MAT4800 - Complex Analysis

Some real analysis

o and O-notation
Suppose f is defined in a neighborhood V of 0 € R™, f : V — R™.

f= o(lxlk) iff lim,_,q ||f;ETk)| = 0. (The case k = 0 is called 0(1).)

f= O(lek) iff 3C > 0 such that |f(x)| < C|x|* for x small.

Definition
f is differentiable at a if there is a linear map L : R™ - R™ such that

L @40~ f@) LI _

x~0 x|

Equivalently, f(a + x) = f(a) + L(x) + o(|x|).

L is called the derivative of f at a, and is denoted by df;.

If f is differentiable at a, then the partial derlvatlves — (a) exist and satisfy

wwi@%m%
1

oh . oK
dxq dxy,
df = : :
dxq dxy,

The last matrix is called the Jacobian matrix.

6 .
If the partial derivatives a—i’ exist in a neighborhood of a and are continuous at a, then f is
i

differentiable at a.

C(Q) ={f:Q- C;fiscontinuous}
61(9)—{f Q-C; EC(Q)L—I }
C*(Q) = {f : Q - C;all partial derivatives of order < k are continuous}

Order does not matter



a = (aq, ..., ;) € N™ multiindex
la| = a; + -+ + a,, order of the multiindex.

alalf
DOf = —(—F——%~
f 6x‘1116x;‘2 ...6xflln

C(Q) =n;, Ck(Q)

Complex function of a complex variable, 0 c C.
f:Q->Cz=x+iy, f=u+iv.

f@) =fly) =ulxy) +iv(x,y)
As a real function f : O —» R%, where Q c R?, f = (u,v).

let A = a +if € C = R%. What is df (1)?

Z_Zg_u a Z_Z‘”Z_uﬁ ou  ou v ov of  of
D=5, v |@)=|ov ov |=Gearah)+iGara,8) =5+,
ox 0y O0x dy
We want to express this in terms of A.
a=Re(/1)=%(/1+/T),,B=Im(/1)=%(/1—)f)
W =30+ D54 70D =3 ()14 G 15 =1+ 3

The first term is complex linear, L(cA) = cL(1), the second term is complex antilinear, L(cA) =

cL(A).
o oo Of
We have that df is C-linear |ff£ =0

a . . . . a .0
a—; = 0 is called the Cauchy-Riemann equations, i.e., é = —1%. On real form, we get

Ju _ ov ou B ov
ax ady’ dy  ox
Exercise

a 7]
a3 9 .. S |
(a) Show that Py and . satisfy Leibniz rule!

(b) Suppose L : C™ —» C™ is R-linear. Show that L is C-linear iff L(iv) = iL(v) forallv € C", a

that L is C-antilinear iff L(iv) = —iL(v) forallv € C™.
(c) Show that every R-linear L : C™ — C™ splits uniquely in a C-linear and a C-antilinear part

L=Lc+Lg

nd



where

Lc(w) = %(L(v) —iL(v)), Lg= %(L(v) +iL(iv))

Definition
f + Q - Cis called C-differentiable at a if

I fla+2) - f(a)
im

A-0 A

exists. This is denoted by f'(a).

f is C-differentiable at a iff f(a + 1) = f(a) + f'(a)A + o(|A]) iff f is differentiable at a and df, is
C-linear.

Definition
Let Q be an open subset of C. We say that a complex function f(z) defined in Q is holomorphic if
f € C1(Q) and f is complex differentiable at all points in £, i.e., f satisfies the Cauchy-Riemann

equations.
The set of holomorphic functions is denoted by O ().

It is not necessary to assume f € C1(Q) (this follows automatically when f is C-differentiable), but it
makes things easier, because we can use Green’s theorem in the plane.

Green’s theorem in the plane
If & cc R? is an open set with piecewise smooth boundary dQ and M, N are two C* functions in
Q=0QuUaQ,then

Mdx + Nd ﬂ. (aN aM)d d
x = — ——)dx
a0 Y a\dx dy Y

Remarks
1. 0Qis oriented such that ( lies to the left of 91).

2. It does not matter if M and N are real or complex valued.
3. fan Mdx + Ndy is computed by parametrizing 0Q by (x(t),y(t)), a<t<b.Then

b
x4 Ny = | M0,y 0D (0 + Nx(©), y0)y (O

i.e.dx = x'(t)dt and dy = y'(t)dt.



If y © Cis a curve parametrized by z(t) = x(t) +iy(t),a <t < b, and f is a complex function on y,
then the complex line integral is defined by

b b
[z = [ 1@ +iv@)z 0t = [ (0 + i)' @ + 1y ©)de = | fax +isay.
4 a a 4

Ify = dQis as in Green’s theorem, we get

; fdz—ﬂ. 1%—ﬁ dxdy —21ﬂ. —dxdy
Q

(Complex form of Green’s theorem.)

Remarks
1. If f is holomorphic, we get Cauchy’s theorem,

fdz=0
E1o)

2. Ifyisthecircle z = { + rel?, then dz = ire'd6 and

@ (GAre?) o o [T i0
yZ—(dZ_J;) =T -ire dG—J; 1f({+re )d9

= 2mi - (average value of f on y) = 2mif ({)
3. Integral of a gradient; If y is a curve from a to b and f is C* on y, then

f(b) — f(a) —J.—dx afd Z—fdz+a—}idz
If f is holomorphic, then f(b) — f(a) = fyf (z)dz.
If |[f'(z)] < M ony, then |f(b) — f(a)| < M£(y).

Cauchy-Stokes’ formula
Assume that f is Clin Q, as in Green’s theorem, and let ¢ € Q. For small r, let Q,, = Q\ ﬁ(a,r).
Then 8Q, = QU dD(a,r), where dD(a,r) is oriented clockwise.

©

Applying the complex form of Green’s theorem to j;(TZ; in Q,., we get

f(2) (" i ([ 9f/0z
dz—1J;) f((+re9)d9—21fnrz_€dxdy

90Z—¢

The second integral will - 2mif ({) as r — 0, and the RHS will » 2iffnaz%‘zz_dxdy asr = 0. (In the

limit to the right, we have used the fact that iy has a finite integral over (), i.e., is integrable, see

Lemma 2 on page 99 of Narasimhan). This proves the following
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Theorem
If fis Ctin Qand { € Q then

- [ 12 __ﬂwva

2miJyq 2z —

In particular, if f is holomorphic, we get Cauchy’s formula

@ =—[ 12,

2miJaqz — ¢

Another particular case is if f € C1(C) has compact support, then

f/az

f@)———f dxdy

forall { € C.

Some consequences of the integral formulas

The first integral in the previous theorem is defined for all f € C(9Q). It is called the Cauchy integral
of f. It is actually holomorphic for any curve. The following result follow immediately by
differentiating under the sign of integration.

Proposition
Let y < C be a piecewise smooth (C1) curve and let f € C(y). Then the function

i) =— [ 12

2mi), z—=¢

dz

is holomorphic in C\ y. Moreover, f is C*-smooth, f'is holomorphicin C\ ¥, and

f(2)
x) -
fk()_ZmJ.(z {)k+1 dz

Definition

We say that a sequence of functions {f;, };=1 on Q converges uniformly on compacts in Q if there is a
function f such that for any compact set K c Q and € > 0 there is an integer N (= N(K, €)) such
that

|f,(z) — f(z)| < eforallm = N and z € K.

Proposition
Let f, € O(Q) and assume that f;, = f uniformly on compacts in Q. Then f € 0(Q) and fn(k) - K
uniformly on compacts in Q1 for any k € N.

Proof

Enough to prove on closed discs E(a, r) < Q. This follows since f is given by an integral formula in
D(a,r) as in the previous proposition.



Definition
We say that a function f on Q is analytic if f is given by a power series in all discs in Q, i.e. if
D(a,r) c Qthen

[ee]

f(z) = 2 cn(z—a)" forallz € D(a,r)

n=0

Proposition
If f is analytic in Q then f € 0(Q).

Proof
Enough to prove that f is holomorphic in some disc D(a,t) for all a € Q. For simplicity of notation,
assume a = 0 and that D, = {|z| <r} c Q. If 0 <t <s <r, then there exists M > 0 such that

|cjsj| < M forallj € N. Then for all z € D, we have
= T <050
D57 = ) lesl|(5) =m ) (
Jj=0 Jj=0 j=0

The geometric series on the right converges. This shows that f is the limit of a sequence of

polynomials on Et, hence f is holomorphic in D; by proposition 3.2.

Proposition (Cauchy estimates)
If f € 0(D,) n C(D,) then

k!'fllap
® o) « —L 2
rOo < —>
Proof
By (3.2) we have that
k! z kU| 2™ f(ret . LAl
|f(k)(0)| <— f]&_z dz| = — f(.—k)lire‘t dt| < #
21 |Jop, 2 2m (rett)k+ r

Corollary (Simple Maximum principle for a disc)
Let f € O(D,) N C(ET). Then |[£(0)| < lIfllap,-

Theorem (Montel)
Let Q0 c C be an open set, and F be a family of holomorphic functions on Q with the property that
for each compact set K © () there exists a constant Cx > 0 such that ||f||x < Ck for all f € F. Then

for any sequence {f]} c F there exists a subsequence {fn(]-)} such that f,;) - f € 0(Q)

jeN
uniformly on compact subsets of Q.

Proof

Let A € Q be a dense sequence of points, and let {f]} c F be a sequence such that |fj(a)| is

convergent for all a € A. We claim that the sequence {f]} converges to a holomorphic function f

uniformly on compact subsets of (. Choose an exhaustion of Q0 by compact sets K; Kj°+1. For any j



we have that IIfL-IIK]. < M; for all i. By the Cauchy estimates there is a constant N; such that ||fl-'||Kj <
N;j forall i.

Now we fix K; and show that {fi} IKJ. is a Cauchy sequence. Note that by the Mean Value Theorem

we have for z,z" € K;,1 that |f;(2) — fi(z")| < Nj;1|z — 2'|. Given any € > 0 we may choose a finite
€

subset ACK]-H of A such that for any z € K;, there exists an a € 4 with |z —a| < ~
j+1

Furthermore, since {f;} |; is Cauchy, we may find N € N such that |f,(a) — f,(a)| <§ for all

¢,m = N.So given any z € K; we may pick a € A to see that

1122 = fn (D] < 1fo(@) = fo@] + 1@ = fn (@] + fin(@) = fin(D] < 2Njilz = al +5 < e
forall £,m > N, hence {f;} Ig; is a Cauchy sequence.

Theorem
Let f € 0(Q) and D(a,7) € Q. Then

F@ =) @ -a)
7=0
in D(a,r), where
R B ACON
7 2milyp, (2 - a)t
Proof
J
We may assume a = 0. Note that ﬁ = z@+2) = i ;?020 (g) as long as |C| < |z|, and plug this into

Cauchy’s integral formula.

Proposition (Identity principle)
Let f € O(Q), where Q c C is connected. If Z(f) = {z € Q: f(2) = 0} has non-empty interior, then
f =0o0nAQ.

Proof
For each a € Q we have that f(z) = X2, cj(a)(z - a)’ on a small enough disk centered at a. By
the formula above we see that c;(a) is continuous in a for all j. So the set of points {a € Q:cj(a) =

0forallj e N} is non-empty, open, and closed in Q.

Proposition
Let f € O(Q). Then Z(f) is discrete unless f is constantly equal to zero.

Proof
We assume that f is not constant. Near a point a € Q with f(0) =0 we have that

f(2) =Xiikci(z— a)/, k >1,c, # 0, sowe can write f(z) = (z — a)k(ck +X5e ke j(z — a)j).

Definition
Let 0*(Q) ={f € 0(Q): f(2) # 0 forall z € Q}.



Theorem

Let D = D(a,r) be a disc. If f € O(D), then f has a holomorphic antiderivative, i.e., there is
F € O(D) such that F' = f. If f € 0*(D) then f has a holomorphic logarithm and m-th root of any
order.

Proof
We know that f = Y>_yc,(z—a)"inD.LetF = Z;’{LO% (z— )™

If f € 0*(D), then f? € O(D) and there is F € O(D) such that F' = f7 Then g = fe™F € 0*(D) and

g =feF+fef (— f7) =0, hence g =c # 0, a constant. Pick a € C such that e® = c. Then

1
f =ef*®, so G = F + a is a holomorphic logarithm and em® is a holomorphic m-th root for any

m € N.

Remark
This result is true in any simply connected domain ().

Theorem
If Qis a domain and f € 0(Q) is nonconstant, then f(Q) is open.

Proof
Pick a € Q. We have to show that f(Q) contains a neighborhood of f(a). We may assume that

a =0 = f(a).Q contains a disc D = D(0,7), and f is not constant in D. If f(D) does not contain a

neighborhood of 0, there exist a; — 0 such that f(z) # a; in D, i.e. g; = f; eO). Ifr' <ris

iy
such that f(z) # 0 for all z with |z| = r’, then |gj| is uniformly bounded on this circle, but |gj(0)| =

ol — 00 as j = oo. This contradicts the maximum principle on a disc.
a
j

Corollary (Maximum principle)
If Qis adomain, f € 0(Q) and a € Qis such that |f(z)| < |f(a)| forall z € Q, then f is constant.

Proof
This follows from Open Mapping Theorem.

Proposition (Hurwitz’ theorem)
If Qis a domain, f; € 0*(Q), and f; — f uniformly on compacts then either f € 0*(Q) or f = 0in Q.

Proof

If f(a) =0and f £ 0, pick v > 0 such that f(z) # 0 when |z — a| = r. Then |f(2)| = § > 0 when

|z —al| =, hence |f](z)| > %6 when |z — a| = r for sufficiently large j. Therefore g; = fl € 0(Q)
j

and |gj(z)| < %when |z — al = r. But this is impossible, since g;(a) = }% — o when j - oo,
j

Definitions

Punctured discaround a: D*(a,r) ={z€C: 0< |z—a| <Tr}.

IfaeQandf e0(Q\{a}), we say that f has a pole of order k € N at a if in some punctured disc
around a we have



9(2)

F@) =
where g(z) # 0in D*(a,r). We then have
f@) = cqlz= )+ ez - 4= Y ez —a)"
n=-k
in D*(a,r).
The residue of f at a is defined by
res,f = c_q
In D*(a,r) we then have
d N n n+1
f(Z)_ dz 2n+1(z—a)
n=-k
n*—1

Hence for r’ < r we have
J. f(z)dz = 2mic_, = 2mires,(f)
|z—a|=1'

Proposition
If O cc C has piecewise smooth C! boundary, f € 0(Q) n Cl(ﬁ), except for poles aq, ...,ay € Q,
then

(This is called the residue theorem).

Proof
Let D4, ..., Dy be disjoint small discs around ay,..,ay and put Q' = Q\U 1D Then Cauchy’s

theorem gives

N
1
0= 5 : —2 il 2

2mi 6QIf T 2mi aﬂf z 2mi ~ 2mi fdz resaf

j=1

Definition
We say that f € O(Q \ {a}) has order k at a if f(z) = (z — a)*g(z), where g € O(Q) and g(a) #
0.

If kK > 0 then we call a a zero of order k. If kK < 0 then a is a pole of order —k.

It follows thatf—’ =X 4 g near a, and hence res L k = ord,f
f z-a g ’ r ar



Corollary
If O cc Cis as above, f € 0(Q) n C1(Q) with f(z) # 0 on 3Q, then

faﬂ?dz = ZHiZ ord,f

a€eql
If f only has simply zeroes and poles, this is

= #fzeroes — #poles

This is also called the argument principle.

A
aQ
; 14
\
>
f f—dz = f —dz = 2mi - (winding number of y around zero)
a0 f Y z

This is still true if f has poles in Q.

If f(z) # won dQ, i.e., w € ¥, we have that the number of solutions of the equation f(z) = win Q,
counted with multiplicity, is given by
1 f' 1 dz

dz =—
2mi yZ—Ww

— = winding number of y around w

2milaf —w

In the figure above, f'(z) = w has two solutions in the component of zero of C\ y, none in the
unbounded component, and one in each of the remaining components.

Theorem (Rouché’s theorem)
Let Q cc Cbeas above, f,g € 0(Q) N Cl(E) such that |f(z) — g(2)| < |f(2)] for all z € 3Q. Then

f and g have the same number of zeroes in (, i.e.,

Z ord,f = Z ord,g

A0) z€eQ

Proof
Clearly f has no zeroes on d() and |1 - %

0dQ and therefore has a holomorphic logarithm near 9. We have

<1londQ,soF = %takes values in the disc D(1,1) on

10



: f? g _f
(logF) =—= =— =
f g f
9
Hence
0= (logF)’dz=J. g _ f—=20rdzg—20rdzf
20 009 Joof & T
Proposition

If Q1 is a domain, f; € 0(Q) are injective for all j, and f; — f uniformly on compacts, then either f is

injective or f is constant.

Proof

Assume that a,b € Q and that f(b) = f(a). Let g;(2) = fj(2) — fj(a). Then g; € 0" (Q\ {a}) and
gj = f — f(a) uniformly on compacts. Then either f — f(a) is constant, which must be zero, so
f = f(a), or f — f(a) is without zeroes, which contradicts the fact that f(b) = f(a).

Proposition
If f€0(Q) is injective, then f'(z) # 0 for all z € Q and f has a holomorphic inverse f~1 €

o(f ().

Proof
We may assume that z = 0 and that f(z) = 0. We shall show that f has a zero of order 1 at 0. We
have that f(z) = zFg(z) with g € 0(Q), g(0) # 0, k € N. In a disc D,,, g has a holomorphic kth

root, i.e., there is h € O(D,) with g(z) = h(2)* and h(0) # 0. We get f(z) = (Z h(z))k. The

function zh(z) is nonconstant, hence open. But then f takes values in a small disc at least k times in
D,.Hence k = 1.

By the inverse mapping theorem f has a C*® smooth inverse f~1 : f(Q) — Q. The derivative df "1 is
the inverse of df, hence it is complex linear and f~1 is holomorphic.

Define A(r,s) ={( €:r < |{| <s}for0<r <s < oo.
Proposition (Laurent expansion)

Iff € O(A(r, s)) then f has a unique Laurent series expansion in A(r, s),

(e ]

FQ= ) g

j:—a)

f(2)

ZJ+1

1 . i .
where ¢; = ﬁflzlao dz, any p € (r,s). The series ijo C]-ZJ converges for || < s, and the series

Y j<0 ;¢ converges for || > 7.

Proof

The Cauchy theorem gives that | f(@)

|z|=p zJj+1

dz is independent of p € (r,s). Let { € A(r,s) and pick

r', s’ such that

11



r<r' <|{|<s'<s

By the Cauchy-Stokes formula, we have

A Y B (C) W B B ()

. Z =5
2mi) =2 = ¢ 2mi) 22 = ¢

1 fz) 1 1 f(2)
_% |z|=s' Z 1 _gdz-l'ﬁ |z|=r' ¢ 1 —%
Z

o j d ,
[ % f(;);(é) dz = 2 (%flzl:s,;&?) ¢

—c!
jz]=s =

—a!
|Z|—T j= ]:0

0

dz

dz=1+11

where j' = —(j + 1).

Exercise
If r = 0, A(r, s) is the punctured disc D; = {{ : 0 < |{| < s}. f has a singularity at 0. There are three
types:

(1) Removable singularity: a,, = 0 for n < 0. This happens iff f is bounded in Dy.

(2) Pole of order k: a_j # 0, a, = 0 forn < —k. This happens iff |f| - o when z - 0.

(3) Essential singularity: a,, # 0 for infinitely many n < 0. This happens iff f(D;) is dense in C
forall0 <t <s.

Liouville’s theorem
If f € O(C) is bounded, then f is constant.

This follows easily from Cauchy estimate of f'.

12



Partitions of unity
If U € R™ is open, then there exists an exhaustion {K]};il of U by compacts such that K; I(jo+1’

UjK]'=U.

Proof

If U = R™ this is trivial. If not, let K; = {Z EU:d(z,R*"\U) = %} N B(j).

Definition
We say that a family F of subsets of R™ is locally finite if every a € R™ has a neighborhood B(a, 1)
such that B(a,r) N E # @ for only a finite number of sets E € F.

This is equivalent to K N E #+ @ for only a finite number of sets E € F for any compact K.

Let U = {U;};; be a collection of open sets. We say that V = {Vj}je] is a refinement of U if for each
Vj thereis a U; with V; € U; and Uje; V; =U;¢; U;.

Theorem
If U = {U;} is an open covering of U (i.e., U =U U;), then there is a locally finite refinement V = {V]}
of U and compacts L; < V; such that Uje; L;j = U.

Proof
Let {K,, };=1be an exhaustion of U. We shall divide U into compact “rings” M, like this:

M; = Ky, Mpi1 = Knv1 \ Kn, soUp_q My =U
We then define open sets W,, containing M,, which can only intersect the previous and next ring:

W1=K;, W2=K§, Wn=K1;+1\Kn—2 f0r1123

13



Now V,, = {Vi‘n =U;N Wn} is an open cover of M, and there exist Vij,n €V, J =1, ...,p, which
cover M,,. Then there is some & = §(n) such that for any x € M,, there is some i; such that

B(x,8) c Vij,n- This gives that the compacts
Lign ={x €My, d(xR"\ V) 2 6} < Vi
cover M,,. Now, let
V={VinineNj=1,.i,)

V is a refinement of U and since any compact K is contained in some K, and therefore will not
intersect any Vi].'m when m > n + 1, it is locally finite. The corresponding Li].,n cover M, and hence

U.

If ¢ is a function defined on U, we define supp ¢ = {x : ¢(x) # 0}, where we take the closure in U.
Co’(U) ={¢p € C*(U) : ¢ isreal and supp ¢ is a compact subset of U}.

Definition. Partition of unity relative to U.
If U = {U;};; is an open cover of U, then a partition of unity relative to U is a family ¢; € C*(U)
such that ¢; = 0, S; = supp ¢; < U;, S; of ¢; is locally finite, Y¢p; = 1in U.

Lemma
If U is open, K c U is compact, then there is a positive function ¢ € C;°(U) such that ¢(x) > 0 for
x € K.

Proof
The function

e=1/(-0) <1

¥ = {o, t>1

14



isin C*(R).

S~

v

There exists § > 0 such that dist(K,R™ \ U) = 26. There are a finite number of points ay, ...,ay €
K such that K =UY . B(a;,8). Let

t Y
)= ) ¥ ('xa—f')
i=1

Theorem
If U = {U;};¢; is an open cover of U, then there is a partition of unity relative to U.

Proof
LetV = {V}}je] be a locally finite refinement of U and L; c V; compacts which cover U. Then there

arey; € CS’O(V]) c C®(U) such thaty; > 0in K;.

Let = X ;1;. The sum is locally finite, hence i € C*(U) and 3 > 0in U. If we let x; = /4, then
Xj is a partition of unity relative to V;. For each j € | pick 7(j) € I such that V; € Uy(jy and for each
i € I define ¢; = Xjer-1¢) xj € C*(U). Clearly, {supp ¢;} is locally finite.

If x € U\ U; there is a neighborhood V of x such that C N supp x; # @ for only finitely many j. If
j € t71(i) then supp Xj is a compact subset of U;, hence ¢; =0 in V \Uje-1(; supp x; and
X € supp ¢;. This proves that supp ¢; c U;.

Theorem (Separation of closed sets)
If Q c R" is open, X c Q closed (relatively), X c U open, then there exists ¢ € C* () such that

OS¢SII¢|X=1'¢|Q\U:0.

Proof
Let ¢y, ¢y be a partition of unity relative to the covering {U,V} with V = Q \ X. We must have
¢vlx =0,s0¢py =1onX.Alsogpy =0inQ\ U.

15
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Theorem (Patching C* functions on disjoint closed sets)
If QcR" is open, X;,X, € Q two disjoint closed sets and ¢, ¢, € C*(Q), then there exists
d) € COO(Q) such that ¢|X1 = ¢1, ¢|X2 = ¢2.

Proof
Picka € C*(Q),0<a<1,aly, =1,aly, =0,andlet ¢ = ag; + (1 — a)¢,.

The d-equation, g—; = ¢.
Recall Cauchy-Stokes formulainQ c C. (z=x+1iy,{ =& +in)

If f € C1(Q), z € Qthen f(z) = —fm’;(ZZ) d¢ — ffﬂaf/azdfd
_ ()
If f is also holomorphic in Q then f(z) = —fm — d¢.

If f € C3(C), z € Cthen f(2) = —%ffcagaqdfd

Given ¢ € C3(C), we want to find f such that % = ¢. Itis natural to try

1= =3[ # = [ 2

If we can differentiate under the sign of integration, then

————f At 2847 i =

Differentiation is allowed. Differentiate with respect to x, let h € R.

B — ($(C +z+h) — p( +2)) 99 ¢ +2)
flox ,)l f(z)=—nffch ; fdne——ffa dgdy

16



. ! . N
by the dominated convergence theorem, since 7 € Li,.(R?). We can do the same in the y-direction,

and hence we have proved

Theorem (Solving @ with compact support)
If p € Cy°(C) and

f(Z)=—%ffc?%d€dn

then f € C*(C) and% = ¢.

Notice that in general f does not have compact support, since for large R

i}
0= fdz = Ziﬂ- —f_dxdy = 2if ¢dxdy
|z|=R |z|<R 0z |z|<R

would imply that fc ¢dxdy = 0.

Theorem (Smeared out Cauchy integral formula)
If K € Qiscompact, f € O(Q)and @ € C5°(Q) is=1onK, thenforz € K

B 1 Jda 1 d£d
f(Z)——;ﬂ-Qf(f)a—(—(TZ ¢dn

In particular, ffﬂf(()g—gdfdn = 0.

Proof
Apply Cauchy-Stokes to ¢ = af.

S=suppa\K
Definition
Let K © C be compact. Then

oK) ={f€ O(Uf) : Ur open neighborhood of K}

K={|z| =%}

Then f(z) = zand g(2) = iare both in O(K).

Example

17



The Runge problem
Let K € Q be compactand f € O(K). Is it possible to approximate f on K by f,, € 0(Q)?

Example
Let K, f and g be as above.

(a) Let Q =D = {|z| < 1}. Then f € O(Q), so there are no problems with f. We claim that g
cannot be approximated: If h € O(D) and h ~ g on K (close to), then
1=129(z) ~zh(z) onK
If k(z) = zh(z) is close to 1 on K, then it also is close on D1 = {Izl < %} by the maximum

2
modulus theorem. But this is not true, since k(0) = 0.

(b) Let Q =D* =D\ {0}. Then both f and g are in O(Q), so there are no problems with
approximation.

The problem in (a) is that (1 \ K has a component, D1, which is relatively compact in Q. In (b), the

2

corresponding component is D1 \ {0}, which is not relatively compact since it goes all the way up to
2

0 € 0Q.

Exercise
Let Q c C be open, let K < () be compact, and let U be a bounded connected component of Q \ K.
Then the following are equivalent:

(1) 386 > Osuchthat|z—w| =6 forallze U,w ¢ Q
(2) UccQ

(3) U c K

(4) U is also a connected component of C \ K

If we negate this, the following are equivalent:

(1) Forall§ > O thereexistz € Uandw & Qsuchthat|z—w| < §

(2) U is not relatively compact in Q

(3) AUN(C\K) =+ 0

(4) The connected component U’ of C\ K containing U is not contained in Q, i.e.,, U'N

c\) =0

Theorem (Runge)

Let Q c C be open and K c () compact. The following are equivalent:

(1) 0(Q)|g is dense in O(K).
(2) No connected component of Q \ K is relatively compact in ().
(3) Va € C\ K thereis f € 0(Q) such that |f(a)| > |f k.

Proof
(1) = (2) If U is a connected component of Q \ K which is relatively compact in Q, then U C K,
because otherwise we could attach a disc to z € dU \ K to obtain a bigger connected set. If

18



zo €U and f(2) = i € O(K), then f cannot be approximated by f, € 0(Q), because if
—40
1

z—2z,

—fn—>0o0nK,then g, =1—(z—2y)fn, = 0 on K, but g,(z,) = 1. This violates the

maximum modulus theorem, since 0U c K.

(2) = (1) We must prove that every f € O(K) can be approximated uniformly on K by f, €
0(Q). Pick f € O(W) for some open neighborhood W of K.
Step 1. Approximation of f by rational functions with poles outside K.
Pick @ € Cy°(W) such that @ = 1 in a neighborhood W, of K. For z € K we have by Cachy-
Stokes formula

o= [ 1055 == | 2% gea
mJc af_Z —¢ 7 T JJL=supp a\W, a(_Z - 7

If we subdivide C by small squares and form the corresponding Riemann sums for the
integral,
a 1

1 0
;Z F@) 57 @) =

Then these Riemann sums will approximate the integrals, uniformly on K, since the integrand

is compactly supported, hence uniformly continuous in C. The z,’s will be close to L =
supp a \ Wy, hence in O\ K. It follows that f can be approximated on K by a finite sum

Zvcvﬁwith z, € A\ K.

Step 2. We now look at terms of the form ﬁ with a € Q \ K. We shall approximate these by

functions which are holomorphic in Q by “pushing the poles out of 0”.

Examples
-
-’ ~Dbw,1)
7 \
/
[ ] W \ Q
|
/
/
Q 7
1. . .
ppl holomorphic outside D(w, 1) The pole a can be gradually
and is given there by a power series in pushed out of ().
1
z—w’

Therefore, let a € O\ K and let U be the connected component of C \ K containing a. Let

1 1
U, = {w eU; can be approximated on K by polynomials in }

We will show that U, = U. We will do this by showing that U, is both open and closed in
C\ K.

19



(3)

U, is open: Suppose w € U, and D(w,r) N K = @. If P. is a polynomial in ﬁ which

approximates f on K and w' € D (W, g), then P, (ﬁ) is holomorphic outside D (w’,g) and
1

z—w'

can therefore be developed in a power series in there. A finite sum of this power series

will approximate P. on the compact K c C\ D (W’,g).

U, is closed in C \ K: Assume w,, € U, and w;, > w € C\ K. Then there is a disc D(w,r) ©

. These are

C\ K and aw, € D(w, 7). ﬁ can be approximated on K by polynomials in —
- ~—Wn

holomorphic outside D(w, r) and the same argument as above gives that w € U,,.

This proves the claim.
We now prove that ﬁ can be approximated on K by a function which is holomorphic in ().

If U, is bounded, then we claim that U, N (C\ Q) # @. Otherwise, U, € Q and U,is a
connected component of Q \ K. But dU, c K, hence U, would be relatively compact in Q,

which is impossible. Hence there is some w € U, \  and by definition ﬁ can be
approximated by a polynomial in ﬁ, which is holomorphic in .

If U, is unbounded, then there is w € U, with |w| > sup{|z|,z € K}. Let r = |w|. In this
case a polynomial in ﬁ is holomorphic in the disc D(0, R), hence is given by a power series

there, and can be approximated by a polynomial on K.

= (2) is analogous with (1) = (2): If U cc Q is a connected component of Q\ K, then
dU c K and for all a € U we have by the maximum modulus principle |f(a)| < |flay <
|f|x which contradicts (3).

(2)=>(3) If a € Q\ K, then L = K U {a} has the same property and by the implication (2) = (1),
0(Q)|, is dense in O(L). If U and V are disjoint open sets, K c U, a € V and ¢ is defined by
¢ =0inU,¢p =1inV,then ¢ € O(L), hence there exists f € O(Q) such that |f — ¢|; < % But

then |flx <3 < If(a)l.

This completes the proof of the theorem.

Remark
From the implication (2) = (1) we get that if

No connected component of 1 \ K is relatively compact in Q
A c Cis a set which contains at least one point in every bounded component of C \ Q
feo)

then f can be approximated uniformly on K by rational functions with poles in A.
The polynomials are dense in O(C). Hence if we let {0 = C in Runge’s theorem, we get:

Corollary
For a compact set K < C the following are equivalent:

(1) Every f € O(K) can be approximated by polynomials.
(2) C\ K is connected (i.e., K has no holes).
(3) Forany z & K there is a polynomial P such that |P(z)| > |P|.
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Such K are called polynomially convex.

Definition
Let K c () be compact. The holomorphically convex hull of K in  is defined by

Ko={z€Q:|f(2) < |flgforall f € 0(Q)}

Condition (3) in Runge’s theorem states that I?n = K, in which case we call K holomorphically

convex in 0. We have ?Q = K. We shall see that K, fills in the holes in K which do not contain
holes in Q.

Example

@ o

I?Q fills in the hole to the right, not the left. (2 does not contain the dashed little hole.)

Exercise
Kq does not get closer to 00, i.e., d(I?Q, OQ) = d(K,00).

I?Q is compact.

Theorem
I?Q is the union of K and all relatively compact components of Q \ K.

Proof
If U is such a component, then dU c K and therefore U c I?Q by the maximum modulus theorem.
This shows that

Ky =K U (Uy,ccq Us) € Kq

Also, Q\ K; =Uy_ccq Uy is open, hence K; is closed in Q and therefore compact. Also, no
components of (\ K; are relatively compact. Runge’s theorem gives that any z € K; can be
separated from K; (and hence K) by a holomorphic function in Q. This proves that z & I?Q, i.e.,
I?Q c K;.

Lemma
If Q € Cis open, then

1
Kn={ZEQ;d(Z,C\Q)2;,|Z| Sn}
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is a holomorphically convex exhaustion of ().

Theorem (Classical Runge theorem)

If O c Cis open, A c Cis a set which contains one point from each bounded component of C \ (2,
then every f € 0(Q) can be approximated uniformly on compacts by rational functions with poles in
A.

Proof
Pick f € 0O(Q) and a compact set K c Q. Replacing K by Ko, we may assume that K is
holomorphically convex in €. The result follows from the remark to Runge’s theorem.

Mittag-Leffler’s theorem

Definition
Let C; = C\ {a}. The set C; is denoted by C*.
If f is holomorphic in a punctured disc around a, we have

(0]

f@= ) G-

n=-—oo

The negative powers p, = Yni_cw Cn(z —a)™ is called the principal part of f at a. We have p, €
0(Ca).

Theorem 1 (Mittag-Leffler) Prescribing principal parts
If E c Q is discrete and for every a € E there is given a principal part p, € 0(C), then there is
f € 0(Q\ E) such that f — p, is holomorphic in a neighborhood of a forall a € E.

Proof
Let {K,} be a holomorphically convex exhaustion of Q and put K, = @. Let E,, = E N {K,, \ K,_1}.
Each E,, is finite. Put

n= ) Pa€O(C\Ey) D 0Ky y)

a€Ey

Let f; = g1- Then f; — p, is holomorphicin a for all a € E; and is holomorphic outside K;. We would
like to add g,, but the problem is convergence. However, since g, € O(K;) and K; is
holomorphically convex, we can find h, € O(Q) such that |g, — hZIK1 <272 Ifwelet f, = g; +
(g2 — hy), then f, — p, is holomorphic at all a € E; U E,. We proceed inductively to find h, € 0(Q)
such that |gy, — hplg, , < 27" It follows that

f=limf, =g, + 2(.971 - hn)
n=2

solves the problem.
If every p, € M (C), i.e., only has a pole at a, then f € M (Q).

It is enough to assume that p, € O(D*(a, r)) forsomer > 0.
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Equivalent formulation:

Theorem 1’
If E < Qis discrete,  =Uj¢; Uj and g; € O(Uj \ E) are such that g; — gy € O(Uj N Uk) for all j, k,
then thereis g € O(Q \ E) suchthatg — g; € O(U]-) forall j.

()= (1): PutE = {Zj}, U=Q\E)U {Zj} and g; = Pz;-

(1) = (1°): For a € E, pick j(a) such thata € Uj(a) and let p, be the principal part of gj(g) at a. This
is independent of the choice of j(a). If g € O(Q \ E) such that g — p, is holomorphic at a for all
a € E, theng—g; € O(Uj).

In theorem 1’, suppose we can find the “holomorphic correction terms”, fj =g —g; € O(Uj)

directly. How can we be sure that they patch together to a global g? We must have
fitgi=fi+g;in(U;nU;)\E
fi—fi=g;—g:inU;NU;
letfij=9;—9: € O(Ul- n U]-). The existence of f; follows from:

Theorem 2

If {Uj};il is an open covering of Q and f;; € O(Ul- N Uj) satisfy the cocycle condition
fij t fix t fri =0inU; N U; N Uy
for all indices i, j, k. Then there exist f; € O(Uj) suchthat f;; = f; — f; inU; N Uj forall i, j.
Notice that the cocycle condition implies that f;; = 0 and fj; = —f;; forall i, j.
The argument above shows that Theorem 2 = Theorem 1’.

We shall now prove Theorem 2.

Step 1
We first prove that there are smooth solutions to the problem, i.e., there are ¢; € C*(U;) such that
fij = ¢i — ¢; in U; N U;. For this, it is sufficient that f;; € C°°(UL- n Uj).

Proof
Let a; be a partition of unity relative to U = {U;} and define in U;

¢ = 2 Ak fix

k

This is in C* (U;), since supp ay Uy and the sum is locally finite. In U; N U; we have

b — ¢ =2ak(fik_fjk) = Eakfij = fij
k

k
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Step 2
We now correct the ¢; to make a holomorphic solution. Notice that since ¢; — ¢; differ by a

holomorphic function on U; N Uj, the function
d¢;
= —— fi € U;
Y (z) 55 [orz€eu;

is globally defined in €. If we can find u € C*(Q) such that
du B
0z

then f; = ¢; —u € O(U;) and solves the problem. Hence Theorem 2 follows from the following
result:

Theorem (Solution of d-equation)
If Y € C*(Q) then there exist u € C*(Q) such that % = 1.

Proof
Notice that we can solve the equation in a neighborhood of any compact set K < (). Just chop off ¢
with a smooth function. The solution is in C*(C).

We shall now build the solution inductively as in Mittag-Leffler’'s theorem. Let {K,},—,; be a
holomorphically convex exhaustion of (). First, solve % = 1 in an open neighborhood V; of K;, and
get u; € C*(C). We now want to correct 1, so the equation is satisfied in an open neighborhood V,
of K. Let p = —%. Then ¢ € C*(Q2) and ¢ = 0 in V;. Now solve % =¢inl,, v, €CP(C)N
O(V1). Then uy + v, solves the problem in V,, but we want the process to converge, so we pick
f> € 0(Q) such that v, — folg, < 2 2andletu, = v, — f,.

Now, proceed to find us, ..., u,, € C*(C) and open neighborhoods Vi of Kj, j = 3, ...,n, such that

u; € 0(Vj-1), |”}'|Kj_1 <27
du, ou,
oz Ttz v

Then u = Y5, uy, is the required solution.
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The winding number
Let ¥ be a closed piecewise C! curve in C. Thenforz € C\ y,

Ind(y,z) = % (

is called the winding number of y around z. Clearly, Ind(y, z) € O(C\ y).

Lemma
Ind(y,z) € Z

Proof
Assume y is parametrized over [0,1], so y(0) = y(1). Then

g i a ool -2 GO - v )-¢0

d J(u) — -0
dt {((t)—z () —2)?
Hence it is constant, which must be ! . Then
{(0)~z

EERAONNNR(OLr
N {OE A OErE

exp

And hencef ¢s) ds

0 75z = 2mi-nforsomen € Z.

Ind(y, z) is constant in each connected component of C \ y and it is 0 in the unbounded component.

Definition
Q is simply connected if any closed curve is homotopic to a constant curve.

Exercise
The following are equivalent:

(1) Qissimply connected

(2) Any two curves between two points a and b are homotopic.
(3) Foranyclosed curvey c Qandz ¢ Q, Ind(y,z) = 0.

(4) C\ Q has no compact components

(5) P1\ Qis connected

Lemma
Suppose g € 0*(). Then the following are equivalent:

(1) g has a holomorphic logarithm in Q (ef = g)

!
(2) % has a holomorphic primitive in Q

(3) fy%dz = 0 for all closed curves in Q

Proof

(1) = (2) If e = gthen%,= £
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(2) = (1) Ifg;’= f'.leth=eT g.Thenh' =ef(g'— f'g) = 0,hence h = ¢,s0 g = cef = e/*¢

The equivalence of (2) and (3) is well known from calculus.
If Q is simply connected then g has a holomorphic logarithm because (3) holds.

Lemma
Z—2Zg

If zy and z, are in the same component of C \ K, then g(z) = has a holomorphic logarithm in a

z—274
neighborhood of K. If zy is in the unbounded component of C\ K then g(z) =z —z, has a
holomorphic logarithm.

Proof
Pick a neighborhood Q of K such that zy, z; are in the same component of C \ Q. Then

g’(z)_ 1 1
9z z-2zy z—2

Hence if y € Qis a closed curve, then

! d d
o@D, [ b 4
14

z = - = Ind(}’; ZO) - Ind(}’; Zl) =0
y 9(2) Z—2zy Z—12,
For zg in the unbounded component, 9@ _ L, so
9(2) Z—2Zy

! d
9@ dz = f zZ__ Ind(y,zp) =0
yg(z) yZ_ZO

Pushing zeroes

z—2g

€ O(K). Then z — z, = ef@(z — z;). Now, approximate f on K by f(z) €

Let f(2) = logz_Zl
0(C\{z1}),s0z—zy ~ ef@D (7 — z1)on K.
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Let f(2) = log(z — z) € O(K). Then z — z, = e/ Approximate f on K by f € 0(C), so z — z, ~

e/ @ on K. Thus we have approximated z — zy on K by a zero free entire function.

Theorem
If K € Qis holomorphically convey, i.e., I?O(Q) = K, then 0" (Q) |k is dense in 0" (K).

Proof

Let f € O*(K) and let € > 0, € < min{|f(2)|; z € K}. Then there exists a rational function R(z) =
P(2)
Q2
bounded component of C \ K, and let ay,4, ..., a;, be the zeroes of P in the unbounded component
of C\ K, and pick bj, j = 1, ..., k, bj € (1, in the same component as a;. We may assume that

€ 0(Q) such that |f — R|g < %E. P has no zeroes on K. Let a4, ..., a; be the zeroes of P in the

P@ =] [z-a)™
j=1
Then
k o m
g9(2) = ij log (Z Z]) + Z m; log(z - aj) € 0(K)
j=1 270 j=k+1
and
Pz) _ P@

eg(z) —

M= b))

We have min|Q(z)| = § > 0. Let M = max, ek |Py(2)|, N = maxzeK|eg(Z)|, and let u > 0 be given.
Ifh e 0(Q),|h—glk <log(1+ w),then |eh'9 - 1|K < u. Hence for z € K,

h(z) 9 h(2)
R(z) ~ DA _ |Po@efZ Pt M 1e9@ — eh@)| < X |cs@||1 = eh@-0@
0@ | | Q@ 0@ |~ s 5
_v1
S n<ge

when u is sufficiently small. Therefore Ry(z) = I;OT(ZZ))eh(Z) € 0*(Q) is the required approximation.
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Weierstrass’ theorem
We shall prove a result on prescription of zeroes and poles. For this we need to study infinite
products.

Let {a,} c C. We say that [[;=; a, is convergent if py = H,’Ll ay is a convergent sequence, and we
set

[ee]
| | a, = lim py
N-oo

n=1

If this limit is nonzero, it is clearly necessary that lim,,_,o, a, = 1. We shall consider products

1_[(1 + u,) withu, - 0
n=1

Sloppy calculation:

N N N
log 1_[(1 +u,) = 2 log(1+ u,) = 2 Uy,

Hence it follows that the convergence of [][(1 + u,,) is related to the convergence of the series Y u,.

Correct calculation: Use the inequality log(1 + x) < x to obtain

N
ol < | [+ fuaD

N N
log pul < )" 1og(1 + unl) < ) lun|

Hence {py} is bounded if ,* |u,| < .

py — 1is a polynomial in uq, ..., uy, without constant term. This gives

N
v =10 < | [a+ D —1 < 6Tl -1

Lemma 1
If {u,,(2)} are bounded functions on a set E such that }|u, (z)| converges uniformly on E, then

@ =] [ +um)

converges uniformly on E, and f(z,) = 0 iff u,(z9) = —1 for some n.

Proof

It follows from |py(2)| < eZl*n(@) that {py(2)} is uniformly bounded on E, i.e., |py(2)| < C for all
z € E.ForM > N we have
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M

1_[(1 + un(z)) -1

N+1

lpm(2) — pu (2] = Ipy (2] < ¢ (XNl — 1) 5 0

as N,M — oo, which proves that {py(2)} converges uniformly on E. The inequality also shows that

lpu(2)| = Ipn(2)|(1 - €)

for N sufficiently large and M > N. Hence, the infinite product has a zero at z, iff some finite py
does.

Theorem
If Q is connected, f,, € O(Q), no f;, is identically equal to zero and }|1 — f;,,(2)| converges uniformly
on compacts in , then f(z) =[[*f,(2) converges uniformly on compacts and ord,(f) =

Z;.lozl Orda (fn)

Theorem Weierstrass

If E € Qis discrete and for every a € E there is given an integer k, € Z, then there is a holomorphic
function f € 0*(Q \ E) such that (z — a) % f(2) is holomorphic and nonzero in a neighborhood of
aforalla € E.

Proof

Let {K,} be a holomorphically convex exhaustion of Q and let E;, = E N (K, \ K,_1), Ko = 0. Let
In = ]_[aeEn(z —a)ka. Then g1 has the required property for a € E;. We would like to multiply by
g2, but the problem is convergence. Notice however that g, € 0*(K;), hence there is h, € 0*(Q)
such that |g,h, — 1|K1 < 272 and g; - (gyhy) has the required property for a € E; U E;.

Inductively, we can find h,, € 0*(Q) such that |g,h, — 1|, , < 27" This implies that

f =91 ngnhn
n=2

has the required properties.

Exercise
The analogous version of Theorem 2 for Weierstrass’ theorem is the following:

If {Uj}j:1 is an open covering of () and f;; € O*(UL- N Uj) satisfy the cocycle condition f;;fjxfii = 1
in U; N U;j N Uy then there exist f; € 0" (U;) such that f;; = %in U; N Ujforall i, j.

j
Show that this implies Weierstrass’ theorem.

Theorem (Interpolation in a discrete set)
If E c (Q is discrete and for every a € E is given ¢, € O(D*(a,ra)) and k, = 0. Then there is
f € 0(Q\ E) such that f — ¢, is holomorphic at a and ord, (f — ¢,) > k, foralla € E.
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Proof
By Weierstrass’ theorem there is g € 0(Q) such that Z(g) = E and ord,g =k, + 1 for all a € E.

Then % € O(D*(a, ra)) for all a € E and my Mittag-Leffler there is h € O(D \ E) such that

h—%=0(1)asz—>aforallaEE

Then h = %+ O(1)and f = hg = ¢4+ 0(lz — al*™ ') asz - a.

Notice that h can have zeroes outside E.
If each ¢, is meromorphic then we can find such f without other zeroes:

Theorem
If E c Q is discrete and for every a € E there is given ¢, € O(D*(a, ra)) such that ord, ¢, > —co.
Then thereis f € M(Q) N 0*(Q \ E) such that ord,(f — ¢p,) > k, foralla € E.

Proof
Ey={a: ¢, % 0}

m, = ord, ¢, fora € E,
By Weierstrass we can find g € M (Q) such that
ord,g = m, fora € E,
ord,g > kp forb € E\ E,
gEeO @\ E)

If h € O(Q) and f = ge™® then everything hold except possibly ord,(f — ¢g) > k, for a € E,.

How can we achieve this? Notice that 22 is holomorphic and nonzero near a, so there is h; €

O(D*(a, ra)) such that e'a = %. Then

ord,(ge" — ¢g) = ord,g (eh - %) = ordgg (e — e"e) = ord,gela (e e — 1)

=mg + ordy(h — hy)

By the preceding theorem, there is h € O(Q) such that ord,(h — hy) > |mg| + k4. This completes
the proof.
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Automorphisms of the disc

Definition

An automorphism of an open set () © C is a biholomorphic map of (0 onto itself, i.e., a holomorphic
map f : = Q which has a holomorphic inverse. The set of automorphisms on Q) is denoted by
Aut(Q). This is a group.

D =D(0,1) = {|z| < 1} is the unitdisc,and T = {1 : |A| = 1}.

Theorem (Schwarz lemma)
If f € O(D), |f(z)| < 1forallz € D,and f(0) =0, then |f'(0)| < 1and |f(2)| < |z|.

Equality holds for some z € D iff f(z) = Az for some [A| = 1.

Proof

Let g(z) =
modulus theorem implies that either |g(z)| < 1 for all z€ D or g(z) =1 €T. In the first case
|f(2)| < |z| and [f'(0)] < 1, in the second case f(z) = Az.

f(z), g(0) = £'(0). Then g € O(D) and limsup,_¢erlg(2)| < 1, hence the maximum

Fora € D, let ¢p,(2) =

(a) = 0and ¢,(0) = —a.

v

If |z]| = 1then

z—a|

|pa(2)] =

az)z| |z —-a
Hence ¢, : D — D. It is easy to see that ¢p;1 = ¢_,, and that ¢, is an automorphism.

Theorem
Every automorphism of D is of the form ¥ (z) = A¢,(z) forsome 1 € T.

Proof

If ¥(0)=0 then (¥"1)'(0)-y'(0) =1. Since ¥,y ! € Aut(D) and both are 0 at 0, their
derivatives at zero must be < 1 in absolute value. Strict inequality is impossible, so ['(0)| = 1 and
Y = Az by the Schwarz lemma.

In general, if ¥(a) = 0, consider ¢ =P o p_,. Then ¢ € Aut(D), ¢(0) =0, so ¢(z) = Az, hence
Y(2) = A¢y(2).
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Riemann mapping theorem

Theorem
If Q # Cis simply connected (and connected), then Q is biholomorphic to D.

We shall see that this follows from the fact that every f € 0O(Q), f without zeros, has a holomorphic
square root. This is true in a simply connected domain since f has a holomorphic logarithm. If

lio f
g=-¢e2°) theng?="f.
f + Q - Cis biholomorphic onto its image iff f is injective.
The square root property is invariant under biholomorphism.

If f:Q - Qis biholomorphic and has a holomorphic square root, then \/7 is also biholomorphic.

Also, ifw € Im(m, then —w ¢ Im(\/?).

Proposition (Koebe)
If 0 € Q c D, Q+# D is connected and has the square root property, then there is a H € O(Q) such
that

(i) H(0) = 0, H(Q) < D,
(ii) H is injective,
(iii) |H(z)| > |z| forallz € D, z # 0.

Proof
Picka € D\ Q.
ba
I 3 Vz o
<« < <
b_q z? b_p

Let H=¢p o Vzo ¢,. Then (i) and (ii) holds. H™! is defined in all of D and is 2-1 (except at —b),
therefore [H™1(w)| < |w| forallw # 0, so |H(z)| > |z| for all z # 0.

Proof of Theorem
We know that Q has the square root property.

Step 1. To map Q biholomorphically onto a bounded domain.

Pick a € C\ Q and g € 0(Q) such that g2(z) = z—a. If D(w,r) € g(Q) (which is open), then
D(—w,r) N g(Q) = @ and
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Y(2) = 9Dt w

is biholomorphicin Q and [(r)| < %

For small €, h(z) = 6(1,[)(2) - 1,[)(20)) is biholomorphic onto 0 € Oy © D. Observe that (), has the

square root property.

Step 2. We shall produce a biholomorphic map Qy = D which is “maximal”. Let
F ={f :Qy » D; f is holomorphic, injective, and f(0) = 0}

Let zy € Q, Zg # 0 and put

a = suplf(zo)| € (0,1]
feF

and pick f, € F such that lim,_.|f,(z0)| = @. By Montel’s theorem there is a convergent
subsequence, i.e., we may assume f, = f u.o.c. Since f(0) =0 and |f(zy)|=a >0, f is not
constant. By corollary of Hurwitz theorem, f is injective, so f is a biholomorphism f : Q5 - Q =
f(Qy) © D. We cannot have Q; # D, because by Koebe’s theorem there is a H : Q; — D injective
such that |H(f(zo))| > |f(zy)| = a, contradicting the definition of a.

It is instructive to read Theorem 1 of section 7.3 in Narasimhan.
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Schwarz-Pick and Ahlfors lemma

z—a
$a(2) = 1—az
, 1= la|?

$a(2) Az

$a(0) =1 - lal?
(@) =
$al®) =TT
If f: D —= D is holomorphicand z € D, let

g=dr°feod-,

Then g(0) = 0 and

! ! ! 1 !
g'(0) = ¢t (f(@) - f'(2) - ¢~,(0) = w‘f (2)-(1-1z1»
We get
Theorem
If f : D = D is holomorphic, then
lf'(2)| 1

1-1f@I*~ 1-z/|?
Equality at one point implies that f is an automorphism.

Proof
The last statement follows from g(w) = Aw, so

f(W) = ¢—f(z)(’1¢z(w)) = f = ¢—f(z) ° (/1¢z)
This formulation is equivalent to the Schwarz lemma. Pick gave an invariant definition of this:

Consider the (Kahler) metric

ds? = dzdz
ECEPDE
on D, i.e., for a tangent vector X € T,D,p €D,
dSZ(X) = &
P (- 12192
Then
If'(2)1? _ dzdz

£(ds0) = T 7o 427 = g ~ %
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i.e. f*(ds?) < ds?
with equality at one point iff f is an automorphism.

We can define length of curves y: [a, b] —» D using the metric dsy,:

b
L) = f dsu (y (0,7 (0))de

It follows that holomorphic functions decrease the length of curves,
L(fey) <= L(y)
and automorphisms preserve length.
This defines a distance on D by
pn(z1,2;) = infL(y), y curve from z; to z,

Holomorphic functions are distance decreasing, and automorphisms preserve distances. It follows
that

pn(z1,2;) = ph(O, |¢’z1 (Zz)l)

© )_J‘a dt _1l 1+a
PR = 1~ 2%1 ¢
o)
1 1+|¢z (Zz)l
pn(z1,2;) = slog——————
2 1_|¢zl(22)|
Theorem

If f : D = D is holomorphic, then

(1) f*(dsp) < dsp
(2) pu(f(@), fW)) < pr(z,w)

Equality in one pointin (1) or on one pair z # w in (2) implies that f is an automorphism. We call dsy,
the Poincaré metric and pp, the Poincaré distance.

The curvature of a metric hdzdz is defined by

2 02

K, = —
h hdzoz

1
logh = — EA(log h)

For h = we get

1
(1-1z]?)?

35



2 2

Kp = —2(1 — |z|*)? azaz_log(l —z*)7% = 4(1 — |z]*)? azaz_log(l — 27)
Jd -z -1(1-2z2) - (-2) - (-2)
=4(1- |Z|2)2£1_ZZ_=4(1— |z|%)? - (1—22)?
1
= 4(1 - |Z|2)2 . —m = -4

If dsp, = hdzdz is metricon Q and f : U — Q satisfies f'(z) # 0 everywhere, then
f*(ds?) = If @I?h(f (2))dzdz
and
Kr+(asp) (@) = Kas, (f(2))
Thus curvature is a conformal invariant.

The metric

ds? = 4q? dzdz
T4 @222 °

nD, = {|z| < a}

has curvature —A. The previous theorem generalizes to

Theorem (Ahlfors lemma)
If M is a Riemann surface with metric dsZ with curvature < —B, where B > 0, and f : Dy > M is
holomorphic, then

* 2 A 2
f (dSM) =< Edsa

Proof
4a2dzdz

YCERPED For r < a, u, is defined by f*(dsZ) =

Define u > 0 on D, by f*(ds%) = uds? = u(z)

u,ds? on D,. Sou = u, and

a*(r® — |z|*)
u,(z) = u@)m

. . A
So u, —» u whenr - a. Itis therefore sufficient to prove that u,(z) < Efor z € D,.

By the formula above, u,(z) = 0 when |z| = 7. If u,.(z) = 0 we are done. Otherwise, u, has a
maximum at some z, € D,.. Then f defines local coordinates around z, i.e., there is a neighborhood

U of zy with f'(z) # 0 for z € U and we can compute the curvature of ds,%,, by computingitin U.
We have

et 5 4r?dzdz _
f (dSM) = quSr = ur(Z)m = h(Z)dZdZ

SO
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Ky

Hence —

2 02 2 92

E logh = logu, +1 N R P
T Thozoz 8T Thozaz\ Y T %82 22)2) T T h\azaz CBYr T 2 — |2]2)2

_ 29 4.5

T T hozaz B u,
2 9% Jogu, =B —L but =—logu,(zy) = LAlogu,(z,) < O si i imum. Thi
55108 Uy = o but 557 logur(29) = 7 Aloguy(2o) < 0 since zp is a maximum. This

gives u,(zy) < %.

Which M can have a metric with negative curvature?

1.

C does not have such at metric.
Proof
If dsé is such a metric, let f : D - C be defined by f(z) = az. Then

(f*ds2)(0) = lal?ds(0)

2

Hence no such inequality can hold. The metric (1 + |z|?)dzdZ has curvature H = T

and is complete.

C* = C\ {0} does not have such a metric, since f(z) = e* is a covering C - C*, hence if C*

. . . . dzdz
had a metric with negative curvature, so would C. The metric ——————= has curvature

log(1+z]%)
_ 2 |z|2 .
K=- 22 (log(1+|z|2) - 1) < 0 and is complete.
The upper half plane C* has such a metric since it is biholomorphic to D. A biholomorphic
mapis f(z) = Ewith f'(2) = (Zili)z and
dzdz ) If'(2)|? 4
* = dzdz = dzdz
r e = aro TN
|z +1l (1_|Z+i| )
4 drds 4dzdz
= - - zdz =
(Iz +il* = |z = i]>)? (2 + O+ 1D?) - (2 + (y — D))
B 4dzdz__ 1 dodz
T @ 4y

The punctured disc D* has such a metric. We have a covering map p: C* — D* given by
p(2) = elZ. This has local inverses pl(w) = %logw and
(1) (dzdz‘> oY W)Pdwdw _ dwdw  dwdw
4y? 4(imp—iw))®  4lwlQoglwD?  w|*(log|w|?)?

=: dSlz)*

This metric is also complete. If 0 < r < R < 1, then

(R)—fR a 1fR dt 11(1 O R
PprAr )= . t(=logt?)  2J tlogt 2 sl o8t r

= 3108 1027) <108 105}
=5 (log|log=) —log{log )| =

whenr = 0 or R = 1. The circle y(t) = re'f has length
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2n rdt

n
2(y) =f0 r(—logr?) - 10gzi2) -0
r

whenr — 0.

The doubly punctured plane C\ {zg,2z;} has a metric h(z)dzdZ with curvature bounded
above by a negative constant.

Proof
We may assume zy5 = 0, zo = 1. We shall prove that

A+1z*) QA+|z—-1]%)
S NPT

has the required property for suitable a and y.

The expression for the Laplacian of a radial function f(r) is

K 10
Af(r)za—r]zj*;%

(check this!). This gives

(1+7r%)
A (logr—y> = A(log(1 + r%*) —ylogr) = A(log(1 + 1))

D tog(1 470y = T
ar 8 m)= 1+rc
02 (a—Dr* 21 +7r% —r* 1. qre-t ar®=2
Wlog(1+r“) =a EEDE = EEHE (a—1-719%
Hence
Mog(1+79) = T (@—1—ry L O ek (14 r9)
°8 r _(1+r“)2a 4 r 14+re (1+7r%)2 * 4 4
azra—z
T A+ oz

This gives

a? |z|V]z — 1] ( |z|%—2 |z — 1]*2 )

1
Kp = ——A(logh) = ——
h=~5Alogh) 2 A+ 1290+ 2= 1O\A+ 12192 T U + 1z = 1]9)2

Hence K;(z) < Oforallz = 0,1.

Assumingy > 0and 0 < a < 2, we have for z = 0:

Kp(z) ~————F—> — ify+a—-2<0 (D)
This also gives K (z) » —o when z - 1. If |z] - o, we have
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aZ |Z|2y+a—2 aZ

Kn(2) ~ T g —7|Z|2”—3""2 - -  if2y—3a—2>0 (2)

We see that y = 1.6 and a = 0.2 will satisfy both these inequalities. This implies that K}, is
bounded above by a negative constant,

Kh(Z) < —k
forallz #0,1.

This metric is actually sufficient to prove Picard’s big theorem to follow. The metric is not complete,
however. The points 0, 1, co are all at finite distance and this cannot be fixed by using different a and
Y. We shall add a function f to h to make it complete. This requires a result on the curvature Kj .

The following lemma is used to do this:

Lemma
Let ¢ and 1 be two strictly positive C2 functions in some open set in C. Then

$A(log @) +pA(logy) < (¢ +P)Alog ¢ + )

Proof
A small computation gives
g

4
pA(log ) = Ap — ooz

Another computation then gives

(6 +)aogd +9) — plogs —alogy = — [ 29
(0] — 0 — 0 e — - _ >
s s BV T ol + 1%z " Yoz
which proves the inequality.
In terms of curvatures, the inequality is given by
(¢ +¥)2Kpsyp < ¢?Kp +P?Ky
Hence, if we know that Ky, < —kq and Ky, < —k,, we get
2 2 kik ki, —yky)? kik
K¢+¢S—< ¢ ey + 14 2k2>=—< 2 (¢12¢2) )S— 12
(@ +9) (@ +9) kit+ky (@ +9)2(ky +k2) ki + ks

We shall now construct f. The metric will be given by h + cf for some small constant c. Near 0, 1,
and oo, f will be the function of example 4. This means that K = —4 near these points, and

completeness of (h + c¢f)dzdz follows immediately. To construct f, pick first a C* cutoff function

u(z) such that u = 1in {Izl < %} andu =0in {Izl > é} Then let

P
|zI2(log|z|%)?
f is then given by

39



f(2) =s(z) +s(z—1)+1/|z|*s (— %)

Notice that the metric ﬁs (— —) dzdzin {|z| > 4} is the pullback of s(z)dzdZ under the map -

In Q = {Izl < % orlz—1| < i or |z| > 4} we have Kf = —4 and K ¢ = —%. The inequality above
then gives
-k 4k 4k

4

Kppor < — 54— =— < - <0
WP A L 44ck T 4+k

C

In the compact set C \ Q we apply the first inequality with ¢ = (1 — c)hand ¢ = c(h + f) to get

1
Kpicr < hteh)? ((1 = 0)2h2K oy + c2(h + FKcenep))
1

_ m((l — c)h?Ky, + c(h + f)Kh+f)

S+ f)z( (1= %k + c(h + f)Knyy) > —k

uniformly as ¢ - 0 by compactness. Hence for small ¢, Kpr is bounded above everywhere by a

negative constant. This completes the construction.

Comment
The modular function A(z) is a covering map A : C* — C\ {0, 1} whose covering transformations all

.1 - . . .
preserve the metric mdzdz. Hence, as in example 4, we may push this metric down to C \ {0, 1} to

obtain a complete metric with constant negative curvature —4. The construction of the modular

function is quite complicated.

We also get Ahlfors lemma for maps from D*. (We have put 4 = 1.)

Theorem (Ahlfors lemma for D*)
If M is a Riemann surface with metric dsZ with curvature < —B, with B >0, and f : D* > M is

holomorphic, then
* 2 4 2
Proof

We have dslz)* = (p~1)*ds3. The map f op : D —» M is holomorphic, so by the Ahlfors lemma for D

we have

(F o0 (as) = p* (F*(ash)) < 7 ds

which gives
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f*(dsi) = (™1 (p* (f*(dsfw))> <@ (gdsf,) = dsg.

Theorem
Suppose Q c C has a metric with curvature < —B. Then

(@) There is no nonconstant holomorphic map f : C — Q.
(b) No holomorphic function f : D* — Q can have an essential singularity at 0.

Proof
(a) Restricting to a disc of radius a (with A = 1), the Schwarz lemma gives
1 1 4q?
* 2 2 _ —
f (dSQ) < Edsa = E(az Z122)2 dzdz - 0

when a - 0. Since f*(dsé) = If’(z)lzh(f(z))dzdz_, this gives f'(z) = 0, so f is constant.
To prove (b), we use the following

Lemma
If f € O(D™) has an essential singularity at 0, then f(D*) is dense in C.

Proof

If not, there is a € C and § > 0 such that |f(z) — al| = 6 for all z € D*. But then g(z) = L

f(@)-a
satisfies |g(2)| < %, hence has a removable singularity at 0. But then f(z) = $+ a either has a

pole or a removable singularity at 0.

To prove (b), notice that if f D* — Q has an essential singularity at 0, then f(D;") is dense in C for all
r > 0, hence there is a sequence z, — 0 such that f(z,) - p € Q. If p is the metric defined by dsq,

i.e.,

1
p(z,w) = inf{f dso(y'(®))de:y:[0,1] » Q,y(0) = z,y(1) = W}
0
and B(p,r) € Q, then inf{p(p,2):lp—z| =7} =86 > 0. If p(p,f(zn)) < %5 and y is a curve of
length < %5 starting at f(z,,), theny € B(p,7), hence |y(t)| < |p| + r = C forall t.

We may assume that 7, = |z,| decrease strictly to zero. Since f(z,) - p there is N such that

o(p, f(zn) < %é‘forn > N.

Let ¥, be the circle |z| = r;,,. Then

1 21
Lfeyn) < =Ln) S —— ~0
VB \/Elogl2
Tn

when n — oo, Hence for large n, L(f o y,) < %5. This implies that |f (z)| < C for all z with |z| = n,.

This means that |f(z)| < C for all z in the annuli 4, = {r,+1 <|z| <7} and therefore in a
punctured disc D,.. Hence f has a removable singularity at 0.
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Theorem
(a) Picard’s small theorem: A nonconstant entire function cannot omit more than one value.
(b) Picard’s big theorem: If a holomorphic function has an essential singularity at a, then f takes

all complex values except possibly one in any punctured disc around a.

Proof
(@) If f omits two values z, and z; then f: C— Q = C\ {zg,2;}. Since Q has a metric with
curvature < —B, this follows from 1.4 (a).
(b) Follows in the same way from 1.4 (b).

We will now use the complete metric on C \ {2, z;} constructed in example 5 above.

Theorem (Schottky’s Theorem)
Given Ry > 0 and r < 1, then there is a constant M = M(R,,r) such thatif f: D - C\ {zp, 2} is
holomorphic and |f(0)| < Ry, then |f(2)| < M for all z with |z| < .

Proof

- o L = Ligettlel 1, 14T
Let y be the curve y(t) = tz. By Ahlfors lemma, L(foy) < \/EL(Y) = 210g1_|Z| < 2log — It

follows that f(z) must be bounded since dq(f(0),w) — o as |[w| - co.
It follows that f(z) must also stay away from z, and zy, i.e., |f(2) — zy| = My and |f (2) — z;| = M;.

The same proof can be used to prove bounds on maps f : D* - C\ {zy,2,} on either annular

regions or circles. Here is the circle version:

Theorem (Schottky’s Theorem in D*)
Given Ry > 0 and r < 1, there is a constant M such that if F : D* — C\ {zg, z1} is holomorphic and
f(z) < R, for some z with |z| < 7, then |f({)| < M for all { with |{| = |z|.

Proof
We use the curve y(t) = zelt, 0 < t < 2m, whose length is

T T
<

2log (#) B 2log (1%)

and Ahlfors lemma for D*.
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