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CHAPTER 2

Setting up the Adams Spectral Sequence

In this chapter we introduce the spectral sequence that will be our main object
of study. We do not intend to give a definitive account of the underlying theory, but
merely to make the rest of the book intelligible. Nearly all of this material is due
to Adams. The classical Adams spectral sequence [i.e., the one based on ordinary
mod (p) cohomology] was first introduced in Adams [3] and a most enjoyable expo-
sition of it can be found in Adams [7]. In Section 1 we give a fairly self-contained
account of it, referring to Adams [4] only for standard facts about Moore spectra
and inverse limits. We include a detailed discussion of how one extracts differentials
from an exact couple and a proof of convergence.

In Section 2 we describe the Adams spectral sequence based on a generalized
homology theory E∗ satisfying certain assumptions (2.2.5). We rely heavily on
Adams [4], referring to it for the more difficult proofs. The E∗-Adams resolutions
(2.2.1) and spectral sequences (2.2.4) are defined, the E2-term is identified, and the
convergence question is settled (2.2.3). We do not give the spectral sequence in its
full generality; we are only concerned with computing π∗(Y ), not [X,Y ] for spectra
X and Y . Most of the relevant algebraic theory, i.e., the study of Hopf algebroids,
is developed in Appendix 1.

In Section 3 we study the pairing of Adams spectral sequences induced by a
map α : X ′ ∧X ′′ → X and the connecting homomorphism associated with a cofi-
bration realizing a short exact sequence in E-homology. Our smash product result
implies that for a ring spectrum the Adams spectral sequence is one of differential
algebras. To our knowledge these are the first published proofs of these results in
such generality.

Throughout this chapter and the rest of the book we assume a working knowl-
edge of spectra and the stable homotopy category as described, for example, in the
first few sections of Adams [4].

1. The Classical Adams Spectral Sequence

In this section we will set up the Adams spectral sequence based on ordinary
mod (p) cohomology for the homotopy groups of a spectrum X. Unless otherwise
stated all homology and cohomology groups will have coefficients in Z/(p) for a
prime number p, and X will be a connective spectrum such that H∗(X) (but not
necessarily X itself) has finite type.

Recall that H∗(X) is a module over the mod (p) Steenrod algebra A, to be
described explicitly in the next chapter. Our object is to prove

2.1.1. Theorem (Adams [3]). Let X be a spectrum as above. There is a spectral
sequence

E∗∗
∗ (X) with dr : Es,t

r → Es+r,t+r−1
r

41



42 2. SETTING UP THE ADAMS SPECTRAL SEQUENCE

such that
(a) Es,t

2 = Exts,t
A (H∗(X),Z/(p)).

(b) if X is of finite type, E∗∗
∞ is the bigraded group associated with a certain

filtration of π∗(X)⊗ Zp, where Zp denotes the ring of p-adic integers. ¤

Let E = HZ/(p), the mod (p) Eilenberg–Mac Lane spectrum. We recall some
of its elementary properties.

2.1.2. Proposition.
(a) H∗(X) = π∗(E ∧X).
(b) H∗(X) = [X,E].
(c) H∗(E) = A.
(d) If K is a locally finite wedge of suspensions of E, i.e., a generalized mod (p)

Eilenberg–Mac Lane spectrum, then π∗(K) is a graded Z/(p)-vector space
with one generator for each wedge summand of K. More precisely, π∗(K) =
HomA(H∗(K),Z/(p)).

(e) A map from X to K is equivalent to a locally finite collection of elements
in H∗(X) in the appropriate dimensions. Conversely, any locally finite collection
of elements in H∗(X) determines a map to such a K.

(f) If a locally finite collection of elements in H∗(X) generate it as an A-module,
then the corresponding map f : X → K induces a surjection in cohomology.

(g) E ∧ X is a wedge of suspensions of E with one wedge summand for each
Z/(p) generator of H∗(X). H∗(E ∧X) = A⊗H∗(X) and the map f : X → E ∧X
(obtained by smashing X with the map S0 → E) induces the A-module structure
map A⊗H∗(X) → H∗(X) in cohomology. In particular H∗(F ) is a surjection. ¤

The idea behind the Adams spectral sequence is to use maps such as those of
(f) or (g) and our knowledge of π∗(K) or π∗(E∧X) to get information about π∗(X).
We enlist the aid of homological algebra to make the necessary calculations.

More specifically, we have

2.1.3. Definition. A mod (p) Adams resolution (Xs, gs) for X is a diagram

X = X0

f0

²²

X1

f1

²²

g0oo X2

f2

²²

g1oo X3
g2oo

K0 K1 K2

where each Ks, is a wedge of suspensions of E, H∗(fs) is onto and Xs+1 is the fiber
of fs. ¤

Proposition 2.1.2(f) and (g) enable us to construct such resolutions for any X,
e.g., by setting Ks = E ∧Xs. Since H∗(fs) is onto we have short exact sequences

0 ← H∗(Xs) ← H∗(Ks) ← H∗(ΣXs+1) ← 0.

We can splice these together to obtain a long exact sequence

(2.1.4) 0 ← H∗(X) ← H∗(K0) ← H∗(ΣK1) ← H∗(Σ2K2) ← · · · .

Since the maps are A-module homomorphisms and each H∗(Ks) is free over Ap,
2.1.4 is a free A-resolution of H∗(X).

Unfortunately, the relation of π∗(Ks) to π∗(X) is not as simple as that between
the corresponding cohomology groups. Life would be very simple if we knew π∗(fs)
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was onto, but in general it is not. We have instead long exact sequences

(2.1.5) π∗(Xs+1)
π∗(gs) // π∗(Xs)

π∗(fs) // π∗(Ks)

∂s,∗

OO

arising from the fibrations

Xs+1
gs−→ Xs

fs−→ Ks.

If we regard π∗(Xs) and π∗(Ks) for all s as bigraded abelian groups D1 and E1,
respectively [i.e., Ds,t

1 = πt−s(Xs) and Es,t
1 = πt−s(Ks)] then 2.1.5 becomes

(2.1.6) D1
i1 // D1

j1££§§
§§

§§
§

E1

k1

\\8888888

where

i1 = πt−s(gs) : Ds+1,t+1
1 → Ds,t

1 ,

j1 = πt−s(fs) : Ds,t
1 → Es,t

1 ,

and

k1 = ∂s,t−s : Es,t
1 → Ds+1,t

1 .

The exactness of 2.1.5 translates to ker i1 = im k1, ker j1 = im i1, and ker k1 = im j1.
A diagram such as 2.1.6 is known as an exact couple. It is standard homological
algebra that an exact couple leads one to a spectral sequence; accounts of this
theory can be found in Cartan and Eilenberg [1, Section XV.7], Mac Lane [1,
Section XI.5], and Hilton and Stammbach [1, Chapter 8] as well as Massey [2].

Briefly, d1 = j1k1 : Es,t
1 → Es+1,t

1 has (d1)2 = j1k1j1k1 = 0 so (E1, d1) is a
complex and we define E2 = H(E1, d1). We get another exact couple, called the
derived couple,

(2.1.7) D2
i2 // D2

j2££§§
§§

§§
§

E2

k2

\\8888888

where Ds,t
2 = i1D

s,t
1 , i2 is induced by i1, j2(i1d) = j1d for d ∈ D1, and k2(e) = k1(e)

for e ∈ ker d,⊂ E1. Since 2.1.7 is also an exact couple (this is provable by a diagram
chase), we can take its derived couple, and iterating the procedure gives a sequence
of exact couples

Dr
ir // Dr

jr££§§
§§

§§
§

Er

kr

\\8888888

where Dr+1 = irDr, dr = jrkr, and Er+1 = H(Er, dr). The sequences of complexes
{(Er, dr)} constitutes a spectral sequence. A close examination of the indices will
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reveal that dr : Es,t
r → Es+r,t+r−1

r . It follows that for s < r, the image of dr in Es,t
r

is trivial so Es,t
r+1 is a subgroup of Es,t

r , hence we can define

Es,t
∞ =

⋂
r>s

Es,t
r .

This group will be identified (2.1.12) in certain cases with a subquotient of πt−s(X),
namely, im πt−s(Xs)/ im πt−s(Xs+1). The subgroups im π∗(Xs) = F sπ∗(X) form a
decreasing filtration of π∗(X) and E∞ is the associated bigraded group.

2.1.8. Definition. The mod (p) Adams spectral sequence for X is the spectral
sequence associated to the exact couple 2.1.6. ¤

We will verify that dr : Es,t
r → Es+r,t+r−1

r by chasing diagram 2.1.9, where we
write π∗(X∗) and π∗(K∗) instead of D1 and E1, with u = t− s.
(2.1.9)

²² ²²
// πu(Xs+2)

πu(fs+2) //

πu(gs+1)

²²

πu(Ks+2)
∂s+2,u // πu−1(Xs+3)

πu−1(fs+3)//

πu−1(gs+2)

²²

πu−1(Ks+3) //

// πu(Xs+1)
πu(fs+1) //

πu(gs)

²²

πu(Ks+1)
∂s+1,u // πu−1(Xs+2)

πu−1(fs+2)//

πu−1(gs+1)

²²

πu−1(Ks+2) //

// πu(Xs)
πu(fs) //

²²

πu(Ks)
∂s,u // πu−1(Xs+1)

²²

πu−1(fs+1)// πu−1(Ks+1) //

The long exact sequences 2.1.5 are embedded in this diagram; each consists of a
vertical step π∗(g∗) followed by horizontal steps π∗(f∗) and ∂∗∗ and so on. We have
Es,t

1 = πu(Ks) and ds,t
1 = (πu−1(fs+1))(∂s,u). We have Es,t

2 = ker ds,t
1 / im ds−1,t

1 .
Suppose an element in Es,t

2 is represented by x ∈ πu(Ks). We will now explain
how d2[x] (where [x] is the class represented by x) is defined. x is a d1 cycle, i.e.,
d1x = 0, so exactness in 2.1.4 implies that ∂s,ux = (πu+1(gs+1))(y) for some y ∈
πu−1(Xs+2). Then (πu−1(fs+2))(y) is a d1 cycle which represents d2[x] ∈ Es+2,t−1

2 .
If d2[x] = 0 then [x] represents an element in Es,t

3 which we also denote by [x].
To define d3[x] it can be shown that y can be chosen so that y = (πu−1(gs+2))(y′)
for some y′ ∈ πu−1(Xs+3) and that (πu−1(fs+3))(y′) is a d1 cycle representing
a d2 cycle which represents an element in Es+3,t+2 which we define to be d3[x].
These assertions may be verified by drawing another diagram which is related to
the derived couple 2.1.7 in the same way that 2.1.9 is related to the original exact
couple 2.1.6. The higher differentials are defined in a similar fashion. In practice,
even the calculation of d2 is a delicate business.

Before identifying Es,t
∞ we need to define the homotopy inverse limit of spectra.

2.1.10. Definition. Given a sequence of spectra a maps

X0
f1←− X1

f2←− X2
f3←− X3 ←− · · · ,
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lim←−Xi, is the fiber of the map

g :
∏

Xi →
∏

Xi

whose ith component is the difference between the projection pi :
∏

Xj → Xi and
the composite ∏

Xj
pi+1−−−→ Xi+1

fi+1−−−→ Xi. ¤

For the existence of products in the stable category see 3.13 of Adams [4].
This lim←− is not a categorical inverse limit (Mac Lane [2, Section III.4] because a
compatible collection of maps to the Xi, does not give a unique map to lim←−Xi. For
this reason some authors (e.g., Bousfield and Kan [1]) denote it instead by holim←−−−.
The same can be said of the direct limit, which can be defined as the cofiber of the
appropriate self-map of the coproduct of the spectra in question. However this lim←−
has most of the properties one would like, such as the following.

2.1.11. Lemma. Given spectra Xi,j for i, j ≥ 0 and maps f : Xi,j → Xi−1,j and
g : Xi,j → Xi,j−1 such that fg is homotopic to gf ,

lim←−
i

lim←−
j

Xi,j = lim←−
j

lim←−
i

Xi,j .

Proof. We have for each i a cofibre sequence

lim←−
j

Xij →
∏

j

Xij →
∏

j

Xij .

Next we need to know that products preserve cofiber sequences. For this fact, recall
that the product of spectra

∏
Yi, is defined via Brown’s representability theorem

(Adams [4], Theorem 3.12) as the spectrum representing the functor
∏

[−, Yi].
Hence the statement follows from the fact that a product (although not the inverse
limit) of exact sequences is again exact.

Hence we get the following homotopy commutative diagram in which both rows
and columns are cofiber sequences.

lim←−
i

lim←−
j

Xij
//

²²

lim←−
i

∏
j

Xij
//

²²

lim←−
i

∏
Xij

²²∏
i

lim←−
j

Xij
//

²²

∏
i

∏
j

Xij
//

²²

∏
i

∏
j

Xij

²²∏
i

lim←−
j

Xij
// ∏

i

∏
j

Xij
// ∏

i

∏
j

Xij

Everything in sight is determined by the two self-maps of
∏

i

∏
j Xij and the

homotopy that makes them commute. Since the product is categorical we have∏
i

∏
j Xij =

∏
j

∏
i Xij . It follows that

∏
i lim←−j

Xij = lim←−j

∏
i Xij because they

are each the fiber of the same map.
Similarly ∏

j

lim←−
i

Xij = lim←−
i

∏

j

Xij
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so one gets an equivalent diagram with lim←−j
lim←−i

Xij in the upper left corner. ¤

Now we will show that for suitable X, Es,t
∞ is a certain subquotient of πu(X).

2.1.12. Lemma. Let X be a spectrum with an Adams resolution (Xs, gs) such
that lim←−Xs = pt. Then Es,t

∞ is the subquotient imπu(Xs)/ im πu(Xs+1) of πu(X)
and

⋂
im π∗(Xs) = 0.

Proof. For the triviality of the intersection we have lim←−π∗(Xs) = 0 since
lim←−Xs = pt. Let Gs = π∗(Xs) and

Gt
s =

{
Gs if s ≥ t

imGt < Gs if t ≥ s.

We have injections Gt
s → Gt−1

s and surjections Gt
s → Gt

s−1, so lim←−t
Gt

s =
⋂

t Gt
s and

lim←−s
Gt

s = Gt. We are trying to show lim←−t
Gt

0 = 0. lim←−t
Gt

s maps onto lim←−t
Gt

s−1, so
lim←−s

lim←−t
Gt

s maps onto lim←−t
Gt

0. But lim←−s
lim←−t

Gt
s = lim←−t

lim←−s
Gt

s = lim←−t
Gt = 0.

For the identification of Es,t
∞ , let 0 6= [x] ∈ Es,t

∞ .
First we show ∂s,u(x) = 0. Since dr[x] = 0, ∂s,u(x) can be lifted to πu−1(Xs+r+1)

for each r. It follows that ∂s,u(x) ∈ im lim←−πu−1(Xs+r) = 0, so ∂s,u(x) = 0.
Hence we have x = πu(fs)(y) for y ∈ πu(Xs). It suffices to show that y has

a nontrivial image in πu(X). If not, let r be the largest integer such that y has
a nontrivial image z ∈ πu(Xs−r+1). Then z = ∂s−r,u(w) for w ∈ πu(Ks−r) and
dr[w] = [x], contradicting the nontriviality of [x]. ¤

Now we prove 2.1.1(a), the identification of the E2-term.
By 2.1.2(d), Es,t

1 = HomA(Ht−s(Ks),Z/(p)). Hence applying HomA(−,Z/(p))
to 2.1.3 gives a complex

E0,t
1

δ−→ E1,t
1

δ−→ E2,t
1 → · · · .

The cohomology of this complex is by definition the indicated Ext group. It is
straightforward to identify the coboundary δ with the d1 in the spectral sequence
and 2.1.1(a) follows.

2.1.13. Corollary. If f : X → Y induces an isomorphism in mod (p) ho-
mology then it induces an isomorphism (from E2 onward) in the mod (p) Adams
spectral sequence. ¤

2.1.14. Definition. Let G be an abelian group and X a spectrum. Then
XG = X ∧ SG, where SG is the Moore spectrum associated with G (Adams [4,
p. 200]. Let X̂ = XZp, where Zp is the p-adic integers, and Xm = XZ/(pm). ¤

2.1.15. Lemma. (a) The map X → X̂ induces an isomorphism of mod (p)
Adams spectral sequences.

(b) π∗(X̂) = π∗(X)⊗ Zp.
(c) X̂ = lim←−Xm, if x has finite type.

Proof. For (a) it suffices by 2.1.11 to show that the map induces an isomor-
phism in mod (p) homology. For this see Adams [4], proposition 6.7, which also
shows (b).
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Part (c) does not follow immediately from the fact that SZp = lim←−SZ/(pm)
because inverse limits do not in general commute with smash products. Indeed our
assertion would be false for X = SQ, but we are assuming that X has finite type.

By 2.1.10 there is a cofibration

SZp →
∏
m

SZ/(pm) →
∏
m

SZ/(pm),

so it suffices to show that

X ∧
∏

SZ/(pm) '
∏

XZ/(pm).

This is a special case (with X = E and R = Z) of Theorem 15.2 of Adams [4]. ¤

2.1.16. Lemma. If X is a connective spectrum with each πi(X) a finite p-group,
then for any mod (p) Adams resolution (Xs, gs) of X, lim←−Xs = pt.

Proof. Construct a diagram

X = X ′
0 ← X ′

1 ← X ′
2 ← · · ·

(not an Adams resolution) by letting X ′
s+1 be the fiber in

X ′
s+1 → X ′

s → Ks,

where the right-hand map corresponds [2.1.2(e)] to a basis for the bottom cohomol-
ogy group of Xs. Then the finiteness of πi(X) implies that for each i, πi(X ′

s) = 0
for large s. Moreover, π∗(X ′

s+1) → π∗(X ′
s) is monomorphic so lim←−X ′

s = pt.
Now if (Xs, gs) is an Adams resolution, the triviality of gs in cohomology enables

us to construct compatible maps Xs → X ′
s. It follows that the map lim←−π∗(Xs) →

π∗(X) is trivial. Each Xs also satisfies the hypotheses of the lemma, so we conclude
that lim←−π∗(Xs) has trivial image in each π∗(Xs) and is therefore trivial. Since
πi(Xs) is finite for all i and s, lim←−

1 π∗(Xs) = 0 so lim←−Xs = pt. ¤

We are now ready to prove 2.1.1(b), i.e., to identify the E∞-term. By 2.1.15(a)
it suffices to replace X by X̂. Note that since SZp ∧ SZ/(pm) = SZ/(pm), Xm =
X̂m. It follows that given a mod (p) Adams resolution (Xs, gs) for X, smashing
with SZp and SZ/(pm) gives resolutions (X̂s, ĝs) and (Xm

s , gm
s ) for X̂ and Xm,

respectively. Moreover, Xm satisfies 2.1.14 so lim←−s
Xm

s = pt. Applying 2.1.13(c) to

each Xs, we get X̂s = lim←−m
mXm

s , so

lim←−X = lim←−
s

lim←−
m

Xm
s

= lim←−
m

lim←−
s

Xm
s by 2.1.11

= pt.

Hence the result follows from 2.1.12. ¤

2.1.17. Remark. The E∞ term only gives us a series of subquotients of
π∗(X)⊗ Zp, not the group itself. After computing E∞ one may have to use other
methods to solve the extension problem and recover the group.

We close this section with some examples.
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2.1.18. Example. Let X = HZ, the integral Eilenberg–Mac Lane spectrum.
The fundamental cohomology class gives a map f : X → E with H∗(f) surjective.
The fiber of f is also X, the inclusion map g : X → X having degree p. Hence
we get an Adams resolution (2.1.13) with Xs = X and Ks = E for all s, the map
X = Xs → X0 = X, having degree ps. We have then

Es,t
1 =

{
Z/(p) if t = s

0 if t 6= s.

There is no room for nontrivial differentials so the spectral sequence collapses,
i.e., E∞ = E1. We have Es,s

∞ = Z/(p) = im π0(Xs)/ imπ0(Xs+1). In this case
X̂ = HZp, the Eilenberg–Mac Lane spectrum for Zp.

2.1.19. Example. Let X = HZ/(pi) with i > 1. It is known that H∗(X) =
H∗(Y )⊕ΣH∗(Y ) as A-modules, where Y = HZ. This splitting arises from the two
right-hand maps in the cofiber sequence

Y → Y → X → ΣY,

where the left-hand map has degree pi. Since the E2-term of the Adams spectral
sequence depends only on H∗(X) as an A-module, the former will enjoy a similar
splitting. In the previous example we effectively showed that

Exts,t
A (H∗, (Y ),Z/(p)) =

{
Z/(p) if t = s

0 if t 6= s.

It follows that in the spectral sequence for X we have

Es,t
A =

{
Z/(p) if t− s = 0 or 1
0 otherwise

In order to give the correct answer we must have Es,t
∞ = 0 if t− s = 1 and Es,t

∞ = 0
if t = s for all but i values of s. Multiplicative properties of the spectral sequence
to be discussed in Section 3 imply that the only way we can arrive at a suitable E∞
term is to have di : Es,s+1

i Es+i,s+i
i nontrivial for all s ≥ 0. A similar conclusion can

be drawn by chasing the relevant diagrams.

2.1.20. Example. Let X be the fiber in X → Ŝ0 → HZp where the right-hand
map is the fundamental integral cohomology class on S0. Smashing the above
fibration with X we get

X ∧X
g0−→ X

f0−→ X ∧HZ

It is known that the integral homology of X has exponent p, so X ∧HZ is a wedge
of E and H∗(f0) is surjective. Similar statements hold after smashing with X any
number of times, so we get an Adams resolution (2.1.3) with Ks = Xs ∧HZ and
Xs = X(s+1), the (s + 1)-fold smash product of X with itself, i.e., one of the form

X

²²

X ∧Xoo

²²

X ∧X ∧Xoo · · ·oo

X ∧HZ X ∧X ∧HZ.

Since X is (2p− 4)-connected Xs, is ((s + 1)(2p− 3)− 1)-connected, so lim←−Xs, is
contractible.
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2. The Adams Spectral Sequence Based on a Generalized Homology
Theory

In this section we will define a spectral sequence similar to that of 2.1.1 (the
classical Adams spectral sequence) in which the mod (p) Eilenberg–general spec-
trum E. The main example we have in mind is of course E = BP , the Brown–
Peterson spectrum, to be defined in 4.1.12. The basic reference for this material is
Adams [4] (especially Section 15, which includes the requisite preliminaries on the
stable homotopy category.

Our spectral sequence should have the two essential properties of the classi-
cal one: it converges to π∗(X) localized or completed at p and its E2-term is a
functor of E∗(X) (the generalized cohomology of X) as a module over the algebra
of cohomology operations E∗(E); i.e., the E2-term should be computable in some
homological way, as in 2.1.1. Experience has shown that with regard to the second
property we should dualize and consider instead E∗(X) (the generalized homology
of X) as a comodule over E∗(E) (sometimes referred to as the coalgebra of coop-
erations). In the classical case, i.e., when E = HZ/(p), E∗(E) is the dual Steenrod
algebra A∗.

Theorem 2.1.1(a) can be reformulated as E2 = ExtA∗(Z/(p),H∗(X)) using
the definition of Ext in the category of comodules given in A1.2.3. In the case
E = BP substantial technical problems can be avoided by using homology instead
of cohomology. Further discussion of this point can be found in Adams [6, pp.
51–55].

Let us assume for the moment that we have known enough about E and E∗(E)
to say that E∗(X) is a comodule over E∗(E) and we have a suitable definition of
ExtE∗(E)(E∗(S0), E∗(X)), which we abbreviate as Ext(E∗(X)). Then we might
proceed as follows.

2.2.1. Definition. An E∗-Adams resolution for X is a diagram

X = X0

f0

²²

X1

f1

²²

g0oo X2

f2

²²

g1oo · · ·oo

K0 K1 K2

such that for all s ≥ 0 the following conditions hold.
(a) Xs+1 is the fiber of fs.
(b) E∧Xs is a retract of E∧Ks, i.e., there is a map hs : E∧Ks → E∧Xs such

that hs(E∧fs) is an identity map of E∧Xs. particular E∗(fs) is a monomorphism.
(c) Ks is a retract of E ∧Ks.
(d)

Extt,u(E∗(Ks)) =

{
πu(Ks) if t = 0
0 if t > 0.

¤

As we will see below, conditions (b) and (c) are necessary to insure that the
spectral sequence is natural, while (d) is needed to give the desired E2-term. As
before it is convenient to consider a spectrum with the following properties.

2.2.2. Definition. An E-completion X̂ of X is a spectrum such that
(a) There is a map X → X̂ inducing an isomorphism in E∗-homology.
(b) X̂ has an E∗-Adams resolution {X̂s} with lim←− X̂s = pt. ¤
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This is not necessarily the same as the X̂ of 2.1.14, which will be denoted in
this section by Xp (2.2.12). Of course, the existence of such a spectrum (2.2.13) is
not obvious and we will not give a proof here. Assuming it, we can state the main
result of this section.

2.2.3. Theorem (Adams [4]). An E∗-Adams resolution for X (2.2.1) leads to
a natural spectral sequence E∗∗

∗ (X) with dr : Es,t
r → Es+r,t+r−1

r such that
(a) Es,t

2 = Ext(E∗(X)).
(b) E∗∗

∞ is the bigraded group associated with a certain filtration of π∗(X̂). (This
filtration will be described in 2.2.14.)

2.2.4. Definition. The spectral sequence of 2.2.3 is the Adams spectral se-
quence for X based on E-homology. ¤

2.2.5. Assumption. We now list the assumptions on E which will enable us to
define Ext and X̂.

(a) E is a commutative associative ring spectrum.
(b) E is connective, i.e., πr(E) = 0 for r < 0.
(c) The map µ∗ : π0(E)⊗π0(E) → π0(E) induced by the multiplication µ : E∧

E → E is an isomorphism.
(d) E is flat, i.e., E∗(E) is flat as a left module over π∗(E).
(e) Let θ : Z → π0(E) be the unique ring homomorphism, and let R ⊂ Q be

the largest subring to which θ extends. Then Hr(E;R) is finitely generated over R
for all r.

2.2.6. Proposition. HZ/(p) and BP satisfy 2.2.5(a)–(e) ¤

The flatness condition 2.2.5(d) is only necessary for identifying E∗∗
2 as an Ext.

Without it one still has a spectral sequence with the specified convergence prop-
erties. Some well-known spectra which satisfy the remaining conditions are HZ,
bo, bu, and MSU . In these cases E ∧ E is not a wedge of suspensions of E as it
is when E = HZ/(p), BP , or MU . HZ ∧HZ is known to be a certain wedge of
suspensions of HZ/(p) and HZ, bo ∧ bo is described by Milgram [1], bu ∧ bu by
Adams [4], Section 17, and MSU ∧MSU by Pengelley [1].

We now turn to the definition of Ext. It follows from our assumptions 2.2.5
that E∗(E) is a ring which is flat as a left π∗(E) module. Moreover, E∗(E) is a
π∗(E) bimodule, the right and left module structures being induced by the maps

E = S0 ∧ E → E ∧ E and E = E ∧ S0 → E ∧ E,

respectively. In the case E = HZ/(p) these two module structures are identical,
but not when E = BP . Following Adams [4], Section 12, let µ : E ∧ E be the
multiplication on E and consider the map

(E ∧ E) ∧ (E ∧X)
1∧µ∧1−−−−→ E ∧ E ∧X.

2.2.7. Lemma. The above map induces an isomorphism

E∗(E)⊗π∗(E) E∗(X) → π∗(E ∧ E ∧X).

Proof. The result is trivial for X = Sn. It follows for X finite by induction
on the number of cells using the 5-lemma, and for arbitrary X by passing to direct
limits. ¤
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Now the map
E ∧X = E ∧ S0 ∧X → E ∧ E ∧X

induces
ψ : E∗(X) → π∗(E ∧ E ∧X) = E∗(E)⊗π∗(E) E∗(X).

In particular, if X = E we get

∆: E∗(E) → E∗(E)⊗π∗(E) E∗(E).

Thus E∗(E) is a coalgebra over π∗(E) as well as an algebra, and E∗(X) is a co-
module over E∗(E). One would like to say that E∗(E), like the dual Steenrod
algebra, is a commutative Hopf algebra, but that would be incorrect since one
uses the bimodule structure in the tensor product E∗(E) ⊗π∗(E) E∗(E) (i.e., the
product is with respect to the right module structure on the first factor and the
left module structure on the second). In addition to the coproduct ∆ and algebra
structure, it has a right and left unit ηR, ηL : π∗(E) → E∗(E) corresponding to the
two module structures, a counit ε : E∗(E) → π∗(E) induced by µ : E ∧E → E, and
a conjugation c : E∗(E) → E∗(E) induced by interchange the factors in E ∧ E.

2.2.8. Proposition. With the above structure maps (π∗(E), E∗(E)) is a Hopf
algebroid (A1.1.1), and E-homology is a functor to the category of left E∗(E)-
comodules (A1.1.2), which is abelian (A1.1.3). ¤

The problem of computing the relevant Ext groups is discussed in Appendix 1,
where an explicit complex (the cobar complex A1.2.11) for doing so is given. This
complex can be realized geometrically by the canonical E∗-Adams resolution defined
below.

2.2.9. Lemma. Let Ks = E ∧ Xs, and let Xs+1 be the fiber of fs : Xs → Ks.
Then the resulting diagram (2.2.1) is an E∗-Adams resolution for X.

Proof. Since E is a ring spectrum it is a retract of E∧E, so E∧Xs, is a retract
of E ∧Ks = E ∧E ∧Xs and 2.2.1(b) is satisfied. E ∧Xs is an E-module spectrum
so 2.2.1(c) is satisfied. For 2.2.1(d) we have E∗(Ks) = E∗(E) ⊗π∗(E) E∗(Xs) by
2.2.7 and Ext(E∗(Ks)) has the desired properties by A1.2.1 and A1.2.4. ¤

2.2.10. Definition. The canonical E∗-Adams resolution for X is the one given
by 2.2.9.

Note that if E is not a ring spectrum then the above fs need not induce a
monomorphism in E-homology, in which case the above would not be an Adams
resolution.

Note also that the canonical resolution for X can be obtained by smashing X
with the canonical resolution for S0.

2.2.11. Proposition. The E1-term of the Adams spectral sequence associated
with the resolution of 2.2.9 is the cobar complex C∗(E∗(X)) (A1.2.11). ¤

Next we describe an E-completion X̂ (2.2.2). First we need some more termi-
nology.

2.2.12. Definition. X(p) = XZ(p), where Z(p) denotes the integers localized
at p, and Xp = XZp (see 2.1.14).
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2.2.13. Theorem. If X is connective and E satisfies 2.2.5(a)–(e) then an E-
completion (2.2.2) of X is given by

X̂ =





XQ if π0(E) = Q
X(p) if π0(E) = Z(p)

X if π0(E) = Z
Xp if π0(E) = Z/(p) and πn(X)

is finitely generated for all n.

¤

These are not the only possible values of π0(E), but the others will not concern
us. A proof is given by Adams [4], Theorem 14.6 and Section 15. We will sketch
a proof using the additional hypothesis that π1(E) = 0, which is true in all of the
cases we will consider in this book.

For simplicity assume that π0(X) is the first nonzero homotopy group. Then
in the cases where π0(E) is a subring of Q we have πi(X̂ ∧ E(s)) = 0 for i < s, so
by setting X̂s = X̂ ∧ E(s) we get lim←− X̂s = pt.

The remaining case, π0(E) = Z/(p) can be handled by an argument similar to
that of the classical case. We show XZ/(pm) is its own E-completion by modifying
the proof of 2.1.14 appropriately. Then Xp can be shown to be E-complete just as
in the proof of 2.1.1(b) (following 2.1.14).

Now we are ready to prove 2.2.3(a). As in Section 1 the diagram 2.2.1 leads to
an exact couple which gives the desired spectral sequence. To identify the E2-term,
observe that 2.2.1(a) implies that each fibration in the resolution gives a short (as
opposed to long) exact sequence in E-homology. These splice together to give a
long exact sequence replacing 2.1.3,

0 → E∗(X) → E∗(K0) → E∗(ΣK1) → · · · .

Condition 2.2.1(c) implies that the E2-term of the spectral sequence is the coho-
mology of the complex

Ext0(E∗(K0)) → Ext0(E∗(ΣK1)) → · · · .

By A1.2.4 this is Ext(E∗(X)).
For 2.2.3(b) we know that the map X → X̂ induces a spectral sequence isomor-

phism since it induces an E-homology isomorphism. We also know that lim←− X̂s = pt,
so we can identify E∗∗

∞ as in 2.1.12.
We still need to show that the spectral sequence is natural and independent

(from E2 onward) of the choice of resolution. The former implies the latter as
the identity map on X induces a map between any two resolutions and standard
homological arguments show that such a map induces an isomorphism in E2 and
hence in Er for r ≥ 2. The canonical resolution is clearly natural so it suffices to
show that any other resolution admits maps to and from the canonical one.

We do this in stages as follows. Let {fs : Xs → Ks} be an arbitrary resolution
and let R0 be the canonical one. Let Rn = {fn

s : Xn
s → Kn

s } be defined by Xn
s = Xs,

and Kn
s = Kn for s < n and Kn

s = E ∧Xn
s ; for s ≥ n. Then R∞ is the arbitrary

resolution and we construct maps R0R∞ by constructing maps Rn ↔ Rn+1, for
which it suffices to construct maps between Ks and E ∧ Xs compatible with the
map from Xs. By 2.2.1(b) and (c), Ks and E ∧Xs are both retracts of E ∧Ks, so



3. SMASH PRODUCT AND CONNECTING HOMOMORPHISM 53

we have a commutative diagram

Xs
//

²²

Ks

²² %%KKKKKKKKKK

E ∧Xs
//

%%KKKKKKKKKK E ∧Ks
//

²²

E ∧Xs

Ks

in which the horizontal and vertical composite maps are identities. It follows that
the diagonal maps are the ones we want.

The Adams spectral sequence of 2.2.3 is useful for computing π∗(X), i.e.,
[S0, X]. With additional assumptions on E one can generalize to a spectral se-
quence for computing [W,X]. This is done in Adams [4] for the case when E∗(W )
is projective over π∗(E). We omit this material as we have no need for it.

Now we describe the filtration of 2.2.3(b), which will be referred to as the
E∗-Adams filtration on π∗(X̂).

2.2.14. Filtration Theorem. The filtration on π∗(X̂) of 2.2.3(b) is as fol-
lows. A map f : Sn → X has filtration ≥ s if f can be factored into s maps each of
which becomes trivial after smashing the target with E.

Proof. We have seen above that F sπ∗(X̂) = im π∗(Xs). We will use the
canonical resolution (2.2.10). Let E be the fiber of the unit map S0 → E. Then
X2 = E(s) ∧X, where E(s) is the s-fold smash product of E. Xi+1 → Xi → Xi ∧E
is a fiber sequence so each such composition is trivial and a map Sn → X which
lifts to Xs clearly satisfies the stated condition. It remains to show the converse,
i.e., that if a map f : Sn → X factors as

Sn → Ys
gs−→ Ys−1

gs−1−−−→ · · · → Y0 = X,

where each composite Yi
gi−→ giYi−1 → Yi−1 ∧ E is trivial, then it lifts to Xs. We

argue by induction on i. Suppose Yi−1 → X lifts to Xi−1 (a trivial statement for
i = 1). Since Yi maps trivially to Yi−1 ∧ E, it does so to Xi−1 ∧ E and therefore
lifts to Xi. ¤

3. The Smash Product Pairing and the Generalized Connecting
Homomorphism

In this section we derive two properties of the Adams spectral sequence which
will prove usefull in the sequel. The first concerns the structure induced by a map

(2.3.1) α : X ′ ∧X ′′ ∧X,

e.g., the multiplication on a ring spectrum. The second concerns a generalized
connecting homomorphism arising from a cofiber sequence

(2.3.2) W
f−→ X

g−→ Y
h−→ ΣW

when E∗(h) = 0. Both of these results are folk theorems long known to experts in
the field but to our knowledge never before published in full generality. The first
property in the classical case was proved in Adams [3], while a weaker form of the
second property was proved by Johnson, Miller, Wilson, and Zahler [1].
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Throughout this section the assumptions 2.2.5 on E will apply. However, the
flatness condition [2.2.5(d)] is only necessary for statements explicitly involving Ext,
i.e., 2.3.3(e) and 2.3.4(a). For each spectrum X let E∗∗

∗ (X) be the Adams spectral
sequence for X based on E-homology (2.2.3). Our first result is

2.3.3. Theorem. Let 2 ≤ r ≤ ∞. Then the map a above induces a natural
pairing

E∗∗
r (X ′)⊗ E∗∗

r (X ′′) → E∗∗
r (X)

such that
(a) for a′ ∈ Es′,t′

r (X ′), a′′ ∈ Es′′,t′′
r (X ′′),

dr(a′, a′′) = dr(a′)a′′ + (−1)t′−s′a′dr(a′′);

(b) the pairing on Er+1, is induced by that on Er;
(c) the pairing on E∞, corresponds to a∗ : π∗(X ′)⊗ π∗(X ′′) → π∗(X);
(d) if X ′ = X ′′ = X and E∗(α) : E∗(X)⊗ E∗(X) → E∗(X) is commutative or

associative, then so is the pairing [modulo the usual sign conventions, i.e., a′a′′ =
(−1)(t

′−s′)(t′′−s′′)a′′a′];
(e) for r = 2 the pairing is the external cup product (A1.2.13)

Ext(E∗(X ′))⊗ Ext(E∗(X ′′)) → Ext(E∗(X ′)⊗π∗(E) E∗(X ′′))

composed with the map in Ext induced by the composition of canonical maps

E∗(X ′)⊗π∗(E) E∗(X ′′) → E∗(X ′ ∧X ′′) α∗−−→ E∗(X).

In particular, by setting X ′ = S0 and X ′′ = X we find that the spectral sequence
for X is a module (in the appropriate sense) over that for the sphere S0. ¤

The second result is

2.3.4. Theorem. Let E∗(h) = 0 in 2.3.2. Then for 2 ≤ r ≤ ∞ there are maps
δr : Es,∗

r (Y ) → Es+1,∗
r (W ) such that

(a) δ2 is the connecting homomorphism associated with the short exact sequence

0 → E∗(W ) → E∗(X) → E∗(Y ) → 0,

(b) δrdr = drδr and δr+1 induced by δr,
(c) δ∞ is a filtered form of the map π∗(h).
The connecting homomorphism in Ext can be described as the Yoneda product

(Hilton and Stammbach [1, p. 155] with the element of Ext1E∗(E)(E∗(Y ), E∗(W ))
corresponding to the short exact sequence

0 → E∗(W ) → E∗(X) → E∗(Y ) → 0.

Similarly, given a sequence of maps

X0
f0−→ ΣX1

f1−→ Σ2X2 → · · · → ΣnXn

with E∗(fi) = 0 one gets maps

δr : Es,∗
r (X0) → Es+n∗

r (Xn)

commuting with differentials where δ2 can be identified as the Yoneda product with
the appropriate element in

Extn
E(E∗)(E∗(X0), E∗(Xn)). ¤
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If one generalizes the spectral sequence to source spectra other than the sphere
one is led to a pairing induced by composition of maps. This has been studied
by Moss [1], where it is assumed that one has Adams resolutions satisfying much
stronger conditions than 2.2.1. In the spectral sequence for the sphere it can be
shown that the composition and smash product pairings coincide, but we will not
need this fact.

To prove 2.3.3 we will use the canonical resolutions (2.2.9) for X ′, X ′′ and
X. Recall that these can be obtained by smashing the respective spectra with the
canonical resolution for S0. Let Ks,s+r be the cofiber in

(2.3.5) E(s+r) → E(s) → Ks,s+r,

where E is the fiber of S0 → E.
These spectra have the following properties.

2.3.6. Lemma.
(a) There are canonical fibrations

Ks+i,s+i+j → Ks,s+i+j → Ks,s+i.

(b) Es,∗
1 (X) = π∗(X ∧Ks,s+1).

Let Zs,∗
r (X), Bs,∗

r (X) ⊂ Es,∗
1 (X) be the images of π∗(X ∧Ks,s+r) and π∗(X ∧

Σ−1Ks−r+1,s), respectively. Then Es,∗
r (X) = Zs,∗

r (X)/Bs,∗
r (X) and dr is induced

by the map
X ∧Ks,s+r → X ∧ ΣKs+r,s+2r.

(c) α induces map X ′
s∧X ′′

t → Xs+1 (where these are the spectra in the canonical
resolutions) compatible with the maps g′s, g′′t , and gs+t of 2.2.1.

(d) The map
Ks,s+1 ∧Kt,t+1 → Ks+t,s+t+1,

given by the equivalence
Kn,n+1 = E ∧ E(n)

and the multiplication on E, lifts to maps

Ks,s+r ∧Kt,t+r → Ks+t,s+t+r

for r > 1 such that the following diagram commutes

Ks,s+r+1 ∧Kt,t+r+1
//

²²

Ks+t,s+t+r+1

²²
Ks,s+r ∧Kt,t+r

// Ks+t,s+t+r

where the vertical maps come from (a).
(e) The following diagram commutes

Ks,s+r ∧Kt,t+r
//

²²

(ΣKs+r,s+2r ∧Kt,t+r) ∨ (Ks,s+r ∧ ΣKt+r,t+2r)

²²
Ks+t,s+t+r

// ΣKs+t+r,s+t+2r

where the vertical maps are those of (d) and the horizontal maps come from (a), the
maps to and from the wedge being the sums of the maps to and from the summands.
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Proof. Part (a) is elementary. For (b) we refer the reader to Cartan and
Eilenberg [1], Section XV.7, where a spectral sequence is derived from a set of
abelian groups H(p, q) satisfying certain axioms. Their H(p, q) in this case is our
π∗(Kp,q), and (a) guarantees that these groups have the appropriate properties. For
(c) we use the fact that X ′

s = X ′ ∧E(s), X ′′
t = X ′′ ∧E(t), and Xs+t = X ∧E(s+t).

For (d) we can assume the maps E(s+1) → E(s) are all inclusions with Ks,s+r =
E(s)/E(s+r). Hence we have

Ks,s+r ∧Kt,t+r = E(s) ∧ E(t)/(E(s+r) ∧ E(t) ∪ E(s) ∧ E(t+r))

and this maps naturally to

E(s+t)/E(s+t+r) = Ks+t,s+t+r.

For (e) if E(s+2r) → E(s+r) → E(s) are inclusions then so is Ks+r,s+2r →
Ks,s+2r so we have Ks,s+r = Ks,s+2r/Ks+r,s+2r and Kt,t+r = Kt,t+2r/Kt+r,t+2r.
With this in mind we get a commutative diagram

Ks,s+r ∧Kt+r,t+2r ∪Ks+r,s+2r ∧Kt,t+r
//

²²

Ks+t+r,s+t+2r

²²
Ks,s+2r ∧Kt,t+2r

²²

// Ks+t,s+t+2r

²²
Ks,s+r ∧Kt,t+r

//

²²

Ks+t,s+t+r

²²
Σ(Ks,s+r ∧Kt+r,t+2r ∪Ks+r,s+2r ∧Kt,t+r) // ΣKs+t+r,s+t+2r

where the horizontal maps come from (d) and the upper vertical maps are inclusions.
The lower left-hand map factors through the wedge giving the desired diagram. ¤

We are now ready to prove 2.3.3. In light of 2.3.6(b), the pairing is induced by
the maps of 2.3.6(d). Part 2.3.3(a) then follows from 2.3.6(e) as the differential on
E∗∗

r (X ′)⊗E∗∗
r (X ′′) is induced by the top map of 2.3.6(e). Part 2.3.3(b) follows from

the commutative diagram in 2.3.6(d). Part 2.3.3(c) follows from the compatibility
of the maps in 2.3.6(c) and (d).

Assuming 2.3.3(e), (d) is proved as follows. The pairing on Ext is functorial, so
if E∗(X) has a product which is associative or commutative, so will E∗∗

2 (X). Now
suppose inductively that the product on E∗∗

r (X) has the desired property. Since
the product on Er+1 is induced by that on Er the inductive step follows.

It remains then to prove 2.3.3(e). We have E∗(X ′ ∧ Ks,s+1) = Ds(E∗(X ′))
(A1.2.11) and similarly for X ′′, so our pairing is induced by a map

E∗(X ′ ∧Ks,s+1)⊗π∗(E) E∗(X ′′ ∧Kt,t+1) → E∗(X ∧Ks+t,s+t+1),

i.e., by a pairing of resolutions. Hence the pairing on E2 coincides with the specified
algebraic pairing by the uniqueness of the latter (A1.2.14).

We prove 2.3.4 by reducing it to the following special case.
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2.3.7. Lemma. Theorem 2.3.4 holds when X is such that Exts(E∗(X)) = 0 for
s > 0 and π∗(X) = Ext0(E∗(X)). ¤

Proof of 2.3.4. Let W ′ be the fiber of the composite

W
f−→ X → X ∧ E.

Since Σfh is trivial, h lifts to a map h′ : Y → ΣW ′. Now consider the cofiber
sequence

W → X ∧ E → ΣW ′ → ΣW.

Lemma 2.3.7 applies here and gives maps

δr : Es,∗
r (ΣW ′) → Es+1,∗

r (ΣW ).

Composing this with the maps induced by h′ gives the desired result. ¤

Proof of 2.3.7. Disregarding the notation used in the above proof, let W ′ =
Σ−1Y , X ′ = Σ−1Y ∧ E, and Y ′ = Y ∧ E. Then we have a commutative diagram
in which both rows and columns are cofiber sequences

X

²²

Woo

²²

W ′

²²

oo

X ∨ (Y ∧ E)

²²

Xoo

²²

X ′oo

²²
Y ∧ E Yoo Y ′oo

Each row is the beginning of an Adams resolution (possibly noncanonical for W and
X) which we continue using the canonical resolutions (2.2.9) for W ′, X ′, and Y ′.
Thus we get a commutative diagram

(2.3.8) W

²²

W ′oo

²²

W ′ ∧ Eoo

²²

W ′ ∧ E(2)

²²

oo · · ·oo

X

²²

X ′oo

²²

X ′ ∧ E

²²

oo X ′ ∧ E(2)

²²

oo · · ·oo

Y Y ′oo Y ′ ∧ Eoo Y ′ ∧ E(2)oo · · ·oo

in which each column is a cofiber sequence. The map Y
'−→ ΣW ′ induces maps

δr : Es,∗
r (Y ) → Es+1,∗

r (W ) which clearly satisfy 2.3.4(a) and (b), so we need only to
verify that δ2 is the connecting homomorphism. The resolutions displayed in 2.3.8
make this verification easy because they yield a short exact sequence of E1-terms
which is additively (though not differentially) split. For s = 0 we have

E0,∗
1 (W ) = π∗(X), E0,∗

1 (X) = π∗(X ∨ (Y ∧ E)),

E0,∗
1 (Y ) = π∗(Y ∧ E), E1,∗

1 (W ) = π∗(Y ∧ E),

E1,∗
1 (X) = π∗(Y ∧ E ∧ E) and E1,∗

1 (Y ) = π∗(ΣY ∧ E ∧ E),
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so the relevant diagram for the connecting homomorphism is

X //

²²

X ∨ (Y ∧ E) //

d

²²

Y ∧ E
boo

²²
Y ∧ E // Y ∧ E ∧ E

aoo // ΣY ∧ E ∧ E

where a and b are splitting maps. The connecting homomorphism is induced by
adb, which is the identity on Y ∧ E, which also induces δ2.

For s > 0 we have

Es,∗
1 (W ) = π∗(Σs−1Y ∧ E ∧ E(s−1)),

Es,∗
1 (X) = π∗(Σs−1Y ∧ E(2) ∧ E(s−1)),

and

Es,∗
1 (Y ) = π∗(ΣsY ∧ E ∧ E(s)),

so the relevant diagram is

E //

²²

E ∧ E //

²²

E ∧ Eoo

²²
ΣE ∧ E // ΣE ∧ E ∧ Eoo // Σ2E ∧ E2

and again the connecting homomorphism is induced by the identity on
ΣsY ∧ E ∧ Es. ¤


