18 October 2023 MAT4800

Forster's conjecture:

If X is a open , then 3 a

holomorphic function F: C² -> C

holomorphic function F: C² -> C

conjecture:

holomorphic function F: C² -> C

holomorphic function F:

Analog for compact RS:

Every compact RS is a convert of the service of the servi

In general, not tree for the compact analy.

Degree - genus famele: If X is a

compact RS, X E IP & defined by
a polynomial of degree n, then:

$$g(X) = \frac{(n-1)(n-2)}{2}.$$
Example: $X = \int Tx \cdot y \cdot z \cdot J \subseteq \mathbb{P}^2$:
$$X = 0 \cdot \int Y = 0 \cdot \int Y = 0$$

$$g(X) = (1-1)(1-2) = 0.$$

Example 2: If
$$X \subseteq P^2$$
,
 $X = \{ \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \} \} \}$
elliptic curve degree $n = 3$

$$\Rightarrow g(X) = \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \} \} \}$$
Example 3: $X = \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \} \}$
Check it is Smooth. Degree $= 2 = n$

$$g(X) = (2-1)(2-2) = 0$$
.
It is not obvious as are $X = \mathbb{P}^1$.
Example 3: If X compact PS , $X = \mathbb{P}^2$,
then $g(X) \neq f$.
Why? $(n-1)(n-2) = f$
 $= 1$ $n^2 = 3n - 6 = 0$.

No positive integer solution on.

So no such curve.

On the other hand, there are compart

RS with genes 4.

What is known?

Every algebraic compact RS is
a cover in IP3.

Idea of proof: Use a position like
bundle L on X to get an enbeddy

X -> PN Ru N=3.

Then if N>3, project to a

Then if N>3, project to a

Generic hyposplane H = IPN, to

SN-1

get X -> PN-1 P (i.e. the pro
projection is isonorphic when restricted
to X.)

* If X is an open RS, then

X is a curve in C3.

* Elliptic owe:

-> Cryptography
-> Number theory (Fernat's last theorem)

* Group strature an elliptic cure:

First was to see: $E = \frac{\Gamma}{\Lambda}$ So each point on E comes has a paint on C. On E we have addition E we can define an addition modulo E where E an addition on E where E an addition on E where E and E are E and E and E are E and E and E and E are E and E and E are E and E and E are E and E are E and E are E and E are E are E are E and E are E are E are E and E are E and E are E are E and E are E are E are E are E are E and E are E are E are E and E are E are E are E are E and E are E are E and E are E and E are E are

Second was (more geometric):

This is a singular curve.

Fliptic curve is defined by

a polynomial of degree 3.

So, ellipticure inversests any line
in 3 points (multiplications counted).

Ex: What is RS for $T^2 - x^2 = 0$, $x \in x = C$? $x \in x = C$? $x \in x = C^2$:

This is a singular curve.

$$f(x_1y_1 = y^2 - x^2)$$

$$\forall f = (-2x_1/2y_1)$$

$$\forall f = 0 \quad \text{if} \quad (x_1y_1) = (0,0) \in \mathbb{Z}.$$

$$x = 0 \quad \text{is} \quad \text{in} \quad \text{the discriminant fu}$$
this.
$$x = 0 \quad \text{is} \quad \text{the points}$$

$$x = 0 \quad \text{some points}$$

How many points we need to add?

Recall how to be construct a RS for

an equation $F(T, \tau) = 0$:

Thirst define: $Y = \begin{cases} (x,y) \in C^2 : x \notin \Delta, \\ y^2 - x^2 = 0 \end{cases}$ For each $x \in \Delta$, choose a small agen reighborhood of x in X, if look at

$$T^{-1}(U)$$
 $S(G)$ = III V_i if I V_i will be connected components of $T^{-1}(U)$, & T_{V_i} : V_i V_i V_i V_i V_i V_i is omorphic as V_i the each V_i the each V_i then V_i V_i

U = Sand neighborhood

X

2) TT-1(U) = disjoint of 2 pundaned dists.

2) TT we need to add 2 pairs. &.

2) We need to add 2 pairs. &.

Z is not smooth! $f(x,y) = y^2 - (x^4 - x^2)$ $\nabla f = (4x^3 - 2x, 2y)$ $\nabla f = 0 \implies y = 0, x = 0$ $\nabla f = 0 \implies x = \pm \sqrt{\frac{1}{2}}$. Only $(0,0) \in Z$. $\Delta = \begin{cases} x \in C : f(x,y) = 0 \\ \text{has multiple nosts in } y^3 \\ = 5x \in C : x^4 - x^2 = 0 \end{cases}$ $= \begin{cases} 0, 1, -13 \end{cases}$.

```
Look at x=1:

(1,0) \in \mathbb{Z},

(1,0)
```

$$y^2 = wh(w)$$
, where $h(0) \neq 0$.

 $W = con charge Boordinek again:$
 $\widehat{W} = wh(w)$ (this is only well: a breally be not forwally)

Now kee map π is of this form:
 $\widehat{\pi}: \begin{cases} y^2 = \widehat{\omega} \\ \widehat{y} \end{cases} \rightarrow \widehat{U}$
 $(\widehat{w}, y) \mapsto \widehat{w}$.

So if $U = D(0, n)$
then $\pi^{-1}(U|\S 0\S) = C^2 \le \widehat{\omega} = y^2\S \setminus \S(0,0)$. Hence converted!

Therefore, for $x \in = 1 \in \Delta$, we only need to add me more point in $2 \setminus \pi^{-1}(\Delta)$, I this post is achely $(1,0) \in 2$ about. So we don't need to change 2 at this post.

Similarly, we do not need to the geometry of Z for x=-1. If D.

So we need to look at $x=0\in D$.

Let $U \subseteq C$ be a small reighborhold 95 $D(0, \pi)$ $08 = x \in \Delta$. $y^2 = x^4 - x^2$ Again, Here is no way to write

Again, Here is no way to write

(Busially, Home is no holmophic fundam which is $\frac{1}{15} \frac{1}{15} \frac{1}{15}$

So by existence of logarithm,

$$3g \in \mathcal{O}(U) \text{ so text}$$

$$g(x) = h(x).$$

$$in U: y^2 = \chi^2 h(x) = \chi^2 g(x)$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$
Which means text locally (in U)

Which means text locally (in U)

the set 2 looks like the one in the $\chi^2 = \hat{y}^2$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) (y + \chi g(x)) = 0.$$

$$= (y - \chi g(x)) = 0.$$

$$= (y - \chi g(x)$$

then: $y^{m} = \widehat{w}^{n}$ & near (0,0), this looks like m

lines crossing at the same point.

What if m is not a divisin of n?

Example $y^3 = x^5h(x)$ $\Rightarrow y^3 = \hat{\omega}^5$ $\Rightarrow p_{\text{uiseux series}}$ is $\hat{\omega}^5 = \hat{\omega}^5$ (so y is knd of $3\sqrt{5} \Rightarrow \text{not defined}$

\$9. Differential forms (an RS)
First, work with differential fun on (an open subset of) C

The dual
$$V^* = 3 \cdot 8 : V \rightarrow IR$$
 $V^* \sim IR^2$ linear nap?

Then let $dx \cdot 2 \cdot dy \in V^{\dagger} \cdot def_{red}$
 $dy : dx \cdot (\frac{\partial}{\partial x}) = 1$, $dx \cdot (\frac{\partial}{\partial y}) = 0$
 $dy \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial y}) = 1$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial y}) = 1$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial y}) = 1$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial y}) = 1$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial y}) = 1$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dy \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dx \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dx \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dx \cdot (\frac{\partial}{\partial x}) = 0$
 $dx \cdot (\frac{\partial}{\partial x}) = 0$, $dx \cdot (\frac{\partial}{\partial x}) = 0$

Flow of a vector field:

Let
$$19(x,y)$$
 be a vector field.

Then a flow is a fundow:

 $\psi: [0,1] \rightarrow \mathbb{R}^2$

so that $\frac{d\psi}{dt} = v(\psi(t)) \forall t \in [0,1]$

A flow is determined by initial value $\psi(0)$.

Show on picture how to get a flow.

On $C: \frac{\partial}{\partial z} = \frac{\partial}{\partial z} = \frac{\partial}{\partial z}$

$$\frac{7}{2} = x - iy$$

$$\frac{7}{2} = x + iy$$

$$\frac{7}{2} = x$$

U, 1, U2: Smoth (C1, C2, C0, analytic...)

Show a picture what a vector feld looks like.