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CHAPTER 3

The Classical Adams Spectral Sequence

In Section 1 we make some simple calculations with the Adams spectral se-
quence which will be useful later. In particular, we use it to compute w.(MU)
(3.1.5), which will be needed in the next chapter. The computations are described
in some detail in order to acquaint the reader with the methods involved.

In Sections 2 and 3 we describe the two best methods of computing the Adams
spectral sequence for the sphere, i.e., the May spectral sequence and the lambda
algebra. In both cases a table is given showing the result in low dimensions (3.2.9
and 3.3.11). Far more extensive charts are given in Tangora [1, 4]. The main table
in the former is reproduced in Appendix 3.

In Section 4 we survey some general properties of the Adams spectral sequence.
We give E5y* for s < 3 (3.4.1 and 3.4.2) and then say what is known about dif-
ferentials on these elements (3.4.3 and 3.4.4). Then we outline the proof of the
Adams vanishing and periodicity theorems (3.4.5 and 3.4.6). For p = 2 they say
that E%* vanishes roughly for 0 < t — s < 2s and has a very regular structure for
t — s < 5s. The E-term in this region is given in 3.4.16. An elementary proof of
the nontriviality of most of these elements is given in 3.4.21.

In Section 5 we survey some other past and current research and suggest further
reading.

1. The Steenrod Algebra and Some Easy Calculations

In this section we begin calculating with the classical mod (p) Adams spectral
sequence of 2.1.1. We start by describing the dual Steenrod algebra A, referring
the reader to Milnor [2] or Steenrod and Epstein [1] for the proof. Throughout
this book, P(z) will denote a polynomial algebra (over a field which will be clear
from the context) on one or more generators z, and E(z) will denote the exterior
algebra on same.

3.1.1. THEOREM (Milnor [2]). A. is a graded commutative, noncocommutative
Hopf algebra.

(a) For p =2, A, = P(&,&,...) as an algebra where |§,| = 2™ — 1. The
coproduct A: A, — A, ® A, is given by Aln = cicn ,2:_1 ® &;, where & = 1.

(b) Forp > 2, A, = P(&,&2,...) ® E(10,71,-..) as an algebra, where |&,| =
2(p™ = 1), and || = 2p™ — 1. The coproduct A: A, — A, ® A, is given by
Aén = o<icn Ef:ﬂ. ®&, where & =1 and A1, = 1, @ 14+ Y gcicn 521_1 ® 7.

(c) For each prime p, there is a unit n: Z/(p) — A, a counit e: A, — Z/(p)
(both of which are isomorphisms in dimension 0), and a conjugation (canonical anti-
automorphism) c: A, — A, which is an algebra map given recursively by c¢(&) =1,
S ocicn £ (&) =0 forn >0 and 1, + Y gcic, & se(ri) = 0 for n > 0. A, will
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60 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

denote kere; i.e., A, is isomorphic to A, in positive dimensions, and is trivial in
dimension 0. a

A, is a commutative Hopf algebra and hence a Hopf algebroid. The homological
properties of such objects are discussed in Appendix 1.

We will consider the classical Adams spectral sequence formulated in terms
of homology (2.2.3) rather than cohomology (2.1.1). The most obvious way of
computing the Fs-term is to use the cobar complex. The following description of
it is a special case of 2.2.10 and A1.2.11.

3.1.2. PROPOSITION. The FEs-term for the classical Adams spectral sequence
for m(X) is the cohomology of the cobar complex C) (H.(X)) defined by
Cf‘*(H*(X)) =40 04 ® H.(X)

(with s tensor factors of A,). Fora; € A, and z € H.(X), the element a;®- - - a,Qx
will be denoted by [ai|az|---|as]xz. The coboundary operator d,: C3 (H.(X)) —
Cj{tl(H* (X)) is given by

dslar| -~ las)e = [Lar| -~ las]e + Y _(=1)'[aa] -~ |ai-1|a}|a} |asa] - -~ as)e
i=1
+ (=1 a| -+ |as|a"]a",

where Aa; = a;®a; and Y(z) = 2'®2" € A, @H,(X). [A priori this expression lies
in A25H @ H,(X). The diligent reader can verify that it actually lies in A2t @
Hy(X) ] O

This E»-term will be abbreviated by Ext(H.(X)).

Whenever possible we will omit the subscript A,.

The following result will be helpful in solving group extension problems in the
Adams spectral sequence. For p > 2 let ag € Exti{i(Z/ (p),Z/(p)) be the class
represented by [19] € C(Z/(p)). The analogous element for p = 2 is represented by
[&1] and is denoted by ag, k1,0, Or ho.

3.1.3. LEMMA.

(a) For s > 0, Ext®*(H,(S°)) is generated by aj.

(b) If z € Ext(H.(X)) is a permanent cycle in the Adams spectral sequence
represented by o € m.(X), then apx is a permanent cycle represented by pa. [The
pairing Ext(H.(S%)) ® Ext(H. (X)) — Ext(H. (X)) is given by 2.3.3.] O

PrOOF. Part (a) follows from inspection of C*(Z/(p)); there are no other el-
ements in the indicated bidegrees. For (b) the naturality of the smash product
pairing (2.3.3) reduces the problem to the case z = 1 € Ext(H.(S°)), where it
follows from the fact that mo(S°) = Z. O

The cobar complex is so large that one wants to avoid using it directly at all
costs. In this section we will consider four spectra (MO, MU, bo, and bu) in which
the change of rings isomorphism of A1.1.18 can be used to great advantage. The
most important of these for our purposes is MU, so we treat it first. The others are
not used in the sequel. Much of this material is covered in chapter 20 of Switzer [1].

The computation of 7. (MU) is due independently to Milnor [4] and Novikov
[2, 3]. For the definition and basic properties of MU, including the following
lemma, we refer the reader to Milnor [4] or Stong [1] or to Section 4.1.
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3.1.4. LEMMA.

(a) H.(MU;Z) = Z[b1,b2,...], where b; € Ha;.

(b) Let H/(p) denote the mod (p) FEilenberg-Mac Lane spectrum for a prime p
and let u: MU — H/(p) be the Thom class, i.e., the generator of H'(MU;Z/(p)).
Then H,(u) is an algebra map and its image in H,(H/(p)) = A. is P(£2,€3,...)
forp=2 and P(&,&2,...) for p> 2. O

The main result concerning MU is the following.

3.1.5. THEOREM (Milnor [4], Novikov [2, 3]).

(a) m(MU) = Z[z1, 22, . ..] with z; € mo;(MU).

(b) Let h: m(MU) — H.(MU;Z) be the Hurewicz map. Then modulo decom-
posables in H,(MU;Z),

h(a:i):{ pb; if i = p® — 1 for some prime p 0

—b; otherwise.

We will prove this in essentially the same way that Milnor and Novikov did.
After some preliminaries on the Steenrod algebra we will use the change of rings
isomorphisms A1.1.18 and A1.3.13 to compute the Es-term (3.1.10). It will follow
easily that the spectral sequence collapses; i.e., it has no nontrivial differentials.

To compute the Es-term we need to know H,(MU;Z/(p)) as an A.-comodule
algebra. Since it is concentrated in even dimensions, the following result is useful.

3.1.6. LEMMA. Let M be a left A.-comodule which is concentrated in even
dimensions. Then M is a comodule over P, C A, defined as follows. For p > 2,

P*ZP(§17§27"') andforp=2, P, =P(€%7§§7)

PROOF. Form € M, let ¢»(m) = ¥m' @ m". Then each m' € A, must be even-
dimensional and by coassociativity its coproduct expansion must consist entirely of
even-dimensional factors, which means it must lie in P,. O

3.1.7. LEMMA. As a left A.-comodule, H, (MU) = P, ® C, where C =
P(uy,uz,...) with dimu; = 2i and i is any positive integer not of the form p* — 1.

ProoF. H.(MU;Z/(P)) is a P,-comodule algebra by 3.1.4 and 3.1.6. It maps
onto P, by 3.1.4(b), so by A1.1.18 it is P, ® C, where C = Z/(p)Op, H,(MU). An
easy counting argument shows that C' must have the indicated form. O

3.1.8. LEMMA. Let M be a comodule algebra over A, having the form P, @ N
for some A, -comodule algebra N. Then

Exta,(Z/(p), M) = Extg(Z/(p), N)
where

E(&,&,...) forp=2

E=A.®p Z/(p) = {E(To,ﬁ;---) forp>2.

In particular,
Exta, (Z/(p), H.(MU)) = Extz(2/(p), 2/ () @ C.

PROOF. The statement about H,(MU) follows from the general one by 3.1.7.
For the latter we claim that M = A, Og N. We have A, = P, ® E as vector spaces
and hence as F-comodules by A1.1.20, so

A, 05 N=P,@ EOg N=P,® N = M,
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and the result follows from A1.3.13. O

Hence we have reduced the problem of computing the Adams Fs-term for MU
to that of computing Extg(Z/(p),Z/(p)). This is quite easy since E is dual to an
exterior algebra of finite type.

3.1.9. LEMMA. Let T be a commutative, graded connected Hopf algebra of finite
type over a field K which is an exterior algebra on primitive generators x1,xs, - ..,
each having odd degree if K has characteristic other than 2 (e.g., let T = E). Then

EXtF(K7 K) = P(y1>y27 s )7
where y; € ExtY1%! is represented by [x;] in Cp(K) (the cobar complez of A1.2.11).

PrOOF. Let I'; C T be the exterior algebra on z;. Then an injective I';-
resolution of K is given by

05K 5T, 5T — -

where d(z;) = 1 and d(1) = 0 applying Homr, (K, ) gives a complex with trivial
boundary operator and shows Extr, (K, K) = P(Y;). Tensoring all the R; together
gives an injective I'-resolution of K and the result follows from the Kunneth theo-
rem. o

Combining the last three lemmas gives
3.1.10. COROLLARY.

Exta(Z/(p), H.(MU)) = C ® P(ag, a1, ...),

where C is as in 3.1.7 and a; € Extb? ™ s represented by [1:] for p > 2 and [&]
forp=21in Ca, (H.(MU)). O

Thus we have computed the Es-term of the classical Adams spectral sequence
for m(MU). Since it is generated by even-dimensional classes, i.e., elements in Eg’t
with ¢ — s even, there can be no nontrivial differentials, i.e., Fs = E.

The group extension problems are solved by 3.1.3; i.e., all multiples of a§ are
represented in 7,(MU) by multiples of p*. It follows that m,(MU) ® Z,) is as
claimed for each p; i.e., 3.1.5(a) is true locally. Since 7;(MU) is finitely generated
for each i, we can conclude that it is a free abelian group of the appropriate rank.

To get at the global ring structure note that the mod (p) indecomposable quo-
tient in dimension 2i, Q2;m«(MU)®Z/(p) is Z/ (p) for each i > 050 Q2im(MU) = Z.
Pick a generator z; in each even dimension and let R = Z[z1,2,...]. The map
R — m.(MU) gives an isomorphism after tensoring with Z, for each prime p, so
it is isomorphism globally.

To study the Hurewicz map h: m.(MU) — H,(MU;Z) recall H(X;Z) =
m«(X A H), where H is the integral Eilenberg-Mac Lane spectrum. We will prove
3.1.5(b) by determining the map of Adams spectral sequences induced by i: MU —
MUAH. We will assume p > 2, leaving the obvious changes for p = 2 to the reader.
The following result on H,(H) is standard.

3.1.11. LEMMA. The mod (p) homology of the integer Eilenberg—Mac Lane spec-
trum
H*(H) =P, ®E(7_'1,7_'2,. . )
as an A, comodule, where T; denotes the conjugate T;, i.e., its image under the
conjugation c. O
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Hence we have
H.(H) = Ay Op(r) Z/(p)
and an argument similar to that of 3.1.8 shows

(3.1.12) Ext 4., (Z/(p), Hy (X A H)) = Bxty(r)(Z/(p), Ha(X)).
In the case X = MU the comodule structure is trivial, so by 3.1.11,

Exta, (Z/(p), H.(MU A H)) = H,(MU) ® P(a).

To determine the map of Ext groups induced by ¢, we consider three cobar com-
plexes, Cy, (H«(MU)), Cg(C), and Cg(r)(H«(MU)). The cohomologies of the
first two are both Extu, (Z/(p), H.(MU)), by 3.1.2 and 3.1.8, respectively, while
that of the third is Exta, (Z/(p), H.(MU A H)) by 3.1.12. There are maps from
Ca,(H.(MU)) to each of the other two.

The class A, € Exti{f”n_l(Z/(p),H*(MU)) is represented by [r,] € Cg(C).

The element — 3. [7;] _ni_i € Cy,(H(MU)) [using the decomposition of H,(MU)
given by 3.1.7] is a cycle which maps to [7,,] and therefore it also represents a,. Its
image in C () (Hy(MU)) is [10]€n, s0 we have i,(a,) = ao&y. Since &, € H,(MU)
is a generator it is congruent modulo decomposables to a nonzero scalar multiple
of by~ _1, while u; (3.1.9) can be chosen to be congruent to b;. It follows that the
x; € m2;(MU) can be chosen to satisfy 3.1.5(b).

We now turn to the other spectra in our list, MO, bu, and bo. The Adams
spectral sequence was not used originally to compute the homotopy of these spectra,
but we feel these calculations are instructive examples. In each case we will quote
without proof a standard theorem on the spectrum’s homology as an A.-comodule
and proceed from there.

For similar treatments of M SO, MSU, and M Sp see, respectively, Pengel-
ley [2], Pengelley [1], and Kochman [1].

To following result on MO was first proved by Thom [1]. Proofs can also be
found in Liulevicius [1] and Stong [1, p. 95].

3.1.13. THEOREM. For p =2, H,(MO) = A, ® N, where N is a polynomial
algebra with one generator in each degree not of the form 2 — 1. For p > 2,
H,(MO) = 0. O

It follows immediately that

N ifs=0
3.1.14 Ext} (Z/(2),H.(MO)) =
(3114) xt), (2/(2), H.(MO)) {0 oo

the spectral sequence collapses and 7.(MO) = N.
For bu we have

3.1.15. THEOREM (Adams [8]).
H(u)= P ="M
0<i<p—1

where
M =P, ® E(T2,T3,...) forp>2

M =P, ® E(&,&4,...) forp=2
where & for a € A, is the conjugate c(a). O
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Using 3.1.8 we get
Exta.(Z/(p), M) = Extp(Z/(p), E(72,7s, .- .))

(again we assume for convenience that p > 2) and by an easy calculation A1.3.13
gives

Extg(Z/(p), B(2,73,. - .)) = Exty(ry,r)(Z/(p), Z/(p)) = Pao,a1)

by 3.1.11, so we have
3.1.16. THEOREM.

Exta, (Z/(p), Hi(bu)) = é} 2% P(ag,a1)
i=0

where ag € Ext"! and a; € Ext!?P~1, O

As in the MU case the spectral sequence collapses because the Fs-term is
concentrated in even dimensions. The extensions can be handled in the same way,
so we recover the fact that

(bu) Z if i > 0 and i is even
T =
’ 0 otherwise.

The bo spectrum is of interest only at the prime 2 because at odd primes it is
a summand of bu (see Adams [8]). For p = 2 we have

3.1.17. THEOREM (Stong [2]). For p =2, H.(bo) = P(&,&2,&3,&y,...) where
&i = c(&)- O

Let A(1), = A./(€},€2,&3,&,,-..). We leave it as an exercise for the reader to
show that A(1), is dual to the subalgebra A(1) of A generated by Sq' and Sq?,
and that

H.(bo) = Ax Oaq), Z/(2),

so by A1.3.13,

(3.1.18) Exta, (Z/(2), Ha(bo)) = Exta), (Z/(2), Z/(2)).

A(1) is not an exterior algebra, so 3.1.9 does not apply. We have to use the
Cartan-Eilenberg spectral sequence A1.3.15. The reader can verify that the follow-
ing is an extension (A1.1.15)

(3.1.19) d = A(1). - E(&),

where ® = P(&)/(€1). @ is isomorphic as a coalgebra to an exterior algebra on
elements corresponding to & and &2, so by 3.1.9

Exte(Z/(2),Z/(2)) = P(hio, h11)

and

Bxt () (2/(2), 2/(2)) = P(hao),

where h;; is represented by [512]] in the appropriate cobar complex. Since P(hag) has
only one basis element in each degree, the coaction of ® on it is trivial, so by A1.3.15
we have a Cartan-Eilenberg spectral sequence converging to Ext (1), (Z/(2),Z/(2))
with

(3.1.20) E; = P(hag, h11, hao)



1. THE STEENROD ALGEBRA AND SOME EASY CALCULATIONS 65

where hq; € E21’0 and hyg € Eg’l. We claim
(3.1.21) da(h20) = hiohaa.
This follows from the fact that
d&) =& @&
in Cy(1), (Z/(2)). It follows that
(3.1.22) E3 = P(u, h1o, h11)/(h1oh11)
where u € Ey” corresponds to h3,. Next we claim
(3.1.23) ds(u) = h3,.
We have in Cy(1), (Z/(2)),

de0bh) =600 +6H 0 ®E.
In this E5 this gives
dahsg = hiohi1hao + haohiohiy = 0

since E» is commutative. However, the cobar complex is not commutative and when
we add correcting terms to & ® & in the hope of getting a cycle, we get instead

A @&+ 6 REELE+6LLERE) =R,
which implies 3.1.23. It follows that
(3124) Ey = P(hlo, hu, v, 'w)/(hl()hn, h‘?l) v? + h%ow, Uhll),

where v € E;? and w € E2’4 correspond to high3, and hi,, respectively.

Finally, we claim that E; = E; inspection of E4 shows that there cannot be
any higher differentials because there is no E*¢ for r > 4 which is nontrivial and
for which EZ+mt=+1 ig also nontrivial. There is also no room for any nontrivial
extensions in the multiplicative structure. Thus we have proved

3.1.25. THEOREM. The Es-term for the mod (2) Adams spectral sequence for
7« (bo),

Exta, (Z/(2), H.(bo)) = Extaq).(Z/(2),Z/(2))
18

P(h1g, hi1,v,w)/(hioha1, h3,,v* + h3yw,vhy),
where

hio € Extb!,  hyy € Ext'?, v eExt®, and w e Ext"'2, O

This E»-term is displayed in the accompanying figure. A vertical arrow over
an element indicates that hj,z is also present and nontrivial for all s > 0.

Now we claim that this Adams spectral sequence also collapses, i.e., Fy =
E . Inspection shows that the only possible nontrivial differential is d.(w™hi1) =
’w”h%r . However, bo is a ring spectrum so by 2.3.3 the differentials are derivations
and we cannot have d,.(hi1) = h{:{ ! because it contradicts the relation highi; = 0.
The extension problem is solved by 3.1.3, giving
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3.1.26. THEOREM (Bott [1]).
T (bO) = Z[n: 047/3]/(277: 7)37 na, O£2 - 4ﬁ)

withn € ™, a € w4, B € ws, i.e., fori >0

VA ifi=0 mod4
mi(bo) =< Z/2 ifi=1lor2 modS8 U
0 otherwise.

For future reference we will compute Ext 4(1)(Z/(2), M) for M = A(0). = E(&)
and M =Y = P(&)/(&). Topologically these are the Adams FEs-terms for the
mod (2)-Moore spectrum smashed with bo and bu, respectively. We use the Cartan-
Eilenberg spectral sequence as above and our E»-term is Exte (Z/(2), Extg(g,) (Z/(2), M)).
An easy calculation shows that

E2 = P(hll,hgo) fOI‘ M = A(O)*
and

E2 = P(hgo) for M =Y.

In the latter case the Cartan-Eilenberg spectral sequence collapses. In the former
case the differentials are not derivations since A(0). is not a comodule algebra.
From 3.1.23 we get ds3(h3,) = hi, so

Eo = Ey = P(w) ® {1, h11, h31, hao, haohi1, haohi; }-

This Ext is not an algebra but it is a module over Ext (1), (Z/(2),%/(2)). We will

show that there is a nontrivial extension in this structure, namely higha = h?;.

We do this by computing in the cobar complex C (1), (A(0)«). There the class hag

is represented by [£2]+ [£2]&1, 50 highag is represented by [€1|€a]+ [€1|€2]&1. The sum

of this and [¢7|£7] (which represents h3 ;) is the coboundary of [£16s] + [£ + &]&1.
From these considerations we get
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3.1.27. THEOREM. As a module over Ext (), (Z/(2),Z/(2)) (3.1.25) we have

(a) Extaq),,(Z/(2),A(0).) is generated by 1 € Ext®® and hgy € Ext™® with
th -1= 0, h10h20 = h%l . 1, v-1= 0, and Uh20 =0.

(b) Ext (1), (Z(2),Y) is generated by {hby: 0 < i < 3} with hyohby = hy1hyy =
vhiy, = 0. a

We will also need an odd primary analog of 3.1.27(a). A(1) = E(79,71) ®
P(&)/(€}) is the dual to the subalgebra of A generated by the Bockstein 8 and the
Steenrod reduced power P!. Instead of generalizing the extension 3.1.19 we use

P(0). — A(0)x = E(1).,

where P(0). = P(&)/(&) and E(1). = E(10,71). The Cartan-Eilenberg spectral
sequence Fs»-term is therefore

Eti(O)* (Z/(p), EXtE‘(l)* (Z/(p): A(O)*))a

where A(0), = E(79). An easy calculation gives
3.1.28. THEOREM. For p > 2

Exta), (Z/(p), A(0)«) = E(ho) ® P(ax,bo),
where hg € Ext™?, a; € Extl””"l, and by € Ext®P? are represented by [£1], [€1]70 +
[r1], and 3o i, P F)IELIET "], respectively. a

2. The May Spectral Sequence

In this section we discuss a method for computing the classical Adams FE,-term,
Exta,(Z/(p),Z/(p)), which we will refer to simply as Ext. For the reader hoping
to understand the classical Adams spectral sequence we offer two pieces of advice.
First, do as many explicit calculations as possible yourself. Seeing someone else do
it is no substitute for the insight gained by firsthand experience. The computations
sketched below should be reproduced in detail and, if possible, extended by the
reader. Second, the F»-term and the various patterns within it should be examined
and analyzed from as many viewpoints as possible. For this reason we will describe
several methods for computing Ext. For reasons to be given in Section 4.4, we will
limit our attention here to the prime 2.

The most successful method for computing Ext through a range of dimensions
is the spectral sequence of May [1]. Unfortunately, crucial parts of this material
have never been published. The general method for computing Ext over a Hopf
algebra is described in May [2], and the computation of the differentials in the May
spectral sequence for the Steenrod algebra through dimension 70 is described by
Tangora [1]. A revised account of the May FEs-term is given in May [4].

In our language May’s approach is to filter A, by copowers of the unit coideal
(A1.3.10) and to study the resulting spectral sequence. Its Ex-term is the Ext over
the associated graded Hopf algebra E°A,. The structure of this Hopf algebra is as
follows.

3.2.1. THEOREM (May [1]).
(a) Forp=2,
E°A, = E(&,:i>0,j>0)
with coproduct

Al&ij) = Y &imkjsr ® &gy

0<k<i
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where & =1 and & ; € E? A, is the projection of Eizj.
(b) Forp > 2,

E°A,=E(r;:i>0)®T(&,:i> 0,7 >0)
with coproduct given by

Alig) = Y &iokjrk @k
0<k<i
and
Aln) =1 ®1+ Z Eick,i ® Ty,
0<k<i

where T'( ) denotes the truncated polynomial algebra of height p on the indicated
generators, 7; € EY | A, is the projection of ; € A., and & ; € E)A% is the
projection of 551 . O

May actually filters the Steenrod algebra A rather than its dual, and proves
that the associated bigraded Hopf algebra EyA is primitively generated, which is
dual to the statement that each primitive in EOA; is a generator. A theorem of
Milnor and Moore [3] says that every graded primitively generated Hopf algebra
is isomorphic to the universal enveloping algebra of a restricted Lie algebra. For
p =2let z;; € EyA be the primitive dual to &; ;. These form the basis of a Lie
algebra under commutation, i.e.,

— K1 m
(i, Thym] = TijTh,m — Th,mTi,j = OpTiym — 07" Tk, j

where (5;: is the Kronecker §. A restriction in a graded Lie algebra L is an en-
domorphism ¢ which increases the grading by a factor of p. In the case at hand
this restriction is trivial. The universal enveloping algebra V(L) of a restricted Lie
algebra L (often referred to as the restricted enveloping algebra) is the associative
algebra generated by the elements of L subject to the relations zy — yz = [z,y] and
x? = &(z) for x,y € L.

May [1] constructs an efficient complex (i.e., one which is much smaller than
the cobar complex) for computing Ext over such Hopf algebras. In particular, he
proves

3.2.2. THEOREM (May [1]). For p =2, Extyo, (Z/(2),Z/(2)) (the third grad-
ing being the May filtration) is the cohomology of the complex

with d(hi j) = Y gcre; Ph,jhikktj, where hij € VL2200 corresponds to & ; €
As. O

Our h;; is written R by May [1] and Rj; by Tangora [1], but as h;; (in a
slightly different context) by Adams [3]. We will omit the comma in the subscript
whenever practical. Notice that in C*(Z/(2)) one has d[e?'] = Yo, il€3 7 €7],
which corresponds to the formula for d(h;;) above. The theorem asserts that
E°C*(Z/(2)) is chain homotopy equivalent to the polynomial algebra on the [&; ;].
We will see below (3.2.7) that C*(Z/(2)) itself does not enjoy the analogous property
and that the May differentials are a measure of its failure to do so.

From 3.2.2 May derives a spectral sequence of the following form.

3.2.3. THEOREM (May [1]). There is a spectral sequence converging to
Ext’y (Z/(2),2/(2)) with Ef** = V*** and d,: ESbv — Esthtuti-r,
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PRrROOF OF 3.2.2 AND 3.2.3. The spectral sequence is a reindexed form of that
of A1.3.9, so 3.2.3 follows from 3.2.2. We will show that the same spectral, sequence
can be obtained more easily by using a different increasing filtration of A.. An
increasing filtration is defined by setting |¢Z’| = 2i — 1. Then it follows easily that
this E°A, has the same algebra structure as in 3.2.1 but with each &; ; primitive.
Hence E° A, is dual to an exterior algebra and its Ext is V*** (suitably reindexed)
by 3.1.11. A1.3.9 gives us a spectral sequence associated to this filtration. In
particular, it will have dy(h; ;) = Y hg,jhi—k j+x as in 3.2.2. Since all of the h;;
have odd filtration degree, all of the nontrivial differentials must have odd index. It
follows that this spectral sequence can be reindexed in such a way that each da,_1
gets converted to a d, and the resulting spectral sequence is that of 3.2.3. |

For p > 2 the spectral sequence obtained by this method is not equivalent
to May’s but is perhaps more convenient as the latter has an FEj-term which is

nonassociative. In the May filtration one has |r;_1| = [V ]| = 4. If we instead set

|Tiz1] = |§§’J| = 2i — 1, then the resulting E°A4, has the same algebra structure
(up to indexing) as that of 3.2.1(b), but all of the generators are primitive. Hence
it is dual to a product of exterior algebras and truncated polynomial algebras of
height p. To compute its Ext we need, in addition to 3.1.11, the following result.

3.2.4. LEMMA. LetI' = T'(z) with dimz = 2n and x primitive. Then

Extr(Z/(p),Z/(p)) = E(h) ® P(b),
where

h € Ext' s represented in Cr(Z/(p)) by [«]

and
be Ext® by Z 1(p>[.7:"|:v”_i]. O
~ p\i
0<i<p

The proof is a routine calculation and is left to the reader.
To describe the resulting spectral sequence we have

3.2.5. THEOREM. For p > 2 the dual Steenrod algebra (3.1.1) A, can be given
an increasing filtration with |1;_1| = |£fj| =2i—1 fori—1, j > 0. The associated

bigraded Hopf algebra ECA, is primitively generated with the algebra structure of
3.2.1(b). In the associated spectral sequence (A1.3.9)
Ef* =E(h;i;j:i>0, j>0)®P(b;j:1>0, j >0)®P(a;: i >0),
where
hi; € Ei.,2(pifl)pj,2ifl,
bis € Ef,2(p"—1)p1+",p(2i—1)7
and

1,2p° —1,2i+1
aieEl’p ;21



70 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

(hi,; and a; correspond respectively to ffj and ;). One has d,: E54% — Es—Ltu-r
and if z € E3%Y then d,(zy) = d,(z)y + (—1)°zd,(y). di is given by

di(hij) = — Z b jhi-kk+j5

0<k<i
di(a;) = - Z arhi—kk,

0<k<i
dy (bi’j) =0. O

In May’s spectral sequence for p > 2, indexed as in 3.2.3, the Ej-term has
the same additive structure (up to indexing) as 3.2.5 and di is the same on the
generators, but it is a derivation with respect to a different multiplication, which
is unfortunately nonassociative.

We will illustrate this nonassociativity with a simple example for p = 3.

3.2.6. EXAMPLE. In the spectral sequence of 3.2.5 the class highog corresponds
to a nontrivial permanent cycle which we call gg. Clearly h19go=0 in E,, but
for p = 3 it could be a nonzero multiple of hi1b19 in Ext. The filtration of higgo
and hqy1b1o are 5 and 4, respectively. Using Massey products (Al.4), one can show
that this extension in the multiplicative structure actually occurs in the following
way. Up to nonzero scalar multiplication we have bijg = (hig, h1o, h1o) and go =
(h10, h10, h11) (there is no indeterminacy), so

h1ogo = hi1o(h10, h10, h11)
= (h1o, h10, h10) P11
= biohi1.-

Now in the May filtration, both h1ggo and bigh11 have weight 4, so this relation
must occur in Ey, i.e., we must have

0 # hiogo = hio(h1090) # (h1oh10)go = 0,

so the multiplication is nonassociative.

To see a case where this nonassociativity affects the behavior of May’s di,
consider the element high2ghse- It is a d; cycle in 3.2.5. In E5 the Massey product
<h107 h11, h12> is defined and represented by i(hlohzl + h20h12) = :|:d1 (hgo). Hence

in Ext we have
0 = go{hio, h11, h12)
= (goh1o, h11, h12)
= +(h11b10, h11, h12)
= £bio(h11, ha1, hia).
The last bracket is represented by +hijho1, which is a permanent cycle g;. This
implies (A1.4.12) da(hioh20hso) = £b1191. In May’s grading this differential is a dj.

Now we return to the prime 2.

3.2.7. ExAMPLE. The computation leading to 3.1.25, the Adams FE,-term for
bo, can be done with the May spectral sequence. One filters A(1). (see 3.1.18) and
gets the sub-Hopf algebra of E°A, generated by &0, &1, and £35. The complex
analogous to 3.2.2 is P(h1g, h11, hao) with d(hag) = h1gh11. Hence the May Es-term
is the Cartan—Eilenberg Fs3-term (3.1.22) suitably reindexed, and the d3 of 3.1.23
corresponds to a May ds.



2. THE MAY SPECTRAL SEQUENCE 71

We will illustrate the May spectral sequence for the mod (2) Steenrod algebra
through the range ¢ — s < 13. This range is small enough to be manageable, large
enough to display some nontrivial phenomena, and is convenient because no May
differentials originate at ¢ — s = 14. May [1, 4] was able to describe his E5-term
(including d») through a very large range, t—s < 164 (for t—s < 80 this description
can be found in Tangora [1]). In our small range the E»-term is as follows.

3.2.8. LEMMA. In the range t—x < 13 the Es-term for the May spectral sequence
(3.2.3) has generators

1,271
hj = hl’j € E2’ ”,
Y 2,29 (28 -1),2¢
bi,j — hz,] G .EEQ7 ’ 5
and

T = h20h21 + h11h30 € E§’9,4

with relations
hjhjt1 =0,
habzo = hozz,
and
hox7 = hobay. a

This list of generators is complete through dimension 37 if one adds z16 and
234, Obtained from z7 by adding 1 and 2 to the second component of each index.
However, there are many more relations in this larger range.

The Es-term in this range is illustrated in Fia. 3.2.9. Each dot represents an
additive generator. If two dots are joined by a vertical line then the top element is
ho times the lower element; if they are joined by a line of slope % then the right-
hand element is hy times the left-hand element. Vertical and diagonal arrows mean
that the element has linearly independent products with all powers of hg and hq,
respectively.

3.2.10. LEMMA. The differentials in 3.2.3 in this range are given by

(a) dr(hj) =0 for all r,

(b) da(ba,;) = h?hj+2 + h§+1,
(c) da(z7) = hoh3,

(d) da(bso) = h1ba1 + habyg, and
() da(b3,) = hhs.

PROOF. In each case we make the relevant calculation in the cobar complex
Ca.(Z/(2)) of 3.1.2. For (a), [¢7'] is a cycle. For (b) we have

d([&1€2] + [ 161 €] + [&£116]) = (€116 165] + [1161 &1

For (c) we have

d([(& + &)I&] + [(& + €16 + &6 + EDIET + [G11663]) = [&11€]1€1).

For (d) we use the relation 2 = h2bzg + bagba1 (which follows from the definition
of the elements in question); the right-hand term must be a cycle in E5 and we can
use this fact along with (b) to calculate da(bso).
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FI1GURE 3.2.9. The May Es-term for p=2 and t — s < 13

Part (e) follows from the fact that hihs = 0 in Ext, for which three different
proofs will be given below. These are by direct calculation in the A-algebra (Sec-
tion 3.3), by application of a Steenrod squaring operation to the relation hohy = 0,
and by the Adams vanishing theorem (3.4.5). O

It follows by inspection that no other differentials can occur in this range. Since
no May differentials originate in dimension 14 we get

3.2.11. THEOREM. Exti{f (Z/(2),Z(2)) for t —s < 13 and s < 7 is generated
as a vector space by the elements listed in the accompanying table. (There are no
generators for t — s = 12 and 13, and the only generators in this range with s > 7
are powers of hg.)

In the table cq corresponds to hixy, while Pz corresponds to bg,om. There are
relations h3 = h3ha, h3 = hihs, and Ph} = Ph%h? = h3Phs. O
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Phy

t—s——

Inspecting this table one sees that there are no differentials in the Adams
spectral sequence in this range, and all of the group extensions are solved by 3.1.3
and we get

3.2.12. COROLLARY. For n < 13 the 2-component of m,(S°) are given by the
following table.

n 0 1 2 3 [4]5] 6 7 8 9 10 [ 11 [12]13
™ (S°) | Z(2)|2/(2)[Z/(2)|Z/(8)|0]0]Z/(2) | Z/(16) [ (Z/(2))* |(Z/(2))* | Z/(2)[Z/(8) | 0 | O

In general the computation of higher May differentials is greatly simplified
by the use of algebraic Steenrod operations (see Section A1.5). For details see
Nakamura [1].

Now we will use the May spectral sequence to compute Ext 4(2), (Z/(2), A(0).),
gn+271

where A(n). = P(&1,&,--,&n+1)/ (& ) is dual to the subalgebra A(n) C A
generated by Sq', Sq?,...,S¢*>" . We filter A(2), just as we filter A,. The resulting
May El—term is P(hu,hu,th,hzl,h30) with dl(hlﬂ') =0= dl(hgo), d1 (hzl) =
h11h12, and dl (h30) = h20h12. This giVGS

(3.2.13) Ey = P(b21,b30) @ (P(h11,hao) ® E(z7)) ® {h}y: i > 0}),

where b21 = h%l? b30 = h%OJ and Ty = h11h30 + h20h21. The d2’S are trivial except
for

(3214) dz(hgo) = h’?l: dz(bzl) = h?27 and d2(b30) = h11b21.

Since A(0), is not a comodule algebra this is not a spectral sequence of algebras, but
there is a suitable pairing with the May spectral sequence for Ext 4(2), (Z/(2),Z/(2)).

Finding the resulting FEs-term requires a little more ingenuity. In the first
place we can factor out P(b%,), i.e., B2 = E3/(b3,) ® P(b%,) as complexes. We
denote F5/(b%;) by E2 and give it an increasing filtration as a differential algebra

(=)
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by letting Fy = P(hu, hzo) ® E(£U7) D {hb: 7> 0} and letting b21,b30 € F1. The
cohomology of the subcomplex Fj is essentially determined by 3.1.27(a), which
gives Ext (1), (Z/(2), A(0)+). Let B denote this object suitably regraded for the
present purpose. Then we have

(3.2.15) H*(Fy) = B® E(z7) @ {hty: i > 0}.

For k > 0 we have F/Fj,_y = {b%,, b5 b30} @ Fy with da (b5 1b30) = bk hyy. Tts
cohomology is essentially determined by 3.1.27(b), which describes
Exta(1),(Z/(2),Y). Let C denote this object suitably regraded, i.e., C' = P(hg).
Then we have for £ > 0

(3.2.16) H*(Fp/Fy_1) = C{b%,} @ E(X7) ® {bk hi,, baobh thi,: i > 0}.

This filtration leads to a spectral sequence converging to E3 in which the only

nontrivial differential sends
b5, gohiz to kbgflbgohg3

fore = 0,1, k > 0 and ¢ > 1. This is illustrated in F1c. 3.2.17(a), where a square
indicates a copy of B and a large circle indicates a copy of C. Arrows pointing to the
left indicate further multiplication by h;2, and diagonal lines indicate differentials.
Now bs; supports a copy of C' and a differential. This leads to a copy of C in
E5 supported by hogbs; shown in 3.2.17(b). There is a nontrivial multiplicative
extension hagh)12b30 = x7be; which we indicate by a copy of C in place of hi2bsg
in (b). Fig. 3.2.17(b) also shows the relation hy1b3; = h3,b3.

The differentials in E3 are generated by d3(b%,) = hi2b%, and are shown in
3.2.17(c). The resulting E4 = E is shown in 3.2.17(d), where the symbol in place
of b2, indicates a copy of B with the first element missing.

3. The Lambda Algebra

In this section we describe the lambda algebra of Bousfield et al. [2] at the
prime 2 and the algorithm suggested by it for computing Ext. For more details,
including references, see Tangora [2, 3]. For most of this material we are indebted
to private conversations with E. B. Curtis. It is closely related to that of Section 1.5.

The lambda algebra A is an associative differential bigraded algebra whose co-
homology, like that of the cobar complex, is Ext. It is much smaller than the cobar
complex; it is probably the smallest such algebra generated by elements of coho-
mological degree one with cohomology isomorphic to Ext. Its greatest attraction,
which will not be exploited here, is that it contains for each n > 0 a subcomplex
A(n) whose cohomology is the Fs-term of a spectral sequence converging to the
2-component of the unstable homotopy groups of S™. In other words A(n) is the
E;-term of an unstable Adams spectral sequence.

More precisely, A is a bigraded Z/(2)-algebra with generators A, € AbL7+1
(n > 0) and relations

n—j—1 .
(331) )\i)\2i+1+n = Z ( ] ))\i+n_j)\2j+1+j for n,n Z 0
>0 J
]2
with differential

(3.3.2) d) =S (” ]_ j) Anijo1.

21
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Note that d behaves formally like left multiplication by A_j.

3.3.3. DEFINITION. A monomial A; A, ---A;, € A is admissible if 2¢, > 4,44
for 1 <r < s. A(n) C A is the subcomplex spanned by the admissible monomials
with i1 < n.

The following is an easy consequence of 3.3.1 and 3.3.2.

3.3.4. PROPOSITION.
(a) The admissible monomials constitute an additive basis for A.
(b) There are short exact sequences of complexes

0= A(n) > A(n+1) > E"A(2n+1) = 0. O
The significant property of A is the following.
3.3.5. THEOREM (Bousfield et al. [2]). (a) H(A) = Extga,(Z/(2),Z/(2)), the
classical Adams Es-term for the sphere.
(b) H(A(n)) is the Es-term of a spectral sequence converging to m,(S™).
(c) The long exact sequence in cohomology (3.3.6) given by 3.3.4(b) corresponds

to the EHP sequence, i.e., to the long exact sequence of homotopy groups of the fiber
sequence (at the prime 2)

S™ — Q8™ 5 QS (see 1.5.1). O

The long exact sequence in (c) above is
(3.3.6) - HYHA(n)) S HoY(A(n + 1)) & Ho=Y=2=1(A(2n + 1))
Ly B A(n)) —

The letters E, H, and P stand respectively for suspension (Einhdngung in German),
Hopf invariant, and Whitehead product. The map H is obtained by dropping the
first factor of each monomial. This sequence leads to an inductive method for
calculating H*!(A(n)) which we will refer to as the Curtis algorithm. Calculations
with this algorithm up to ¢ = 51 (which means up to t — s = 33) are recorded
in an unpublished table prepared by G. W.Whitehead. Recently, Tangora [4] has
programmed a computer to find H**(A) at p =2 for ¢t < 48 and p = 3 for ¢ < 99.
Some related machine calculations are described by Wellington [1].

For the Curtis algorithm, note that the long exact sequences of 3.3.6 for all n
constitute an exact couple (see Section 2.1) which leads to the following spectral
sequence, similar to that of 1.5.7.

3.3.7. PROPOSITION (algebraic EHP spectral sequence).
(a) There is a trigraded spectral sequence converging to H*(A) with
ESY = ot (A(2n — 1)) for 5 > 0

and

Eo’t’" _ Z/(Z) fOI‘ t=n=0
! 0 otherwise,

and d,.: E>t" — Es-Ltn-r,
(b) For each m > 0 there is a similar spectral sequence converging to H**(A(m))
with

O

gt as above forn <m
! 0 for n > m.
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The EHP sequence in homotopy leads to a similar spectral sequence converging
to stable homotopy filtered by sphere of origin which is described in Section 1.5.

At first glance the spectral sequence of 3.3.7 appears to be circular in that the
FE;-term consists of the same groups one is trying to compute. However, for n > 1
the groups in ES"“™ are from the (t — s — n + 1)-stem, which is known by induction
on t —s. Hence 3.3.7(b) for odd values of m can be used to compute the E;-terms.
For n — 1, we need to know H*(A(1)) at the outset, but it is easy to compute.
A(1) is generated simply by the powers of Ao and it has trivial differential. This
corresponds to the homotopy of St.

Hence the EHP spectral sequence has the following properties,

3.3.8. LEMMA. In the spectral sequence of 3.3.7(a),

(a) ES"™ =0 for t — s <n — 1 (vanishing line);

(b) EP™ = Z/(2) fort —s =n—1 and all s > 0 and if in addition n — 1
is even and positive, dy: BS"™ — EFTUU s nontrivial for all s > 0 (diagonal
groups);

(c) B>t = Hs=bt=n(A) for t — s < 3n (stable zone); and

(d) ESYY =0 fort > s.

PRrROOF. The groups in (a) vanish because they come from negative stems in
A(2n —1). The groups in (b) are in the 0-stem of A(2n — 1) and correspond to
,\,HAS—I € A. If n — 1 is even and positive, 3.3.2 gives

dAn_ 125 1) = A 22 mod A(n — 2),

which means d; behaves as claimed. The groups in (c) are independent of n by
3.3.6. The groups in (d) are in A(1) in positive stems. d

The above result leaves undecided the fate of the generators of E{"™ " for
n — 1 odd, which correspond to the A,,_;. We use 3.3.2 to compute the differentials
on these elements. (See Tangora [2] for some helpful advice on dealing with these
binomial coefficients.) We find that if n is a power of 2, A\, is a cycle, and if
n =k-2/ for odd k > 1 then

dAp—1) = Ap_1-2iX2i_1 mod A(n—1-— Qj).
This equation remains valid after multiplying on the right by any cycle in A,
S0 we get
3.3.9. PROPOSITION. In the spectral sequence of 3.3.7(a) every element in
Ef’m] is a permanent cycle. Forn = k27 for k > 1 odd, then every element
in B3t s o d.-cycle for r < 29 and

. 0,k-27 —1, k27 1,k-27 —1,(k—1)27
d2j . E2J- — EQ’ ’

is nontrivial, the target corresponding to )\zj_l under the isomorphism of 3.3.7.
The cycle Ayi_y corresponds to h; € Ext™? . O

Before proceeding any further it is convenient to streamline the notation. In-
stead of A\;, Aq, - -+ A, we simply write i1z .. .1, €.g., we write 411 instead of AgA; ;.
If an integer > 10 occurs we underline all of it but the first digit, thereby removing
the ambiguity; e.g., A15A3A15 is written as 15315. Sums of monomials are written
as sums of integers, e.g., d(9) = 71 + 53 means d(Ag) = A7A\1 + AsA3; and we write
¢ for zero, e.g., d(15) = ¢ means d(A15) = 0.
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We now study the EHP spectral sequence [3.3.7(a)] for t — s < 14. It is
known that no differentials or unexpected extensions occur in this range in any
of the unstable Adams spectral sequences, so we are effectively computing the 2-
component of 7,44 (S™) for k¥ <13 and all n.

For t —s = 0 we have ES*! = Z/(2) for all s > 0 and E>®" = 0 for n > 1. For
t —s = 1 we have Ey** = Z/(2), corresponding to A; or hy, while ES'*" =0
for all other s and n. For this and 3.3.8(c) we get E>"">" = Z/(2) generated by
An_1) for all n > 2, while E"*'~® = 0 for all other s, t. The element 11 cannot
be hit by a differential because 3 is a cycle, so it survives to a generator of the
2-stem, and it gives generators of E>" ™ (corresponding to elements with Hopf
invariant 11) for n > 2, while Ej"**~*~! = 0 for all other s and t.

This brings us to t — s = 3. In addition to the diagonal groups E; o134 given
by 3.3.8(b) we have E*®® generated by 21 and E%? generated by 111, with no
other generators in this stem. These two elements are easily seen to be nontrivial
permanent cycles, so H**t3(A) has three generators; 3, 21, and 111. Using 3.3.1
one sees that they are connected by left multiplication by 0 (i.e., by Ag).

Thus for t — s < 3 we have produced the same value of Ext as given by the
May spectral sequence in 3.2.11. The relation h3hs = h$ corresponds to the rela-
tion 003 = 111 in A, the latter being easier to derive. It is also true that 300 is
cohomologous in A to 111, the difference being the coboundary of 40 + 22. So far
no differentials have occurred other than those of 3.3.8(b).

These and subsequent calculations are indicated in Fi1G. 3.3.10, which we now
describe. The gradings t — s and n are displayed; we find this more illuminating
than the usual practice of displaying ¢ — s and s. All elements in the spectral
sequence in the indicated range are displayed except the infinite towers along the
diagonal described in 3.3.8(b). Each element (except the diagonal generators) is
referred to by listing the leading term of its Hopf invariant with respect to the left
lexicographic ordering; e.g., the cycle 4111 + 221 4+ 1123 is listed in the fifth row as
111. An important feature of the Curtis algorithm is that it suffices to record the
leading term of each element. We will illustrate this principle with some examples.
For more discussion see Tangora [3]. The arrows in the figure indicate differentials
in the spectral sequence. Nontrivial cycles in A for 0 < t — s < 14 are listed at the
bottom. We do not list them for t—s = 14 because the table does not indicate which
cycles in the 14th column are hit by differentials coming from the 15th column.

3.3.11. EXAMPLE. Suppose we are given the leading term 4111 of the cycle
above. We can find the other terms as follows. Using 3.3.1 and 3.3.2 we find
d(4111) = 21111. Refering to Fig.3.3.10 we find 1111 is hit by the differential from
221, so we add 2221 to 4111 and find that d(4111 + 2221) = 11121. The figure
shows that 121 is killed by 23, so we add 1123 to our expression and find that
d(4111 4 2221 + 1123) = ¢ i.e., we have found all of the terms in the cycle.

Now suppose the figure has been completed for t —s < k. We wish to fill in the
column ¢ — s = k. The box for n =1 is trivial by 3.3.8(d) and the boxes for n > 3
can be filled in on the basis of previous calculations. (See 3.3.12.) The elements in
the box for n = 2 will come from the cycles in the box forn =3,t—s=k—1, and
the elements in the box for n = 2, t — s = k — 1 which are not hit by d;’s. Hence
before we can fill in the box for b = 2, t — s = k, we must find the d;’s originating
in the box for n = 3. The procedure for computing differentials will be described
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7

FIGURE 3.3.10. The EHP spectral sequence (3.3.7) for t — s < 14
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below. Once the column ¢ — s = k has been filled in, one computes the differentials
for successively larger values of n.

The above method is adequate for the limited range we will consider, but for
more extensive calculations it has a drawback. One could work very hard to show
that some element is a cycle only to find at the next stage that it is hit by an easily
computed differential. In order to avoid such redundant work one should work by
induction on ¢, then on s and then on n; i.e., one should compute differentials
originating in E5*" only after one has done so for all ESt""" with ¢' < ¢, with
t' =tand s’ < s, and with ' = s, ¢ = ¢, and n’ < n. This triple induction is
awkward to display on a sheet of paper but easy to write into a computer program.
On the other hand Tangora [4, last paragraph starting on page 48] used downward
rather than upward induction on s because given knowledge of what happens at
all lower values of ¢, the last group needed for the (¢ — s)-stem is the one with the
largest value of s possible under the vanishing line, the unstable analog of 3.4.5.
There are advantages to both approaches.

The procedure for finding differentials in the EHP spectral sequence (3.3.7)
is the following. We start with some sequence a in the (n + 1)th row. Suppose
inductively that some correcting terms have already been added to A,a, in the
manner about to be described, to give an expression z. We use 3.3.1 and 3.3.2 to
find the leading term 4145 ...is41 of d(x). If d(xz) = 0, then our « is a permanent
cycle in the spectral sequence. If not, then beginning with u = 0 we look in the
table for the sequence %5 1195 y42---4sq1 in the (is_, + 1)th row until we find
one that is hit by a differential from some sequence § in the (m + 1)th row or
until u = s — 1. In the former event we add A;, ... A;,_,_; A8 to z and repeat the
process. The coboundary of the new expression will have a smaller leading term
since we have added a correcting term to cancel out the original leading coboundary
term.

If we get up to u = s — 1 without finding a target of a differential, then it
follows that our original a supports a d,—;, whose target is is - - i541.

It is not necessary to add all of the correcting terms to x to show that our a
is a permanent cycle. The figure will provide a finite list of possible targets for the
differential in question. As soon as the leading term of d(z) is smaller (in the left
lexicographic ordeninng) than any of these candidates then we are done.

In practice it may happen that one of the sequences i 41 %541 in the
(45— + 1)th row supports a nontrivial differential. This would be a contradiction
indicating the presence of an error, which should be found and corrected before
proceeding further. Inductive calculations of this sort have the advantage that
mistakes usually reveal themselves by producing contradictions a few stems later.
Thus one can be fairly certain that a calculation through some range that is free
of contradictions is also correct through most of that range. In publishing such
computations it is prudent to compute a little beyond the stated range to ensure
the accuracy of one’s results.

We now describe some sample calculations in 3.2.11.

3.3.12. EXAMPLE. FILLING IN THE TABLE. Consider the boxes with
t—s—(n—1)=8.

To fill them in we need to know the 8-stem of H(A(2n — 1)). For convenience the
values of 2n — 1 are listed at the extreme left. The first element in the 8-stem is
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233, which originates on S® and hence appears in all boxes for n > 2. Next we have
the elements 53, 521, and 5111 originating on S%. The latter two are trivial on S7
and so do not appear in any of our boxes, while 53 appears in all boxes with n > 4.
The element 611 is born on S7 and dies on S° and hence appears only in the box
for n = 4. Similarly, 71 appears only in the box for n = 5.

3.3.13. ExaAMPLE. COMPUTING DIFFERENTIALS We will compute the differen-
tials originating in the box for t — s = 11, n = 11. To begin we have d(101) =
(90 + 72 + 63 + 54)1 = 721 + 631 + 541. The table shows that 721 is hit by 83 and
we find

d(83) = (70 + 61 + 43)3 = 721 + 433.
Hence
d(101 + 83) = 631 + 541 + 433.

The figure shows that 31 is hit by 5 so we compute
d(65) = 631 + (50 + 32)5 = 631 + 541,

SO
d(101 + 83 + 65) = 433,

which is the desired result.

Even in this limited range one can see the beginnings of several systematic
phenomena worth commenting on.

3.3.14. REMARK. JAMES PERIODICITY. (Compare 1.5.18.) In a neighborhood
of the diagonal one sees a certain in the differentials in addition to that of 3.3.9. For
example, the leading term of d(A A1) is Ap—2A1 A1 ifn =0o0r 1 mod (4) and n > 4,
giving a periodic family of d2’s in the spectral sequence. The differential computed
in 3.3.13 can be shown to recur every 8 stems; add any positive multiple of 8 to the
first integer in each sequence appearing in the calculation and the equation remains
valid modulo terms which will not affect the outcome.

More generally, one can show that A(n) is isomorphic to

272" Aln + 2™)/A(2™)

through some range depending on n and m, and a general result on the periodicity
of differentials follows. It can be shown that H*(A(n + k)/A(n)) is isomorphic
in the stable zone [3.3.8(c)] to the Ext for H*(RP"*~1/RP"1) and that this
periodicity of differentials corresponds to James periodicity. The latter is the fact
that the stable homotopy type of RP"t*/RP™ depends (up to suspension) only on
the congruence class of n modulo a suitable power of 2. For more on this subject
see Mahowald [1, 2, 3, 4].

3.3.15. REMARK. THE ADAMS VANISHING LINE. Define a collection of admis-
sible sequences (3.3.3) a; for i > 0 as follows.

ap = 1, as = 11, asz = ].1]., as = 4111,
as = 24111, ag = 124111, a7 = 1124111, ag = 41124111, etc.
That is, for i > 1
(1,ai—1) fori=2,3 mod (4)
a; =< (2,a;-1) fori=1 mod (4)
(4,a;-1) fori=0 mod (4)
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It can be shown that all of these are nontrivial permanent cycles in the EHP spectral
sequence and that they correspond to the elements on the Adams vanishing line
(3.4.5). Note that H(a;+1) = a;. All of these elements have order 2 (i.e., are
killed by Ao multiplication) and half of them, the a; for i = 3 and 0 mod (4), are
divisible by 2. The a4;43 are divisible by 4 but not by 8; the sequences obtained are
(2, a4542) and (4, agi41) except for i = 1, when the latter sequence is 3. These little
towers correspond to cyclic summands of order 8 in 75, 5 (see 5.3.7). The a4; are
the tops of longer towers whose length depends on i. The sequences in the tower
are obtained in a similar manner; i.e., sequences are contracted by adding the first
two integers; e.g., in the 7-stem we have 4111, 511, 61, and 7. Whenever ¢ is a
power of 2 the tower goes all the way down to filtration 1; i.e., it has 44 elements, of
which the bottom one is 8 — 1. The table of Tangora [1] shows that the towers in
the 23-, 29-, and 55-stems have length 6, while that in the 47-stem has length 12.
Presumably this result generalizes in a straightforward manner. These towers are
also discussed in 3.4.21 and following 4.4.47.

3.3.16. REMARK. d;’s. It follows from 3.3.9 that all d;’s originate in rows with
n odd and that they can be computed by left multiplication by Ag. In particular,
the towers discussed in the above remark will appear repeatedly in the E;-term and
be almost completely cancelled by d;’s, as one can see in Fig. 3.3.10. The elements
cancelled by d;’s do not appear in any H*(A(2n — 1)), so if one is not interested
in H*(A(2n)) they can be ignored. This indicates that a lot of repetition could
be avoided if one had an algorithm for computing the spectral sequence starting
from FEs instead of E;.

3.3.17. REMARK. S3. As indicated in 3.3.5, A gives unstable as well as stable
Ext groups. From a figure such as 3.3.11 one can extract unstable Adams F-terms
for each sphere. For the reader’s amusement we do this for S for t —s < 28 in
Fic. 3.3.18. One can show that if we remove the infinite tower in the 0-stem,
what remains is isomorphic above a certain line of slope % to the stable Ext for the
mod (2) Moore spectrum. This is no accident but part of a general phenomenon
described by Mahowald [3].

It is only necessary to label a few of the elements in F1G. 3.3.18 because most
of them are part of certain patterns which we now describe. There are clusters of six
elements known as lightning flashes, the first of which consists of 1, 11, 111, 21, 211,
2111. Vertical and diagonal lines as usual represent right multiplication by Ag and
A1, i.e., by hg and hg respectively. This point is somewhat delicate. For example
the element with in the 9-stem with filtration 4 has leading term (according to
3.3.10) 1233, not 2331. However these elements are cohomologous, their difference
being the coboundary of 235.

If the first element of a lightning flash is x, the others are 1z, 11z, 2z, 212, and
211z. In the clusters containing 23577 and 233577, the first elements are missing,
but the others behave as if the first ones were 4577 and 43577, respectively. For
example, the generator of ES 30 i5 24577, In these two cases the sequences 1z and
11z are not admissible, but since 14 = 23 by 3.3.1, we get the indicated values
for 1z.

Ifz € E; " is the first element of a lightning flash, there is another one beginning
with Pz € E§+4’t+12. The sequence for Pz is obtained from that for z by adding 1
to the last integer and then adjoining 4111 on the right, e.g., P(233) = 2344111.
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This operator P can be iterated any number of times, is related to Bott periodicity,
and will be discussed more in the next section.

There are other configurations which we will call rays begining with 245333
and 235733. Successive elements in a ray are obtained by left multiplication by As.
This operation is related to complex Bott periodicity.

In the range of this figure the only elements in positive stems not part of
a ray or lightning flash are 23333 and 2335733. This indicates that the Curtis
algorithm would be much faster if it could be modified in some way to incorporate
this structure.

Finally, the figure includes Tangora’s labels for the stable images of certain
elements. This unstable Adams spectral sequence for m,(S®) is known to have
nontrivial dy’s originating on 245333, 222245333, and 2222245333, and d3’s on
2235733 and 22235733. Related to these are some exotic additive and multiplicative
extensions: the homotopy element corresponding to Phidy = 243344111 is twice
any representative of hohag = 235733 and 7 (the generator of the 1-stem) times a
representative of 2245333. Hence the permanent cycles 2245333, 24334111, 235733,
22245333, 224334111, and the missing element 35733 in some sense constitute an
exotic lightning flash.

4. Some General Properties of Ext

In this section we abbreviate Exta, (Z/(p),Z/(p)) by Ext. First we describe
Ext® for small values of s. Then we comment on the status of its generators in
homotopy. Next we give a vanishing line, i.e., a function f(s) such that Ext® =0
for 0 <t — s < f(s). Then we give some results describing Ext** for ¢ near f(s).

3.4.1. THEOREM. Forp =2
(a) Ext® = Z/(2) generated by 1 € Ext®°. ' _
(b) Ext! is spanned by {h;: i > 0} with h; € Ext"?" represented by [¢2'].
(c) (Adams [12]) Ext? is spanned by {h;h;: 0 <i <j, j #i+1}.
(d) (Wang [1]) Ext® is spanned by h;h;jhy, subject to the relations
hihj = hjhi, Riny =0 hihi o, =0 hihips =Rl 4,
along with the elements

ci = (hip1, hi, hiy,) € Ext®!'?" o

3.4.2. THEOREM. Forp =2

(a) Ext® = Z/(p) generated by 1 € Ext®°.

(b) Ext! is spanned by ag and {h;: i > 0} where ag € Ext"! is represented by
[70] and h; € ExtV %" is represented by [ff]

(c) (Liulevicius [2]) Ext? is spanned by {h;h;: 0 < i < j—1}, a2, {aoh;: i > 0},
{gi: >0}, {ki: i >0}, {bi: i >0}, and Ilphy, where

gi = (hi, hi, hig1) € EXt2’(2+p)piqa ki = (hi, hig1, hig1) € Ext2’(2p+1)pi‘1,
b; = (hi, hi, ..., hi) € Ext>® " (with p factors hy),

and
Moho = (ho, ho, ao) € Ext®1+2¢ O
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Ext® for p > 2 has recently been computed by Aikawa [1].

The behavior of the elements in Ext' in the Adams spectral sequence is de-
scribed in Theorems 1.2.11-1.2.14.

We know that most of the elements in Ext? cannot be permanent cycles, i.e.,

3.4.3. THEOREM.

(a) (Mahowald and Tangora [8]). With the exceptions hohs, hohs, and hyhy
the only elements in Ext® for p = 2 which can possibly be permanent cycles are h?
and hlhj.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 the only elements in Ext’
which can be permanent cycles are a3, Mohg, ko, hohi, and b;. |

Part (b) was proved by showing that the elements in question are the only ones
with preimages in the Adams-Novikov Es-term. A similar proof for p = 2 is possible
using the computation of Shimomura [1]. The list in Mahowald and Tangora [8]
includes hohs and hzhg; the latter is known not to come from the Adams-Novikov
spectral sequence and the former is known to support a differential.

The cases hoh; and b;, for p > 3 and hi h; for p = 2 are now settled.

3.4.4. THEOREM.

(a) (Browder [1]). For p = 2 h3 is a permanent cycle iff there is a framed
manifold of dimension 291! — 2 with Kervaire invariant one. Such are known to
exist for j < 5. For more discussion see 1.5.29 and 1.5.35.

(b) (Mahowald [6]). For p =2 hyih; is a permanent cycle for all j > 3.

(c) (Ravenel [7]). For p >3 and i > 1, b; is not a permanent cycle. (Atp =3
by is not permanent but by is; by is permanent for all odd primes.)

(d) (R.L.Cohen and Goerss [2]). For p > 3 hoh; is a permanent cycle corre-
sponding to an element of order p for all i > 2.

(e) (R.L.Cohen [3]). For p > 2 hgb; is a permanent cycle corresponding to an
element of order p for all i > 0. O

The proof of (c) will be given in Section 6.4.
Now we describe a vanishing line. The main result is

3.4.5. VANISHING THEOREM (Adams [17]).

(a) Forp=2Ext® =0 for 0 <t —s < f(s), where f(s) =2s —¢ and e = 1
for s=0,1 mod (4), e =2 for s=2 and e = 3 for s = 3.

(b) (May [6]). Forp>2Ext® =0 for0<t—s< sq—e, wheree =1 if s #0
mod (p) ande =2 if s = 0. O

Hence in the usual picture of the Adams spectral sequence, where the x and y
coordinates are t — s and s, the Es-term vanishes above a certain line of slope 1/¢
(e.g., % for p = 2). Below this line there are certain periodicity operators II,, which
raise the bigrading so as to move elements in a direction parallel to the vanishing
line. In a certain region these operators induce isomorphisms.

3.4.6. PERIODICITY THEOREM (Adams [17], May [6]).
(a) Forp=2 and n > 1 Ext® ~ Extst2" " t+32m for
0 < t—s < min(g(s) + 2"2, h(s)),
where g(s) =2s —4—7 with7=2 ifs=0,1 mod (4), 7=14s=3, and7=0
if s =2, and h(s) is defined by the following table:
s 112|184 |66 7|8 >9

h(s) | 1|1|7|10|17|22]|25|32|5s—7
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(b) For p> 2 and n > 0 Ext®! ~ Ext*+P s +@+D)/P" fo
0 < t—s < min(g(s) + p"q, h(s)),

where g(s) = qs —2p—1 and h(s) = 0 for s = 1 and h(s) = (p*> — p — 1)s — 7 with
T=2p>—2p+1 for even s> 1 and 7 =p> + p — 2 for odd s > 1. O

These two theorems are also discussed in Adams [7].

For p = 2 these isomorphisms are induced by Massey products (A1.4) sending x
to (z, h%n+1 , hnt2). For n =1 this operator is denoted in Tangora [1] and elsewhere
in this book by P. The elements x are such that h%n+1w is above the vanishing line
of 3.4.5, so the Massey product is always defined. The indeterminacy of the product
h . on+l 3.on+1 s—1427F1 gpon+t

as the form zy + hp oz with y € Ext and z € Ext . The
group containing y is just below the vanishing line and we will see below that
it is always trivial. The group containing z is above the vanishing line so the
indeterminacy is zero.

Hence the theorem says that any group close enough to the vanishing line [i.e.,
satisfying t — s < 2"*2 + g(s)] and above a certain line with slope $[t — s < h(s)]
is acted on isomorphically by the periodicity operator. In Adams [17] this line
had slope é It is known that % is the best possible slope, but the intercept could
probably be improved by pushing the same methods further. The odd primary case
is due entirely to May [6]. We are grateful to him for permission to include this
unpublished material here.

Hence for p = 2 Ext®* has a fairly regular structure in the wedge-shaped region
described roughly by 2s < t — s < 5s. Some of this (partially below the line of
slope % given above) is described by Mahowald and Tangora [14] and an attempt
to describe the entire structure for p = 2 is made by Mahowald [13].

However, this structure is of limited interest because we know that almost all
of it is wiped out by differentials. All that is left in the E.-term are certain few
elements near the vanishing line related to the J-homomorphism (1.1.12). We will
not formulate a precise statement or proof of this fact, but offer the following expla-
nation. In the language of Section 1.4, the periodicity operators II, in the Adams
spectral sequence correspond to vi-periodicity in the Adams-Novikov spectral se-
quence. More precisely, II,, corresponds to multiplication by v{’". The behavior
of the vi-periodic part of the Adams-Novikov spectral sequence is analyzed com-
pletely in Section 5.3. The v;-periodic part of the Adams-Novikov E-term must
correspond to the portion of the Adams spectral sequence E-term lying above
(for p = 2) a suitable line of slope % Once the Adams-Novikov spectral sequence
calculation has been made it is not difficult to identify the corresponding elements
in the Adams spectral sequence. The elements in the Adams-Novikov spectral se-
quence all have low filtrations, so it is easy to establish that they cannot be hit by
differentials. The elements in the Adams spectral sequence are up near the vanish-
ing line so it is easy to show that they cannot support a nontrivial differential. We
list these elements in 3.4.16 and in 3.4.21 give an easy direct proof (i.e., one that
does not use BP-theory or K-theory) that most (all for p > 2) of them cannot be
hit by differentials.

The proof of 3.4.5 involves the comodule M given by the short exact sequence

(3.4.7) 0= Z/(p) = Au Ouo), Z/(p) = M 0,
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where A(0), = E(7p) for p > 2 and E(&) for p = 2. M is the homology of the
cofiber of the map from S° to H, the integral Eilenberg—Mac Lane spectrum. The
Es-term for H was computed in 2.1.18 and it gives us the tower in the 0-stem.
Hence the connecting homomorphism of 3.4.7 gives an isomorphism

(3.4.8) Ext’, "(Z/(p), M) ~ Ext*'

fort—s>0.
We will consider the subalgebras A(n) C A generated by {Sq*, S¢?,...,S¢*"}
for p = 2 and {8,P,P?,...,P”" '} for p > 2. Their duals A(n), are

gn+2—i

P(&1,82,- -, &nv1) /(& ) for p=2 and

E(Toa"'aTn)®P(£17"'7§n)/(5 )

for p > 2.

We will be considering A.-comodules N which are free over A(0), and (—1)-
connexted. ¥ 'M is an example. Unless stated otherwise N will be assumed to
have these properties for the rest of the section.

Closely related to the questions of vanishing and periodicity is that of approxi-
mation. For what (s,t) does Exti{i (Z/(p),N) = Extj{'én)*(Z/(p),N)? This relation
is illustrated by

3.4.9. APPROXIMATION LEMMA. Suppose that there is a nondecreasing function

fn(s) defined such that for any N as above, Extj’én)* (Z/(p),N) =0 fort—s <
fn(8). Then for r > n this group is isomorphic to Extifr)*(Z/(p),N) fort—s<
p"q + fn(s — 1), and the map from the former to the latter is onto for t —s =
P a+ fals). O

Hence if f,(s) describes a vanishing line for A(n)-cohomology then there is a
parallel line below it, above which it is isomorphic to A-cohomology. For n =1
such a vanishing line follows easily from 3.1.27(a) and 3.1.28, and it has the same
slope as that of 3.4.5.

PRrROOF OF 3.4.9. The comodule structure map N — A(r), ® N gives a mo-
nomorphism N — A(r)« Oy(n), N with cokernel C. Then C is A(0).-free and
(p™q — 1)-connected. Then we have

EXti‘_(:)* (C) — EXtZ(T)* (N) — EXtZ(T)* (A(’I‘)* DA(n)* N) — Ethsél(r)*(C)

\l:

where Ext 4(,), (=) is an abbreviation for Ext(,, (Z/(p), —). The isomorphism is
given by A1.1.18 and the diagonal map is the one we are considering. The high
connectivity of C' and the exactness of the top row give the desired result. |

PRrROOF OF 3.4.5. We use 3.4.9 with N = M as in 3.4.7. An appropriate
vanishing line for M will give 3.4.5 by 3.4.8. By 3.4.9 it suffices to get a vanishing
line for Ext 4(1), (Z/(p), M). We calculate this by filtering M skeletally as an A(0),-
comodule. Then E°M is an extended A(0).-determined by 3.1.27(a) or 3.1.28 and
the additive structure of M. Considering the first two (three for p = 2) subquotients
is enough to get the vanishing line. We leave the details to the reader. |
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The periodicity operators in 3.4.6 which raise s by p™ correspond in A(n)-
cohomology to multiplication by an element w,, € Ext?"(e+UP" I view of 3.4.9,
3.4.6 can be proved by showing that this multiplication induces an isomorphism in
the appropriate range. For p = 2 our calculation of Ext 4(2y, (Z/(2), A(0).) (3.2.17)
is nessesary to establish periodicity above a line of slope L. To get these w, we

need ’

3.4.10. LEMMA. There exist cochains ¢, € Ca, satisfying the following.

(a) Forp =2 ¢p = [&2| - - - |&2] with 2™ factors modulo terms involving &, and
forp>2c, =[n|---|m] with p" factors.

(b)For p=2 d(c1) = [€11&1[61]+[€}1€21€2] and for n> 1 d(cq) =[G - |1EF""]
factors &1; and for p > 2 d(c,) = —[m0] - |10|E} ].

(¢) ¢n is uniquely determined up to a coboundary by (a) and (b).

(d) Forn > 1 (p > 2) orn > 2 (p = 2) ¢, projects to a cocycle in Cy(n),
representing a nontrivial element w,, € Extgl(;gljl)z)" (Z/(p),Z/(p))-

(e) For p =2, ws maps to w as in 3.1.27, and in general w,11 maps to wk.

ProOF. We will rely on the algebraic Steenrod operations in Ext described
in Section A1.5. We treat only the case p = 2. By A1.5.2 there are operations
Sqt: Ext® — Ext®%?! satisfying a Cartan formula with Sq°(h;) = hiyy (A1.5.3)
and Sq'(h;) = h2. Applying Sq' to the relation hoh; = 0 we have

0 = Sq"(hoh1) = Sq°(ho)Sq" (h1) + Sq" (ho)Sq® (ha)
= h} + h3hs.

Applying Sq? to this gives htha + hghs = 0. Since hihs = 0 this implies hihs = 0.
Applying Sq* to this gives hhs = 0. Similarly, we get h2 hirq = 0 for all § > 2.
Hence there must be cochains ¢, satisfying (b) above.

To show that these cochains can be chosen to satisfy (a) we will use the Kudo
transgression theorem A1.5.7. Consider the cocentral extension of Hopf algebras
(A1.1.15)

P(&) = P(&,&) = P(&).
In the Cartan-Eilenberg spectral sequence (A1.3.14 and A1.3.17) for

EXtP(E1,§2) (Z/(Z)J Z/(2))

one has Ey = P(hyj,hoj:y > 0) with hy; € E21’0 and hy; € Eg’l. By direct
calculation one has da(hag) = highii. Applying Sq?Sq" one gets ds(h3g) = highiz+
hi;hi2. The second term was killed by do(h$;h21) so we have ds(h3y) = highis.
Applying appropriate Steenrod operations gives d2n+1(h%) = h%g hint+1. Hence
our cochain ¢, can be chosen in Cpg, ¢,) so that its image in Cp,) is [€a] - - - [&2]
representing h3,, so (a) is verified.

For (c¢), note that (b) determines ¢, up to a cocycle, so it suffices to show that
each cocycle in that bidegree is a coboundary, i.e., that Ext?" 2" = 0. This group
is very close to the vanishing line and can be computed directly by what we already
know.

For (d), (a) implies that ¢, projects to a cocycle in C4(yy, which is nontrivial
by (b); (e) follows easily from the above considerations. O

For p = 2 suppose x € Ext satisfies h%":z: = 0. Let £ € C4, be a cocycle
representing = and let y be a cochain with d(y) = Z[&1]---|&] with 2™ factors.
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Then Zc, + y[§fn+1] is a cocycle representing the Massey product {z,hZ", hnyi1),
which we define to be the nth periodicity operator II,,. This cocycle maps to Zc,
in c4(p),, so II,, corresponds to multiplication by w,, as claimed. The argument for
p > 2 is similar.

Now we need to examine w; multiplication in Ext(A(1).)(Z/(p), A(0).) for
p > 2 using 3.1.28 and w, multiplication in Ext4(s), (Z/(2), A(0).) using 3.2.17.
The result is

3.4.11. LEMMA.

(a) For p = 2, multiplication by w, in Extl’&)* (Z/(2),A(0).) is an isomorphism
for t — s < v(s) and an epimorphism for t — s < w(s), where v(s) and w(s) are
given in the following table.

s [0]1]2[3[4[5] >6
v(s) 18] 6 |18]18|21 |5s5+3
w(s)|1|8]10|18 23|25 |5s5+3

s,t

(b) For p > 2 multiplication by wq in ExtA(l)*(Z/(p),A(O)*) is a monomorphism
for all s > 0 and an epimorphism for t — s < w(s) where

O

w(s) = P*-p—1)s—1 for s even
(P —p—1)s+p?—3p for sodd

Next we need an analogous result where A(0). is replaced by a (—1)-connected
comodule N free over A(0),. Let N° C N be the smallest free A(0).-subcomodule
such that N/N? is 1-connected. Then

0—+N°— N N/N°—0

is an short exact sequence of A(0).-free comodules inducing an long exact sequence
of A(n)-Ext groups on which w,, acts. Hence one can use induction and the 5-lemma
to get

3.4.12. LEMMA. Let N be a connective A(n).-comodule free over A(0),.

(a) For p = 2 multiplication by wy in Ext2€2)*(Z/(2),M) is an isomorphism
fort — s < ©(s) and an epimorphism for t — s < W(s), where these functions are
given by the following table

s 0112|345 |6 >
(@) [—4|1] 6 |10 |18]21 |25 |55—2

@(s)| 1 [7]10|18|22]25|33|5s+3

(b) For p > 2 a similar result holds for wy-multiplication where
3(s) = (P> —p—1)s—2p+1 fors even
@ -p—1)s—p*+p fors odd
and

. O
P —p—1)s—p*+2p—1 fors odd.
3.4.13. REMARK. If N/N® is (¢ — 1)-connected, as it is when N = Z~IM
(3.4.7), then the function @(s) can be improved slightly. This is reflected in 3.4.6
and we leave the details to the reader.

ﬁ(s)z{(ﬁ—p—l)s—l for s even
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The next step is to prove an analogous result for wy,-multiplication. We sketch
the proof for p = 2. Let N be as above and define N = A(n).O4(s), N, and let C' =
N/N. Then C is 7-connected if N is (—1)-connected, and Ext (), (Z/(2),N) =

Ext4(2), (Z/(2), N). Hence in this group w, = w%n_Z and we know its behavior by
3.4.12. We know the behavior of w,, on C by induction, since C is highly connected,
so we can argue in the usual way by the 5-lemma on the long exact sequence of Ext
groups. If N satisfies the condition of 3.4.13, so will N and C, so we can use the
improved form of 3.4.12 to start the induction. The result is

3.4.14. LEMMA. Let N be as above and satisfy the condition of 3.4.13. Then
multiplication by wy (3.4.10) in Eth‘l’En)* (Z/(p),N) is an isomorphism fort —s <
h(s+1)—1 and an epimorphism for t —s < h(s) — 1, where h(s) is as in 3.4.6. O

Now the periodicity operators II,,, defined above as Massey products, can be
described in terms of the cochains ¢, of 3.4.10 as follows. Let = represent a class in
Ext (also denoted by z) which is annihilated by h2" and let y be a cochain whose
coboundary is z[&|&1] - - - [€1] with 2™ factors & . Then y[§f“+1] + zep is a cochain
representing II,, ().

Hence it is evident that the action of II,, in Ext corresponds to multiplication
by w, in A(n).-cohomology. Hence 3.4.14 gives a result about the behavior of II,,
in Exta, (Z/(p), M) with M as in 3.4.7, so 3.4.6 follows from the isomorphism 3.4.8.

Having proved 3.4.6 we will list the periodic elements in Ext which survive to
E, and correspond to nontrivial homotopy elements. First we have

3.4.15. LEMMA. For p = 2 and n > 2, I, (h2" ‘hyp1) = hgnﬂ*lhn_,_z. For

n n+1__ .
p>2andn > 1, II,(d) _lhn) =a lhn+1 up to a nonzero scalar. [It is not

true that Ty (ho) = af ' hy ]

ProOF. We do not know how to make this computation directly. However,
3.4.6 says the indicated operators act isomorphically on the indicated elements,
and 3.4.21 below shows that the indicated image elements are nontrivial. Since the
groups in question all have rank one the result follows. (3.4.6 does not apply to II
acting on hg for p > 2.) d

3.4.16. THEOREM.

(a) Forp > 2 the set of elements in the Adams E,-term on which all iterates of
some periodicity operator I1,, are nontrivial is spanned by IT¢, (ag" “hy) withn >0,
0<j<n+1andi# -1 mod (p). (For i = —1 these elements vanish for n =0
and are determined by 3.4.15 for n > 0.) The corresponding subgroup of m.(S°) is
the image of the J-homomorphism (1.1.12). (Compare 1.5.19.)

(b) For p = 2 the set is generated by all iterates of Iy on hy, h3, b3 = h3ha,
hohs, ha, co, and hicy (where co = (h1,ho,h3) € Ext>') and by H%hnhgn_lfj
withm > 3, ¢ odd, and 0 < j < m+ 1. (For even i these elements are determined
by 3.4.15.) The corresponding subgroup of m.(S°) is m«(J) (1.5.22). In particular,
im J corresponds to the subgroup of E., spanned by all of the above except ITih, for
i >0 and IEA? for i > 0. d

This can be proved in several ways. The cited results in Section 1.5 are very
similar and their proofs are sketched there; use is made of K-theory. The first
proof of an essentially equivalent theorem is the one of Adams [1], which also uses
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K-theory. For p = 2 see also Mahowald [15] and Davis and Mahowald [1]. The
computations of Section 5.3 can be adapted to give a BP-theoretic proof.

The following result is included because it shows that most (all if p > 2)
of the elements listed above are not hit by differentials, and the proof makes no
use of any extraordinary homology theory. We will sketch the construction for
p = 2. It is a strengthened version of a result of Maunder [1]. Recall (3.1.9)
the spectrum bo (representing real connective K-theory) with H.(bo) = A. Oy,
Z/(2) = P(&,82,8s,...). For each i > 0 there is a map to S* H (where H is the
integral Eilenberg—Mac Lane spectrum) under which £ has a nontrivial image.
Together these define a map f from bo to W = \/,5, Z*H. We denote its cofiber

by W. There is a map of cofiber sequences

(3.4.17) SO —>H——

in which each row induces an short exact sequence in homology and therefore an
long exact sequence of Ext groups. Recall (3.1.26) that the Ext group for bo has a
tower in every fourth dimension, as does the Ext group for W. One can show that
the former map injectively to the latter. Then it is easy to work out the Adams
Es-term for W, namely
(3.4.18)

Ext*tV(H,(bo)) ift—s#0 mod (4)

Ext® (H.(W)) =< Z/(2) if t — s = 0 and Ext®*(H,(bo)) =0
0 otherwise,

where Ext(M) is an abbreviation for Exta,(Z/(2), M). See F1¢. 3.4.20. Combin-
ing 3.4.17 and 3.4.8 gives us a map

(3.4.19) Ext®(Z/(2)) = Ext* V{(H,(W)) fort—s>0

Since this map is topologically induced it commutes with Adams differentials.
Hence any element in Ext with a nontrivial image in 3.4.19 cannot be the target of
a differential.

One can show that each h,, for n > 0 is mapped monomorphically in 3.4.19, so
each h,, supports a tower going all the way up to the vanishing line as is required in
the proof of 3.4.15. Note that the vanishing here coincides with that for Ext given
in 3.4.5.

A similar construction at odd primes detects a tower going up to the vanishing
line in every dimension = —1 mod (2p — 2).

To summarize

3.4.21. THEOREM.

(a) For p = 2 there is a spectrum W with Adams Ex-term described in 3.4.18
and 3.4.20. The resulting map 3.4.19 commutes with Adams differentials and is
nontrivial on h, for all n > 0 and all Ty iterates of hy, h?, h} = hihs, h2, and
h3hs. Hence none of these elements is hit by Adams differentials.

(b) A similar construction for p > 2 gives a map as above which is nontrivial
on hy, for all n > 0 and on all the elements listed in 3.4.16(a). O
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FIGURE 3.4.20. Ext* "' H,(W).

The argument above does not show that the elements in question are permanent
cycles. For example, all but a few elements at the top of the towers built on h,, for
large n support nontrivial differentials, but map to permanent cycles in the Adams
spectral sequence for W.

We do not know the image of the map in 3.4.19. For p = 2 it is clearly onto for
t—s=2"—1. Fort—s+1=(2k+1)2" with k£ > 0 the image is at least as big as
it is for k = 0, because the appropriate periodicity operator acts on h,,. However,
the actual image appears to be about % as large. For example, the towers in Ext
in dimensions 23 and 39 have 6 elements instead of the 4 in dimension 7, while the
one in dimension 47 has 12. We leave this as a research question for the interested
reader.

5. Survey and Further Reading

In this section we survey some other research having to do with the classical
Adams spectral sequence, published and unpublished. We will describe in sequence
results related to the previous four sections and then indicate some theorems not
readily classified by this scheme.

In Section 1 we made some easy Ext calculations and thereby computed the
homotopy groups of such spectra as MU and bo. The latter involved the cohomology
of A(1), the subalgebra of the mod (2) Steenrod algebra generated by Sq¢' and Sq>.
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A pleasant partial classification of A(1)-modules is given in section 3 of Adams and
Priddy [10]. They compute the Ext groups of all of these modules and show that
many of them can be realized as bo-module spectra. For example, they use this
result to analyze the homotopy type of bo A bo.

The cohomology of the subalgebra A(2) was computed by Shimada and Iwai [2].
Recently, Davis and Mahowald [4] have shown that A//A(2) is not the cohomology
of any connective spectrum. In Davis and Mahowald [5] they compute A(2)-Ext
groups for the cohomology of stunted real projective spaces.

More general results on subalgebras of A can be found in Adams and Margo-
lis [11] and Moore and Peterson [1].

The use of the Adams spectral sequence in computing cobordism rings is be-
coming more popular. The spectra MO, M SO, MSU, and M Spin were originally
analyzed by other methods (see Stong [1] for references) but in theory could be
analyzed with the Adams spectral sequence; see Pengelley [1, 2] and Giambalvo
and Pengelley [1].

The spectrum MO(8) (the Thom spectrum associated with the 7-connected
cover of BO) has been investigated by Adams spectral sequence methods in Gi-
ambalvo [2], Bahri [1], Davis [3, 6], and Bahri and Mahowald [1].

In Johnson and Wilson [5] the Adams spectral sequence is used to compute the
bordism ring of manifolds with free G-action for an elementary abelian p-group G.

The most prodigious Adams spectral sequence calculation to date is that for
the symplectic cobordism ring by Kochman [1, 2, 3]. He uses a change-of-rings
isomorphism to reduce the computation of the Es-term to finding Ext over the
coalgebra

(3.5.1) B=P(&,&,...)/(E)

for which he uses the May spectral sequence. The FEs-term for M Sp is a direct
sum of many copies of this Ext and these summands are connected to each other
by higher Adams differentials. He shows that M Sp is indecomposable as a ring
spectrum and that the Adams spectral sequence has nontrivial d,.’s for arbitrarily
large r.

In Section 2 we described the May spectral sequence. The work of Nakamura, [1]
enables one to use algebraic Steenrod operations (A1.5) to compute May differen-
tials.

The May spectral sequence is obtained from an increasing filtration of the dual
Steenrod algebra A.. We will describe some decreasing filtrations of A, for p = 2
and the spectral sequences they lead to. The method of calculation these results
suggest is conceptually more complicated than May’s but it may have some practical
advantages. The FEs-term (3.5.2) can be computed by another spectral sequence
(3.5.4) whose Es-term is the A(n) cohomology (for some fixed n) of a certain
trigraded comodule T. The structure of T is given by a third spectral sequence
(3.5.10) whose input is essentially the cohomology of the Steenrod algebra through
a range of dimensions equal to 27"~ times the range one wishes to compute.

This method is in practice very similar to Mahowald’s unpublished work on
“Koszul resolutions”.

3.5.2. PROPOSITION. For each n > 0, A has a decreasing filtration (A1.3.5)
{F*A.} where F* is the smallest possible subgroup satisfying £’ € F27T g
j<n+1.
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In particular, F°/F! = A(n)., so A(n). C EyA. where

n+1 n Yy — _
A(n)* ZA*/(? 7_3 7"'7627§n+1§n+27"')'

We also have £’ € F?7" 7' for j > n+ 1. Hence there is a spectral sequence
(A1.3.9) converging to Exta, (Z/(2), M) with E}'** = Ext}! 4 (Z/(2), EoM) and
d,: ESH% — EStLULUAT where the third grading is that given by the filtration, M
is any A.-comodule, and EgM is the associated EyA.-comodule (A1.3.7).

Now let G(n)« = Eo A« Og(p), Z/(2). It inherits a Hopf algebra structure from
E()A* and

(3.5.3) A(n)x = EgAs = G(n).
is an extension of Hopf algebras (A1.1.15). Hence we have a Cartan—Eilenberg
spectral sequence (A1.3.14), i.e.,

3.5.4. LEMMA. Associated with the extension 3.5.3 there is a spectral sequence
with
B3+t = Exty) ) (Z/(2),Extgin (Z/(2), M))

G(n)«
with d, : Esvs2tu o Baitrsa—rtLbe conyerging to Ext 0> for any EoA. co-
module M. [Extgn),(Z/(2), M) is the T referred to above.] O

3.5.5. REMARK. According to A1.3.11(a) the cochain complex W used to com-
pute Ext over G(n), can be taken to be one of A(n),-comodules. The Es-term of
the spectral sequence is the A(n), Ext of the cohomology of W, and the E-term
is the cohomology of the double complex obtained by applying C’Z(n)*( ) (Al.2.11)
to W. This W is the direct sum [as a complex of A(n).-comodules| of its com-
ponents for various u (the filtration grading). The differentials are computed by
analyzing this W.

Next observe that FgA, and G(n). contain a sub-Hopf algebra A,(k"H) isomor-
phic up to regrading to A,; i.e., A" ¢ EyA, is the image of PE"™) c A,
The isomorphism follows from the fact that the filtration degree 2¢ — 1 of &'
coincides with the topological degree of &. Hence we have

(35.6) Bxtf! (2/(2),2/(2)) = Bxt'}2 1, (2/(2), 2/ (2)

and we can take these groups as known inductively.
Let L(n). = G(n)« ® ;»+1) Z/(2) and get an extension

(3.5.7) A S G(n), — Ln),.
L(n) is easily seen to be cocommutative with
(3.5.8) Exty ) (Z/(2),2/(2)) = P(hi;: 0 < j <n, i >n+2—j),

where h;; € Ext!? (2'-D,27 7 corresponds as usual to E?J This Ext is a
comodule algebra over A£"+1) (A1.3.14) with coaction given by

(3.5.9) Y(hi) =Y &7 @iy

£>0
Hence by A1.3.14 we have
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3.5.10. LEMMA. The extension 3.5.7 leads to a spectral sequence as in 3.5.4
with

Byt = Bxt® . (2/(2), Exty (2/(2), M)

converging to Extg(:;i’t’“(Z/(Q),M) for any G(n).-comodule M. For M =7Z/(2),
the Ext over L(n). and its comodule algebra structure are given by 3.5.8 and 3.5.9.

Moreover, this spectral sequence collapses from Es.

PrOOF. All is clear but the last statement, which we prove by showing that
G(n), possesses an extra grading which corresponds to s, in the spectral sequence.
It will follow that differentials must respect this grading so d, = 0 for » > 2. Let
&i.; € G(n). be the element corresponding to £?’. The extra grading is defined by

_ 1 ifj<n
€5 = o
0 if j >n.

Since the &; ; for j < n are all exterior generators, the multiplication in G(n).
respects this grading. The coproduct is given by

A&ij) = &rj ® Eikprs-
k

If j > n+ 1 then all terms have degree 0, and if j < n, we have k +j > n+ 2 so
all terms have degree 1, so A also respects the extra grading. O

We now describe how to use these results to compute Ext. If one wants to com-
pute through a fixed range of dimensions, the isomorphism 3.5.6 reduces the calcula-
tion of the spectral sequence of 3.5.10 to a much smaller range, so we assume induc-
tively that this has been done. The next step is to compute in the spectral sequence
of 3.5.4. The input here is the trigraded A(n).-comodule Extgi’;f)*(Z/(Q), Z/(2)).
We began this discussion by assuming we could compute Ext over A(n),, but in
practice we cannot do this directly if n > 1. However, for 0 < m < n we can reduce
an A(n), calculation to an A(m), calculation by proceeding as above, starting with
the mth filtration of A(n). instead of A.. We leave the precise formulation to the
reader. Thus we can compute the A(n), Ext of Extg'é;f)*(z /(2),Z/(2)) separately
for each wu; the slogan here is divide and conquer.

This method can be used to compute the cohomology of the Hopf algebra B
(3.5.1) relevant to M Sp. Filtering with n = 1, the SS analogous to 3.5.4 has

Es = EXtA(l)*(Z/(Q),P(th,th, hs1, hao, - - ))

with ’(ﬁ(hz’_,_l’o) =& ®hi1 +1® hitp1,0 and ’Lb(hig) =1® h;;1 for ¢ > 2. This Ext
is easy to compute. Both this spectral sequence and the analog of the one in 3.5.2
collapse from F,. Hence we get a description of the cohomology of B which is more
concise though less explicit than that of Kochman [1].

In Section 3 we described A and hinted at an unstable Adams spectral sequence.
For more on this theory see Bousfield and Kan [3], Bousfield and Curtis [4], Ben-
dersky, Curtis, and Miller [1], Curtis [1], and Singer [3, 4, 5]. A particularly
interesting point of view is developed by Singer [2].

In Mahowald [3] the double suspension homomorphism

A(2n—-1) > A(2n+1)



5. SURVEY AND FURTHER READING 97

is studied. He shows that the cohomology of its cokernel W (n) is isomorphic to
Ext’%' (Z/(2), £2" 1 4(0),) for t — s < 5s + k for some constant k, i.e., above a line
with slope £. This leads to a similar isomorphism between H*(A(2n+1)/A(1)) and

Exta, (Z/(2), H.(RP2")). In Mahowald [4] he proves a geometric analog, showing
that a certain subquotient of 7. (S?"*!) is isomorphic to that of 75(RP?"). The
odd primary analog of the algebraic result has been demonstrated by Harper and
Miller [1]. The geometric result is very likely to be true but is still an open question.
This point was also discussed in Section 1.5.

Now we will describe some unpublished work of Mahowald concerning gener-
alizations of A. In 3.3.3 we defined subcomplexes A(n) C A by saying that an
admissible monomial \;, --- \;, is in A(n) if 4, < n. The short exact sequence

A(n—1) = A(n) = X"A(2n - 1)

led to the algebraic EHP spectral sequence of 3.3.7. Now we define quotient com-
plexes A(n) by A{n) = A/A(No,...,An—1), so A(0) = A and thA(n) =7Z/(2).
Then there are short exact sequences

(3.5.11) 0= S"A{(n +1)/2) = Aln) = Aln+1) = 0

where the fraction (n + 1)/2 is taken to be the integer part thereof. This leads to a
spectral sequence similar to that of 3.3.7 and an inductive procedure for computing
H,.(A).

Next we define A,-comodules B,, as follows. Define an increasing filtration
on A, (different from those of 3.5.2) by &; € Fy: and let B,, = F),. The B,, is realized
by the spectra of Brown and Gitler [3]. They figure critically in the construction
of the n;’s in Mahowald [6] and in the Brown-Peterson-Cohen program to prove
that every closed smooth n-manifold immerses in R?”~ (™) where a(n) is the
number of ones in the dyadic expansion of n. Brown and Gitler [3] show that
Exta,(Z/(2),B,,) = H*(A{n)) and that the short exact sequence 3.5.11 is realized
by a cofibration. It is remarkable that the Brown—Gitler spectra and the unstable
spheres both lead in this way to A.

Now let N = (n1,na,...) be a nonincreasing sequence of nonnegative integers.
Let A(N) = A./(&"",£3",...). This is a Hopf algebra. Let M(N) = A, Oy
Z/(2), so M(N) = P(&"",£3",...). The filtration of A, defined above induces

one on M(N) and we have
St o M(NY) if 2m |4
(3.5.12) F;M(N)/F; 1 M(N) = i/ M(NY) i I'z
0 otherwise

where N* is the sequence (nji1,nks2,...). For N = (0,0,...) A(N) = A, and
this is equivalent to 3.5.11.

3.5.13. PROPOSITION. The short exact sequence

is split over A(N). O
This result can be used to construct an long exact sequence of A,-comodules
(3.5.14) 05Z/2) =CY = Chk—=C%—---

such that C% is a direct sum of suspensions of M(N¥) indexed by sequences
(41,12,...,4x) satisfying 1 +4; = 0 mod 2™+*— and 4; < 2i;_;. Equation 3.5.14
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leads to a spectral sequence (A1.3.2) converging to Ext with
(3.5.15) EP® = Exty_(Z/(2),C%).

The splitting of C% and the change-of-rings isomorphism A1.3.13 show that Ef o
is a direct sum of suspensions Ext 4(y+)(Z/(2),Z/(2)).

The E;-term of this spectral sequence is a “generalized A” in that it consists of
copies of A(N*) Ext groups indexed by certain monomials in A. The d; is closely
related to the differential in A.

We will describe the construction of 3.5.14 in more detail and then discuss some
examples. Let M(N) be the quotient in

0— Z/(2) » M(N) — M(N) = 0.

In 3.5.14 we want C% = M(N) and Cy = @,., 52" M(N'), so we need to embed
M(N) in this putative Ck. The filtration on M(N) induces ones on M(N) and
C%; in the latter F; should be a direct sum of suspensions of M (N'). Consider the
commutative diagram

00— Fz_lﬁ(N) D F,M(N) D Fi/F~_1H(M) —0

|

0—)171'—10]1\{ X, E/F,_1M(N) —0
0 F; 1CY F;Ci LIN(NY) 0

with exact rows. The upper short exact sequence splits over A(N) (3.5.13) and
hence over A(N*'). Since F;_1C}, splits as above, the change-of-rings isomorphism
A1.3.13 implies that the map

Homy, (F;M(N), F;_1Cy) — Homy, (F;_1 M(N), F;_1CY)

is onto, so the diagonal map exists. It can be used to split the middle short exact
sequence, so the lower short exact sequence can be taken to be split and C} is as
claimed.

The rest of 3.5.14 can be similarly constructed.

Now we consider some examples. If N = (0,0,---) the spectral sequence
collapses and we have the A-algebra. If N = (1,1,...) we have Ext ) =
P(ag,a1,...) as computed in 3.1.9, and the E;-term is this ring tensored with
the subalgebra of A generated by A; with ¢ odd, which is isomorphic up to regrad-
ing with A itself. This is also the E;-term of a spectral sequence converging to the
Adams-Novikov Fs-term to be discussed in Section 4.4. The SS of 3.5.15 in this
case can be identified with the one obtained by filtering A by the number of A;,
with ¢ odd occurring in each monomial.

For N = (2,2,---) we have A(N) = B as in 3.5.1, so the Ej-term is Extp
tensored with a regraded A.

Finally, consider the case N = (2,1,0,0,...). We have Ef’s = Ext}), and

E}*® = @D;vo S Ext}),- One can study the quotient spectral sequence obtained

by setting Ef’s =0 for k > 1. The resulting Es = E, is the target of a map from
Ext, and this map is essentially the one given in 3.4.19. More generally, the first
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few columns of the spectral sequence of 3.5.15 can be used to detect elements in
Ext.

In Section 4 we gave some results concerning vanishing and periodicity. In
particular we got a vanishing line of slope % (for p = 2) for any connective comodule
free over A(0).. This result can be improved if the comodule is free over A(n).
for some n > 0; e.g., one gets a vanishing line of slope % forn =1, p = 2. See
Anderson and Davis [1] and Miller and Wilkerson [6].

The periodicity in Section 4 is based on multiplication by powers of hag (p = 2)
or a; (p > 2) and these operators act on classes annihilated by some power of
hio or ag. As remarked above, this corresponds to vi-periodicity in the Adams-
Novikov spectral sequence (see Section 1.4). Therefore one would expect to find
other operators based on multiplication by powers of h,y1,0 or a, corresponding
to v,-periodicity for n > 1. A v,-periodicity operator should be a Massey product
defined on elements annihilated by some v,_1-periodicity operator. For n = 2, p =
2 this phenomenon is investigated by Davis and Mahowald [1] and Mahowald [10,
11, 12].

More generally one can ask if there is an Adams spectral sequence version of the
chromatic SS (1.4.8). For this one would need an analog of the chromatic resolution
(1.4.6), which means inverting periodicity operators. This problem is addressed by
Miller [2, 5].

A wv,-periodicity operator in the Adams spectral sequence for p = 2 moves
an element along a line of slope 1/(2"+! — 2). Thus v,-periodic families of stable
homotopy elements would correspond to families of elements in the Adams spectral
sequence lying near the line through the origin with this slope. We expect that
elements in the F,-term cluster around such lines.

Now we will survey some other research with the Adams spectral sequence not
directly related to the previous four sections. For p = 2 and t — s < 45, differentials
and extensions are analyzed by Mahowald and Tangora [9], Barratt, Mahowald,
and Tangora [1], Tangora [5], and Bruner [2]. Some systematic phenomena, in the
Es-term are described in Davis [2], Mahowald and Tangora [14], and Margolis,
Priddy, and Tangora [1]. Some machinery useful for computing Adams spectral
sequence differentials involving Massey products is developed by Kochman [4] and
Section 12 of Kochman [2]. See also Milgram [2] and Kahn [2] and Bruner et al [1],
and Makinen [1].

The Adams spectral sequence was used in the proof of the Segal conjecture for
Z/(2) by Lin [1] and Lin et al. [2]. Computationally, the heart of the proof is the
startling isomorphism

Ext};’ (Z/(2), M) = Ext}{""(Z/(2),Z/(2)),

where M is dual to the A-module Z/(2)[z,z~!] with dim 2 = 1 and S¢k2? = (})zi+*
(this binomial coefficient makes sense for any integer ). This isomorphism was
originally conjectured by Mahowald (see Adams [14]). The analogous odd primary
result was proved by Gunawardena [1]. The calculation is streamlined and gener-
alized to elementary abelian p-groups by Adams, Gunawardena, and Miller [18].
This work makes essential use of ideas due to Singer [1] and Li and Singer [1].

In Ravenel [4] we proved the Segal conjecture for cyclic groups by means of
a modified form of the Adams spectral sequence in which the filtration is altered.
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This method was used by Miller and Wilkerson [7] to prove the Segal conjecture
for periodic groups. The general Segal conjecture has been proved by Carlsson [1].

Finally, we must mention the Whitehead conjecture. The n-fold symmet-
ric product Sp™(X) of a space X is the quotient of the n-fold Cartesian prod-
uct by the action of the symmetric group %,,. Dold and Thom [1] showed that
Sp>(X) = I'&nSp"(X ) is a product of Eilenberg-Mac Lane spaces whosw homo-
topy is the homotopy of X. Symmetric products can be defined on spectra and we
have Sp>(S°) = H.J, the integer Eilenbergh-Mac Lane spectrum. After localizing
at the prime p one considers

S0 5 SpP(S°) — Sp?’ (S°) — - -
and
(3.5.16) H+ 8° + £718pP(5°)/8° < £25pP" (8°)/SpP(S°) = --- .

Whitehead conjectured that this diagram induces an long exact sequence of ho-
motopy groups. In particular, the map £71S5p?(59)/S° — S° shouls induce a
surjection in homotopy in positive dimensions; this is the famous theorem of Kahn
and Priddy [2]. The analogous statement about Ext groups was proved by Lin [3].
Miller [4] generalized this to show that 3.5.16 induces an long exact sequence of
Ext groups. The long exact sequence of homotopy groups was established by
Kuhn [1]. The spectra in 3.5.16 were studied by Welcher [1, 2]. He showed that
H,(Sp" ™" (5°)/SpP" (S9)) is free over A(n),, so its Ext groups has a vanishing line
given by Anderson and Davis [1] and Miller and Wilkerson [6] and the long exact
sequence of 3.5.16 is finite in each bigrading.



