Then 14.12: YCCX RS.

Then 14.12: YCCX RS.

For every $a \in Y$, $\exists g \in M(Y)$ so that g has a pole at a f f is holomorphic on $Y \setminus \{a\}$ f is holomorphic on $Y \setminus \{a\}$ fExample: X = C, $Y = D = \{a\}$

Then $f(z) = \frac{1}{2}$ is what we work.

In quench, may be complicated to construct such function.

Proof: From previous teereus, $f(x,0) \to H^1(Y,0)$)

is finite.

The idea is to makes & use the local constructors like in the example, to get a global one in M(Y) seat form get a global one in M(Y) seat form we want.

The idea $U_1 = D$, $\alpha = 0 \in D$.

The let $U_2 = X \setminus SaS$. $N = (U_1, U_2)$ is an open covering of $X \cdot = (U_1, U_2)$ is an open covering of

The functor $2^{-3} (j=1,...,k+1)$ one admosphic on $U_1 \cap U_2 = ID \setminus SoS$.

one admosphic on $U_1 \cap U_2 = ID \setminus SoS$. $S_j = 2^{-3} \in C^1(N, 9)$. Actually $S_j = 2^{-3} \in C^1(N, 9)$. (HW: $S_j = 2^{-3} \in C^1(N, 9)$. (HW:

Call $S_1,...,S_{k+1}$ be the Freshicka to

Call $S_1,...,S_{k+1}$ be the Freshicka to $S_1,...,S_1,...,S_1$ be the Freshicka to $S_1,...,S_1,...,S_1,...,S_1$ be the Freshicka to $S_1,...,S_1,...,S_1,...,S_1,...,S_1$ be the Freshicka to $S_1,...,S_1,...,S_1,...,S_1,...,S_1$ be the Freshicka to $S_1,...,S_1,...,S_1,...,S_1,...,S_1$ be the Freshicka to $S_1,...,S_1,...,S_1,...,S_1,...,S$

(Kin thank the F In (K'(X,9) -> K'(Y,9))

Which has been to.

The means track we can find cijiii, Ck

The means track we can find cijiii, Ck

(1) not all 0, so kene:

(3) + ... + Ck Sk + CkriSkt; = 0

in H'(Y,9)

=) C'(Y,9).

The C'(Y,9).

Cist C252+... + Cksk + Get 15kt 1

- S1-62 on U1 n U2 n Y

- S1-62 on U1 n U2 n Y

Now define: 5(C15, + Ckst + Ckt 15kt 1)

8 = 9 82 on U2 n Y

(Recult: Z-3 is defined on U1=10)

9 + M(Y).

9 has a pole of order at least

1 & at most let 1 at a = 0.

1 & at most let 1 at a = 0.

Cordlay: If X is a compact RS,

& = din (H'(X, 9)), Ken

be the edin (H'(X, 9)), Ken

there is a monomorphic funta a X

there is a monomorphic funta a X

with pole at a of order between

with pole at a is holomorphic observed:

Exemple: E = elliptic conne => 3 = 1.

Exemple: E = elliptic conne => 3 = 1.

The 3 has a pole of order between

ment g has a pole of order between

ment g has a pole of order between

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 1. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 2. Lotherise

f cannot be a pole of order 3.

Weiersters function f: E -> IP! Lon order ?.

Godlag (14.13) Suppose X compact RS

& a1, ..., an are distinct paints on X.

Let c11..., an are Longerer, so that

f: X -> IP! holomorphic, so that

fixe policies. The 14.12 & polynomial

interpolation. I constructed

interpolation. I can 14.12 & polynomial

Con 14.14: 3 & E 9.(X) & that & is not

Constructed compact.

Choose a paint in each compared of Y.

Since X

is converted

is converted

The can convert these points by convers (in Red).

The apply Than 14, 12 to Y' &

The apply Than 14, 12 to Y' &

Se that & An a pole at a & &'

is in O(Y'IY).

Since Y is completed \Rightarrow of is not context in any open subsect of Y'.

If any open subsect of Y'.

If = β' is not constant on any comparate β' is not constant on any comparate β' in the next results can be proven similarly.

Then 14.15.(stronger servin of 14.12.):

Then 14.15.(stro

Compactness is needed in Cn 14.14 because we want a point $a \in Y' \setminus Y'$. If X we want a point $a \in Y' \setminus Y'$. If X is compact by maximum principle, then any elemant Y' is compact than any elemant Y'.

* Elliptic arre:

18 X is compact than any elemant.

4 Elliptic arre:

18 X is compact than any elemant.

2nd was to define: F= the Chane in P² of the affine covere y²= x³ + ax + b, a, b ∈ C a, b must activity some undition so that we get a smooth come.

Between 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Represident 1s a way to go between (e, er)

Soll(Y) = 5 w: 1-form on Y,

breakly w = h d\(\frac{1}{2}\) $d''' f = \frac{2f}{2\overline{1}} d^{\overline{1}} w = 0$ $(d''' w = \frac{2h}{2\overline{1}} d^{\overline{1}} x d^{\overline{1}})$ =) w is d'' - closed on Y'.

Corollary Suys teak keen w is d'' - exact,
but why on Y.

How to boothed holomorphic 1-form on

RS:

Then
$$\pi: X \to X$$
 universal covery.

Then $\pi: X \to X$ universal covery.

X is nimply - connected RS.

X = $\int_{\mathbb{P}^1} \mathbb{D}$

The way is a Relongition 1 - for an X

=) $w = \pi^*(w)$ is a -leden applied 1

-form on X .

(any $(g \circ h)^* \omega$

Moreover, $(g \circ h)^* \omega$
 $= g \circ h^*(g \circ h)$

if
$$\psi \in Deck(X \to X)$$
 ten:
 $\psi^{\dagger} \widetilde{\omega} = \widetilde{\omega}$.
 $\chi \to \chi$
 $\chi \to \chi$

then $\exists \omega$ belomatic \pm -for an \times \mathcal{L} ther $\widetilde{\omega} = \pi^{+}(\omega)$,

We can define ω as follows;

Let $p \in X \iff \widetilde{p} \in \pi^{-1}(p)$,

Then π is cross map \Rightarrow $\exists p \in U \subseteq X \in \mathbb{R}$ Then π is cross map \Rightarrow $\exists p \in U \subseteq X \in \mathbb{R}$ Then π is cross map π is π then π is isomorphism. $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U \subseteq X \text{ so then } \pi \cap U : \widetilde{U} \to U$ $\pi \in U = \pi \cap U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U : \widetilde{U} \to U : \widetilde{U} \to U$ $\pi \in U$

For D: $\omega = g(z)dz$, $g: D \rightarrow C$ bidomorphic. For P: Claim if ω is a liderageic A - fon an P = 0. A - Example: Homopeic 1-form on E = UWilliptic cone. $T : C = E \longrightarrow E = C/\Lambda$ $T : C = E \longrightarrow E = C/\Lambda$ Deck transformance = $\frac{3}{6}$: $C \rightarrow C$ Clearly $\frac{1}{6}$: $\frac{1$

 $\begin{array}{lll}
(\frac{1}{b}) &=& (\frac{1}{b}\left(\frac{1}{2}\right)dz) \\
&=& g(\psi_{b}(z)) d(\psi_{b}(z)) \\
&=& g(z+b) dz \\
(\frac{1}{b}) &=& (\frac{1}{b}) dz \\
(\frac{1}{b}) dz \\
(\frac{1}{b}) &=& (\frac{1}{b}) dz \\
(\frac{1}{b}) dz \\$

The space of holomorphic 1-form on P^1 has $C-dim D = g = genus of <math>P^1$.

S15. Exact cohomology sequence

We already as species about exact sequence

of sheares & long exact sequence in charlow

Here we study in detail.

Here we study in detail.

More examples of sheaf homomorphism: $d: \Sigma \rightarrow \Sigma^{(1)} \cdot (A = d' + d'')$ $d: \Sigma \rightarrow \Sigma^{(1)} \cdot (A = d' + d'')$ $d: \Sigma \rightarrow \Sigma^{(1)} \cdot (A = d' + d'')$

$$f(x_1y_1) = xy = \left(\frac{z+z}{2}\right)\left(\frac{z-z}{2}\right)$$

$$= \frac{1}{4!}\left(z^2 - \overline{z}^2\right)$$

$$d = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = y dx + xdy$$

$$= \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial z}d\overline{z} = \frac{1}{4!}\left(2z\right)dz$$

$$= \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial z}d\overline{z} + \frac{1}{4!}\left(-2\overline{z}\right)d\overline{z}$$

$$d : \sum_{1=6\infty}^{(1)} \rightarrow \sum_{1=6\infty}^{(2)}$$

$$\Re = \ker \left(\mathcal{E}^{1/0} \stackrel{d}{\to} \mathcal{E}^{(2)} \right)$$
 $\mathcal{E}^{1/0} = \ker \left(\mathcal{E}^{1/0} \stackrel{d}{\to} \mathcal{E}^{(2)} \right)$
 $\mathcal{E}^{1/0} = \ker \left(\mathcal{E}^{1/0} \stackrel{d}{\to} \mathcal{E}^{(2)} \right)$
 $\mathcal{E}^{1/0} = \ker \left(\mathcal{E}^{1/0} \stackrel{d}{\to} \mathcal{E}^{(2)} \right)$
 $\mathcal{E}^{1/0} = \operatorname{dist} \mathcal{E}^{(2)} \stackrel{d}{\to} \mathcal{E}^{(2)}$
 $\mathcal{E}^{(2)} = \operatorname{dist} \mathcal{E}^{(2)} \stackrel{d}{\to} \mathcal{E}^{(2)}$

$$\frac{\sum_{i=1}^{d'} \sum_{j=1}^{d'} \sum_{i=1}^{d'} \sum_{j=1}^{d'} \sum_{j=1}^{d'}$$