proof

Let $A \subset \Omega$ be a dense sequence of points, and let $\{f_i\} \subset \mathcal{F}$ be a sequence such that $|f_i(a)|$ is convergent for all $a \in A$. We claim that the sequence $\{f_i\}$ converges to a holomorphic function f uniformly on compact subsets of $Ω$. Choose an exhaustion of $Ω$ by compact sets $K_j \subset K_{j+1}^{\circ}$. For any j

we have that $||f_i||_{K_j}\leq M_j$ for all $i.$ By the Cauchy estimates there is a constant N_j such that $||f_i'||_{K_j}<$ N_i for all i.

Now we fix K_j and show that $\{f_i\}_{K_j}$ is a Cauchy sequence. Note that by the Mean Value Theorem we have for $z, z' \in K_{j+1}$ that $|f_i(z) - f_i(z')| \leq N_{j+1} |z - z'|$. Given any $\epsilon > 0$ we may choose a finite subset $\tilde{A} \subset K_{j+1}$ of A such that for any $z \in K_j$, there exists an $a \in \tilde{A}$ with $|z - a| < \frac{\epsilon}{4N_{j+1}}$. Furthermore, since $\{f_i\}\mid_{\tilde{A}}$ is Cauchy, we may find $N \in \mathbb{N}$ such that $|f_\ell(a) - f_m(a)| < \frac{\epsilon}{2}$ for all $l, m \geq N$. So given any $z \in K_i$ we may pick $a \in \tilde{A}$ to see that

$$
|f_\ell(z)-f_m(z)|\leq |f_\ell(z)-f_\ell(a)|+|f_\ell(a)-f_m(a)|+|f_m(a)-f_m(z)|\leq 2N_{j+2}|z-a|+\frac{\epsilon}{2}<\epsilon
$$

for all $\ell, m \geq N$, hence $\{f_i\} \mid_{K_i}$ is a Cauchy sequence.

Theorem

Let $f \in \mathcal{O}(\Omega)$ and $\overline{D}(a,r) \subset \Omega$. Then

$$
f(\zeta) = \sum_{j=0}^{\infty} c_j (\zeta - a)^j
$$

in $D(a, r)$, where

$$
c_j = \frac{1}{2\pi i} \int_{\partial D_r} \frac{f(z)}{(z-a)^{j+1}} dz
$$

Proof

We may assume $a = 0$. Note that $\frac{1}{z-\zeta} = \frac{1}{z\left(1-\frac{\zeta}{z}\right)}$ $=\frac{1}{z}$ ζ z $\int_{j=0}^{\infty} \left(\frac{\zeta}{z}\right)^j$ as long as $|\zeta| < |z|$, and plug this into Cauchy's integral formula.

Proposition (Identity principle)

Let $f \in \mathcal{O}(\Omega)$, where $\Omega \subset \mathbb{C}$ is connected. If $Z(f) = \{z \in \Omega : f(z) = 0\}$ has non-empty interior, then $f \equiv 0$ on Ω .

Proof

For each $a \in \Omega$ we have that $f(z) = \sum_{j=0}^{\infty} c_j(a)(z-a)^j$ on a small enough disk centered at a. By the formula above we see that $c_i(a)$ is continuous in a for all j. So the set of points $\{a \in \Omega : c_i(a) =$ 0 for all $j \in \mathbb{N}$ is non-empty, open, and closed in $Ω$.

Proposition

Let $f \in \mathcal{O}(\Omega)$. Then $Z(f)$ is discrete unless f is constantly equal to zero.

Proof

We assume that f is not constant. Near a point $\alpha \in \Omega$ with $f(0) = 0$ we have that $f(z) = \sum_{i=k}^{\infty} c_i (z-a)^j$, $k \ge 1$, $c_k \ne 0$, so we can write $f(z) = (z-a)^k (c_k + \sum_{i=1}^{\infty} c_{k+i} (z-a)^j)$.

Definition

Let $O^*(\Omega) = \{f \in O(\Omega): f(z) \neq 0 \text{ for all } z \in \Omega\}.$

Theorem

Let $D = D(a, r)$ be a disc. If $f \in \mathcal{O}(D)$, then f has a holomorphic antiderivative, i.e., there is $F \in O(D)$ such that $F' = f$. If $f \in O^*(D)$ then f has a holomorphic logarithm and m-th root of any order.

Proof

We know that $f = \sum_{n=0}^{\infty} c_n(z-a)^n$ in D. Let $F = \sum_{n=0}^{\infty} \frac{c_n}{n+1}(z-a)^{n+1}$.

If $f \in \mathcal{O}^*(D)$, then $\frac{f'}{f} \in \mathcal{O}(D)$ and there is $F \in \mathcal{O}(D)$ such that $F' = \frac{f'}{f}$. Then $g = fe^{-F} \in \mathcal{O}^*(D)$ and $g' = f' e^{-F} + f e^{-F} \left(-\frac{f'}{f}\right) = 0$, hence $g = c \neq 0$, a constant. Pick $\alpha \in \mathbb{C}$ such that $e^{\alpha} = c$. Then $f = e^{F+a}$, so $G = F + \alpha$ is a holomorphic logarithm and $e^{\frac{1}{m}G}$ is a holomorphic m-th root for any $m \in \mathbb{N}$.

Remark

This result is true in any simply connected domain Ω .

Theorem

If Ω is a domain and $f \in \mathcal{O}(\Omega)$ is nonconstant, then $f(\Omega)$ is open.

Proof

Pick $a \in \Omega$. We have to show that $f(\Omega)$ contains a neighborhood of $f(a)$. We may assume that $a = 0 = f(a)$. Ω contains a disc $D = D(0, r)$, and f is not constant in D. If $f(D)$ does not contain a neighborhood of 0 , there exist $a_j\to 0$ such that $f(z)\neq a_j$ in D , i.e. $g_j=\frac{1}{f-a_j}\in\mathcal{O}(D).$ If $r'< r$ is such that $f(z) \neq 0$ for all z with $|z| = r'$, then $|g_j|$ is uniformly bounded on this circle, but $|g_j(0)| =$! $\frac{1}{|a_j|} \to \infty$ as $j \to \infty$. This contradicts the maximum principle on a disc.

Corollary (Maximum principle)

If Ω is a domain, $f \in \mathcal{O}(\Omega)$ and $a \in \Omega$ is such that $|f(z)| \leq |f(a)|$ for all $z \in \Omega$, then f is constant.

Proof

This follows from Open Mapping Theorem.

Proposition (Hurwitz' theorem)

If Ω is a domain, $f_j \in \mathcal{O}^*(\Omega)$, and $f_j \to f$ uniformly on compacts then either $f \in \mathcal{O}^*(\Omega)$ or $f \equiv 0$ in Ω .

Proof

If $f(a) = 0$ and $f \neq 0$, pick $r > 0$ such that $f(z) \neq 0$ when $|z - a| = r$. Then $|f(z)| \geq \delta > 0$ when $|z-a|=r$, hence $\left|f_j(z)\right|\geq \frac{1}{2}\delta$ when $|z-a|=r$ for sufficiently large j . Therefore $g_j=\frac{1}{f_j}\in\mathcal{O}(\Omega)$ and $|g_j(z)| \leq \frac{2}{\delta}$ when $|z - a| = r$. But this is impossible, since $g_j(a) = \frac{1}{f_j(a)} \to \infty$ when $j \to \infty$.

Definitions

Punctured disc around $a: D^*(a, r) = \{z \in \mathbb{C} : 0 < |z - a| < r\}.$

If $a \in \Omega$ and $f \in \mathcal{O}(\Omega \setminus \{a\})$, we say that f has a pole of order $k \in \mathbb{N}$ at a if in some punctured disc around a we have

$$
f(z) = \frac{g(z)}{(z-a)^k}
$$

where $g(z) \neq 0$ in $D^*(a, r)$. We then have

$$
f(z) = c_{-k}(z-a)^{-k} + c_{-k+1}(z-a)^{-k+1} + \dots = \sum_{n=-k}^{\infty} c_n(z-a)^n
$$

in $D^*(a,r)$.

The residue of f at a is defined by

$$
res_a f = c_{-1}
$$

In $D^*(a,r)$ we then have

$$
f(z) = \frac{c_{-1}}{z - a} + \frac{d}{dz} \left(\sum_{\substack{n = -k \\ n \neq -1}}^{\infty} \frac{c_n}{n+1} (z - a)^{n+1} \right)
$$

Hence for $r' < r$ we have

$$
\int_{|z-a|=r'} f(z)dz = 2\pi i c_{-1} = 2\pi i \operatorname{res}_a(f)
$$

Proposition

If $\Omega \subset\subset \mathbb{C}$ has piecewise smooth C^1 boundary, $f \in \mathcal{O}(\Omega) \cap C^1(\overline{\Omega})$, except for poles $a_1, ..., a_N \in \Omega$, then

$$
\frac{1}{2\pi i} \int_{\partial \Omega} f \, dz = \sum_{i=1}^{N} \text{res}_{a_i} f
$$

(This is called the residue theorem).

Proof

Let $D_1,...$, D_N be disjoint small discs around $a_1,...,a_N$ and put $\Omega'=\Omega\setminus\cup_{j=1}^N\overline{D}_j.$ Then Cauchy's theorem gives

$$
0 = \frac{1}{2\pi i} \int_{\partial \Omega'} f \, dz = \frac{1}{2\pi i} \int_{\partial \Omega} f \, dz - \sum_{j=1}^{N} \frac{1}{2\pi i} \int_{\partial D_j} f \, dz = \frac{1}{2\pi i} \int_{\partial \Omega} f \, dz - \sum_{j=1}^{N} \text{res}_{a_j} f
$$

Definition

We say that $f \in \mathcal{O}(\Omega \setminus \{a\})$ has order k at a if $f(z) = (z - a)^k g(z)$, where $g \in \mathcal{O}(\Omega)$ and $g(a) \neq$ 0.

If $k > 0$ then we call a a zero of order k. If $k < 0$ then a is a pole of order $-k$.

It follows that $\frac{f'}{f} = \frac{k}{z-a} + \frac{g'}{g}$ near a, and hence $\text{res}_a \frac{f'}{f} = k = \text{ord}_a f$.

Corollary

If $\Omega \subset\subset \mathbb{C}$ is as above, $f \in \mathcal{O}(\Omega) \cap C^1(\overline{\Omega})$ with $f(z) \neq 0$ on $\partial \Omega$, then

$$
\int_{\partial\Omega}\frac{f'}{f}dz = 2\pi i \sum_{a\in\Omega}\text{ord}_a f
$$

If f only has simply zeroes and poles, this is

$$
= #zeros - #poles
$$

This is also called the argument principle.

$$
\int_{\partial \Omega} \frac{f'}{f} dz = \int_{\gamma} \frac{1}{z} dz = 2\pi i \cdot (\text{winding number of } \gamma \text{ around zero})
$$

This is still true if f has poles in Ω .

If $f(z) \neq w$ on $\partial \Omega$, i.e., $w \notin \gamma$, we have that the number of solutions of the equation $f(z) = w$ in Ω , counted with multiplicity, is given by

$$
\frac{1}{2\pi i} \int_{\partial \Omega} \frac{f'}{f - w} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - w} = \text{winding number of } \gamma \text{ around } w
$$

In the figure above, $f'(z) = w$ has two solutions in the component of zero of $C \setminus \gamma$, none in the unbounded component, and one in each of the remaining components.

Theorem (Rouché's theorem)

Let $\Omega \subset\subset \mathbb{C}$ be as above, $f, g \in \mathcal{O}(\Omega) \cap C^1(\overline{D})$ such that $|f(z) - g(z)| < |f(z)|$ for all $z \in \partial \Omega$. Then f and g have the same number of zeroes in Ω , i.e.,

$$
\sum_{z \in \Omega} \text{ord}_z f = \sum_{z \in \Omega} \text{ord}_z g
$$

Proof

Clearly f has no zeroes on $\partial\Omega$ and $\left|1-\frac{g(z)}{f(z)}\right|< 1$ on $\partial\Omega$, so $F=\frac{g}{f}$ takes values in the disc $D(1,1)$ on $\partial Ω$ and therefore has a holomorphic logarithm near $\partial Ω$. We have

$$
(\log F)' = \frac{F'}{F} = \frac{\frac{g'f - f'g}{f^2}}{\frac{f}{g}} = \frac{g'}{g} - \frac{f'}{f}
$$

Hence

$$
0 = \int_{\partial \Omega} (\log F)' dz = \int_{\partial \Omega} \frac{g'}{g} - \int_{\partial \Omega} \frac{f'}{f} = \sum_{z \in \Omega} \text{ord}_z g - \sum_{z \in \Omega} \text{ord}_z f
$$

Proposition

If Ω is a domain, $f_i \in \mathcal{O}(\Omega)$ are injective for all j, and $f_i \to f$ uniformly on compacts, then either f is injective or f is constant.

Proof

Assume that $a, b \in \Omega$ and that $f(b) = f(a)$. Let $g_i(z) = f_i(z) - f_i(a)$. Then $g_i \in \mathcal{O}^*(\Omega \setminus \{a\})$ and $g_j \rightarrow f - f(a)$ uniformly on compacts. Then either $f - f(a)$ is constant, which must be zero, so $f \equiv f(a)$, or $f - f(a)$ is without zeroes, which contradicts the fact that $f(b) = f(a)$.

Proposition

If $f \in \mathcal{O}(\Omega)$ is injective, then $f'(z) \neq 0$ for all $z \in \Omega$ and f has a holomorphic inverse $f^{-1} \in$ $\mathcal{O}(f(\Omega)).$

Proof

We may assume that $z = 0$ and that $f(z) = 0$. We shall show that f has a zero of order 1 at 0. We have that $f(z) = z^k g(z)$ with $g \in \mathcal{O}(\Omega)$, $g(0) \neq 0$, $k \in \mathbb{N}$. In a disc D_r , g has a holomorphic kth root, i.e., there is $h \in \mathcal{O}(D_r)$ with $g(z) = h(z)^k$ and $h(0) \neq 0$. We get $f(z) = (z \, h(z))^k$. The function $zh(z)$ is nonconstant, hence open. But then f takes values in a small disc at least k times in D_r . Hence $k = 1$.

By the inverse mapping theorem f has a C^{∞} smooth inverse $f^{-1}: f(\Omega) \to \Omega$. The derivative df^{-1} is the inverse of df, hence it is complex linear and f^{-1} is holomorphic.

Define $A(r, s) = \{ \zeta \in : r < |\zeta| < s \}$ for $0 \leq r < s \leq \infty$.

Proposition (Laurent expansion)

If $f \in O(A(r, s))$ then f has a unique Laurent series expansion in $A(r, s)$.

$$
f(\zeta) = \sum_{j=-\infty}^{\infty} c_j \zeta^j
$$

where $c_j = \frac{1}{2\pi i}$ $\frac{f(z)}{|z|=\rho}\frac{f(z)}{z^{j+1}}dz$, any $\rho\in(r,s)$. The series $\sum_{j\geq 0}c_j\zeta^j$ converges for $|\zeta|< s$, and the series $\sum_{i < 0} c_i \zeta^j$ converges for $|\zeta| > r$.

Proof

The Cauchy theorem gives that $\int_{|z|=\rho}\frac{f(z)}{z^{j+1}}dz$ is independent of $\rho\in(r,s)$. Let $\zeta\in A(r,s)$ and pick r' , s' such that

$$
r < r' < |\zeta| < s' < s
$$

By the Cauchy-Stokes formula, we have

$$
f(\zeta) = \frac{1}{2\pi i} \int_{|z|=s'} \frac{f(z)}{z-\zeta} dz - \frac{1}{2\pi i} \int_{|z|=r'} \frac{f(z)}{z-\zeta} dz
$$

\n
$$
= \frac{1}{2\pi i} \int_{|z|=s'} \frac{f(z)}{z} \frac{1}{1-\frac{\zeta}{z}} dz + \frac{1}{2\pi i} \int_{|z|=r'} \frac{f(z)}{\zeta} \frac{1}{1-\frac{z}{\zeta}} dz = I + II
$$

\n
$$
I = \frac{1}{2\pi i} \int_{|z|=s'} \frac{f(z)}{z} \sum_{j=0}^{\infty} \left(\frac{\zeta}{z}\right)^j dz = \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z|=s'} \frac{f(z)}{z^{j+1}}\right) \zeta^j
$$

\n
$$
II = \frac{1}{2\pi i} \int_{|z|=r'} \frac{f(z)}{\zeta} \sum_{j=0}^{\infty} \left(\frac{z}{\zeta}\right)^j dz = \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z|=r'} f(z) z^j dz\right) \zeta^{-(j+1)}
$$

\n
$$
= \sum_{j'<0} \left(\frac{1}{2\pi i} \int_{|z|=r'} f(z) z^{-(j'+1)} dz\right) \zeta^{j'}
$$

where $j' = -(j + 1)$.

Exercise

If $r = 0$, $A(r, s)$ is the punctured disc $D_s^* = \{\zeta : 0 < |\zeta| < s\}$. f has a singularity at 0. There are three types:

- (1) Removable singularity: $a_n = 0$ for $n < 0$. This happens iff f is bounded in D_s^* .
- (2) Pole of order $k: a_{-k} \neq 0$, $a_n = 0$ for $n < -k$. This happens iff $|f| \to \infty$ when $z \to 0$.
- (3) Essential singularity: $a_n \neq 0$ for infinitely many $n < 0$. This happens iff $f(D_t^*)$ is dense in C for all $0 < t \leq s$.

Liouville's theorem

If $f \in \mathcal{O}(\mathbb{C})$ is bounded, then f is constant.

This follows easily from Cauchy estimate of f' .

Partitions of unity

If $U \subset \mathbf{R}^n$ is open, then there exists an <u>exhaustion</u> $\{K_j\}_{j=1}^\infty$ of U by compacts such that $K_j \subset K_{j+1}^\circ$, $\cup_i K_i = U$.

Proof

If $U = \mathbf{R}^n$ this is trivial. If not, let $K_j = \left\{ z \in U : \mathrm{d}(z, \mathbf{R}^n \setminus U) \geq \frac{1}{j} \right\} \cap \overline{B}(j).$

Definition

We say that a family F of subsets of \mathbb{R}^n is locally finite if every $a \in \mathbb{R}^n$ has a neighborhood $B(a, r)$ such that $B(a, r) \cap E \neq \emptyset$ for only a finite number of sets $E \in \mathcal{F}$.

This is equivalent to $K \cap E \neq \emptyset$ for only a finite number of sets $E \in \mathcal{F}$ for any compact K.

Let $\mathcal U=\{U_i\}_{i\in I}$ be a collection of open sets. We say that $\mathcal V=\{V_j\}_{j\in J}$ is a refinement of $\mathcal U$ if for each V_i there is a U_i with $V_i \subset U_i$ and $\cup_{i \in I} V_i = \cup_{i \in I} U_i$.

Theorem

If $\mathcal{U} = \{U_i\}$ is an open covering of U (i.e., $U = \cup U_i$), then there is a locally finite refinement $\mathcal{V} = \{V_i\}$ of U and compacts $L_i \subset V_i$ such that $\cup_{i \in I} L_i = U$.

Proof

Let $\{K_n\}_{n=1}^{\infty}$ be an exhaustion of U. We shall divide U into compact "rings" M_n like this:

$$
M_1 = K_1
$$
, $M_{n+1} = K_{n+1} \setminus K_n^{\circ}$, so $U_{n=1}^{\infty} M_n = U$

We then define open sets W_n containing M_n which can only intersect the previous and next ring:

$$
W_1 = K_2^{\circ}
$$
, $W_2 = K_3^{\circ}$, $W_n = K_{n+1}^{\circ} \setminus K_{n-2}$ for $n \ge 3$

Now $\mathcal{V}_n = \{V_{i,n} = U_i \cap W_n\}$ is an open cover of M_n and there exist $V_{i,n} \in \mathcal{V}_n$, $j = 1, ..., p_n$ which cover M_n . Then there is some $\delta = \delta(n)$ such that for any $x \in M_n$ there is some i_j such that $B(x, \delta) \subset V_{i,n}$. This gives that the compacts

$$
L_{i_j,n} = \left\{ x \in M_n : \mathrm{d} \left(x, \mathbf{R}^n \setminus V_{i_j,n} \right) \ge \delta \right\} \subset V_{i_j,n}
$$

cover M_n . Now, let

$$
\mathcal{V} = \left\{ V_{i_j,n} : n \in \mathbf{N}, j = 1, \dots, i_n \right\}
$$

 V is a refinement of U and since any compact K is contained in some K_n and therefore will not intersect any $V_{i_j,m}$ when $m > n + 1$, it is locally finite. The corresponding $L_{i_j,n}$ cover M_n and hence U .

If ϕ is a function defined on U, we define supp $\phi = \{x : \phi(x) \neq 0\}$, where we take the closure in U.

 $C_0^{\infty}(U) = \{ \phi \in C^{\infty}(U) : \phi \text{ is real and supp } \phi \text{ is a compact subset of } U \}.$

Definition. Partition of unity relative to \mathcal{U} .

If $\mathcal{U} = \{U_i\}_{i\in I}$ is an open cover of U, then a partition of unity relative to U is a family $\phi_i \in C^\infty(U)$ such that $\phi_i \geq 0$, $S_i = \text{supp } \phi_i \subset U_i$, S_i of ϕ_i is locally finite, $\sum \phi_i \equiv 1$ in U .

Lemma

If U is open, $K \subset U$ is compact, then there is a positive function $\phi \in C_0^{\infty}(U)$ such that $\phi(x) > 0$ for $x \in K$.

Proof

The function

$$
\psi(t) = \begin{cases} e^{-1/(1-t)}, & t \le 1 \\ 0, & t \ge 1 \end{cases}
$$

is in $C^{\infty}(\mathbf{R})$.

There exists $\delta > 0$ such that $dist(K, \mathbb{R}^n \setminus U) \geq 2\delta$. There are a finite number of points $a_1, ..., a_N \in$ K such that $K=$ $\cup_{i=1}^{N}$ $B(a_i, \delta).$ Let

$$
\phi(x) = \sum_{i=1}^{n} \psi\left(\frac{|x - a_i|^2}{\delta^2}\right)
$$

Theorem

If $\mathcal{U} = \{U_i\}_{i \in I}$ is an open cover of U, then there is a partition of unity relative to U.

Proof

Let $V = {V_j}_{i \in I}$ be a locally finite refinement of U and $L_j \subset V_j$ compacts which cover U . Then there are $\psi_j\in \mathcal{C}_0^\infty\big(V_j\big)\subset \mathcal{C}^\infty(U)$ such that $\psi_j>0$ in $K_j.$

Let $\psi = \sum_j \psi_j$. The sum is locally finite, hence $\psi \in C^\infty(U)$ and $\psi > 0$ in U. If we let $\chi_j = \psi_j/\psi$, then χ_i is a partition of unity relative to V_i . For each $j \in J$ pick $\tau(j) \in I$ such that $V_i \subset U_{\tau(i)}$ and for each *i* ∈ *I* define $\phi_i = \sum_{j \in \tau^{-1}(i)} \chi_j$ ∈ $C^{\infty}(U)$. Clearly, {supp ϕ_i } is locally finite.

If $x \in U \setminus U_i$ there is a neighborhood V of x such that $C \cap \text{supp } \chi_i \neq \emptyset$ for only finitely many j. If $j \in \tau^{-1}(i)$ then supp χ_i is a compact subset of U_i , hence $\phi_i \equiv 0$ in $V \setminus \cup_{i \in \tau^{-1}(i)}$ supp χ_i and $x \notin \text{supp } \phi_i$. This proves that supp $\phi_i \subset U_i$.

Theorem (Separation of closed sets)

If $\Omega \subset \mathbb{R}^n$ is open, $X \subset \Omega$ closed (relatively), $X \subset U$ open, then there exists $\phi \in C^{\infty}(\Omega)$ such that $0 \leq \phi \leq 1, \phi|_{x} = 1, \phi|_{\Omega \setminus U} = 0.$

Proof

Let ϕ_U , ϕ_V be a partition of unity relative to the covering $\{U, V\}$ with $V = \Omega \setminus X$. We must have $\phi_V|_X = 0$, so $\phi_U = 1$ on X. Also $\phi_U = 0$ in $\Omega \setminus U$.

Theorem (Patching C^∞ functions on disjoint closed sets)

If $\Omega \subset \mathbf{R}^n$ is open, $X_1, X_2 \subset \Omega$ two disjoint closed sets and $\phi_1, \phi_2 \in C^\infty(\Omega)$, then there exists $\phi \in C^{\infty}(\Omega)$ such that $\phi|_{X_1} = \phi_1$, $\phi|_{X_2} = \phi_2$.

Proof

Pick $\alpha \in C^{\infty}(\Omega)$, $0 \leq \alpha \leq 1$, $\alpha|_{X_1} = 1$, $\alpha|_{X_2} = 0$, and let $\phi = \alpha \phi_1 + (1 - \alpha)\phi_2$.

The $\overline{\partial}$ -equation, $\frac{\partial u}{\partial \overline{z}} = \phi$.

Recall Cauchy-Stokes formula in $\Omega \subset \mathbf{C}$. $(z = x + iy, \zeta = \xi + i\eta)$

If
$$
f \in C^1(\overline{\Omega})
$$
, $z \in \Omega$ then $f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{\pi} \iint_{\Omega} \frac{\partial f/\partial \overline{\zeta}}{\zeta - z} d\zeta d\eta$.

If f is also holomorphic in Ω then $f(z) = \frac{1}{2\pi i}$ $\int \frac{f(\zeta)}{\zeta - z} d\zeta.$

$$
\text{If } f \in C_0^1(\mathbf{C}), \, z \in \mathbf{C} \text{ then } f(z) = -\frac{1}{\pi} \iint_{\mathbf{C}} \frac{\partial f/\partial \overline{\zeta}}{\zeta - z} d\xi d\eta.
$$

Given $\phi \in \mathcal{C}_0^1(\mathsf{C})$, we want to find f such that $\frac{\partial f}{\partial \bar{z}} = \phi$. It is natural to try

$$
f(z) = -\frac{1}{\pi} \iint_C \frac{\phi(\zeta)}{\zeta - z} d\zeta d\eta = -\frac{1}{\pi} \iint_C \frac{\phi(\zeta + z)}{\zeta} d\zeta d\eta
$$

If we can differentiate under the sign of integration, then

$$
\frac{\partial f}{\partial \bar{z}} = -\frac{1}{\pi} \iint_{C} \frac{\frac{\partial \phi}{\partial \bar{z}} (\zeta + z)}{\zeta} d\bar{\zeta} d\eta = \phi(z)
$$

Differentiation is allowed. Differentiate with respect to x, let $h \in \mathbb{R}$.

$$
\frac{f(z+h)-f(z)}{h}=-\frac{1}{\pi}\iint_{C}\frac{\frac{1}{h}(\phi(\zeta+z+h)-\phi(\zeta+z))}{\zeta}\mathrm{d}\zeta\mathrm{d}\eta\to-\frac{1}{\pi}\iint_{C}\frac{\frac{\partial\phi}{\partial x}(\zeta+z)}{\zeta}\mathrm{d}\zeta\mathrm{d}\eta
$$

by the dominated convergence theorem, since $\frac{1}{\zeta} \in L^1_{\text{loc}}(\mathbf{R}^2)$. We can do the same in the y-direction, and hence we have proved

Theorem (Solving $\overline{\partial}$ **with compact support)** If $\phi \in C_0^\infty(\mathbf{C})$ and

$$
f(z) = -\frac{1}{\pi} \iint_C \frac{\phi(\zeta)}{\zeta - z} d\zeta d\eta
$$

then $f \in C^{\infty}(\mathbb{C})$ and $\frac{\partial f}{\partial \bar{z}} = \phi$.

Notice that in general f does not have compact support, since for large R

$$
0 = \int_{|z|=R} f dz = 2i \iint_{|z| \le R} \frac{\partial f}{\partial \bar{z}} dxdy = 2i \iint_{|z| \le R} \phi dxdy
$$

would imply that $\int_C \phi \, dx \, dy = 0$.

Theorem (Smeared out Cauchy integral formula)

If $K \subset \Omega$ is compact, $f \in \mathcal{O}(\Omega)$ and $\alpha \in C_0^{\infty}(\Omega)$ is $\equiv 1$ on K , then for $z \in K$

$$
f(z) = -\frac{1}{\pi} \iint_{\Omega} f(\zeta) \frac{\partial \alpha}{\partial \overline{\zeta}} \frac{1}{\zeta - z} d\xi d\eta
$$

In particular, $\iint_{\Omega} f(\zeta) \frac{\partial \alpha}{\partial \overline{\zeta}} d\zeta d\eta = 0.$

Proof

Apply Cauchy-Stokes to $\phi = \alpha f$.

Definition

Let $K \subset \mathbf{C}$ be compact. Then

$$
O(K) = \{ f \in O(U_f) : U_f \text{ open neighborhood of } K \}
$$

Example

$$
K = \left\{ |z| = \frac{1}{2} \right\}
$$

Then $f(z) = z$ and $g(z) = \frac{1}{z}$ are both in $\mathcal{O}(K)$.

The Runge problem

Let $K \subset \Omega$ be compact and $f \in \mathcal{O}(K)$. Is it possible to approximate f on K by $f_n \in \mathcal{O}(\Omega)$?

Example

Let K , f and g be as above.

(a) Let $\Omega = D = \{ |z| < 1 \}$. Then $f \in \mathcal{O}(\Omega)$, so there are no problems with f. We claim that g cannot be approximated: If $h \in \mathcal{O}(D)$ and $h \sim g$ on K (close to), then $1 = zg(z) \sim zh(z)$ on K If $k(z) = zh(z)$ is close to 1 on K, then it also is close on $D_{\frac{1}{2}} = \left\{ |z| < \frac{1}{2} \right\}$ by the maximum

modulus theorem. But this is not true, since $k(0) = 0$.

(b) Let $\Omega = D^* = D \setminus \{0\}$. Then both f and g are in $\mathcal{O}(\Omega)$, so there are no problems with approximation.

The problem in (a) is that $\Omega \setminus K$ has a component, $D_{\frac{1}{2}}$, which is relatively compact in Ω . In (b), the corresponding component is $D_{\frac{1}{2}} \setminus \{0\}$, which is not relatively compact since it goes all the way up to $0 \in \partial \Omega$.

Exercise

Let $\Omega \subset \mathbf{C}$ be open, let $K \subset \Omega$ be compact, and let U be a bounded connected component of $\Omega \setminus K$. Then the following are equivalent:

- (1) $\exists \delta > 0$ such that $|z w| \ge \delta$ for all $z \in U$, $w \notin \Omega$
- (2) $U \subset\subset \Omega$
- (3) $\partial U \subset K$
- (4) *U* is also a connected component of $C \setminus K$

If we negate this, the following are equivalent:

- (1) For all $\delta > 0$ there exist $z \in U$ and $w \notin \Omega$ such that $|z w| < \delta$
- (2) *U* is not relatively compact in Ω
- (3) $\partial U \cap (\mathbf{C} \setminus K) \neq \emptyset$
- (4) The connected component U' of $C \setminus K$ containing U is not contained in Ω , i.e., $U' \cap$ $(C \setminus \Omega) \neq \emptyset$

Theorem (Runge)

Let $\Omega \subset \mathbb{C}$ be open and $K \subset \Omega$ compact. The following are equivalent:

- (1) $O(\Omega)|_K$ is dense in $O(K)$.
- (2) No connected component of $\Omega \setminus K$ is relatively compact in Ω .
- (3) $\forall a \in \mathbb{C} \setminus K$ there is $f \in \mathcal{O}(\Omega)$ such that $|f(a)| > |f|_K$.

Proof

(1) \Rightarrow (2) If *U* is a connected component of $\Omega \setminus K$ which is relatively compact in Ω , then $\partial U \subset K$, because otherwise we could attach a disc to $z \in \partial U \setminus K$ to obtain a bigger connected set. If

 $z_0 \in U$ and $f(z) = \frac{1}{z-z_0} \in \mathcal{O}(K)$, then f cannot be approximated by $f_n \in \mathcal{O}(\Omega)$, because if ! $\frac{1}{z-z_0} - f_n \to 0$ on K, then $g_n = 1 - (z - z_0)f_n \to 0$ on K, but $g_n(z_0) = 1$. This violates the maximum modulus theorem, since $\partial U \subset K$.

(2) \Rightarrow (1) We must prove that every $f \in \mathcal{O}(K)$ can be approximated uniformly on K by $f_n \in$ $O(\Omega)$. Pick $f \in O(W)$ for some open neighborhood W of K.

Step 1. Approximation of f by rational functions with poles outside K .

Pick $\alpha \in C_0^{\infty}(W)$ such that $\alpha = 1$ in a neighborhood W_0 of K. For $z \in K$ we have by Cachy-Stokes formula

$$
f(z) = \frac{1}{\pi} \iint_{C} f(\zeta) \frac{\partial \alpha}{\partial \overline{\zeta}} \frac{1}{z - \zeta} d\zeta d\eta = \frac{1}{\pi} \iint_{L=\text{supp }\alpha \setminus W_{0}} f(\zeta) \frac{\partial \alpha}{\partial \overline{\zeta}} \frac{1}{z - \zeta} d\zeta d\eta
$$

If we subdivide C by small squares and form the corresponding Riemann sums for the integral,

$$
\frac{1}{\pi} \sum_{\nu} f(z_{\nu}) \frac{\partial \alpha}{\partial \bar{\zeta}}(z_{\nu}) \frac{1}{z - z_{\nu}}
$$

Then these Riemann sums will approximate the integrals, uniformly on K , since the integrand is compactly supported, hence uniformly continuous in C. The z_v 's will be close to $L =$ supp $\alpha \setminus W_0$, hence in $\Omega \setminus K$. It follows that f can be approximated on K by a finite sum $\int_{V} c_{\nu} \frac{1}{z-z_{\nu}}$ with $z_{\nu} \in \Omega \setminus K$.

Step 2. We now look at terms of the form $\frac{1}{z-a}$ with $a\in \Omega\setminus K$. We shall approximate these by functions which are holomorphic in $Ω$ by "pushing the poles out of $Ω$ ". Examples

Therefore, let $a \in \Omega \setminus K$ and let U be the connected component of $C \setminus K$ containing a. Let

 $U_a = \{ w \in U :$ 1 $\frac{1}{z-a}$ can be approximated on K by polynomials in 1 $z-w$ We will show that $U_a = U$. We will do this by showing that U_a is both open and closed in $C \setminus K$.

 U_a is open: Suppose $w \in U_a$ and $D(w,r) \cap K = \emptyset$. If P_{ϵ} is a polynomial in $\frac{1}{z-w}$ which approximates f on K and $w'\in D\left(w,\frac{r}{2}\right)$, then $P_\epsilon\left(\frac{1}{z-w}\right)$ is holomorphic outside $\overline{D}\left(w',\frac{r}{2}\right)$ $\frac{1}{2}$ and can therefore be developed in a power series in $\frac{1}{z-w'}$ there. A finite sum of this power series will approximate P_{ϵ} on the compact $K \subset \mathbf{C} \setminus \overline{D}\left (w', \frac{r}{2} \right)$.

 U_a is closed in $C \setminus K$: Assume $w_n \in U_a$ and $w_n \to w \in C \setminus K$. Then there is a disc $\overline{D}(w,r) \subset$ C \ K and a $w_n \in \overline{D}(w,r)$. $\frac{1}{z-a}$ can be approximated on K by polynomials in $\frac{1}{z-w_n}$. These are holomorphic outside $\overline{D}(w, r)$ and the same argument as above gives that $w \in U_a$. This proves the claim.

We now prove that $\frac{1}{z-a}$ can be approximated on K by a function which is holomorphic in $\Omega.$ If U_a is bounded, then we claim that $U_a \cap (\mathbb{C} \setminus \Omega) \neq \emptyset$. Otherwise, $U_a \subset \Omega$ and U_a is a connected component of $\Omega \setminus K$. But $\partial U_a \subset K$, hence U_a would be relatively compact in Ω , which is impossible. Hence there is some $w \in U_a \setminus \Omega$ and by definition $\frac{1}{z-a}$ can be approximated by a polynomial in $\frac{1}{z-w'}$, which is holomorphic in Ω .

If U_a is unbounded, then there is $w \in U_a$ with $|w| > \sup\{|z|, z \in K\}$. Let $r = |w|$. In this case a polynomial in $\frac{1}{z-w}$ is holomorphic in the disc $D(0,R)$, hence is given by a power series there, and can be approximated by a polynomial on K .

(3) \Rightarrow (2) is analogous with (1) \Rightarrow (2): If $U \subset\subset \Omega$ is a connected component of $\Omega \setminus K$, then $\partial U \subset K$ and for all $a \in U$ we have by the maximum modulus principle $|f(a)| \leq |f|_{\partial U} \leq$ $|f|_K$ which contradicts (3).

(2) \Rightarrow (3) If $a \in \Omega \setminus K$, then $L = K \cup \{a\}$ has the same property and by the implication (2) \Rightarrow (1), $\mathcal{O}(\Omega)|_L$ is dense in $\mathcal{O}(L)$. If U and V are disjoint open sets, $K \subset U$, $a \in V$ and ϕ is defined by $\phi = 0$ in U , $\phi = 1$ in V , then $\phi \in \mathcal{O}(L)$, hence there exists $f \in \mathcal{O}(\Omega)$ such that $|f - \phi|_L < \frac{1}{2}$ $\frac{1}{2}$. But then $\left|f\right|_K < \frac{1}{2}$ $\frac{1}{2} < |f(a)|$.

This completes the proof of the theorem.

Remark

From the implication (2) \Rightarrow (1) we get that if

- No connected component of $\Omega \setminus K$ is relatively compact in Ω
- $A \subset \mathbb{C}$ is a set which contains at least one point in every bounded component of $\mathbb{C} \setminus \Omega$
- $f \in \mathcal{O}(K)$

then f can be approximated uniformly on K by rational functions with poles in A .

The polynomials are dense in $\mathcal{O}(\mathbf{C})$. Hence if we let $\Omega = \mathbf{C}$ in Runge's theorem, we get:

Corollary

For a compact set $K \subset \mathbf{C}$ the following are equivalent:

- (1) Every $f \in \mathcal{O}(K)$ can be approximated by polynomials.
- (2) $C \setminus K$ is connected (i.e., K has no holes).
- (3) For any $z \notin K$ there is a polynomial P such that $|P(z)| > |P|_K$.

Such K are called polynomially convex.

Definition

Let $K \subset \Omega$ be compact. The holomorphically convex hull of K in Ω is defined by

$$
\widehat{K}_{\Omega} = \{ z \in \Omega : |f(z) \le |f|_K \text{ for all } f \in \mathcal{O}(\Omega) \}
$$

Condition (3) in Runge's theorem states that $\widehat{K}_{\Omega} = K$, in which case we call K holomorphically convex in Ω. We have $\widehat R_\Omega=\widehat R_\Omega.$ We shall see that $\widehat R_\Omega$ fills in the holes in K which do not contain holes in Ω .

Example

 \widehat{K}_{Ω} fills in the hole to the right, not the left. (Ω does not contain the dashed little hole.)

Exercise

 \widehat{K}_{Ω} does not get closer to $\partial \Omega$, i.e., $d(\widehat{K}_{\Omega}, \partial \Omega) = d(K, \partial \Omega)$.

 \widehat{K}_{Ω} is compact.

Theorem

 \widehat{K}_{Ω} is the union of K and all relatively compact components of $\Omega \setminus K$.

Proof

If U is such a component, then $\partial U \subset K$ and therefore $U \subset \widehat{K}_{\Omega}$ by the maximum modulus theorem. This shows that

$$
K_1 := K \cup \left(\cup_{U_{\alpha} \subset \subset \Omega} U_{\alpha} \right) \subset \widehat{K}_{\Omega}
$$

Also, $\Omega \setminus K_1 = \cup_{U_{\alpha} \subset \subset \Omega} U_{\alpha}$ is open, hence K_1 is closed in Ω and therefore compact. Also, no components of $\Omega \setminus K_1$ are relatively compact. Runge's theorem gives that any $z \notin K_1$ can be separated from K_1 (and hence K) by a holomorphic function in Ω . This proves that $z \notin \widehat{K}_{\Omega}$, i.e., $\widehat{K}_\Omega \subset K_1$.

Lemma

If $\Omega \subset \mathbb{C}$ is open, then

$$
K_n = \left\{ z \in \Omega : \mathbf{d}(z, \mathbf{C} \setminus \Omega) \ge \frac{1}{n}, |z| \le n \right\}
$$

is a holomorphically convex exhaustion of Ω .

Theorem (Classical Runge theorem)

If $\Omega \subset \mathbb{C}$ is open, $A \subset \mathbb{C}$ is a set which contains one point from each bounded component of $\mathbb{C} \setminus \Omega$, then every $f \in \mathcal{O}(\Omega)$ can be approximated uniformly on compacts by rational functions with poles in A .

Proof

Pick $f \in \mathcal{O}(\Omega)$ and a compact set $K \subset \Omega$. Replacing K by \widehat{K}_{Ω} , we may assume that K is holomorphically convex in Ω . The result follows from the remark to Runge's theorem.

Mittag-Leffler's theorem

Definition

Let $\mathbf{C}_{a}^{*} = \mathbf{C} \setminus \{a\}$. The set \mathbf{C}_{0}^{*} is denoted by \mathbf{C}^{*} .

If f is holomorphic in a punctured disc around a , we have

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

The negative powers $p_a = \sum_{n=-\infty}^{-1} c_n(z-a)^n$ is called the principal part of f at a. We have $p_a \in$ $\mathcal{O}(\mathbf{C}_{a}^{*}).$

Theorem 1 (Mittag-Leffler) Prescribing principal parts

If $E \subset \Omega$ is discrete and for every $a \in E$ there is given a principal part $p_a \in \mathcal{O}(\mathbb{C}^*_a)$, then there is $f \in \mathcal{O}(\Omega \setminus E)$ such that $f - p_a$ is holomorphic in a neighborhood of a for all $a \in E$.

Proof

Let $\{K_n\}$ be a holomorphically convex exhaustion of Ω and put $K_0 = \emptyset$. Let $E_n = E \cap \{K_n \setminus K_{n-1}\}.$ Each E_n is finite. Put

$$
g_n = \sum_{a \in E_n} p_a \in \mathcal{O}(\mathbf{C} \setminus E_n) \supset \mathcal{O}(K_{n-1})
$$

Let $f_1 = g_1$. Then $f_1 - p_a$ is holomorphic in a for all $a \in E_1$ and is holomorphic outside K_1 . We would like to add g_2 , but the problem is convergence. However, since $g_2 \in \mathcal{O}(K_1)$ and K_1 is holomorphically convex, we can find $h_2 \in \mathcal{O}(\Omega)$ such that $|g_2 - h_2|_{K_1} < 2^{-2}$. If we let $f_2 = g_1 +$ $(g_2 - h_2)$, then $f_2 - p_a$ is holomorphic at all $a \in E_1 \cup E_2$. We proceed inductively to find $h_n \in \mathcal{O}(\Omega)$ such that $|g_n - h_n|_{K_{n-1}} < 2^{-n}$. It follows that

$$
f = \lim f_n = g_1 + \sum_{n=2}^{\infty} (g_n - h_n)
$$

solves the problem.

If every $p_a \in \mathcal{M}(\mathbb{C})$, i.e., only has a pole at a , then $f \in \mathcal{M}(\Omega)$.

It is enough to assume that $p_a \in \mathcal{O}(D^*(a,r))$ for some $r > 0$.

Equivalent formulation:

Theorem 1'

If $E \subset \Omega$ is discrete, $\Omega = \cup_{j \in I} U_j$ and $g_j \in \mathcal{O}(U_j \setminus E)$ are such that $g_j - g_k \in \mathcal{O}(U_j \cap U_k)$ for all j, k, then there is $g \in \mathcal{O}(\Omega \setminus E)$ such that $g - g_i \in \mathcal{O}(U_i)$ for all j.

$$
(1') \Rightarrow (1)
$$
: Put $E = \{z_j\}$, $U_j = (\Omega \setminus E) \cup \{z_j\}$ and $g_j = p_{z_j}$.

(1) ⇒ (1'): For $a \in E$, pick $j(a)$ such that $a \in U_{j(a)}$ and let p_a be the principal part of $g_{j(a)}$ at a . This is independent of the choice of $j(a)$. If $g \in \mathcal{O}(\Omega \setminus E)$ such that $g - p_a$ is holomorphic at a for all $a \in E$, then $g - g_i \in \mathcal{O}(U_i)$.

In theorem 1', suppose we can find the "holomorphic correction terms", $f_i = g - g_i \in O(U_i)$ directly. How can we be sure that they patch together to a global g ? We must have

$$
f_i + g_i = f_j + g_j \text{ in } (U_i \cap U_j) \setminus E
$$

$$
f_i - f_j = g_j - g_i \text{ in } U_i \cap U_j
$$

Let $f_{ij} = g_j - g_i \in \mathcal{O}(U_i \cap U_j)$. The existence of f_i follows from:

Theorem 2

If $\{U_j\}_{j=1}^\infty$ is an open covering of Ω and $f_{ij}\in\mathcal O\bigl(U_i\cap U_j\bigr)$ satisfy the cocycle condition

$$
f_{ij} + f_{jk} + f_{ki} = 0
$$
 in $U_i \cap U_j \cap U_k$

for all indices *i*, *j*, *k*. Then there exist $f_j \in \mathcal{O}(U_j)$ such that $f_{ij} = f_i - f_j$ in $U_i \cap U_j$ for all *i*, *j*.

Notice that the cocycle condition implies that $f_{ii} = 0$ and $f_{ii} = -f_{ii}$ for all i, j.

The argument above shows that Theorem $2 \Rightarrow$ Theorem 1'.

We shall now prove Theorem 2.

Step 1

We first prove that there are smooth solutions to the problem, i.e., there are $\phi_i \in C^{\infty}(U_i)$ such that $f_{ij} = \phi_i - \phi_j$ in $U_i \cap U_j$. For this, it is sufficient that $f_{ij} \in C^\infty(U_i \cap U_j)$.

Proof

Let α_i be a partition of unity relative to $\mathcal{U} = \{U_i\}$ and define in U_i

$$
\phi_i = \sum_k \alpha_k f_{ik}
$$

This is in $C^{\infty}(U_i)$, since supp $\alpha_k \subset U_k$ and the sum is locally finite. In $U_i \cap U_j$ we have

$$
\phi_i - \phi_j = \sum_k \alpha_k (f_{ik} - f_{jk}) = \sum_k \alpha_k f_{ij} = f_{ij}
$$

Step 2

We now correct the ϕ_i to make a holomorphic solution. Notice that since $\phi_i - \phi_j$ differ by a holomorphic function on $U_i \cap U_j$, the function

$$
\psi(z) = \frac{\partial \phi_i}{\partial \bar{z}} \text{ for } z \in U_i
$$

is globally defined in Ω . If we can find $u \in C^{\infty}(\Omega)$ such that

$$
\frac{\partial u}{\partial \overline{z}} = \psi
$$

then $f_i = \phi_i - u \in \mathcal{O}(U_i)$ and solves the problem. Hence Theorem 2 follows from the following result:

Theorem (Solution of $\overline{\partial}$ -equation)

If $\psi \in C^{\infty}(\Omega)$ then there exist $u \in C^{\infty}(\Omega)$ such that $\frac{\partial u}{\partial \bar{z}} = \psi$.

Proof

Notice that we can solve the equation in a neighborhood of any compact set $K \subset \Omega$. Just chop off ψ with a smooth function. The solution is in $C^{\infty}(\mathbf{C})$.

We shall now build the solution inductively as in Mittag-Leffler's theorem. Let $\{K_n\}_{n=1}^{\infty}$ be a holomorphically convex exhaustion of Ω. First, solve $\frac{\partial u_j}{\partial z} = \psi$ in an open neighborhood V_1 of K_1 , and get $u_1 \in C^{\infty}(\mathbb{C})$. We now want to correct u_1 so the equation is satisfied in an open neighborhood V_2 of K_2 . Let $\phi=\psi-\frac{\partial u_1}{\partial \bar{z}}$. Then $\phi\in\mathcal{C}^\infty(\Omega)$ and $\phi=0$ in V_1 . Now solve $\frac{\partial v_2}{\partial \bar{z}}=\phi$ in V_2 , $v_2\in\mathcal{C}^\infty(\mathbf{C})$ \cap $\mathcal{O}(V_1)$. Then $u_1 + v_2$ solves the problem in V_2 , but we want the process to converge, so we pick $f_2 \in \mathcal{O}(\Omega)$ such that $|v_2 - f_2|_{K_1} < 2^{-2}$ and let $u_2 = v_2 - f_2$.

Now, proceed to find $u_3, ..., u_n \in C^\infty(\mathbb{C})$ and open neighborhoods V_j of K_j , $j = 3, ..., n$, such that

$$
u_j \in \mathcal{O}(V_{j-1}), \qquad |u_j|_{K_{j-1}} < 2^{-j}
$$

$$
\frac{\partial u_1}{\partial \bar{z}} + \dots + \frac{\partial u_n}{\partial \bar{z}} = \psi \text{ in } V_n
$$

Then $u = \sum_{n=1}^{\infty} u_n$ is the required solution.

The winding number

Let γ be a closed piecewise C^1 curve in **C**. Then for $z \in \mathbb{C} \setminus \gamma$,

$$
Ind(\gamma, z) = \frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}
$$

is called the winding number of γ around z. Clearly, $\text{Ind}(\gamma, z) \in \mathcal{O}(\mathbb{C} \setminus \gamma)$.

Lemma

Ind(γ , z) $\in \mathbb{Z}$

Proof

Assume γ is parametrized over [0,1], so $\gamma(0) = \gamma(1)$. Then

$$
\frac{\mathrm{d}}{\mathrm{d}t} \frac{\exp \int_a^t \frac{\zeta'(u)}{\zeta(u) - z} \mathrm{d}u}{\zeta(t) - z} = \frac{\exp(\int \cdot \frac{\zeta'(t)}{\zeta(t) - z} \cdot (\zeta(t) - z) - \exp(\int \cdot \cdot \zeta'(t))}{(\zeta(t) - z)^2} = 0
$$

Hence it is constant, which must be $\frac{1}{\zeta(0)-z}$. Then

$$
\exp \int_0^1 \frac{\zeta'(s)}{\zeta(s) - z} \, \mathrm{d}s = \frac{\zeta(1) - z}{\zeta(0) - z} = 1
$$

And hence $\int_0^1 \frac{\zeta'(s)}{\zeta(s)-z} ds = 2\pi i \cdot n$ for some $n \in \mathbf{Z}$.

Ind(γ , z) is constant in each connected component of $C \setminus \gamma$ and it is 0 in the unbounded component.

Definition

 Ω is simply connected if any closed curve is homotopic to a constant curve.

Exercise

The following are equivalent:

- (1) Ω is simply connected
- (2) Any two curves between two points a and b are homotopic.
- (3) For any closed curve $\gamma \subset \Omega$ and $z \notin \Omega$, $\text{Ind}(\gamma, z) = 0$.
- (4) $C \setminus \Omega$ has no compact components
- (5) $P^1 \setminus \Omega$ is connected

Lemma

Suppose $g \in \mathcal{O}^*(\Omega)$. Then the following are equivalent:

- (1) g has a holomorphic logarithm in Ω (e $^f = g$)
- (2) $\frac{g'}{g}$ has a holomorphic primitive in Ω
- (3) $\int_{\gamma} \frac{g'}{g} dz = 0$ for all closed curves in Ω

Proof

(1)
$$
\Rightarrow
$$
 (2) If $e^f = g$ then $\frac{g'}{g} = f'$

(2)
$$
\Rightarrow
$$
 (1) If $\frac{g'}{g} = f'$, let $h = e^{-f}g$. Then $h' = e^{-f}(g' - f'g) = 0$, hence $h \equiv c$, so $g = ce^f = e^{f+a}$

The equivalence of (2) and (3) is well known from calculus.

If Ω is simply connected then g has a holomorphic logarithm because (3) holds.

Lemma

If z_0 and z_1 are in the same component of $C \setminus K$, then $g(z) = \frac{z-z_0}{z-z_1}$ has a holomorphic logarithm in a neighborhood of K. If z_0 is in the unbounded component of $C \setminus K$ then $g(z) = z - z_0$ has a holomorphic logarithm.

Proof

Pick a neighborhood Ω of K such that z_0, z_1 are in the same component of $C \setminus \Omega$. Then

$$
\frac{g'(z)}{g(z)} = \frac{1}{z - z_0} - \frac{1}{z - z_1}
$$

Hence if $\gamma \subset \Omega$ is a closed curve, then

$$
\int_{\gamma} \frac{g'(z)}{g(z)} dz = \int_{\gamma} \frac{dz}{z - z_0} - \frac{dz}{z - z_1} = \text{Ind}(\gamma, z_0) - \text{Ind}(\gamma, z_1) = 0
$$

For z_0 in the unbounded component, $\frac{g'(z)}{g(z)} = \frac{1}{z-z_0}$, so

$$
\int_{\gamma} \frac{g'(z)}{g(z)} dz = \int_{\gamma} \frac{dz}{z - z_0} = \text{Ind}(\gamma, z_0) = 0
$$

Pushing zeroes

Let $f(z) = \log \frac{z-z_0}{z-z_1} \in \mathcal{O}(K)$. Then $z-z_0 = e^{f(z)}(z-z_1)$. Now, approximate f on K by $\tilde{f}(z) \in$ $\mathcal{O}(\mathbf{C}\setminus\{z_1\})$, so $z-z_0\sim e^{\tilde{f}(z)}(z-z_1)$ on K.

Let $f(z) = \log(z - z_0) \in \mathcal{O}(K)$. Then $z - z_0 = e^{f(z)}$. Approximate f on K by $\tilde{f} \in \mathcal{O}(\mathbb{C})$, so $z - z_0 \sim$ $e^{\tilde{f}(z)}$ on K. Thus we have approximated $z - z_0$ on K by a zero free entire function.

Theorem

If $K \subset \Omega$ is holomorphically convex, i.e., $\widehat{K}_{\mathcal{O}(\Omega)} = K$, then $\mathcal{O}^*(\Omega) \mid_K$ is dense in $\mathcal{O}^*(K)$.

Proof

Let $f \in O^*(K)$ and let $\epsilon > 0$, $\epsilon < \min\{|f(z)|; z \in K\}$. Then there exists a rational function $R(z)$ = $\frac{P(z)}{Q(z)} \in \mathcal{O}(\Omega)$ such that $|f - R|_K < \frac{1}{2}$ $\frac{1}{2}\epsilon$. P has no zeroes on K. Let $a_1, ..., a_k$ be the zeroes of P in the bounded component of $C \setminus K$, and let $a_{k+1}, ..., a_m$ be the zeroes of P in the unbounded component of $C \setminus K$, and pick b_i , $j = 1, ..., k$, $b_i \notin \Omega$, in the same component as a_i . We may assume that

$$
P(z) = \prod_{j=1}^{m} (z - a_j)^{m_j}
$$

Then

$$
g(z) = \sum_{j=1}^{k} m_j \log \left(\frac{z-a_j}{z-b_j}\right) + \sum_{j=k+1}^{m} m_j \log(z-a_j) \in \mathcal{O}(K)
$$

and

$$
e^{g(z)} = \frac{P(z)}{\prod_{j=1}^{k} (z - b_j)^{m_j}} = \frac{P(z)}{P_0(z)}
$$

We have $\min |Q(z)| = \delta > 0$. Let $M = \max_{z \in K} |P_0(z)|$, $N = \max_{z \in K} |e^{g(z)}|$, and let $\mu > 0$ be given. If $h \in \mathcal{O}(\Omega)$, $|h - g|_K < \log(1 + \mu)$, then $|e^{h - g} - 1|_K < \mu$. Hence for $z \in K$,

$$
\left| R(z) - \frac{P_0(z)e^{h(z)}}{Q(z)} \right| = \left| \frac{P_0(z)e^{g(z)}}{Q(z)} - \frac{P_0(z)e^{h(z)}}{Q(z)} \right| \le \frac{M}{\delta} \left| e^{g(z)} - e^{h(z)} \right| \le \frac{M}{\delta} \left| e^{g(z)} \right| 1 - e^{h(z) - g(z)} \left| \le \frac{MN}{\delta} \cdot \mu < \frac{1}{2}\epsilon
$$

when μ is sufficiently small. Therefore $R_0(z)=\frac{P_0(z)}{Q(z)}e^{h(z)}\in\mathcal{O}^*(\Omega)$ is the required approximation.

Weierstrass' theorem

We shall prove a result on prescription of zeroes and poles. For this we need to study infinite products.

Let $\{a_n\}\subset \mathbf{C}$. We say that $\prod_{n=1}^{\infty}a_n$ is convergent if $p_N=\prod_{n=1}^N a_N$ is a convergent sequence, and we set

$$
\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} p_N
$$

If this limit is nonzero, it is clearly necessary that $\lim_{n\to\infty} a_n = 1$. We shall consider products

$$
\prod_{n=1}^{\infty} (1 + u_n) \text{ with } u_n \to 0
$$

Sloppy calculation:

$$
\log \prod^{N} (1 + u_n) = \sum^{N} \log(1 + u_n) \approx \sum^{N} u_n
$$

Hence it follows that the convergence of $\prod (1 + u_n)$ is related to the convergence of the series $\sum u_n$. Correct calculation: Use the inequality $log(1 + x) \leq x$ to obtain

$$
|p_N| \le \prod^N (1 + |u_n|)
$$

$$
\log |p_N| \le \sum^N \log(1 + |u_n|) \le \sum^N |u_n|
$$

$$
|p_N| \le e^{\sum |u_n|}
$$

Hence $\{p_N\}$ is bounded if $\sum^{\infty} |u_n| < \infty$.

 $p_N - 1$ is a polynomial in $u_1, ..., u_N$, without constant term. This gives

$$
|p_N - 1| \le \prod^N (1 + |u_n|) - 1 \le e^{\sum |u_n|} - 1
$$

Lemma₁

If $\{u_n(z)\}$ are bounded functions on a set E such that $\sum |u_n(z)|$ converges uniformly on E, then

$$
f(z) = \prod^{\infty} (1 + u_n(z))
$$

converges uniformly on E, and $f(z_0) = 0$ iff $u_n(z_0) = -1$ for some n.

Proof

It follows from $|p_N(z)| \le e^{\sum |u_n(z)|}$ that $\{p_N(z)\}$ is uniformly bounded on E, i.e., $|p_N(z)| \le C$ for all $z \in E$. For $M > N$ we have

$$
|p_M(z) - p_N(z)| = |p_N(z)| \left| \prod_{N+1}^M (1 + u_n(z)) - 1 \right| \le C \left(e^{\sum_{N+1}^M |u_n(z)|} - 1 \right) \to 0
$$

as $N, M \to \infty$, which proves that $\{p_N(z)\}\$ converges uniformly on E. The inequality also shows that

$$
|p_M(z)| \ge |p_N(z)|(1-\epsilon)
$$

for N sufficiently large and $M > N$. Hence, the infinite product has a zero at z_0 iff some finite p_N does.

Theorem

If Ω is connected, $f_n \in \mathcal{O}(\Omega)$, no f_n is identically equal to zero and $\sum |1 - f_n(z)|$ converges uniformly on compacts in Ω , then $f(z) = \prod^{\infty} f_n(z)$ converges uniformly on compacts and $\text{ord}_a(f) =$ $_{n=1}^{\infty}$ ord_a (f_n) .

Theorem Weierstrass

If $E \subset \Omega$ is discrete and for every $a \in E$ there is given an integer $k_a \in \mathbb{Z}$, then there is a holomorphic function $f \in O^*(\Omega \setminus E)$ such that $(z - a)^{-k_a} f(z)$ is holomorphic and nonzero in a neighborhood of a for all $a \in E$.

Proof

Let $\{K_n\}$ be a holomorphically convex exhaustion of Ω and let $E_n = E \cap (K_n \setminus K_{n-1})$, $K_0 = \emptyset$. Let $g_n = \prod_{a \in E_n} (z - a)^{k_a}$. Then g_1 has the required property for $a \in E_1$. We would like to multiply by g_2 , but the problem is convergence. Notice however that $g_2 \in \mathcal{O}^*(K_1)$, hence there is $h_2 \in \mathcal{O}^*(\Omega)$ such that $|g_2h_2 - 1|_{K_1} < 2^{-2}$ and $g_1 \cdot (g_2h_2)$ has the required property for $a \in E_1 \cup E_2$.

Inductively, we can find $h_n \in \mathcal{O}^*(\Omega)$ such that $|g_n h_n - 1|_{K_{n-1}} < 2^{-n}$. This implies that

$$
f = g_1 \cdot \prod_{n=2}^{\infty} g_n h_n
$$

has the required properties.

Exercise

The analogous version of Theorem 2 for Weierstrass' theorem is the following:

If $\{U_j\}_{j=1}^\infty$ is an open covering of Ω and $f_{ij}\in\mathcal O^*(U_i\cap U_j)$ satisfy the cocycle condition $f_{ij}f_{jk}f_{ki}=1$ in $U_i\cap U_j\cap U_k$ then there exist $f_i\in\mathcal{O}^*(U_i)$ such that $f_{ij}=\frac{f_i}{f_j}$ in $U_i\cap U_j$ for all $i,j.$

Show that this implies Weierstrass' theorem.

Theorem (Interpolation in a discrete set)

If $E \subset \Omega$ is discrete and for every $a \in E$ is given $\phi_a \in \mathcal{O}(D^*(a, r_a))$ and $k_a \geq 0$. Then there is $f \in \mathcal{O}(\Omega \setminus E)$ such that $f - \phi_a$ is holomorphic at a and $\text{ord}_a(f - \phi_a) > k_a$ for all $a \in E$.

Proof

By Weierstrass' theorem there is $g \in \mathcal{O}(\Omega)$ such that $\mathbb{Z}(g) = E$ and $\text{ord}_a g = k_a + 1$ for all $a \in E$. Then $\frac{\phi_a}{g}\in \mathcal O\big(D^*(a,r_a)\big)$ for all $a\in E$ and my Mittag-Leffler there is $h\in \mathcal O(D\setminus E)$ such that

$$
h - \frac{\phi_a}{g} = 0(1) \text{ as } z \to a \text{ for all } a \in E
$$

Then
$$
h = \frac{\phi_a}{g} + O(1)
$$
 and $f = hg = \phi_a + O(|z - a|^{k+1})$ as $z \to a$.

Notice that h can have zeroes outside E .

If each ϕ_a is meromorphic then we can find such f without other zeroes:

Theorem

If $E \subset \Omega$ is discrete and for every $a \in E$ there is given $\phi_a \in \mathcal{O}(D^*(a, r_a))$ such that $\text{ord}_a \phi_a > -\infty$. Then there is $f \in \mathcal{M}(\Omega) \cap \mathcal{O}^*(\Omega \setminus E)$ such that $\text{ord}_a(f - \phi_a) > k_a$ for all $a \in E$.

Proof

$$
E_0 = \{a : \phi_a \not\equiv 0\}
$$

$$
m_a = \text{ord}_a \phi_a \text{ for } a \in E_0
$$

By Weierstrass we can find $g \in \mathcal{M}(\Omega)$ such that

$$
\text{ord}_a g = m_a \text{ for } a \in E_0
$$

$$
\text{ord}_a g > k_b \text{ for } b \in E \setminus E_0
$$

$$
g \in \mathcal{O}^*(\Omega \setminus E)
$$

If $h \in \mathcal{O}(\Omega)$ and $f = g e^{h(z)}$ then everything hold except possibly $\text{ord}_a(f - \phi_a) > k_a$ for $a \in E_0$. How can we achieve this? Notice that $\frac{\phi_a}{g}$ is holomorphic and nonzero near a , so there is $h_a \in$ $\mathcal{O}\big(D^*(a,r_a)\big)$ such that $\mathrm{e}^{h_a}=\frac{\phi_a}{g}$. Then

$$
\operatorname{ord}_a(g e^h - \phi_a) = \operatorname{ord}_a g\left(e^h - \frac{\phi_a}{g}\right) = \operatorname{ord}_a g(e^h - e^{h_a}) = \operatorname{ord}_a g e^{h_a}(e^{h - h_a} - 1)
$$

$$
= m_a + \operatorname{ord}_a(h - h_a)
$$

By the preceding theorem, there is $h \in \mathcal{O}(\Omega)$ such that $\text{ord}_a(h - h_a) > |m_a| + k_a$. This completes the proof.

Automorphisms of the disc

Definition

An automorphism of an open set $\Omega \subset \mathbb{C}$ is a biholomorphic map of Ω onto itself, i.e., a holomorphic map $f : \Omega \to \Omega$ which has a holomorphic inverse. The set of automorphisms on Ω is denoted by $Aut(\Omega)$. This is a group.

 $D = D(0,1) = \{ |z| < 1 \}$ is the unit disc, and $T = \{ \lambda : |\lambda| = 1 \}.$

Theorem (Schwarz lemma)

If $f \in \mathcal{O}(D)$, $|f(z)| \leq 1$ for all $z \in D$, and $f(0) = 0$, then $|f'(0)| \leq 1$ and $|f(z)| \leq |z|$.

Equality holds for some $z \in D$ iff $f(z) = \lambda z$ for some $|\lambda| = 1$.

Proof

Let $g(z) = \frac{f(z)}{z}$, $g(0) = f'(0)$. Then $g \in \mathcal{O}(D)$ and $\limsup_{z \to \zeta \in T} |g(z)| \leq 1$, hence the maximum modulus theorem implies that either $|g(z)| < 1$ for all $z \in D$ or $g(z) \equiv \lambda \in T$. In the first case $|f(z)| < |z|$ and $|f'(0)| < 1$, in the second case $f(z) = \lambda z$.

For $a \in D$, let $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$. Then $\phi_a(a) = 0$ and $\phi_a(0) = -a$.

If $|z|=1$ then

$$
|\phi_a(z)| = \left|\frac{z-a}{(1-\overline{a}z)\overline{z}}\right| = \left|\frac{z-a}{\overline{z}-\overline{a}}\right| = 1
$$

Hence $\phi_a: D \to D$. It is easy to see that $\phi_a^{-1} = \phi_{-a}$, and that ϕ_a is an automorphism.

Theorem

Every automorphism of D is of the form $\psi(z) = \lambda \phi_a(z)$ for some $\lambda \in T$.

Proof

If $\psi(0) = 0$ then $(\psi^{-1})'(0) \cdot \psi'(0) = 1$. Since $\psi, \psi^{-1} \in \text{Aut}(D)$ and both are 0 at 0, their derivatives at zero must be ≤ 1 in absolute value. Strict inequality is impossible, so $|\psi'(0)| = 1$ and $\psi = \lambda z$ by the Schwarz lemma.

In general, if $\psi(a) = 0$, consider $\phi = \psi \circ \phi_{-a}$. Then $\phi \in \text{Aut}(D)$, $\phi(0) = 0$, so $\phi(z) = \lambda z$, hence $\psi(z) = \lambda \phi_a(z)$.

Riemann mapping theorem

Theorem

If $\Omega \neq C$ is simply connected (and connected), then Ω is biholomorphic to D.

We shall see that this follows from the fact that every $f \in \mathcal{O}(\Omega)$, f without zeros, has a holomorphic square root. This is true in a simply connected domain since f has a holomorphic logarithm. If $g = \mathrm{e}^{\frac{1}{2}\mathrm{log}f}$, then $g^2 = f$.

 $f : \Omega \to \mathbf{C}$ is biholomorphic onto its image iff f is injective.

The square root property is invariant under biholomorphism.

If $f : \Omega \to \Omega'$ is biholomorphic and has a holomorphic square root, then \sqrt{f} is also biholomorphic. Also, if $w \in \text{Im}(\sqrt{f})$, then $-w \notin \text{Im}(\sqrt{f})$.

Proposition (Koebe)

If $0 \in \Omega \subset D$, $\Omega \neq D$ is connected and has the square root property, then there is a $H \in \mathcal{O}(\Omega)$ such that

- (i) $H(0) = 0, H(\Omega) \subset D$,
- (ii) H is injective,
- (iii) $|H(z)| > |z|$ for all $z \in D$, $z \neq 0$.

Proof

Pick $a \in D \setminus \Omega$.

Let $H = \phi_b \circ \sqrt{z} \circ \phi_a$. Then (i) and (ii) holds. H^{-1} is defined in all of D and is 2-1 (except at $-b$), therefore $|H^{-1}(w)| < |w|$ for all $w \neq 0$, so $|H(z)| > |z|$ for all $z \neq 0$.

Proof of Theorem

We know that Ω has the square root property.

Step 1. To map Ω biholomorphically onto a bounded domain.

Pick $a \in \mathbb{C} \setminus \Omega$ and $g \in \mathcal{O}(\Omega)$ such that $g^2(z) = z - a$. If $D(w, r) \subset g(\Omega)$ (which is open), then $D(-w, r) \cap g(\Omega) = \emptyset$ and

$$
\psi(z) = \frac{1}{g(z) + w}
$$

is biholomorphic in Ω and $|\psi(r)| < \frac{1}{r}$ $\frac{1}{r}$.

For small ϵ , $h(z) = \epsilon(\psi(z) - \psi(z_0))$ is biholomorphic onto $0 \in \Omega_0 \subset D$. Observe that Ω_0 has the square root property.

Step 2. We shall produce a biholomorphic map $\Omega_0 \rightarrow D$ which is "maximal". Let

 $\mathcal{F} = \{f : \Omega_0 \to D : f \text{ is holomorphic, injective, and } f(0) = 0\}$

Let $z_0 \in \Omega_0$, $z_0 \neq 0$ and put

$$
\alpha = \sup_{f \in \mathcal{F}} |f(z_0)| \in (0,1]
$$

and pick $f_n \in \mathcal{F}$ such that $\lim_{n\to\infty} |f_n(z_0)| = \alpha$. By Montel's theorem there is a convergent subsequence, i.e., we may assume $f_n \to f$ u.o.c. Since $f(0) = 0$ and $|f(z_0)| = \alpha > 0$, f is not constant. By corollary of Hurwitz theorem, f is injective, so f is a biholomorphism $f : \Omega_0 \to \Omega_1 =$ $f(\Omega_0) \subset D$. We cannot have $\Omega_1 \neq D$, because by Koebe's theorem there is a $H : \Omega_1 \to D$ injective such that $|H(f(z_0))| > |f(z_0)| = \alpha$, contradicting the definition of α .

It is instructive to read Theorem 1 of section 7.3 in Narasimhan.

Schwarz-Pick and Ahlfors lemma

$$
\phi_a(z) = \frac{z - a}{1 - \overline{a}z}
$$

$$
\phi'_a(z) = \frac{1 - |a|^2}{(1 - \overline{a}z)^2}
$$

$$
\phi'_a(0) = 1 - |a|^2
$$

$$
\phi'_a(a) = \frac{1}{1 - |a|^2}
$$

If $f : D \to D$ is holomorphic and $z \in D$, let

$$
g = \phi_{f(z)} \circ f \circ \phi_{-z}
$$

Then $g(0) = 0$ and

$$
g'(0) = \phi'_{f(z)}(f(z)) \cdot f'(z) \cdot \phi'_{-z}(0) = \frac{1}{1 - |f(z)|^2} \cdot f'(z) \cdot (1 - |z|^2)
$$

We get

Theorem

If $f : D \to D$ is holomorphic, then

$$
\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}
$$

Equality at one point implies that f is an automorphism.

Proof

The last statement follows from $g(w) = \lambda w$, so

$$
f(w) = \phi_{-f(z)}(\lambda \phi_z(w)) \Rightarrow f = \phi_{-f(z)} \circ (\lambda \phi_z)
$$

This formulation is equivalent to the Schwarz lemma. Pick gave an invariant definition of this:

Consider the (Kähler) metric

$$
ds_h^2 = \frac{dzd\bar{z}}{(1-|z|^2)^2}
$$

on D, i.e., for a tangent vector $X \in T_pD$, $p \in D$,

$$
ds_h^2(X) = \frac{|X|^2}{(1-|z|^2)^2}
$$

Then

$$
f^*(ds_h^2) = \frac{|f'(z)|^2}{(1 - |f(z)|^2)^2} dz d\bar{z} \le \frac{dz d\bar{z}}{(1 - |z|^2)^2} = ds_h^2
$$

i.e. $f^*(ds_h^2) \le ds_h^2$

with equality at one point iff f is an automorphism.

We can define length of curves γ : $[a, b] \rightarrow D$ using the metric ds_h :

$$
L(\gamma) = \int_a^b ds_h(\gamma(t), \gamma'(t)) dt
$$

It follows that holomorphic functions decrease the length of curves,

$$
L(f \circ \gamma) \le L(\gamma)
$$

and automorphisms preserve length.

This defines a distance on D by

$$
\rho_h(z_1, z_2) = \inf L(\gamma), \qquad \gamma \text{ curve from } z_1 \text{ to } z_2
$$

Holomorphic functions are distance decreasing, and automorphisms preserve distances. It follows that

$$
\rho_h(z_1, z_2) = \rho_h(0, |\phi_{z_1}(z_2)|)
$$

$$
\rho(0, a) = \int_0^a \frac{dt}{1 - t^2} = \frac{1}{2} \log \frac{1 + a}{1 - a}
$$

so

$$
\rho_h(z_1, z_2) = \frac{1}{2} \log \frac{1 + |\phi_{z_1}(z_2)|}{1 - |\phi_{z_1}(z_2)|}
$$

Theorem

If $f : D \to D$ is holomorphic, then

$$
(1) \ f^*(ds_h) \le ds_h
$$

(2) $\rho_h(f(z), f(w)) \leq \rho_h(z, w)$

Equality in one point in (1) or on one pair $z \neq w$ in (2) implies that f is an automorphism. We call ds_h the Poincaré metric and ρ_h the Poincaré distance.

The curvature of a metric $hdzd\bar{z}$ is defined by

$$
K_h = -\frac{2}{h} \frac{\partial^2}{\partial z \partial \bar{z}} \log h = -\frac{1}{2h} \Delta(\log h)
$$

For $h = \frac{1}{(1-|z|^2)^2}$ we get

$$
K_h = -2(1 - |z|^2)^2 \frac{\partial^2}{\partial z \partial \bar{z}} \log(1 - |z|^2)^{-2} = 4(1 - |z|^2)^2 \frac{\partial^2}{\partial z \partial \bar{z}} \log(1 - z\bar{z})
$$

= 4(1 - |z|^2)^2 \frac{\partial}{\partial z} \frac{-z}{1 - z\bar{z}} = 4(1 - |z|^2)^2 \cdot \frac{-1(1 - z\bar{z}) - (-z) \cdot (-\bar{z})}{(1 - z\bar{z})^2}
= 4(1 - |z|^2)^2 \cdot \frac{1}{(1 - z\bar{z})^2} = -4

If $ds_h = hdzd\bar{z}$ is metric on Ω and $f: U \to \Omega$ satisfies $f'(z) \neq 0$ everywhere, then

$$
f^*(ds_h^2) = |f'(z)|^2 h(f(z)) dz dz
$$

and

$$
K_{f^*(ds_h)}(z) = K_{ds_h}(f(z))
$$

Thus curvature is a conformal invariant.

The metric

$$
ds_a^2 = \frac{4a^2}{A} \frac{dzd\bar{z}}{(a^2 - |z|^2)^2}
$$
 on $D_a = \{|z| < a\}$

has curvature $-A$. The previous theorem generalizes to

Theorem (Ahlfors lemma)

If M is a Riemann surface with metric ds_M^2 with curvature $\leq -B$, where $B>0$, and $f:D_a\to M$ is holomorphic, then

$$
f^*(\mathrm{d} s_M^2) \le \frac{A}{B} \mathrm{d} s_a^2
$$

Proof

Define $u \ge 0$ on D_a by $f^*(ds_M^2) = u ds_a^2 = u(z) \frac{4a^2 dz d\bar{z}}{A(a^2 - |z|^2)^2}$. For $r \le a$, u_r is defined by $f^*(ds_M^2) = u(s)$ $u_r{\rm d}s_r^2$ on $D_r.$ So $u=u_a$ and

$$
u_r(z) = u(z) \frac{a^2 (r^2 - |z|^2)}{r^2 (a^2 - |z|^2)}
$$

So $u_r \to u$ when $r \to a$. It is therefore sufficient to prove that $u_r(z) \leq \frac{A}{B}$ for $z \in D_r$.

By the formula above, $u_r(z) = 0$ when $|z| = r$. If $u_r(z) \equiv 0$ we are done. Otherwise, u_r has a maximum at some $z_0 \in D_r$. Then f defines local coordinates around z_0 , i.e., there is a neighborhood U of z_0 with $f'(z) \neq 0$ for $z \in U$ and we can compute the curvature of ds_M^2 by computing it in U.

We have

$$
f^*(ds_M^2) = u_r ds_r^2 = u_r(z) \frac{4r^2 dz d\bar{z}}{A(r^2 - |z|^2)^2} =: h(z) dz d\bar{z}
$$

so

$$
K_h = -\frac{2}{h} \frac{\partial^2}{\partial z \partial \bar{z}} \log h = -\frac{2}{h} \frac{\partial^2}{\partial z \partial \bar{z}} \left(\log u_r + \log \frac{4r^2}{A(r^2 - |z|^2)^2} \right) = -\frac{2}{h} \left(\frac{\partial^2}{\partial z \partial \bar{z}} \log u_r + \frac{2r^2}{(r^2 - |z|^2)^2} \right)
$$

$$
= -\frac{2}{h} \frac{\partial^2}{\partial z \partial \bar{z}} \log u_r - \frac{A}{u_r} \le -B
$$

Hence $\frac{2}{h}$ $\frac{\partial^2}{\partial z \partial \bar{z}} \log u_r \geq B - \frac{A}{u_r}$, but $\frac{\partial^2}{\partial z \partial \bar{z}} \log u_r(z_0) = \frac{1}{4} \Delta \log u_r(z_0) \leq 0$ since z_0 is a maximum. This gives $u_r(z_0) \leq \frac{A}{B}$.

Which M can have a metric with negative curvature?

1. C does not have such at metric.

Proof

If $\mathrm{d} s_0^2$ is such a metric, let $f: D \to \mathbf{C}$ be defined by $f(z) = az$. Then

$$
(f^*ds^2_{\mathbf{C}})(0) = |a|^2 ds^2_{\mathbf{C}}(0)
$$

Hence no such inequality can hold. The metric $(1 + |z|^2)dzd\bar{z}$ has curvature $H = -\frac{2}{1 + |z|^2}$ and is complete.

- 2. $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$ does not have such a metric, since $f(z) = e^z$ is a covering $\mathbf{C} \to \mathbf{C}^*$, hence if \mathbf{C}^* had a metric with negative curvature, so would C. The metric $\frac{dzd\bar{z}}{\log(1+|z|^2)}$ has curvature $K = -\frac{2}{(1+|z|^2)^2}$ $\frac{|z|^2}{\log(1+|z|^2)} - 1$ > 0 and is complete.
- 3. The upper half plane C^+ has such a metric since it is biholomorphic to D. A biholomorphic map is $f(z) = \frac{z-i}{z+i}$ with $f'(z) = \frac{2i}{(z+i)^2}$ and

$$
f^* \left(\frac{dz d\bar{z}}{(1 - |z|^2)^2} \right) = \frac{|f'(z)|^2}{(1 - |f(z)^2)^2} dz d\bar{z} = \frac{4}{|z + i|^2 \left(1 - \frac{|z - i|^2}{|z + i|}\right)^2} dz d\bar{z}
$$

$$
= \frac{4}{(|z + i|^2 - |z - i|^2)^2} dz d\bar{z} = \frac{4 dz d\bar{z}}{((x^2 + (y + 1)^2) - (x^2 + (y - 1)^2))^2}
$$

$$
= \frac{4 dz d\bar{z}}{(4y)^2} = \frac{1}{4y^2} dz d\bar{z}
$$

4. The punctured disc D^* has such a metric. We have a covering map $p: C^+ \rightarrow D^*$ given by $p(z) = e^{iz}$. This has local inverses $p^{-1}(w) = \frac{1}{i} \log w$ and

$$
(p^{-1})^* \left(\frac{dzd\bar{z}}{4y^2}\right) = \frac{|(p^{-1})'(w)|^2 dw d\bar{w}}{4(\text{Im } p^{-1}(w))^2} = \frac{dw d\bar{w}}{4|w|^2 (\log |w|)^2} = \frac{dw d\bar{w}}{|w|^2 (\log |w|^2)^2} =: ds_{D^*}^2
$$

This metric is also complete. If $0 < r < R < 1$, then

$$
\rho_{D^*}(r, R) = \int_r^R \frac{dt}{t(-\log t^2)} = -\frac{1}{2} \int_r^R \frac{dt}{t \log t} = -\frac{1}{2} \log(-\log t) \Big|_r^R
$$

$$
= \frac{1}{2} \left(\log \left(\log \frac{1}{r} \right) - \log \left(\log \frac{1}{R} \right) \right) \to \infty
$$

when $r \to 0$ or $R \to 1$. The circle $\gamma(t) = re^{it}$ has length

$$
\ell(\gamma) = \int_0^{2\pi} \frac{r \mathrm{d}t}{r(-\log r^2)} = \frac{\frac{\pi}{2}}{\log \left(\frac{1}{r^2}\right)} \to 0
$$

when $r \to 0$.

5. The doubly punctured plane $C \setminus \{z_0, z_1\}$ has a metric $h(z) dz d\bar{z}$ with curvature bounded above by a negative constant.

Proof

We may assume $z_0 = 0$, $z_0 = 1$. We shall prove that

$$
h(z) = \frac{(1+|z|^{\alpha})}{|z|^{\gamma}} \cdot \frac{(1+|z-1|^{\alpha})}{|z-1|^{\gamma}}
$$

has the required property for suitable α and γ .

The expression for the Laplacian of a radial function $f(r)$ is

$$
\Delta f(r) = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r}
$$

(check this!). This gives

$$
\Delta \left(\log \frac{(1+r^{\alpha})}{r^{\gamma}} \right) = \Delta(\log(1+r^{\alpha}) - \gamma \log r) = \Delta(\log(1+r))
$$

$$
\frac{\partial}{\partial r} \log(1+r^{\alpha}) = \frac{\alpha r^{\alpha-1}}{1+r^{\alpha}}
$$

$$
\frac{\partial^2}{\partial r^2} \log(1+r^{\alpha}) = \alpha \frac{(\alpha-1)r^{\alpha-2}(1+r^{\alpha}) - r^{\alpha-1} \cdot \alpha r^{\alpha-1}}{(1+r^{\alpha})^2} = \frac{\alpha r^{\alpha-2}}{(1+r^{\alpha})^2} (\alpha-1-r^{\alpha})
$$

Hence

$$
\Delta \log(1 + r^{\alpha}) = \frac{\alpha r^{\alpha - 2}}{(1 + r^{\alpha})^2} (\alpha - 1 - r^{\alpha}) + \frac{1}{r} \cdot \frac{\alpha r^{\alpha - 1}}{1 + r^{\alpha}} = \frac{\alpha r^{\alpha - 2}}{(1 + r^{\alpha})^2} ((\alpha - 1 - r^{\alpha}) + (1 + r^{\alpha}))
$$

$$
= \frac{\alpha^2 r^{\alpha - 2}}{(1 + r^{\alpha})^2}
$$

This gives

$$
K_h = -\frac{1}{2h}\Delta(\log h) = -\frac{\alpha^2}{2} \frac{|z|^\gamma |z - 1|^\gamma}{(1 + |z|^\alpha)(1 + |z - 1|^\alpha)} \left(\frac{|z|^{\alpha - 2}}{(1 + |z|^\alpha)^2} + \frac{|z - 1|^{\alpha - 2}}{(1 + |z - 1|^\alpha)^2}\right)
$$

Hence $K_h(z) < 0$ for all $z \neq 0, 1$.

Assuming $\gamma > 0$ and $0 < \alpha < 2$, we have for $z \to 0$:

$$
K_h(z) \sim -\frac{\alpha^2}{2} \frac{|z|^{\gamma + \alpha - 2}}{2} \to -\infty \qquad \text{if } \gamma + \alpha - 2 < 0 \tag{1}
$$

This also gives $K_h(z) \to -\infty$ when $z \to 1$. If $|z| \to \infty$, we have

$$
K_h(z) \sim -\frac{\alpha^2}{2} \frac{|z|^{2\gamma + \alpha - 2}}{|z|^{4\alpha}} = -\frac{\alpha^2}{2} |z|^{2\gamma - 3\alpha - 2} \to -\infty \quad \text{if } 2\gamma - 3\alpha - 2 > 0 \tag{2}
$$

We see that $\gamma = 1.6$ and $\alpha = 0.2$ will satisfy both these inequalities. This implies that K_h is bounded above by a negative constant,

$$
K_h(z) \leq -k
$$

for all $z \neq 0, 1$.

This metric is actually sufficient to prove Picard's big theorem to follow. The metric is not complete, however. The points 0, 1, ∞ are all at finite distance and this cannot be fixed by using different α and y. We shall add a function f to h to make it complete. This requires a result on the curvature K_{h+f} . The following lemma is used to do this:

Lemma

Let ϕ and ψ be two strictly positive C^2 functions in some open set in C. Then

$$
\phi\Delta(\log\phi) + \psi\Delta(\log\psi) \le (\phi + \psi)\Delta(\log\phi + \psi)
$$

Proof

A small computation gives

$$
\phi \Delta(\log \phi) = \Delta \phi - \frac{4}{\phi} \left| \frac{\partial \phi}{\partial z} \right|^2
$$

Another computation then gives

$$
(\phi + \psi)\Delta(\log \phi + \psi) - \phi \Delta \log \phi - \psi \Delta \log \psi = \frac{4}{\phi \psi(\phi + \psi)} \left| \phi \frac{\partial \psi}{\partial z} - \psi \frac{\partial \phi}{\partial z} \right|^2 \ge 0
$$

which proves the inequality.

In terms of curvatures, the inequality is given by

$$
(\phi + \psi)^2 K_{\phi + \psi} \le \phi^2 K_{\phi} + \psi^2 K_{\psi}
$$

Hence, if we know that $K_{\phi} \leq -k_1$ and $K_{\psi} \leq -k_2$, we get

$$
K_{\phi+\psi} \le -\left(\frac{\phi^2}{(\phi+\psi)^2}k_1 + \frac{\psi^2}{(\phi+\psi)^2}k_2\right) = -\left(\frac{k_1k_2}{k_1+k_2} + \frac{(\phi k_1 - \psi k_2)^2}{(\phi+\psi)^2(k_1+k_2)}\right) \le -\frac{k_1k_2}{k_1+k_2}
$$

We shall now construct f. The metric will be given by $h + cf$ for some small constant c. Near 0, 1, and ∞ , f will be the function of example 4. This means that $K_f = -4$ near these points, and completeness of $(h + cf)dzd\bar{z}$ follows immediately. To construct f, pick first a C^{∞} cutoff function $\mu(z)$ such that $\mu\equiv 1$ in $\left\{|z|\leq \frac{1}{4}\right\}$ and $\mu\equiv 0$ in $\left\{|z|\geq \frac{1}{3}\right\}$. Then let

$$
s(z) = \frac{\mu(z)}{|z|^2 (\log |z|^2)^2}
$$

 f is then given by

$$
f(z) = s(z) + s(z - 1) + 1/|z|^4 s\left(\frac{1}{z}, \frac{1}{z}\right)
$$

Notice that the metric $\frac{1}{|z|^4} s\left(\frac{1}{z},\frac{1}{z}\right)dzd\bar{z}$ in $\{|z|>4\}$ is the pullback of $s(z)dzd\bar{z}$ under the map $\frac{1}{z}$.

In $\Omega = \left\{ |z| < \frac{1}{4} \right\}$ $\frac{1}{4}$ or $|z - 1| < \frac{1}{4}$ $\frac{1}{4}$ or $|z| > 4$ we have $K_f = -4$ and $K_{cf} = -\frac{4}{c}$. The inequality above then gives

$$
K_{h+cf} \le -\frac{\frac{4}{c} \cdot k}{\frac{4}{c} + k} = -\frac{4k}{4 + ck} < -\frac{4k}{4 + k} < 0
$$

In the compact set $C \setminus \Omega$ we apply the first inequality with $\phi = (1 - c)h$ and $\psi = c(h + f)$ to get

$$
K_{h+cf} \le \frac{1}{(h+cf)^2} \left((1-c)^2 h^2 K_{(1-c)h} + c^2 (h+f) K_{c(h+f)} \right)
$$

=
$$
\frac{1}{(h+cf)^2} \left((1-c) h^2 K_h + c(h+f) K_{h+f} \right)
$$

$$
\le \frac{1}{(h+cf)^2} \left(-(1-c) h^2 k + c(h+f) K_{h+f} \right) \to -k
$$

uniformly as $c \to 0$ by compactness. Hence for small c, K_{h+cf} is bounded above everywhere by a negative constant. This completes the construction.

Comment

The modular function $\lambda(z)$ is a covering map $\lambda : C^+ \to C \setminus \{0, 1\}$ whose covering transformations all preserve the metric $\frac{1}{4y^2}dzd\bar{z}$. Hence, as in example 4, we may push this metric down to ${\bf C}\setminus\{0,1\}$ to obtain a complete metric with constant negative curvature -4 . The construction of the modular function is quite complicated.

We also get Ahlfors lemma for maps from D^* . (We have put $A = 1$.)

Theorem (Ahlfors lemma for D^*)

If M is a Riemann surface with metric ds_M^2 with curvature $\leq -B$, with $B > 0$, and $f : D^* \to M$ is holomorphic, then

$$
f^*(\mathrm{d} s_M^2) \le \frac{4}{B} \, \mathrm{d} s_{D^*}^2
$$

Proof

We have ${\rm d} s_{D^*}^2=(p^{-1})^*{\rm d} s_D^2.$ The map $f\circ p:D\to M$ is holomorphic, so by the Ahlfors lemma for D we have

$$
(f \circ p)^*(\mathrm{d} s_M^2) = p^*\left(f^*(\mathrm{d} s_M^2)\right) \le \frac{4}{B} \mathrm{d} s_D^2
$$

which gives

$$
f^*(ds_M^2) = (p^{-1})^* \left(p^* \left(f^*(ds_M^2) \right) \right) \le (p^{-1})^* \left(\frac{4}{B} ds_D^2 \right) = \frac{4}{B} ds_{D^*}^2
$$

Theorem

Suppose $\Omega \subset \mathbb{C}$ has a metric with curvature $\leq -B$. Then

- (a) There is no nonconstant holomorphic map $f : C \to \Omega$.
- (b) No holomorphic function $f : D^* \to \Omega$ can have an essential singularity at 0.

Proof

(a) Restricting to a disc of radius a (with $A = 1$), the Schwarz lemma gives

$$
f^*(ds_\Omega^2) \le \frac{1}{B} ds_\alpha^2 = \frac{1}{B} \frac{4a^2}{(a^2 - |z|^2)^2} dz d\bar{z} \to 0
$$

when $a \to 0$. Since $f^*(\text{d}s_\Omega^2) = |f'(z)|^2 h(f(z)) \text{d}z \text{d}\bar{z}$, this gives $f'(z) = 0$, so f is constant.

To prove (b), we use the following

Lemma

If $f \in \mathcal{O}(D^*)$ has an essential singularity at 0, then $f(D^*)$ is dense in C.

Proof

If not, there is $a \in \mathbf{C}$ and $\delta > 0$ such that $|f(z) - a| \geq \delta$ for all $z \in D^*$. But then $g(z) = \frac{1}{f(z) - a}$ satisfies $|g(z)| \leq \frac{1}{\delta}$, hence has a removable singularity at 0. But then $f(z) = \frac{1}{g(z)} + a$ either has a pole or a removable singularity at 0.

To prove (b), notice that if $f D^* \to \Omega$ has an essential singularity at 0, then $f(D_r^*)$ is dense in C for all $r > 0$, hence there is a sequence $z_n \to 0$ such that $f(z_n) \to p \in \Omega$. If ρ is the metric defined by ds_{Ω} , i.e.,

$$
\rho(z,w) = \inf \left\{ \int_0^1 ds_\Omega(\gamma'(t)) dt : \gamma : [0,1] \to \Omega, \gamma(0) = z, \gamma(1) = w \right\}
$$

and $\bar{B}(p,r) \subset \Omega$, then $\inf\{\rho(p,z)\colon |p-z|=r\}=\delta>0$. If $\rho\big(p,f(z_n)\big)<\frac{1}{2}$ $\frac{1}{2}\delta$ and γ is a curve of length $\leq \frac{1}{2}\delta$ starting at $f(z_n)$, then $\gamma\subset B(p,r)$, hence $|\gamma(t)|\leq |p|+r=C$ for all t.

We may assume that $r_n = |z_n|$ decrease strictly to zero. Since $f(z_n) \to p$ there is N such that $\rho\big(p, f(z_n)\big) < \frac{1}{2}$ $\frac{1}{2}\delta$ for $n \geq N$.

Let γ_n be the circle $|z| = r_n$. Then

$$
L(f \circ \gamma_n) \le \frac{1}{\sqrt{B}} L(\gamma_n) \le \frac{2\pi}{\sqrt{B} \log \frac{1}{r_n^2}} \to 0
$$

when $n \to \infty$. Hence for large n , $L(f \circ \gamma_n) \leq \frac{1}{2} \delta$. This implies that $|f(z)| \leq C$ for all z with $|z| = r_n$.

This means that $|f(z)| \leq C$ for all z in the annuli $A_n = \{r_{n+1} \leq |z| \leq r_n\}$ and therefore in a punctured disc D_r . Hence f has a removable singularity at 0.

Theorem

- (a) Picard's small theorem: A nonconstant entire function cannot omit more than one value.
- (b) Picard's big theorem: If a holomorphic function has an essential singularity at a , then f takes all complex values except possibly one in any punctured disc around a .

Proof

- (a) If f omits two values z_0 and z_1 then $f : \mathbb{C} \to \Omega = \mathbb{C} \setminus \{z_0, z_1\}$. Since Ω has a metric with curvature $\leq -B$, this follows from 1.4 (a).
- (b) Follows in the same way from 1.4 (b).

We will now use the complete metric on $C \setminus \{z_0, z_1\}$ constructed in example 5 above.

Theorem (Schottky's Theorem)

Given $R_0 > 0$ and $r < 1$, then there is a constant $M = M(R_0, r)$ such that if $f : D \to \mathbb{C} \setminus \{z_0, z_1\}$ is holomorphic and $|f(0)| \le R_0$, then $|f(z)| \le M$ for all z with $|z| \le r$.

Proof

Let γ be the curve $\gamma(t) = tz$. By Ahlfors lemma, $L(f \circ \gamma) \leq \frac{1}{\sqrt{B}} L(\gamma) = \frac{1}{2} \log \frac{1+|z|}{1-|z|} \leq \frac{1}{2} \log \frac{1+r}{1-r}$. It follows that $f(z)$ must be bounded since $d_{\Omega}(f(0), w) \rightarrow \infty$ as $|w| \rightarrow \infty$.

It follows that $f(z)$ must also stay away from z_0 and z_1 , i.e., $|f(z) - z_0| \ge M_0$ and $|f(z) - z_1| \ge M_1$.

The same proof can be used to prove bounds on maps $f : D^* \to \mathbb{C} \setminus \{z_0, z_1\}$ on either annular regions or circles. Here is the circle version:

Theorem (Schottky's Theorem in D^* **)**

Given $R_0 > 0$ and $r < 1$, there is a constant M such that if $F : D^* \to \mathbb{C} \setminus \{z_0, z_1\}$ is holomorphic and $f(z) \leq R_0$ for some z with $|z| \leq r$, then $|f(\zeta)| \leq M$ for all ζ with $|\zeta| = |z|$.

Proof

We use the curve $\gamma(t) = ze^{it}$, $0 \le t \le 2\pi$, whose length is

$$
\frac{\pi}{2\log\left(\frac{1}{|z|^2}\right)} \le \frac{\pi}{2\log\left(\frac{1}{r^2}\right)}
$$

and Ahlfors lemma for D^* .