22 Novem 2023 MAT 4800

Thm: Let X be a compact RS

& D \in Dir(X) a dirien wik deg(0)<.

Then $H^{o}(X, 9D) = 0$, many 90 has

no global section.

 P_{nnf} : $Q_{D}(X) = S_{F}$: $X \rightarrow IP'$ holomophic $(f) > D = S_{nn}[x]$ $I_{F} = I_{F} = I_{F} = I_{F}$

(8) 3 - 0 (3) m2 3 - n2 7x =) \(\sum m2 \) 7 - \(\sum n2 \) 11 deg [8] \(\sum part =) \) deg \(\text{f} \] = 0. \(\sum part =) \) deg \(\text{f} \] = 0. \(\sum n2 \) 7 - deg \(\sum n2 \) > 0
\(\alpha \) a contradiction. \(\sum \) \(\sum n2 \) Skysoraper sheet:

If
$$P \in X = RS$$
.

 $CP(U) = S C \text{ if } P \in U$
 $Spen in X$
 $HiN:$ Check bear it is a sharg. II
 $Thm:$ $H^{\circ}(X, Cp) = C$
 $H^{\circ}(X, Cp) = 0$.

(Later, Skysomper straf fits in a SFS relevant to Θ_D . & we can use LES of whombory & the knowledge albert whombory of skysomper short to say about whombory of Θ_D .)

Proof: Proof: $(X, C_p) = C_p(X) = C$ (because $P \in X$). $H^1(X, C_p) = 0$: Why? $A \in H^1(X, C_p) = 0$: why?

Now we another, for every divisor D

on X, a SFS of shares:

O -> 90 c-> 90+p -> Cp -> 0

First: 90 is a subshaf of 90+p,

because if feon(U) so there

(83) 7 - DI 27-(0+p)

Now is the map 90+p -> Cp:

Co reed to define for U \(\text{X} \) open a

morphism

O +p(U) -> Cp(U)

If
$$p \notin U$$
: Then: $Cp(U) = 0$ so

B is the $0 - map$.

B is the $0 - map$.

The period of $p \notin U$ of $p \notin U$.

Then $p \notin U$ of $p \notin U$.

Then $p \notin U$ is $p \notin U$ of $p \notin U$ of $p \notin U$ of $p \notin U$.

Then $p \notin U$ is $p \notin U$ of $p \notin U$.

Then $p \notin U$ is $p \notin U$ of $p \notin U$.

$$H^{1}(X, \theta_{D}) \rightarrow H^{1}(X, \theta_{D}+p) \rightarrow 0$$
exact \Rightarrow $H^{1}(X, \theta_{D}) \rightarrow H^{1}(X, \theta_{D}+p)$
is goingeduce.

$$G \rightarrow H^{1}(X, \theta_{D}) \rightarrow H^{1}(X, \theta_{D}+p)$$

$$= Kon(H^{1}(X, \theta_{D})) \rightarrow H^{1}(X, \theta_{D}+p)$$

$$= Kon(H^{1}(X, \theta_{D})) \text{ is either division}$$

$$Those (G \rightarrow H^{1}(X, \theta_{D})) \text{ is either division}$$

$$O \text{ on } L \Rightarrow Kon(H^{1}(X, \theta_{D}) \rightarrow H^{1}(X, \theta_{D}+p))$$
is either $D \text{ on } L$.

Hence:

there:

$$Ax^{1}(X,90) = Ax^{1}(X,90tp)$$
 $+ E$

where $E = 0$ or 1 .

Thus 16.9 (RR): Suppose D is

A divisor on a temporat RS. X .

Thus:

 $+ (X,90) = Ax H'(X,90)$
 $+ Ax H'(X,90) = Ax H'(X,90)$
 $+ Ax H'(X,90) = Ax H'(X,90)$

Prof. Proc boy inductor any the number of puids

X there $D(x) \neq 0$.

The # = D = D.

And $H^{0}(X,9) = dir K^{0}(X,9) = P$ And $H^{0}(X,9) = dir K^{0}(X,9) = P$ And $H^{0}(X,9) = dir K^{0}(X,9) = P$ And $H^{0}(X,9) = g$ (by definition)!

And $H^{0}(X,9) = g$ (by definition)!

Association to the process of the source of the process of the process

An early result in Linear algebra:

Assume that we have a LES of vector

operas:

O=) $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow \rightarrow V_m \rightarrow 0$ Then $\int_{i=1}^{\infty} (-1)^i \dim(V_i) = 0.$ Appers to an ocquace: $H^0(9_0') + 1 + \dim H'(9_0')$ $= \dim H^0(9_0') + 1 - \dim H'(9_0')$ on $H^0(9_0') + 1 - \dim H'(9_0')$ of the $H^0(9_0') - \dim H'(9_0) - \dim H'(9_0)$

RR is the for D': $H^{0}(90') - dn(H^{0}(90'))$ 1 - 9t deg(D') = 1 - 9t deg(D) - 1 $1 - 9t deg(D) = dn H^{0}(90) - din H^{0}(90)$ Usually we are interested in lemman, $H^{0}(90) \leftarrow global$ sectors of 90.

Whether it is not D^{0} :

Whether it is not D^{0} : $H^{0}(90) \leftarrow global sectors of 90.$ Whether it is not D^{0} : $H^{0}(90) \rightarrow 0.$

(Abyo) later??, we may be able to bother du H!(OD), by may duality, and have can get bother realt.)

The 16.11 (Interpolation with pole):

X = compact RS, genus = g,

X = compact RS, genus = g,

A & E X. Then \(\frac{3}{4}\) f: X \rightarrow \(\text{P}\), such

that \(feq \(0(\text{X}\)\) \(\frac{5}{4}\) is \(feq \text{has executely a}\)

that \(feq \(0(\text{X}\)\) \(\frac{5}{4}\) is \(feq \text{has executely a}\)

the here a let of informaghic functions

for \(\text{X} \rightarrow \text{IP}\).

Proof: (hose D = (g+1) TaJ)

deg (D) = g+1.

So the $H^0(9D) \ge 1-g+deg(D)$ $= 1-g+g+1 \ge 2$. $\exists g \in 9D(X), g \neq 60nster$. $\exists g \in a: Table \ge -D(x) = 0$ if $x = a: Table \ge -D(x) = 0$ if $x = a: Table \ge -D(x) = 0$ if $x = a: Table \ge -D(x) = 0$ $\exists g \in a: Table \ge -D(x) =$

Con: if g is as in the proof of the above there then: $g^{-1}(\infty) = a$ there there then: $g^{-1}(\infty) = a$ the order = a + b + 1 = bthe order = a + b + 1 = bthe order = a + b + 1 = bthe order = a + b + 1 = bthe order = a + b + 1 = b + 1 = bthe order = a + b + 1 = b + 1 = bthere is = a + b + 1 = b + 1 = b + 1 = bthere is = a + b + 1 = b + 1 = b + 1 = bthere is = a + b + 1 = b + 1 = b + 1 = b + 1 = bthere is = a + b + 1 = b + 1 = b + 1 = b + 1 = b + 1 = bthere is = a + b + 1 = b + 1

We only need to find in so text din H° (9 ma) > din H° (9 kg).

To do ker, just need to chose an side Her m + 1-8 > din H° (9 kg).

Rink: the same if we want poles at a faile number of points as in a limit number of points.

Trapolation topics in the course:

Importation topics in the course:

A over points for belonging funding in a disk.

The Classification of simplemity's: 3 types (Remarkly ple, or essential).

The Coordination Degree & Critical process of a bedomorphic map. Local review (2-3)

Thistence of bogartern for ff It(U),

U = a lisk.

The Coordination of universal covering,

Construction of universal covering,

Left transformance a relation to TI.

Affine & projection comes, how to deale

The Smoothness ! ...

-) Differential form, Indonstric 1-form

-) Open mappy bearen of maximum principle.

-) Stokes theorem (Candy's integral

formula)

-) Canchy - Riemann equation.

-) Simply connected RS ((() () , (P!))

-> Simply connected RS ((() () , (P!))

-> Simply connected RS ((() () , (P!))

-> Wheir automorphism groups. (All are neathern

of Art ((P!))

-> Predect, Sheef, how to get Sheefification

of a Predect

-> Click whomology of a sheef.

J Good proported of a simply connected durain in C (2.8. a disk): Can solve J - equation, exact = d'hospet (Poincard lemma), le very covery for K

J Some Common sheres:

Send Constern shere, Skyscrapper short

Some Constern shere, Skyscrapper short

2 94

2 94

3 Some Common operators: d=0+0, d'=0,d"

3 Some Common operators: d=0+0, d'=0,d"

3 Some Common operators: d=0+0, d'=0,d"

+ Shed morphisms, SFS of shewes

& LES of whendown, transition map

HO(X, H) -> HI(X, F) in a LES

+ Finiteness of thousand for compact

RS. RR Known & applications to

the custom maps, genus.

Lexistence of certain maps, genus.

+ Divisor & sessociated sheef.

+ Forms: pullback, zeros & poles, residue

(residue Known).

throwite keeper.

How to content maps, forms...

thou to content maps, forms...

thou to content maps, forms...

bro wing the universel covery (look as those by the deck transformation).

instantant by the deck transformation.

HW. T: (-) E - Riptic come.

HW. T: (-) E - R