$$\frac{\partial}{\partial x} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$
Example: $f(x|y) = x^3 - y^3$
What is $\frac{\partial}{\partial z} = \frac{1}{2} (x|y) = x^3 - y^3$

Isture Since
$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

 $= \frac{\partial}{\partial z} \left(x^3 - y^3 \right) = \frac{1}{2} \left(3x^2 + 3y^2 i \right)$
 $= \frac{2nd \text{ weak}}{2}$ $x = \frac{z+z}{2}$, $y = \frac{z-z}{2i}$
 $= \frac{2}{2} \left(\frac{z+z}{2} \right)^3 - \left(\frac{z-z}{2i} \right)^3$
 $= \frac{2}{2} \left(\frac{z+z}{2} \right)^2 - \frac{2}{2i} \left(\frac{z-z}{2i} \right)^2$
 $= \frac{3}{2} \left(\frac{z+z}{2} \right)^2 - \frac{3}{2i} \left(\frac{z-z}{2i} \right)^2$

Example:
$$Eagr = S(x,y) \in \mathbb{C}^2$$
:

 $Y^2 = X^3 - 1$
 $E = S[X:Y:2] \in \mathbb{P}^2$:

 $Y^2 = X^3 - 2^3$
 $T: Eagr \rightarrow G$
 $(x,y) \mapsto X$

Extension $f \in \mathbb{C}$
 $T: E = X^3 - 2^3$
 $T: E = X^3 - 2^3$

a) Solved before:

Where is
$$TC[0:1:0]$$
?

 $[X:7:7] \rightarrow [0:1:0]$

Since $[0:1:0] \in [X:Y:7:7] \in [P^2]$:

So we can last at $[0:1:0] \in [X:Y:7] \in [P^2]$:

 $[0:1:0] \in [X:Y:7:7] \in [P^2]$
 $[0:1:0] \in [X:Y:7] \in [P^2]$
 $[0:1:0] \in [X:Y:7] \in [P^2]$

Use implicit differentiann:

$$22 + 23 - x^3 = 0$$

=) $d(21 + 23 - x^3) = 0$
 dx_1

= $dx_2 + 3 dx_1 \cdot x_2 - 3x_2 = 0$.

Therefore at $(x_2, x_2) = (0, 0)$

=) $dx_2 = 0$
 dx_1

By $e^t \text{ Hospital nulc:}$
 $x_1 = 0$
 $x_2 = 0$
 $x_2 = 0$
 $x_1 = 0$
 $x_2 = 0$
 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 0$

At
$$T(x_1y) = x = g(y)$$

We want to compute $L'(y)$ & see if it

is $0 \approx not$.

Again, use implicit differentiation:

$$y^2 - x^3 + 1 = 0$$

$$3 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

$$4 + 1 = 0$$

So for $\pi(x_1y) = x$ then

of $(1,0), (5,0), (5^2,0)$ we have $\pi'(y) = 0 \Rightarrow$ there points one critical points of π .

book then the most TO: 1:0) to determe

In problem a, we know that we should work with $F_2 = \int z_2 = X_2^3 - z_2^3 \int x_1 dx_2 = (0,0) = [0:1:0]$.

We show know that x_2 can be chosen as look wonderte. Here $x_1 = x_2 = x_1 + x_2 = x_2 = x_2 + x_3 = x_2 = x_3 + x_2 = x_3 = x_2 = x_3 = x_3$

& $\pi \text{ to: 1:0]} = \text{ti:0]}.$ So we should work with $\pi : \text{ the } E_2 \to \Omega$ [X:Y:\text{?}] \to \frac{2}{\text{X}}.

(\text{X:}\text{?}) \to \frac{2}{\text{X}}.

Want to compace $\pi'(x_2)|_{x_2=0}$.

Use implicit from differentian themen & l' Hospital rule:

$$22 = x_{2}^{3} - 2\frac{3}{2} \qquad (x_{2} \text{ downliness})$$

$$3\frac{d^{2}z}{dx_{2}} = 3x_{2}^{2} + 3 - 3\frac{2}{2}z \cdot \frac{d^{2}z}{dx_{2}}$$

$$x_{2} = z_{2} = 0 \Rightarrow \frac{d^{2}z}{dx_{2}} = 0.$$

$$T(x_{1}, z_{2}) = \frac{z_{2}}{x_{2}}$$

$$T(0,0) = 0$$

$$\frac{dT}{dx_{2}} = \lim_{x_{2} \to 0} \frac{T(x_{2}) - T(0)}{x_{2}}$$

$$= \lim_{x_{2} \to 0} \frac{T(x_{1})}{x_{2}} = \lim_{x_{2} \to 0} \frac{z_{2}}{x_{2}} = 0$$

$$e^{i} \text{ Hospits}: \lim_{x_{2} \to 0} \frac{z_{2}}{x_{2}} = \lim_{x_{2} \to 0} \frac{z_{2}}{2x_{1}} = \lim_{x_{2} \to 0} \frac{z_{2}}{2x_{2}} = 0$$

WTS:
$$\frac{2}{2}!(0) = 0$$
.

Again implicit differentiern:

 $\frac{1}{2} = \frac{2}{2} = \frac{3}{2} = \frac{2}{2}$
 $= \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{2}{2}$
 $= \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{2}{2} = \frac{2}{2} = \frac{3}{2} = \frac{2}{2} = \frac{3}{2} = \frac{2}{2} = \frac{2}{2} = \frac{3}{2} = \frac{2}{2} = \frac{$

d) What we be multiplication of That be which prints: [1:0:1], [5:

E elliptic ance
$$\Rightarrow g(E) = 1 \Rightarrow X(E)$$

$$= 2 - 2g = 0.$$

$$P' \Rightarrow g(P') = 0 \Rightarrow X(P') = 0$$

$$2 - 2g = 2.$$

$$2 - 2g = 2.$$

$$2 + 2g = 2$$

E is the Weiersham map for
$$E \rightarrow P'$$
.

E) Let $P' = U_1 \cup U_2$
 $CX:Y)$

On U_1 we conducte $z = X/Y$
 $V_1 = V_1 \cup V_2$
 $V_2 = V_1 \cup V_2$

On $V_2 = V_1 \cup V_2$
 $V_3 = V_1 \cup V_2$
 $V_4 = V_1 \cup V_2$
 $V_5 = V_1 \cup V_2$
 $V_7 = V_1 \cup V_2$

So w is not blomaghic a ke while

B! but also menomaphic.

(HW/late: A IP! Here is no harage.

1-form extept the form 0:)

What is TH (W)?

TT: E -> IP!

[X:Y:7] -> [X:7].

First, we wake a Eage. = \$ 8 = x3-15

T(214) = x.

TT: Eage -> T

Dh (, W = dz

L T(x,y) = X

Th W = dx on Eag.

I is always a helomorphic from a lefomorphic 1-from an Eag.

Th(W)

Q: Does dx have zeros?

Reall: Let T: X > Y be a helomorphic map, let when he zero.

on Y, & when he zero.

Then the zeros of $\pi^+(\omega)$ are exectly at the aitical points of π , the multiplicity at p is e_p-1 .

(Recall the proof:

Locally can take $\pi(3)=2k$, p=0, $e_p=k$, $\omega=d^2=k$, $\omega=d^2=k$ So $\pi^+(\omega)$ has a zero of multiplicity e-1.)

g) $\pi: E \to P'$ is admosphe, $\omega: a$ meromorphic $1-f_nu$ as P'=0

The (w) is a manomorphic 1-fm an E.

Q: Where is $\pi t^{*}(\omega)$ near $E \setminus E_{eff}$ = $\{0:1:0\}$?

So $\{0:1:0\}$?

When $\{1:1:0\}$?

English to $\{0:1:0\}$?

The extend $\{0:1:0\}$ in least coordinates $\{0:1:0\}$, we wash to the point $\{0:1:0\}$, we need to use coordinates $\{0:1:0\}$, we so $\{0:1:0\}$?

So $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$? $\{0:1:0\}$?

So
$$\pi^{*}(\omega) = g dx$$
 On Eag.

 $d(2z/2z)$ from [0:1:0].

HW: Does $\pi^{*}(\omega)$ have $x \ge \infty$ or pole at $x = 0$:1:0]?

 $\frac{2nd way \neq g_{0}}{(2z/2z)} = \frac{2z}{x_{1}} = w$
 $\frac{d(x_{1}, z_{2})}{(x_{1}, z_{2})} = \frac{dw}{(2z/x_{1})}$
 $\frac{d(x_{2}, z_{2})}{(x_{2}, z_{2})} = \frac{dw}{(x_{2}, z_{2})}$

HW: Check that this is the same as
the formula for $\pi t^+(\omega)$ in the 1st method.

Residue leaven:

Let to be a menomorphic 1-form

around $x_0 \in X = RS$.

Let D = be a (small) open set

containing x_0 so that we have no poles

in $\overline{D} \setminus S \times S$.

Let $C = \partial D$ with positive orienses.

Then:

\[
\begin{align*}
\text{Toof:} & \text{If } C = a \text{unt} & \text{Reo } \text{U}, \text{Xo].} \\
\text{Comes form:} & \text{At} = a \text{untle ken} \\
\text{2Ti } & \text{2T