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The idea of a Riemann surface surfaced already in Riemann’s inaugural dissertation
from 1851. Functions defined by equations tend to be multivalued, as the old-timers
expressed it. This occurs even for the simples case w = z? where the well known
ambiguity in sign appears. For other equations equation, for instance e¥ = z, the
situation can be more severe. As we know, there are infinitely many branches of the
logarithm. The Riemann surfaces were and are means to resolve this problem. They
furnish places where multivalued functions become single valued! In their infancy the
definitions of a Riemann surface, and there were a variety, reflected this point of view.
The modern definition was strongly promoted by Felix Klein, and it is now ubiquitous
in the literature; not only for defining Riemann surfaces, but is almost a universal
device for defining geometric structures.

The idea is to use local coordinate charts and impose conditions on how they patch
together. Doing calculations on such a space is a little like commanding a submarine.
There is no help in looking out of the window on the real world, you are forced to
navigate by the maps!

Of course, this idea goes far back in history at least to the Greeks. They understood
that it is impossible to have one flat map covering the entire globe. One needs an atlas,
that is a collection of maps.

To revert to a more serious tale, the Riemann sphere is an illustrative example. We
habitually use two sets of coordinates to describe functions on it. Near the origin—in
the southern part in the stereographic picture—we use the familiar coordinate z, but
close to north pole—in the vicinity of the point at infinity— we use a coordinate w

related to z by the equation w = 27 1.
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The definition of a Riemann surface

With the example of the globe in mind, a Riemann surface has an underlying topological
space X. By a chart in X, or we understand an open set U and a homeomorphism zy
from U onto an open subset zy(U) of C. So the chart is the pair (U, zy). The open
set U will frequently be called a coordinate neighbourhood, or a coordinate patch. If
the open set zy(U) happens to be a disk, we shall sometimes refer to the chart as a
coordinate disk.

We call ziy a coordinate of the chart, so zy is amap zy: U — zy(U) CC. In analogy
with the commonplace real world, one may think of U as part of the terrain and the
open subset 2 (U) as the map'. The function 2y gives us the coordinates of the points
in U, and the inverse function zljl gives the points on X when the coordinates are
known—the inverse coordinate function is sometimes called a parametrization.

As an example consider the Riemann sphere C. It has the two open sets Uy and
Us, respectively the complement of {oo}, that is the finite plane, and the complement
of {0}. On the former one has the canonical coordinate z and on the latter one has
the coordinate w given as w = z~! in the finite part of U,, and equal 0 at infinity.

(5.1) Given two charts zp: U — zy(U) and zy: V — 21(V) on X. They both survey
the intersection U NV, and is of course of paramount interest to know which points of
the two maps correspond to the same point in the terrain! The answer to that question
is encoded in the so called transition function, that is the composition

Zyu © Z;1| unv) - Zv(UﬂV) — ZU(Uﬂ V)

1%

Not to overload our notation we shall just write zy o Zy for this function, with the
tacit understanding it is defined on 2y (U N'V).

We say that two charts are analytically compatible if the corresponding transition
function zy o zy is holomorphic. This is perfectly meaningful, the transition function
being a map between two open subsets of C. As an example, on the intersection UyNU

in the Riemann sphere, the transition function zy_ o zaol is the map z — 271
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'In everyday language the map is frequently the piece of paper on which the map is printed, i.e.,
the set zy (U). For us, as in the real real life, the map, or the chart, is the pair (U, zy).
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(5.2) By an atlas U on X we understand a collection of charts that together survey
the whole topological space X, that is U is an open covering of X. The atlas is said
to be an analytic atlas if additionally every two charts from the atlas are analytically
compatible. Phrased differently, all the transition function arising in the atlas are
holomorphic.

The set of analytical atlases on X are in the a natural way ordered by inclusion;
one atlas is smaller than another if every chart in the former also is a chart in the
latter. An analytic atlas is mazimal if, well, it is maximal in this order. The existence
of maximal atlases is an easy consequence of Zorn’s lemma. If f; is an increasing chain
of analytical atlases, the union will be one, and by Zorn there is then a maximal one.

Defenition 5.1 Let X be a connected, Hausdorff topological space. By an analytic
structure on X, we understand a mazximal analytical atlas on X . The pair of the space
X and the mazimal analytic atlas is called a Riemann surface.

There are several comments to be made. First of all, it is common usage to let
Riemann surfaces be connected by definition, mostly to avoid repeating the hypotheses
that X be connected all the time. Some authors incorporate the hypothesis that X
be second countable (that is, it has a countable basis® for the topology) but most do
not, for the simple reason that universal covers of open plane sets are not a priori
second countable—an illustrative example can be the complement of the Cantor set.
It is however a relatively deep theorem of the Hungarian mathematician Tibor Radé
(1895-1965) in 1925 that any Riemann surface is second countable. The third comment
is that our definition works in any dimensions, one only has to replace charts in C by
charts in C".

(5.3) LetU be an analytic atlas on X and let V' and W be two charts with coordinate
functions zy and zy not necessarily belonging to the atlas &. Assume that each one
of them is analytically compatible with all charts from the atlas U. Below we shall see
that this implies that V' and W are compatible as well, and and hence we can append
them to U and get a bigger analytical atlas. And not stopping there, we can adjoin to
U any chart being compatible with all charts in /. In that way we get a gigantesque
maximal atlas, and it is the unique maximal atlas containing U.

Proposition 5.1 Let X be a connected Hausdorff space. Every analytical atlas U on
X. s contained in a unique mazximal atlas, and consequently gives X a unique structure
as a Riemann surface.

PrOOF: After what we said just before the proposition, the poof is reduced to checking
that if V' and W are two charts both analytical compatible with all charts in ¢ they

2There are many topological manifolds that are not second countable, even of dimension one!
Hausdorff’s so called “long line” is an example. In dimension two there are a great many examples,
but none of them can be given the structure of a Riemann surface. However, in dimension two or more
there are analytical spaces that do not have a countable basis for the topology. If you are interested
in these outskirts of geometry, [?] is a nice reference.

3



MAT4800 — Hgst 2016

are analytically compatible among themselves; that is, we must verify that zy o ZV_VI
is holomorphic on zy (V' N W). But for any chart U from U we obviously have the
identity 2y o 2y} = (2v 0 2;;") o (27 0 2y ) over 2z (U NV NW), and as the coordinate
neighbourhoods from U cover V N W, and being holomorphic is a local property, we
are through. a

Two of the advantages with working with maximal atlases are that we are free to
shrink coordinate neighbourhoods at will and that we can perform arbitrary biholo-
morphic coordinate changes. However, these maximal atlases are awfully large. In the
complex plane for instance, the maximal analytical atlas consists of the pairs (U, ¢)
where U is any open subset and ¢ is any function biholomorphic in U! Luckily, results
like proposition 5.1 above allows us to work with very small atlas when we work ex-
plicitly; for example on C we have the canonical® atlas with merely one chart, namely
(C,id)!

The Riemann sphere C has as we saw a small atlas consisting of the two open sets
Uy and U, with the coordinates z and w. On the intersection Uy N Uy the transition
function is given as w = 271
(5.4) When we are working in C, disks are in use all the time. Similarly on a Riemann
surface we shall frequently work with charts such that 2y (U) is a disk, and for con-
venience we shall call such coordinate neighbourhoods for disks as well. If zi;(U) is a
disk about the origin and z is point in the disk with zy(z) = 0 we say that U is disk
about x or a disk centered at x. And of course we shall drop the index U pretty soon
and only write z (or any other convenient letter) for the coordinate function.

(5.5) To analytic atlases are said to be equivalent if every chart in one is analytically
compatible with every chart in the other. Two equivalent atlases are contained in the
same maximal atlas, and hence they define the same structure as Riemann surface on
X.

Other geometric structures

In the definiton one may impose other conditions on the transistion functions. For
instance, the weaker condition that they C', gives us a structure of a smooth surface (or
manifold how higher doimenson if the charts take values in R™) on X, and if addidinolly
the Jaboian determinants of zy o z;l all are positive, the smooth surface is orientable,
and it becomes oriented once we make up our minds and choose one of the orientations
of the plane.

Riemann surfaces are orientable because the jacobian of a biholomorphic map is
positive. This follows by the Cauchy-Riemann equations, since

det (ux UI) =l +v§ >0

Uy Uy

30nce you have chosen your favorite model for the complex numbers, this is rally canonical. Be
aware that the mapping idC is the function normally denoted by z in complex function theory.

747
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where u and v are the real and the imaginary part fo the map.

One also strengthen the conditions on the transposition functions, and thus impose
further constraints on the surfaces. For example, one can request the transition func-
tions to be affine, that is of the form z — az 4+ b and one then speaks about an affine
structure subordinate to the given analytic structure. Or one may ask that they are
Mobius transformations. In that case the structure is called a projective structure.

As a final example, by a real analytic structure on a Riemann surface X, we under-
stand an analytic atlas such that the coordinate domains 2y (U) are symmetric about
the real axis, and such if f(z) = 2y o 2;;' is a transition function, then f(z) = f(2).
This last condition means that the Taylor development of f about real points have real
coefficients.

PROBLEM 5.1. Show that X has a real structure if and only if it has an anti-holomorphic
involution (Part of the exercise is to find out what this means!). *

PROBLEM 5.2. Let X be a Riemann surface with maximal atlas & with partchs (U, zp ).
One defines the conjugate Riemann surface in the following way. The maximal atlas U
consists of the patches (U, Zy) and the transitions functions are Zy; o z;,'. Check that
this is a Riemann surface. *

Holomorphic maps

The study of Riemann surfaces is to a great extend the study of maps between them,
and if the maps are going tell us anything about the relation between the analytic
structures on X and Y, these maps must be compatible with those structures. That
is, they must be holomorphic in some sense. Being holomorphic is a local concept, so
to tell what it means that a continuous map is holomorphic, is a local business, and
charts are made for that.

(5.6) Assume that X and Y are two Riemann surfaces and that f : X — Y is a
continuous map. Let V' be a coordinate patch in Y and U one in X such that f(U) C V.
Thence one may consider the map 2y o f o z;;' which is a map from 2;7(U) to zy(V).
Both these are open subsets of C so it is meaningful to require that zy o f o z,}l be
holomorphic; and if there is a patch (V,zy) in Y so that this is case, we say that f
is holomorphic in the patch (U, zy). This set up of coordinates patches round = and
y = f(x) adapted to f may be illustrated with a diagram like this

1 e |

w(V) o — Ve,

where f =zyofo zljl.
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The above definition is just an auxiliary definition, here comes the serious one:

Defenition 5.2 Let X and Y be two Riemann surfaces and f: X — Y a continuous
map between them. The map f is said to be holomorphic if it is holomorphic in every
coordinate patch of the mazximal analytic atlas on X.

One says that f is btholomorphic or an isomorphism if f is bijective and the inverse
is holomorphic. The composition of two holomorphic maps is holomorphic. Once you
have grasped the definition this is quit clear, so it might be a good exercise to check
in detail.

PROBLEM p5.3. Show that a Riemann surface X has a real structure if and only it is
isomorphic to its conjugate surface X. *

(5.7) Just like for defining analytic structures small atlases can be used to check that
a map is holomorphic:

Proposition 5.2 Let X and Y be two Riemann surfaces and f: X — Y a continuous
map between them. If there is one analytic atlas U on X such that f is holomorphic
in every patch of U, then f is holomorphic.

Proor: If U’ CU, we have zvofoz(},l:zVofozljlo,zUoz(}/1 |

(5.8) Local properties of traditional holomorphic functions we know from the begin-
ning of the course, frequently have a counterpart for maps between Riemann surfaces.
When being accustomed to the abstract definitions one transfers most local properties
to Riemann surfaces with ease, once you have the standard set up on the retina it goes
almost by itself, but we give detailed proofs at this stage of the course.

Transferring the ”Open mapping theorem”, gives us the following:

Proposition 5.3 A non-constant holomorphic map between two Riemann surfaces is
an open map.

Proor: This is just an exercise with the standard local set up, and of course, the
substance comes from the open mapping theorem. Let A be open in X and let y =
f(z) € f(A) be any point. As f is holomorphic near z, there is a patch (U, zy) around
x where f is holomorphic and we can, by shrinking U if necessary, assume that U is
contained in A, thus we have the usual local set up like in 5.2:

zU(U)%UC—>X (5.2)

where f =zyofo 251 and where U C A. By the Open mapping theorem we know that
f is an open map. Then f|y(U) is open, which is what we need since f(U)CA. 1

— 6 —
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An important corollary is when X is compact;

Corollary 5.1 Assume that f is a holomorphic map from a compact Riemann surface
X to a Riemann surface Y. Then f is surjective and Y is compact.

PROOF: On one hand the image f(X) is closed X being compact, and on the other
hand, after the proposition f(X) is open. Hence f(X) is a connected component of Y,
and as Y by definition is connected, it follows that f(X) =Y. a

Proposition 5.4 The fibres of a non-constant holomorphic map between Riemann sur-
faces are discrete.

PrOOF: Let z € X and let y = f(x). It suffices to prove that z is isolated in
f~(y); that we have to find an open U C X such that U N f~!(y) = {z}. Again we
resort to the standard set up with U a coordinate patch containing x. From before
we know that the fibers of f are discrete, so there is an open U’ in 2u(U) intersecting
the fibre of f in zy(z); and moving U’ into X, we get our search for open set; i.e.,

2 (U) N y) = {x} d

Tangent spaces and derivatives

The derivative of a map between two Riemann surfaces at point is not a number
like we are used to when studying functions of one variable, but like most derivatives
of functions of several variables it is a linear map, and since we are doing analysis over
C it turns out to be complex linear map—the subtle point is naturally between which
vector space. So to begin with, we must define the tangent space Tx , of a Riemann
surface X at a point x € X. The definition follows the now standard lines for defining
tangent spaces in intrinsic geometry.

(5.9) Recall the ring Ox , of germs of holomorphic functions near x. The elements are
equivalence classes [(¢, U)] where U is an open neighbourhood of 2 and f a holomorphic
function in U, two such pairs (¢, U) and (1, V) being equivalent if W CUNV on which
f and g coincides; that is ¢|y = 1¥|y. One easily checks that this a ring with pointwise
addition and multiplication as operations.

Choosing a coordinate patch U with coordinate z centered at x (recall that this
means that z(z) = 0) one finds an isomorphism between Oy, and the ring C{z} of
powerseries in z with a positive radius of convergence. This i nothing more that the
fact that any holomorphic function near the origin can be developed in a Taylor series
and this series is unique.

The local ring is functorial. Given a holomorphic map f: X — Y and let y = f(x).
If [¢, U] is a germ of holomorphic function near y, the composition ¢ o f is holomorphic
on f~1(U) and induces a germ [¢ o f, f~1(U)] near x. It is left to the zealous students
to convince themselves that is a well defined and is a ring homomorphism.

The maximal ideal in Oy, consisting of functions that vanish at = will be denoted
by m,.
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(5.10) The tangent space Tx, is by definition the set of point derivations of Ox ,,
and point derivation 7: Ox, — C is a C-linear map satisfying a product rule a la
Leibnitz:

T(af) = az)7(8) + Bx)7().

It follows that 7(1) = 0 (indeed, 1 o 1 = 1!), and by linearity 7 vanishes on constants.
A point derivation vanishes as well on the square m? of the maximal ideal m,; by
Leibnitz’s rule is obvious that if both a(z) = 0 and () = 0, it holds that 7(af) = 0.
Consequently every point derivation induces a map m,/m? — C and there is a map as
in the following lemma. It is a good exercise to prove that it is an isomorphism.

Lemma 5.1 There is a canonical isomorphism of complex vector spaces. Tx, =
Homg(m,/m2,C,). In particular it holds that dim¢ T, = 1.

ProOOF: We have already define a map one way, so let us define a map the other
way; that is, a map from Homc(m,/m2 C,) to the tangent space T .. Assume that
¢: m,/m2 — C is a C-linear map and let @ € Ox, be a germ. We are supposed to
associate a point derivation, say 74, to ¢. The germ o — a(x) obviously vanishes at x
and belongs to m,, so it is legitimate to put 74(o) = ¢(a — a(z)). One has the equality

(o — af2)) (B = B(x) = (af — a(x)B(z)) — a(z)(B - B(z)) = B(x)(6 - (). (5-3)

Since ¢ vanishes on m? and the left side of equation (5.3) above lies in m2, we obtain

Te(af) = a(z)Ts(B) + B(x)74(0),

that is Leibnitz’s rule, and hence 7, is a point derivation. It is left as an exercise to
show that one in this way obtains the inverse to the already defined map. a

(5.11) The map f* induced a map, and that is the derivative of f at z, from T, —
Ty, simply by composition. That is we define the derivative D,: T, — Ty, by the
assignment D, f(7) = 7o f*. There is as always some checking to be done, but as
always we leave that to the zealous students.

(5.12) A n important point is that the derivative is functorial. Id f: X — Y and
g: Y — Z are two holomorphic maps with f(z) = y and v(y) = z it holds true that

Dyfog=DyfoDyg.
The formula boils down to the traditional chain rule after the mappings having been

expressed in local coordinates. To become accustomed to the formalism of tangent
space and derivatives in the intrinsic setting it is a good exercise to check this in detail

— 8 —
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(5.13) The choice of a local coordinate zy centered at the point x, i.e., coordinates
such that = corresponds to the origin, induces an isomorphism Oy, ~ C{zy}, a germ
corresponding to the Taylor series of a function representing the germ. In this corres-
pondence the maximal ideal m, of functions vanishing at x corresponds to the ideal
(20)C{zy}. Therefore m,/m?2 is one dimensional with as basis the class of 2y, that we
baptize dzy. The basis of T'x, induced by the isomorphism in 5.3 and dual to dzy is

denoted by dzy.

(5.14) The usual set up of coordinates round = and y = f(x) is as follows

w(U)—U——X

1 e |

w(V) Ve,

where zy is a local coordinate centered at the image point y of x valid in the vicinity V'
of y. On the open zy(U) set in C the map f materializes as a function f holomorphic
in 2y(U), and the map f*: Oy, — Ox . becomes the map C{zy} — C{zy} that sends
VAV to f(ZU). R R

We have the basis dzy for m,/m2. and writing f(z) = f'(0)z + z%g(z), we see that
dzy is sent to f’(0)dzy since the term 22g(z) belongs to m2.

Lemma 5.2 In local coordinates the deriwative D, f sends the basis element dzy to
f/(O)dZV

Local appearance of holomorphic maps

The first step of understanding a map is to understand its local behavior, so also
with holomorphic maps. The fist result in that direction is a version of the inverse
function theorem formulated in our setting.

Proposition 5.5 Let f: X — Y be a holomorphic map between two Riemann surfaces
and let x € Xbe a point. Assume that the derivative D, f does not vanish. Then there
exists an open neighbourhood U about x such that f|y: U — f(U) is an isomorphism
(i.e., biholomorphic).

PROOF: The usual set up of coordinates round z and y = f(z) is

w(U) e —U——X

1 e |

(V) e Ve Y

where f is the representative of f in the local coordinates. By the lemma in the previous
paragraph, D, f is just multiplication by f’ (0) in the basis dzy and dzy, hence f! (0) #0,
and from the earlier theory we know that thence f is biholomorphic in a vicinity of 0,
and shrinking U if necessary, the restriction f|y will be biholomorphic. a

— 9 —
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Points where the derivative vanishes are said to be ramification points or branch
points of the map f, and of course, it is unramified or unbranched at points where the
derivative does not vanish. So, one may formulate the previous proposition by saying
that a function is (locally) biholomorphic near points where it is unramified.

(5.15) Near a ramification point there is a local model for the behavior of f, depend-
ing on a number ind, f called the ramification indezr; which is closely related to the
vanishing multiplicity we know from before.

Proposition 5.6 Let x € X be a point and let f: X — Y be a holomorphic map.
Then there exist coordinate patches (U, zy) and (V, zy) around x and f(x) respectively,
with f(U) CV such that zy o f o 25 (2) = 2.

In short the result says that locally and after appropriate changes of coordinates both
near x and near y, the map f is given as the n-power map z — 2". But of course,
behind this is the formally precise but rather clumsy formulation of the proposition.

The integer n does not depend on the chosen coordinate, and is ramification index
hinted at, and is denote by ind, f.

PROOF: Again we start with a standard set up with the patches centered at x and
f(z), that is zy(x) = 0 as well as zy(f(z)) = 0. See diagram (5.4) below. By xxx is
part 1, there is a holomorphic function ¢ in U such that f = ¢" with ¢(0) = 0 and
¢'(0) # 0. By shrinking U we may assume that ¢ is biholomorphic in U, and therefore
can be use as a coordinate! Hence we introduce the new patch (U, g o zyy). For w lying
in this patch, we find f; = fo g ' (w) = g(g~ (w))" = w" and are through.

g(ZU(U»(%ZU(U)(%UC—)X (5-4)
fl\, fl ) J/ﬂU Jf
(V) —V—">Y

a

PROBLEM 5.4. Show that tan: C — i@ is unramified, but not surjective.Hence it is
not a cover. Show that the image is C \ {£i}, and show that tan: C — C{%i} is a
covering. *

PROBLEM 5.5. Find the ramification points of the map f(z) = 3(z +271). *

PROBLEM 5.6. Find the ramification points and the ramification indices of the f(z) =
Z" 4+ z7™ n and m two natural numbers. *

PROBLEM 5.7. Show that a holomorphic map between two compact Riemann surfaces
is either constant or surjective. Show that if the map is not constant, the fibres are all
finite. ¥*

— 10 —
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Some quotient surfaces

This section starts with two examples. The second one is important, elliptic curves
being a central theme in several branches of mathematics. We end the section with a
general quotient construction valid for a wide class of very nice actions.

In all these cases the quotient map serve as a parametrisation of the quotient surface
X/G, except that points on X /G correspond to many values of the parameter—it is the
task of the group to keep account of the different values. This makes it particularity
easy to find coordinates, locally they are just the parameter values.

EXAMPLE 5.1. The cylinder. On way of giving the cylinder an analytic structure is
to consider it as the quotient of the plane by the action of the group generated by by
the map z — 2 + 1. The topology on X is the quotient topology, the weakest topology
making the quotient map 7: C — X continuous.

We shall put an analytic structure on X and this is an illustration of how the
hocus-pocus with atlas and charts work, we shall do this in extreme detail. We shall
specify an atlas with two charts. One is the infinite strip A between the real axis and
the horizontal line Im z = 1, or rather the image 7(A) in X. The quotient map = is a
homeomorphism from A to w(A), and the coordinate function on m(A) is the inverse of
this, we denote it by 7. That is the coordinate of 7(z) is z. The patch m(A) covers
most of the cylinder except the “seam”, the image of the two boundary lines.

The second patch is mutatis mutandis constructed in the same way but from the
different strip B between the horizontal lines Imz = 1 — ¢ and Im 2z = —t where ¢ is
any real number between zero and one. The coordinate patch is the image 7(B) and
the coordinate 75"

What happens then on the intersection w(A) N7(B)? What is the transition func-
tion? Is it holomorphic? First of all in A the inverse image 7" (m(A) N 7(B)) of the
intersection is A with the line Im z = 1 — ¢ removed since points on this line are not
equivalent under the action to points in B.

So 7 (m(A) N 7(B)) has to components. The one where 0 < Imz < 1 — ¢ lies
in B as well, and hence the transition function 7' o 7 is the identity. The other
one, where 1 —t < Imz < 1, the composition ngl o7 equals the translation z
z — 1. In both cases the, the transition function is holomorphic and our two charts
are analytically compatible. They constitute an analytic atlas and give the cylinder a
complex structure.

— 11 —
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Figur 5.1: The cylinder and the two coordinate patches.

In fact, the cylinder is biholomorphic to the punctured plane C*. The biholomorph-
ism is induced by the exponential function e(z) = €*™*, that take values in C*. Clearly
e(z+1) = e(z), so e invariant under the group action, and therefore by the properties of
the quotient space X, induces a continuous map ¢: X — C*. It is easy to check using
elementary properties of the exponential function (hence a task for zealous students)
that € is a homeomorphism. The only thing left, is to check that it is holomorphic,
and this indeed comes for free: On the charts A and B the functions is be definition
equal to ™! The coordinate of a point 7(z) belonging to m(A) (or 7(B)) is 2! S

EXAMPLE 5.2. The next example is of the same flavour as the first, but the group
action is more complicated—there will be two periods instead of just one —and the
examples infinitely more interesting.

The Riemann surfaces will be compact with underlying topological space what
topologists call a torus, a space homeomorphic to St x S*, which in bakeries is known
as a doughnut. This is a genuine new surface—it is not biholomorphic to any open
subset of the good old Riemann sphere C— and it is known as an “elliptic curve”. These
spaces entered the world of mathematics at a time when to compute the circumference
of an ellipse ( Very important question just after the discovery that the planets move
in ellipses!) was the cutting edge of science, and the length-computation ended up with
integrals related to bi-periodic functions, and as we shall see, bi-periodic functions lie
behind the group action defining this Riemann surface.

— 12 —
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Figur 5.2: The atlas of the torus.

Let A be the lattice A = {njw + ne | n1,ny € Z} (in the figure we have for
simplicity drawn w as purely imaginary). It is an additive subgroup of the complex
numbers C, and we can form the quotient group C/A. This is also a topological space
when equipped with the quotient topology, and it is homeomorphic to the product
S! x S, We let 7: C — C/A be the quotient map, it is an open map.

We intend to define an analytic structure on C/A in an analogous way as with the
cylinder, by giving an atlas with two charts. The first is A = { s+tw |0 < s,t < 1}, or
rather the subset w(A) of the torus. As no two points in A are congruent mod A, the
set A maps invectively, and 7 being open, homeomorphically onto the open set w(A)
in C/A. The coordinate of point 7(2) in m(A) is simply z. The second chart is a small
perturbation B of A, say A = {s+tw | —e < s,t < 1 — €}, the image m(B) is open
and the coordinate of a point p(z) is still z, but this time it must be chosen to lie B.

On the intersection of the two patches, the transition function is holomorphic. A
quick (but incomplete) argument goes like this: Take a z in A whose image also lies in
m(B). Map it down to the torus and lift it back to a point w in B. Both z and the lift
w lie in the same fibre of 7, so w is a translate of z. Hence the transition functions are
just translates, and we are tempted to say: which are holomorphic!

However, this is faulty since the difference w — z can depend on z, and in fact
it does!. One must assure oneself that this difference behaves holomorphically as a
function of z. Luckily, the differences turn out to locally constant, i.e., constant on
the connected components of the intersection, and that will settle the case.

Contemplating figure 5.2 above, you easily convince yourself that this is true. The
intersection manifests itself in A with four connected component, marked I, 11, 111

— 13—
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and IV in the figure, and the different translations are the as follows: The identity
on [V, the map z —+ 2z —w on III, the map z — z — 1 on I[ and finally the map
z—z—1—1in I. e

..\_

PROBLEM 5.8. The quotient C/A is a group. Show that both the addition and the
inversion maps are holomorphic. *

(5.16) Assume that G is a group acting holomorphically on a Riemann surface X.
This means that all the action maps maps = +— g(z) are holomorphic, and of course
the familiar axioms for an action must hold. If gh denotes the product of the two
elements g and h in G, it holds true that gh(x) = g(h(x)), and e(x) = z for all z where
e € G is the unit. The set Gz = {g(z) | g € G } is called the orbit of x, and the set
G(z) ={g € G| g(x) =z} of group elements that leave the point x fixed is called the
1sotropy group or the stabiliser of x.

The quotient X/G is as usual equipped with he quotient topology, a set in X/G
being open if and only of its inverse image in X is open. This is equivalent to the
quotient map 7: X — X/G being open and continuos.

We concentrate on a class of particular nice actions called free and proper. They
have following two properties.

[J For any pair of points z and 2’ in X not in the same orbit, there are neighbour-
hoods U and U’ of respectively z and 2’ with U N gU’ for all g.

[J About every point x € X there is a neighbourhood disjoint from all its non-trivial
translates; that is, there is an open U, with z € U, such that qU, N U, = () for

all g # e.

The first condition guarantees that the quotient X/G is a Hausdorff space. Indeed,
if y and ¢y are two points in X /G, lift them to points z and and 2’ in X, and choose
neighbourhoods U and U’ as in the condition. Then n(U) and U’ are disjoint, if not
there would be a point in U lying in the orbit a point in U’, which is precisely what
the condition excludes. And both 7(U) and mw(U’) are open and one contains y and
the other one ¢y’ so they are disjoint open neighbourhoods of respectively y and 7/

We proceed to define an analytic atlas on X/G. To begin with we chose one on X
whose charts are (U, zyy) satisfy gU N UD when g # e (convince yourself that such an
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atlas may be found). The images V = 7(U) are open, and 7|y are homeomorphisms
onto U. The open patches of the atlas on X/G are the images V', and the coordinate
functions wy are given as let wy = 2y o w|;;'. They take values in 2y (U). We plan to
show that this is an analytic atlas.

To this end let (V,wy) and (V' wy/) be two patches of the newly defined atlas on
X/G. Our task is to show they are analytically compatible.

The part of #=1(V N V') lying in U is equal to the union of the different open sets
UNg(U’) as g runs through G. These sets are open and pairwise disjoint since the sets
g(U") are , and therefore they form an open partition of 7= (V. N V') N U.

Now, there is only one partition of a locally connected set consisting of open and
connected sets, namely the partition into connected components. The sets UNg(U’) are
not necessarily connected, but it follows that they are unions of connected components
of T (VNV)NU.

It suffices to see that the transition function are holomorphic on each connected
component of z; (7~ H(V N V') NU). But g~ of course map maps U N g(U’) into the
connected component g~ (U) N U’ of 7= (V NV’) NV’ and the hence the transition
function equals the restriction of 2y 0 g7t 0 2y on 2 (U N g(U")).

PROBLEM 5.9. Let a be a positive real number and let 7, de defined by 7,(z) = az. The
clearly n, takes the upper half plane H into itself. Let G be the subgroup of Aut(H)
generated by 7,. The aim of the exercise is to show that G acts on H in a proper and
free manner, and that the resulting quotient H/G is biholomorphic to an annulus:

a) Show that liminf, 4 |a" — 1| (@™ 4+ 1)1 > 0.

b) Let zo € H and choose an € with 0 < € < liminf, o |a" — 1] (" + 1)7! |z0|. Let U
be the disk |z — zo| < €. Show that the disks a"U all are disjoint from U when n # 0.
Conclude that the action is proper and free.

c¢) Show that the quotient H/G is a Riemann surface. Show that the function

f(2) = exp(2milog z/ log a)

is invariant under the action of G and induces an isomorphism between H/G and the
annulus A = {2z | r < |z| < 1} where r = exp(—27?%/loga).

Covering maps

Coverings play a prominent role in topology, and they have similar important role
in theory of Riemann surfaces. May be they even have a more central place there
due to the Uniformisation theorem. This fabulous theorem classifies all the simply
connected Riemann surfaces up to biholomorphic equivalency, and amazingly, there

— 15—
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are only equivalence classes them, namely the class of the complex plane C, of the unit
disk* D and of the Riemann sphere C.

As we shall see, every Riemann surface has a universal cover which is a Riemann
surface with a holomorphic covering map. Combining this with the Uniformisation
theorem, one obtains the strong statement that any Riemann surface is biholomorphic
to a free quotient of one of three on the list! This naturally has lead to an intense study
of the subgroups of the automorphism groups of the three. Neither the plane nor the
sphere have that many quotient, and most of the Riemann surfaces are quotients of the
disk. The corresponding subgroups of Aut(D) form an extremely rich class of groups
and can be very complicated.

It is also fascinating that the three classes of simply connected Riemann surfaces
correspond to the three different versions of non-Euclidean geometry. The plane with
the good old euclidean metric is a model for the good old geometry of FKuclid and
the other greeks, and the sphere naturally is a model for the spherical geometry. We
already used the spherical metric when proving the Picard theorems. The renown
french polymath Henri Poincaré put a complete metric on the disk, making it a model
for the hyperbolic geometry, and naturally, that metric is called the hyperbolic metric.

(5.17) A covering map, or a cover, is a continuos map p between to topological
spaces X and Y which fulfils the following requirement. Every point y € Y has an
open neighbourhood U such that the inverse image decomposes as p~*(U) = U, Ua
where the U,’s are pairwise disjoint and are such that py, = p|y, is a homeomorphism
between U, and U. One says that the covering is trivialized over U; and in fact,
it is trivial in the sense that there is an isomorphism p~1(U) ~ U x A such that p
corresponds to the first projection, just send u € p~!(U) to the pair (pyq(u),a).

One usually assumes that Y is locally connected to have a nice theory. For us who
only work with Riemann surfaces, this is not a restriction at all as points in a Riemann
surface all have neighbourhoods being homeomorphic to disks. When the trivializing
open set U is connected, the decomposition of the inverse image p~'(U) = U,y Ua
coincides with the decomposition of p~!(U) into the union of its connected components,

which sometimes is useful.

(5.18) Covering maps have several good properties. For instance, there is a strong
lifting theorem. Maps from simply connected spaces into Y can be lifted to X, that is
one has the following theorem which we do not prove.

Proposition 5.7 Assume that p: X — Y is a covering and that f: Z — Y is a
continuous map where Z is sumply connected. If z is a point in Z and x one in X such
that p(z) = f(2), there exists a unique continuous map f: Z — X with f(z) = x and

f=polf.

4or any Riemann surface biholomorphic to it. The upper half plane H is a very popular model.

— 16 —
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For diagrammabholics, the proposition may be formulated with the help of the following
diagram:

{z}L;X

Ly y s p

2= Y
where i, and 4, are the inclusion maps. One should read the diagrammatic message
in the following way: The solid errors are given such that the solid square commutes,

and the silent statement of the diagramm is that one can fill in a dotted arrow which
makes the two triangular parts of the diagramm commutative.

(5.19) Coverings are as we saw locally homeomorphic to a product of an open set
and a discrete space. And when the base Y is connected, this discrete space must up
to homeomorphisms be the same everywhere; that is, the cardinality is constant over
connected components of Y. One has:

Proposition 5.8 IfY is connected is and p: X — Y 1is a cover, then the cardinality
of the fibres p~'(y) is the same everywhere on'Y .

PROOF: Let W3 be the set where p~1(y) is bijective to some given set B. Since p is
locally trivial, Wp is open, and the same argument show that the complement Y\ Wp
is open as well (well, if the fibre is not bijective to B, it lies in some other W¢). It
follows that Wi =Y since Y is connected. |

In case all the fibres of p are finite, this can be phrased in a slightly different manner.
Sending y to #p~'(y) is a locally constant function on Y because p is locally trivial,
and locally constant functions with integral values are constant on connected sets. The
open sets U, are frequently called the sheets or the branches over U, and if there are
n of them, one speaks about an n-sheeted covering.

PROBLEM 5.10. Show that the exponential map exp: C — C* is a covering. Let a € C*
describe the largest disk over which exp is trivial. *

PROBLEM 5.11. Let f(2) = 3(2+27'). Consider f as a map from C to C. Show that

[ induces a unbranched double covering (synonymous with a 2-sheeted covering) from
C\ {£1} to C\ {£1,0}. B

PROBLEM 5.12. The tangent function tanz takes values in C \ {£i}. Show that
tan: C — C\ {%:} is a covering. Be explicit about trivializing opens. HINT: It might
be usefull that arctan z = (2¢) " log(1 + ¢2)(1 —iz)~'. *

PROBLEM 5.13. Show that a holomorphic covering between Riemann surfaces then has
a derivative which vanishes nowhere. Is the converse true? *
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(5.20) A wuniversal covering of a topological space X is a covering p: Y — X such
that the space Y is simply connected, recall that tis means hat Y is path connecetd and
that m;(Y) = 0. It is not difficult to see that such universal coverings are unique up to
a homeomorphism respecting the covering maps. That is, if p’: Y/ — X is another one,
there is a homeomorphism ¢: Y’ — Y with p’ = p o ¢; or diagrammatically presented,
there is a commutative diagram

v — %y
X.
Not all topological spaces have a universal covering. The condition to have one is
rather long (close to a breathing exercise): The pace X must be connected, locally

path connected and semi-locally simply connected. But don’t panic, Riemann surface
all satisfies these conditions, as every point has a neighbourhood homeomorphic to a

disk.

PROBLEM 5.14. Let A=C\{1/n|n € N}. Show A is not open and that that 0 € A.
Show that any neighbourhood of 0 in A has loops that are not null-homotopic in A.
Show that A does not have a universal covering. *

PROBLEM 5.15. Let : Y — X be a universal cover. let Autx(Y') be the set of homeo-
morphisms ¢: Y — Y such that po ¢ = p, that is, the homeomorphism making the
diagram

commutative. Show that Autx(Y') is a group under composition. Fix a point z € X.
Show that ¢ by restriction induces a self-map of the fibre p~'(z). Show that if this
self-map is the identity, then ¢ = idy. Show that Autx(Y') is a naturally isomorphic
to a subgroup of the symmetric group Sym(¢~'(x)). HINT: Use the lifting theorem
(theorem 5.7 on page 16). *

PROBLEM £5.16. Show that the action of Autx(Y') is free and proper in the sense as in
xxx. Show that it acts transitively on each fibre. *

Coverings of Riemann surfaces

Assume that X is a Riemann surface and that p: Y — X is a covering where Y for
the moment is just a Hausdorff topological space. The analytic structure on Y is easily
transported to Y in a canonical way so that the projection p becomes holomorphic.
This is a very important result though it is almost trivial to prove.

— 18 —
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Proposition 5.9 Assume that X is a Riemann surface and that p: Y — X is a
covering. Then there is unique analytic structure on'Y such that p is holomorphic. In
particular every Riemann surface has a universal cover that is a Riemann surface and
the projection is holomorphic.

PROOF: Take any atlas U over X whose coordinate patches (U, zy) are such that the
opens U all trivialize p; that is, the inverse image p~!(U) decomposes in a disjoint
union Uae 4 Uq with each 7y, @ Uy, — U being a homeomorphism. The atlas on X
we search for, consists of all the U,’s for all the U’s in U with the obvious choice of
2y © Py, for coordinate functions, and it turns out to be an analytic atlas. Indeed, on
U, N Vg one has

(2 0 pua) o (2v 0 prg) ' = 2y 0 PUa O Py O 2y = 20 0 2y

since both py . and py g are restrictions of same map p to U, N Ug.
It is obvious that the projection map p is holomorphic, contemplate the diagram
below for a few seconds and you will be convinced:

Ua e ZU(U)

pU,al lid

U—2u(U)

a

(5.21) Recall that if Z is any simply connected space a map Z — X can be lifted to
a map Z — X which is unique once the image of one point in Z is given. When Z
is another Riemann surface and f is holomorphic, the lift will be holomorphic as well.
We even have slightly stronger statement:

Proposition 5.10 Assume that p: Y — X is a covering between Riemann surfaces
and that f: Z — Y is a continuous map such that p o f is holomorphic, then f is
holomorphic.

PROOF: Again the hart of the matter is to choose an atlas compatible with the given
data. Start with an atlas on Y whose coordinate neighbourhoods trivialize the covering
p. For each U and each z € f~1(U) there is patch V' on Z centered at z and contained
in f~}(V). And as Z i locally connected we can find such V’s that are connected.
Then f(V) is contained in one of the Uy, ’s, and one has f|y = pyq o f|V As py o is
biholomorphic in U, this gives f = flv op(}}a implying that f is holomorphic in V', and
hence in Z since the V’s cover Z. 4

PROBLEM 5.17. Check that in proposition 5.10 above, it suffices to assume that p be
a local homeomorphism. *

— 19 —
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PROBLEM £5.18. Let A be a lattice in C. Show that the projection map C — C/A is a
universal cover for the elliptic curve C/A. *

PROBLEM 5.19. Let A be a lattice. A function is A-periodic if f(z + w) = f(z) for all
w € A and all z € C. Show that any holomorphic A-periodic function is constant. ¥

EXAMPLE 5.3. We continue to explore the world of elliptic curves. In this example
we study the holomorphic maps between two elliptic curves C/A and C/A’, and shall
show that they are essentially linear, that is induced by linear function z — az + b
from C — C.

Let the f: C/A — C/A’ be holomorphic. The salient point is that p': C — C/A’
is the universal cover of C/A’; so that any holomorphic map from a simply connected
Riemann surfaces into C/A’ lifts to a holomorphic map into C by proposition 5.10. We
apply this to the map f o p and obtains a holomorphic function F': C — C that fits
into the commutative diagram

c—L ¢

]

C/A——C/N.

Fix for a moment a member w of the lattice A and consider the difference F'(z+w)—
F(z). As a function of z it takes values in the discrete subset A’ of C. It is obviously
continuous (even holomorphic), and hence it must be constant. Taking derivatives
shows that F’(z + w) = F'(z), so that the derivative is A-periodic, and from problem
5.19 we conclude that F'(z) is constant. Hence F(z) = az + b. *

— 20 —



MAT4800 — Hgst 2016

i B X
p
< v Dy
2(, 2\,'
@ ZU o zy x
C2 ()22 (UNV) @
U n V) C ZU

Figur 5.3: Charts on a covering surface.

Proper maps

Recall that a proper map between two topological spaces is a continuous map whose
inverse images of compact sets are compact. A continuous map whose source space is
compact, is automatically proper, and of course. Notice that the target space can be
decisive for the map being proper or not; for instance, homeomorphisms are proper,
but open embeddings® are usually not.

(5.22) Any proper, holomorphic maps between Riemann surfaces must have finite
fibres. The fibres are discrete by proposition 5.4 on page 7 and as f is proper, they are
compact as well.

Proper maps are always closed whether holomorphic or not. To see this, let b be
a point in the closure of the image f(A) of a closed a set AC X, and let {a,} be a
sequence in A such that {f(a,)} converges to b. The subset B = { f(a,) | n € N}U{b}
of Y is compact. Hence the inverse f~!(B) is also compact because f is assumed to be
proper. As {a,} C f~1(B) N A, there is a subsequence of {a,} converging to a point a
in A, and by continuity, f(a) = b. We have thus proven

Proposition 5.11 A proper, holomorphic map between two Riemann surfaces is closed
and have finite fibres.

5An open embedding is a map whose image is open and which is homeomorpic onto its immage.
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PROBLEM 5.20. Give an example of a smooth map between Riemann surfaces whose
fibres are not all finite. Give an example of an open imbedding that is not proper.
Give an example of an open imbedding (of topological spaces) that is proper, but not
a homeomorphism. *

PROBLEM f5.21. Show that the composition of two proper maps is proper. *

PROBLEM 5.22. Assume that f: X — Y is proper and that A C X is a closed, discrete
set. Show that f(A) is discrete. *

PROBLEM 5.23. If f: X — Y is proper and ACY is closed, show that the restriction
flxvs-1ay: X\ f71(A) = Y\ Ais proper. *

(5.23) Every covering map is a local homeomorphism by definition, but the converse
is not true. A cheap example being an open immersion; that is, the inclusion map of
an open set U in a space X. If U is not a component of X any point in the boundary
of U will not have a trivializing neigbourhood. If you want a surjective example, there
is an equally cheap one. Take any covering with more than two points in the fibres and
remove one point from one of the fibres.

If the map in addition to being a covering also is a proper map, it will be a covering:

Lemma 5.3 A proper, local homeomorphism f: X — Y is a covering map.

PROOF: Take any point y € Y. The fibre f~1(y) is finite because f is proper. Round
each point z in the fibre there is an open U, which f maps homeomorphically onto an
open V, in Y. By shrinking these sets we may assume they are pairwise disjoint, i.e.,
replace U, with U, \ U,/ 2, U and notice that « ¢ U, if 2/ # x since f is injective on
U,

The finite intersection V' = (¢ ;-1 ,
different sets f~1(V)NU, for z € f~!(y) are open, disjoint sets mapping homeomorph-
ically onto V. a

) V. is an open set containing y, and clearly the

The degree of a proper holomrphic maps

This section is about proper maps between Riemann surfaces and the cardinality
of their fibres. Their fibres are finite, and case the map is a cover, all fibres have the
same number of points as saw in prop xxx above. The theme of this paragraph is to
extend this result to maps having branch points, however the branch points counted
with a multiplicity which turns out to be equal to the ramification index ind, f.

Proposition 5.12 Let : X — Y be a proper,holomorphic map between two Riemann
surfaces. Then the number Zf(z):y ind, f is independent of the point y € Y and s

called the degree of f. If f is not branched in any point in f~'(y), it holds true that
#f7y) =deg f.
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So let f: X — Y be a proper map. The points in X where the derivative
D,F: Tx, — Tyju) vanishes are isolated points; indeed, locally in charts (U, zy)
of X and (V,zy) on Y the function f is represented by the holomorphic function
f = zvo fozy, and the derivative f' represents D, f for z € U. We know that f' is
holomorphic and hence has isolated zeros.

Hence the set B ={x | D,f } is a closed, discrete set in X called the branch locus
or ramification locus of f. The image f(By) is closed and discrete as well, our map
[ being proper, and on the open set W = X f~!(f(By)) the map f is unramified.
Hence is a local homeomorphism there and since the restriction flyw: W — Y\ f(By)
is proper, it is covering by lemma 5.3 above.

Proposition 5.13 Let : X — Y be a proper,holomorphic map between two Riemann
surfaces. Then the number Zf(x):y ind, f is independent of the point y € Y and s
called the degree of f. If f is not branched in any point in f~(y), it holds true that
#17(y) = deg f.

PROOF: Let B be the branch locus of f and put W = f~'(f(B)). Then fly: W —
Y \ f(B) is a covering map. Moreover f(B) being a discrete set, the complement
Y\ f(B) is connected, and by 5.8 on page 17 the number of points in the fibres f~(y)
is the same for all y € Y\ f(B).

So we pass to examining the situation round a fibre containing branch points. Let
fYy) ={zx1,..., 2} and let n; = ind,, f, of course some of these can be one. By the
local description of branch points (proposition 5.6 on page 10) we can find coordinate
patches U; with coordinate z; round each x; and V; round y such that in the patch U;
one has f(z) = z}".

Shrinking the U; if necessary, they can be assumed to disjoint, and replacing V'
with the intersection (), V;, we can assume that V = f(U;) for all ¢. With this in
place the inverse image f~'(V') decomposes as the union | J, U;. Now, there are points
y" in V such that the map f is unbranched over 3/, thence #f~!(y’) decomposes as
S #(FHY) NU;). Clearly this sum equals Y, n;, indeed, f is represented as f(z;) =
2" on the patches U; and equations z;" = € has n; solutions. On the other hand all

(2
unbranched fibres have the same number of points, so we are through. d

PROBLEM 5.24. Let f: X — Y and ¢g: Y — Z be two proper holomorphic maps
between Riemann surfaces. Show that the composition g o f is proper and that one

has deggo f = deg f degg. *

PROBLEM 5.25. Let A CC be a lattice. Show that for each integer n the map z — nz
induces a proper map [n]: C/L — C/A. Show that [n] is unramified and determine its
degree. HINT: Compute the derivative of [n]. *
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