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1. THE LONG EXACT SEQUENCE OF A PAIR

Let (X, A) be a pair of spaces. The relationship between the homology groups H,.(A), H.(X) and
H,.(X,A) is expressed by the long exact sequence

D H(A) s Ho(X) 25 Ho (X A) -2 Ho (X, A)
Exactness at H,(X) amounts to the condition that

im(iy: Hp(A) — Hp(X)) = ker(ju: Hn(X) — Hn(X, A)).
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The homomorphism i, induces a canonical isomorphism from
Hn(A)
im(0: Hp41(X,A) — H,(A))
Hn(A)

ker(i,: Hp(A) = Hp (X))
to im(iy: Hp(A) — H,(X)). Exactness at H,(A) and at H, (X, A) amounts to similar conditions, and
0 and j, induce similar isomorphisms.

We can use the long exact sequence to get information about H,(X) from information about H.(A)
and H,(X, A), if we can compute the kernel ker(9) = im(j,) = cok(i.) and the cokernel cok(9) = im (i)
of the boundary homomorphism 0, and determine the extension

cok(0: Hp11(X,A) — Hp(A)) =

0 — im(ix) — Hi(X) — cok(ix) = 0

of graded abelian groups.

Let us carefully spell this out in a manner that generalizes from long exact sequences to spectral
sequences.

We are interested in the graded abelian group H,(X). The map i: A — X induces the homomorphism
ix: Hi(A) = H.(X), and we may consider the subgroup of H,(X) given by its image, im(i,). We get a
short increasing filtration

0 Cim(is) C Ho(X).
More elaborately, we can let
0 for s < -1
Fy=qim(i,) fors=0
H.(X) fors>1

for all integers s. We call s the filtration degree.
The possibly nontrivial filtration quotients are

= % _ k ) .
0 im(7,) and (i) cok(i)
We find
0 for s < —1
fracF,Fy_q = im(i,) for s=0

cok(iy) fors=1
0 for s > 2.

The short exact sequence
0 — im(ix) — Hi(X) — cok(ix) = 0
expresses H,(X) as an extension of two graded abelian groups. This does not in general suffice to
determine the group structure of H.(X), but it is often a tractable problem. More generally we have
short exact sequences
0—>Fsy — Fs— F;/Fs_1 =0

for each integer s. If we can determine the previous filtration group Fs_1, say by induction on s, and
if we know the filtration quotient Fs/Fs_1, then the short exact sequence above determines the next
filtration group F§, up to an extension problem.

In the present example F_; = 0, Fy = im(i,) and F} = H,(X), so there is only one extension problem,
from Fy to Fy, given the quotient Fy /Fy = cok(i,).

We therefore need to understand im(i,) and cok(i.). By definition and exactness

im(i,) = cok(9) and cok(i,) = im(j.) = ker(9),
so both of these graded abelian groups are determined by the connecting homomorphism
0: Hij1(X,A) — H.(4).

If we assume that we know H,(A) and H,1(X, A), we must therefore determine this homomorphism 9,
and compute its cokernel cok(9) = H,(A)/im(9) and its kernel ker(9) C H,11(X, A).
In view of the short exact sequences
0 — im(9) — H,(A) — cok(d) — 0
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and

0 — ker(9) — Hip1(X,A) — im(9) — 0

we can say that the original groups H,(A) and H,11(X, A) have been reduced to the subquotient groups
cok(0) and ker(9), respectively, and that both groups have been reduced by the same factor, namely by
im(9). This makes sense in terms of orders of groups if all of these groups are finite, but must be more
carefully interpreted in general. The change between the old groups and the new groups is in each case

created by the non-triviality of the homomorphism 0.

1.1. E"-terms and d"-differentials. We can present the steps in this approach to calculating H.(X)
using the following chart. First we place the known groups H.(A) and H.(X, A) in two columns of the

(s, t)-plane:

t=2 Hy(A)
t=1 Hy(A)
t=20 Hy(A)
t=-1 0
s=0

We call ¢ the internal degree, even if this is not particularly meaningful in this example. The sum s+t is
called the total degree, and corresponds to the usual homological grading of H.(A), H.(X) and H,.(X, A).
This first page is called the E'-term. It is a bigraded abelian group F

Ey, = Hy(A)  and

for all integers t. We extend the notation by setting F

follows

E11,2 E&,z
E£1,1 Eé,1
Ell,O E(%,o
EZ E(%,q

with nonzero groups only in the two central columns.
4

H;(X, A)

Hy(X,A)

Hqi(X,A)

HO(X7 A)

s=1

1

0 for s < —1 and for s > 2. This appears as

1
E;,

1
E21

1
E20

1
E2,71

k%9

Ei, = Hi14(X, A)



We next introduce the boundary homomorphism 9. In the (s,¢)-plane it has bidegree (—1,0), i.e.,
maps one unit to the left. We can display it as follows:

t=2 Hy(A) 2 — H3(X, A)
t=1 Hi(A) 2 Hy(X, A)
t=0 Ho(A) +—2— Hi(X, A)
t=—1 0 Ho(X, A)
s=0 s=1

In spectral sequence parlance, this homomorphism is called the d'-differential. It extends trivially to a
homomorphism
di,ﬁ E;,t — E;fl,t
for all integers s and ¢. In all other cases than those displayed above, this homomorphism is zero, since
for s < 0 the target is zero, for s > 2 the source is zero, and for s = 1 and t < —1 the target is also zero.
We now replace each group Ef ; = Hy(A) by its quotient group

COk(aI Hl+t(X7 A) — Ht(A)) = COk(d%,t)
and replace each group E11,t = Hy4+4(X, A) by its subgroup
ker(0: Hy4(X, A) — Hy(A)) = ker(dy ).

This leaves the following diagram

t=2 cok(d} ,) ker(d} 2)
t=1 cok(dj ;) ker(di ;)
t=0 cok(d] () ker(dj o)
t=—-1 0 Ho(X,A)
s=0 s=1

We call this second page the E2-term. It is a bigraded abelian group E2 ., with

Eg}t = cok(dit) and Eit = ker(dit)

for all integers ¢. As before, we extend the notation by setting E2, = 0 for s < —1 and for s > 2.
5



What is the relation between the E'-term and the E?-term? This may be easier to see if we expand the
diagram consisting of the E'-term and the d'-differential to also include the trivial groups surrounding
the two interesting columns.

00— Hy(A) 22— Hy(X,A)+——0

0 Hi(A) 22— Hy(X,A) +—0

0¢— Ho(A) 22— H{(X,A) +——0

0 02 Hy(X,A) +——0
In the other notation, this appears as follows:
02 B}, ik B, L
0 B}, ik B}, T
et g e g B
T BT

Now notice that each row (Ei,u di)t) of the E'-term with the d!-differentials forms a chain complex,
and the E%-term is the homology of that chain complex:
ker(d;t)

E2 = —— " = Hs El dl
s,t iIH(di+17t) ( *,t) *,t)

for all integers s and ¢. For s = 0 this is clear because
ker(dy,) = By, = Hi(A)  and  im(d},) =im(9: H14(X, A) — Hy(A)).
For s =1 it is also clear, because
ker(dy ;) = ker(9: Hy¢(X,A) — Hi(A))  and  im(dy,) =0.

For the remaining values of s, all groups are trivial.
Having obtained the E2-term as the homology of the E'-term with respect to the d'-differentials, we
can now locate the short exact sequence

0 — cok(d},,) — Hn(X) — ker(dj,, ;) — 0
6



within the diagram, for each n. This is nothing but the degree n part of the short exact sequences
previously denoted

0 — cok(0) — H.(X) — ker(d) — 0
and

0 — im(ix) — Hi(X) — cok(ix) = 0,
and is now written

0 Ey, — Hy(X)— Ef,,_; —0.

These extensions appear along anti-diagonals in the E?-term, or equivalently, along lines of slope —1:

Eg,z Eiz
Hs(X)
\
2 Ef,
Hy(X)
\
Eg,o E%,o
Ho(X)

/

0 E?

In other words, the filtration quotients (Fs/Fs_1)n associated to the increasing filtration
0 C im(i.) C Hp(X)

appear along the line in the (s, ¢)-plane where the total degree is s+t = n, starting with (Fp),, = im(i,)
at Ej,,, and continuing with the filtration quotient (Fy/Fy), = cok(i.) at E?, ;. The group we are
interested in, H,(X), is realized as an extension of the two parts of the E?-term in bidegrees (0,n) and
(I,n—1).

This indexing system is standard for the Serre spectral sequence.

1.2. Adams indexing. In some cases it is more convenient to collect the terms contributing to a single
degree in the answer, in our case the terms Egﬁn and E%,nq contributing to H, (X), in a single column.
This means that the terms E(%,n and Einfl are also placed in a single column, and the d'-differential will
map diagonally to the left and upwards. The E'-term is then displayed as follows, in the (n, s)-plane:

s=1 Ho(A) Hy(A) H»(A) H3(A)
s=0 Hy(X,A) Hy(X,A) Hy(X, A) H;(X, A)
n=20 n=1 n=2 n=23



The orientation of the s-axis has also been switched, so that Hy(X, A) rather than Hy(A) sits at the
origin, and the total degree n is related to the filtration degree s and the internal degree t by n =t — s
instead of n = s +t. We will discuss this more precisely later. The d'-differential is still the connecting

homomorphism 0:
3(X, A\

The E%-term is the homology of the E'-term with respect to the d'-differential:

cok()o cok(9)1 cok(d)a cok(d)3

Hy(X,A) ker(0)1 ker(0)2 ker(0)3

The end product, known as the abutment, of the spectral sequence, is now determined up to an extension
problem, by the following vertical short exact sequences:

cok(90)o cok(9)1 cok(0)2 cok(0)3

Hy(X) Hy(X) Hy(X) H3(X)

|
Ho(X

This indexing system is standard for the Adams spectral sequence, and we refer to it as Adams
indexing.

,A) ker(0)1 ker ()9 ker(0)3

2. SPECTRAL SEQUENCES

Definition 2.1. A homological spectral sequence is a sequence (E",d"), of bigraded abelian groups and
differentials, together with isomorphisms

ker(d")

ET+1 ~ H E’r‘ r
(B",d") = im(dr) ’

for all natural numbers . Each E" = EY , = (EY ), is a bigraded abelian group, called the E"-term of
the spectral sequence. The r-th differential is a homomorphism d": EY , — Ef , of bidegree (—r,r — 1),
satisfying d” o d" = 0. We write

TR O S O
for the component of d” starting in bidegree (s,t). The isomorphism

ker(dg e By — E;nfr,tJrrfl)

+1 -
Eg,t = HS,t(E77d7) dr - ET ET
( s+rt—r+1° Hstrt—r+1 — s,t)

is part of the data.



Here is the typical El-term and d!-differential, depicted in the (s, )-plane:

E£172 E&Z E11,2 E21,2 Eé,Q

E£171 E(%,1 Ell,l E21,1 Eé,l

—— B, B, El, E3 g E3o
'~'<;E£1,71 Ecl),—l E%,—l <7E%7,1 E;:)l-771

Each row is a chain complex, and the homology of this chain complex is isomorphic to the E?-term.
That E2-term, together with the d2-differentials, appears as follows:

.. E? E§, E?, E3, E3, ...
T R
.. E?) E§, E? | E3, E3, -
e E? E3, E%, E3, E3, .
x B2, E§ 4 Ef 4 E3 E5

(The differentials entering or leaving the displayed part are not shown.) Each line of slope —1/2 is a chain
complex, with homology isomorphic to the E3-term. That E3-term, together with the d3-differentials,
appears as follows:

3 3 3
E1,2 E2,2 E3,2

3
E3,1

3
ElO

)

3 3 3 3 3
E% 4 Ey 4 E7 4 E;5 4 Es 4

Each line of slope —2/3 is a chain complex, with homology isomorphic to the E4-term:

4 4 4 4 4
EZ, Ep.- Ei, E5, Es,

4 4
E2,1 E3,1

4
ES,O

4 4 4 4 4
E 1,—-1 EO,fl El -1 E2 -1 ES -1

) )



Each line of slope —3/4 is a chain complex, with homology isomorphic to the E°-term:

E?, Eg EY, E3, E3,
E%) By EY, E3, E3,
EELO an Eio ES,O E?E:,O
E%y E§ EY 4 E3 B3

At this point there is not room for any further differentials within the finite part of the spectral sequence
that is displayed. There may of course always be longer differentials that enter or leave the displayed
region.

2.1. E°°-terms. We now want to give sense to the limiting term, the F*°-term E*° = EZ°,, of a spectral

sequence. This is a bigraded abelian group, and we would like to make sense of EJ5 as an’algebraic limit
of the abelian groups E¢, as r — oo.

In many cases the spectral sequence is locally eventually constant, in the sense that for each fixed
bidegree (s,t) there is a natural number m(s,t) such that the homomorphisms

d": E;.,t — E;“fr,t+r71 and d": E§+r,t7r+1 — E;,t
are zero for all r > m(s,t). Then E:Tl = B, for all r > m(s,t), and we define

m(s,t
EX = EY

to be this common value. If there is a fixed bound m that works for each bidegree (s,t), so that d" =0
for all » > m and E"T! = E7 for all » > m, we say that the spectral sequence collapses at the E™-term.
In this case E*° = E™.

In general, a spectral sequence determines a descending sequence of r-cycles

ecz ez c 2 =ker(dh) c Z' = E*
and an increasing sequence of r-boundaries
0=B'Ccim(d)=B*c---cB"cBc...CcFE',

with B" C Z" and E" = Z"/B" for all r > 1. (This is Boardman’s indexing convention. Other authors
like Mac Lane (1963) have E"+! = Z"/B".) We then define the bigraded abelian groups of infinite cycles
and infinite boundaries to be

7*=(12"=lmZz" and B*=|JB" =colimB",
respectively, and set E> = Z°/B°. This definition is reasonable if the limit system of r-cycles is
well-behaved, i.e., if the left derived limit Rlim, Z" vanishes. In the case of a locally eventually constant

spectral sequence, the general definition agrees with the previous definition, since 235 = Z;, and By, =
B for all 7 > m(s,t) — 1. [[More about this later.]]

2.2. Filtrations.
Definition 2.2. An increasing filtration of an abelian group G is a sequence {F}s of subgroups
..CF, ,CF,C---CQG.
The filtration is exhaustive if the canonical map
coLim F, — G
is an isomorphism. The filtration is Hausdorff if
limFy, =0,
s
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and it is complete if
Rlim F, = 0.

Here colimg F = | J, Fs, so the filtration is exhaustive precisely if each element in G lies in some F,. We
can think of the Fy as specifying neighborhoods of 0 in a (linear) topology on G. Since (), F = lim, Fj,
this topology is Hausdorff if and only if the filtration is Hausdorff. An Cauchy sequence is an element
in lims G/ Fy, so the topology is complete exactly when the canonical map G — lim; G/F} is surjective,
i.e., when Rlimg Fy = 0. [[More about this later.]]

In the case of a finite filtration, these conditions are easily verified. If there are integers a < b such
that Fs =0 for s < a and Fs; = G for s > b, then the filtration has the form

0OCF,C---Ck=G.

Clearly colimg Fs = G, lim, Fy; = 0 and Rlimg Fy; = 0. In this case, the only nontrivial filtration quotients
are the Fy/F,_; for integers s in the finite interval [a, b].

In the case of a finite filtration, the group G appears as the filtration subquotient F},/F,_1. Under the
three conditions above, G is also algebraically determined by the finite filtration subquotients Fs/F_,.

Lemma 2.3. If {F,}; is an ezhaustive complete Hausdorff filtration of G, then
G = colimlim F, /F,_,
so that G can be recovered from the subquotients Fs/Fs_, of a filtration.

Proof. For each s, there is a tower of short exact sequences

0 F,, F, F,/Fs_y ——0

0 Fo_4 F FS/FS_1*>0
giving rise to the six-term exact sequence

0—limF,_, - Fs = limF,/Fs_, — Rlim F,_, - 0 — Rlim F/F;_, — 0.
By the complete Hausdorff assumption, lim, F_, = 0 and Rlim, F;_, = 0, so
Fy =5 limF,/F,_,

is an isomorphism. Passing to the colimit over s, and using the exhaustive assumption, we get the
asserted formula. O

A filtration of a graded abelian group is a filtration in each degree.

Definition 2.4. A homological spectral sequence (E”,d"), converges to a (graded) abelian group G if
there is an increasing exhaustive Hausdorff filtration {F,}s of G, and isomorphisms of (graded) abelian
groups

EX = F,/F,
for all integers s. The spectral sequence converges strongly if the filtration is also complete. In these
cases we write

EFr—G.

We call G the target, or the abutment, of the spectral sequence.
11



If it is necessary to emphasize the filtration degree s, we write E” =, G. We may also make the
bigrading explicit, as in £} , = G or By, = Ggyq.

A strongly convergent spectral sequence determines its abutment, up to questions about differentials
and extensions. If we know the E™-term for some m > 1, and can determine the d"-differentials for all
r > m, then we know the E"-terms for all » > m, and can pass to the limit to determine the E°-term.
[[Elaborate on how the Z" and B" are found, and how they specify Z°° and B*.]]

By convergence, this determines the filtration quotients ESS, = F,/F,_; for each s. There are short
exact sequences

0— str/strfl — Fs/strfl — Fs/str —0

for all » > 1 and integers s, so if we inductively have determined Fy/Fs_,, and know Fs_,/Fs_,_1 =
EZ2, ., then only an extension problem of abelian groups remains in our quest to determine Fj JFs_r_q.
This gives the input for the next inductive step, over r.

In the case of a finite filtration, this process gives us G after a finite number of steps. In the general

case, assuming strong convergence, passing to limits over r and colimits over s recovers the abutment G.

3. THE SPECTRAL SEQUENCE OF A TRIPLE

To illustrate the general definitions in the first case that does not reduce to a long exact sequence, let
us consider a triple (X, B, A) of spaces, and aim to understand the relationship between the homology
groups H,.(A), H.(B,A), H.(X,B) and H.(X). The essential pairs and maps appear in the diagram

A—" sp_* X

Lok

(B,4) (X, B),

but can be more systematically embedded in the larger diagram

DA

(0,0) (A, 0) (B, A) (X, B) (X,X).

We have two long exact sequences, associated to the pairs (B, A) and (X, A), respectively:
L HL(A) S Hy(B) L Hy (B, A) =S H,_1(A) 25
and
L HL(B) 4 Hy(X) 2 Hy(X,B) -% Hy_y(B) 2 ..

We can also display these two long exact sequences together, as follows, where 0 has degree —1 and each
triangle is exact.

(=

Ho(A) —" 5 H.(B) —"— H.(X)
\ Jj* \ Jj :
H.(B,A) H.(X,B)
Again, this is the essential part of the bigger diagram

Ho(A) —"  H(B) —" 5 H,(X) — = H,(X) ———— ..

. Tx

0 =

o JJ’X _lj* x J«j* ’\ Jj* \P* \
0 H,.(A) H.(B,A) H.(X,B) 0
Our aim is to construct a spectral sequence starting with an E'-term given by the homology groups in

the lower row of this diagram, namely, H,(A4), H.(B, A) and H.(X, B), and converging to the homology
group G = H,(X), equipped with the finite filtration

OCFOCF1CF2=G
12



where

To emphasize the grading we may write (Fy),, for the part of Fy in degree n. Convergence means that
there should be isomorphisms

E&Ot = (FO)t , Elo’(% = (FI/FO)lth and E2o‘it = (Fg/Fl)Qth .

In fact, this spectral sequence will collapse at the E3-term, so that there are nonzero d'- and d?-
differentials, but d” = 0 for r > 3 and E3 = E*.
First, the E'-term is given by

Ey,=H,(4A) , Ej,=H_4(BA) and E;, =Hy (X, B),
and the d!-differential is defined to be the composite d' = j, o 8. More explicitly,
di,=0: H4(B,A) — Hy(A)  and  dy, =j.0: Hyy(X,B) — Hi14(B, A)

are visible in the diagrams above. Note that di_,; ; o d}, = 0 for all s and ¢, since 5. = 0.
The (E*,d')-chart appears as follows:
Ho(A) 2 Hy(B, A) +=2 Hy(X, B)
Hy(A) «2— Hy(B, A) <22 Hy(X, B)
Ho(A) «2— Hy(B, A) «22 Hy(X, B)
0 Ho(B, A) <%~ H,(X, B)

0 0 Ho(X, B)

Passing to homology, we get to the E2-term.
In column s = 0, we compute

2 ker(d(l)’t) . H(A)
08 im(dl,)  im(0: Hipe(B, A) — Hy(A))
Hy(A)

- ker(iy: Hy(A) — Hy(B)) =im(is: Hy(A) — Hy(B)) = im(i.);

using exactness at Hy(A). The right hand isomorphism is induced by ..
In column s = 1, we find

9 ker(dit) B ker(0: Hiy¢(B,A) — H(A))
M im(ds,) T im(j0: Hape(X, B) = Hi4(B, A))

_im(je: Hip(B) = Hi(B, A))

©im(5,0: Hat(X, B) = Hy (B, A))

Hi(B)
ker(j.: Hi4+(B) = Hi44(B, A)) +1im(9: Ha4+(X, B) = H14+(B))
using exactness at Hyy+(B, A). The last isomorphism is induced by j.. To verify it, it is clear that j,
induces a surjection from Hj,¢(B) to the quotient im(j,)/im(;.0) (on the preceding line). Its kernel
13
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consists of the elements that map under j, to elements in the image of j,0. These differ by elements
in ker(j.) from elements in im(9), hence are in the sum ker(j.) + im(9). This is an internal sum of
subgroups of Hi¢(B), not necessarily a direct sum. Using exactness at Hy4(B) in two different exact
sequences, we can rewrite this as follows:
Hy4(B)
1m(2* H1+t(A) — H1+t(B)) + ker(i*: H1+t(B) — H1+t(X))
im(is : Hipe(B) = Hipe(X))
= (F1/F
(2 Hraa(A) = (X)) /o
The second isomorphism is induced by i, and is formally of the same type as the one we just discussed:
The homomorphism i, induces a surjection from H; ¢(B) to im(i.)/im(i2), with kernel given by the
internal sum of ker(i,: Hy44(B) = H14+(X)) and im(is: H11:(A) = Hi14(B)).
In column s = 2, we calculate

o _ ker(dy,) _ ker(j.0: Horo(X, B) — Hi14(B, A))
20 im(d},) 0
=0 ' ker(ju: Hyt(B) — Hi14(B, A))
= 871 nn(z* H1+t(A) — H1+t(B)) = 871(im(i*)1+t)

~

I

~

using exactness at Hi14(B). This is the subgroup of Ha; (X, B) consisting of elements z with d(z) €
Hy44+(B) lying in the image of i,: H14+(A) — Hi44(B).
The d?-differential acting on the E?-term is now defined to be the homomorphism
d%,ﬁ Eg,t = 07 (im(is)14¢) — im(i )14 = Eg,t+1

induced by 9, mapping a class « € E3 , with 0(z) € im(ix)14¢ to the class d*(z) = d(z) € Ej | .
The (E?,d?)-chart appears as follows:

im(is)2 (F1/Fy)s O~ (im(ix)3)
d3
im(i. )1 (F1/Fo)2 91 (im(ix)2)
d3 o
im(i.)o (F1/Fo) 91 (im(ix)1)
a3
0 (F1/Fo)o O~ (im(ix)o)
0 0 HO(Xa B)

Passing to homology once more, we get to the E3-term.
In column s = 0, the E3-term is

5 ker(di,) _  im(i.: H,(A) — Hy(B))

0" im(d3, ;) im(9: 0~ 1(imi.); — im(is),)
im(i,: Hi(A) — Hy(B))
im(9: Hy4(X,B) — Hy(B)) Nim(i.: H(A) — Hy(B))
_ im(i.: Hy(A) — Hy(B))
ker(i.: Hy(B) — Hy(X)) Nim(iy: Hi(A) — He(B))
= im(if: Hy(A) = Hy(X)) = (Fo)s
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using the definition of al%’tf1 and exactness at H;(B). The last isomorphism is induced by i,: H¢(B) —
H(X).
Column s = 1 is not affected by the d?-differentials, so
ker(d%,t) . E%,t
im(dg,tfl) B

Eit = = (F1/Fo)1+4t -

In column s = 2, the E3-term is

_ ker(d3 ;) _ ker(d3 ;- 071 (im(iw)14¢) = im(is)14¢)
2 im(di,tfl) B 0
= ker(9: Hoyt(X,B) = H14+(B))
=im(ju: Hapt(X) = Hopt(X, B))
Ha14(X)

= im (i : Hoye(B) = Hapt (X)) = (F2/F1)2+¢

3

by the definition of the d?-differential, and exactness at Ha (X, B) and at Hoyy(X).
The E3-term appears as follows:

(Fo)2 (F1/Fo)s (Fa2/F1)a
(Fo)1 (F1/Fo)e (F2/F1)s
(Fo)o (F1/Fo) (Fa2/F1)2
0 (F1/Fo)o (F2/Fi)h
0 0 (Fo/Fy)o

There is no room for further nonzero differentials, since d” for r > 3 must involve columns three or more
units apart. Hence this spectral sequence collapses at the E3-term, and E> = E3 is as displayed above.
In view of our calculations, we have isomorphisms

5035 = (Fs/Fs—l)s-i-t

in all bidegrees (s,t), which proves that the spectral sequence we have constructed, with the given
El'-term, d'-differential and d?-differential, indeed converges strongly to the abutment H,(X), with the
finite filtration given by

0 for s < —1
im(i2: Hy,(A) = H,(X)) fors=0
im(iy: Hy(B) = Hp(X)) fors=1
H,(X) for s > 2.

(Fs)n =

Hence we can conclude that there is a strongly convergent spectral sequence

By =5 Hopy(X)
15



with three nonzero columns

0 for s < —1
H(A) for s=0
El,={H _,(BA) fors=1
Hy 4 (X,B) fors=2
0 for s > 3.
[Mlustrate with an example?]]

[[The K-theory based Adams spectral sequence is an interesting three-line spectral sequence (Adams—
Baird, Bousfield, Dwyer—Mitchell).]]

4. COHOMOLOGICAL SPECTRAL SEQUENCES

So far we have focused on so-called homological spectral sequences, where the differentials reduce total
degrees and filtration indices. If one applies cohomology to the same diagrams of spaces, one instead
obtains a cohomological spectral sequence.

Definition 4.1. A cohomological spectral sequence is a sequence (E,,d.), of bigraded abelian groups
and differentials, together with isomorphisms

E7'+1 = H(Era d’f)

for all r > 1. Each E,-term is a bigraded abelian group E, = E* = (E$'),;, and each d"-differential
is a homomorphism d,.: Ef* — E** of bidegree (r,1 — r), satisfying d, o d, = 0.

Definition 4.2. A decreasing filtration of an abelian group G is a sequence {F*}, of subgroups
GD---DF DOFt 5. ..
It is exhaustive if colimg F'* = G, Hausdorff if limgs F'* = 0 and complete if Rlimg F* = 0.

Definition 4.3. A cohomological spectral sequence (E",d"), converges to a graded abelian group G if
there is a decreasing exhaustive Hausdorff filtration {F*}, of G, and isomorphisms of (graded) abelian
groups

Es,* ~ Fs/Fs+1
o0
for all integers s. The spectral sequence converges strongly if the filtration is also complete.

The algebraic structure in a cohomological spectral sequence is really the same as in a homological
spectral sequence; the difference only lies in the sign conventions for the grading. To each homological
spectral sequence (E",d"), there is an associated cohomological spectral sequence (E,.,d,.), with

ES' = E"

—s,—t
for all integers s and t, and with

diyt = dr—s,—t .
To each increasing filtration {F}, of an abelian group G there is an associated decreasing filtration
{F*}, of the same group, with

Fs=F_,.

The spectral sequence (E",d"), converges (strongly) to the abutment G, filtered by {F;}s, if and only if
the associated cohomological spectra sequence (E,., d,.), converges (strongly) to the abutment G, filtered
by {F*}.
The sign change in the bidegree of the spectral sequence differentials implies that the direction of the
arrows in an (E,., d,.)-chart is reversed in comparison with the direction in an (E",d")-chart. For instance,
16



an (Es,ds)-term typically appears as follows. (Compare with the (E?2, d?)-term displayed earlier.)

—1,2 0,2 1,2 3,2
- E, EY E; ES .
1 1,1 1
0, E3’

Byl E E

2 2 2 2 2 ce
E;LO mk@\p)

2 5 2 5

0,
E,

One reason for switching from a homological to a cohomological indexing occurs when the spectral
sequence occupies a quadrant, or a half-plane. If the homological spectral sequence EY, is nonzero
only for s < 0 and ¢t < 0 (or for s < 0), then the associated cohomological spectral sequence E2* is
nonzero only for s > 0 and ¢ > 0 (or for s > 0). It tends to be notationally easier to work with the
latter conventions. We refer to such a spectral sequence as a first quadrant (or right half-plane) spectral
sequence. [[Formalize this definition?]]

[[Another reason for working with cohomology has to do with product structures. The cup product
in cohomology can be well respected by the spectral sequence.]]

[[Also mention Adams indexing. Since this will be our main focus, once we get the basic formalism
for spectral sequences in place, we will return to this in more detail later.]]

5. EXAMPLE: THE SERRE SPECTRAL SEQUENCE

5.1. Serre fibrations. A Serre fibration is a map p: E — B with the homotopy lifting property for
CW complexes (or, equivalently, for polyhedra), cf. Serre (1951). This means that for any CW complex
X, map f: X — E and homotopy H: X x I — B such that H(z,0) = pf(x), there exists a homotopy
H: X x I — E with H(z,0) = f(z) and pH = H.

f
_

X FE
g7
iol P lp
7

XxI——B
H

Any fiber bundle over a paracompact base space is a Serre fibration, cf. Spanier (1981, Theorem 2.7.13).
Suppose that B is a connected CW complex, and choose a base point by € B. Let F = p~1(by) be the
fiber above that base point. The fundamental group 7 (B, by) acts on the homology H.(F') of that fiber.

F——F

| ]

{bo} —— B

5.2. The homological Serre spectral sequence. The homological Serre spectral sequence for F' —
E — B is a spectral sequence converging to the homology H.(E) of the total space. It has E'-term

E;,t = CS(BM%(F))

given in bidegree (s,t) by the cellular s-chains of B with coefficients in the local coefficient system .7 (F')
associated to the action of the fundamental group on the homology of the fiber, and

B, = Hy(B; #4(F))

is given by the cellular homology of B with these local coefficients. If B is simply-connected, or more

generally, if the action is trivial, then this is the ordinary cellular homology of B with coefficients in the

abelian group H;(F). Notice that the E?-term, unlike the E'-term, does not depend on the chosen CW

structure on B. Hence the remaining terms of the spectral sequence are topological invariants of the

Serre fibration p: E — B. Notice also that Eit can only be nonzero for s > 0 and ¢ > 0, hence the same

holds for every later term E¢ ;. It follows that the Serre spectral sequence, like any other first quadrant
17



spectral sequence, is locally eventually constant, because df, = 0 when s —r < 0 and dg,,; , .4 =0
when ¢t —r 4+ 1 < 0, so both of these differentials vanish whenever r > m(s,t) = max{s + 1,¢ + 2}. The
Serre spectral sequence converges strongly to the homology of the total space:

ESQ,t = HS(B§%(F)) =5 Hs+t(E)-

5.3. The cohomological Serre spectral sequence. There is also a cohomological Serre spectral
sequence, with Fi-term
Byt = O (B, A (F))
given by the cellular s-cochains on B with coefficients in the local coefficient system S#¢(F). The Es-term
By = H*(B; A"(F))

is given by the cellular cohomology with the same coefficients, and the spectral sequence converges
strongly to the cohomology of the total space:

E)t = H¥(B; #4(F)) =, H*TY(E).

5.4. Killing homotopy groups. We illustrate by an example, based on the method of “killing ho-
motopy groups”, which was used by Serre [[and others?]] to determine several of the first nontrivial
homotopy groups of spheres, i.e., the homotopy groups 7;(S7) for varying i and j. It is quite easy to
show that m;(S7) = 0 for i < j. In the case i = j the Hurewicz theorem shows that m;(S%) = H,;(S) = Z
for ¢ > 1. The cases ¢ > j remain. When j = 1 we know that the contractible space R is the universal
covering space of S, so m;(R) = m;(S1) for all i > 2, hence m;(S1) = 0 for i > 2. The cases j > 2 are
significantly harder. There is a fiber sequence
St — 53 s 527,

where 7 is the complex Hopf fibration, and the associated long exact sequence of homotopy groups tells
us that 7, : m;(S%) — m;(S?) is an isomorphism for 7 > 3. Hence the cases j = 2 and j = 3 are practically
equivalent.

It turns out to be most convenient to start the analysis with the space S3. As already mentioned,
the first homotopy groups of S? are 7;(S®) = 0 for i < 3 and 73(S3) = H3(S3) = Z, by the Hurewicz
theorem. To calculate m4(S3), we shall construct the 3-connected cover E of S3, i.e., a map g: E — S3
such that m;(E) = 0 for i < 3 and g,: 7;(E) — 7;(S%) is an isomorphism for i > 3, in such a way that we
can calculate the homology H. (E) using a Serre spectral sequence. First we construct a map h: S% — K,
where h,: 7;(S?) — m;(K) is an isomorphism for i < 3 and 7;(K) = 0 for i > 3. The space K will then
be an Eilenberg-Mac Lane space of type K(Z,3).

To construct K, start with K4 = $3 and attach 5-cells to kill the non-zero classes in 74(S%). Then
attach 6-cells to kill the non-zero classes in 75 of the resulting CW complex K (®). Inductively, suppose
we have constructed a CW pair (K, $%), such that m;(S%) = m;(K™) for i < 3 and m;(K™) = 0
for 3 < i < n. Attach (n + 1)-cells to K™ to kill the non-zero classes in m, (K (™), and call the result
K™+ Continuing, we can let K = U., K™ = colim, K™, and the inclusion h: S — K has the
properties described above. To prove that this works, use the homotopy excision theorem. [[Reference
in Hatcher?]]

[[Also comment on Pontryagin and Whitehead’s early work using framed bordism, and its pitfalls.]]

5.5. The 3-connected cover of S3. Let g: E — S® be the homotopy fiber of h: S — K. By the long
exact sequence in homotopy, E is the 3-connected cover of S3. Furthermore, g is a Serre fibration. Let
f: F — E be the homotopy fiber of g: E — S3.

FrLp2 9K,
By a general result for such Puppe fiber sequences, we know that F' ~ QK so F' is an Eilenberg—Mac Lane
space of type K(Z,2). In other words, F' ~ CP>°. Hence we have a homotopy fiber sequence
cpP* — F -4 53,
The associated homological Serre spectral sequence has E2-term

Z for s € {0,3} and ¢t > 0 even,

E?, = H,(S% H,(CP>))
st ( il ) {0 otherwise,

and converges strongly to Hyi(E). We can display the E%-term as in Figure [l Notice that there is
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t=4 Z 0 0 Z 0
t=3 0 0 0 0 0
t=2 Z 0 0 / 0
t=1 0 0 0 0 0
t=0 Z 0 0 Z 0

s=0 s=1 5=2 s=3 s=4

FIGURE 1. Serre E*-term for H,(E)

no room for nonzero d*-differentials, since d2 ; can only originate from a nonzero group EZ, if s = 0 or
s = 3, and in either case the target group E§_27t+1 is zero.

Hence d? = 0 in this spectral sequence, which implies that £ = E2?. There is, however, room for
d3-differentials, which we display in the E3-term as in Figure[2] The difficulty now is to determine these
homomorphisms dg’t for t > 0 even. At this point we can already deduce that each group H,(F) is a
finitely generated abelian group (of rank 0 or 1), since whatever the d"-differentials are, only a trivial,
finite cyclic or infinite cyclic group will be left at the E°°-term in each bidegree (s,t) with s € {0,3} and
t > 0 even. Since there is at most one nontrivial group in each total degree of EY,, we can conclude that

the abutment H,(E) is also either trivial, finite cyclic or infinite cyclic in each degree.

5.6. The first differential. By looking a bit ahead and working backwards, we can prove that the first
differential, dg’o, is an isomorphism. This is because at the E*-term the only possibly nonzero groups in
total degree s + ¢t < 3 will be

Eg,=cok(d3,) and  Ej,=ker(d3,).

Since the spectral sequence is concentrated in the two columns s = 0 and s = 3, i.e., is zero for all other
s, there is no room for any longer differentials than the d3-differentials. Hence d” = 0 for r > 4, and
E* = E*>. So if the cokernel or kernel of d ; is nonzero, then it will survive to the E>-term of the
spectral sequence, in total degree 2 or 3, respectively. The spectral sequence converges to H, (F), where
E by construction is 3-connected. Hence, by the Hurewicz theorem, H, (F) = 0 for 0 < n < 3. It follows
that (Fs), = 0 and (Fs/Fs_1), = 0 for all s and all 0 < n < 3. Convergence of the spectral sequence
thus implies that £5% = 0 for 0 < s+¢ < 3. In particular, Eg% = cok(d3 ) = 0 and E3 ; = ker(d3 ;) = 0.
This is equivalent to the assertion that d3 ; is an isomorphism.

5.7. The cohomological version. How do we proceed from here to determine the second differential,
d§72? It is not clear how to do this using only the additive structure in homology. Instead, we will pass
to cohomology, and use the multiplicative structure in the cohomological Serre spectral sequence, related
to the cup product in cohomology, to calculate all the later cohomological dz-differentials from the first
ds-differential, dual to the homological d3-differential that we just identified.

Let us use the notations H*(CP>) = Z[y] and H*(S®) = Z[2]/(z?), with algebra generators y in
degree |y| = 2, and z in degree |z| = 3. The cohomological Serre spectral sequence for CP>* — E — S3
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t=5 0
t=4 0
t=3 0
t=2 0
t=1 0
t=0 0

s=0 s=1 5=2 s=3 s=4

FIGURE 2. Serre E3-term for H,(E)

has Fs-term
Z for s € {0,3} and ¢t > 0 even,
0 otherwise,

Ey' = H*(S% H'(CP™)) = {

and converges strongly to H*T*(E). So far, this looks just like in homology. However, the cohomological
Serre spectral sequence has the additional property of being an algebra spectral sequence, meaning that
each E.-term is a graded algebra, and each d,-differential is a derivation with respect to this algebra
structure. This means that d, satisfies a Leibniz rule, of the form

d(ab) = d,(a)b+ (=1)%ad,.(b)

for classes a,b € E, and their (cup) product ab = a Ub. We shall return to the precise definition and
interpretation of multiplicative structures in spectral sequences, later.

For now, we just observe that the algebra structure of the cohomological Serre spectral sequence
FEs-term can be written as

Ey" = H"(S% H*(CP®)) = Z[]/(+*) ® Z[y] .

Since the spectral sequence is concentrated in the columns s = 0 and s = 3, there is only room for
ds-differentials, so F; = E3 and Fy = E.. We now display the cohomological Fs-term and the ds-
differentials, in Figure [3| Note that the direction of the differentials is reversed, compared to the homo-
logical case. Note also that we can now give names to the additive generators in the various bidegrees,
as products of powers of y and z.

We can now argue as before, that ker(dy?) = Ey” = E%2 and cok(dy®) = Ey” = E%0 must contribute
to H%(E) and H?(E), respectively, and since the latter two groups are trivial, hence so is the kernel and
cokernel of dg’Q. Alternatively, one can appeal to a Kronecker pairing of spectral sequences, evaluating
the cohomological spectral sequence on the homological one, to deduce that

dy?: HY(S% H*(CP>)) — H*(S%; H(CP>))
is dual to

dg,o: H3(S?; Hy(CP>)) — Hy(S?; Ho(CP™)),
20



t=5 0
t=4 0
t=3 0
t=2 0
t=1 0
t=0 0

s=0 s=1 s=2 s=3 s=4

FIGURE 3. Serre Es-term for H*(F)

in the sense of the universal coefficient theorem. This leads to the same conclusion. Hence we find that

ds (y) =2z,
up to a possible sign. If necessary we replace y or z by its negative, to make sure that the formula above

holds.

5.8. The remaining differentials. At this point, the algebra structure comes to our aid. The Leibniz
rule for ds applied with @ = y and b = y asserts that

ds(y?) = ds(y)y + yds(y) = 2y +yz = 2zy.
By induction, it follows that
ds(y*) = kzy* !
for all £ > 1. Hence the homomorphism
gt Z{y*} — Z{zy*'}

is given by multiplication by k, with respect to this basis. This lets us calculate the 4 = E-term

7 fors=t=0,

Exl = 7/k fors=3andt=2k—2,
0 otherwise.

It appears as in Figure 4| The group Z/1{z} in bidegree (3,0) is of course trivial. This leads to the
conclusion

Y/ for n =0,
H"(E)=]Z/k forn=2k+1,
0 otherwise.

For instance, in total degree n = 5, we have a finite descending filtration

HP(E) = (F°)° 5 (F1)° 5 (F?)° 5 (F?)° 5 (F*)° 5 (F°)° 5 (F°)” = 0,



t=4 0 0 0 Z/3{zy*} 0
t=3 0 0 0 0 0
=20 0 0 zpy o
t=1 0 0 0 0 0
t=0 Z{1} 0 0 0 0

s=0 s=1 s=2 s=3 s=14

FIGURE 4. Serre Eo-term for H*(E)

with filtration quotients
(Fs/Fs+1)5 — (FS)S/(Ferl)S o ngfs
for all 0 < s < 5. Hence
H(E) = (F°)° = (F')° = (F?)° = (F?)°  and  (F')° = (F°)> = (F°)°=0

while (F3)%/(F*)° = E32 = Z/2{zy}. Thus H°(E) = Z/2. In this case there were no (non-obvious)
extension questions, since there was at most one nontrivial group in each total degree of the E-term.

5.9. Conclusions about homotopy groups. We observed from the homological Serre spectral se-
quence that H,(F) is of finite type, i.e., a finitely generated abelian group in each degree, so the universal
coefficient theorem allows us to determine these homology groups from the corresponding cohomology
groups. We obtain

Z for n =0,
H,(E)=<Z/k forn=2k,
0 otherwise.

Hence the first nontrivial homology group of the 3-connected cover E of S® is Hy(E) = Z/2. By the
Hurewicz theorem, 74(E) = Hy(E), and by the defining property of a 3-connected cover, 74(S?) = 74(E).

Theorem 5.1. m,(S3) =2 7Z/2.

By a refinement of these methods, it is possible to concentrate on a prime p, such as 2, 3 or 5, and
to calculate the p-localized homology and homotopy groups of all the spaces involved. For instance, we
write H,(E),) for the localization of H,(E) at p, which means the result of making multiplication by
each prime other than p invertible in H, (E). More explicitly,

where Z,y is the ring of p-local integers, i.e., the ring of rational numbers a/b where p does not divide b.
We find that (Z/k),) = Z/(k,p) for k > 1, where (k,p) denotes the greatest common divisor of & and
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p. This equals the p-Sylow subgroup of Z/k, which is only nontrivial if p divides k. Hence

Zp) for n =0,
Hn(E)(p) = Z/(k,p) for n =2k,
0 otherwise,

and the first nontrivial p-local homology group of E is Ha,(E)q) = Z/p. By the p-local Hurewicz
theorem, mop,(E) () = Hap(E)(p), and by the defining property of E, ma,(5%) ) = 72, (E) ().

Theorem 5.2. m;(5%),) =0 for 3 <i < 2p, and 72,(5%) ) = Z/p.

The formalism for working with p-local homology and homotopy groups is a special case of a more
general theory of localizations. Its first incarnation, which suffices for the computation above, is known
as the theory of “Serre classes”, cf. Spanier (1981, Section 9.6). [[References for later work: Sullivan,
Bousfield-Kan (1972).]]

5.10. Stable homotopy groups. There are suspension homomorphisms

WZ(SJ) i) 7T7;+1(Sj+1)
taking the homotopy class of a map a: S* — S’ to the homotopy class of its suspension, Ya: S+ =
xS — £S89 = §itl The homomorphism ¥ is often denoted E, for the German “Einhingung”. By
Freudenthal’s suspension theorem, Y is an isomorphism if ¢ < 25 — 2, and it is surjective if ¢ = 2j — 1.
Iterating, and passing to the colimit, we come to the stable homotopy groups of spheres, also known as

the stable stems:
72 = colimj 1, (57).
J

By Freudenthal’s theorem, the colimit system consists of isomorphisms for j > n 4+ 2, so we have
isomorphisms 74, (S7) 2 75 for all j > n + 2, and a surjection $: 7o, 41 (S ) — 7.

In particular, 73(S?) = Z{n} surjects onto 74(S3) = 77, so the first stable stem 7 = Z/2 is
generated by (the suspensions of) the Hopf map 7. The Freudenthal theorem does not suffice to prove
that mo,(S%) — 7r‘29p_3 becomes an isomorphism after p-localization, but this is true:

Theorem 5.3. (75)(,) =0 for 0 <n <2p—3 and (’/Tzsp_g)(p) =~ 7Z/p.

n/(p) —

For each odd prime p, the generator of (7r23p_ 3)(p) given by the suspensions of the generator of 7o, (S 3)(p)
is usually denoted «;. It is the first class in the first of the so-called Greek letter families in the stable
homotopy groups of spheres. [[Reference to Ravenel.]]

6. EXAMPLE: THE ADAMS SPECTRAL SEQUENCE

6.1. Eilenberg—Mac Lane spectra and the Steenrod algebra. Let X and Y be spectra, i.e., objects
in one of the categories modeling stable homotopy theory. The Adams spectral sequence is a tool for
analyzing the homotopy classes [X,Y],, of spectrum maps X" X — Y, for all integers n, starting with the
mod p cohomology groups H*(X;F,) and H*(Y;F,) as modules over the mod p Steenrod algebra <.
For instance, if X =Y = S are both equal to the sphere spectrum, with k-th space S*, then the group

™ (5) =[5, S]n

equals the n-th stable stem 7.

Let H = HIF, denote the mod p Eilenberg-Mac Lane spectrum, representing mod p cohomology.
There is a natural isomorphism

X, H]_. = H(X:F,)
for all spectra X. By the Yoneda lemma, the natural graded transformations
H*(X;Fp) — H*(X;Fp),
i.e., the mod p cohomology operations for spectra, are in one-to-one correspondence with the elements
of
o =[H,H|_, = H"(H;F,).
This graded endomorphism algebra of the spectrum H is the mod p Steenrod algebra. It is concentrated

in non-negative cohomological degrees, i.e., is only nonzero for * > 0 in the notation above.
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6.2. The d-invariant. Each spectrum map f: X — Y induces a homomorphism f*: H*(Y;F,) —
H*(X;F,), which by the discussion above is a homomorphism of &/-modules. Hence the rule that takes
the homotopy class [f] to the &/-module homomorphism f* is a homomorphism

d: [X,Y]. — Hom,(H*(Y;F,), H (X;F,))
fT— 1
This is sometimes called the d-invariant, by analogy with the name “degree” for the integer deg(f) such
that f.[M] = deg(f)[N], where f: M — N is a map of oriented closed n-manifolds with fundamental
classes [M] € H, (M) and [N] € H,(N).
The (cohomological) grading of Homg-groups works as follows: An element [f] € [X,Y]; is the
homotopy class of a spectrum map f: XX — Y, which induces a homomorphism

[ H*(Y;F,) —» H*(S'X;F,) 2 H* (X F,) .
By definition this is an 2/-module homomorphism of degree ¢, i.e., an element of
Hom', (H* (V3 F,), H* (XiF,)).
taking elements in H(Y;F,) to elements of H*"'(X;F,), for all integers 1.
6.3. Wedge sums of suspended Eilenberg—Mac Lane spectra. In the special case Y = H we have
H*(Y;F,) = </, and the d-invariant
d: [X,H]; — Hom’,(/, H*(X;F,))

is an isomorphism for each ¢, since both sides are naturally isomorphic to H*(X;F,). More generally,
suppose that

Y ~ \/E"“H

is a wedge sum of suspensions of mod p Eilenberg-Mac Lane spectra. If 7, (Y) = @, ¥"F, is bounded
below and of finite type, or equivalently, if n, — oo as u — oo, then the canonical map

\VEmH — [ H
is an equivalence. In this case the d-invariant is also an isomorphism, since
X, Y] = (X, ][5 H] = [[H™ (X F,)

u

is naturally isomorphic to

Hom', (H*(Y;F,), H*(X;F,)) = Hom', ((P " o, H*(X;F,)) = [ [ Hom!, (5" o/, H* (X;F,))

for each integer ¢.

In general d is not an isomorphism. For instance, the Hopf map 7: S> — S2 induces the zero
homomorphism in (reduced) cohomology, but stabilizes to a nontrivial homotopy class of maps S! =
XS — §. Furthermore, the target of d is always a graded F,-vector space, while the source may be any
graded abelian group.

6.4. Two-stage extensions. If Y is an extension of two wedge sums of suspended Eilenberg—Mac Lane
spectra, so that there is a cofiber sequence of spectra

K -5vY L K,
with
Koy ~ \/E"“H and K~ \/ZH

then there are long exact sequences
o [X K 2 (XL Y] DS (X Kol - (X Kl —
and

s H*(Ko;F,p) 25 H*(Y:F,) - H* (K F,) —> H Y Ky F,) — ...,
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but the complex

i) #
.. — Hom, (H*(K1;F,), H*(X;F,)) 5 Hom?, (H*(Y;F,), H*(X;F,))

oy # #
U Hom?, (H* (Ko: F,), H* (X F,)) 25 Hom', (H* (K13 F,), H*(X;F,)) —» ...
is typically not exact. Here §# denotes the value of the contravariant functor Hom’,(—, H*(X;F,))
applied to the homomorphism §, and likewise for (i*)# and (5*)#.
Now suppose that j* is surjective, which is equivalent to asking that ¢* is zero. Then there is instead
a short exact sequence of &/-modules

0 — H*Y(Ky;F,) — H*(Ko;F,) 2 H*(Y;F,) - 0.
If 7.(Kp) and 7, (K;) are bounded below and of finite type, as before, then the left hand and middle
of-modules are free, so there is an associated exact sequence

(G*)* t

0 — Hom', (H*(Y;F,), H*(X;F,)) *% Hom',(H*(Ko;F,), H*(X;F,))
% Hom', (H* "\ (Ky; Fy), H*(X; F,)) — BxtS (H*(Y;F,), H*(X; F,)) = 0.

Here Ext}zf denotes the first right derived functor of Hom,,. More generally we write Extfj for the
internal degree t part of the s-th derived functor of Hom®,, for each s > 0. Recall that Ext%, = Hom,y,.
The groups
Ext}; (H*(Y;F,), H*(X;Fy))

for s > 2 are zero for the Y that we are presently considering, due to the existence of the short exact
sequence of «/-modules above.

Under the d-invariant isomorphisms associated to Ky and K, the homomorphism 9: [X, Ko|. —
[X, K1]«_1 corresponds to the homomorphism §# above:

2]

[X, Kol (X, Ki]i—1

{: dk

Hom', (H*(Ko: F,), H*(X:F,)) —2" Hom'; | (H* (K ;F,), H*(X:F,)),
so there are isomorphisms
ker(9); = Homy, (H*(Y;F,), H*(X;F,))
cok(d);—1 = ExtDf (H*(Y;F,), H*(X;F,))
for all integers t. Hence the short exact sequence
0 — cok(9d)y — [X,Y]; — ker(9); = 0
can be rewritten as
0 — ExtU Y (HA (V3 F,), H*(X;F,)) — [X, Y], % Hom', (H*(Y;F,), H*(X;F,)) — 0,
for each integer ¢t. In particular d is surjective in these cases. The homomorphism
e: ker(d); — ExtD TN HH(Y;F,), H (X;F,)),
which in this case is an isomorphism, is often called the e-invariant. Here e refers to “extension”, and
goes well with d.
This extension can be presented as a spectral sequence with Fs-term
Hom', (H*(Y;F,), H*(X;F,)) for s=0,
Ey' = Ext (H*(Y;F,), H*(X;F,)) fors=1,

0 otherwise,

that collapses at the Fy = F..-term, and which converges to a finite decreasing filtration
(X,Y];=F'>F'>F*=0
in the sense that
(FO/FY)y=E% and (F'),=E}"".
Thus for such Y the d-invariant is surjective, and F'! = ker(d) is its kernel.
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This discussion suggests that in order to get a better approximation to the graded abelian group
[X,Y]., it is necessary to take the derived functors of Hom into account.

6.5. The mod p Adams spectral sequence. The mod p Adams spectral sequence for X and Y has
FEo-term

By = Ext3) (H*(Y;Fp), H*(X;F,)).

If X is a finite CW spectrum, and Y is bounded below and of finite type, then it converges strongly to
the p-completion

([Xv Y]t*S);/;\
of the abelian group [X,Y];_s, equipped with a decreasing filtration
((X,Y)—s)p =F°D>F'>---DF°* D> ...

called the Adams filtration. For a finitely generated abelian group G the p-completion can be defined as
the limit

Gp =1im G/p"G.

If G = Z, this equals the p-adic integers Z,. If G is finite, this is a quotient group of G that is isomorphic
to the p-Sylow subgroup of G.
In the special case X = S we get the Fs-term of the mod p Adams spectral sequence for Y, namely

Ey' = Ext® (H*(Y;F,),F,).
When Y is bounded below and of finite type it converges strongly to the p-completed homotopy groups
me-s(Y)p = (S, Y]i—s)p
of Y. In particular, the mod p Adams spectral sequence for the sphere spectrum itself has FEs-term
Ey' = Ext®/(F,,F,),

and converges strongly to
(m-s)p = me—s(S)p = (19, S)e—s)} -

i.e., the p-completed stable stems.

By the Hurewicz theorem, 73 = 0 for n < 0 and 7 = Z, via the isomorphisms 7;(S7) & H;(S7) for
all j > 1. Using the theory of Serre classes, one can prove that each stable stem 72 for n > 1 is a finite
abelian group. Hence it is the product of its p-Sylow subgroups, or equivalently, of the groups (7 )9,
which we can hope to calculate using the corresponding mod p Adams spectral sequence. This will be
the aim of much of the remainder of these lectures.

6.6. Endomorphism ring spectra and their modules. Working at the spectrum level, without
passing to homotopy classes of maps, we can instead consider the function spectra F(X,Y), X# =
F(X,H), Y% = F(Y,H) and R = F(H,H), with m.F(X,Y) = [X,Y]., 7_.F(X,H) = H*(X;F,),
7« F(Y,H) = H*(Y;F,) and n_,F(H,H) = «/. The endomorphism spectrum R = F(H,H) is a
ring spectrum, with product corresponding to the composition of cohomology operations. The map
F(X,Y) — F(YH XH) factors through the spectrum of R-module maps, so that there is a spectrum
level degree map

d: F(X,Y) — Fr(Y" XH).
This turns out to be an equivalence in a wider range of cases than that for which the group level degree

map is an isomorphism, and to amount to a p-completion map of the source in an even wider range of
cases. Passing to homotopy groups, there is a spectral sequence

By = Ext}; (H*(Y;F,), H* (X;Fp))

converging [[conditionally? strongly?]] to m:—s of the target of the spectrum level degree map. [[This is
the Adams spectral sequence converging to m_F (X, Y)QH
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FIGURE 5. Adams Es-term for t — s < 15

6.7. The mod 2 Adams spectral sequence for the sphere. Let us look more closely at the mod 2
Adams spectral sequence for the sphere:

Ey' = Ext® (Fg, Fy) =, m—5(S)5 .

The Es-term is an Fa-vector space in each bidegree, concentrated in the region 0 < s < ¢, or equivalently,
in the region t —s > 0 and s > 0. We display the part where 0 <t — s < 15 and 0 < s < 10 of this
E>-term in Figure [5] using the Adams indexing with the topological degree t — s on the horizontal axis
and the filtration degree s on the vertical axis. This picture is usually called an Adams chart, and we
refer to (t — s, s) as the Adams bidegree.

The dots in a square corresponding to a given (t—s, s)-bidegree represent the elements of a basis for the
Fy-vector space in that bidegree. Empty bidegrees correspond to 0-dimensional vector spaces, bidegrees
with a single dot correspond to 1-dimensional vector spaces, and so on. In this range of bidegrees the
only 2-dimensional vector space is ES 20 Jocated at (t—s,s) = (15,5). Some of the generators are labeled
with their standard names. We will explain later how these Ext g -groups can be calculated, at least in
a limited range.

The chart continues upward and to the right. In the upward direction, only the groups in the zeroth
column are nonzero, while the groups in columns 1 < ¢t — s < 15 for s > 9 are all zero. There is much
more structure present in this Fo-term, and in the subsequent terms of the spectral sequence, than that
of a bigraded Fs-vector space, but let us introduce these structures one by one.

The do-differentials in the Adams spectral sequence are homomorphisms

s,t s,t s+2,t+1
dy': Byt — B3

mapping bidegree (t — s, s) to bidegree (t — s — 1, s+ 2), i.e., one unit to the left and two units upwards
in the (t — s, s)-plane. Looking at the chart, the do-differentials that could possibly be nonzero are those
originating in bidegrees (t —s,s) = (1,1), (8,2), (15,1), (15,2), (15,3) and (15,4). See Figure[d

More generally, the d,.-differentials in the Adams spectral sequence are homomorphisms

s,t . s,t s+r,t+r—1
dy B — E; ,
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FIGURE 6. Possible ds-differentials

mapping bidegree (t — s, s) to bidegree (t — s — 1,5 + r), i.e., one unit to the left and r units upwards
in the (¢t — s,s)-plane. For r > 3, the only possible d,-differentials are those originating in bidegrees
(t—s,5)=(1,1), (15,1), (15,2) and (15, 3).

The Adams F.-term is a subquotient of the Fs-term, hence is zero in all the bidegrees where E;’t = 0.
By strong convergence, there is a descending complete Hausdorff filtration

7n(S)y = (F°)y D (FY) D - D (F5), D ...,
the Adams filtration, and isomorphisms
(F/F), = By

for all s and t. For each integer n, the groups in the E,-term that contribute as filtration quotients to
the filtration of m,,(S)% are the groups ES:! with ¢t —s = n, i.e., the groups in the n-th column. Thus the
Adams indexing has the feature that all of the terms that contribute to the same topological degree are
aligned in the same column in the (¢ — s, s)-plane.

In fact the d,-differentials originating on the class hy € E21 2 in Adams bidegree (1,1) are all zero.
In other words, h; is an infinite cycle, and survives to the FE..-term. To see this, we might start from
our knowledge that m(S) = 77 = Z/2. If some d,-differential on h; were nonzero, then h; would not
survive to E:fp S0 E}fl =0 and EL? = 0. Hence every group E5**! for s > 0 would be zero, and the
filtration of 71(S)4 would have to be constant:

m(S)y =(Fn=Fh=-=Fh=....
Since the filtration is Hausdorfl, lim,(F'®); = 0, so this implies that each (£'*); = 0. In particular m(S)%
would be zero, contradicting our earlier calculation.

Theorem 6.1. d,.(h1) =0 for all r > 2.

Hence the Adams Es-term equals the Adams F.-term in topological degrees t — s < 6. In degree 0,
the Adams filtration

7T0(S)9 = (FO)() D) (Fl)() DD (Fs)o D...
has (F*/Fsth)y = ES® = 7/2, so (F*T1)y has index 2 in (F*)g, for each s > 0. Hence this complete
Hausdorff filtration is equal to the 2-adic filtration
7y =792l D+ D27y D ...

of the 2-adic integers. Note that Zs /27 = 7,/2°, and Zg = limg Z/2°.
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In degree 1, the Adams filtration has
m(8)y = (F'h=(F") and  (F?)i=---=(F)1 =0

for s > 2, so
mi(8)y = (F/F?), = B2 = 7/2{h} .
The generator of m(S) & Z/2, represented by the Hopf map 7, has d-invariant d(n) = 0, hence lifts to
Adams filtration 1 and is represented in (F'/F?); = EL?2 by the infinite cycle hy in Ey*
We can now go beyond what we already knew. In degree 2, the only nonzero class in the E,-term, i.e.,
in the groups E5°2 for s > 0, is the generator of E§’4 = E2%* in Adams bidegree (2,2). Foreshadowing

the existence of a multiplicative structure on the Adams Eo-term, this generator is usually called h?.
The Adams filtration has

m(9)s = (F%)2 = (F')y = (F?)2 and  (F)y=---=(F*)2=0
for s > 3, so
ma(9)s = (F?/F®), = EX* = 7Z/2{h7}.

The generator of mo(S) = Z/2, represented by the square n? of the Hopf map, lifts to Adams filtration
2 and is represented in (F?/F3)y = E%4 by the infinite cycle h?.

In degree 3, there are three generators of the Ey = F.-term, namely ho generating EQM7 a class we
call hohs generating Eg P and a class we call h3hs generating E§’6. The Adams filtration has

m3(8)5 = (F)s = (F')s

(
(F'/F?)3 = Z/2{hy}
(F?/F?)3 = 7./2{hohs}
)
)

||2

1%

3
(F?/F*)3 = Z/2{hghs}
(F*)3 =(F*)3=0

for s > 4. This proves that (F?)3 = Z/2{h2hy}, but without further information we have two ambiguous
extension problems

||2

(1) 0— (F*3 — (F%)3 — Z/2{hoha} — 0
and
(2) 0— (F2)3 — (Fl)g —>Z/2{h2}—>0

It is clear that (F2)3 is an abelian group of order four, and that 73(S)5 = (F!)3 is an abelian group of
order eight. In fact both of these extensions are nontrivial, and 73(S5)% is cyclic of order eight, but we
will need to refer to the multiplicative structure in the spectral sequence to deduce this. [[Relate hg to
the quaternionic Hopf fibration »7]]

In degrees 4 and 5 the Fs = Ey-term only contains trivial groups, so m4(S)5 = 0 and 75(S5)% are
both trivial.

In degree 6, the only nonzero class in the E.-term is the generator of ES’S in Adams bidegree (2,6),
which is usually called h3. The Adams filtration has

m6(9)5 = (F%)s = (F')s = (F?)s  and  (F)g=---=(F*)s=0

for s > 3, so
m6(9) = (F?/F®)s = B2 = 7,/2{h3} .

The generator of 7g(S) = Z/2, represented by the square lifts to Adams filtration 2 and is represented
in (F?/F3)s = E2® by the infinite cycle h3.
In degree 7, we can see that m7(S5)% has order 23 = 8 or 2% = 16, but in order to decide between these
two cases, we need to determine the possibly nonzero differential d3''*: E3"* — Ey'.
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FIGURE 7. Adams Fs-term, with h;-multiplications

6.8. Multiplicative structure. The sphere spectrum S is a homotopy commutative ring spectrum, or
in fact a “homotopy everything ring spectrum”, more technically known as an E., ring spectrum, or as
a commutative structured ring spectrum. This implies that 7. (S) is a graded commutative ring, with
the pairing
A T (S) @ T (S) — Tman(S)

mapping [f] ® [g] to [f A g], where f: S™ — S and ¢g: S™ — S are spectrum maps, with smash product
fAg: Smtn=gmaAgSr s GAS=4G.

This graded commutative ring structure is reflected in the Adams spectral sequence. There is a Yoneda
pairing

o: Ext®V"(F,,F,) @ Ext®>"*(F,,F,) — Ext}™>442(F, F)

making the Adams F»-term a graded commutative Fp-algebra, and in fact the Adams spectral sequence
is an algebra spectral sequence, in the sense that each E,.-term is a graded (commutative) algebra, each
d.-differential is a derivation, and these multiplicative structures are compatible under the isomorphism
E,.y1 2 H(E,,d,). Furthermore, the convergence of the Adams spectral sequence is compatible with the
multiplicative structure, in the sense that the Adams filtration {F*}, of 7.(S); is such that the smash
pairing takes F'** @ F'*2 into F'*1*%2, and the induced pairing

A: FS1 /F81+1 ® Fsz/FSQ-‘rl —y fsits2 /FS1+52+1

agrees with the pairing
o: ES1* @ E52* —y ESltsa
under the isomorphisms F'*/Fst1 =~ ES .

The class hy generating E21’1 = EL! in Adams bidegree (t — s,s) = (0, 1), represents 2 times the
generator ¢ in m(S)5 = Zs. Thus 2. has Adams filtration 1. If an infinite cycle z € ES! represents a
class [f] € m_4(S)%, in Adams filtration s, then the product hg o x = hoz € ESF1!T! represents the
product 2¢ A [f] = 2[f] € m—s(S)%, in Adams filtration s + 1, modulo classes in Adams filtration s + 2
(or greater).

We can use this to determine much of the additive structure of the groups m,(S)% in this range. In
Figure 7| a vertical line of length 1, from a class x in Adams bidegree (t — s,s) to a class y in Adams
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bidegree (t—s,s+1), indicates that hgox = y, i.e., the line connects x to hox. We say that these vertical
lines show the ho-multiplications. If hgx = 0, no line is drawn.

In the same way, the class hy generating Fy® = EL2, in Adams bidegree (t — s, s) = (1, 1), represents
the generator n of m1(S)) = Z/2. If z € E%! represents a class [f] € m_4(S5)% in filtration s, then
hiz represents n[f] € m—s+1(5)% in filtration s + 1, modulo Adams filtration s + 2. This is indicated in
Figuremby a line of slope 1, from x in Adams bidegree (¢t —s, s) to hiz in Adams bidegree (t—s+1,s+1).
If A1z = 0, no line is drawn.

The dashed lines of slope 1/3 correspond to multiplications by ha, the class generating E21 4 = ELA.
[[Relate to v?]] We could add lines of slope 1/7 corresponding to multiplications by hs, the class
generating Fy® = EL3, but these tend to clutter the diagram too much. [[Relate to ¢7]]

Using the multiplicative structure, we can now deduce that d5* = 0 for all » > 2 and t — s < 13, so
that E5" = E% for all t — 5 < 13.

It is clear that d,.(hg) = 0 for all » > 2, since these differentials land in trivial groups. The product
hohi = 0 vanishes for the same reason. Hence if hy survives to the E,-term, we have

0= d,(0) = dy(hohy) = dy(ho)h1 + hody(h1) = hody(hy)

by the Leibniz rule. But d,.(h1) lies in the bidegree (0, + 1) generated by hf™', and multiplication by
ho acts injectively on this bidegree. Hence d,.(h1) = 0, also for all r > 2.

We can also use the multiplicative structure to deduce that d3'° = 0. The group E3'? is generated
by the product hihs. We know that do(hs) = 0, for bidegree reasons, so by the Leibniz rule ds(hihg) =
dg(hl)hg + h1d2(h3) = O, as claimed.

6.9. The first 13 stems. The h;-multiplications seen at the Fs-term, allow us to determine the group
structures of 7, (5)% for 0 <n < 13.

Theorem 6.2. (1) m1(S)4 2 Z/2 generated by n represented by hy.
(2) m2(S)% =2 7Z/2 generated by n? represented by h3.
(3) m3(S)% =2 7Z/8 generated by v represented by ho. Here 2v is represented by hoha, and 4v = 03 is
represented by hihy = h3.
) m4(S)3 =0.
) m5(5) = 0.
) 76(S)5 =2 7Z/2 generated by v? represented by h3.
) m7(S)5 = Z/16 generated by o represented by hs. Here 20 is represented by hohg, 40 is repre-
sented by h3hs, and 8o is represented by h3hs.
(8) ms(S)4 X Z/2@®Z/2 generated by no and €, represented by hihs and ¢y, respectively.
(9) 7o(S)s = Z/)2 D Z)2® Z)2 generated by n*c, ne and p, represented by hihs, hicy and Phy,
respectively. [[Explain Phy. No hidden additive extensions.]]
(10) m10(S)5 =2 Z/2 generated by nu represented by hiPhy.
(11) m1(S)y = Z/8 generated by ¢ represented by Phy. Here 2¢ is represented by hoPhg, and
4¢ = 1 is represented by h3Phy = h3Ph;.
(12) m12(S)h = 0.
(13) 7T13(S)9 =0.

Remark 6.3. To remember the nomenclature in 7. (S5)%, as used by Toda in [Tod62], one may note that
h1, he and hg represent classes 1, v and o, which are the Greek letters expressing the beginning sounds
in ‘ichi’, ‘ni’ and ‘san’, the Japanese words for ‘one’, ‘two’ and ‘three’. The identity map of .S corresponds
to the unit class ¢.

Proof. Let v € m3(S)) be a class represented by hy in Ey* = ELY. [[We may prove later that any
class in 73(S) of Hopf invariant 1 mod 2 has this property, for instance, the stable class S* — S of the
quaternionic Hopf fibration S7 — S%. The product 2v = 2¢ A v is then represented by hohs, and 4v is
represented by hZhs. Hence both extensions in and are nontrivial, with (F?)3 = Z/4 generated
by 2v and (F')3 = Z/8 generated by v.

Let o € m7(S)5 be a class represented by hs in Ey® = ELS. [[We may prove later that any class in
77(S) of Hopf invariant 1 mod 2 has this property, for instance, the stable class S” — S of the octonionic
Hopf fibration S5 — S8. The product 20 = 2¢ A o is then represented by hoha, 40 is represented by
h3hy, and 8o is represented by h3hy. Hence (F*); = Z/2 is generated by 8o, (F3); = Z/4 is generated
by 40, (F?); = Z/8 is generated by 20, and 77(S)y = (F')7 = Z/16 is generated by o.
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In the 8-stem, we have an extension
0— Z/Q{CQ} — 71'8(5)9 — Z/2{h1h3} — 0.

The element € in 7g(S)% that is represented by co in Adams filtration 3 is uniquely defined by this
property. The product no = n A o, represented by hihs in Adams filtration 2, modulo Adams filtration
3, is also well defined, since the ambiguity in the definition of o is given by the even multiples of o,
and n A 20 = 0 since 2n = 0. The latter relation also implies that the extension above is split, so
78(S)5 2 Z/2® Z/2 is a Klein four-group, not a cyclic group of order four.

In the 9-stem, we have a well-defined element p € m9(S)) that is represented by the generator
Phy € E%'. The notation refers to an operator P called the Adams periodicity operator, which is
defined in part of the Es-term, and which takes h; to Phy and hs to Phy. The product classes ne
and n?c are well defined, and are represented by hico and h?hz, modulo the Adams filtration. Hence
(F5); = Z/2 is generated by u, the extension

0— (F®)7 — (FY; — Z/2{ne} — 0
splits, and so does the extension
0— (F)7 — m(S)y — Z/2{n*c} — 0.
The additive extensions in the 11-stem are all nontrivial, just like in the 3-stem. The generator ( is
only defined up to an odd multiple, much like the case of v. [l

We can also deduce most of the product structure on 7, (S5)% in this range.

Theorem 6.4. Multiplication by n satisfies the relations nv =0, n3c =0, n?e =0 (!), ®*un =0, n¢ = 0.
Multiplication by v satisfies the relations va =0 (1), v3 =m0 +ne (1), ve =0 (!) and vy = 0.

Proof. [ Why is v3 = n?c +ne? Use e: S — j to deduce that n%¢ = 0 and ve = 0. How about vo?]] O

6.10. The first Adams differential. Recall that o € 77(5)} denotes a class represented by hs in
Ey® = EL8, e.g. the stable octonionic Hopf fibration. By graded commutativity of ,(S)} we know
that ¢ Ao = —a A 0, since ¢ is in an odd degree, so 202 = 0 in m14(5)%. Here o is represented by h2
in E3'% = E216 50 202 is represented by hoh2 in E3!7, modulo Adams filtration 4. Since 202 = 0, it
follows that hoh3 must be equal to 0 at the E.-term. Since this product is not 0 at the Fa-term (and
d.-(hoh3) = 0 for all » > 2 by the Leibniz rule), the only way to explain this is that hoh3 is a boundary,
i.e., is hit by a differential. For bidegree reasons, the only possibility candidate is the ds-differential
originating at h4 in E21’16. Hence the “first” nonzero differential in the mod 2 Adams spectral sequence
is
do(hy) = hoh3 .

There are in fact also nonzero dz-differentials on hohy and h3hy, from Adams bidegrees (15, 2) and (15, 3),
but these are harder to establish.

7. EXACT COUPLES

Following Massey (1952, 1953) and Boardman (1981 preprint, 1999), we introduce the notion of an
exact couple, and show how to use it to construct a spectral sequence. [[First additive, then convergence,
then perhaps products.]]

7.1. The spectral sequence associated to an unrolled exact couple.

Definition 7.1. An unrolled exact couple of homological type is a diagram

Agg— Ay g —— A, — Ay —— .
By E, Jo
of graded abelian groups and homomorphisms, in which each triangle
s Ay s A B S A
is a long exact sequence.

Usually 4 is of internal degree 0, while 7 and k are of internal degree 0 and —1, in one order or the
other.
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Definition 7.2. For r > 1, let
ZT =k ' im(i" AL, — Agq))
be the r-th cycle subgroup of E,, and let
B” = j(ker(i" ' Ay — Agir1))
be the r-th boundary subgroup. We have inclusions
0=Blc...cB cB"'c...cim(j)=ker(k)c---cZHcz c---cZ}=E,
of graded abelian groups, for each filtration index s. Let
E{ = Z(/ B¢
be the E"-term of the spectral sequence, and let the d"-differential
d.: BT — E_,
be defined by d’([z]) = [j(y)], where z € ZT, y € As_, and k(z) = i""1(y).

To see that the definition of the d"-differential makes sense, note that for each x € Z7, k(x) lies in the
image of i" 71, so there exists a y € A,_, with k(z) = i"~!(y). If y is another class with k(z) = i"~1(y/'),
then y —y € ker(i"~1), so j(y') — j(y) lies in B7, so the class of j(y) in E7_,. is well-defined. If z € B,
then z € im(j) = ker(k), so k(x) = 0 and we may take y = 0 in this case, with [j(y)] = 0. In general
it follows that [j(y)] only depends on the class [z] of 2 in ET. To see that d" is a differential, i.e., that
d’_, od =0, just note that with notation as above, kj(y) = 0.

For r = 1 we identify F} = Z!/B! = E,/0 with E,, and note that di: E! — E!_; equals the
composite jk: E; — F,_;. Hence the E%-term is the homology of the chain complex

"'%Es—l (&Es(&Es_i_l — ...
Proposition 7.3. ker(d) = Z!*' /B! and im(d,) = Bi™'/BL, so there is a canonical isomorphism
ker(dy) _ Z{"/BY | Zit
im(dy,,) — B*Y/Br Bt

HS(Er,dT) — — E;"-l—l’

for each r > 1 and each s.
33



We call (E",d"), the spectral sequence associated to the unrolled exact couple in Definition

Proof. If x € Z7 satisfies d~([z]) = 0, then k(z) = i"(y) for and y € As_, with j(y) € B7_,. Hence
J(y) = j(y’) for some y € Ay, with i"~1(y/) = 0. Thus j(y — ') = 0, so y —y' = i(z) for some
z2€ A1, and k(x) =i""Y(y) =i"" Yy — ') =i"(2) is in im(i"). Hence x € Z7 1.

Conversely, if z € ZTT1, then k(x) = i"(2) for some z € A;_,_1, so k(z) =i"~!(y) with y = i(2), and
i(y) = ji(z) = 0. Thus di([z]) = [5(y)] = 0.

Asfrfl : Asfr v Asfl : As e As+r71 41) As+r
’x lj X lj x Jj
Esf'r Es Eerr

If u € Z] satisfies [u] = dj([v]) for some v € ZI, ., then [u] = [j(w)] for some w € A,y; with

k(v) = i"~'(w). Then i"(w) = ik(v) = 0, so j(w) € BLT!. Hence u € BT

Conversely, if u € B!, then u = j(w) for some w € A, with i"(w) = 0. Then i"~}(w) € Agyr_1
lies in ker(i) = im(k), so i"~!(w) = k(v) for some v € E,,. This relation shows that v € Z7_, and by
definition, d .([v]) = [j(w)] = [u], so [u] € im(d],,.). O

[[Define maps of exact couples. Maybe derived exact couples. When do two maps of exact couples
induce the same homomorphism of E,-terms, for some r > 27]]

7.2. E°°-terms and target groups.

Definition 7.4. Let
ZF =lmZz =(\Z;

be the subgroup of infinite cycles in E,, and let
By = colim B] = | | B;

be the subgroup of infinite boundaries. Let
ES =27 /Bg
be the E*°-term of the spectral sequence. For later use, let
RE = erim Z7
denote the derived E°°-term.

To justify the notation RET® in place of RZZ°, note that if the boundary group By, in a fixed
bidegree (s,t) is independent of r for » > m = m(s,t), then Rlim, Z{; = Rlim, Z{, /B, = Rlim, E{ ,.
If the spectral sequence collapses at a finite stage, or is locally eventually constant, then RE® = 0 for
all s.

In particular, we have inclusions

B* C im(j) = ker(k) C Z°
of (graded) subgroups of Ey, and an associated short exact sequence
mG) | zE o 7E
B B ker(k)
expressing the F°°-term as an extension.

If As_, = 0 for r sufficiently large, then Z! = ker(k) for all these r, so that Z2°/ker(k) = 0 and
im(j)/BS° = E. We shall give other sufficient conditions for the vanishing of this group in the next
subsection. On the other hand, if A;1,_1 = 0 for r sufficiently large, then B? = im(j) for all these r, so
that im(j)/B2° = 0 and E° = Z° / ker(k).

Definition 7.5. Let

(3) 0—

A_ =limA,
RA_ o, =Rlim A,
Ay = colim A,
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be the limit, derived limit and colimit of the bi-infinite sequence (A;)s.

We consider two possible target groups for the spectral sequence; the colimit A,, and the limit A_ .
Each comes with a natural increasing filtration.

Definition 7.6. Let Fs Ay = im(As — Ax) and FsA_ o, = ker(A_o — Ay), for each integer s.

Lemma 7.7. The filtration {FsAx}s of Ax is exhaustive, and the filtration {FsA_o}s of A_oo 18
complete Hausdorff.

Proof. The first claim is clear. For the second claim, use the lim-Rlim exact sequences for
0> FA oo — A o — im(A_ = As) =0

and

0—im(A_o — As) — Ay —> cok(A_ — As) = 0.

Proposition 7.8. There are natural isomorphisms

F A im(y) F,A_ o
= and — = [[ETC]].
Fs—leo Bsoo Fs—lA—oo H ]]
Proof. Consider the diagram

Ao ——— A : As Ao

\ J/j

k
Es.

The homomorphisms Ay — A, and j: Ay — E, induce isomorphisms

FSAOO ~ AS
F, 1A ker(Ag — Ay) +im(i: Ag_ 1 — Ay)

and
im(j: As = Es) As
jlker(As — As))  ker(Ag — An) +ker(j: Ay — Ey)

respectively, and the right hand sides are equal. Finally, j(ker(4s — As)) = B by passage to colimits
over 7 from the definition j(ker(As — Asyr—1)) = BI.
[[ETC, limit case]] O

7.3. Conditional convergence.

Definition 7.9. A homological right half-plane spectral sequence is a spectral sequence such that £, =0
for all s < 0. More generally, a spectral sequence with exiting differentials is a spectral sequence such
that in each bidegree (s, t) only finitely many of the differentials starting in that bidegree map to nonzero
groups.

T
Es,t

A homological left half-plane spectral sequence is a spectral sequence such that E7, = 0 for all s > 0.
More generally, a spectral sequence with entering differentials is a spectral sequence such that in each
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bidegree (s,t) only finitely many of the differentials ending in that bidegree map from nonzero groups.

Egy |

Let (E",d"), be the homological spectral sequence associated to an unrolled exact couple, as in
Definition [7.1] and Proposition In the right half-plane case, the following classical theorem suffices.

Theorem 7.10 (Cartan-Eilenberg(?)). Suppose that Es = 0 for all s < 0, so that A_o = As for all
s <0 and (E",d"), is a spectral sequence with exiting differentials.

(1) If A_ =0 then the spectral sequence converges strongly to the colimit As.
(2) If Ao = 0 then the spectral sequence converges strongly to the limit A_o = A_;.

In the homological left half-plane case, as well as in the case of whole-plane spectral sequences, the
utility of the following definition was explained by Boardman (1981 preprint, 1999). [[Check what Adams
writes in the Chicago lecture notes, or his 1971 survey of 1960s algebraic topology.]]

Definition 7.11. The spectral sequence (E",d"), associated to an unrolled exact couple converges
conditionally to the colimit Ao if A_oo =0 and RA_., = 0. It converges conditionally to the limit A_ .
if Ao =0.

Theorem 7.12 (Adams(?), Boardman). Suppose that Es = 0 for all s > 0, so that As = A for all
s>0 and (E",d"), is a spectral sequence with entering differentials.

(1) If the spectral sequence converges conditionally to the colimit A, and if RE® = 0, then the
spectral sequence converges strongly to that colimit.

(2) If the spectral sequence converges conditionally to the limit A_o, and if RE® = 0, then the
spectral sequence converges strongly to that limit.

Conditional convergence is a property of the unrolled exact couple, which can often be verified in terms
of its construction. The additional assumption that RE>° = 0 can often be verified in concrete cases, e.g.,
in the presence of finiteness assumptions. The theorem asserts that it combination, these two properties
suffice to ensure strong convergence. We shall only discuss a minimal path towards this result. The
reader should consult Boardman (1999) for a much more complete story, including comparison theorems
and results about when the sufficient conditions are also necessary.

Proof. In view of equation and Proposition in order to prove that FyAy /Fs_1Ac = E° it
suffices to prove that Z2°/ker(k) = 0. To establish strong convergence, we also need to prove that the
filtration {FsAs}s is complete and Hausdorff.

Definition 7.13. Let Q, = lim, im(i": A;_, — A;) and RQs = Rlim, im(i": A;_, — A;) be the limit
and the derived limit, respectively, of the image filtration

s Cim(i": Ag_p = Ag) C--- Cim(i: Ag_1 — Ag) C Ay

Lemma 7.14. There is a siz term exact sequence

(oo}

Z i i
— kers(k) 0 Qs — RE%® Fy RQ.1 -5 RQ, — 0.

Proof. For each r and s, there is a short exact sequence

r

- kerzk) A im(T T Ay, = Ag1) =5 im(i7: Ay — Ay) = 0.

Passing to limits over r, we get the asserted six term exact sequence. U

Corollary 7.15. If RE* =0, then each i: Qs—1 — Qs is surjective and each i: RQs_1 — RQs is an
isomorphism. Hence lims Qs — Q,, is surjective and limg RQ s — RQ,, is an isomorphism, for each m.
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By assumption Ay = A, so we have
Qo =limim(A_, — Ap) =lim Fs A,
T S
and

RQo = Rlimim(A_, — Ap) = Rlim F, A, .

Hence proving that Qo = 0 and RQy = 0 is equivalent to proving that {F; A, }s is complete Hausdorff.
By the corollary, when RE*° = 0 it will suffice to prove that lim; Qs = 0 and limg; RQs = 0. This will
then also imply that each Qs—1 = 0, so Z>/ker(k) = 0, as desired. By the following lemma, these
properties follow from the assumptions A_. = 0 and RA_., = 0. O

Lemma 7.16. If A_, =0 and RA_,, =0 then lim; Qs = 0 and limz; RQs = 0.

Proof. Consider the double limit system

UL im(i": Ag_1-p = Ags_1) *i>im(ir: As—p = As) —— ...

,

As—l As

where the vertical maps are inclusions. The limit of the s-th column is by definition Q. The limit of
the r-th row maps identically to the limit of the bottom row, i.e., to A_,.. Hence

lign Qs = lign liin im(i": Ag_, — Ag) & 1i£n lign im(i": A, — Ag) & li;n A_ 2 A .
For each s let
. As
roim(i": As_p — As)
be the completion of Ay with respect to the image filtration. The lim-Rlim sequence of the r-indexed
system of short exact sequences

. A,
0—im(i": Ag_, = Ag) — Ay — (i A S A —0

contains the exact sequence
0—-Qs — A, — A, — RQ, — 0,
which breaks into the two s-indexed systems of short exact sequences
0> Qs — Ay — Ag/Qs — 0
and R
0—- A;/Qs — As — RQs — 0.
These in turn give rise to the exact lim-Rlim sequences

0= 1limQs — Ao — lim A;/Qs — Rlim Qs — RA_o — Rl@mAS/QS -0

and
0 — lim A,/Q, — lim A, — lim RQ, —» Rlim A,/Q, — Rlim A, — Rlim RQ, — 0.
Here 4 4
hgnAs = hgnhin i A o A =] h?{nhgn (T A, o A = 117{110 =0,

since for each fixed r, the r-fold composite
AS—T H AS
im(i": Ag_o9p — As_) im(i": As—, — As)

i

is zero.
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The assumptions A_, = 0 and RA_,, = 0 now yield lims; Qs = 0, lims; 4,/Qs = Rlim, @, and

Rlim; As/Qs = 0. Combined with the vanishing of limg A;, this implies lims A5/Qs = 0, lims RQs = 0
and Rlim; As = Rlimg RQ;. In fact Rlimgy RQs = 0, since i: RQs_1 — RQ; is surjective for each s. O
Boardman in fact proves the following more precise result, the middle part of which he refers to as

the Mittag—Leffler exact sequence. This is a special case of the Grothendieck spectral sequence for the
composite of two limit functors, which was first (?) analyzed by Roos.

Proposition 7.17. lim, Q, = A_, there is a short exact sequence

0 — RlimQ@Qs — RA_ — limRQ, — 0,
and Rlimg RQ4 = 0.

8. EXAMPLES OF EXACT COUPLES

8.1. Homology of sequences of cofibrations. Generalizing the examples from Section [I| and Sec-
tion 3] consider a sequence of spaces

=X ,cXgCc---CX,1CX;C---CX

where each inclusion i: X,_; — X, is a cofibration and X = colim; X, ~ hocolimg X has the weak
(colimit) topology. For instance, X might be a CW complex and X its s-skeleton. Applying homology,
we obtain an unrolled exact couple

T

i Ho(Xeg) — Ho (X)) —— s Ho(Xy) —— s H(Xyp1) —s ..

B N Sy

H*(Xs—laXs—Z) H*(Xme—l) H*(Xs—i-l;Xs)

with Ay = H.(X;) and By = H,(X,, Xs—1). Each triangle is the long exact sequence of a pair, hence is
exact. The homomorphisms i = i, and j = j, preserve the internal grading, while k& = 0 has degree —1.
The E'-term is

Esl,t = Ho (X5, Xs-1)
and the d!-differential is
d;,t = j* 00: Hs—i—t(XsaXs—l) — Hs+t—1(Xs—17Xs—2) 5

i.e., the connecting homomorphism in the long exact sequence in homology for the triple (X, Xs_1, Xs_2).
Here Ay = 0 for s < 0, so we have a homological right half-plane spectral sequence, with exiting differ-
entials. By Theorem [7.10} it converges strongly to

Aso = colim H,(X,) = H.(X).

In the special case when X, = X () is the s-skeleton of a CW complex X, B}y = Hy (X, X(=D) =
Cy(X) and E}, = 0 for t # 0, so (E',d") equals the cellular chain complex of X, concentrated on the
horizontal axis. The E?-term equals the cellular homology, and the spectral sequence collapses at this
stage. These observations give a spectral sequence proof of the fact that cellular homology is isomorphic
to singular homology for CW complexes.

8.2. Cohomology of sequences of cofibrations. Applying cohomology to the same sequence of
spaces, we get another unrolled exact couple

-

e H¥ (X)) ——— H¥(X,) ——— s H*(Xyy) ————— H*(Xyo) ——— ...

[ (e
J J J

H*(XerlaXs) H*(Xs;Xsfl) H*(Xsthsz) ey
now with A5 = A_; = H*(X;-1) and E* = E_; = H*(X5,Xs-1). In this case i = ¢* and k = j*

preserve degrees, and j = § has degree +1. The associated spectral sequence is a left half-plane spectral
sequence with entering differentials, and converges conditionally to the limit

A_oo = lim H*(X,)
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since Ao, = colimgy H*(X,) = 0. By Theorem the spectral sequence converges strongly to this
limit if RE®® = 0. In general, the homomorphism H*(X) — lims; H*(X) is not an isomorphism, so this
spectral sequence is not always useful for the computation of H*(X).

Instead, one can consider the sequence of pairs of spaces

(X,0)=(X,X1)c(X,Xp)C---C(X,X;1)C (X, X,)C---C (X, X)

and apply relative cohomology. The result is an unrolled exact couple

*)H*(XaXSJrl) Jg}H*(XaXS) ]—>H*(X7Xsfl) ]—>H*(X7Xsf2) J—>

N

H*(Xerles) H*(XsaXsfl) H*(X5717X572) vy
where A* =A_;=H*"(X,X,_1)and E* = E_; = H*(X,, Xs_1). In this case i = j* and j = i* preserve
degrees, and k = § has degree +1. The associated spectral sequence has

Byt = BY, = H(X,, X.)
and d' = i* o §. In homological indexing it is concentrated in the left half-plane, hence has entering
differentials, and converges conditionally to the colimit

Ao = colim H*(X, X)) 2 H*(X)
whenever A_,, = lims H*(X,X;) = 0 and RA_,, = Rlim; H*(X,Xs) = 0. In view of the Milnor
lim-Rlim short exact sequence

0 — Rlim H*~ (X, X,) — H*(X,hocolim X,) — lim H*(X, X,) — 0,
S S S

where we use the equivalence X ~ hocolimg X, these conditions are always satisfied. By Theorem [7.12)

the spectral sequence therefore converges strongly to H*(X) whenever RE> = 0, e.g., if the spectral
sequence collapses at a finite stage.

8.3. The Atiyah—Hirzebruch spectral sequence. Replacing singular homology with a generalized
homology theory F., such as stable homotopy, topological K-homology or complex bordism, we instead
obtain an unrolled exact couple

o E*(XS—Q) 4l> E*(Xs—l) 41) E*(Xs) —Z> E*(XS-H) % .

T b T b e
Eo(Xs-1,Xs-2) B (X5, Xs-1) B (Xst1,Xs)
with associated spectral sequence having A, = E,(X,) and E, = F,(X,, X,_1). The E'-term is
E;,t = ES—O—t(XSa XS—l)
and the d!-differential is jO, as before. This is now the connecting homomorphism in the long exact

sequence in E,-theory, for the triple (X, Xs—1, Xs—2). Again this is a right half-plane spectral sequence,
converging strongly to the colimit

Ay = colim B, (X;) 2 E (X).

In this generality the special case X, = X(®) is interesting, since
Bl = Eeo(X©),X0D) = Cy(X; Ey)

is the group of cellular s-chains of X with coefficients in the coefficient group E; = Ey(x) = m(FE) of
the generalized homology theory E.. The d'-differential is the boundary homomorphism in the cellular
chain complex C,(X; E}), so the E2-term

E?,t = Hy(X; Ey)

is the s-th cellular homology group of X with coefficients in E;. This example is the F,-theory Atiyah—
Hirzebruch spectral sequence
E?)t = HS(X; Et) =5 Es+t(X)
converging strongly to F.(X). The target group is filtered by the images
FuB.(X) = im(B,(X,) — E.(X))
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and there are isomorphisms FsF,(X)/Fs_1E«(X) = (E°)., for all integers s. If H,(X) and E. = E.(x)
are concentrated in even degrees (meaning that Hs(X) = 0 for s odd and E; = 0 for ¢t odd), and at least
one of these graded groups are torsion-free, then

E?, = H,(X;E.) = H.(X) ® E,
is concentrated in bidegrees (s,t) with both s and ¢ even. It follows that each differential
desi Egy — B v g

must be zero for bidegree reasons, so that the spectral sequence collapses at the E2-term, with E? = E>.
This happens frequently enough to be worthy of note, for instance if E = KU or MU represents complex
K-theory or complex (co-)bordism.

The Atiyah—Hirzebruch spectral sequence for stable homotopy theory

Eit = HS(X”TES‘) s 77;9+t(X)

is sometimes useful in conjunction with the Adams spectral sequence.
The cohomological version of the Atiyah—Hirzebruch spectral sequence is the spectral sequence

Byt = H*(X; B') = E*T'(X)
with entering differentials, where E* = E'(x) = m_;(E), associated to the unrolled exact couple with
ASt = Bstt(x, X(5-D)
and
EY = prti (X6 XYy = 0% (X BY).

It converges conditionally to the colimit, and converges strongly if RE., = 0.

The original paper of Atiyah and Hirzebruch (1961) concerned the generalized cohomology theory
given by topological K-theory, with K* = K_; = Z for t even and K! = K_; = 0 for ¢ odd, so the
K-cohomology Atiyah—Hirzebruch spectral sequence

Ey' = H*(X; K') = K*T"(X)
collapses at the Fs-term for each space X whose cohomology H*(X) is concentrated in even degrees.
[[Describe ds-differential in terms of cohomology operations.|]
8.4. The Serre spectral sequence. Consider a Serre fibration p: £ — B, with B path-connected.
Suppose that the base space B is a CW complex, with skeleton filtration {B(*)},. Define a filtration
)=F,CFEyC---CFEs_1CE;C---CE
of the total space E by taking the preimages of this skeleton filtration:
Es = pil(B(S)) .

We get an unrolled exact couple with As; = Hsy(Es) and Es; = Hspi(Es, Es—1), and an associated
spectral sequence
Esl,t = Hsyt(Es, Es—1)

converging strongly to Hsy(E). We use the hypothesis that p: E — B is a Serre fibration to rewrite
the E'-term in terms of the cellular chains on B. Let

¢ =[] [[D* — BY
(03 «

be the combined characteristic maps of the s-cells of B, and let ¢, : 9D* — B®~1 be the attaching map
of the a-indexed s-cell, i.e., the restriction of ®, to dD* C D*, viewed as a map into B®~1) ¢ B(),
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Let @} F = D® xp E be the pullback of E along ®,, and let ¢}, E = 0D® xp E be its restriction to
oD®.
1B @ E

N

FEs_ 4 E E
oD? D? P
Pqo
Pa
RB(s—1) B(s) B

By excision, the sum of homomorphisms

@H*(®3E7 ¢ZE) i) H*(ES7 Es—l)

is an isomorphism. For each «, the map
(PLE,¢LE) — (D° x ®LE,0D° x PLE)

is a homotopy equivalence of pairs, since D? is contractible. For any fixed choice of base point dy € D?,
mapping to b, = ®,(dy) € B, the inclusion

Fba :p_l(ba) = {ba} xp B & {do} X ps q)zE C (P;E

is a (weak) homotopy equivalence, in view of the long exact sequence in homotopy for the Serre fibration
®* E — D?, again using that D? is contractible. Hence there are preferred isomorphisms

H,(®LE,¢LE) = H,(D* x ®%E,0D° x ®*E) = H,(D*,0D%) ® H,(®"E) = H,(D*,0D*) @ H,(F},,) .
Thus
El, = H(F,)

with by, = ®,(dp), varying with . By definition this is the group of cellular s-chains Cs(B;.74(F)) of
B with local coefficients in the system % (F'), taking b € B to H(Fp).

A local coefficient system on B can be defined as a functor from the fundamental groupoid II; (B)
of B to the category of abelian groups. The objects of II;(B) are the points of B, and a morphism
from by to by is a homotopy class [f], relative to the endpoints, of paths f: I — B from b; to by. With
this convention, the composite of [f] and the class [g] of a path g: I — B from by to b; is the class
lg] o [f] = [g * f] of the path g * f from by to by. When B is path connected, all objects of II;(B) are
isomorphic, and for any choice of base point by € B, the inclusion 71 (B, by) C II;1(B) of the fundamental
group of B based at by, viewed as a groupoid with one object, is an equivalence of categories.

The local coefficient system 7 (F) takes b € B to Hy(F}), where Fj, = p~1(b) is the fiber of p: E — B
over b. To the homotopy class [f] of a path f from b; to by, as above, we associate the composite
isomorphism

o

[fla: Hy(Fy,) — Hi(I xp E) <— Hy(Fp,) .
Here each inclusion F,, — I xp F is a (weak) homotopy equivalence, since I xp E — I is a Serre
fibration, and the interval I is contractible. Exercise: Prove that if H: I x I — B is a homotopy, relative
to the endpoints, from f to f': I — B, then [f]. = [f']«.
A boundary homomorphism

8: Cy(B; H4(F)) — Cs_1(B; H4(F))

can be defined so as to agree with d} , under the identifications above. [[ETC]]

In particular, (C.(B;#4(F),0) is a chain complex, and its homology H.(B; .7 (F)) is the cellular
homology of B with local coefficients in % (F). This then computes the E?-term of the homological
Serre spectral sequence

E2, = Hy(B; #4(F)) =, Hy(E).

If B is simply-connected, then J#(F') is isomorphic (as a coefficient system) to the constant system
at Hy(Fp,), for any fixed choice of base point by € B, so in this case we can write the E2-term as
H,(B; H(F)), with ordinary coefficients.
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[Relate to m-equivariant homology for the universal covering space B, with = = w1 (B, by).]]
The cohomological version of the Serre spectral sequence is associated to the unrolled exact couple
with
A%t = HSTHE, E,_1)

and
Bt = HY(E,, B,_1).
It has
Byt = O°(B; A (F))
and

Ey' = H¥(B; #4(F)) =, HTY(E).

It is concentrated in the first quadrant, in the cohomological indexing, and converges strongly to the
colimit H*(E).

[[There are many examples of calculations with Serre spectral sequences in the literature, e.g., for
loop-path fibrations QX — PX — X, or for homogeneous spaces H - G — G/H or G/H — BH —
BG]

8.5. Homotopy of towers of fibrations. Turning in a different direction, consider a tower of spaces
Y 5 o5 Y 5yl 5y 5y t=x

where each map p: Y® — Y*~! is a Serre fibration, and Y = lim, Y* ~ holim, Y*.
We assume that Y is not empty, so that we can choose a base point yo € Y, and take its image y;
under Y — Y® as the base point for Y*, for each integer s. Let

F? :p_l(ysfl) = {ysfl} Xys—1 Y?

be the fiber of p: Y* — Y~ ! at y,_1, based at ys, so that there is a long exact sequence of homotopy
groups

S s Ss— o s
s = (F ayS) — m (Y 7?45) — m (Y 1ays—1) — Tt (F*,ys) = o

We would like to link these together to an unrolled exact couple, but note that in general the end
e = 7-"1(1.7‘87ys) — 7T1(Ys7ys) — ﬂ'l(YSilays—l)
1} _
— WO(FS’yS) — 7"-O(YVsays) — 71'O(YS 1,9571)

of this sequence is not a diagram of abelian groups, and we might not be able to extend the sequence to
the right with trivial groups.

Bousfield-Kan (1972, Section IX.4) address this problem by considering “extended” spectral sequences,
which consist of possibly non-abelian groups and pointed sets near the edge.

Another solution is to assume that each Y*® is a homotopy commutative H-space, with y, as neutral
element, and that each map p: Y* — Y71 is strictly compatible with this H-space structure. Then
each fiber F® is also a homotopy commutative H-space, and the diagram above is one of abelian groups
and group homomorphisms. It is still not necessarily exact at mo(Y*~1,ys_1), since mo(p) does not need
to be surjective. We must therefore make this additional assumption. It is satisfied, for instance, if each
space Y? is path-connected.

Under these additional hypotheses, we get an unrolled exact couple

o T (VT ) — s (V2 ) —— (V5 1) —s (Y2 gy ) —— ..
e
T (F5 ygy1) T (F*, ys) T (F 7 ys 1)
with i = p, of degree 0, j = 9 of degree —1, and k of degree 0. The associated spectral sequence
BV = m(F*ys) =5 m(Y, y0)

has entering differentials and converges conditionally to the limit lim, 7, (Y®, y5). [[Claim: If RE. = 0,
then Rlim, 7. (Y®,ys) = 0 and the spectral sequence converges strongly to m.(Y, yo).]]
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8.6. Homotopy of towers of spectra. The difficulty with the lack of abelian group structures, and
lack of surjectivity at g, is not present when we consider towers of spectra. Consider a diagram of
spectra

3

s Ys Lysl Y0=y
and let Y°° = holim, Y®, so that there is a Milnor lim-Rlim short exact sequence
0— RlsimwnH(Ys) — (V) — lignwn(YS) —0.
Let K° be the homotopy cofiber of the map i: Y**! — Y%, so that there is a Puppe cofiber sequence
yort L ye Ly g 2wyt
We let Y =Y and K® = x for all s < 0. Applying homotopy to these spectra, we get an unrolled exact

couple of graded abelian groups

)

s m (Y52) v T (Y5t LN 7. (V) —— m (Y57 —— ..

NN

7T*(KS+1) W*(Ks) W*(K‘S_l)

with ¢ = i, and j = j, of degree 0, and k = 0, of degree —1.
In homological indexing, we would write As; = 714 (Y %) and Eg; = msy (K %), for s < 0, but we

switch to Adams indexing A%* = A_,; and E*' = E_;; so that

As,t — Wtfs(YS)

Es’t = Ft_s(Ks) .
The associated spectral sequence

EP =1 o(K®) =4 m—s(Y)
has entering differentials. By definition, it converges conditionally to the colimit Ao, (= A7) = 7, (Y)
if the two groups
A_oo(= A%) =limm, (V) and RA_ (= RA*) = Rlim 7. (Y®)

both vanish. By the lim-Rlim exact sequence recalled above, this is equivalent to the condition that
m (V) =0, i.e., that holims Y* ~ .

Proposition 8.1. The spectral sequence
E?t = Wt_S(KS) :>s ’/Tt_S(Y)

associated to the tower --- —Y* = Y1 — ... 5 Y% =Y converges conditionally to the colimit 7.(Y)
if (and only if) holims Y*® ~ x. If RE., = 0 then the spectral sequence converges strongly to that colimit,
equipped with the descending filtration by the image subgroups F* = im(m.(Y*) — m.(Y)).

The mod p Adams spectral sequence converging to 7, (Y)I/)\ will be constructed as a special case of

this spectral sequence, where we make special assumptions about the Puppe cofiber sequence displayed
above, so as to be able to express the Es-term of the spectral sequence in purely algebraic terms.

9. THE STEENROD ALGEBRA
9.1. Steenrod’s reduced squares and powers.

Theorem 9.1. There are natural transformations
Sq': H"(X;Fy) — H" (X Fy)

fori >0, of contravariant functors from based spaces to abelian groups, called Steenrod’s reduced squares.
These satisfy Sq°(z) = z, Sq¢*(z) = B(z) (the Bockstein homomorphism associated to the extension
Fo — Z/4 — F3), Sq'(x) = 22 for i = |z|, and Sq¢*(x) = 0 for i > |z|. They also satisfy the internal
Cartan formula
Sqt(xy) = Y Sq'(x)S¢ (v)
itj=k
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SqtSqt =0 Sq'Sq* = S¢°

Sq¢'Sqg®* =0 Sq¢*Sq* = Sq¢*Sq*

Sq*Sq* = Sq¢° Sq¢*Sq® = Sq° + Sq*Sq*
S¢*Sq* =0 Sq'Sq®> =0

Sq¢*Sq* = Sq¢° + Sq¢°Sq S¢*Sq® = Sq¢°Sq*

Sq'Sq® = Sq” Sq¢*Sq® = Sq¢°Sqt

S¢*Sq* = Sq” Sq¢*Sq* = Sq°Sq*

Sq¢'Sq" =0 Sq*Sq® = Sq"Sq*

S¢*Sq® = Sq"Sq* Sq*Sq* = Sq"Sq* + Sq¢°Sq®
S¢°Sq* =0 Sq'Sq® = Sq¢°

Sq¢*Sq" = Sq° + Sq¢°Sq S¢*Sq® =0

Sq'Sq’ = S¢” + S¢°Sq" + Sq"S¢? Sq¢°Sq* = Sq"S¢”

Sq'Sq’ =0 Sq*Sq® = Sq'° + S¢°S¢q'
Sq¢*Sq" = Sq¢°Sq* Sq*Sq® = Sq'° + S¢*Sq?
Sq¢°Sq° = Sq¢°Sq* Sq°Sq* = Sq"Sq?

Sq'5q'° = Sq'! S¢25¢° = Sq'°5¢"

S = Sgtt Sq*Sq7 = Sq' + S¢°Sq?
Sq°Sq° =S¢t + S¢°S¢? Sq°Sq° = S¢”Sq® + S¢°Sq’
Sq"Sq* =0

FIGURE 9. The Adem relations at p = 2 in degrees < 11

and the Adem relations

@ o
Sq"Sq" = ( 09 )Sq”b‘JSqJ
j=0

for 0 < a < 2b.

Proofs can be found in Steenrod and Epstein (1962).
By naturality, the internal Cartan formula for the cup product zy = z Uy is equivalent to an external
Cartan formula for the smash product = A y. See Figure [J] for the Adem relations in degrees < 11.

Ezample 9.2. The squaring operations for X = RP?° can be calculated as follows: Consider the total
squaring operation Sq(x) = >_,5,5¢'(x). Then Sq(zy) = Sq(x)Sq(y). In H*(X;Fy) = H*(RP®;F,) =
Fo[u] with |u| = 1 we have Sq(u) = u + u?, so Sq(u") = (u+u?)" = Y1 (7)u"™. Hence Sq'(u") =

(2w i

We outline one possible construction of the squaring operations. Let H, = K (IF3,n) be an Eilenberg—
Mac Lane complex of type (Fz,n), i.e., a space with 7;(H,) = Fy for ¢« = n and 0 otherwise. For n =0
we may take Hy = Fy. For n > 1 we may construct H,, from the Moore space S™ Uy ™! by the method
of killing homotopy groups. Note that H; ~ RP°.

There is a universal class ¢, € H "(H,;Fq) that corresponds to the identity homomorphism under
the isomorphisms H"(H,;Fs) = Hom(H, (F,),Fy) = Hom(Fy,Fy). By a theorem of Eilenberg and
Mac Lane, there is a natural isomorphism

[X,H,] ~ H"(X;F,)

that maps the homotopy class of f: X — Hy, to f*(¢n). See Hatcher (2002, Theorem 4.57).
The smash product ¢, A t,, € H*"(H,, A H,;F3) is represented by a map

¢: Hy A Hy,, — Hap, .
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The composite ¢y, where v: H, AH,, — H, N H,, denotes the twist map, represents the same cohomology
class, hence there is a homotopy I+ A H, A H, — Hay,, from ¢ to ¢y. We identify the interval I with the
upper semicircle in S', and reinterpret this homotopy as a Cy-equivariant map S}r ANH, NH, — Hoy,
where the generator of Cy takes (s,z,y) to (—s,y,x), and acts trivially on the target. Equivalently, it
provides a map

¢1: S A, Hy A H,, — Hayp
which expresses the homotopy commutativity of the cup product ¢. There exists unique extensions, up

to homotopy, ¢y : Sﬁ Acy, Hy AN H,, — Hy, of this map, for all & > 2, where Cs acts antipodally on S*.
In the limit, these define a homotopy class of maps

O Sio /\C2 Hn/\Hn —>H2n7

where S is a contractible space with free Cy-action. We call Do (H,,) = S Ne, Hy N\ Hy, the quadratic
construction on H,. The structure map ®: Dy(H,) — Ha, is part of the F, ring spectrum structure
on the Eilenberg—Mac Lane spectrum H = {n — H,}. Let

V:RPE A H, — S Ac, Hy A Hy,

be given by ([s],z) = [s,z,z], for s € S with image [s] € RP*® = §°°/C,. The composite map ®V
induces a homomorphism

(®V)*: H*(Hyy Fy) — H*(RP™;Fy) @ H*(H,;Fy).

Here H*(RP®°;Fy) = Fa[u] with |u| = 1, so we can write (®V)*(12,) in a unique way as a sum

n

(BV) (t2n) = > u" " © Sq (1),

=0

for some well-defined classes Sq*(t,,) GNI:I”“(H,L; Fy), with 0 < i < n. We define Sq'(1,) = 0 for i < 0
and for ¢ > n. For a general class x € H"(X;Fy), write x = f*(i,) for a map f: X — H,, and define

Sq'(x) = f*(S¢'(tn)) € H" (X Fa).
This defines an operation
Sq': H™(X;F3) — H™"V(X;TFy)
which is obviously natural in X.
It is easy to see that Sq"(z) = ¢*(x A x) = 2 for |z| = n, while checking that S¢°(x) = = and

Sq'(z) = B(z) requires more work. [[Relate S¢"~!(z) to zU; x derived from the commuting homotopy.]]
The situation at an odd prime p is similar.

Theorem 9.3. There are natural transformations
P HM(X;F,) — H" P20V (X F,)
fori >0, of contravariant functors from based spaces to abelian groups, called Steenrod’s reduced powers.
These satisfy P°(x) = x, Pi(x) = 2P for 2i = |x|, and P'(x) = 0 for 2i > |z|. They also satisfy the
Cartan formula
Pr(zy) = Y Pi(x)P'(y)
itj=k

and the Adem relations

fa/p ,
PePt =3 (-1)" <(p A 1) patb=i pi
=0 a—pj

for 0 < a < pb, and
[a/p] . [(a—1)/p] .
((p—=1)(b—J) b—j pj ((p—1)(b—j)—1 b—j 3 pj
Pegpb = § (=1)et ((p 1)) gpett-ipi _ _1)ati ‘ petb=igpi
¥ oy (00 S e (0209

Jj=0 j=0

for 0 < a < pb. Here (3: f["(X;]Fp) — ﬁ”“(X;IFp) is the Bockstein homomorphism associated to the
extension F, — Z/p* — F,, which satisfies 3* = 0.
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n | admissible Sq! of degree n

0 Sqo

1] Sqt

2 | Sq?

3| S¢3, 9¢%Sq"

4| Sq*, Sq¢35q¢

51.5¢°,5¢*Sq"

6| Sq%,5¢°Sq¢, Sq*Sq?

718q¢7,5¢°Sq", Sq°Sq?, Sq*Sq*Sqt

8 | S¢%,5¢"Sq", Sq°Sq?, Sq°Sq*Sq'

9| 8¢°, 9¢°Sq", 84" Sq?,54°Sq*, Sq°Sq*Sq*
10 | Sq'°, S¢°Sq', S¢®Sq?, Sq”Sq>, Sq"Sq*Sq', Sq®Sq¢3Sqt
11 Sq“,SquSql,Sq95q2,5q85q3,5’q85q25’q1,Sq75q35q1

FI1GURE 10. The admissible monomials at p = 2 in degrees < 11

The first few p-primary Adem relations (for 0 < a < p and b = 1) are
-2
papl = (~1) <p )P“H
a

and
a 1__ap_1 al__ap_2 a+1
PﬁP_(l)(a)ﬁP+ (=1) (a_1>P+B.

They imply that (P)® is a unit in F,, times P?, for all 0 < a < p, that (P!)? = 0, and that PP~!3P! =
3pr — prj.

9.2. The Steenrod algebra.

Definition 9.4. Let the mod 2 Steenrod algebra &7 = 7 (2) be the graded (associative, unital) Fo-algebra
generated by the symbols Sq' of degree i for i > 0, subject to the relations Sq° = 1 and Sq*Sq® =
>, (°-19)Sq =1 Sg7 for 0 < a < 2b.

a—2j
For each finite sequence I = (i1, ...,4) of non-negative integers we write

Sql =S¢ - ... Sq*

for the product in </. We say that I has length £ and degree iy + - + iy.
For any based space X, the reduced mod 2 cohomology H*(X;Fs) is naturally a left o/-module, with
the action given by

Sql(z) =S¢ (... (Sq" (x))...).
We write
Ao/ @ H*(X;Fy) — H*(X;Fy)

for the left module action map.

If iy < 2i,, 1 for some 1 < s < £, then the product Sq’ can be rewritten in terms of other products Sq”’
with lower moment ) _sj, < > sis. Likewise, if some i, = 0, then the product Sq! can be rewritten as
a Sq’ of shorter length. Hence only the monomials Sq! with I admissible, in the sense of the following
definition, are needed to generate &7 additively.

Definition 9.5. I = (i1,...,4,) is admissible if is > 2is4q for all 1 < s < ¢, and if each iy > 1. The
empty sequence I = () is admissible of length 0, and Sq¥ = 1.

See Figure [I0] for the admissible monomials in degrees < 11.

Theorem 9.6. The admissible monomials Sq’ are linearly independent, hence form a vector space basis
for the Steenrod algebra:

o =TFo{Sq’ | I admissible} .

This can be proved by evaluating the action of the Sq’ on the cohomology of products X = (RP>)"
of many copies of RP*°, see Steenrod and Epstein (1972, Theorem 1.3.1).
46



n | admissible P! of degree n
o] PO
LB
4| Pt
5| B8P, P13
6 | BP'3
8| P?
9 | BP2, P28
10 | BP?13
12| PP
13 | pPP, PPj3
14 | BPPS
16 | prtl prp!
17 | pprti prtig gprpl prpig
18 | pPPH13, BPPPLR

FicURE 11. The admissible monomials at p = 3 in degrees < 19

Definition 9.7. For each odd prime p, let the mod p Steenrod algebra &/ = &/(p) be the graded
IF,-algebra generated by the symbols P’ of degree 2i(p — 1) for i > 0 and S of degree 1, subject to the
relations P° = 1, the Adem relation for P*P® when 0 < a < pb, the Adem relation for P*3P" when
0 <a<pb, and 5% = 0.
For each finite sequence I = (e, i1,€1,...,0¢,€7), with i5 > 0 and €, € {0, 1} for each s, we write
PI _ Beopilﬂel R Pigﬁeg

for the product in «7. Here 3° = 1. The degree of I is eg + 2i1(p — 1) + €1 + -+ + 2ip(p — 1) + €.
For any based space X, the reduced mod p cohomology H*(X;F),) is naturally a left .»7-module, with
the action given by

Pl(a) = (P (B (... (P*(B(2))).-.)))-
We write
Ao/ @ H(X;F,) — H*(X;TF,)
for the left module action map.

Definition 9.8. T = (eg,i1,€1...,1%p,¢€0) i admissible if is > €5 + pisqq for all 1 < s < £, and if each
is > 1. The empty sequence I = () is admissible of length 0, and PO = 1.

See Figure [11]| for the admissible monomials for p = 3 in degrees < 19.

Theorem 9.9. The admissible monomials P' are linearly independent, hence form a vector space basis
for the Steenrod algebra:

o =TF,{P" | I admissible} .
See Steenrod and Epstein (1972, Theorem VI1.2.5).

9.3. Indecomposables and subalgebras.

Definition 9.10. For each prime p, let ¢: &/ ®.27 — &/ be the algebra multiplication map, let n: F, — o/
be the unit map, and let e: & — F, be the counit map, so that en = 1. Let I(&/) = ker(e) be the
augmentation ideal. It equals the ideal of elements of positive degree in .&/. The decomposable part of
o/ is the image
I()? =im(¢: () @ () — I(A))
and the indecomposable part of o is the IF,-vector space
Qo) = I() [ 1(/)?.
Theorem 9.11. The squaring operation Sq* is decomposable if and only if k = 2° for some i > 0, so
Q) =Fa{S¢” | i >0}

Hence the elements Squ for i >0 form a minimal set of algebra generators for o = o/ (2).
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Proof. To prove that Sq2 is indecomposable, consider its action on u? in H*(RP>;Fy). We have
qu(uzl) = (il)uziﬂ', which is 0 for 0 < j < 2 and equals 2/t! for j = 2¢. It follows that S¢* cannot
be written as a sum of products of positive-degree operations.

The Adem relation for S¢*Sq® with 0 < a < 2b shows that S¢®*? is decomposable if (b Y #£0 mod 2.

a

If k is not a power of 2, then k = a + b with 0 < a < b and b = 27, for some i. Then (bgl) =1 mod 2
by the case p = 2 of the following lemma, since b —1=1+2+---+2""! and ((1)) = (1) =1. O

Lemma 9.12. Letn=ng+nip+--- —l—ngpe and k =ko +kip+---+ kgpe, with 0 < ng, ks < p for all

s. Then ,
n) = H <n5> mod
pr— po
<k o ks

Proof. The coefficient of 2% = [], z*?" in

14+z)"= H(l + o) = H(l + 2P )" mod p

S S

is the product over s of the coefficient of z*sP" in (1 4 2P )". O

Theorem 9.13. The power operation P* is decomposable if and only if k = p* for some i > 0, so
Q) = Fy{8,P"" | i >0}.

Hence the elements 3 and pr' fori >0 form a minimal set of algebra generators for of = of (p).

Example 9.14. For p = 2, the subalgebra of .2/ generated by Sq' is the exterior algebra
A(0) = E(0) = F»{1, 54"}

The subalgebra of .27 generated by Sq' and Sq¢? is the 8-dimensional algebra

A1) = Fo{1, 8¢, S¢*, Sq®, S¢*Sq*, S¢*Sq*, S¢° + Sq*Sq*, Sq°Sq'} .
It can be displayed as follows, where for typographical reasons we write S¢2Sq® for Sq® + S¢*Sq".

Y /ng\

11— 9¢! Sq¢3Sqt Sq*Sq® —— S¢PSqt

Sq?
\) SqQSql

The arrows of length 1 connect 6 to Sq'6, and the arrows of length 2 connect 0 to Sq¢?0, for § € A(1) C <.
[[Define A(n) for general n?]]
Ezample 9.15. For p odd, the subalgebra of .o/ generated by 3 is the exterior algebra
A(0) = E(0) = F,{1, 8}
The subalgebra of o7 generated by 5 and P! is the 4p-dimensional algebra
A(1) = F,{1,8, P', 8P', P'3,8P'B,..., PP=1, BPP~1, PP=13, BPP~18, PP — BPP, BPPB}.
For p = 3 it can be displayed as follows, where we use the notation [P?, 5] = PP — SPP.

\5

ﬂPlﬁ P2 PpﬂﬁﬂPpB

The arrows of length 1 connect § to 56, and the arrows of length 4 connect 6 to P6, except the arrows
labeled ‘2°, which connect @ to 2P'6 = —P'. The arrow from B8P to the symbol ‘+’ is meant to express
that P! applied to P! is the sum BP? + P28.
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[[Define A(n) for general n?]]

9.4. Eilenberg—Mac Lane spectra.

Definition 9.16. Let H = HF, denote the mod p Eilenberg-Mac Lane spectrum, with n-th space H,,
an Eilenberg-Mac Lane complex of type (F,,n), for each n > 0. The structure map o: X H,, — Hy41 is

left adjoint to a homotopy equivalence ¢: H, = QH, 1, for each n > 0.

There are maps n,,: S™ — H,, and pairings ¢, : Hpy A H,, = Hpy 4y, suitably compatible with the
spectrum structure maps, which define a unit map 7: S — H and a pairing ¢: H A H — H that make H
a homotopy commutative ring spectrum. In particular, p(n A1) ~ 1~ ¢(1 An) and ¢(p A1) ~ d(1 A P).

[[This multiplication can be refined to that of an Fo, ring spectrum, or a commutative structured ring
spectrum.]]

Proposition 9.17 (Whitehead). There are natural isomorphisms
H,(Y;Fp) 2m(HAY)=[S",HAY]
and
H"Y;F,) 2n_,F(Y,H)=[Y,X"H]

for all spectra Y and integers n.
The unit map n induces the mod p Hurewicz homomorphism

hi =n.: m,(Y) — H,(Y;F,).
The multiplication ¢ induces the smash product pairing
A=¢e: H"(X;Fp) @ H'(Y;F,) — H™ (X ANY;F,).

Using the Serre spectral sequence for the loop-path fibration over H,,, Serre and Cartan were able to
calculate H*(Hp;F,) for p = 2 and for p odd, respectively. Recall the fundamental class ¢, € H"(H,;Fp).

Proposition 9.18 (Serre (1953), Cartan (1954)). The homomorphism
St — H*(Hp; Fy),

mapping X" to 0(t,) for each 0 € &, induces an isomorphism in degrees * < 2n. Hence there is an
isomorphism

o = H*(H;F,) = [H,H]_.

of graded algebras, taking each class 0 € o/ to its representing homotopy class of maps H — L' H, where
1=10].

The second claim follows from the first, because of the exact sequence
0 — Rlim """~ Y(H,,;F,) — H'(H;F,) — lim H""(H,;F,) — 0.

The limit system stabilizes for n > 4, so the derived limit is zero.
We collect a few lemmas relating maps of spectra to homomorphisms of cohomology groups.
Lemma 9.19. Let
K=\/s"H
u

be a wedge sum of suspensions of H, and suppose that K is bounded below and of finite type. Then the
canonical map

K= ][s™H
is an equivalence, and the d-invariant
d: [X, K] = Hom, (H*(K;F,), H*(X;F,)
is an isomorphism, for any spectrum X. In particular,
d: m(K) — Hom', (H*(K;F,),F,).

We discussed this earlier, in subsection [6.3}
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Lemma 9.20. Let 7.(Y) be bounded below, with H.(Y;F,) = Fp{cw}v of finite type. Let {ay}, be the
dual basis for H*(Y;F,), with |ay| = |ow| = ny. Let ay: S™ — HAY and a,: Y — X" H also denote
the representing homotopy classes of maps. Then the sum of the composites

1Ay, dNA1

YSWwH=HANS"™ — HANHANY — HAY

is an equivalence

\/E"uHiHAY

and the product of the composites

HAY 2% gasmemg 2 gagme — sy

is an equivalence
HAY = [[=™H.
n

Proof. The two maps induce the isomorphisms

PsmF, = H(V;F,) — [[5™F,

at the level of homotopy groups. O

Lemma 9.21. Let j: Y — K be a map of spectra, with K ~\/ X"+ H bounded below and of finite type,
and suppose that j*: H*(K;F,) — H*(Y;F,) is surjective. Then a map f: X — Y induces the zero
homomorphism f*: H*(Y;F,) — H*(X;F,) if and only if the composite jf: X — K is null-homotopic.
Proof. By Lemma [9.19

[X, K] =2 Homy (H*(K;F,), H(X;F,))
is an isomorphism. Hence j f is null-homotopic if and only if f*;j* is zero. By assumption j* is surjective,
so this holds if and only if f* is zero. (I

Corollary 9.22. LetY be bounded below, with H,(Y;F,) of finite type. Then a map f: X — Y induces
the zero homomorphism f*: H*(Y;F,) = H*(X;Fp) if and only if the composite
x-Ly LHay
is null-homotopic, where
j=nAL:YZSAY — HAY

induces the mod p Hurewicz homomorphism.

Proof. We only need to verify that j* is surjective. It is dual to the homomorphism j,.: H.(Y;F,) —
H.(H ANY;Fp) induced by the map

IAgAL: HAY 2 HASAY — HAHAY .
The ring spectrum multiplication
pN1L:HANHANY — HAY
induces a right inverse H,(H AY;F,) — H.(Y;F,) to j., showing that j. is (split) injective and j* is
(split) surjective. O
10. THE ADAMS SPECTRAL SEQUENCE
10.1. Adams resolutions.

Definition 10.1. A spectrum Y is bounded below if there exists an integer N such that 7.(Y) = 0 for
all * < N. Tt is of finite type if m,(Y) is finitely generated in each degree. If Y is bounded below, then
it is of finite type if and only if H,(Y;Z) is finitely generated in each degree [[explain this?]], and we
say that it is of finite type mod p if H.(Y;F,) is finitely generated in each degree. This is equivalent to
asking that H.(Y;F,) is finite in each degree.

Hereafter we fix a prime p, and briefly write H,.Y = H,.(Y;F,) and H*Y = H*(Y;F,) for mod p
homology and cohomology.
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Definition 10.2. An mod p Adams resolution of a spectrum Y is a diagram of spectra
Y2yl L y0——
BES X N
N N N .
h N lj o b AN J] 0 h N J/J
K? K! K°

where 9: K* — XYt for each s > 0, such that (a) each diagram

ysrl ys Iy s 9 sys+l

is a homotopy cofiber sequence, (b) each spectrum K* is a wedge sum of suspension of mod p Eilenberg—
Mac Lane spectra, that is bounded below and of finite type, and (c) each map j: Y — K*® induces a
surjection j*: H*K® — H*Y® in mod p cohomology.

Writing K° =\/,, X"+ H, the finiteness condition in (b) is equivalent to asking that {u | n, < N} is
finite for each integer N. By induction on s it implies that each Y* is bounded below and of finite type
mod p. In view of the long exact sequence

i*

s HY YY) g D gy D gryst

condition (c) is equivalent to asking that i*: H*Y® — H*Y %! is zero, or equivalently, that 0*: H*(XY*t1) —
H*K?* is injective, for each s > 0. By the universal coefficient theorem, these conditions are also
equivalent to asking that i,: H.Y*t! — H,Y* is zero, that J«: H,Y® — H,K? is injective, or that
O.: H, K, — H,(XY*T1) is surjective, for each s > 0.

Lemma 10.3. IfY is bounded below and of finite type mod p, then it admits an Adams resolution.

Proof. Starting with Y° = Y, suppose that Y* has been constructed, for some s > 0, as a bounded
below spectrum of finite type mod p. Let K* = H AY?®, and let j = n A 1 be the map

Y =SAY S HAYS = K°.
By Lemma [9.20) K* ~\/ "« H is a wedge sum of suspensions of H. Here
K =HY*=PI"F,

is bounded below, and

H.K°>*H,H®H,Y?®
is a tensor product of bounded below IF,-vector spaces of finite type, hence is again bounded below and of
finite type. The map j induces a surjection j*: H*K® — H*Y*® by the proof of Corollary It suffices

to prove that j.: H,Y® — H,K?® is injective, but this is the homomorphism induced on homotopy by
the map

INj=1AnAL: HAY =HASAY?) —HANHAY®=HAK?®
which is split by the map
OpN1L:HANHANY® — HAY?®.
Let Y5t be the homotopy fiber of j: Y* — K, and let i: Y**! — Y be the canonical map from the
homotopy fiber. Then there is a homotopy (co)fiber sequence

s+1 % s J s O s+1
ystl Ly ys L K8 S SKs T

which identifies the homotopy cofiber of j with the suspension of the homotopy fiber of j. By the long
exact sequences in homotopy and mod p homology, it follows that Y**! is bounded below and of finite
type mod p. Now continue the construction by induction. (I

Let H be the homotopy cofiber of the unit map n: S — H, so that there is a homotopy cofiber
sequence

(4) >»'H—S-5H—H.
The homotopy cofiber constructed in the proof above can then be written as

STTHAYS — SAYS A HAYS — HAYS.
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By induction, we therefore have
Yi=(XTH)YAY
Ks=HAST'H)MAY
for all s > 0, with j =n A 1.

Definition 10.4. The canonical Adams resolution of Y is the diagram

S (STIH)YAY — L S AY — Y

T’\\ (\\ T/\\
~ J ~ J J
~ o > < RS
~ ~ ~

HAETTH)2AY HAYT'HAY HAY

constructed in the proof above.
By the Kiinneth theorem,

HY 2 (X 'H)®** @ H'Y = (X' ()% @ HY

HK 2HHH X 'H*HY =4 (3 ()% @ HY
for each s > 0, with

JHKS o @ HY® 3 F, @ HY® =~ H*Y®
induced by the augmentation e: &/ — IF,, of the Steenrod algebra, and
O H*SY*N = [()Q H'Y® — o/ @ H'Y® = H'K*®

is induced by the inclusion I(«?) C 7. Note also that the canonical Adams resolution in natural in the
spectrum Y.

The added generality of arbitrary Adams resolutions, as opposed to the canonical ones, will be useful
when we consider convergence questions and multiplicative structure.

Lemma 10.5. For any Adams resolution of Y, let
P, =H*"(X°K?)
8y = &5 H*(S°K®) — H*(X*~1K°1)
and e = j*: H*K° — H*Y. Then
s P, 2P s PSP S HY 50
is a resolution of H*Y by free of -modules, each of which is bounded below and of finite type.

With this indexing, the homomorphisms J; and € all preserve the cohomological grading of P, and
H*Y, which we call the internal degree and usually denote by t.

Proof. By assumption (b), K* ~\/ ¥"H with {u | n, < N} finite for each N, so
HY(K*) = [[2H*(H) =][[2"o =P rmo
is a bounded below free «7-module of finite type, for each s > 0. Hence each P; = H*(X°K?) is a

bounded below free .«7-module of finite type.
By assumption (c), the long exact sequence in cohomology of each cofiber sequence

ystl ys Iy s 9, nys+l
breaks up into short exact sequences of &/-modules
0— H* 2y L5 g (k%) 25 H*(V®) — 0.
These splice together to a long exact sequence
H*(33Y3) H*(%2Y?) H*(ZY1) H*Y
J J J
e ———— H*(X2K?) ?H*(ZKl) TH*KO
2 1
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along the lower edge of this commutative diagram of graded .&7-modules and degree-preserving homo-
morphisms. Alternatively, this diagram may be displayed as follows:

H*(2%Y?) H*(ZY'1)

N e A

. —— H*(3%2K?) H*K°

Here im(0s41) = im(9*) = ker(j*) = ker(9,) as subgroups of H*(X°K?), for s > 1, since j* is surjective

and O* is injective, im(d;) = im(0*) = ker(j*) as subgroups of H*KY since j* is surjective, and
5% H*K° — H*Y is already known to be surjective. Hence e: P, — H*Y is a free /-module
resolution of H*Y. O

We say that the Adams resolution {Y*1 — Y*® — K¢ — SV}, of Y is a realization of the free
o/-module resolution P, = (Ps,0s) of H*Y. Tt is induced by passage to cohomology from the diagram

P ) G A 3] Py T
where each composite of two maps is null-homotopic. In the case of the canonical resolution, this diagram
appears as follows:
e HAEMAY L HAAAY S HAY Y.
The associated free resolution has the form
o d RN A)P2RHY 2 a0 HY 2 o @ H'Y -5 H'Y — 0.

Here

€(fo ®@y) = €(bo)y
0100 ® 01 ®y) =€(6p)0 @y
82(90 ®01 @60 ® y) = 6(90)91 R0y

and so on, where 6y € &7, 01,...,0s € [(«), y € H'Y, and €(y)6; is viewed as an element of 7.

We shall return to this complex later, in the context of the bar resolution of the </-module H*Y.
The complex above is isomorphic to the bar resolution, but not equal to it. Note that each term
o @ 1(/)® ® H*Y has the “diagonal” &/-module structure, prescribed by the Kiinneth theorem, which
is not the same as the “induced” «/-module structure where &/ only acts on the leftmost tensor factor.
Nonetheless, each term is free as an «/-module, by the argument given in Lemma for the existence
of a wedge sum decomposition of K* = H AY?.

10.2. The Adams F>-term. We follows Adams (1958), using the spectrum level reformulation that
appears in Moss (1968).

Let Y be a spectrum such that m,(Y") is bounded below and H.Y is of finite type. Consider any
Adams resolution

Y2t oyl f L y0

BES I I
AN RN RN .
R
K? K! K°
of Y. Applying homotopy groups, we get an unrolled exact couple of Adams type

Y

T (Y?) (V) s 1 (YO)

NN

m(Y)

n(K?)  om(KY)  m(K°)
where
A® =7 (Y?)
E® =7 (K?)



are graded abelian groups, for each filtration degree s > 0, with components

A%t =7, (YF)

Es,t — Wt—s(Ks)
in each internal degree t. By convention, A* = A° and E* = 0 for s < 0. The homomorphisms
i =i, and j = j, have degree 0, and k = 0, has degree —1. There is an associated spectral sequence
(Er,d), = (EF*,d5*), of Adams type, with

Ef’t = m—s(K°)
and

A3 = (jO)u: T (K®) — m_ (KT = (Kt

for s > 0. The d,-differentials have bidegree (r,7—1): If z € m,_(K*®) = E"" is such that 0, (z) = i7" (y)
for some y € m;_,_1 (Y7, then d,([z]) = [j.(y)] is the class of j,(y) € m_,_1(K5t7) = EFFHr—1

This is the Adams spectral sequence for Y, sometimes denoted E,.(Y) = E*(Y). We shall be inter-
ested in the possible convergence of this spectral sequence to the achieved colimit

G=m(Y)= colsim m(Y?),
filtered by the image groups
F° = Form, (Y) =im(if: m(Y?) = m.(Y)) .
This is an exhaustive and descending filtration:
e CFPY Y CcFfCc. CcF'Cc PO =1.(Y).
We recall that, by definition, the spectral sequence is conditionally convergent to 7. (Y") if limg m, (Y*) = 0
and Rlim, 7, (Y*) = 0.

Definition 10.6. An element in E%¢ is said to be of filtration s, total degree t — s and internal degree t.
An element in F* C 7,(Y) is said to be of Adams filtration > s.

[[EDIT FROM HERE])

A class in 7.(Y) has Adams filtration 0 if it is detected by the d-invariant in m.(K°), i.e., if it has
non-zero mod 2 Hurewicz image. If the Hurewicz image is zero, then the class lifts to 7. (Y!). Then
it has Adams filtration 1 if the lift is detected in 7. (K1), i.e., if the lift has non-zero mod 2 Hurewicz
image. If also that Hurewicz image is zero, then the class lifts to m,.(Y?2). And so on.

Theorem 10.7. The Es-term of the Adams spectral sequence of Y is
Ey' = Ext> (H*(Y),F,).

In particular, it is independent of the choice of Adams resolution.

Proof. The Adams E;-term and d;-differential is the complex

(30)« (30)~
— —

co—— T (B2K?) T (ZK1) T (K% +——0

of graded abelian groups. It maps isomorphically, under the d-invariant 7,(K) — Homg (H*(K),F3),

to the complex

e e
e Homy (H*(52K2), F2) €2 Hom, (H* (2K, F2) €2 Hom,y, (H* (K°), Fa) «+— 0

where ((j0)*)* = Homg ((j0)*,1). With the notation of the previous subsection, this complex can be
rewritten as
o o
.. +—— Hom (P, Fy) «—— Hom,y (P, Fy) +—— Hom y (Py, Fy) «——0.

This is the complex Hom (Py,Fy) obtained by applying the functor Homg (—,Fs) to the resolution
e: P, —» H*(Y) of H*(Y) by free «7-modules. Its cohomology groups are by definition, the Ext-groups
Exts,(H*(Y),F3) = H*(Homg (Py,Fa)).

At the same time, the cohomology of the Ei-term of a spectral sequence is the Es-term. Hence

B3 = Ext®,(H*(Y),Fs).
54



As regards the internal grading, E{' = m_,(K®) 2 m(X°K*®) corresponds to the .oZ-module homo-
morphisms H*(3*K*®) — X!'Fy. This is the same as the «/-module homomorphisms H*(X5K®) —
Fy that lower the cohomological degrees by ¢t. We denote the group of these homomorphisms by
Hom', (H*(2°K*),Fy) = Hom',(P;,Fy), and similarly for the derived functors. With these conven-
tions, B3 = Ext® (H*(Y),Fy), as asserted. O

We are particularly interested in the special case Y = S, with H*(S) = Fy and m,(S) = 77 equal to
the stable homotopy groups of spheres.

Theorem 10.8. The Adams spectral sequence for S has Fo-term
Eg’t = EXtZ;(FQ,FQ) .

On the other hand, we can also generalize (following Brinkmann (1968)). Let X be any spectrum and
apply the functor [X, —]. to an Adams resolution of Y. This yields an unrolled exact couple

S XYY S XYY S [XL YO —— [XL Y.

S ke e b

X, K?], X, K], X, K9],

where A° = [X,Y?]., E® = [X, K®]. are graded abelian groups, i, and j. have degree 0, and 0, has
degree —1. There is an associated spectral sequence with

Byt =X, K

and
A3 = (jO)u: [X, K®)—s — [X, K)o 1.

The d,-differentials have bidegree (r,r — 1). The expected abutment is the graded abelian group G =
[X,Y]., filtered by the image groups F* =im(:f: [X,Y”]. — [X,Y],).

Theorem 10.9. The Adams spectral sequence {E,.(X,Y) = E**(X,Y)}, of maps X — Y, with expected
abutment [X,Y]., has Ex-term

Eyt = Ext®/ (H*(Y), H*(X)).

The proof is the same as for X = S, replacing Fy by H*(X) in the right hand argument of all Hom -
and Ext$,-groups. [[ETC]]
[[EDIT TO HERE])

10.3. A minimal resolution at p = 2. To compute the Adams FEs-term for the sphere spectrum, at
p = 2, we need to compute

Ext} (F2,F2) = H"* (Hom Py, F2), )

for any free .o/-module resolution
... — P ﬁ)P571—>~“—>P1 i>P0;>[F2—>O

of Fy, where § = Hom/(9,1). We now construct such a free resolution P, by hand, in a small range of

degrees. We start in filtration degree s = 0, and calculate up to some internal degree t. Then we proceed

with filtration degree s = 1, calculate up to the same internal degree ¢, and then repeat for larger s.
We need a surjection €: Py — Fs, so we let

Py = {go0} =

be the free &/-module on a generator gopo = 1 in internal degree 0.

In this filtration a single generator suffices, but in higher filtrations, infinitely many generators will be
needed. We will denote the generators in filtration s by gs0, gs,1, gs,2 and so on, in order of increasing
(or more precisely, non-decreasing) internal degrees.
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10.3.1. Filtration s = 1. Next, we need a surjection 01 : P; — ker(¢), where ker(e) = I(). An additive
basis for ker(¢) is given by the classes Sq’ for I admissible of length > 1. We listed these monomials in
internal degree ¢ < 11 in Figure [I0]

Starting in the lowest degree, we first need a generator g; o = [S¢'] in internal degree 1 that is mapped
by 01 to Sq'. The free summand /{g; o} of P, will then map by 9; to all sums of classes of the form
Sq! 0 Sq' with I admissible. In view of the Adem relation Sq' o Sq¢' = 0, this image consists of all sums
of classes of the form Sq”’, where J = (ji,...,j¢) is admissible and j, = 1. See the left hand column of
Figure

The lowest-degree class in ker(e) that is not in the image from @/{g1 0} is S¢?, in internal degree 2, so
we must add a second generator g1.1 = [S¢?] to P1, mapping under d; to Sq¢?. Using the Adem relations,
we can compute the image Sq’ 0 S¢? of each basis element Sq’g; ; of 2/{g1,1}. See the right hand column
of Figure

The images of Sq¢%g1,0 and Sq*g11, namely Sq®>Sq' and S¢3, generate ker(e) in internal degree 3, but
Sq? is not in the image from %7 {g1 0, 91,1}, so we must add a third generator g1 o = [S¢?] to P, mapping
to Sq4go,0 under d;. See the left hand column of Figure

All classes in degree ¢ < 7 of ker(e) are then hit by 81 on «7{g1,0,91,1, 912}, but Sg®go o is not in that
image. We must therefore add a fourth generator g; 3 = [Sq®] to P;, mapping to S¢®. See the right hand
column of Figure

In general, we must add enough «7-module generators g1; to P so that their images 01 (g1 ;) generate
the Fa-vector space Q(&f) = I(a/)/I(/)* of algebra indecomposables in the augmented algebra .o7.
This is necessary, since if 9;: P; — ker(e) is surjective, then so is its composite with the canonical map
ker(e) = I(«/) — Q(&). It is also a sufficient condition, because of 9,: P; — ker(e) is surjective below
degree t and P, — Q(/) is surjective in degree ¢, then any chosen class in I(%/) of degree t is congruent
modulo I(27)? to a class in the image of ;. Any class in I(<7)? is a sum of products of classes of degree
less than ¢, hence is also in the image of 97, by the assumption that 0 is surjective below degree t. Thus
the chosen class in I(.¢) is also in the image of 9;. [[State this as a lemma?]]

By Theorem the Sq" for i > 0 give a basis for Q(«7), hence the minimal choice of a free
&/-module mapping onto ker(e) is

P =9{g10,91,1,91,2,91,3,--- }

with g1, = [qui] in internal degree 2¢, for each i > 0. Here g1,4 is in degree 16, hence the first four
generators suffice in our smaller range of degrees.
[[Comment on how 01 ([f]) = 0, and how P, relates to the bar resolution.]]

10.3.2. Filtration s = 2. To continue, we need a surjection dy: Po — ker(0;). First we go through the
linear algebra exercise of computing an additive basis for ker(9;). The result is shown in Figure

The class in lowest degree in ker(d;) is Sq'[Sq'], which corresponds to the Adem relation Sq'Sq! = 0.
We put a first generator gs o of degree 2 in P, with d3(ge,0) = Sq'[S¢']. See the left hand column of
Figure [T5]

The first class in ker(d;) that is not in the image of 92 on @{gao} is S¢*[Sq'] + S¢*[S¢?], which
corresponds to the Adem relation Sq?Sq? = Sq3Sq'. We add a second generator g2 1 to P», in degree 4,
with 92(g2.1) = S¢3[Sq'] + S¢?[Sq?], and compute the value of 92(Sq’g2.1) = Sq’ (S¢3[Sq'] + Sq¢?[Sq?))
in ker(91) C Pj for each admissible I, using the Adem relations. See the right hand column of Figure

The lowest degree class not in the image of d2 on & {g20,921} C P is Sq¢*[Sq'] + S¢*Sq*[S¢?] +
Sq'[Sq*], in degree 5. It corresponds to the Adem relation Sq¢?Sq® = S¢° + S¢*Sq', in view of the
identities Sq'Sq? = S¢* and Sq¢'Sq* = Sq¢°. We add a third generator gs 2 to P, with 02(g22) =
Sq*[Sq'] + Sq*Sq'[Sq%] + Sq'[Sq*], and compute 92(Sql g2 2), as before. See Figure [[At this point
we deviate from the minimal resolution chosen by ext, which replaces S¢2Sq'[Sq?] with Sq(®V[S¢?] =
(Sq® + S¢°Sq")[Sq?].]]

The first class in ker(d;) not in the image of 92 on 7 {g2 0, g2.1, 922} is Sq"[Sq*]+Sq®[S¢?] + Sq*[Sq?].
We add a fourth generator go 3 to P in degree 8, corresponding to the Adem relation S¢*Sq* = Sq”Sq' +
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910 = [9¢"] +2 Sq

Sq'[Sq"] — g1 = [5¢%] 25 Sq
2[Sql] — quSq1 Sql[SqQ] — Sq

Sq¢*[Sq'] — Sq3Sq1 S¢*[Sq®] — S¢*Sq'
S¢*Sq' [Sq'] —

Sq*[Sq'] — Sq4Sq S¢*[Sq*] — 0
S¢*Sq' [Sq'] — S¢*Sq' [Sq®] — Sq° + Sq*Sq*

Sq°[Sq'] — Sq5Sq Sq*[Sq®] — Sq*Sq
Sq*Sq'[Sq'] — S¢*Sq' [Sq*] — Sq°Sq

Sq¢°[Sq'] — SqGSq Sq°[Sq*] — Sq°Sq®
Sq°Sq'[Sq') — Sq*Sq'[Sq°] — Sq°Sq
Sq'Sq*[Sq'] — Sq4Sq2Sq

Sq"[Sq"] — 5q75q Sq°[Sq®] — Sq°Sq
S¢°Sq'[Sq'] — S¢°Sq'[Sq?*) — 0
S¢°Sq[Sq'] — 5q55q25q Sq*Sq*[Sq’] — Sq°Sq*Sq'

Sq*Sq*Sq'[Sq'] —

Sq¢®[Sq] — SQSSQ Sq'[Sq*) — Sq'Sq®
Sq"Sq'[Sq'] — 5¢°Sq' [Sq*] — Sq°Sq
S¢°Sq?[Sq'] — SqGquSq S¢°Sq*[Sq*] — 0

S¢°Sq*Sq'[Sq'] — Sq*Sq*Sq' [Sq¢?]

Sq¢°[Sq'] — ngSq Sq®[Sq®] — Sq°Sq
S¢*Sq'[Sq'] — Sq"Sq' [Sq?) — Sq"Sq?
Sq"S¢*[Sq'] — Sq75q25q S¢°Sq*[Sq?] — Sq°Sq®Sq
S¢°Sq’[Sq'] — SqGSq?’Sq S¢°Sq*>Sq' [Sq®] — Sq°Sq* + Sq"Sq*Sq

Sq°Sq*Sq' [Sq') —

Sq'[Sq'] — SqloSq S¢°[Sq*] — Sq°Sq®
S¢°Sq' [Sq'] — S5¢°Sq' [Sq?) — Sq®Sq®
S¢*Sq*[Sq'] — SqSSqQSq Sq"Sq*[Sq?] — Sq"Sq*Sq'
Sq7Sq [Sql] — Sq7Sq35q SqSng[SqQ] — 0

Sq"Sq¢*Sq' [Sq'] — Sq°Sq*Sq' [Sq¢?]

— S¢°Sq® + S¢8Sq¢® + Sq" S Sqt

FIiGURE 12. 81 on 527{9170,9171} chP

Sq55¢%, and let 92(g2,3) = Sq7[Sq'] + Sq°[S¢%] + Sq*[Sq*].

923 2 Sq71S¢"] + S¢°[Sq?] + Sq*[Sq’]
Sq'ga.3 — Sq"[Sq*] + Sq°[Sq"]
Sq*g23 — (S¢° + S¢®Sq")[Sq'] + Sq"Sq* [S¢?]
S¢®gas — Sq°Sq [Sq'] + Sq7[Sq"]
S¢*Sqtga sz — (S¢° + S¢®Sq")[Sq*] + Sq¢°Sq' [Sq?]

+ (S¢° + S¢°Sq")[Sq*]

This still leaves Sq®[Sq'] + Sq7[Sq%] + Sq*Sq'[Sq*] + Sq'[Sq®] not in the image of Js, so we add a
fifth generator gs 4 in degree 9, corresponding to the Adem relation S¢*Sq® = S¢° + S¢®Sq* + Sq"Sq¢?,

57



— Sq"Sq' + S¢°S¢? g13 = [ng] N Sq®

— Sq"Sq? Sq'[Sq¢®] — Sq¢°

— Sq7S¢? Sq? [qu] — Sq¢' + S¢°Sqt

— 0 Sq¢3[Sq®] — Sq*t
— S¢°Sq® + S¢®Sq¢? Sq*Sq'[Sq®) — Sq'°Sq
— Sq't + Sq¢?S¢?

— 8q"°Sq" + S¢°Sq*Sq’

FIGURE 13. 07 on &7{913,9173} c P

and let 92(g2.4) = Sq®[Sq*] + Sq"[9¢%] + Sq*Sq' [Sq*] + Sq'[Sq®].

02
G2.4 —> ng[Sql] + Sq7[Sq2] + Sq4Sq1[Sq4] + Sql[SqS]
Sq' g2.a — S¢°[Sq'] + S¢°Sq' [Sq’]
Sq*ga.a — (S¢"° + S¢°Sq")[Sq'] + (S¢® + S¢®Sq")[Sq*] + S¢°Sq'[Sq*] + S¢?Sq [S¢®]

Finally we need a sixth generator, g 5 in degree 10, mapping to Sq”Sq?[Sq'|+S¢®[S¢*|+Sq* Sq?[Sq*]+
Sq*[Sq®]. Tt derives from the Adem relations for Sq2S¢® and for Sq¢*Sq®, using the Adem relation for

Sq*Sq*. [[Can we pick a different generator that corresponds to just a single Adem relation?]]

Now 821 .52/{92707 “e

925 25 Sq7SqP[Sq"] + S¢°[Sq] + Sq*S¢*[Sq"] + S*[Sq®]
Sq' g2, — Sq¢°[Sq®] + Sq°Sq*[Sq*] + Sq*[Sq°]

10.3.3. Filtration s = 3. We carry on to filtration degree s = 3, looking for a surjection d3: P35 — ker(9s).
First we must compute a basis for ker(dz) C Ps, in our range of degrees. The result is displayed in

Figure [I7]

As usual, the lowest degree class is Sq'gs o, so we first put a generator gs o of degree 3 in P3 with

93(93,0) = Sq' g2,0. The extension to &7 {g3 0} is given in the left hand column of Figure

The lowest class not in the image of this extension is 95(g3,1) = Sq*g2.0+ 59?921 +5¢* g2 2 in degree 6.

See the right hand column of Figure

After this, the next class not in the image of 93 on @{gs0,931} is 03(g32) = S¢%ga0 + (Sq¢® +

Sq*Sq')gao + Sqlge.4 in degree 10:

0:
g32 > Sq¢%ga0 + (S¢° + S¢*Sq")gan + Sq' gau
Sq'gs.2 — S¢°g2.0 + Sq°Sq' go,

Finally, we need a fourth generator, g3 3 in degree 11, with

16)
93,3 > S¢*Sq*Sq g2.0 + S¢°g2.2 + S4*Sq g2 5 -
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Sq'[Sq']

Sq¢*Sq'[Sq")

Sq¢°[Sq'] + S¢*1Sq)
Sq¢*Sq'[Sq')

Sq¢°[Sq’]

Sq*[Sq'] + S¢*Sq' [S¢°] + Sq' [Sq]
Sq4Sql [Sql}

S¢°[Sq'] + S¢*Sq' [Sq”]
Sq°Sq'[Sq']

(Sq° + Sq"Sq")[S¢”]
Sq¢°[Sq'] + S¢*Sq' [Sq"]
Sq¢°Sq'[Sq")
Sq4Sq2Sq1[Sq1]
Sq¢°Sq'[Sq?)

Sq¢°Sq*[5q'] + Sq*Sq*[S¢]
Sq"[Sq"] + S¢°1Sq®) + Sq*[Sq"]
Sq"[Sq'] + S¢*Sq' [Sq”]
Sq"Sq'[Sq")
Sq°Sq*Sq'[Sq']
S¢°Sq*[Sq?)

Sq"[S¢°] + Sq°[Sq*]

Sq®Sq'(Sq"]

Sq¢°Sq*Sq'[Sq']

54°Sq’[Sq'] + S4°Sq°[Sq?]

(S¢” + 54" Sq*)[Sq'] + S¢°Sq* Sq* [S¢?)
5q"Sq[S¢°] + S¢°[Sq"]

S¢°[Sq'] + S¢°Sq' [Sq"]

5q"S¢*15q" ] + S¢°[Sq°] + Sq*S¢*[Sq"] + S¢°[Sq"]
Sq"Sq¢*[Sq') + S¢*[Sq°) + Sq*Sq*[Sq"] + S¢*[Sq®)
Sq°Sq'(Sq"]

Sq"Sq*Sq'[Sq']

Sq°Sq*Sq'[Sq']

Sq"Sq’[Sq'] + 54" S’ [S¢?]

Sq®Sq®(Sq?]

Sq"Sq’[Sq']
Sq"[S¢")
(S¢° + 5¢°5¢")[Sq®) + S¢°Sq' [Sq']
(84" + Sq¢*Sq?)[Sq'] + Sq*Sq* Sq' [Sq']
S¢°1S¢°] + S¢°S¢*[Sq"] + S¢°[S )
Sq'°1Sq'1 + S¢*Sq'[Sq"]

+ (Sq¢” + S¢°Sq' + S¢°Sq*Sq")[Sq?]

Sq°Sq*[Sq'] + Sq*Sq*Sq' [Sq*] + Sq* Sq' [Sq']
Sq®[Sq'] + Sq"[S¢?] + Sq*Sq*[Sq*] + Sq*[Sq®]

FIGURE 14. A basis for ker(9;) in degrees < 11

(This generator will be particularly interesting when we get to the multiplicative structure in the Adams
E>-term, since it is dual to the indecomposable class ¢g in EX‘U?Z’{11 (F2,F2).) Then 05: </ {gs.0,---,933} —

ker(0s) is surjective in degrees ¢t < 11.

Sqlgs,o

Sq2Sq19370
Sq*Sq'gs0
Sq*Sq' gs.0
Sq°Sq*gs,0

10.3.4. Filtration s = 4. In degrees < 11 we have an additive basis

S¢°Sq*gs,0

Sq*Sq°Sq' gs0

Sq"Sq"g3,0

Sq°Sq*Sq gs0

Sq®g30+ (S¢° + Sq*Sq")gs1 + Sq' gs 2

for ker(03), and a surjection 0y: Py = 47/ {g4,0,94.1} — ker(9s) where

in degree 4, and

91(g4,0) = Sq' 93,0

94(921) = S¢®g3.0 + (S¢° + Sq*Sq*) g1 + Sq* g3 2

in degree 11.
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2.0 2 Sq'[Sq"]

Sqlgz,o — 0
Sq*ga0 — Sq*Sq'[Sq'] 921+ S¢*[S¢"] + S¢?[S¢]
S¢g20 — Sq*Sq'[Sq'] Sq g2 — Sq*[Sq¢?]

Sq¢*Sq' g0 — 0
Sq*g20 — Sq*Sq'[Sq'] Sq*g21 — (Sq° + Sq*Sq")[Sq'] + S¢°Sq' [Sq?]
Sq¢*Sq' g0 — 0

Sq°g2.0 — Sq°Sq'[Sq'] Sq®g21 — Sq°Sq'[Sq']
Sq*Sq' g20— 0 S¢*Sq' g210 — (S¢° + Sq*Sq")[Sq’]
Sq°g2.0 — Sq°Sq'[Sq'] Sq* 921 — S SE*[Sq'] + Sq* S [Sq?]
Sq°Sq'g2,0 — 0 Sq*Sq'g21 — Sq°Sq'[Sq’]
Sq*Sq*ga.0 — Sq*Sq*Sq'[Sq']
Sq" 92,0 — Sq"Sq' [Sq'] 5¢°g21 — S¢°Sq*[S¢7
Sq%Sq gao — 0 Sq*Sq*ga,1 — Sq°Sq*[Sq?]

S¢°Sq*g2,0 — Sq°Sq*Sq [Sq']
Sq*Sq*Sq' g2.0 — 0

Sq®g2.0 — S¢°Sq' [Sq'] 5¢°g21 — Sq°Sq®1Sq'] + Sq°Sq[Sq?]
Sq"Sq ga,0 — 0 Sq°Sq'g21 — 0
5¢°Sq*g2,0 — Sq°Sq*Sq' [Sq] Sq*Sq?g21 — (Sq° + S¢®Sq' + Sq"Sq? + Sq°Sq*Sq")[Sq']+
S¢°Sq*Sq g2 o — 0 +5¢°S¢*Sq' [Sq?)
Sq°g2.0 — Sq°Sq'[Sq'] Sq"ga,1 — Sq" S [Sq'] + Sq"Sq[Sq?]
S¢®Sq' g2,0 — 0 Sq4°Sq ga.1 — Sq°S¢P1Sq?)
Sq"Sq?ga,0 — Sq"Sq*Sq' [Sq'] Sq®SqPga,1 — (Sq°Sq" + Sq"Sq*Sq")[Sq']

Sq°Sqga0 — Sq¢°SqSq [Sq'] Sq*Sq*Sqtga1 — (Sq¢° + S¢®Sqt + Sq"Sq* + Sq°Sq*Sq)[Sq?
SqGquSqng,o — 0

FIGURE 15. (92 on %{92,0,g271} ch

10.3.5. Filtration s > 5. Things become quite simple from filtration degree s = 5 and onwards. In
degrees < 11 we have an additive basis

Sqlg4,0 Sq55qlg4,o
Sq*Sq" ga0 Sq°Sq ga0
Sq°Sq' ga0 Sq*5¢°Sq ga0
Sq*Sq" ga0

for ker(dy), and a surjection d5: Ps = @/{gs 0} — ker(ds) where 95(g5.0) = Sq'gs0 in degree 5. Contin-
uing, we have a surjection ds: Ps = &/ {gs,0} — ker(ds_1) in degrees < 11, where 95(gs,0) = Sq'gs—1,0 in
degree s, for all 5 < s < 11.

Definition 10.10. We say that P, is a minimal resolution when im(0s41) C I(&/) - Ps for all s > 0.
Then 1 ® 0s41: Fo @ P11 — Fo @y Ps and Hom(0s41,1): Hom g (Ps,Fa) — Hom (Psy1,Fa) are the
zero homomorphisms, so that

Tor? (Fa,F2) = Fa @ Py = Fo{ga.}i
and

EXtZ{(FQ,Fg) = Homﬂ(Ps,Fz) = ]FQ{gs,i}:
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922 *2> Sq*1Sq"] + Sa2Sq'[Sq?] + Sq'[Sq*]

Sqtg20 — Sq°[Sq'] + S¢*Sq*[S¢?]

Sq292,2 — (S¢° + S¢°SqH)[Sq'] + Sq*Sqt[Sq]

S¢*g20 — Sq"[Sq'] + S¢*Sq*[Sq]
S5¢°Sq 922 — S¢°Sq'[Sq'] + 5¢°Sq' 9]

Sq*g22 — (Sq"Sq" + S¢°Sq?)[Sq'] + Sq* S*Sq' [Sq®] + Sq* Sq'[Sq"]
Sq*Sq ga.2 — Sq7Sq'[Sq']

Sq°g2,2 — Sq"SE[Sq"] + S¢°S*Sq' [Sq*] + Sq°Sq' [Sq"]
Sq*Sq' gao — (Sq¢° + S¢®Sq' + Sq"Sq*)[Sq'] + S¢°Sq*Sqt[S¢?)

Sq°g22 — Sq"S*[Sq'] + Sa°S*Sq ' [Sq®] + Sq°Sq'[Sq"]
Sq°Sq ga.2 — Sq°Sq'[Sq']
Sq*Sq*gas — (Sq"° + S¢°Sq' + S¢°Sq® + Sq"Sq*Sq")[Sq'] + Sq* Sq* Sq* [Sq)

FIGURE 16. 0> on &/{g22} C P»

Sq'g2.0 Sq"Sq' 92,0

Sq*Sq" g2,0 S¢°Sq°Sq" g2.0

5¢°Sq' g2,0 S¢°Sq g2

Sq*g20 + SqPg2.1 + Sq' g, Sq°Sq*ga.0 + Sq*Sq’ g2 + Sq*Sq g2,
Sq*Sq g2, Sq®ga0 + (Sa° + Sq*Sq")g2,2 + Sq' go.4
Sq°g2.0 + Sq3ga1 S¢°Sq' g2.0

54°Sq" g2,0 5¢°Sq°Sq" 92,0

Sq%g20 + S¢>Sq g2 + S¢*Sq g2, (Sq° + Sq"Sq%)g2.0 + S¢°Sq* g2
5¢°5q" g2,0 Sq°g2.0 + Sq°Sq' g2,2

Sq*Sq*Sq" 920 Sq*Sq*Sq' g2.0 + S4°g2.2 + S¢°Sq g2,

(S¢° + Sq*Sq") g2
Sq"g2.0 + S¢>Sqt ga o

FIGURE 17. A basis for ker(dz) in degrees < 11

for each s > 0, where P, = &/{gs;}:;. Equivalently, the number of generators of Py is minimal in each
internal degree. (This number is finite, since &7 is of finite type.)

61



93,0 RN 5q' g2,0

Sq'gs0 — 0

Sa*gs.0 — S¢*Sq 92,0

Sq*g30 — S¢°Sq" 92,0 931 2% Sq*ga.0 + Sq2g2,1 + Sq" 92,2
5¢*Sq'g3,0 — 0

Sq*gs0 — Sq*9q" 92,0 Sq'gsa — Sq°g2,0 + Sq’gaa
5¢°Sq' g3, — 0

Sq°g3.0 — Sq°Sq" 92,0 Sq*gs.1 +— (S¢° + Sq°Sq")ga.0 + S¢°Sq' g2.1 + S4°Sq g2,
5¢*Sq'g30— 0

5q°g3,0 — Sq°Sq" 92,0 Sq*gs.1 +— Sq" 920 + S¢*Sq" 92,2
5¢°Sq' g3,0 — 0 S¢*Sq' g3 — Sq°Sqtga,0 + (S¢° + Sq*Sq" ) g2
Sq*Sq°gs0 — Sq*S4°Sq 920

Sq" 930 — Sq"Sq" g2,0 Sq*gs1 — (S47Sq" + 5¢°Sq%)g2.0 + Sq*Sq?g21 + Sq*Sq' ga
Sq¢°Sq' gz 0 — 0 Sq*Sq' gz — Sq7Sq g2.0 + S4°Sq g2

5¢°Sq*g3,0 — Sq°Sq*Sq 92,0
Sq*Sq*Sq' gs0 — 0
Sq®g30 — Sq¢*Sq' g2,0 Sq°gs1 — Sq"Sq%g2,0 + S¢°Sqg21 + Sq°Sq 9o,
Sq"Sq' gz 0 — 0 Sq*Sq' gz — (S¢° + S¢°Sq" + 547 5¢%)g2.0 + S¢°Sq* g2
5¢°Sq*g3,0 — Sq°Sq*Sq 92,0
Sq°Sq*Sq' gz 0 — 0

FIGURE 18. 83 on &7{93,0,9371} C P

Theorem 10.11. There is a minimal resolution e: P, — Fo with Py = «/{goo} and Ps = </ {gs,; | i >
0}, where Os: Ps — Py_1 is given in internal degrees t < 11 by

A (g1,0) = Sq" 90,0

o1 (91,1) = Sq290,0

01(g1,2) = Sq*g0.0

(g13) = Sq890,0

92(g2,0) = Sq* 91,0

92(92.1) = S¢°91.0 + S 1.1

92(g2,2) = Sq*g1.0 + S¢*Sq' g1 + Sq' g1.2

92(92,3) = Sq"g1,0 + S¢°g1,1 + Sq*g1.2

92(g2,4) = Sa®g1.0 + Sq"g11 + S¢* S g1.2 + Sq' g1 3
02(g2,5) = Sq75q2g1,0 +S5¢%g11 + S¢*Sq*g12 + Si*g13
93(9g3,0) = Sqlgz,o

93(g3,1) = Sq*g2,0 + Sq*ga,1 + Sq' go.2

33(93.2) = S¢°g2,0 + (S¢° + 54" Sq" )g2,2 + S¢* g2
B3(93,3) = (54" + Sq*Sq°Sq")go1 + S4°go.2 + S4*Sq 92,3
91(94.0) = Sq' g3.0

0a(94,1) = S¢°gs.0 + (S¢° + Sq*Sq ) gs.1 + Sq' g3 2
55(95,0) = Sqlg4’0
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Proof. This summarizes the calculations above. The resolution is minimal, since we only added generators
Gs,i With 0s(gs,i) € I(e/)- Ps—1 = I(#/){gs-1,;};- It should be clear that we can continue that way, since
of is connected. If any sum involving 1 - g, ; occurs in ker(d;), then g, ; could be omitted from the basis
for Ps; and 9,: Ps — ker(9s—1) would still be surjective. O

Theorem 10.12. Ext’) (Fa,F2) = Fo{v,,;}; where vs;: Ps — Fo is the o/ -module homomorphism dual
0 gs,s, for each s > 0. The bidegrees of the generators in internal degrees t < 11 are as displayed in the
following chart. The horizontal coordinate is the topological degree t — s, the vertical coordinate is the
cohomological degree s, and the sum of these coordinates is the internal degree t.

11,0
10|710,0

7Y9,0
8| 78,0

Y7,0 . . . . . . ?
6]76,0 . : : : ? ?

75,0 : : ? ? ?
4]74,0 Ya1| 7 ? ? ?

73,0 3,1 Y3,2 (73,3 ? ? ?
2| 72,0 V2,1 | V2,2 V2,3 | V2,4 | V2,5 ? ?

Y1,0 | V1,1 V1,2 71,3 ?
0| 70,0

0 2 4 6 8 10

We have not yet computed the groups labeled - or 7, but we will prove below that the groups labeled -
are 0. (This is the Adams (1966) vanishing theorem.) In fact, many of the groups labeled 7 are also zero.

Proof. For each s > 0 we have Hom  (Ps,F2) = Hom (%7 {gs,i}i, F2) = [, Fa{vs,:}, where v44(gs,5) =
0;,; is 1 if i = j and 0 otherwise. It will be clear later that there are at most finitely many g, ; in a given
bidegree, so this product is finite in each degree. Then 7y, ; 0 9541 = 0, so the cocomplex Hom g (P, F3)
has trivial coboundary. Hence Ext}, (Fa,Fs) = Homy (Ps, Fa) = Fo{vs,:}i, as claimed. O

Lemma 10.13. Let e: P. — Fy be a free o/ -module resolution. Then Homg (Ps,Fa) = Hom(Fy ®
P,,Fy), so there is an isomorphism Ext®) (Fy, Fy) = Hom(Torft(IFg7 Fy),FFs).

10.4. A minimal resolution at p = 3. Now consider the case of an odd prime p. The mod p Adams
Fs-term for the sphere spectrum is

Ey™ = Exty) (Fy, Fy) = H** (Homy (P.,Fy), ) |
where
o PSP s s P R -5, 5 0

is any free «/-module resolution of F, and § = Hom,(0,1).
We calculate a minimal such resolution for p = 3 in internal degrees t < 2p? — 2 = 16. To begin, let
Py = {900} = &/, with goo in degree 0 and €(go,0) = 1. The admissible monomials

B8, P', 8P, P'3, 3P 8, P*, BP?, P*3, BP*B, P?, BPT, PP3, BP? 3

form a basis for ker(e) = I(«7) in degrees ¢t < 16.
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8
91,0 — Bgo,0
Bgio+—0

911 — Plgoo
Pg10— P'Bgoo
Bgi1 — BP'goo
BP'g10+— BP'Bgo.
P'Bg1o+—0
BP'Bg10+— 0
Plgi1 v+ P'Plgg o =2P%go
P?g10 — P*Bgoo
BPg11 — 2BP%go0
P'Bg11 — P'BP'go0 = (BP? + P?B)go,o
BP?g1,0 — BP?Bgo o
P?Bg1o+—0
BP'Bg11 — BP?Bgo
BP?*Bg1,0+— 0
P2g1 10
g1,2 — PPgo
PPg10— P"Bgo,0
BP%*g1 1+ 0
P?Bg11 — P?BP'go o = (BP? — P"B)goo
Bgi,2 — BPPgoo
BPPg1,0 — BP?Bgo,0
PPBg1o—0
BP?*Bg1,1 — —BPPBgoo
BPPBg10 0

FIGURE 19. 01: P, - Pyforp=3

10.4.1. Filtration s = 1. To define a surjection dy: P; — ker(e), it suffices to add generators to P; that
map to a basis for the algebra indecomposables

Q) = I()/1()? =F {8, P, PP, ... }.
Let

P =9{g10,91,1,91,2,---}

be generated by g1,0 in degree t = 1 with 91(g1,0) = 890,0, 91,1 in degree t = 2p — 2 =4 with 01(g1,1) =
Plgo0, 91,2 in degree t = 2p* — 2p = 12 with 91(g1,2) = PPgo,0, and so on. In general, g1 ;11 in degree
t = 2p'(p— 1) maps to Ppig(),o for each i > 0. The boundary 0; is given in Figure in internal degrees
t < 15. A basis for its kernel is shown in Figure 20} in the same range of degrees.

10.4.2. Filtration s = 2. Next we define a surjection dy: P» — ker(d). Let

P = 52/{92,0792,1,92,2,92,3, .. }

be generated by g2 in degree ¢ = 2 with 02(g2,0) = B9g1,0, by g2,1 in degree t = 4p — 3 = 9 with

D2(g2,1) = 2P%g1 9+ (BP*—2P'B)g1.1, by g2.2 in degree 2p* —2p = 12 with d3(g22) = PP 'g1,1 = P?g1,1,

by g2.3 in degree 2p? — 2p + 1 = 13 with 92(ga,3) = PPg1,0 + P?Bg1.1 — Bgi1.2, and so on. Note how ga ¢

corresponds to the relation 32 = 0, g21 corresponds to the Adem relation P!3P! = 3P? + P23 (and

PPl = 2P?), and go > corresponds to the Adem relation PP~*P! = 0. [[Continue with g3.]] The
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Bg1.0

Plﬂgl,o

BPBg1,0

2P%g o+ (BP' —2P'B)g11
P?Bg10

5P291,0 - 5P1591,1
BP?Bg10

P291,1

PPgi o+ P*Bgi1 — B2
5P291,1

BPPgy 0+ BP?Bgr 1
PPBg1,0

BP?Bg1,0

FIGURE 20. A basis for ker(d;) at p=3

boundary 85 is given in Figure 21} in degrees ¢ < 15. A basis for its kernel is shown in Figure 22} in the
same degrees.

10.4.3. Filtration s = 3. We continue by defining a surjection d3: P3 — ker(0s). Let

Py = /{g30,93,1,93.2, - }

be generated by gso in degree t = 3 with 03(gs,0) = Bg2,0, by g31 in degree t = (?) = 13 with
93(93,1) = P'ga.1 — Bga2, by g32 in degree t = (?) = 14 with d3(g32) = PPg2,0 + P 92,1 — Bga,3, and so
on. The boundary 03 is given in Figure in degrees t < 15. A basis for its kernel is shown in Figure
in the same range.

10.4.4. Filtrations s > 4. From here on we get surjections 9s: P — ker(ds—1) for s > 4 by letting
P5 :d{g&o,...}
with gs0 in degree s, where 95(gs,0) = 8gs—1,0, and so on.

Theorem 10.14. There is a minimal resolution €: P, — F3, with Py = «/{go0} and Ps = o/ {gs; | i >
0}, where Os: Ps — Ps_1 is given in internal degree t < 15 by

01(g1,0) = Bygo,o

N (g911) = P'goo

01(g1,2) = PPg0,0

92(92,0) = B91,0

92(ga1) = 2P%g10 + (BP' — 2P B)g1 1
D2(ga2) = PP 1g11

92(92,3) = PPg1,0 + P*Bg11 — Bgr2
93(93,0) = B92,0

95(93,1) = P'go1 — Bgao

93(g3,2) = PPga,o + P'Bg21 — Bgass
94(94,0) = B93,0

015(915,0) = Bg14,0 -
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92,0
B92,0
Plga
BPgs0
Plﬂgz,o
BP'Bga0
92,1
P%ga20
Bg2,1
BP?gs0
P2592,o
BP*Bga,0
92,2
Plgas
Bg2,2

92,3
PPgy0

BPga,
P'Bga1
B92,3
BP?g20
PPBg20
BP'Bgaa

o
— 591,0
— 0

— Plﬂgl,o

— BP'Bg10

— 0

— 0

— 2P2g; o + (BP* — 2P'8)g11
— P?Bg10

— 28P%g10 — 2BP' Bg1 1

— BP?Bg10

— 0

— 0

— P2g11

— (BP? = 3P?B)g11 = BP%g1,
— ﬁngm

— PPg1o+ P?Bg11 — Bai 2
— PPBg10

— 0

= (BP? — PPB)g1,0 — 28P"Bg11
— BPPgy1,0 + BP?Bg1 .

— BP?Bg1,0

— 0

— —BP"Bg1,0

FIGURE 21. 09: P, — Py forp=3

Bg2,0

P'Bg20

BP'Bga0

P?Bgs0

BP*Bga0

Plgs1 — Bgas

PPgs0+ P'Bga1 — Bgas
BP'gs 1

BPPgs0+ BP'Bg2a
PPBg2,0

FIGURE 22. A basis for ker(ds) at p=3
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93,0 RN B92,0
Bgso—0
Plgs o+ P'Bgag
BP'gs o — BP'Bgag
P'Bgs o0
BP'Bgs0+— 0
P?gs 0 +— P*Bgag
BP?gs0 — BP?Bgag
P?Bgs o0
BP?Bgs0+— 0
gs,1 — Plga1 — By
Bgsi — BP'gaq
93,2 — PPgao + P'Bga1 — Bga,s3
PPg3 o — PPBgao
Bgs.2 — BPPga0 + BP' Bgaa

FIGURE 23. 03: P3 —» Py forp=3

B30
P'Bgs0
5P1593,0
P?Bgs.0
5P2593,0

FIGURE 24. A basis for ker(d3;) at p=3

Theorem 10.15. Ext®) (Fs3,Fs) 2 Fs{vs,};, where vs;: Ps — F3 is the &/ -module homomorphism dual
to gsi. The generators in internal degree t < 15 are displayed in the following figure.

6(76,0
V5,0
4(74,0 N B R
3,0 Y3,1(73,2 209217
2(72,0 V2,1 72,2(72,3 717
71,0 71,1 1,2 ?
00,0
0 2 4 6 8 10 12 14

We have not yet computed the groups labeled - or 7, but by the May vanishing theorem, see Ravenel
(1986, Theorem 3.4.5(b)), the groups labeled - are 0. In fact, many of the groups labeled ? are also zero.
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The first possible differential is d%’lz on 71,2), which indeed equals 3 ;1. Once we have proved conver-
gence and the visible vanishing line, it follows that 7. (S)5 begins as follows.

T (9)% | gen. | rep.
73 L | 70,0
0
0
7/3 a1 | 71
0
0
0
Z/3 Q2 | Y21
0
0
Z/3 Bi | 722
Z/9 a3/1 | 72,3
0

===
o= - IEN I WG U I TN

The cyclic groups in degrees 2i(p— 1) — 1 = 4i — 1, generated by the a-classes, equal the image im(J).,
of the J-homomorphism J,: m4;_1(0) — m4;-1(S). As becomes visible in degree 2p(p — 1) — 1 = 11,
the order of this cyclic group im(.J)g;(p—1)—1 varies with 4. It is p’t1 = 351 where j = v,(4) is the
p-valuation of i, or equivalently, the p-component of pi. The element of order p in this image is denoted
a;, for i > 1, and a; = pjozi/j, where «;/; is a generator of this cyclic group. This pattern persists for
all odd primes p, but the case p = 2 is more complicated.

The first element of m, (S)ﬁ that is not in the image of J, hence is in the cokernel of J, is f; in
Top(p—1)—2(S);,, represented in Adams filtration 2 by 72 5.

11. BRUNER’S ext-PROGRAM

11.1. Overview. Robert R. Bruner (1993) has developed a package of C-programs and shell scripts,
usually called ext, which can calculate Extfz’;(M ,F2) over the mod 2 Steenrod algebra &/ for many
modules M, in a finite range of filtration degrees s and internal degrees ¢.

The strategy is to compute a minimal free resolution e¢: P, — M of the «/-module M, one internal
degree t at a time, starting from filtration degree s = 0 and moving upwards. The </-module basis
{gs,i}: for Py then also gives an Fa-vector space basis for Fo @4 Ps = Torf(Fg,M ). The dual basis
{Vs,i }ir With 75,(gs,;) = d; ;, is then an Fa-vector space basis for Ext}, (M, Fs).

The program can compute induced homomorphisms, Yoneda products and some Massey products,
and produces output in text, TEX, Postscript and PDF formats. It can also make similar calculations
over the subalgebra A(2) = (Sq', Sq?, Sq*) of o7, but is not prepared to calculate at odd primes p.

See subsection for a guide to how to install the current version of ext. Thereafter, see sub-
section to see how to encode an &/-module M in a format that the ext program can use, and
subsection for where to store and process such module definition files. To resolve a module, first
see subsection for how to create the subdirectory where that calculation takes place, and then see
subsection for how to run the script that calculates the minimal resolution. [[ETC]]

11.2. Installation. At the time of writing, the most recent version of ext is ext.1.8.7 from April 14th
2014. It can be downloaded via Bruner’s home page at http://www.math.wayne.edu/~rrb/papers/,
or directly from http://www.math.wayne.edu/~rrb/papers/ext.1.8.7.tar.gz, using a web browser.
Save the file ext.1.8.7.tar.gz in a directory. In this guide we will assume that this directory is called
ext. You may be offered to create such a directory when saving the file, or you can create one using
mkdir ext.

Open a terminal window and move to the ext directory, using a command like cd ext. The file is a
compressed (gzip’ed) tape archive (tar-file). First uncompress it using gunzip ext.1.8.7.tar.gz. This
enlarges the file from about 2 MB to about 5 MB, and gives it the new name ext.1.8.7.tar. Then
unpack the archive using tar -xvf ext.1.8.7.tar. To list the resulting files use 1s, giving output
like A A2 copyright doc ext.1.8.7.tar NEW README START HERE TODO. The files START_HERE (up to
date for version 1.8) and README (dating from versions 1.6, 1.65 and 1.66) explain the basic usage of the
ext program. There is further documentation in the doc subdirectory, and an account of the changes
made since version 1.66 is given in NEW. The subdirectory A will contain the code and data for making
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calculations over the mod 2 Steenrod algebra /. The subdirectory A2 will contain the corresponding
code and date for calculations over the subalgebra A(2).

To complete the installation, follow the instructions in section I of START _HERE, namely do cd A fol-
lowed by ./Install. This runs the shell script Install in ext/A. The script compiles several programs,
and assumes that the GNU C-compiler gcc is already installed on the system. If not, you will need to
install gcc first. There will be some warning messages regarding storage.c and splitname.c. Appar-
ently it is difficult to avoid these on all different systems. It may be possible to write Install in place of
./Install, but this depends on the settings of your system, i.e., whether the current directory (.) is in
the search path variable $PATH. We will not assume that it is, and therefore use the explicit . /-commands.
Finally, move up to ext and down to the A2 directory using cd ../A2, and then do ./Install in that
directory to compile the remaining programs. Again there will be some warning messages. Do cd .. to
return to the main directory (the one we are assuming is called ext). This completes the installation.

11.3. The module definition format. In order to calculate Ext;{*(M ,F2), we must first specify the
&/-module M. Before version 1.5, the user was expected to provide a program (called module. c) that con-
tained functions keeping track of a Fo-vector space basis for M, and the action of elements in the Steenrod
algebra on those basis elements. This is documented in ext/doc/readme.1.0 and ext/doc/module.doc,
but is now largely irrelevant, due to the new interface for module definitions introduced in version 1.5,
partly written by Jeff Igo. It is documented in ext/doc/modfmt.ascii and ext/doc/modfmt.html, in
addition to the following explanation.

The «7-module M, which may eventually have a completely different name, must be presented to the
ext program as a finite dimensional Fa-vector space with a chosen ordered basis (v, v1,...,0n—1). If
there are n basis vectors, they will be numbered from 0 to n — 1, inclusive. The 47/-module action must
be specified by listing the value Sq"(v;) of each Steenrod squaring operation Sq¢” on each basis vector v;,
for r > 1 and 0 < ¢ < n, except that operations that take the value 0 can be omitted. This ensured that
only finitely many values need to be specified.

If one is really interested in an infinite-dimensional module M, such as H*RP> = Fs|x], one must
choose to truncate this module at some finite internal degree b, discarding all generators in internal
degrees t > b. This will not affect Extlef(M ,IFo) for t < b, so a partial calculation in a finite range of
internal degrees is possible, if M is bounded below and of finite type. If M is not bounded below, or has
infinitely many generators in a single degree, then the ext-program will not be able to calculate with it.

The module definition file will be a text file with two parts. The first part specifies the internal grading
of the vector space basis. The second part specifies the action by the Steenrod operations.

The first part has the format

n
t0 t1 ... t(n-1)
where n is the Fao-vector space dimension of M, i.e., the number of basis vectors vg,v1,...,v,_1, and

toty...tn_1 are the internal degrees of those basis vectors. Beware that these basis vectors are assumed
to be ordered so that the sequence of internal degrees is non-decreasing. In other words, a basis vector
cannot be followed by a basis element in strictly lower internal degree. (If your module definition file
does not satisfy this condition, the program ext/A/samples/sortDef can reorder the basis as needed.)

For example, if M = H*(S) = Fs has a single generator in internal degree 0, the module definition
file would begin:

1
0

IftM = fI*(RP4) has four generators z, 2, 2% and 2* in degrees 1, 2, 3 and 4, the module definition file
would begin:

4
1234

Note that the names of the generators are irrelevant for the program; it simply considers the basis as an
ordered list of n elements, and keeps track of the individual basis elements by their index in that list,
which is a number between 0 and n — 1. (This index is typically different from the internal degree of
that generator.) However, the ordering of the basis elements (within a given internal degree) will be of
importance when the Steenrod operations are to be specified.

The second part consists of a list of lines, one for each nonzero operation Sq"(v;) with » > 1. If
Sq"(v;) = vj, +vj, + -+ +vj, is a sum of k different terms, then that line will appear as follows:
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irkjlj2... jk
The first entry, ¢, tells us which basis vector, v;, is being acted upon. The second entry, r, tells us
which Steenrod operation, Sq", is acting nontrivially on that basis vector. The value of Sq"(v;) is a
homogeneous element in M, hence is a sum of one or more of the basis vectors in that internal degree.
The third entry (k) tells us how many different terms there are in that sum. The remainder of the
line contains k entries, and these are the indices j1, jo, .. ., jx of the basis vectors that occur in the sum
Sq"(v;) = vj, +vj, +---+vj,. [[Usually j1 < jo < --- < jg. Is this necessary? Duplications are not
allowed, I believe.]]
For example, if M = H*(S) = Fy, there are no nonzero operations Sq", so the second part is empty;
it consists of zero lines.
If M = H*(RP*), the Steenrod operations satisfy Sq”(z?) = (:)xH‘i. The nonzero operations are
Sql(x) = 22, Sq¢t(z3) = 2* and S¢?(2?) = x*. The operation Sq'(z) = x? is specified by the line
0111

where the first 1 means that we are acting on the generator numbered 0, i.e., x, the second 1 means that
we are specifying the value of Sq' on that generator, the third 1 means that Sq'(x) = 22 is a sum of one
term only, and the last 1 means that that one term is the generator numbered 1, i.e., 2. The operation
Sq'(z3) = 2* is specified by the line

2113

where the first 2 means that we are acting on the generator numbered 2, i.e., 2%, the second 1 means
that we are specifying the value of Sq! on that generator, the third 1 means that Sq*(z3) = 2* is a sum
of one term omnly, and the last 3 means that that one term is the generator numbered 3, i.e., z*. The
operation Sq¢?(2?) = 2% is specified by the line

1213

where the first 1 means that we are acting on the generator numbered 1, i.e., 2%, the second 2 means
that we are specifying the value of Sq? on that generator, the third 1 means that Sq?(z?) = z* is a sum
of one term only, and the last 3 means that that one term is the generator numbered 3, i.e., 2*. The
combined second part of the module definition file for this M is therefore:

0111

2113
1213

The ordering of the lines does not matter. If preferred, we could also have used the following specification
0111
1213
2113
in order of the basis elements v;, followed by the order of the squaring operations Sq"(v;) on those basis
elements. With this ordering, the whole module definition file for H* (RP*) would appear as follows.

4
1234

N - O
=N

1
3
3

o B

This file can be created in a text editor.

11.4. The samples directory. Module definitions for .&/-modules can conveniently be stored in the
directory ext/A/samples. The file name can be freely chosen, but it is convenient to let it specify the
o7/-module, or perhaps a spectrum whose cohomology realizes that .<7-module. The module definition for
F5 can thus be saved under one of the names F2, F2.def, S or S.def in ext/A/samples. That directory
also contains some tools for working with module definitions. See the file ext/A/samples/README for
some documentation. The programs tensorDef, dualizeDef, collapse and truncate let you build new
module definition files from old ones.

For example, if M.def and N.def contain the definitions of two &/-modules M and N, then the com-
mand ./tensorDef M.def N.def MN.def will produce a new module definition file MN.def, presenting
the tensor product M ® N (with the diagonal o/-action, more on that later). If M = H*X and N = H*Y,
then M ® N = H*(X AY). If the ordered basis for M is (v;); and the ordered basis for N is (w;);,
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the basis chosen for M ® N will consist of the set of tensors {v; ® w;}; ;, but the ordering of these basis
vectors may not be obvious. The program tensorDef therefore outputs a list of the pairs (4, 7), in the
order that is chosen for M ® N. A copy of this output may be saved, since it can become useful later.

For another example, if M.def contains the definition of an «/-module M, then ./dualizeDef
M.def DM.def will produce a new module definition file DM.def, presenting the dual &/-module M™* =
Homgp, (M, Fy) (with the conjugated o7-action, more on that later). If M = H*X, then M* = H*(DX) =
H_,(X), where DX = F(X,S) is the functional dual of X. For finite CW spectra X, this is the same
as the Spanier—Whitehead dual of X. [[Is the basis {v}}; for M* ordered by reversing the order of the
basis (v;); for M7

Calling these commands without an argument, as in ./collapse or ./truncate, gives short messages
explaining their usage.

The consistency command, in its improved version called newconsistency, checks whether the
Steenrod operations listed in a module definition file actually define an «/-module, i.e., if the operations
satisfy the Adem relations. If all Adem relations are satisfied, it exits quietly. If they are not, it lists the
Adem relations that are not satisfied, and the generator on which this failure takes place.

[[Can use newconsistency to complete a partial definition of an «/-module, where only the action of

the algebra indecomposables S¢? are given, to one where the action of all Sq” are given. To do this, start
by adding operations to correct the lowest degree error message from newconsistency, and continue.]]

11.5. Creating a new module. To make Ext -calculations with an </-module M, defined by a module
definition file M.def in ext/A/samples, use cd .. or something similar to go to ext/A. Then use the
command ./newmodule M samples/M.def to create a subdirectory ext/A/M that contains the data and
code relevant for the calculations for M. In general, replace M with a more memorable name for the
module in question. newmodule calls on newconsistency to check that the module definition file M.def
actually defines an o7-module. If it does not, go back and correct it before calling newmodule again.

A copy of the module definition file will be stored as Def in ext/A/M.

The Extg-calculations for M will be carried out by finding a finite part of a minimal resolution
P, — M, in a range of filtration degrees 0 < s < Syaz, Where $p,q, is the number stored in the file
ext/A/M/MAXFILT.

P, o PP P - M 0.

Smax

Usually a common 8,,q,-value for all &7-modules is set in the file ext/A/MAXFILT, and newmodule will
copy this value into ext/A/M/MAXFILT when creating the directory for M. [[It should not be changed
after newmodule has completed creating the module.]]

The data specifying the minimal resolution will be stored in the files Diff.0, Diff.1, .... Here
Diff.s will specify the internal degrees of the «7-module generators gs; for Py, and the values d5(gs,;)
in P;_; of the boundary homomorphism 0, on these generators. These values will be expressed as sums
of elements in the free /-module on the generators g,_1 ; of Ps_1. [[What happens for s = 07?]]

The computation will be done one internal degree ¢ at a time, assuming that the calculations for
lower internal degrees have already been done. The first line of each Diff.s contains two numbers. The
second is the internal degree ¢ up to which the calculation of P, and 0, has been completed, so far. The
first is the number of generators that have been added to Ps, in internal degrees less than or equal to
t. Both of these numbers are set to 0 at the outset, when the module is created with newmodule. [[Can
this confuse the program if M starts in negative degrees, and dims is started at ¢t = 07]]

[[Explain format of Diff-files.]]

11.6. Resolving a module. To resolve a module M, created from a module definition file M.def in
ext/A/samples using ./newmodule M samples/M.def in ext/A, move into ext/A/M using cd M. (In gen-
eral, replace M by the directory name chosen for the module.) Suppose that the module M is concentrated
in internal degrees ¢t > 0, and that we want to make the calculation up to internal degree ¢t = 60. Then
we use the script dims, which automatically starts a series of scripts nextt, each handling one ¢ at a
time. To calculate in the range just mentioned, use ./dims 0 60.

In general, the command ./dims a b in the directory ext/A/M will calculate the resolution P, for
0 < s < Synae in the range of internal degrees a < ¢t < b, under the assumption that the calculation is
already finished for ¢ < a, starting with ¢ = a and working its way up.

For each t, the calculation proceeds on s at a time, calculating the kernel of 0;_1: Ps_1 — Ps_5 in
degree t, identifying the image of ds: P; — P,_1 when restricted to the generators of P, in internal
degrees less than ¢, and choosing an Fs-basis for a complementary subspace. For each basis vector v;,
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an &/-module generator g, ; is added to P in internal degree ¢, and 0s(gs,;) is set equal to v;. [[Is this a
fair representation of how the program actually works?]]

The subdirectory ext/A/M/logs will contain log files, recording the progress made. Use 1s logs in
ext/A/M to get a quick look at the progress, or try 1s -1rt logs for more detailed timing information.

After dims is finished, the calculation can be continued with another call to the same script, for
instance by ./dims 61 100.

[[Explain report and display.]]

[ETC])

12. CONVERGENCE OF THE ADAMS SPECTRAL SEQUENCE

12.1. The Hopf-Steenrod invariant. For p = 2, the standard notation for the class ~; ;, dual to the

indecomposable S¢?', is h;. See Adams (1958). The h is for Hopf, since these classes detect the stable
maps of spheres with Hopf invariant one.

Lemma 12.1. Tor{’ (Fy,Fo) = I(«/)/I(/)? = Q(of) = Fo{S¢* | i > 0} and Extl,(Fa,Fa)
Hom(Tor (Fy, Fy),Fa) = Fol{h; | @ > 0} where h; has bidegree (s,t) = (1,2%) and is dual to Sq*,
for each i > 0.

Proof. There exists a free resolution --- — P, — Py — Fo — 0 where Py = & and P, = &/ {g1}
with 01: g1,; — Sq¢?' for all ¢ > 0. The resolution is exact at Py since the Sg?' generate the left ideal
I(«/) C 7, and it is minimal there since 0y (Py) C I(%/)Fy. It is also minimal at Pj, since the surjection
Py — I(<7) induces an isomorphism Fa{g1;}; = F2 @ P = P1/I()Py — 1()/1()? = Q(),
so that 62(P2) = ker(@l) C I(JZ{)Pl Hence TOT?(FQ,FQ) = Fg (S P1 = Q(JZ{) and EXti{(FQ’]FQ) =
Hom (P, Fo) 2 Fo{h;};, as claimed. ((Proof using bar complex?)) O

Lemma 12.2. For p odd, Tor{ (F,,F,) = F,,{B,P”i | i > 0} and Extl,(F,,F,) = F,{ao,h; | i > 0},
where ag has bidegree (s,t) = (1,1) and is dual to B, and h; has bidegree (s,t) = (1,2p"(p — 1)) and is
dual to PP", for each i > 0.

Proof. The proof is similar to the case p = 2, using a free resolution ¢: P, — F,, with Py = & and
P1 = %{91,0,917“_1 | ) > O}, where 61(9170) = ,B and 81(91@4.1) = Ppl for each ¢ > 0. U

We shall soon prove that the Adams spectral sequence
E3' = Ext®) (Fg, Fo) = m_4(S5)%

converges to the 2-adic completion of the stable homotopy groups of spheres. The chart in Theorem [10.12
above displays the Ea-term in the range ¢ < 11. [[EDIT FROM HERE TO TAKE INTO ACCOUNT THE
ADAMS VANISHING LINE.]] We will see later that the pattern above the diagonal line, where s > t—s,
continues. There is an isomorphism Ext?)’(Fa,F2) = Fo{vys0} for all s > 0, while Exti’; (Fy,Fy) =0 for
t—s < 0and for 0 <t—s <s. Thus the groups labeled - in the chart are 0. Granting this, the only
possible d,-differentials starting in total degree ¢t — s < 6, for r > 2, are the ones starting on v;1 = hy
and landing in the group generated by 7,41 0.

However, these differentials are all 0, as can be seen either by proving that 7, ¢ detected 2° € my(.5),
or that 11 detects n € m(S), or by appealing to multiplicative structure in the spectral sequence.
Granting this, we can conclude that Fy = Eo in this range of degrees, so that the groups Fao{~,,} in
one topological degree n =t — s, for s > 0 and n < 5 are the filtration quotients of a complete Hausdorff
filtration {F*}¢ that exhausts 7, (S5)5.

For n = 0, we already know that 7o (S) = Z so my(S)5 = Zs. The only possible filtration is the 2-adic
one, with F'® = 257y C Zg and F*/F$Tt &2 257, /25717 =2 Fo{, o} for all s > 0. For n = 1 we deduce
that m1(9)8 2 Z/2{v11} = Z/2{h1}. In fact m1(S) = Z/2{n} is generated by the complex Hopf map
n: S* — S. For n = 2 we deduce that m3(5)% = Z/2{y21}. We shall see later that m2(S) = Z/2{n?}
is generated by the composite n? = no ¥n: S? — S. For n = 3 we deduce that 73(S)% is an abelian
group of order 8. We shall see later that m3(S)5 = Z/(8) is the 2-Sylow subgroup of m3(S) = Z/24,
generated by the quaternionic Hopf map v: S® — S. Finally, for now, we conclude that 74(5)% = 0 and
75(5)5 = 0, and in fact 74(S) = 75(S) = 0. [[EDIT TO HERE.]|
Lemma 12.3. (Hopf, Steenrod) For p = 2, let f: S™ — S be a map with 0 = f*: H*(S) — H*(S"),
and let Cy = hocofib(f) = S Uy e™ ! be its mapping cone. Suppose that Sq"t: HY(Cy) — H"TH(Cy) is
nonzero. Then n+ 1 = 2" for some i > 0 and [f] € 7,(S) is detected in the Adams spectral sequence by

h; € E21’2 .
72



Proof. Consider the canonical Adams tower for Y = S, with YO =5 K°=H,Y! =% 'H and
K!' = HAX"'H. The composite j o f is null-homotopic, since d(f) = f* = 0, so we have a map of
cofiber sequences:

Sn S C; g+
T
Il SN N SN -
)
HAY'H

Here d: Cy — H and e: S™ — Y71 H are determined by a null-homotopy of f. Applying cohomology to
the right hand part of the diagram, we get a map of «/-module extensions:

Fo «—— H*(Cf) — EnJrlIFQ

Td* TE&‘*
J* *

Fy o —L < I(o)

Here d*(1) = 1, so by assumption d*(S¢"*!) # 0. Hence Ye*(Sq"*!) # 0. This is impossible if
Sqgnt1 s decomposable, so we must have n + 1 = 2¢ for some i > 0. Then e* # 0, which implies that
joe: 8™ — H AY1H is essential (= not null-homotopic).

This proves that [f] € m,(S) lifts to m,(Y") but not to m,(¥?), hence corresponds under the isomor-
phism F'/F? = E1* to a nonzero class in EL? C E%’Ql = Fy{h;}. The only possibility is that [f] is
detected by h;. O
Lemma 12.4. (Hopf, Steenrod) For p odd, let f: S™ — S be a map with 0 = f*: H*(S) — H*(S"),
and let Cy = hocofib(f) = S Uy "t be its mapping cone. Suppose that P*: HO(Cy) — H"1(Cy) is
nonzero, with n +1 = 2k(p —1). Then k = p* for some i > 0 and [f] € m,(S) is detected in the Adams
spectral sequence by h; € E21’2pl(p_1). Alternatively, suppose that 3: H°(Cy) — H*(Cy) is nonzero. Then
n =0 and [f] € mo(S) is detected by ay € Ey".

Proof. The proof is similar to the 2-primary case. O

The class of Xe*od; : P — L"TIF, in ExtLL{ThLl (Fp,F,) = Fp{h;} is called the Hopf-Steenrod invariant,
or the cohomology e-invariant, of [f]. It is only defined for the [f] with vanishing d-invariant. More
generally, we have a diagram

F? F! FO=[X,Y],
| :
Ext>" M (H*(X), H*(Y)) Hom",, (H*(X), H*(Y))

for each pair of spectra X and Y.

Theorem 12.5. The Hopf maps 2: S — S, n: S* = S, v: 83 — S and 0: ST — S are detected in the
Adams spectral sequence by the classes hg, hi, ho and hs, respectively. These are infinite cycles in the
spectral sequence.

Proof. In each case, f: S™ — S is the stable form of a fibration X271 f: §2n+!1 — §n+l with mapping
cone a projective plane P2. Here H*(P?) = P(x)/(z%) = Fo{l, 2,22}, where |z| = n + 1, by Poincaré
duality Hence S¢"*!(x) = 2% # 0, and the previous lemma applies. Quite explicitly, ¥Cy = RP? has a
nonzero Sq*, £2C,, = CP? has a nonzero Sq¢?, £*C,, = HP? has a nonzero Sq¢* and 8C, = OP? has a
nonzero Sq8. U

The names 7, v and o for the Hopf maps detected by hi, ho and hgz are supposedly unrelated to the
correspondence between the initial phonemes in the Greek letters “eta”, “nu” and “sigma” and in the
first three Japanese numerals “ichi”, “ni” and “san”. We shall see later that none of the classes h; for
i > 4 survive to the F,.-term, so there are no maps S™ — S with nonzero Hopf-Steenrod invariant for
n > 8.
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Theorem 12.6. Let p be odd. There are maps p: S — S and oy : S?P~3 — S that are detected in the
Adams spectral sequence by the classes ag and hg, respectively. These are infinite cycles in the spectral
sequence.

Proof. The Bockstein homomorphism 3 acts nontrivially in the cohomology H*(C),) of the mapping cone
Cp = S U, e! of the degree p map p: S — S, so [p] € m(S) is detected in the Adams spectral sequence
by ag.

The map oy € map_3(S) is the stable image of the generator of m,(5%)) = Z/p that we discussed
in Theorem It can be constructed as the stable attaching map of the 2p-cell to the 2-cell in CP?,
after p-completion, but this requires proving that the attaching map ¢: $??~! — CPP~! compresses into
i: 82 = CP' ¢ CPP~!. For each 2 < k < p — 1 the obstruction to compressing a map S?*~! — CP*
into CP*~1 lies in g1 (S%F) = To(p—k)—1(5), so if we assume that we know that this group is trivial,
after p-completion, then ¢ compresses as i o a for a map a: S?~! — S§2. [[Another proof of this fact
can be given using the action of roots of unity in Z, on (CPP);.]] Then i induces a map j: Co =
S?2U, e* — CPP, and j*: H*(CPP) =F,ly|/(y**') — H*(C,) maps 1 and y? to generators of H*(C,).
Since Pl(y) = y? in H*(CPP), it follows that P! acts nontrivially in H*(C,), so the stable class a; of
« is detected by hg, as claimed. O

12.2. Naturality. The essential uniqueness of free resolutions lifts to the level of spectral realizations.
Consider diagrams

K3

R G D SIS (O
and

szt Lzt .52 =27

with cofibers K* = hocofib(Y**! — Y*¥) and L® = hocofib(Z**! — Z%) for all s > 0. There are
associated chain complexes

s P B P 2 B S HE(Y) = 0
and
e Q2 QLT Qo -5 HY(Z) » 0
of &/-modules, where Py = H*(X°K?), Qs = H*(X°L?), 0; = 0*j* and € = j*.
Theorem 12.7. Suppose that (a) each cofiber L® is a wedge sum of FEilenberg—Mac Lane spectra that is

bounded below and of finite type, and (b) each map i: Y1 — Y induces the zero map on cohomology.
(For instance, the diagrams {Y*}s and {Z°}s might be Adams resolutions.) Let f:Y — Z be any map.

(1) Each Qs is a free of -module, and the augmented chain complex e: P, — H*(Y) — 0 is ezact.
(2) There exists a chain map g.: Q. — P, lifting f*, in the sense that the diagram

-2 p g (Y 0

92[ 91T QOT f*T
Q2 02 Q1 o Qo —— H*(Z) 0

commutes. Furthermore, there is a map of diagrams {f°: Y* — Z%}, lifting f and realizing g.,
in the sense that there is a homotopy commutative diagram

y2 _tayl Ly

b b

72t tg

and given any choice of commuting homotopies, the induced map of homotopy cofibers g°: K* —
L? induces gs = (X°¢°)*: Qs — Ps, for each s > 0.

(3) If Gu: Q« — P. is a second chain map lifting f*, and {f*}, is a map of diagrams lifting f and
realizing g., then g. and g. are chain homotopic, and {f*}s and {f*}, are homotopic in the
weak sense that the composites f*oi and f*oi: Y5t' — Z° are homotopic for all s > 0.
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Proof. Freeness of each @), is clear from the wedge sum decomposition of L®. Exactness of ¢: P, —
H*(Y') — 0 is clear from the vanishing of i*. The existence of a chain map g, lifting f* is then standard
homological algebra. We need to construct the maps f° and ¢g° in a diagram

% Y2 A Yl A v

. .
AN AN
. N . N .
J 22N J 72N J

12 Kl £t KO f

of spectra, inducing a commutative diagram

H*(32?Y?) *(2Y)
/ T (LK) W H*(K°)
(22r%)" =
*(%222) “(22Y) )" H*(Z)
/ ELl )

of o/-modules, with g, = (X%g°)*.

Inductively, suppose the maps f = f°,..., f* and ¢°,...,¢* ! are given, for some s > 0, making the
diagram to the right of f* commute up to homotopy. Then j* o g5 = (£°f%)* o j*, by the assumption
that gg lifts f* for s = 0, and by the assumption that 9*j* o g5 = gs—1 0 0*j* = 0*(X°f*)* o j* and the
injectivity of 0* for s > 1.

We have an isomorphism [K*®, L°] = Hom (H*(L®), H*(K*®)), so there is a unique homotopy class of
maps ¢°: K® — L° with (¥°¢°)* = g,;. Note that g° o j: Y* — L* is homotopic to jo f*: Y* — L%
because of the isomorphism [Y*, L] = Hom, (H*(L*), H*(Y*®)) and the fact that (¢° o j)* = (j o f%)*.
(Both isomorphisms follow from hypothesis (a)).

Choosing a commuting homotopy and passing to mapping cones, or appealing to the triangulated
structure on the stable category of spectra, we can find a map of homotopy fibers f5+!: Ys+l — Zs+1
making the diagram
J

YS+1 4 Ys Ks 0 ZYS+1

fs+1l fsl gsl EfSJrlJ(

Zs+1 v 78 J LS 0 Zzs+1
commute up to homotopy. This completes the inductive step.

The uniqueness of g, up to chain homotopy, meaning that any other lift g, is chain homotopic to g, is
standard homological algebra. We prove that f*o1i is homotopic to f*oi by induction on s. This is clear
for s = 0, since fo = fo = f. Suppose that o f* ~ 51 o4 is homotopic to io f5 ~ f51oi: Vs — Z51,
for some s > 1.

Ys+l i Ys ¢ Ys—l
fsJ lfe fs—IJ( st—l
75 i Zsfl
\
E_lLs_l
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Then i o (f* — f*) is null-homotopic, so that f* — f* factors through a map h: Y* — R71LsL
Then f*oi — f*oi = (f*— f*)oi factors through hoi: Yt — R=1[s=1  This map induces
i* o h* = 0 in cohomology, hence is null-homotopic because of the isomorphism [Vt =151 =
Hom , (H*(S7'L*~1), H*(Y**1)). In other words, f*oi~ f°oi. O

Corollary 12.8. Let f: Y — Z be a map of bounded below spectra with H,.(Y) and H.(Z) of finite type.
Then there is a well-defined map

f*: {ET<Y>7dT}T‘ — {ET<Z)7dT}T
of Adams spectral sequences for r > 2, given at the FEs-level by the homomorphism
(f*)*: Ext®) (H*(Y),Fo) — Ext®)(H*(Z),F2)
induced by the o -module homomorphism f*: H*(Z) — H*(Y'), with expected abutment the homomor-
phism
ferm(Y) = me(2).
(Similarly for the Adams spectral sequences converging to [X,Y]. and [X, Z]«, for any spectrum X.)

[[The well-defined map of Ea-terms uniquely determines the maps of the following F,-terms.]]

Lemma 12.9. Let {Y*}, and {Z®}, be Adams resolutions of a bounded below spectrum Y with H,(Y")
of finite type. Then there is a homotopy equivalence holimg Y® ~ holimg Z°.

Proof. There are maps {f*: Y5 — Z%}, and {f*: Z° — Y*}, of resolutions covering the identity map
of Y = Y% = Z° and homotopies f*o f*oi~i:Y* — Y*®and f*o f*oi~i: Z5t" — Z*, for all
s > 0. Hence holimg f* and holim, f° are homotopy inverses. O

Theorem 12.10. Let {Y*}; be an Adams resolution of Y, and let X be any spectrum. (The case
X = S is of particular interest.) A class [f] € [X,Y]n has Adams filtration > s, i.e., is in the image
Fs of i*: [X,Y®],, = [X,Y],, if and only if the representing map f: X"X — Y can be factored as the
composite of s maps
YX =X, 25 X, 22X, S Xy =Y
where 0 = z%: H*(Xy—1) — H*(X,) for each 1 < u < s. In particular, F* C [X,Y]. is independent of
the choice of Adams resolution.
Proof. If [f] has Adams filtration > s, let g: X" X — Y® be a lift, with i* o g ~ f. Let X,, = Y* and
zy =1 for 0 <u<s—1, and let z5 = ig:
oy Wy yset by Lyl Ly

Conversely, given a factorization f = z; 0--- 0 2z, as above, let f0: Y — Y be the identity map. We

can inductively find lifts f*: X, — Y* making the diagram

Zs Zs—1 zZ2 zZ1

X, X, 4 : X, Y
fsJ( fsfll fli J
ys Layst b, tayl Ly

commute, since the obstruction to lifting f*~1 o z,: X, — Y% ! over i: Y* — Y%~ ! is the homotopy
class of the composite jo f*"!toz,: X, — K“~! which is zero because 2} = 0. Let g = f*: ¥"X — Y*.
Then i® o g ~ f, and [f] has Adams filtration > s. O

12.3. Convergence.

Definition 12.11. For each natural number m let the mod m Moore spectrum S/m = S U,, e! be
defined by the homotopy cofiber sequence

s S — S/m— S

where the map m induces multiplication by m in integral (co-)homology. Note that H.(S/m;Z) = Z/m
is concentrated in degree 0. For any spectrum Y let Y/m =Y A S/m, so that there is a cofiber sequence

Y %Y —Y/m— Y.
Applying F(—,Y) to the cofiber sequence

St —8tYm-—85"S
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leads to the cofiber sequence
Y %Y — F(S™Ym,Y) — XY
and an equivalence Y/m ~ F(S~Y/m,Y).
Definition 12.12. For each prime p there is a horizontal tower of vertical cofiber sequences

p

UGN S N N S
p° p? P

= 8= = ,8—= 9
S/p° - S/p? S/p

P gl P P g P a

We define the p-completion of Y as the homotopy limit Yp/\ = holim, Y/p® of the tower
e YAS/pE— - =2 Y AS/pE =Y AS/p.
The maps S — S/p® induce the p-completion map ¥ — YPA.

Dually there is a horizontal sequence of vertical cofiber sequence

p p

Sl —F 5! §-1

S Yp—s SV s 5

S — S — — S ——

P P p
s—F 9> 4 —2 55
Let S7'/p™ = hocolim. S~Y/p®. Note that H,(S™Y/p>;Z) = Z/p> = Q/Zy) = Qp/Zy. Applying
F(—,Y) we get the tower defining the p-completion, so
N~ —1/,00
Y = F(57/p™.Y).

p

The map S~1/p> — S induces the p-completion map ¥ — Yp/\.
((See Bousfield.))

Lemma 12.13. The p-completion map induces an equivalence Y/p® — (YP/\)/pe for each e. Hence it
induces an isomorphism H,(Y) = H*(YPA) in mod p homology (and cohomology). The p-completion map
Y/p® — (Y/p®), for Y/p® is also an equivalence.

Proof. The map S~!/p> — S induces an equivalence S~1/p¢ A S=1/p> — S~Ypc A S = S~Y/p¢, for
each e, since p~1m,(S/p¢) = 0. Apply F(—,Y) to get the first conclusion. Apply integral homology
to the equivalence Y/p — (Yp/\) /p to get the second conclusion. Applying F'(—,Y) to the interchanged
equivalence S~1/p> A S~Y/p¢ — S A S71/p® leads to the third conclusion. O

Lemma 12.14. The p-completion of the p-completion map for Y, and the p-completion map for Yp/\,
are equivalences YpA — (Yp/\)]/j\. In either sense, p-completion is idempotent up to equivalence.

Proof. Use that the map S~!/p> — S induces equivalences S™1/p>® A S~Yp> — S~Yp> A S and
S=p>® A STYp>® — S A STYp>®, and apply F(—,Y), or pass to homotopy limits over e from the
previous lemma. O

Lemma 12.15. Let m,(Y)) = lim, 7, (Y) ® Z/p® be the algebraic p-completion of 7,(Y'). There is a
short exact sequence
0 —= m,(Y)) = limm, (Y/p®) = Hom(Z/p™, m,—1(Y)) = 0
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and an isomorphism Rlim, 7,41 (Y/p®) = Rlim, Hom(Z/p®, 7, (Y)). If = ( ) is of finite type, i.e., if

7, (Y) is finitely generated for each n, then 7,(Y) ® Zp = 1, (Y);) = w0, (YY) for all n.

Proof. We have a tower of short exact sequences
0—-m(Y)®Z/p® — 7, (Y/p®) — Hom(Z/p®, mp—1(Y)) = 0

for e > 1. Each homomorphism 7, (Y)®Z/p*Tt — 7, (Y)®Z/p is surjective, so Rlim, 7, (Y)®Z/p® = 0.
Hence the associated lim-Rlim exact sequence breaks up into a short exact sequence

0 —limm,(Y)®Z/p® — lim 7, (Y/p®) — limHom(Z/p®, m,,—1(Y)) — 0
e e e

and an isomorphism
Rlim 7, (Y/p®) = Rlim Hom(Z/p®, 7, —1(Y)) .
e e

Here lim, 7, (Y) ® Z/p® = 7,(Y);, and lim, Hom(Z/p®, 7,1 (Y")) = Hom(Z/p>, 7,1 (Y)).

If 7, (Y') is finitely generated, then clearly 7, (Y)®Z, = m,(Y); . Furthermore, each Hom(Z/p®, 7,(Y"))
is finite, so Rlim, 7, 11(Y/p®) = Rlim, Hom(Z/p®, m,(Y)) = 0. If also 7m,,_1(Y) is finitely generated, then
its p-torsion subgroup is annihilated by pV for some fixed N. Hence Hom(Z/p®, m,—1(Y)) C mp—1(Y)
equals that p-torsion subgroup for all e > N, and the homomorphisms in the limit system induce
multiplication by p, hence are nilpotent. Thus lim, Hom(Z/p®¢, 7,,—1(Y)) = 0. Thus the lim-Rlim exact
sequence

0 = Rlim 41 (Y/p®) — m,(Y,)) — limm,, (Y/p) — 0

for Y,* = holim, Y/p® simplifies to an isomorphism ,, (Y;") = lim, 7, (Y//p®), and the short exact sequence
above simplifies to another isomorphism 7, (Y'); = lim, 7, (Y/p®). O

Ezample 12.16. (1) H ~ H) and (HZ), ~ (HZ,)), ~ HZ,.
(2) For Y = HZ[1/p] or HQ we have Y/p ~ % for all e, S0 (HZ[I/p})]/D\ ~ (HQ), ~
(3) ForY = H(Z[1/p]/Z) = HZ/p> or H(Q/Z) we have Y /p® ~ X HZ/p* for all e, so H(Z[1/p]/Z);, =
H(Z/p>), ~ H(Q/Z), ~ XHZy.

Lemma 12.17. Let 0 — @, Z — 6962 — Zp, — 0 be a short free resolution of Z,. There is a
corresponding cofiber sequence \/,, S — \/B S — SZ,, where H,(SZ,;Z) = Z,, is concentrated in degree 0.
Then mn,(Y N SZy) =~ 7,(Y) ® Zy for all n. In particular, S ~ (SZy), =~ SZ,. If n.(Y) is of finite type
then the natural map Y A\ SZ, — Y, is an equivalence, and H.(Y) — H.(Y}}) is an isomorphism.

Proof. ((Straightforward. TBW.)) O

Let HZ be the integral Eilenberg—Mac Lane spectrum, with 7o(HZ) = Z and m;(HZ) = 0 for i # 0.
It is a ring spectrum, with multiplication ¢: HZA HZ — HZ and unit : S — HZ. (Not to be confused
with the Hopf map 7: S' — S.) Let HZ = HZ/S be the cofiber.

Lemma 12.18. H*(HZ) = o/ | o/{Sq'} for p=2, and H*(HZ) = o/ | o/ {B} for p odd.

Proof. Since the unit map S — HZ induces an isomorphism on 7y and a surjection on 71, we find that
HZ is 1-connected. Hence H'(HZ) = H'(HZ) = 0.
There is a short exact sequence of «/-modules

04— o) d{Sq'} ¢— o +— X/ | {Sq*} +— 0

where the right hand arrow takes ¥1 to Sq*. It is clear that 3Sq’ — Sq! 0 Sq¢* maps to 0, for admissible
I, if and only if I = (iy,...,i,) with i, = 1. These Sq! generate precisely the left ideal </{Sq*}.

There is also a cofiber sequence HZ 2 HZ — H — Y.H7Z, where 2* = 0, so that there is an
associated short exact sequence

0«— H*(HZ) +— H*(H) +— SH*(HZ) +— 0.

in cohomology. Let o7 — H*(H) be the isomorphism taking Sq’ to its value on the generator 1 € H°(H).
The composite X7 /7 {Sq'} — o — H*(H) — H*(HZ) is zero, since the source is generated by X1 in
degree 1, and H'(HZ) = 0. Hence there is a map from the first short exact sequence of .&/-modules to the
second one. By induction, we may assume that the left hand homomorphism f: &7 /&7 {Sq¢'} — H*(HZ)
is an isomorphism in degrees * < t. Then the right hand homomorphism X f: .o/ /<7 {Sq'} — SH*(HZ)
is an isomorphism in degrees x < ¢. Since the middle map is an isomorphism, it follows that the left
hand homomorphism is an isomorphism, also in degree ¢.
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The proof for odd p is similar, comparing the short exact sequence
0— | A{B}+— o «— X |A{B} +— 0
to the short exact sequence
0+— H*(HZ) +— H*(H) +— H*(XHZ) +— 0.
O

Recall Boardman’s notion of conditional convergence, meaning that limy A®* = 0 and Rlim, A® = 0,
and the result that strong convergence follows from conditional convergence and the vanishing of the
derived FE.-term RE.,. For the spectral sequence associated to an Adams resolution {Y*}, conditional
convergence is equivalent to the contractibility of the homotopy limit Y*° = holimg Y?, in view of Milnor’s
short exact sequence

0 — Rlim 7, 11(Y?®) = 7 (holim Y*) — lim 7, (Y*) — 0.
As we have seen before, the condition holimg Y ~ x is independent of the choice of Adams resolution.

Lemma 12.19. Let Y be bounded below with H,(Y') of finite type. Then there is an Adams resolution
{Z%}s of Z =Y /p with holimg Z° ~ x.

((Enough that Y/p is bounded below with H.(Y/p) of finite type?))

Proof. The “canonical HZ-based resolution”

e S (EHD)Y ' Sy HL— S
lj Jj Jj
HZ A (S~YHZ) HZAY YHZ HZ.

is not an Adams resolution, since HZ is not a wedge sum of mod p Eilenberg—Mac Lane spectra, but the
ring spectrum structure ensures that j =nA1l: X — HZ A X induces a split injection 1A j: HA X —
HANHZAX, so that j*: H*(HZ N X) — H*(X) is surjective, for each spectrum X.

Smashing this diagram with Z = Y/p, we get a diagram

S (STYHI)YY AY)p— S VHLZAY [p———Y/p

! ! |
HA(SYHZ)Y"™ NY HAYXYHZAY HAY

where we have identified HZ A X AY/p with H A X AY, for suitable X. This is the desired Adams
resolution, with Z* = (X~YHZ)"* A Y/p and cofibers L* = H A (S YHZ)"* A'Y. The maps j are split
injective, so each j* is surjective, as before. Since (HZ)"* A'Y is bounded below and H.,((HZ)"* A
Y) = H,(HZ)®* @ H.(Y) is of finite type, it follows that each L* is a wedge sum of suspended mod p
Eilenberg—Mac Lane spectra, satisfying the finiteness condition required for an Adams resolution.

It remains to show that holimg Z® ~ *. This is true in the strong sense that in each topological
degree n, m,(Z°) = 0 for all sufficiently large s. By assumption there is an integer N such that m,(Y) =0
for all n < N. We have seen that HZ is 1-connected, so that (S~1HZ)"* is (s — 1)-connected. Then
7% = (S7YHZ)"* \Y/pis (N +s—1)-connected. Hence ,(Z*) = 0 for all n < N +s—1, or equivalently,
forall s >n — N. (|

Theorem 12.20. Let Y be bounded below with H.(Y) of finite type. Then the Adams spectral sequence
Ey' = Exty (H*(Y),F,) = m_,(Y}")
is strongly convergent. In particular, there is a strongly convergent Adams spectral sequence
E3' = BExty) (Fy,Fp) = m—s(9)) .
More generally, the Adams spectral sequence
Ey' =Ext3/ (H*(Y),H* (X)) = [X,Y,M]i—s

is conditionally convergent. It is strongly convergent when RE., = 0, which happens, for instance, if
H*(X) is of finite type and bounded above, or if the spectral sequence collapses at a finite stage.
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Proof. Let {Y*}4 be an Adams resolution of Y =Y, with cofiber sequences
yorl Lys Ly g 2y wystL

Smashing with S/p® for each e > 1, we get a tower of Adams resolutions {Y*/p¢}, of YV/p¢ = Y/p®,
with cofiber sequences

Ys+1/pe é Ys/pe i> Ks/pe i> ZYS+1/pe.

(We check that these diagrams satisfy the conditions to be Adams resolutions: Each homomorphism
j*: H*(K®/p®) — H*(Y*®/p°) can be rewritten as j* ® 1: H*(K®) @ H*(S/p°) — H*(Y*®) @ H*(S/p°),
hence remains surjective. Each cofiber K*®/p® sits in a cofiber sequence

KPS K s Ko jpt — BK®

where p® is null-homotopic, so that K®/p¢ ~ K*®V X K?* is still a suitably finite wedge sum of mod p
Eilenberg—Mac Lane spectra.) Now pass to the homotopy limit over e of these Adams resolutions. The
result is a diagram {(Y"®))}, of spectra, with cofiber sequences

s+1/\i S\A J s\A O S+1\A
(Y5), — (Y?), —— (K°), — S(Y*7),.

(Cofiber sequences are fiber sequences, up to a sign, hence are preserved by passage to homotopy limits,
such as completions.) It is again an Adams resolution, since the completion map K* — (K 8);\ is
an equivalence (K* ~ \/ ¥"H ~ [[, X" H and H — H;\ is easily seen to be an equivalence, see
Lemma m and j: (YS)]/; — (K?);, induces the “same” map as j: Y* — K*® in mod p cohomology.
We get the following vertical maps of Adams resolutions:

holim, Y Y2 : vyl : Y
K2 K1 KO
holim, (Y *)) (v2)r — (Y — Y/
(K?)) (K (K%
holim, Y* /p® Y?2 /p° : Yl/pe : Y/p©
/ / J
KQ/pe Kl/pe K()/pe

(We omit the maps 9: K° — XYt etc.) By the previous lemma, there exists an Adams resolution
{Z*} for Y/p with holimg Z° ~ . Since this homotopy limit is independent of the choice of resolution,
we must also have holim, Y° /p ~ .

There are cofiber sequences S/p — S/p*Tt — S¢ — ¥.S/p, inducing cofiber sequences Y*/p —
Y /petl — Y /p¢ — BY#/p for all s, hence also

holimY* /p — holim Y* /p*™! — holim Y* /p® — S holimY*/p.
We deduce that holim, Y /p® ~ « for all e > 1, by induction on e. Thus
holim(Y*)7) = holim holim Y* /p® ~ holim holim Y* /p° ~ «

by the standard exchange of homotopy limits equivalence.
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Applying homotopy, we get a map of unrolled exact couples from the one for Y to the one for Yp/\:

7 (Y?) d m (Y1) : T (Y)

~ ® o L
\\ - > g DN .
NN J 9~ J 0~ J
~ ~

IR
1R

..K\ pﬂ\ -
,;\\ / a\\\ / E)\\\ /
T ((K?)p) m((K)p) m((K°)p)

This induces a map of spectral sequences, from the Adams spectral sequence for Y to the one associated
to the lower exact couple. The equivalences K* — (K S)IA, induce isomorphisms

EPt = (K%)= m s (K5)))

of Fi-terms between these spectral sequences. By induction on r, it follows that it also induces an
isomorphism of F,-terms, for all » > 1. Hence we have two different exact couples generating the same
spectral sequence. The upper one is the Adams spectral sequence for Y. The lower one is conditionally
convergent to 7m.(Y,"), since holims(Y®)) ~ *. Hence the Adams spectral sequence for Y, with Ey* =
Ext (H*(Y),F,), is conditionally convergent to m.(Y;'), as asserted. Replacing m.(—) by [X, —]. we
get the same conclusion for the Adams spectral sequence for maps X — Y.

To get strong convergence to 7. (Yy") or [X, Y], we need to verify Boardman’s criterion RE, = 0. In

the first case, this follows since Ey"(Y) is of finite type, i.e., is finite(-dimensional) in each bidegree (s, t).
In fact, this holds already at the E;-term if we use the canonical Adams resolution for Y, with ¥°K* =

H A (H)M AY, since then
BV = (K%)= m (28K = Hy((H) AY) 2 [H (H)®* @ Ho (Y)]; .
In the case of a general spectrum X, we have
BV = [X,K*);_s = [X,2°K®], = Hom!, (H*(2°K?®), H* (X))
=~ Hom', (o @ I(«/)®* @ H*(Y), H*(X)) = Hom"(I(«)®* ® H*(Y), H* (X)) .

This group is finite if H*(X) is of finite type and bounded above, in the sense that there exists an integer
N with H"(X) = 0 for n > N. For instance, this is the case of X is a finite CW spectrum. 0

Proposition 12.21. Let Y be bounded below with H.(Y') of finite type. There is a cofiber sequence
holimY*® — Y — YpA

where {Y*}4 is any Adams resolution of Y.

Proof. We use the notation of the proof above. In view of the equivalences K* ~ (Ks);}, we get a chain
of equivalences

holim hofib(Y* — (Y*)7) ~ hofib(Y* — (Y*))) ~ - - ~ hofib(Y — Y}}")
for all s. Passing to homotopy limits, we find that

holim Y* =~ hofib(holim Y* — holim(Y"*),}) ~ holim hofib(Y* — (Y*)7}) ~ hofib(Y — Y;).

In other words, the p-completion Y — YpA precisely annihilates the obstruction holimg Y® to conditional
convergence for the unrolled exact couple associated to the Adams resolution of Y. O

((Mention Bousfield’s E-nilpotent completion Y2 = Y/ holim, Y3 where Y3 = (S71E)"* AY?))
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13. MULTIPLICATIVE STRUCTURE

13.1. Composition and the Yoneda product. Let X, Y and Z be spectra. We have a composition
pairing

o: [Y, 7], ® [X, Y], — [X, Z].
that takes g: XYY — Z and f: ¥*X — Y to the composite g o XV f: XX — Z. More explicitly,
g:YASY = Zand f: XASt - Y, 5030 f = fALl: XAS'ASY - Y ASY and goXVf: XASIASY — Z.
To simplify the notation we refer to f and g as maps f: X — Y and g: Y — Z of degree t and v,
respectively, and write gf = go f: X — Y for the composite of degree ¢t + v.

Suppose that Y and Z are bounded below, and that H,.(Y) and H,.(Z) are of finite type. Let {Y*} and
{Z"},, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y$t! = K¢ and Z%/Z%+! = L.
If f and g have Adams filtrations > s and > u, meaning that they factor as f = i*f and ¢ = i“§ with
f: X > Ysand §: Y — Z* of degree t and v, respectively, then we can lift § to a map {g°}s of Adams
resolutions

ys 4 ot Ly

T

Zstu L, L, gu,
Hence gf = i%gi®f = i*T"g* f factors through i*t%: Zt% — Z and has Adams filtration > (s +u). We
thus get a restricted pairing

FYY, 7], ® F*[X, Y], — F*T™[X, Z].
that induces a pairing

Fu/Fu+1 ® Fs/Fs+1 N Fs+u/Fs+u+1
of filtration subquotients. When the respective spectral sequences converge, we can rewrite this as a
pairing

of E.-terms. Conversely, this pairing of F.-terms will determine the restricted pairings F*®@F* — FsTu
modulo F5tu+! je. modulo higher Adams filtrations. In this way the pairing of E..-terms determines
the composition pairing [V, Z]. ® [X, Y]« — [X, Z]. modulo the Adams filtration.

Ezample 13.1. ((Example of this phenomenon: h3 = h?h3 so v® = n?c modulo Adams filtration > 4. In
fact, v® = 0?0 + ne.))
Let P, = H*(X°K*®) and Q,, = H*(X"L"), so that there are free resolutions

P, P s PP S HY(Y) =0

and

By definition,
Exty,’(H*(Z), H*(Y)) = H"(Hom{, (Q«, H"(Y)))
Extij(H*(Y), H*(X)) = H*(Hom’, (P,, H*(X)))
Bxtly > (2), HE (X)) = H*F (Hom?/ (Qu, H' (X))
The (opposite) Yoneda product is a pairing
Ext (H(Z),H*(Y)) ® Ext. (H*(Y), H* (X)) — Ext) (H*(Z), H" (X)),

and we shall see that the Adams spectral sequence relates the Yoneda product in Fy = Ext g (—, —) to
the composition product in homotopy. (This is the opposite of the usual Yoneda pairing, meaning that
the two factors in the source have been interchanged. This comes about due to the contravariance of
cohomology. Working at odd primes the interchange introduces a sign.)

Let f: Py — Y'H*(X) and g: Q, — X'H*(Y) be «/-module homomorphisms. To simplify the
notation, we will refer to these as homomorphisms f: P — H*(X) and g: @, — H*(Y) of degree t and v,
respectively. We also suppose that f and g are cocycles, meaning that 0 = f0s11: Psy1 — H*(X) and 0 =
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90ut1: Qui1 — H*(Y). The cohomology classes [f] and [g] are then elements in Ext®}(H*(Y), H*(X))
and Ext'’(H*(Z), H*(Y')), respectively. Then g lifts to a chain map g, = {gn: Quin — Pn}n, where
each g, has degree v, making the diagram

H*(X)

]

P, P, Py —— H*(Y)

R B O

au, +s

9s
Qqus e Qu+1 S Qu

commute. The composite fgs: Quis — H*(X) is then an «/-module homomorphism of degree (v + t),
and satisfies fgs0uts+1 = 0. It is therefore a cocycle in Hom"*(H*(Z), H*(X)), and its cohomology
class [fg,] in Ext“F>" Y (H*(Z), H*(X)) is by definition the Yoneda product of [g] and [f]. It is not hard
to check that a different choice of chain map lifting g only changes the cocycle fg, by a coboundary, i.e., a
homomorphism that factors through 9y,+s: Quts — Quis—1, so that its cohomology class is unchanged.
Likewise, changing f or g by a coboundary only changes fgs; by a coboundary, so that the Yoneda
product is well defined. [[TODO: Rewrite this as a clear definition.]]

s 01

Example 13.2. Let X =Y = Z = S and let P, = @, be the minimal resolution of Fy computed earlier.
We can compute the Yoneda product

Ext"’ (Fq, Fa) ® Ext®) (Fg, Fy) — Ext"“F " (Fy, Fy)

that makes Extj;(]FQ,IFQ) into a bigraded algebra, by choosing cocycle representatives f: P; — Fy and
g: P, — Fq, lifting g to a chain map g.: Py« — P, and computing the composite fgs.

Let f =~1,0="ho: P = Fz bedual to g10 € P, and let g = y12 = ho: P; = 3 be dual to g1 2 € P;.
A lift go: P1 — P of g is given by ¢1,2 — go,0 and g1; — 0 for i # 2.

Fy
f=ho

Pl LP@ L>IF2

g1 go
g=ho
o

P,—— P
The composite g0622 P, — Py is then given by g2,0 — 0, g2,1 — 0, g2.2 — Sqlgo70, g2,3 —> Sq4gg,0 etc. A
lift g1: P, — P is given by g2.0 + 0, g2.1 + 0, g2.2 = 91,0, 92,3 > g1,2 etc. Hence fgi: P» — Fy is given
by g2.2 — 1 and ga; — 0 for ¢ # 2 (for degree reasons), so that [fg1] = v2,2. Thus hoha = 72,2 in bidegree
(s,t) = (2,4) of Ext."(F2,F5). In hindsight, this it the only possible nonzero value of the product, and
it is realized because of the summand Sq'g; 2 in 92(ge,2) and the summand Sq*go o in 81 (g1.2), with Sq*
detecting hg and Sq* detecting hs.

Proposition 13.3. Let P, — Fay and Q. — H*(Z) be minimal resolutions, with Po = </{[|}, P1 =
@{{[SQQZ]} | i >0}, Qu = F{guj}; and Quir = F{gus1,k}tr. Here al([SQQZD = SQT[L and we can

write
Out1(Gut1,k) = ZeﬁquTgu,j
,J
for suitable coefficients Qf’j € . Let h; € Extjz’fi(Fg,IFg), Yu,j € Ext(H*(Z),F2) and vy41,6 €
EXtZ;_L*(H*(Z),Fg) be dual to [Sq*], Gu,j and guy1,k, respectively. Then
hi-Yug = Y €(0F ) V1 s
k
where €: o/ — Fy is the augmentation. Hence h;-7y, ; contains the term vy41,5 of and only if Out1(Gu+1,k)
contains the term quwguyj.
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Proof. The coefficient of g, ; in Oy+1(gu+1,k) can be written as a sum y , 6} ]Sq since the Sq2i generate
I(«7) as a left &7-module, and the coefficient lies in this augmentation ideal, by the assumption that the
resolution is minimal. Consider the following diagram, for fixed choices of ¢ > 0 and j.

Fy

hiT
1%}

P— 5P —3TF,

i

Qu—l—l P a— Qu
Out1

Here f = h; maps [qui] to 1 and the remaining generators of P; to 0. Likewise g =+, ; maps g, ; to 1
and the remaining generators of @, to 0. We lift g to a chain map g.: Qui+« — Ps, by first letting go
map g, ; to 1[] and sending the other generators of @, to 0. Then

900u+1(gur1,k) = go(z ef;quQigumj) = Z 95,3-5(12

]
so we can set g1(guri,k) = ;0 j[ ] Hence the Yoneda product f o gi: Qui+1 — F2 maps gyt1,k to
6(95 j), and therefore contains 7,41, with that coefficient. O

Ezample 13.4. From the minimal resolution in Theorem we can read off the following nontrivial
products: hgvo,0 = V1,0, h170,0 = V1,1, h2vo,0 = 71,2, A3v0,0 = 71,3, hovi0 = Y20, iy = 2,1,
hQ’Yl,o = 72,2, h0’71,2 = 72,2, h2’71,2 = 72,3, h3’r1,0 = 72,4, ho’Yl,3 = 72,4, h371,1 = 72,5, h1’71,3 = 72,5,
hov2,0 = 73,0, h2Y2,0 = V3,1, hive,1 = V3,1, hoY2,2 = V3,15 h3y2,0 = V3,2, hove.a = 73,2, hoY3,0 = V4,0

h3¥3,0 =Y4,15 ---» hoY10,0 = 711,0- This gives the following multiplicative structure.
8
[} ?
6| @ 70 7?
° 20?7 ?
4] e e | 7?7 71717
? ? ?
[ 4 J [ ] L’O
20 o ¥ ] B | 07
= L B P T o
ho® - ﬁ: 17‘3
0| ¢
0 2 4 6 8 10

Proposition 13.5. For p odd, let Q. — H*(Z) be a minimal resolution, with Q, = «/{gu.;}; and
Qu+1 = Y{gu+1,x}k- Let v; € Ext(H*(Z),F,) and yys15 € EXt‘H_l “(H*(Z),F,) be dual to g, ;
and Gy+1,k, respectively. Then the coefficient (in Fp) of vut1,k in the Yoneda product ag - v,,; equals
the coefficient of Bgu,; in Oyt1(gus1.k), and the coefficient of Vut1k in i - Yu,; equals the coefficients of

Pplgu,j mn au+1(gu+1,k)'

Proof. The proof is similar to the case p = 2. We write Oyt1(gu+1,k) as
Z (078 + Z 0P ) g

with 9;? and Gi-fj in /. This is possible, since the resolution is assumed to be minimal. Then ag - v, ; =
6(9;?)’}/”4,1’]6 and hi . ’7u,] = E(giﬁij)’y’u+1,k~ O

Ezample 13.6. From the minimal resolution in Theorem we can read off the following nontrivial

products: agYo,0 = 71,0, hoY0,0 = 71,1, P1Y0,0 = V1,2, G0Y1,0 = V2,0, P1Y1,0 = V2,3, G0V1,2 = —72,3,
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apY2,0 = V3,0, hov2,1 = V3,1, @0Y2,2 = —¥3,1, P172,0 = 73,2, G0Y2,3 = —V3,2; G0Y3,0 = V4,05 - - -5 AOV14,0 =
v15,0- This gives the following multiplicative structure.

6

L 4

\

\

|

|

\

\ \
L Sl ®
VP !
' '
L ]
N
2
N

20 o T o | __. ) 70 7?
Cow—-"""’/’hi; s Lo 7;.1 ?
ol - 1771

0 2 4 6 8 10 12 14

Definition 13.7. Consider any two complexes P, and Q. of &/-modules. Let

HOMZ;)(Q*’ P)= H Homv@f(Qu—i—sv Py)

be the abelian group of sequences {gs: Quis — Ps}s of &/-module homomorphisms, each of degree v.
Thus HOMY, (Q., P.) is a graded abelian group. Let

6. HOMY(Q., P.) — HOM“ ' (Q., P,)

map {gs}s t0 {0s+19s+1 + gsOuts+1}s- ((We are working mod 2, so there is no sign.)) Then 6,416, =0,
so HOM?,(Q., P.) is a cocomplex of graded abelian groups.

Lemma 13.8. The kernel
ker(dp) € HOM®,(Q., P,)

consists of the chain maps g.: Q. — P., meaning the sequences {gs: Qs — Ps}s of &/-module homo-
morphisms such that Osy19s+1 = gsOs+1 for all s. The image

im(d_1) C ker(do)

consists of the chain maps that are chain homotopic to 0, i.e., those of the form {Jsy1hsi1 + hsOs}s for
some collection of o7 -module homomorphisms hsy1: Qs — Pst1 for all s. Hence the 0-th cohomology

H(HOM7,/(Qx, P.)) = {g:: Qx = P.}/(=) = [Qs, P]

is the (graded abelian) group of chain homotopy classes of chain maps Q. — P.. More generally,
H*(HOM?,(Q., Py)) is the group [Qui«, Pi] of chain homotopy classes of chain maps Qui« — P.

In the special case when P, = H*(Y) is concentrated in filtration s = 0, so that Py = H*(Y)
and Py = 0 for s # 0, then HOM"(Q., H*(Y)) = Hom,(Q., H*(Y)) and 6, = (Jy41)*, so that
H*(HOM 4 (Q., H*(Y))) &2 H"(Homy (Q., H*(Y))). When Q. is a free resolution of H*(Z), this is
ExtY, (H*(Z),H*(Y)).

Proposition 13.9. Lete: P, — H*(Y) and e: Q. — H*(Z) be free o -module resolutions. Then
e.: HOM?(Q., P.) = HOM, (Q., H*(Y)) = Hom,/(Q., H'(Y))
is a quasi-isomorphism, in the sense that it induces an isomorphism
e.: HY(HOM*,(Q., P.)) — Ext",(H*(Z), H*(Y))
in cohomology, in each filtration u.

This is standard homological algebra. The first assertion only requires that @, is free and P, — H*(Y")
is exact, but the final identification with Ext requires that Q. — H*(Z) is exact.
The composition pairing and the quasi-isomorphism

HOM?, (Q., P.) ® Hom g (Py, H*(X)) —— Homy (Q., H*(X))
Hom?, (Q., H*(Y)) ® Hom,y (P,, H* (X))

85



thus induce a pairing and an isomorphism

H"(Hom, (Q«, P.)) ® Bxty, (H*(Y), H*(X)) — Exty, " (H*(Z), H* (X))

J{ o

Extg, (H*(Z), H*(Y)) @ Ext, (H*(Y), H*(X))

in cohomology, and the Yoneda product is given by the dashed arrow. From this description it is easy
to see that the Yoneda product is associative and unital. [[No evident commutativity in this generality.]]
13.2. Pairings of spectral sequences.
Definition 13.10. Let {'E,},, {"E,}, and {E., }, be three spectral sequence. A pairing of these spectral
sequences is a sequence of homomorphisms

(Z)r: IE:7* ® //E;f7* — E::7*
((for 7 > 1)) such that the Leibniz rule

dr(or(z ®@y)) = ¢r(dr(z) @ y) + (=1)"r(z @ dy(y))

holds, where n = |z| is the total degree of z, and

Pr1([z] @ [y]) = [or(z @ y)]

A nkotid

where [z] € 'E[| is the homology class of a d,-cycle x € 'E*, and similarly for [y] and the right hand
side. In other words, the diagrams

/E:’* ®//E:’* ér E:’*

dr®1:t1®dTJ( J/dT

/E:’* ®//E:’* ér E:’*

and
H*’*(/ET) ®H*’*(//ET) H*’*(/ET ®//Er) (d’r)* H*,*(ET)
%,k J %,k Pri1 J«/*
! rl‘rl ® //Erlﬁ-l Erlﬁ-l
commute.

A spectral sequence pairing {¢; }, induces a pairing
¢Oo: IE;O* ® HE;* N E:C,)*

of Foo-terms. ((Clear if each spectral sequence vanishes in negative filtrations, so that in each bidegree
(s,t) the E,-terms eventually form a descending sequence, with intersection equal to the E.-term.))

When the Kiinneth homomorphism H**('E,) @ H**("E,) — H**('E, ® "E,) is an isomorphism,
for each r, one can readily define a tensor product spectral sequence {'E, ® "E,},, and the pairing of
spectral sequences is the same as a morphism {'E,. ® "E,.}, — {E,}, of spectral sequences.

Definition 13.11. Suppose that the spectral sequences above converge to the graded abelian groups
G’, G" and G, respectively, in the sense that there are filtrations {/F*}s, {"F*}s and {F*}; of these
groups, and isomorphisms 'F* )/ st = /g5 Vs M pstl 2 Vs and FS/FSTL =2 S for all s.

We say that a pairing {¢, }» of spectral sequences, as above, converges to a pairing ¢: G' @ G" — G if
the latter pairing restricts to homomorphisms ¢: 'F* @ " F* — F**$ for all u and s, and if the induced
homomorphisms ¢: 'F*/ Futl @ "Fs /! pstl — puts |putstl qoree with the limit ¢oo: 'EY @ "ES —
EY“rs of the pairings ¢,

In other words, the diagram

'EY @ ES = /Fu//Fu+1 ® //Fs///Fs+1 - G oG"
¢<x:l ¢J/ ¢J dl
E;Lo-'rs ] = Fu+s/Fu+s+1 Fu+s G

commutes. ((Consequences?))
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Definition 13.12. An algebra spectral sequence is a spectral sequence {E,}, with a spectral sequence
pairing {¢,: E, ® E, — E.}, that is associative and unital. It is commutative if the pairing satisfies
oy @) = (—1)""¢.(x @ y) for all x, y and r, where n = |z| and m = |y| are the total degrees.
((Elaborate?))

Adams (1958) defined a join pairing in his spectral sequence for S, which is stably equivalent to a
smash product pairing in that spectral sequence. We shall return to those pairings later, but first look
at the case of composition pairings, since these are most closely related to the Yoneda product. ((We
may also need to look at this for Moss’ later theorem on Toda brackets and Massey products.))

Theorem 13.13 (Moss (1968)). Let X, Y and Z be spectra, with Y and Z bounded below and H,(Y)
and H.(Z) of finite type. There is a pairing of spectral sequences
EY,Z2) EX*(X,)Y) — EX(X,Z)
which agrees for r = 2 with the (opposite) Yoneda pairing
ExtD (H*(Z),H*(Y)) ® Ext. (H*(Y), H* (X)) — Ext.) (H"(Z), H" (X))
and which converges to the composition pairing
Y, Z3]. ® [X, V3], — [X, Z5]. .

The pairing is associative and unital.

[[We omit this proof, and will instead deduce the theorem (for X and Y finite CW spectra) from a

similar theorem about the smash product pairing.]]

~

13.3. Modules over cocommutative Hopf algebras. The Kiinneth isomorphism H*(Y A Z) =
H*(Y)® H*(Z) and the universal coeflicient theorem H*(F(X,S)) = Hom*(H*(X),F,) (for finite CW
spectra X) can be refined from being statements about graded F,-vector spaces to statements about left
«/-modules. This requires making sense of the tensor product M ® N = M ®p, N and the homomorphism
group Hom(M, N) = Homg, (M, N) as left «/-modules, for given left »/-modules M and N.

By the Cartan formula

Fly A 2) Z Sq'(y) A S¢’(2)
i+j=k
in H*(Y A Z), for y € H*(Y) and 2z € H*(Z), it is clear that S¢* must act on y ® z in H*(Y) ® H*(Z)
as the sum over i + j = k of the action by Sq¢' ® S¢7. Milnor (1958) proved that for p = 2 the rule
SqF —s Z Sq' ® S¢’
iti=k
extends in a unique manner to an algebra homomorphism

VA — AR .
Here & ® <7 is given the algebra structure given by the composition

deododed N deodeded oo,
where v: & ®.97 — o/ @9/ is the (graded) twist isomorphism, so that (6;®6,)-(A3204) = (—1)I?21319,0;®
0204. In general, v: M @ N — N ® M is given by
ym@n) = (=1)™Mn@m.
For p = 2 the sign can be ignored. For p odd the rules
Br—BR1I+1®A

and
PF— Y PP
it+j=k
likewise extend uniquely to an algebra homomorphism ¢: & — & ® &7. [[Give Milnor’s proof?]]
It follows that the Kiinneth isomorphism is an isomorphism of .o/-modules, if we define the tensor
product M @ N of two A-modules M and N as follows.

Definition 13.14. Let M and N be left «/-modules, with module action maps A\: & @ M — M and
At/ @ N — N. We give M ® N the left o/-module structure given by the composition

AIMIN" ' v o d oM N yeoMeod o N2 MaN.
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If we write ¢(0) = ), 0, ® 0 for 6 € o7, which we usually abbreviate to )60’ ® 6", then
0 - (m ®n) = Z(_l)m””mlg, me 0 - n

for m € M and n € N. The sign enters from the interchange of #” and m, and can be ignored for p = 2.
The coproduct 1 is counital and coassociative, in the sense that the diagrams

o

I

Fp®£%<€®ﬁd®,xz%?®6>d®ﬂ?p

and

d—" g

% [e1

A QA —— A QA QA
1@y

commute. Hence > €(0)0" = 60 = > 0€(0”) and > > (¢') @ (/)" @ 0" = >3 0 @ (0") & (0")".
Furthermore, it is cocommutative, in the sense that the diagram

PR

A QA —————— A DA

commutes, so that 56" @ 6" = S (=1)I'11€"1¢” @ ¢’. All of these properties are easily verified for the
algebra generators (S¢* for p = 2, 8 and P* for p odd) of <.

The counital and coassociative augmentation e: &/ — F, and coproduct ¢: &/ — & ® &/ give &
the structure of a coalgebra. By cocommutativity of v, it is in fact a cocommutative coalgebra. Both
the augmentation and the coproduct are algebra morphisms. This means that < is a bialgebra, or more
precisely, a cocommutative bialgebra.

The cocommutativity of o7 ensures that the twist isomorphism v: M @ N = N ® M is /-linear,
since vy = 1 implies that the left hand square in the following diagram commutes. The remainder of
the diagram also commutes.

AIMINEE o deMeaN TR veMeda N2 Me N

PRLIR1 1@y®1 A®A

I OINIM — A QI INIM — A OINQAI QM —— N M

[If we arrange that ® is strictly unital and associative, as we implicitly arrange when we treat the
unitality and associativity isomorphisms as identities, then 2/-Mod is a permutative category.]]
Furthermore, o/ admits a conjugation x: o/ — &/, a linear homomorphism satisfying the relations

P(L@ X)) =ne=d(x® 1)
Equivalently x makes the diagram

dd — Ao
b S
o < F, ! o
v /ﬁ/

AR A RQA
xX®1
commute. It follows that x is an anti-homomorphism, i.e., satisfies x(6162) = x(62)x(61) for all 61,6, €
o/, and it is an involution, i.e., x? equals the identity. [[Give a proof? Milnor-Moore?]]
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Forp=2,x(1)=1and >, ; Sqix(Sq?) = 0 for all k > 1, so that

k—1
X(S¢*) = 8" + > Sq'x(Sq¢* ).
i=1
For example, x(Sq¢') = Sq', x(5¢%) = S¢%, x(Sq¢®) = S¢*>Sq' and x(Sq¢?Sq') = Sq3. For p odd we get
x(8) = —B and

k—1
X(PF) = —P% =3 " Pix(P*).
=1

A bialgebra with a conjugation is called a Hopf algebra. The Steenrod algebra &7 is thus an example
of a cocommutative Hopf algebra.

Let M be a left &/-module. The functor L — L ® M is left adjoint to the functor N — Hom™* (M, N),
in the sense that there is a natural bijection

Hom™ (L ® M, N) = Hom™ (L, Hom" (M, N))

taking f: L@ M — N to g: L — Hom™(M, N) given by g(£)(m) = f(£ ® m). The identity map of
L ® M on the left corresponds to the adjunction unit in: L — Hom™(M,L ® M) on the right, with
in(€)(m) = £ ® m. The identity map of Hom™* (M, N) on the right corresponds to the adjunction coinit
ev: Hom*(M,N)® N — M on the left, with ev(f @ n) = f(n). These adjunctions do not involve the
symmetric structure, and do not require the introduction of signs.

Definition 13.15. Let M and N be left «/-modules, with action maps A\: &/ QM — M and A\: 4/ QN —
N. We give Hom(M, N) the &/-module structure given by the homomorphism & ® Hom(M, N) —
Hom(M, N) with left adjoint &/ ® Hom(M, N) ® M — N given by the composite

o ® Hom(M,N) @ M Y% o/ ® of @ Hom(M,N) @ M "*3®" o/ @ of @ Hom(M, N) ® M

'8! o @ Hom(M, N) @ o @ M "5 o7 @ Hom(M,N) @ M 2% o7 @ N 25 N.
For0 € o, f: M — N in Hom(M, N) and m € M, this composite is
D (D)1 f(x(8") - m).

Proposition 13.16. The category <7 -Mod of left </ -modules, with respect to the tensor product — ® —,
the unit object Fp, the twist isomorphism v and the mapping object Hom(—, —), is closed symmetric
monoidal.

Example 13.17. For another example of this situation, consider a discrete group G and a field k. The
group algebra k[G] has unit and product given by the neutral element e and the multiplication in
G. Tt admits a cocommutative coproduct @: k[G] — k[G] ® k[G], given by ¥(g) = g ® g for each
g € G. The augmentation e: k[G] — k satisfies e(e) = 1 and €(g) = 0 for all group elements g # e.
The conjugation x: k[G] — k[G] is the anti-homomorphism given by x(g) = ¢g~!. These maps make
k[G] a cocommutative Hopf algebra. The tensor product of two k[G]-modules M and N is again a
k[G]-module M ® N = M ®;, N, with the diagonal action g- (m ®n) = gm ® gn. The twist isomorphism
v M®N — N® M is k[G]-linear. The homomorphism module Hom(M, N) = Homy (M, N) has the
conjugate k[G]-action, given by (g- f)(m) = gf(g~'m)). Each k[G]-linear homomorphism M @ N — P

corresponds bijectively to a k[G]-linear homomorphism M — Hom(N, P).
The following result should be compared with Lemma [9.20

Proposition 13.18. Let M be any </ -module, with underlying graded F,-module |M|. There is an
untwisting isomorphism of </ -modules,

A QM| = o @M

from the induced <7 -module on the left hand side (with <7 acting only on the first tensor factor), to the
tensor product of o/ -modules on the right hand side (with the diagonal </-action). In particular, the
diagonal tensor product &7 ® M is a free o7 -module.

Proof. The isomorphism from left to right is the composite

d MY Ao M @M.
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It sends 6 @ m to > 60" ® 0”"m, where ¥(0) = > 6 ® 6”. It is &7-linear, because the induced &/-module
action on the left corresponds to the diagonal </-module action on the tensor product of &/ and &7 @ | M |
in the middle, and the left action map \: & ® |M| — M is «/-linear.

The inverse isomorphism, from right to left, is the composite

dIM B dod oM CS dodeME oM.

It sends 6 @ m to > 0" @ x(0")m.
One composite is visible along the upper and right hand edges of the following commutative diagram.

1 A
doM—22 s godeM—2 saeM
1 PR1I®1 Y1

1®9®1
FRI QM — A QA RA R |M| g QA QM
1x®1x1 1ex®1
11X
1®e®1 AR QM — A QI QM
1®¢®1 1A
1@n®1

A F, @ M| —2 of @ of @ | M| —22 s of @ |M]

The upper left hand rectangle commutes because v is coassociative, the lower left hand rectangle com-
mutes because x is a conjugation, the upper right hand rectangles commutes by naturality of the tensor
product, and the lower right hand rectangle commutes by associativity for A\. The left hand and lower
edges are the (mutually inverse) canonical isomorphisms, by counitality of ¢ and unitality of A.

[[The other composite is similar.]] O

13.4. Smash product and tensor product. Let T, V', Y and Z be spectra. We have a smash product
pairing

AN [TY]L V.2l — [TAV,Y A Z].
taking f: T —-Yand g: V — Zto fAg: TAV — Y A Z, and similarly for graded maps. In particular,
for T =V = S we have a pairing

N (YV)@m(Z) — m(Y NZ).

If YV is a ring spectrum, with unit n: S — Y and multiplication ¢: Y A Y — Y, we have a unit
homomorphism
Nt T (S) — m(Y)
and a product
(V) @ 1Y) 25 m (Y AY) 25 1 (Y)
that make m,(Y) an algebra over m.(S). If Y is homotopy commutative, then . (Y) is a (graded)
commutative 7, (S)-algebra.

When Y = S, the smash product A: m,(S) ® m,.(S) — m.(5) agrees up to sign with the composition
product o: 7, (S) ® 7. (S) — 7.(S). The smash product of f: S* — S and g: S* — S'is f Ag: ST =
StASY = SAS =S, while the composition product is f o Xtg: St = %t5v — 3tS = St — §. These
agree up to the twist equivalence v: St A S¥ = SV A St which is a a map of degree (—1)%.

Now suppose that ¥ and Z are bounded below with H,(Y) and H.(Z) of finite type, and let {Y*},
and {Z"}, be Adams resolutions. If f: T — Y and ¢g: V — Z have Adams filtrations > s and > u,
respectively, then they factor as the composites of s maps

T=T,—---=Ty=Y
and u maps

V=V,— - =>W=Z7,
all inducing zero on cohomology. By the Kiinneth theorem, the smash product f A g then factors as the
composite of (s + u) cohomologically trivial maps

TANV =T ANVy— - =TogAVy = - =2To AV =Y NZ.
Hence we get a restricted pairing

F3[T,Y]. ® F*[V, Z], — F*T“ [T AV,Y A Z),
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that descends to a pairing
F*/FH @ P Pt — et petut
of filtration quotients. When the respective spectral sequences converge, we can write this as a pairing
of F-terms. We will relate this to an algebraically defined pairing
Ext> (H*(Y),H"(T))  Ext)"(H*(Z),H*(V)) — Extf;"’*(H*(Y NZ),H*(T ANV))

of the Adams spectral sequence Fs-terms.
Let M, N, T and V be .&7-modules.

Lemma 13.19. Lete: P, —» M and €: Q. — N be two resolutions. Then e ® e: P, @ Q. — M ® N s
a resolution. If P, or Q, is free, then so is P, ® Q.

Proof. Tfe.: H,(P.) = M and €,: H.(Q.) — N are isomorphisms, then (e®e€),: H.(P,®Q.) > M@N
must also be an isomorphism, due to the Kiinneth isomorphism H,(Py) @ H,(Q+«) = H.(Pi ® Q).

If P, is free in each degree, then Py ® @, is a sum of copies of & ® @, for each s and u, hence is free
by Proposition Hence P, ® @, is free in each degree. The same argument applies if @Q, is free in
each degree. O

Definition 13.20. The tensor product pairing
®: BExt®/(M,T) ® Ext"(N,V) — Ext’f""""(M @ N, T®V)

is given by choosing free «/-module resolutions P, — M and @, — N. The tensor product P, ® Q. —
M ® N is then a free @/-module resolution of M ® N, and T'® V is a left @/-module, in both cases
using the coproduct ¢: &/ — &/ ® &/ to restrict the external &/ ® &/-module structure to an internal
o7-module structure. The tensor product of &/-module homomorphisms induces a pairing

Hom?, (P, T) ® Hom},(Q.,V) — Hom’, (P, ® Q., T ® V)
of complexes, and the tensor product pairing is the induced pairing in homology.

More explicitly, the pairing takes cocycles f: Py — X!T and g: Q, — X'V, with f0,41 = 0 and
gOu+1 = 0, to the tensor product

fRG:Pi@Q, — XTX V2TV,

This is extended by zero on the remaining summands of (P, ®Q4)s+v. Equivalently, f and g can be viewed
as chain maps P, — XT'[s] and Q. — XV [u], respectively, where ¥¢T[s] is the chain complex with X!T
concentrated in degree s, and similarly for £V [u]. Then (f®¢)0siui1 = fOs 109+~ f®gd,11 =0,
so the tensor product is a cocycle.

In particular, for s = 0 and v = 0, the tensor product pairing on Ext agrees with the Hom-pairing

®: Hom’, (M,T) ® Hom?,(M,V) — Hom" " (M @ N, T ® V)

that maps f: M = X'T and g: N - XV to fRg: MQN — ST XV 2N Te V.
Alternatively, if we have given another free 27-module resolution R, — M ® N, then we can cover the
identity of M ® N by a chain map A: R, — P, ® Q, unique up to chain homotopy. Then the composite

R, 2 P20 Xytreyyeyttirgy
is a cocycle that represents the tensor product [f] @ [g] in Ext?)""™"(M @ N,T ® V).

13.5. The smash product pairing of Adams spectral sequences. Let Y and Z be spectra. We
have a smash product pairing

N (V)7 (Z) — m(Y AN Z)
that takes f: S* — Y and ¢g: S? — Z to the smash product f Ag: ST =2 SEASY 5 Y A Z.

Suppose that Y and Z are bounded below, and that H,.(Y) and H,.(Z) are of finite type. Let {Y*}; and
{Z"},, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y*t1 = K¢ and Z*/Z%*! = L.
Let P, = H*(X*K®) and @, = H*(X“L") be the «/-modules that appear in the usual free resolutions
e: P, —» H*(Y)and e: Q. — H*(2).

Let W =Y A Z be the smash product. Then W is bounded below and H,(W) = H,.(Y) ® H.(Z) is
of finite type. We shall construct an Adams resolution {W"},, of W by geometrically mixing the Adams
resolutions for Y and Z.
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Traditionally, this is done by first replacing Y, Z and their Adams resolutions by homotopy equivalent
spectra, so that each Y° and Z* is a CW spectrum, and each map i: Y3t — Y* and i: Z%+! — Z% is
the inclusion of a CW subspectrum. Then Y*® A Z* is a CW subspectrum of Y A Z, and one can form
the union of these subspectra for all s + u = n. Hence one defines

wr= ) veaze
st+u=n
Then W"*! is a, CW subspectrum of W”, and
wr/wrtt e \/ KT ALY
st+u=n

Lemma 13.21. The diagram

w2 LI 7 74| : 1074

e by -
) J \ J« ) J«
N ; ~ i ~ ;
J J J
~ p
AN o o>

w2/ W /w? w/w!

is an Adams resolution of W =Y NZ. The associated free resolution R, — H*(W) is the tensor product
of the free resolutions P, — H*(Y') and Q. — H*(Z).

Proof. Since each K* is a wedge sum of suspended copies of H, of finite type, and each L" is of finite
type, we know that W™ /Wn"*+! is a wedge sum of suspended copies of H, of finite type. Let

R, = H (S W /W)= @ P.oQ..

stu=n

This is a free «/-module of finite type, by its geometric origin as the cohomology of W™ /W"*!. The
composite Wn=1 /W™ — SW" — S(Wn™ /W) splits as the direct sum of the maps jOAl: KS7IAL* —
SKSAL*2Y(K*ALY) and 1 AjO: KS ALY — KS AXL* = B(K* A L*). Hence the boundary map
On: R, — R,_1 is given by the usual formula

On(z®y) =0n(z) @Y + 2 @ In(y)

(we work at p = 2, hence there is no sign), so that R, = P, ® Q. is the tensor product of the two
resolutions. By the Kiinneth theorem, the homology of R, is the tensor product of the homologies of P,
and Q., soe: R, - H*(Y)® H*(Z) =2 H*(Y N Z) is a free resolution.

In particular, j: W% = Y A Z — K° A L induces a surjection j* in cohomology. It follows that
9: W/W! — W induces an injection d* in cohomology, with image in Ry = H*(W/W?!) equal to
the kernel of j* = e. This equals the image of 9; = 90*j* : Ry — Ry, by exactness at Ry of the free
resolution, which implies that j*, induced by j: W' — W' /W?2 is surjective. Suppose inductively that
j: W=t — Wn=1/W" induces a surjection j* in cohomology, for some n > 2. Then 9: W*~1/W" —
YW™ induces an injection 9* in cohomology. The image of 0* equals the kernel of j*, hence lies in the
kernel of 0,,_1 = 0*j*: R,_1 — R,_2. This equals the image of 9, = 9*j*: R, — R,_1, by exactness
at R,_1, which implies that j*, induced by j: W™ — W"/W"*+! is surjective. O

Granting a little more technology, the substitution by CW spectra can be replaced by the passage to
a homotopy colimit. For a fixed n > 0, one considers the diagram of all spectra Y* A Z% for s +u > n,
and forms the homotopy colimit

W™ = hocolimY* A Z% .

st+u>n
There is a natural diagram
W LW L Wiy Az
and an identification
W /Wt = \/ hocofib(Y** — Y*) A hocofib(Z*+ — Z*)
stu=n
where hocofib(Y*T! — Y*) ~ K* denotes the mapping cone of the given map, etc. The proof of the
lemma goes through in the same way with these conventions.

The following theorem is similar to that proved in §4 of Adams (1958).
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Theorem 13.22. There is a natural pairing

EXNY)® EXY(Z) — ESTITY(Y A Z)
of Adams spectral sequences, given at the Eo-term by the tensor product pairing

Ext® (H*(Y),F,) ® Ext' (H*(Z),F,) — Ext® """ (H*(Y A Z),F,)
and converging to the smash product pairing
Ti—s(Y) @ Ty—u(Z)) — mi—spo—u((Y AZ)]).
More generally, there is a natural pairing
EXNT,Y)® EYY(V,Z) — ESTWIT (T AVY A Z)
of spectral sequences, given at the Es-term by the tensor product pairing
Ext®) (H*(Y), H*(T)) ® Ext“" (H*(Z), H*(V)) — Ext> """ "(H*(Y A Z), H* (T A V)
and converging to the smash product pairing
[T, s @V, Z)yew — [T AV, (Y A Z) ]t s -
((Discuss the role of completion in the pairing?))
Proof. Recall that Ef = Z3/B2, where
Z2 =0 @il m (YT — m (Y5 T)

and

BE = jker(ii b m (V) — m (Y5t
are subgroups of E! = 7, (K*). For the purpose of this proof, it is convenient to rewrite these groups as

75 =im(m (YY) — 7. (K®))
and
B = im(m (27N YY) = m(KF)) .

These formulas can be obtained by chases in the diagrams

ys+r Ly Ys/ys+r
| b |
* K? — K?
|l |
systr 2 sys N(Ystl/ystr)

and
* E*l(strJrl/Ys) = E*l(strJrl/YS)

N

ys+1 v Ys J K3
_l lir 1 l
Ys+1 i" ; strJrl Y577‘+1/Ys+1

of horizontal and vertical cofiber sequences.
The differential d2: E$ — E5T" is determined by the homomorphism §: . (Y*/Y*+") — Z5+" induced
by Y/Y*t" — S K" and the surjection 7: m,(Y*/Y*T") — Z$ induced by Y*/Y*T" — K¢:

0

Ef < 75 « = —m, (VS )YstT) Zstt EtT

L,

s T s+r
E E?

T
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To compare this with the exact couple definition of d;, consider the commutative diagram

Ks Ys/ys-i—r ZKS+T

|1

SYystl syt L st
where the left hand square is homotopy (co-)cartesian. (It follows that BJ}/B:*" C EST" equals the
image of d2.)

So far we have discussed the Adams spectral sequence for a single spectrum Y. We now relate the
Adams spectral sequences for Y, Z and W =Y A Z, where W has the Adams resolution obtained from
given Adams resolutions of Y and Z.

There is a preferred inclusion Y* A Z%* — W™ for all s,u > 0 and n = s + u. It restricts to inclusions
Y5t A Z% — W™ and Y5 A Z¥tT — W™t that agree on YT A Z¥*T7. Hence we have a main
commutative diagram

Qr

U YT AZEUYS A Z0T — S YSTLAZe U Ys AZvt B Ys A Zv — Y A Z

| N N

Wn+r+1 i , WnJrr ¢ Wn+1 ¢ wn w

where Yt A Z¥UY S A Z“T" denotes the pushout of Y577 A Z% and Y* A Z%*" along Y™ A Z¥*7, and
U is brief notation for a similar union of Y+ 1 A Zu, Y+ A Zutl Y+l A Z% and Y* A Z¥F1,
Passing to horizontal cofibers for the middle part of the diagram, we get a commutative diagram

(5) YSAZY — Y3 YT A Z8) 70— K5 ALY

| J |

Wn Wn/wnJrr Wn/wnJrl

where the maps in the upper row are smash products of the standard maps V¢ — Y$/YsT7 Y$/Ys+" —
K*, etc. The vertical map K*AL* — W™ /W agrees with the inclusion of a summand in W /Wn+1! =
Vpuen K A L*. Hence it induces a pairing

¢1: E7(Y) © EY(Z) — EY(W)
that corresponds to the previously discussed pairing
Hom g (P, Fp) ® Homy (Q., Fp) — Homy (Py ® Q., Fp)

under the d-invariant isomorphisms 7, (K*) = Hom', (Ps,F,), etc.
Passing to horizontal cofibers further to the left in the main diagram, we get a commutative diagram

(6) Y)Y A ZU/ZuT s (YA ZUUYS A 20— S(KSTT ALYV KS A LT

| J |

Wn/wn-i—r zwn—&-r E(WTL+T'/W7L+T+1)

where the composite map in the upper row is the wedge sum of the smash product of the standard maps
Y$/Y3T" — KT and Z%/Z%T" — L*, and the smash product of the standard maps Y*/Y*$+" — K*
and Z%/ZvtT — Y LYTT. The right hand vertical map is the suspension of the wedge sum of the pairings
Ks+r ALY — Wn+r/wn+r+1 and K5 A Lu+r N Wn-i—r/wn-i—r—i—l.

We now claim that (a) ¢1 = $1 restricts to a pairing

(b) &, descends to a pairing
or: EX(Y) ®© E(Z) — EX(W)
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and (c) ¢, satisfies the Leibniz rule

dr(6r(y @ 2)) = r(dr(y) @ 2) + (-1)V g, (y @ d, (2)) -

Here r > 1 and n = s+ u.

Assuming these claims, which are similar to the conditions of Lemma 2.2 of Moss (1968), we can
easily finish the proof of the theorem. The pairings (¢,). and ¢,11 agree, under the identification
H*(E%,d.) = E? |, since they are both induced by a passage to quotients from ¢~Sr+1. Hence the
sequence {¢,}, qualifies as a pairing of spectral sequences. In particular, ¢ = (¢1)« is the tensor
product pairing of Ext-groups. This spectral sequence pairing converges to the smash product pairing
in homotopy, since the pairing of E-terms is induced by the pairing

T (V) @m(Z%) — m (Y NZY) — m (WT)

via the surjections 7, (Y®) — EZ, etc., and the pairing of filtration quotients is induced by the same
pairing via the surjections 7, (YS) — F® — F$/Fst1 etc. These surjections have the same kernel, so
the induced pairings of quotients are compatible under the identifications F*/Fst1 = E3_.

It remains to prove the three parts of the claim.

(a) Applying 7.(—) to the right hand square in diagram (f]), we get the outer rectangle of the following
map of pairings:

(Y3 )Y @ (24 ) Z%FT) —— Z3(Y) @ Z4(Z) —— E5(Y) @ E(Z)

| S

T (W /W) - Zr (W) »r——— Er(W)

In view of the description of Z(W) as the image of m.(W"/W"+") — m (W"/W"*) = EP(W), and
similarly for Y and Z, it follows that there is a unique pairing ¢, that makes the whole diagram commute.
(b) To check that ¢, descends to a pairing ¢,: E3(Y) ® E*(Z) — E?(W), we use the diagram

EY)®ENZ) «—— 2, (V)@ Z(Z) —— 2 (V) ® 20 (Z) — Ep (V) @ B} (Z)

I
d’r I (z;rl (£T_1J ¢rll
+

EW) ¢ W) —————— 2 (W) ——————— > B, (V).

T

There is only something to prove for r > 2. We assume, by induction on r, that the Leibniz rule in (c)
holds for d,,_1 and ¢,_1.

Given y € B¥(Y) € Z:(Y) and z € Z*(Z) we must show that ¢,.(y ® z) € B*(W) c Z*(W). The
image of ¥ in ES_,(Y) has the form [y] = d,_,(z) for some = € ES~[T(Y), and the image of z in
E}1(Z) satisfies dr—1([2]) = 0. Then d,—1(¢r—1(z ® [2])) = dr—1(dr-1(2) @ [2]) £ dr1(z @ dr1([2])) =
br—1([y] @ [2]) £ 0 = [¢r(y ® 2)]. Hence ¢,(y® ' 2) is congruent modulo By, (W) to a class in BrW), as
we asserted. The same argument shows that ¢, maps Z*(Y) ® B%(Z) into B*(W). Hence ¢, descends
to ¢, and this uniquely determines ¢,..

(c) [[TODO: Account for signs.]] Applying m.(—) to the outer rectangle in diagram @, we get the
outer rectangle of the following map of pairings:

[oen] zstr(y) o z4(Z ESH(Y) @ EX(Z
(YY) @ (20 gty 70 D ( 29 “(2) T éa 1(Z)
Z5(Y)® 2t (Z) E}(Y)® E(Z)

(ér %l l[d)l $1]

ﬂ*(Wn/Wn+r) ZnJr ) N E”-H“(w)

Since the pairings ¢, have been defined to make the right hand square commute, the whole diagram
commutes.
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Combining parts of four of these diagrams, we have the commutative sprawl:

T

ES(Y)® BM(Z) 4 Z5(Y) @ Z(Z) —— " ZM(W) ——5 EP(W)

T T

7r®7TT -
[fé)%ll‘ ] T (YS/YS-H“) [ W*(ZU/ZU-H“) — (WTL/W7L+T‘) -
251
TR s
Br) e B(Z) ZH () @ Z2) 6 a
® - ® B ey Brr (W)
EWeBT(Z) Z:(Y) 0 27 (2)
[Pr &)

Going around the outer boundary of the diagram we see that d (¢, (y®2)) = ¢, (di(y)@2)+ o (y@d¥(2)),
proving the Leibniz rule. ([l

Remark 13.23. Ify € m.(K*®) and z € m, (L") lift to g € m (Y*/Y*T") and z € 7. (Z“/Z“T"), respectively,
with images 0y € m (XK*t") and §z € 7. (BL“T"), then yAz € m (KSALY) lifts to gAZ € m (Y /Y ST A
ATVARSY

ZKS+T Ys/ys+r , Ks

EKS+T /\(Lu\ /S " T
YS/YS+’I‘ A Zu/zu+r Zu/zu+r
SKS A LUt SLwtr

The maps Y A Z% — W*T% = W™ induce a commutative diagram

SKSFTTALYVIKS ALY «—— Y8 JYSTT A\ Z% /78T — 5 KS ALY

| | |

E(wn+r/wn+r+1) Wn/W'rL+7" Wn/W'rL+1
and § A Z maps to a lift § - Z in 7, (W™ /W) of the image y - z of y A z in W /W"*+1. Hence §(y - 2)
is the image 0y - 2 +y -0z of Sy Az +y A dz in m (BK*T" A L* VvV XK* A L“T"). The key point is that,
even if Y*/Y5t" A Z%/Z%F" is attached to all of YSt" A Z* UY® A Z¥T" in Y A Z%, the composite
map to Wt — Wt /W Hr+l factors through the quotient Kt A L* vV K A L**", making the left
hand square above commute. The bookkeeping shows that dy represents d,.([y]), and so on, so that
d(y-z)=0y-z+y- 0z implies the Leibniz rule for d,.

Corollary 13.24. Suppose that Y is a ring spectrum, with multiplication ¢: Y NY — Y and unit
n: S — Y. Then there is a natural pairing
EX(Y)@EXN(Y) — EXH(Y),

given at the Es-term by the composite

Ext (H*(Y),F,) ® Ext} (H*(Y),F,) — Ext"(H* (Y AY),F,) SN Ext (H*(Y),Fp),
and a unit map
B[ (S) =5 EX(Y),
given at the Es-term by
Ext, (Fp,Fy) - Ext, (H*(Y),Fp),
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that make the Adams spectral sequence EX*(Y) an algebra spectral sequence over E**(S). IfY is
homotopy commutative, then it is a commutative algebra spectral sequence.

13.6. The bar resolution. Let k be a commutative ring, and consider any k-algebra A. (Our principal
example will be the case k = F, and A = <7, the mod p Steenrod algebra.) We write ® for ®; and
Hom for Homy. Let M and N be left and right A-modules, respectively. The two-sided bar construction
Be(N, A, M) is the simplicial k-module, given in degree g > 0 by

By(N,A, M) =N® A® @ M .
Following Eilenberg—Mac Lane (see MacLane (1963, Sect. X.2)) we use the notation nfai|...|as]m for

the tensor n ® a1 @ --- ® ag @ m in B4(N, A, M), and the use of vertical bars in this notation gives the
construction its name. The face operators d;: 8,(N, A, M) — B,—1(N, A, M) for 0 < i < ¢ are given by

nailaz| ... |aglm for 1 =0,
di(nlai|...|aglm) = { nla1|...|ai—1|a;ai1]aite] . . . Jagm for 0 < i < ¢, and
nlai]...|ag—1]agm for i = q.

The degeneracy operators s;: Bq(N, A, M) — B4+1(N, A, M) for 0 < j < q are given by
sj(nlaal. .. laglm) =nlai]...|a;|aj ... |aglm
where 1 = (1) € A denotes the algebra unit. There is an augmentation
€: Bo(N, A, M) — N®4 M
to the balanced tensor product N ® 4 M, considered as a constant simplicial object, given in degree
g = 0 by e(n[Jm) = n ®4 m. In the special case N = A, with the right A-module structure given by
the k-algebra multiplication, there is an extra degeneracy operator s_1: B4(A, A, M) — By41(A, A, M)
given by
s—1(aolax|. .. aglm) = 1aolas|. .. |aglm

and the augmentation specializes to €: Bo(A, A, M) — M given by €e(a[lm) = am. [[Can discuss how
s_1 specifies a simplicial contraction of Be¢(A, A, M) to M.]] In this case the left A-module structure on
N = A induces an A-module structure on each 8,(A4, A, M), making B.(A, A, M) a simplicial A-module.
(The extra degeneracy s_; is not A-linear. We use the induced, not the diagonal, A-module structure
on each (,(A, A, M) = A® A®1® M, even when the latter exists.)

The associated normalized chain complex is the normalized bar construction. It is the chain complex
of k-modules given in degree ¢ > 0 by

By(N,A,M) =N ® J(A)® @ M
where J(A) = cok(n: k — A) is the unit coideal. [[Often denoted A.]] The boundary operator
Oy: Bq(N,A7M) — B,_1(N, A, M) is the alternating sum

q

04 = Z(_l)idi

i=0
of the face operators, which descends over the surjection Bq(N, A, M) — By(N, A, M). Hence
0g(nlar] ... laglm) = nasfaz| ... lagm + Y (=1)'nlar]...|aiai1| ... |aglm + (=1)nfar] . .. |ag_1]agm
0<i<q
forn € N, a; € J(A) and m € M. [[A sign may be introduced, depending on the degrees of the terms
a;.]] There is still an augmentation
€: Bo(N, A, M) — N®4 M
given by the canonical surjection N ® M — N ® 4 M, and we get an augmented chain complex
- By(N, A, M) 2 B{(N, A, M) 25 By(N, A, M) —5 N4 M — 0

of k-modules. In the special case when N = A, the augmentation can be rewritten as e: Bo(N, A, M) —
M, sending a[Jm to am. In this case the extra degeneracy gives rise to a chain contraction S of
B.(A, A, M) to M. This is a chain homotopy

Sq: By(A, A, M) — Byi11(A, A, M)
given by

Sqlaglar] ... |aglm) = 1[aola1] ... |aglm
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for all ¢ > 0. It satisfies
0S5+ 850 =1-—ne.

Here 1 denotes the identity, and n: M — By(A, A, M) sends m to 1[]m, so that ne(ajm) = 1[lam.
[[Prove the chain homotopy relation. Clarify that 0 = 0 on By(NV, A, M). Conversely, the boundaries 9
are inductively determined by this relation and A-linearity.]] Hence € and n are chain homotopy inverse
equivalences between B,(A, A, M) and M, where M is viewed as a trivial chain complex concentrated
in degree 0.

The left A-module structure on N = A makes B,(A, A, M) a chain complex of left A-modules. In
other words,

€: B.(AJ AL M) — M

is an A-module resolution of M, called the bar resolution. (Note that we use the induced A-module
structure on each B,(A, A, M) = A® J(A)®?® M, not the diagonal structure, in case the latter exists.)
If J(A) and M are flat, resp. projective, as k-modules, then so is J(A)®? @ M. This will imply that
B, (A, A, M) is flat, resp. projective, as a left A-module. Hence, under these conditions, the bar resolution
is a flat, resp. projective, resolution. If & is a field, as it will be in the case when A is the mod p Steenrod
algebra, then these conditions are automatically satisfied.

In particular, we can in principle use the bar resolution to calculate Tor*A(N , M) and Ext’ (M, L). If
J(A) and M are flat k-modules, then

Tor (N, M) = H,(N ®4 B.(A, A, M),1® d) = H,(B,(N, A, M), )
for each s > 0, as graded k-modules. This uses the evident isomorphism N® 4 B4(A, A, M) = B,(N, A, M)
for each ¢ > 0. If J(A) and M are projective k-modules, and L is any left A-module, then
Ext% (M, L) = H*(Homa (B.(A, A, M), L),Hom(9, 1))

for each s > 0, again as graded k-modules. [[Can rewrite Homu(By(A, A, M),L) = Homu(A ®
J(A)®9® M, L) = Homg(J(A)®1® M, L) in terms of L® (J(A)*)®?® M*, leading to the cobar complex
C9(L, A*, M*) for the dual coalgebra A*. Return to this later.]]

13.7. Comparison of pairings. The bar resolution grows too fast in size to be useful for efficient
machine calculation, but its explicit form makes it useful for theoretical analysis. [[Calculate Yoneda
composition and tensor product in terms of bar resolutions.]]

Let f: X - Y and g: Y — Z be maps of spectra, and let §: S — F(Y, Z) be right adjoint to g. The
smash product gA f: X 2 SAX — F(Y,Z) AY followed by the evaluation map ev: F(Y,Z)ANY — Z
defines a map

evo(gNf): X — Z
that equals the composite gf = go f: X — Z. Hence the composition pairing
o: [V, 7, ® [X, Y], — [X, Z].
can be rewritten in terms of the smash product pairing as the composite
mnF(Y,2)®[X,Y], 25 [SAX,F(Y,Z) AY], <5 X, Z)..
In particular, for Y = .S, the composition pairing

01 [S, 2], ® [X, 8], — [X, Z].

equals the smash product pairing. Specializing to X = 5, the composition and smash products give the
same module action

T (Z) @ i (S) — 7 (Z) .
Specializing further to Z = S the two ring structures
74 (S) @ i (S) — 74 (S)

on 7, (S) agree. The smash product pairing is graded commutative, since p: S A S = S and pvy are ho-
motopic (or equal, in some models). It follows that also the composition product is graded commutative,
which is not so evident from its definition.

Conversely, given maps f: T — Y and g: V — Z of spectra, the smash product fAg: TAV - Y ANZ
can be factored in two ways, as

(fADe(ng)=Ffrg=(AAg)e(fAL).
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Hence the smash product pairing
AN [TY]L @[V, Zl, — [TAV,Y A Z].
can be rewritten in terms of the composition pairing as the composite
mnF(TY)@mF(V,2) 25 2, F(TAZ,Y NZ) @ m, F(TAV,T A Z) 5 7, F(T AV,Y N Z).
[[Explain the stabilization maps o: F(T,Y) = F(TAZ,YAZ)and 7: F(V,Z) — F(TAV,TAZ), perhaps
in terms of the adjoints ev Al: F(T,Y)ATAZ - Y AZ and y(ev A1)(1AY): F(V,Z)ANT AV — TANZ]]
In particular, for T'= Z = S, the smash product pairing
At [87 Y]* ® [V7 S}* — [V7 Y]*

equals the composition pairing.

Let L, M and N be left A-modules, for a k-algebra A that is projective as a k-module. Let
€: B.(A,A, M) - M and e: B.(A,A,N) — N be the normalized bar resolutions. The Yoneda compo-
sition

o: Ext%"(M, L) @ Exty" (N, M) — Ext’"*""(N, L)

takes [f]®[g] to [ZV fogs], where [f] and [g] are the cohomology classes of cocycles f: Bs(A, A, M) — XL
and g: B, (A, A, N) — XYM, or equivalently, of chain maps f: B,(A4, A, M) — X!L[s]and g: B.(4,A,N) —
$Y M [u], where X! L[s] denotes the chain complex with ¥ in cohomological degree s and 0 in all other
degrees, and similarly for 3V M|u]. Furthermore, g.: Bi(A4, A, N) — XVB,(A, A, M)[u] is a chain map
lifting g, so that eg, = g. It consists of A-module maps g,: By4u(4,A,N) — XB,(A, A, M) for all

g > 0, commuting [[up to a sign]] with the boundary maps, and egy = g. [[Explain the cohomological
shift by u, denoted [u], of a chain complex, including sign convention?]]

B.(A,A,N) -2 B,(A, A, M)
| e AN
N M L
The opposite Yoneda composition
0% Exty"(N, M) ® Ext%'(M, L) — Ext’*"*"(N, L)
is given by the twist map v: [g] ® [f] — (=1)*=9=9)[f] ® [g] followed by the Yoneda composition,

hence maps [g] ® [f] to (=1)=3)(*=W[5¥ f 5 g.] in the notation above. [[Is this the correct sign?]]
It is possible to write down an explicit chain map g, lifting g. Compare Adams (1960, p. 33).

Lemma 13.25. Given a cocycle g: B.(A, A, N) — X" M|[u], a chain map
gt Bu(A, A N) — 3VB,(A, A, M)[u]
that lifts g is given [[up to sign]] by the formula
9gqlaolar]. .. |agruln) = aolasl. .. |aglg(agsa|. .. |ag+uln)

for each ¢ > 0. Hence the Yoneda product [f]o|g] is represented by the cocycle ¥V fogs: Bsin(A, A, N) —
YL given by

aglay|...|astu]n — flaplar] ... |aslg(lass1] ... |astu]n)) .
Proof. Let go: By(A, A, N) — By(A, A, M) of internal degree v be given by
go(aolai] ... |au]n) = aollg(1faz].. . |ay]n).

Then go is A-linear, and egyp = g. Next, define g;: Byy1(A, A, N) — B1(A, A, M) to be the A-linear
homomorphism of internal degree v that agrees with Sgod,,1 when restricted along n®1: k® A2+ @
N — Byy1(A, A, N). Tt is given by

g1(aolar] .. |au1]n) = aolar]g(llaz|. .. |ays1]n),
since the remaining summands from 0,41 are mapped to terms of the form ag[l]m = 0 in B;(A, A, M).
Then 0191 = 01.50900yu+1 on k ® A®+D) & N which by the relation 8,5y 4+ ne = 1 differs from 90O0u+1
by 1€goOu+1 = NgOu+1 = 0, where we use that gg lifts g and g is a cocycle. Hence 0191 = goOu+1 On
k@ A®(+1) @ N. Since both sides are A-linear, it follows that 9,91 = goOuy1 on all of B, y1(A, A, N).
For ¢ > 2, suppose inductively we have defined g, as a chain map, of internal degree v, up to and
including g4—1: By+q—1(4,A,N) — B,_1(A, A, M). In particular, we are assuming that 9;_19,—1 =
Gq—20u+q—1. Define gq4: Byyy(A4,A,N) — B,(A, A, M) to be the A-linear homomorphism that agrees
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with S, 19410 +u when restricted over n®1: k@ A2@H*W@N — B, (A, A, N). Here S;_1: B,_1(A, A, N) —

B,(A, A, N) is part of the chain contraction of B,(A, A, N), and is not A-linear. By induction it follows
that

9gq(aolar]. .. lagruln) = aolar]. . . |aglg(lagia|. .. |ag+uln),
since
9q(Lar]. .- laguln) = Sq-19q-10g+u(1far]. .. |ag+u]n)
= Sq-19q-1(a1faz| ... |agtu]n — laras| ... |agtuln +...)
= Sq-1(arfaz|. .. |aglg(Uags1]. - - |agruln) — laraz]|. . . |aglg(Llag+1]. . - |agruln) +...)
— 1farlaal . loglg(1ags] . lagsuln) — 1lleras .- laglg(lagsrl . lagraln) + ...

where the second and the remaining terms are zero in the normalized bar resolution. To check that
g« is a chain map, we must prove that 0,9 = ¢q—10¢4+u: Bgtu(A, A, N) — By 1(A, A, M). [[This
should involve a sign (—1)“.]] Both sides are A-linear, so it suffices to prove this after restriction to
ke A®@tu) @ N. Here 0q9q = 0qSq—19¢q—10g+v differs from gg_ 10444 by Sq—20¢ — 194—104+4, in view of
the relation 0,541+ Sg—204—1 = 1. This difference equals Sy—29g+u—10g+u—10¢+u = 0, by the inductive

hypothesis and the fact that B.(A, A, N) is a chain complex. O
[[When A is a Hopf algebra, and M = k, so that
flaolas] .. las]g(Lassa]. .. |asiu]n)) = flaolas].. . |as|1) - g(Uasya]. . - |assu]n)
the Yoneda product is induced by the diagonal approximation B.(A4, A, N) — B.(A, A, k)® B.(A, A, N)
mapping agla1]...|ag)n to the sum over s +u = ¢ of aglai]...|as]l @ last1|... |astq]n. Dualize to a

concatenation pairing of cobar complexes. What about the case when M # k7))

We can also write down explicit diagonal approximations to calculate the tensor product pairings.
Compare Adams (1960, p. 35).

Let M, N, T and V be left A-modules, still for a k-algebra A that is projective as a k-module. Let
€: By.(A,A,M) — M and €: B.(A, A, N) — N be the normalized bar resolutions. These are projective
A-module resolutions. The tensor product € ® e: B.(A, A, M) ® B.(4,A)N) — M ® N is then a
projective A ® A-module resolution, hence is chain homotopy equivalent to the normalized bar resolution

B,(A® A/ ARA M®N)—> M®N.

An explicit chain equivalence

AW: B, (A A, A A M ®N) — B.(4,A,M) ® B.(A, A,N)

is given by the Alexander—Whitney map
AW(a0®b0[a1 ®b1| \aq®b m®n Zao a1| |az [ aqm®b0b1 bl[bz+1||bq]n

See Mac Lane (1964, Cor. X.7.2). Now suppose that A is a Hopf algebra, with coproduct ¢: A —
A® A. Viewing M ® N as an A-module by restricting the A ® A-module stucture along the algebra
homomorphism 1, we get a chain equivalence

U = B(y,¢,1): B(A, A M®N) — BA® A, A® A, M @ N)

of A-module resolutions of M ® N. Note that both of these are projective A-module resolutions, by our
assuptions on A and the untwisting isomorphism from Proposition [[3.18] The composite A = AW o ¥
is a chain equivalence

A: B.(A, A, M ® N) — B.(A, A, M) ® B.(4,A,N)
of A-modules, with the diagonal action on the right hand side, given by
A(aolar] ... |aglm ®n) Zao Uiy ---agm@agay .. .afai ] . |ag]n
where ¢(a;) =Y a; ®@a} for all 0 <i <gq.
[[TODO: State the result above as a lemma.]]

As a special case, if M =k, and we arrange that a} € I(A) for all summands a} ® a} of ¥(a;), except
for a term 1 ® a;, then

q
A(aplay|...|agn) = Z aplay] ... la]l @ agay ...alais1]. .. |agn
i=0
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This recovers Adams’ formula. [[Explain how to construct this directly?]]
The tensor product pairing

®: Ext%'(M,T) ® Ext}" (N, V) — Ext™" ™" (M @ N,T®V)

takes [f]®[g] to [(f®g)A], where f: Bs(A, A, M) — X'T and g: B, (A, A, N) — XVV are cocycles, so that
fOs+1 = 0 and gd,+1 = 0. When viewed as chain maps f: B.(A, A, M) — %!T[s] and g: B.(A, A,N) —
Y%V [u], mapping to 0 in degrees other than s and w, respectively, their tensor product is a chain map

f®g: Bu(A, A, M) ® B.(A, A, N) — ST[s] @ S*V[u] = ST @ Vs + u).
The composite (f ® g)A is then the chain map determined by the cocycle
Boyu(A,AM®@N) — STV
given by

aolar] . Jawrudm @ n— 3" flaplal] .. lalaly, . aly,m) @ glafal . allalyy] . |aly,n).

Proposition 13.26. Let A be a Hopf algebra, projective as a k-module, and let L and N be A-modules.
The Yoneda composition pairing

o: Ext%'(k, L) ® Exty"(N, k) — Ext’F (N, L)
agrees with the tensor product pairing
®: Ext%'(k, L) ® Ext'y"(N, k) — ExtF"" " (k@ N, Lo k).

Proof. Let f: Bs(A, A k) — XtL and g: B, (A, A, N) — X'k be A-linear cocycles. The Yoneda compos-
ite [f] o [g] is represented by the cocycle ¥V f o gs: Bgyu(A, A, N) — XtV L given by

agla|...|astu]n — flaplar] ... |aslg(Lass1] ... |astu]n)) .
The tensor product [f] ® [g] is represented by the cocycle

aolan] .. fassuln— Y flaplai] ... alle(@lyy - aly,)) - glagal .. alalyy]. |aly,]n)

where (a;) = Y a}®a}. The assumption M = k implies that g(agay ...aZ[...]n) = 0if some a € I(A),

and e(al,, ...a,,,) = 0if some a; € I(A), so only the summands a; ®1 of ¢(a;) contribute for 0 <i < s,

and only the summands 1 ® a; contribute for s + 1 < ¢ < s + u. Hence the sum simplifies to the single
term

apla| ... |astu)n — f(aolar] ... |as]l) - g(1ast] - - - |astuln) -

Since f is k-linear, this equals the cocycle ¥V f o gs. O
Theorem 13.27. There is a natural pairing
EN(S,Z)® B (X,8) — B (X, Z)
of Adams spectral sequences, given at the Fo-term by the opposite Yoneda product
Ext®/(H*(Z),F,) ® Ext"(F,, H*(X)) — Ext3, """ (H*(Z), H* (X))
and converging to the composition pairing
Ti—s(Z)) @ [X, ) lo—uw — [X, Z) )t —sv—u -

Proof. This is the same as the smash and tensor product pairing of the Adams spectral sequences, since
the tensor product of Ext-groups agrees with the opposite Yoneda product, and the smash product of
homotopy classes agrees with the composition product. (|
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13.8. The composition pairing, revisited. Here is a geometric proof of Moss’ theorem on the com-
position pairing, close to the one for the smash product pairing.

Proof. Let {Y*}, and {Z"}, be Adams resolutions of ¥ and Z, with cofibers Y*/Y**1 = K* and
Zv)Zv L = L% respectively. Let P, = H, (X*K?®) and Q, = H,(3*L"), as usual.
Consider the homotopy limit of mapping spectra

M" = holim F(Y*,Z").
n<u+s

Restriction from n < u+ s+ 1 to n < u + s gives a map i: M“* — M. Its homotopy fiber is the
product over s of the iterated homotopy fiber in the square

F(YS’ Zu+s+1) F(YS7 Zqus)

J J

F(ys+1’ Zu+s+1) F(ys+1’ Zqus)7

which is equivalent to F'(K*, L“**). Hence we get a tower

o —— MUt MY M! MO
S - J 1’\\ J
[I, F(K5, L) [1. F(K*®,L*).

Restriction to (s,n) = (0,u) defines a map to the tower

i —— F(Y, 2% — S F(Y, Z%) —— ... — F(Y, Z})) —— F(Y, Z)

X 1S
~ ~
- J - J
~ ~
~ ~

F(Y,L") F(Y,L%.
Applying homotopy we get a map of unrolled exact couples, from
oo —— T (M) ———— 1 (M) (M) ——— 7. (M9)
o l o J
LI, L0+, IL1K°,27).

to the one generating the Adams spectral sequence {E**(Y, Z)},. Let {{ E¥*}, be the spectral sequence
generated by the unrolled exact couple just displayed. The map 'E}"* — E}"*(Y, Z) of Ej-terms can be
identified, using the d-invariant isomorphisms

[11xe, 2. = [ [ Homy (Quys, Ps) = HOME(Q., P.)

S

[Y, L], = Hom, (Qu, H*(Y)),
with the quasi-isomorphism

€x: HOML"(Q., P.) — Hom’,(Q,, H*(Y))
induced by e: P, — H*(Y). Hence the map of Es-terms is an isomorphism, identifying 'E5"" with the
Adams Fs-term

By (Y, 2) = Bxty (H*(2), H™(X)).
We shall define a pairing of spectral sequences
¢r: BV @ ES*(X,Y) — EYT5%(X, Z)
for » > 1, which agrees with the composition pairing
HOM " (Q+, Ps) ® Hom,y (Ps, H*(X)) — Homy (Quos, H (X))
for r = 1. For r > 2 the source is isomorphic to
EX(Y,2) @ B2 (X,Y)

via €, ® 1, which yields Moss’ pairing and the compatibility with the Yoneda product for r = 2.
102



The pairing ¢;: 'E}"* @ E}*(X,Y) — E}"®*(X, Z) is the composition pairing
[TIK" L) @ X, K)o — (X, L),

s
that takes (¢°), @ f to ¢° f. We show that it restricts to a pairing ¢,: 'Z%* ® Z5*(X,Y) — Z4T5*(X, Z)
of r-th cycles, that descends to a pairing ¢,.: 'E%* @ E5*(X,Y) — E*T*(X, Z) satisfying the Leibniz
rule, for each r > 1.
((EDIT FROM HERE))
We shall use the identifications

7% = im(m (MY /M) = (MY /M)
ZP7(X,Y) =im([X, YY", — [X, K°].)
Z3%(X, Z) = im([X, 2" /244, [ X, L)

where MY /M1 =], F(K*,L*“"*).
Consider the commutative square

F(YS, Zu+s+r) F(YS’ Zu—i—s)

| |

F(YS+T, Zu+s+r> F(YS+T, Zu+s) .

There are restriction maps from M%T" to the upper left hand corner, and from M* to the homotopy
pullback of the rest of the square. Hence there is a map of homotopy fibers from L ~1(M“/M"*1) to
F(Ys)ystr n-l(Zuts /Zuts+r)) | giving a map

Mu/Mu+r N F(ys/ys—i-T’ Zu+s/zu+s+r)

and an adjoint pairing
Mu/Mu+r A Ys/ys—l—r N Zu—&-s/Zu—&-s—&-r
compatible with the pairing M*/M“+t! A K — L%*s for = 1. This leads to the commutative diagram

T (M [M"47) @ [X, Y)Y 7], b [X, 204/ Z0347],

| |

TLIK*, L. @ [X, K] ———— [X, L.
The induced pairing of vertical images is ¢,..
((EDIT TO HERE)) O

14. THE STABLE STEMS

14.1. The Adams Fs-term. We analyze the 2-primary Adams spectral sequence
Ey' = Ext®) (Fy, Fy) = m;_s(S)5 .

The Es-term for t — s < 48, as calculated using Bruner’s ext package |Bru93|, is displayed in Figure
The Er-term for 48 <t — s < 72 is displayed in Figure 26
The algebra generators for ¢t — s < 60, with respect to the Yoneda composition in Ext,,, are listed
in Figures and In many cases, the algebra generator is the unique nonzero class in its bidegree.
Using the Steenrod operations in Ext,,, with the indexing convention that Sq’: Extfj — Ext;'”%, we
follow [BMMSS86, Def. VI.1.8] and let a;y1 = Sq°(a;) for a € {c,d,e, f,g,7,m,t,2,y}. Hence, once ag
has been specified (or g; in the case a = g), the remaining a; are also uniquely determined.
The remaining ambiguities in this range are:
(1) fo in bidegree (t — s,s) = (18,4) is only determined modulo h$hy = h3hahy. A specific choice
can be made by setting fo = S¢*(co), as in [BMMSS86, VI.1, p. 178]. ((Is fo represented by 4¢ or
46 + 47 in the resolution calculated by ext?))
(2) ey in bidegree (t — s,s) = (38,4) is determined modulo h3hshs. ((Is e; represented by 41,
satisfying hge; = 0, like the choice in [Tan70|, or is it 416 + 4177))
(3) f1 in bidegree (t — s,s) = (40,4) is determined modulo h3hs = hihshs. ((Is it represented by
419 or by 419 +4207))
(4) n in bidegree (t — s,s) = (31,5) is determined by the conditions that hon = 0 and hon # 0.
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t—s|s| t ||Tan70] ext dso
0 |1]1 ho 1o 0
1 1| 2 hy 1 0
3 1|4 ha 19 0
7 |18 hs 15 0
15 | 1]16| hy 1y hoh?
31 | 132 hs 15 hoh3
8 311 Co 33 0
19 3| 22 C1 39 0
41 3|44 Co 319 h()fl
14 4118 do 43 0
17 4|21 €o 45 h%do
18 4| 22 fo 46 mod 47 h%eo
32 | 4136 dy 413 0
33 4| 37 P = Po 414 0
38 4142 €1 416 mod 417 0
40 4144 f1 419 mod 42() 0
44 4| 48 gz 422 0
9 5|14 Phy o1 0
11 | 5|16 Phy 92 0
31 5136 | n=ng | 513 mod 514 0
37 542 r = X9 517 0
52 | 5| b7 Dy 930
30 6| 36 r 61() 0
32 | 6|38 q 612 0
36 | 6|42 t 614 0
38 6| 44 Yy 616 mod 617 hgx
50 | 6| 56 C 627 0
54 | 6|60 G 630 0
58 | 6|64 Dy 631
16 7123 PCO 73 0
23 | 7130 i Ts hoPdy
26 7133 j 76 h(]Pe()
29 [7136| &k 7 hod2
32 7139 Y4 710 hodoeo
35 7|42 m 712 hodog
46 | 7|53 B Ta0 (0)
48 7155 B2 722 mod 723 0
57 | 7164 Qo Tor
60 | 7|67 Bs T29 0
22 18130 Pdy 83 0
25 8133 PE(] 85 h%PdO
46 | 8| 54 N 820 0
17 [9]26| P?hy 9, 0
19 | 9|28 | P?hy 9, 0
39 | 9|48 U 915 0
42 9151 v 919 (hoz)
45 91| 54 w 920 0
60 9169 B4 929 mod 930
61 9170 X1 931 th4 mod h1B21

FIGURE 27. Algebra generators for Ext’)"(F2, F>)
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t—s| s | t | |Tan70] ext do

41 10 | 51 z 1014 0

53 | 10 | 53 x! 10;g 0

54 10 | 64 R1 1019 mod 1020 h%z’
56 10 | 66 Ql 1022 mod 1021 h%x’
59 |10 |69 | By 1024 0

24 [11]35| PZc 115 0

34 |11 |45 Pj 117 hoP?%eq
30 |12 42| P3dy 123 0

33 | 12|45 | PZe 125 h2P2d,
25 [13[38] P3ny 13, 0

27 |13 ]40 | P3hy 135 0

47 |13 | 60 Q 1314 (hoi?)
47 |13 | 60 Pu 1315 0

50 | 13 | 63 Pv 1316

32 |15 [47] P3¢ 155 0

39 | 15|54 | PZ% 155 hoP3dg
42 | 15|57 | P?j 156 hoP3eq
38 |16 |54 | P3dy 165 0

41 |16 | 57| P3eq 165 h2 P3dy
33 [17[50] P*hy 17, 0

35 |17 52| Phy 175 0

55 |17 | 72| P?u 1715 0

58 17 | 75 P2U 1719

40 [191]59| Ple 195 0

50 |19 69| P3j 19+ hoPe
46 [ 20]66 | P, 205 0

49 20|69 | Pley 205 h2 P*dy
41 [ 21162 P°m 21, 0

43 | 21|64 | P°hy 21, 0

48 [23 [ 71 ] P°c 233 0

55 |23 |78| P4 235 hoP®dy
58 |23 (81| P 236 hoP%e
54 |24 |78 | P°d, 244 0

57 |24 | 71| PPeqy 245 h2 Pdy
49 [ 25|74 ] PShy 251 0

51 | 25|76 | PShy 259 0

56 |27 [83] PS¢ | 273 | 0O

57 298 [ P7hy 29, 0

59 |29 |88 | PThy 29, 0

FIGURE 28. Algebra generators for Ext’)"(F2, F2)

(5) y = yo in bidegree (t — s,s) = (38,6) is only determined modulo hjx. A specific choice can be
made by setting y = S¢%(fo), as in [BMMS86, VI.1, p. 178]. ((Is y represented by 615 or by

616 + 6177))

(6) By in bidegree (t — s, s) = (48,7) is only determined modulo h3hseg. ((Is By represented by 7ao
or by 7322 + 7237 Can we make a specific choice using Steenrod operations?))
(7) By in bidegree (t — s,s) = (60,9) is determined modulo hZBs. ((Is By represented by 929 or by

999 + 930?))

(8) R in bidegree (t — s,s) = (54, 10) is determined modulo h2hsi. ((Is Ry represented by 1019 or

by 1019 + 10207))

(9) @, in bidegree (t — s,s) = (56, 10) is determined modulo tg. ((Is Q1 represented by 1022 or by
1021 + 10927 Ravenel (1986,/2004) refers to a generator R’ in this bidegree.))
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(10) Q in bidegree (t — s,s) = (47,13) is characterized by hoQ # 0 and h1Q # 0. It is represented by
1314. Pu in the same bidegree, (t — s, s) = (47,13), is characterized by hoPu = 0 and hy Pu # 0.
It is represented by 1315. The sum Q' = Q + Pu is characterized by hoQ’ # 0 and h1Q’ = 0. It
is represented by 1314 + 1315. ((Check that this Pu is the Adams periodicity operator P applied
to u.))

14.2. The first 14 stems.
Proposition 14.1. d5* =0 for allr > 2 and t — s < 14.

Proof. This is clear from the multiplicative structure. Each d,.(hg) lands in a trivial group. If hy
survives to E,. then hod,.(h1) = d,.(hoh1) = 0 since hohy = 0, but there is no hg-torsion with ¢t — s = 0,
so d,.(h1) = 0. Hence each d,.(h1) = 0, by induction on r > 2. For each r > 2, the differentials d,(hs),
d-(h3), dr(co), d.(Phy), d,.(Phs), d,(h3) and d3(dp) land in trivial groups. In other words, all classes
with ¢ — s < 14 are permanent cycles. (This does not exclude the possibility that some classes with ¢ — s
are boundaries, hence represent 0 at E.) [l

Theorem 14.2. (0) mo(S)% = Za{r}, with 251 represented by hf, for each s > 0.
(1) m(S)y = Z/2{n}, with n represented by hy.

(2) m2(S)s = 7Z/2{n?}, with n* represented by h3.

(3) m3(S)y = Z/8{v}, with v represented by hy. Here 2v is represented by hoha, and 4v = 3 is
represented by h3hy = h3.

(4) m(S) = 0.

(5) m5(5)y = 0.

(6) m6(S)s = Z/2{v?}, with v? represented by h3.

(7) m7(S)4 =7Z/16{c}, with o represented by hs. Here 20 is represented by hohs, 40 is represented

by hiho and 8o is represented by h3hs.
(8) ws(S)y =Z/2{e,nc}, with € represented by cy and no represented by hihs.
(9) 79(S)5 = Z/2{p,ne,n?c}, with p represented by Phy, ne represented by hico and n*c represented
by h3hs. ((Claim: v3 = ne +n?c.))
(10) m10(S)5 = Z/2{nu}, with nu represented by hiPhy. ((Claim: n?c¢ =0 and vo = 0.))
(11) 711(S)y = Z/8{(}, with ¢ represented by Phy. Here 2¢ is represented by hoPha, and 4¢ = n*u
is represented by h3Phy = h3Phy. ((Claim: ve =0.))
(12) 7712(5)5\ =0.
(13) 7T13(S)é\ =0.

Proof. In degree 8, the Adams filtration gives the short exact sequence
0— FQ{CO} — ﬂ'g(S)é\ — Fg{hlhg} — 0.

The class € is represented by ¢y, and the product no is represented by hihs. The extension is split,
because 2 - no = 0 since 2n = 0.

In degree 9, there is a unique class p represented by Ph;. The product ne is represented by hicy
and the product %0 is represented by h?hz. Hence mo(S)5 is generated by u, ne and n?o. Here 2 - u is
represented by hgPhy = 0 and lies in Adams filtration greater than 6, hence is 0. Furthermore 2 -ne = 0
and 2 - n%0 = 0 since 29 = 0. (I

14.3. Higher homotopy commutativity. The first differential can be explained using the homotopy
commutativity of the pairing ¢: SAS = S.

Proposition 14.3. da(hy) = hoh3.

Proof. We know that 2¢ is represented by hg and o is represented by ha, so 202 is represented by hoh3 at
E+. Since 202 = 0 by graded commutativity, it follows that hoh3 = 0 at E, i.e., hoh3 is a boundary.
The only possibility is da(hs) = hoh3. O

The next ds-differentials can be explained using the higher order homotopy commutativity of .S. This
structure is derived from the fact that S is an E, ring spectrum. The quadratic construction on a based
space X is

Dy(X) = 5% A, (X A X) = Xf2
where C5 acts freely on S°° by the antipodal action, s — —s, and acts on X A X by the twist action,
x Ay — y Az It is filtered by the subspaces

DE(X) = 8% Ac, (X A X)
108
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for 0 < k < oo, where Cy also has the antipodal action on Sk < 8%, There is an extension of this
construction to the category of spectra, see [LMSMS86| (?7)], denoted

DY) = 5% x¢g, (Y AY)

for 0 < k < oo, where we write D2(Y') for D3°(Y"). This twisted half-smash product, or extended power,
is compatible with the space-level construction, in the sense that D§(¥>®°X) = $*°DE(X) for all k. It
extends the smash square, in the sense that DJ(Y) 2 Y A Y, and there is a filtration

YAY 2DYY)CDYY)C---CDE(Y)C---C Dy(Y).
Part of the data specifying an F., ring structure on a spectrum Y is a map
&: DoY) — Y

that restricts over Y AY = DJ(Y) C Da(Y) to a ring spectrum structure ¢: Y AY — Y. The sphere
spectrum S is an example of an F., ring spectrum, with structure map &;: D2(S) — S extending the
pairing S A S 2 S referred to above. ((Relate to strictly commutive ring spectra.))

The relation between E., ring structures and the Adams spectral sequence was studied in increasing
generality by Daniel S. Kahn, Jim Milgram, Jukka Mékinen and Robert R. Bruner. Let

N S PRI T
be an Adams resolution of Y, with each map 7 the inclusion of a CW subspectrum. Let
S (YAY)PT S (Y AY)Y = 5 (YAY) =Y AY
be the product resolution of Y AY, with
YAY) = [ YiAYD.
i+j=s

Note that the twisting Ca-action on Y AY restricts to an action on each (Y AY)*. We get a commutative
diagram

S (YAY)SH L (VY AY)S YAY

Sk e, (YAY)SH s Sk (Y AY)S —— ... —— DE(Y)

8% e, (YAY)SH Ly 8% i (Y AY)S —— ... —— Dy(Y)

The composite map ¢: Y AY — Do(Y) — Y can be covered by a map
{s: YAY) = Y°},

of Adams resolutions, with ¢ = £y . This map can be extended to a map from the k-skeleta of the
extended powers, at the expense of a loss of k& Adams filtrations, for each finite £ > 0. In other words,
there are maps

Eps: S¥xo, (YAY)S — YoF
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for £ > 0 and s > 0, making the diagrams

Sk e, (Y AY)SH — sy 5k i

(v
o

Sk o, (Y AY)S

lékﬁ»l,s

ys—k+1 i ys—k i ys—k—1

AY)S

Ek,s+1

and
Sk X, (Y AY)® —— Do(Y)

fk,sl Jﬁz
s—k

ysk —* Y
commute. See Bruner’s [BMMS86, Theorem IV.5.2]. Concentrating on Adams filtration 2s, for k > 0,
and composing with the inclusion Y* A Y* — (Y A Y)?%, we get a map from the filtered quadratic
construction of Y* to the Adams resolution of Y. If f: S™ — Y'* represents a class [f] € 7, (Y) of Adams
filtration s, with f = °f, we can form the following commutative diagram:

S™ A 8™ DE(S") ———————— DEHI(5") ———— .
nf DE(f) DETY(F)
YSAYS DE(Y®) —————— 5 DS (YS) ———— .

(YAY)? ——  —— SF ke, (YAY)E —— Sl o, (YAY)E —— .

0,25 Ek,2s Ert1,2s

y2s ¢ i y2s—k { y2s—k—1 {

The quadratic construction on spheres can be rewritten in terms of stunted projective spaces. For
a <b< oo, let RP® = RP’/RP%! be the subquotient of RP° with a single d-dimensional cell for each
a <d<b. Then

Sk xc, D™ x D"
Sk x ¢, (D™ x D™)
is the Thom complex of the real 2n-bundle over S*/Cy = RP¥ associated to the Cy-representation given
by the twist action on R™ x R™. This is isomorphic to the sum of the diagonal +1-eigenspace and the
anti-diagonal —1-eigenspace, so the vector bundle is isomorphic to ne! @ ny', where €' and v' denote
the trivial and the tautological line bundles over RP*, respectively. Hence D5(S™) = Th(ne' @ ny!) =
Y"Th(ny'). By a calculation of Atiyah ((is that the original reference?)), Th(ny!) = RP"+k /RPF-1 =
RPE 50

DE(S™) =S¥ xc, (S" A S™) =

D(S™) = Z"RPyHF
has one d-cell for each 2n < d < 2n + k.
We get maps of cofiber sequences

DE(5™) —— DE(S™) —— 57tk

l §k,2sOD’2€(JF)l J

Y25—k+1 i Y2s—k J K25—k

for each £ > 0. By |[BMMS86, Corollary IV.5.4 and Theorem IV.7.6], the right hand vertical map

_ . _ 25—k 2n+2 .
Stk K257k represents a cocycle in mo,yx(K27F) = EFT%*2 whose cohomology class in

E257k2nH25 ig given by the Steenrod operation Sq®*(x), where z € E3™"® represents [f]. These
Steenrod operations
Sq': Ext®)(Fy, Fa) — Ext®l "% (Fy, Fy)
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can be defined in the cohomology of any cocommutative Hopf algebra, see [BMMS86], Section IV.2].
((Note that use cohomological, rather than topological, indexing of these Steenrod operations, writing
Sq' for the operation denoted Sg; in Bruner’s chapter.)) For z € Ext;’;(Fg,Fg) they satisfy Sqi(x) =
0 for i < 0 and for i > s, while S¢°(x) = 22. They also satisfy the Cartan formula Sq¢*(zy) =

it i 54 (x)Sq (y).

Proposition 14.4. Sq'(h;) = h? and Sq°(hi) = hiy1, for each i > 0.
Sq®(co) = 2, Sq?(co) = hoeo, Sq*(co) = fo and Sq°(co) = c1.

((Proof?))
Proposition 14.5. no? = 0.
Proof. The quadratic construction on o: S — S restricts to a map
YRP? = D3(S7) — S.

We have RP? = S7 U, 8 U, €%, since Sq'(z7) = 2® and S¢?(27) = 2% in H*(RP*>) = P(x), hence also
in H*(RP?). The map

S Uy e U, el =SRPY —» 5
restricts to o2 on the 14-cell. Hence the map from the 15-cell gives a nullhomotopy of 202, and the map
from the 16-cell gives a nullhomotopy of no?. O

Proposition 14.6. hihy is a permanent cycle.
Proof. The quadratic construction on 20: S” — S restricts to another map
YRPY = D2(S") — S.
This time, the map
SHM Uy e’ U, et =X RPY - S

represents Sq*(hohs) = h3h3 = 0 on the 14-cell, Sq*(hohs) = hihs + h1h3 = hihs on the 15-cell and
Sq°(hohs) = h1hg on the 16-cell. In more detail, this means that for an Adams resolution

YT Lyt Y0 =8
of S, with homotopy cofiber sequences
ysrl Ly Ly s 2wyt

the map o: S7 — S factors as if with f: S” — Y, the map 20: S” — S factors as i2g with g: S7 — Y2,
and fo2~iog:

ST 257

T 7 P
Lol )

K? K! K°.

The extensions D5(S7) — Y4=F give rise to the commutative diagram

D3(ST) —————— Dy(S") —————— D3(5")

e e e




where the vertical arrows S'4*t% — K4=F represent the various cocycles Sq>~*(hohs), namely 0, h3hy
and hihg. Restricting to the subcomplex S'* U, e'® € D3(S7), we get the following map of horizontal
cofiber sequences:

gl4 gl4 Uy 16 16 n g15

4T

Y3 iy g2 9 nys,

The obstruction to lifting hihy: S — K2 to Y? is the composite d o h1hy = X(i o g?) on. Here
iog?: STAST = Y3 factors as (iog)-g: STAST = Y'AY? = Y3 hence is homotopic to (fo2)-g =
(f-9)02: STAST = STAS” - YEAY?2 = V3. Since 201 = 0, the obstruction is zero. This lift to Y2
of the map representing hih4 shows that hihy is a permanent cycle. ([

Proposition 14.7. hohy is a permanent cycle.
Proof. ((Incomplete.)) The quadratic construction on no: S® — S restricts to a map
YPRPO = D3(S%) — S.
We have RP$? = S% v (S Ug €!Y). The map
Sty 81U, el = UERPYY — S
represents Sq%(hihs) = h2h% = 0 on the 16-cell, Sq*(hihs) = h3hy + hoh3 = h3h4 on the 17-cell and

Sq°(h1hs) = hahg on the 18-cell. Hence the 18-cell is attached by 2 - Pi(no) = 0 ((Explain!)), and
therefore represents a permanent cycle. O

Proposition 14.8. da(fy) = h3eo and c1 is a permanent cycle. ((Claim: da(c;) = hofi—1 fori >2.))
Proof. The quadratic construction on e: S — S restricts to a map
YERPT = D3(S%) — S.
We have RP¢! = S v (52 Ug €'9) v S, The map
S v (ST Uy e®) v ST = SFRPST — S
represents Sq®(co) = ¢ on the 16-cell, S¢*(co) = hoeo on the 17-cell, Sq'(co) = fo on the 18-cell and
Sq°(co) = 1 on the 19-cell. In more detail, this means that for an Adams resolution as above, the map

€: S® — S factors through i*: Y3 — S, so €2: S® A S® = DJ(S8) — S factors through i%: Y¢ — S.
There extensions D(S%) — Y6 give rise to the commutative diagram

D3(§%) ————— D5(8%) —————— D3(S%) —————— Dj(5")

AT S S

where the vertical arrows S*6+% — K6=F represent the various cocycles Sq>~*(cp), namely c2, hoeg, fo
and C1.
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Restricting to the stable summand S'7 U, e!® C D3(S®), we get a commutative diagram

2

517 517 Us e18 518 518
Yot yd I g0 L wys
Yo YT L vyt L gt 9 yys T
Ko ytyys T gt B e

where the vertical composite S'7 — K° represents hgeq and the vertical composite S'® — K* repre-
sents fo. Since fy is a cocycle, di(fy) = 0, so the composite S'® — K* — XY?°/Y7 lifts through X K6,
and this lift S*® — LK represents da(fo), by the definition of the differential ds.

Y7 L y6 L, y5 L y4

X S S
N . AN . AN .
N N N
K© K® K*

The composite S*® — K* — XY?/Y7 is homotopic to the smash product of 2: § — S and S8 —
YY5 — XY5/Y7. The latter two maps are represented by hg € mo(K?') and hoeg € mg(XK?), so their
smash product is represented by hg-hoeg = hieq €mig(XK®). In other words, the lift representing da(fo)
equals a map representing hieg. Hence da(fo) = hieo.

Restricting instead to the stable summand S C D3(S®), we get a chain of maps

S y? L
with composite representing c;. Hence ¢; € m19(K?3) lifts to m19(Y?), and is a permanent cycle. O
Corollary 14.9. da(hofo) = hieo and da(eg) = h3dy.

Proof. The first claim follows from da(fy) = hdeo by multiplication by hg. We have hy - eq = hofy and
h,l . h%do = thO, so the second claim follows from h1 . dz(eo) = dg(hleo) = dg(hofo) = hgeo = h1 . h%do,
together with the fact the multiplication by hy acts injectively on ES 22 O

So far we have discussed consequences of higher homotopy commutativity when applied to maps
f: 8" — S and the permanent cycles representing them. More subtle arguments, involving a “modified
Adams spectral sequence”, lead to consequences also for Steenrod operations on non-permanent cycles
x in the Adams spectral sequence. In the case of the sphere spectrum, these results are due to Méakinen
[M&kT73]. They were extended to H,, ring spectra and other cohomology theories than ordinary mod p
cohomology by Bruner [BMMS86, Chapter VI]. Here is a special case:

Theorem 14.10. Suppose that x € E‘;’t survives to E,. in topological degree n =t — s, for some r > 2.
If r =2 and n is even then

d3($2) = SqS—H(dg(l‘)) + hoxdg(l‘) .
Otherwise,
Sq*t=Y(d,(x)) ifn is odd, and

hoxd, () if >3 and n is even.

dr+1(x2) = {

For the general case, Bruner uses the following notation. For elements By and By in E**, let By 4 Bs
denote By, By + By or By if By has lower, equal or greater Adams filtration than By, respectively. A
formula
means that A survives to the E,.-term, where 7’ is the difference betwee the Adams filtration of A and
the Adams filtration of B+ Bs, and that d,~(A) is equal to By, By + Bs or Bs, according to the definition
of B + By just given.
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Let the vector fields function v(n) > 1 be maximal such that the attaching map S"~! — RP"~! of the
n-cell in RP™ factors through RP™*~¥("), By Adams’ theorem on vector fields on spheres, v(n) = 8a 4 2°
if the 2-adic valuation of n + 1 is 4a + b with 0 < b < 3. Let a(n) € m,(,)—1(5) be the top component

Sn—l N an—v(n) N Sn—v(n)

of such a compression. For example, if n is even, v(n) = 1 and a(n) = 2t € my(95), represented by
ho € Ey'. If n =1 mod 4 then v(n) = 2 and a(n) = n € m,(S), represented by hy € Ey*. If n =3
mod 8 then v(n) = 4 and a(n) = v € 73(S) ((up to an odd multiple)), represented by hy € Ey*. If
n =7 mod 16 then v(n) = 8 and a(n) = o € 77(S) ((up to an odd multiple)), represented by hs € E3*°.
((ETC)) ((Claim: The class a(n) lies in the image of the J-homomorphism.))

Theorem 14.11 ([BMMS86, Theorems VI.1.1 and VI.1.2]). Suppose that x € E3" survives to E,., for
somer >2. For0<j<s,letv=uv(t—j) anda=a(t—j), and let a € Eg”wv*l be the permanent
cycle that detects a € m,_1(S). Then
0 ifo>s—j+1
d.(S¢'(x)) = S¢ T (do(2)) +  azd () fv=s—j+1
aSq¢tv(x) if v <min(s — j,10).
Theorem 14.12 (Adams, [BMMS86, VI.1.5]). da(hi+1) = hoh? for all i > 1.

Proof. We apply Bruner’s theorem to x = h; and Sq°(z) = h;y1, with i > 1. In this case r = 2, s = 1,
t=2j=0,v=1,a=hgand

di(his1) = Sq" (da(w)) + hoSq* (z) = hoSq' (x)
gives do(hit1) = hoh?, since Sq'(dz(z)) has Adams filtration 4 and hoSq'(z) = hoh? has Adams filtra-
tion 3. O

Theorem 14.13 ([BMMS86, VI.1.16(i)]). d3(f1) =0 and da2(c2) = ho f1.

Proof. The calculations Sq‘(co) = ¢3, hoeo, fo and ¢; for i = 3, 2, 1 and 0, respectively, imply that
Sq'(c1) = c3, hiey, f1 and co for i = 3, 2, 1 and 0, respectively.

We apply Bruner’s theorem to x = ¢; and S¢*(z) = f1. Inthiscaser =2, s =3,t =22, j =1, v = 2,
a=h; and

d.(fr) = d*(Sql(cl)) = SQQ(dz(CQ) + h15q3(01) =0+ h1C%

gives d3(f1) = hic?, since Sq*(da(c1)) and h1Sq3(¢1) = hic? both have Adams filtration 7. Here hyc; = 0,
SO hlc% =0.

Next we apply Bruner’s theorem to x = ¢; and S¢°(x) = co. In this case r =2, s = 3, t = 22, j = 0,
v=1,a= hgy and

di(c2) = d.(Sq°(c1)) = Sq' (d2(c1)) + hoSq* (1) = hoSq* (c1)

gives da(ca) = hofi1, since Sql(da(c1)) has Adams filtration 6 and hoSql(ci) = hofi has Adams filtra-
tion 5. g

14.4. Sparsity and multiplicative structure.
Proposition 14.14. P’h;, P'ho, Picy and P'dy are permanent cycles for all i > 0.

Proof. We have already proved this for ¢ = 0, and it is clear from the displayed Ea-term, for 1 < i < 8,
because the target groups of all these differentials are trivial. (For larger i, the result will follow from
Adams periodicity.) O
Proposition 14.15. dy(P'dy fy) = hiP'doeg, for each i > 0.
Proof. This follows from da(fo) = hZeg by multiplication with the permanent cycle Pidj. O
Corollary 14.16. dz(l) = h()Pdo, dQ(Peo) = h%Pdo, dg(]) = hopeo, dQ(k) = hod%, dg(f) = hodgeo,
da(m) = hodog, da(t) =0, d2(y) = hiz and da(r) = 0.
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Proof. Starting with da(dofo) = hidoeo we get the result for k& by division by hg, then for j by multi-
plication by hg and division by hg, then for Pey by multiplication by h2 and division by hq, or for i by
multiplication by hg and division by hs.

Heading in the opposite direction, we get the result for ¢ by division by hg, for m by multiplication
with hg followed by division by hg, and for hgy by multiplication with hAs followed by division by hg. For
now, division by hq only tells us that da(y) is either egg or hiz.

We get do(t) = 0, since the only alternative is da(t) = hom, which contradicts da(hom) = h3dy # 0.
Hence hida(y) = d2(h1y) = da(hat) = had(t) = 0. Since hiegg # 0, we can conclude that da(y) = h3z.

Finally, d2(r) = 0, since the alternative is da(r) = hok, but da(hok) = h2d3 # 0. O

Corollary 14.17. dy(P?eo) = h3P?dy, da(Pj) = hoP?eq and da(z) = 0.

Proof. Starting with da(Pdy fo) = h3 Pdgeg, we divide by ha, multiply by hg and divide by ha, to deduce
that do(Pj) = hoP2%eg. Thereafter we multiply by h2 and divide by hi, to deduce that do(PZ%eq) =
h2P2dy.

We get da(z) = 0, since the only alternative is da(z) = Pdyfp, which contradicts da(Pdyfo) =
thdoeo 75 0. O

Corollary 14.18. dQ(Pz'L) = hQPBdo, dg(P?’eO) = h%Png, dQ(PQJ) = hoPBEO, dQ(Rl) = h%x’, dQ(Ql) =
h22', do(X1) = h3Bs mod hyBay. ((Are there more consequences?))

Proof. Starting from da(P?dg fo) = hiP?dpeog we can divide by hg, multiply by hg and divide by hg, to
get da(P?j) = hoP3eq. Multiplying by h2 and dividing by hy gives da(P3eq) = h?P3dy, while instead
multiplying by hg and dividing by hs gives da(P?i) = hoP3dy.

In the opposite direction, dividing by hg, multiplying by hs, dividing by hg, multiplying by ho and di-
viding by h§ gives do(R1) = hiz’. Multiplying by he and dividing by h; gives d2(Q1) = h?z’. Multiplying
instead by h3 and dividing by h3 gives do(X;) = h3B; mod hyBa;. O

Corollary 14.19. dy(P*ey) = h3P*dy and dy(P3j) = hoPep.

Corollary 14.20. dy(P*) = hoP>%dy, d2(P%ey) = h3P%dy and do(P*j) = hoP%ey. ((There are more
consequences around t —s = 70.))

((Here one can keep going.))

Proposition 14.21. dy is 0 on g, fi1, g2, =, C, G, By, Bs, N, u, w, =’, By1, Pu and P?u because the
target groups are trivial, on di, e1, n and q because hg acts trivially on the source and injectively on the
target, on p because hy acts trivially on the source and injectively on the target, and on Pu because hg
acts trivially on the source and injectively on the target.

Proposition 14.22. dy(v) = h3u, do(B1) = 0 and d2(Q) = hgi?.
Proof. See [IMT67, Theorem 1.1.4(v) and 8.9]. ((Reference for dz(Q)?)) O

14.5. The Adams E3-term. The ds-differentials affecting ES’t with t—s < 48 are displayed in Figure
The resulting Es-term is displayed in Figure and the algebra generators in this range are listed in
Figure ((Extend the table for s > 12.))

14.6. The mapping cone of o. To proceed, we use naturality of the Adams spectral sequence with
respect to the map i: S — Cy = S U, €®. The Es-term of the Adams spectral sequence

Ey' = Ext® (H*(Cy),Fa) = m_s(Cy )5
is displayed in Figure
Proposition 14.23. d%' =0 for all v > 2 and t — s < 14, in the Adams spectral sequence for C,.

Proof. This is clear because of the module structure of the spectral sequence for C, over the spectral
sequence for S. For example dé’u = 0, because h; acts trivially on the source and injectively on the
target of that differential. O

Proposition 14.24. vo = 0.
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t—s| s | t | |Tan70] ext ds
0 |11 ho 1o 0
1 12 hy 1 0
3 1] 4 ha 19 0
7 118 hs 15 0
15 2 17 h0h4 27 hodo
16 2 | 18| hihy 2g 0
18 | 2 120 hohg 29 0
30 | 2 32| n2 210 0
32 2 34| hbhs 212 0
34 2 |36 | hohs 213
38 2 |40 | hshs 214
8 3 11 Co 35 0
19 3 22 C1 39 0
14 4 118 do 43 0
20 |4 |24| g=q 4 0
23 4 27 h4C() 410 0
31 | 4 35| hihs 41
32 4 136 dy 413 0
33 4 37 P = Do 414 0
38 4 42 €1 416 mod 417
39 4 43 h5C() 418 0
40 4 44 f1 419 mod 420
44 4 48 g2 422
9 5 | 14 Phy 91 0
11 5 |16 Phy 52 0
31 5 36 n=mng 513 mod 514 0
37 5 42 r = X9 517 0
45 5 |50 | hsdo 924 0
30 6 36 r 610 (hld%)
32 6 | 38 q 612 0
36 6 | 42 t 614
40 | 6 | 46 | hsPh, 615
16 7 23 PCQ 73 0
46 7153 By 720 0
48 7 55 BQ 722 mod 723
22 8 | 30 Pdy 83 0
31 8 39 doeo 810
37 8 45 €og 815 0
46 8 | 54 N 820 0
47 8 55 h5PC() 821
17 9 [26] P?h; 9 0
19 9 | 28| PZhy 92 0
23 | 9 | 32| R 95 0
39 9 |48 U 918 0
45 9 54 w 920 0
41 |10 |51 z 1014
47 10 | 57 egr 1016 0
24 [11]35] PZcy 115 0
46 | 11|57 jg 1110 0

FIGURE 31. Algebra generators for E3
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Proof. Consider the long exact sequence
e m3(9)) D mi(8)) = mio(Co)h L ma(8)) - mo(S)h
Here 710(Cy)5 = ES16 has order 2, and multiplication by o acts injectively on m2(5)" = Z/2{n?}, since

n?c # 0, so multiplication by o from m3(S)5 = Z/8{v} to m10(S)% = Z/2{nu} has cokernel of order 2,
hence is trivial. O

The short exact sequence
0 — H*(S%) = H*(C,) = H*(S) = 0
induces a long exact sequence
coe s Bxt®) (Fy, Fy) 5 Ext®! (H*(C,), Fa) — Ext®! 8 (Fy, Fy) —2 Ext® M (Fy, Fy) — ...
which we can use to determine 7, in most bidegrees.

Proposition 14.25. In the Adams spectral sequence for C,, there is a unique class 5 € ESJS with
hof8 = i.(fo). The differentials satisfy d5t = 0 for all v > 2 and t — s < 14, da(B) = hoix(do),

((We choose the letter 3, since this class maps to 3 in the Adams spectral sequence for tmf.)) ((Also
dy®* #0, d3* #0, d3*° # 0 and dy*® #0.))

Proof. The existence and uniqueness of 3 is clear, since multiplication by hs is bijective from ES 18 The
differentials d! are zero for t — s < 14, either because they land in trivial groups, or as consequences
of this and hg-, hi- and ho-linearity. For example, dé’u = 0 because h; is trivial on the source but
nontrivial on the target of this differential.

The differential da(i«(fo)) = hZi«(eo) follows from da(fo) = hiep by naturality with respect to i. This
implies that hs - da(8) = ha - hoix(dp), which in turn implies that da(8) = hoix(dp), since multiplication
by hy acts injectively on E3'?. The differential dy(hofB) = h2i.(do) then follows by multiplication
with hg. O

Corollary 14.26. m14(Cy)5 has order dividing 4.
Proof. Of the generators with ¢t —s = 14, only those with s = 2 or s = 4 can survive to the F-term. [
Proposition 14.27. ds(hohs) = hodp-

Proof. The classes h3 and dp in the Adams spectral sequence for S cannot be boundaries, since dg(hy) =
h0h§ implies that do(hohs) = hgh% =0 and h4 does not survive to the Es-term. Hence o2 is detected by
h3, which is nonzero at the E,-term, so o2 is nonzero in 714(S)%, but 202 = 0 by graded commutativity.
Furthermore, there will be a class k € m14(S)5 that is detected by dg, so m14(5)% has order a multiple
of 4.

Consider the long exact sequence

o mr(9)) =D ma(9)h 5 m1a(CL)) L me(S)) — mis(S)h — ...

Here 77(S)) = Z/16{c} is generated by o, so im(c) = ker(i,) = Z/2{c?}. Furthermore, m5(S)5 =
7/2{v*} has order 2 and 713(S)% is trivial, so cok(i,) = im(j.) has order 2. It follows that im(i.) has
order dividing 2, and m14(S)5 has order dividing 4.

Combining these two bounds, we find that m14(S)% has order exactly 4. Hence the classes hody and
h%do in the Fs-term with ¢ — s = 14 cannot be nonzero at F,, and must therefore be boundaries. The

only possible differential with target hody is ds(hohs) = hodp. O
Corollary 14.28. ds(h3hy) = h3do.
Proof. This follows by multiplication with hyg. O

Theorem 14.29. 714(5)% =2 Z/2{k, 0%}, with k represented by dy and o* represented by h3.
Proof. The Adams filtration gives the short exact sequence
0— ]Fg{do} — 7T14(S)9 — ]Fg{hg} — 0.

The class & is represented by dp, and the product o is represented by h3. The extension is split, because
202 =0 by graded commutativity. O
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Proposition 14.30. i.(hy) is a permanent cycle, in the Adams spectral sequence for Cy.

Proof. The image of multiplication by o in m14(9)5 = Z/2{k, 02} is Z/2{c?}, so its cokernel, which is
isomorphic to im(i.), is Z/2{x} of order 2. Hence m14(C,)5 has order exactly 4, and the E-term of the
Adams spectral sequence for C, must contain exactly two generators in topological degrees t — s = 14.
The generators hoi.(dg) and hii.(do) in filtration degrees s = 5 and s = 6 are da-boundaries. Hence the
remaining two generators, in filtrations s = 2 and s = 4, cannot be boundaries. In particular, ds(i.(h4))
is 0, not i, (dp). It follows that d,(i.(hs)) =0 for all r > 2. O

Corollary 14.31. hsi.(hyg) is a permanent cycle, in the Adams spectral sequence for C.
Proof. This follows by multiplication by hs. O
Proposition 14.32. hohy survives to the Eg-term.

Proof. We know that da(hghy) = 0, either by multiplication with hy from da(hy) = hoh%, or because the
only possible nonzero target, eg, supports a nonzero differential da(eg) # 0.

We also know that hgis(hy) and hohais(hs) are permanent cycles in the Adams spectral sequence
for Cy. Hence i (hoeo) in bidegree (t — s,s) = (17,5) cannot be a boundary in that spectral sequence.
Thus ¢, induces an isomorphism of Es-terms in that bidegree. Since i, (ds(h2ha)) = d3(is(h2hs)) = 0, it
follows that d3(hahs) = 0.

The target groups of d,.(hahy) are trivial for » = 4 and r = 5, hence hohy survives to the Eg-term. [

Proposition 14.33. d3(r) = h1d3.

((Give proof using quadratic construction on x: S'* — S, represented by do with S¢?(dy) = d3, 0, 7,
0 and dy for j =4, 3,2, 1 and 0.))

14.7. The Adams FE -term. The ds-differentials affecting Eg’t with t—s < 24 are displayed in Figure
The resulting E4-term is displayed in Figure

Proposition 14.34. hycy is a permanent cycle.

Proof. We know that ¢y and hihy are permanent cycles, so hids(haco) = da(co - hihs) = 0. Since
h1Pdy # 0 we cannot have dy(hsco) = Pdy, and the only remaining possibility is that d,.(hsco) = 0 for
all » > 2. O

We have now shown that all the algebra generators of the F4-term in topological degrees t — s < 30
are permanent cycles, except for hohy and g, which could support nonzero dg- and dr-differentials,
respectively. To proceed we shall make a comparison with the image-of-J spectrum, to be introduced in
the following section.

15. TOPOLOGICAL K-THEORY

15.1. Real and complex K-theory. The set of isomorphism classes of real vector bundles over a finite
CW complex X forms a commutative monoid with respect to direct (Whitney) sum of vector bundles.
The additive group completion of this commutative monoid is denoted KO(X), and consists of formal
differences between pairs of real vector bundles over X. The corresponding construction for complex
vector bundles leads to the group KU (X) of formal differences of pairs of complex vector bundles. By
Bott periodicity, the external tensor product of vector bundles induces natural isomorphisms KO(X) ®
KO(S®) 2 KO(X x S8) and KU(X) ® KU(S?) = KU(X x S?). In terms of the reduced K-groups
KO(X) = ker(KO(X) = KO(x)) and KU(X) = ker(KU(X) — KU (x)), for based finite CW-complexes
X, this can be expressed as isomorphisms Ir(\a(X) ~ KO(X8X) and I?TJ(X) ~ KU(22X). Hence there
are generalized (reduced) cohomology theories KO* and KU* defined by KO™(X) = KO(X™X), where
n+m =0 mod8, and KU"(X) = I/(?(?(EmX), where n +m = 0 mod 2. For definiteness, we may
assume 0 < m < 8 in the real case, and 0 < m < 2 in the complex case. The internal tensor product
of vector bundles induces products in these cohomology theories. Complexification, i.e, tensoring a real
vector bundle with C over R to obtain a complex vector bundle, induces a multiplicative homomorphism
c¢: KO*(X) — KU*(X). Realification, i.e., only remembering the underlying real vector bundle of a
complex vector bundle, induces a homomorphism r: KU*(X) — KO*(X), which is not multiplicative,
but is linear as a map of modules over the target.

The reduced K-functors KO and KU are represented by the infinite loop spaces Z x BO and Z x BU,
respectively, where Z x BO ~ Q8(Z x BO) and Z x BU =~ Q?(Z x BU) by Bott periodicity. The
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cohomology theories KO* and KU™* are thus represented by Q-spectra KO and KU, respectively, with
n-th spaces KO,, = Q™(Z x BO) and KU, = Q™(Z x BU), where m is chosen so that n+m =0 mod 8
and 0 < m < 8 in the real case, and n +m =0 mod 2 and 0 < m < 2 in the complex case. The tensor
product pairing is represented by pairings of spectra, that make KO and KU into E. ring spectra.
The unit S — KO is generated by a map S° — Z x BO that takes the non-base point to a point in
{1} x BO, and similarly in the complex case. Complexification is represented by a ring spectrum map
c: KO — KU, and realification is represented by a KO-module map r: KU — KO. The homotopy
groups of these ring spectra are known, by Bott periodicity, to be

Z{B*} for i = 8k,
Z/)2{nB*} fori=8k+1,

mi(KO) = S Z/2{n*B*} fori =8k +2,
Z{aB*} for i = 8k + 4,
0 otherwise

and
ri(KU) = Z{u*} for z = 2k even,
0 for ¢ odd.

As graded rings, these are

T (KO) = Zln, &, B/ (2n,7*, nev, @® — 4P)
with 7, o and 5 in degree 1, 4 and 8, respectively, and
T.(KU) = Z[u*]
with u in degree 2. Complexification is given by 1 — 0, a — 2u? and 8 — u*. Realification is given by
utt s 28% yth L s 28R 2R t2 o 8% and w3 0.
There are connective, i.e. (—1)-connected, covers of these ring spectra, denotes ko and ku, respectively,
with ring spectrum maps ko — KO and ku — KU that induce isomorphisms of homotopy groups in

non-negative degrees. Hence m;(ko) = m;(KO) for i > 0 and m;(ko) = 0 for ¢ < 0, and similarly in the
complex case. As graded rings,

(ko) = Zln, ., B1/(2n,0°, e, o — 45)
and
i (ku) = Zlu] .

The n-th space ko,, of the spectrum ko is an (n — 1)-connected cover of the n-the space KO, , and
similarly in the complex case. For example, kuy, ~ Z x BU, ku; ~ U, kuy, ~ BU, ku; ~ SU and
ku, ~ BSU.

15.2. Cohomology and homotopy of K-theory spectra. Recall that H*(H) = o/ and H*(HZ) =
A [ Sqt = o @a0) Fa = o/ //A(0), where A(0) = E(Sq") is the subalgebra of < generated by Sq'.
Let bu denote the 1-connected cover of ku, so that there is a cofiber sequence

bu — ku 2% HZ — Sbu
and a Bott equivalence u: X2ku ~ bu.

Proposition 15.1. H*(ku) = o/ /&/{Sq¢*,Q1} = A @pn) Fo = o/ //E(1), where Q1 = [Sqt, Sq% =
S+ Sq?Sqt and E(1) = E(Sq*, Q1) is the subalgebra of </ generated by Sq' and Q1. Hence there is
a short exact sequence

0—X3e///E(1) — o |JA(0) 2% o7 | /E(1) =0
of < -modules, induced up from the extension X3Fy — E(1)//A(0) — Fy of E(1)-modules.
Proof. Tt is known, from calculations in H*(SU), that the bottom Postnikov k-invariant of ku, i.e., the
composite HZ — Sbu ~ %3ku — Y3 HZ viewed as a class in H3(HZ;Z), is nonzero. This implies that

H7 — Ybu induces an isomorphism on H?, so that bu — kv and u: S? — ku induce zero homomorphisms
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on H?2. It follows that the Bott equivalence ¢ o (1 A u): bu ~ ku A S? — ku A ku — ku induces 0 in
cohomology. Hence we have a map of short exact sequences.

0—— Z?)ﬂf/'g{{sqlaQl} %d/&{sql — ‘Q{/d{sqlan} —0

o
0—— H*(Xbu) ——— H*(HZ) > H*(ku) ——— 0
It follows by induction that f is an isomorphism in all degrees. O

Let bo, bso, bspin and bo(8) be the 0-, 1-, 3- and T-connected covers of ko, respectively, so that there
are cofiber sequences

bo — ko 2% HZ — Sbo
bso — bo 25 S H — Ybso
bspin — bso RENS Y s = Y.bspin

bo(8) — bspin 2% LYHZ — Sbo(8)

and a Bott equivalence 3: %8ko ~ bo(8).
There is a cofiber sequence

Yko -5 ko - ku — Y2%ko,
where ¢ denotes the complexification map and 1 denotes multiplication with the Hopf map n: S' — S.
The connecting map ku — X2ko lifts the composite map X?rou~': KU — X2KU — X?KO. The
spectra ko and ku are (E) ring spectra, and c is a ring spectrum map.
Proposition 15.2. H*(ko) = &/ | «/{Sq", S¢*} = o @a1) F2 = o/ //A(1), where A(1) is the subalgebra
of @ generated by Sq' and Sq®. Hence there is a short exact sequence
0— S22/ /JA(1) — o [ /E(1) < o/ /JA(1) = 0

of &/ -modules, induced up from the extension ¥L2Fy — A(1)//E(1) — Fa of A(1)-modules.
H*(bo) = X.of | o/ Sq* = S @ a1) A(1)/A(1)Sq?, and there is a short ezact sequence

0 X207 /A S¢° — of | JA(0) 25 o7/ JA(1) = 0

of o -modules, induced up from the extension X2A(1)/A(1)Sq®> — A(1)//A(0) — Fa of A(1)-modules.
H*(bso) = X2.e/ | o/ Sq* = 5%/ @ a1) A(1)/A(1)Sq?, and there is a short ezact sequence

0 X357 | S — St Py St |/ S¢% — 0

of o/ -modules, induced up from the extension ¥3A(1)/A(1)Sq¢> — TA(1) — SA(1)/A(1)Sq? of A(1)-
modules.

H*(bspin) = ¥4 |/ {Sq", S¢*S¢®} = 4 © 41) A(1)JA(1){Sq", S¢*Sq®}, and there is a short exact
sequence

0— X0 [ {Sq", S*Sq®} — 2t 225 ¥207 |t Sq° — 0

of o -modules, induced up from the extension X5 A(1)/A(1){Sq*, S¢*S¢®} — X2A(1) — £2A(1)/A(1)S¢?
of A(1)-modules.

H*(bo(8)) =2 3847 //A(1), and there is a short ezact sequence

0 %7/ /A(1) — S a7 /JA0) 25 S a7 |7 {Sq", S¢*Sq®} — 0
of o/ -modules, induced up from the extension L°Fs — Y4A(1)//A(0) — B*A(1)/A(1){Sq, S¢*S¢*}
of A(1)-modules.
Proof. The map n: S' — S induces the zero homomorphism in cohomology, hence so does 1: Lko — ko,
and there is a vertical map of short exact sequences:

0—— 22 /I {Sq', S¢*} —— o | {Sq',Q1} —— o | A {Sq*, S¢®>} —— 0

|

0—— H*(S%ko) —— s H*(ku) ——— H*(ko) ————— 0
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F1GURE 38. The Adams spectral sequence for ku

It follows by induction that f is an isomorphism in all degrees.

The map pg: ko — HZ is O-connected, hence pjj: o/ /o7 Sqt — o |/ {Sq', Sq?} is an isomorphism in
degree 0 and surjective in all degrees. Hence pg is induced up from the surjection e: A(1)//A(0) — Fy
of A(1)-modules, with kernel ker(e) = F2{Sq¢? Sq*, Sq®>Sq®} = ¥2A(1)/A(1)Sq*. Hence S H*(bo) =
ker(pj) = o @401y B2 A(1)/A(1)Sq® = X2 | o/ S¢P.

(ETC)) o

Theorem 15.3 (Change of rings). Let A be any algebra, let B C A be a subalgebra such that A is flat
as a right B-module, let M be a left B-module and let N be a left A-module. Then there is a natural
isomorphism

Ext’*(A®p M,N) = Ext}* (M, N).

Proof. Let P, — M be a B-free resolution. Then A ® g P, — A ®p M is an A-free resolution. The
isomorphism Homy (A ® g Py, N) =2 Homp(Py, N) then induces the asserted isomorphism on passage to
cohomology. [l

Corollary 15.4. There are Adams spectral sequences

Ey" = Exty) (F2,Fa) = s (ku))

and
By = Extyy, (F2,Fa) = w5 (ko)5 .
Proof. The Es-term of the Adams spectral sequence for ku is

Ext?) (H* (ku),Fy) = Ext’) (o7 //E(1),Fs) = ExtEZ‘l)(]FQ,IFg)

and the Es-term of the Adams spectral sequence for ko is

EXt;*(H*(ko), Fy) = EXtZ{* (o /]A(1),Fy) & EXtZEkl)(F%FQ) ,

in both cases by the change-of-rings isomorphism. (I
Corollary 15.5. There is an exact sequence of A(1)-modules

0 — 12F, 5 2TA(1)//A0) 2 v4A(1) 2 224(1) 25 A(1)//A(0) = Fy — 0.
Proposition 15.6. EXtEa)(FQ,FQ) & P(hg,v1) where hg in bidegree (s,t) = (1,1) is dual to Sq* and
vy in bidegree (s,t) = (1,3) is dual to Q1.

The Es-term of the Adams spectral sequence for ku is displayed in Figure There is no room for
differentials, and the permanent cycles hy and vy detect 2 and u, respectively, in . (ku)) = Za[u].

Proposition 15.7. EthEkl)(IF%IFg) = P(hg, h1,v,w1)/(hohi, h3, hiv,v? — hZw;) where hy in bidegree
(s,t) = (1,1) is dual to Sq*, where hy in bidegree (s,t) = (1,2) is dual to Sq?, v is in bidegree (s, t) = (3,7)
and wy is in bidegree (s,t) = (4,12).
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Proof. The central extension
BE(Qu) — A1) — BE(Sq", Sq°)
of augmented algebras leads to a Cartan—Eilenberg spectral sequence

FQ, Extg(le) (]FQ, ]Fg)) - EXtII?(F{I)’* (]FQ, ]FQ)

where the E(Sq', Sq?)-module structure on Extpg,)(F2,F2) = P(ho1) is trivial. Hence the Ep-term can
be written as

EPT* fExtE(S N SqQ)(

E*’*’* = P(ho, hl) X P(h()l)

with hg in bidegree (p,q,t) = (1,0,1) dual to S¢', hy in bidegree (p,q,t) = (1,0,2) dual to S¢* and hg;
in bidegree (p, q,t) = (0,1, 3) dual to Q.
There are differentials da(ho1) = hohi, so that

E3™" = P(ho, h1)/(hoh1) @ P(h{,)
and ds(h2,) = h3, so that
B = Plho, by, v, 03)/(hoha, 1, b, v = hwn)

With v = hoh3; and wy = hg;. ((Justify the differentials with cobar calculations?)) Then FE; =
for degree reasons, and there is no room for multiplicative extensions between the F..-term and

EXt (Fg, Fg) O

A(l)

The Es-term of the Adams spectral sequence for ko is displayed in Figure [39] There is no room
for differentials, and the permanent cycles hg, hi, v and w; detect 2, 1, o and [, respectively, in
m(ko)y = Za[n, o, B]/ (20,7, na, a® — 4p).

The unit map d: S — ko induces a ring homomorphism d, : 7.(S)5 — 7. (ko)) that takes n € 71(S5)%
(detected by hi, dual to the indecomposable Sq¢? in /) to n € m1(ko)y (detected by hi, dual to the
indecomposable Sq¢? in A(1)), hence also maps n? € m(S)y to n? € ma(ko)s. This is the KO-theory
d-invariant. The classes o and § are of infinite (additive) order, hence cannot be in the image of the
finite groups m4(S)% and 7rg(S )5. However, a calculation of maps of <7-module resolutions shows that the
homomorphism d, : Extﬂ (Fo,Fy) — Exti{fl)(lﬁ‘g, Fs) of Adams Fs-terms for S and ko is an isomorphism
in the bidegrees (t — s,s) = (8k + 1,4k + 1) and (¢t — s,s) = (8k + 2,4k + 2) with k£ > 0. Hence the
permanent cycles P*hy and hy P*h; in the Adams spectral sequence for S map to the survivors hjw?
and h? w1 in the Adams spectral sequence for ko. It follows that there are nonzero classes pgg41 and
pskt2 in . (S)% that map to nB*¥ and n%B*, respectively, in 7.(ko)3. For instance, u; = 1, s = 0,
to = p and p19 = N, in the notation previously introduced in 7, (S) In general Np8k+1 = ug;H_Q

((Dlscuss map c: ko — ku mapping hg — hg, hy + 0, v — hoh? and w; + v}. Hence v — 2u? and
wy — u* in homotopy.))

((After discussing the dual Steenrod algebra, and the calculation of H,(ku) and H,(ku), give alter-
native proof with A(1),-comodule algebra resolution Fy — E(£2,&5) ® P(z9,73), with d(¢2) = x5 and
d(&3) = x3.))
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15.3. Adams vanishing. The subalgebra A(1) inherits the structure of a cocommutative Hopf algebra
from </, with the restricted coproduct and conjugation, so that the category of A(1)-modules has a
symmetric monoidal tensor product given by the diagonal A(1)-action.

We start with an easy but not optimal vanishing estimate.

Lemma 15.8. Let M be connective A(1)-module that is free as an A(0)-module. Then EXtZ’El)(M, Fy) =
0 fort—s<s.

Proof. The claim is clear for s = 0, since M is concentrated in degrees * > 0. We prove the claim for
s > 1 by induction.

Note that A(1)//A(0) = F2{1,S¢% S¢3, Sq*>Sq>} is concentrated in degrees 0, 2, 3 and 5. The A(1)-
module action on M induces a short exact sequence

0= XK — A1) ®a0) M — M — 0

of A(1)-modules, where also K is connective. Here A(1) ® 400y M = A(1)//A(0) ® M as A(1)-modules,
by the untwisting isomorphism [[in the relative case for A(0) C A(1)]]. Furthermore, A(1)//A(0) @ M
is a direct sum of suspensions of A(1)//A(0) @ A(0) = A(0) ® A(1)//A(0), as an A(0)-module, and the
latter A(0)-module is free. Hence A(1) ® 4y M is free as an A(0)-module, so that $2K is stably free
(and projective) as an A(0)-module. It follows that K is free as an A(0)-module.
Consider the long exact sequence
— 3 s, s, s,
RN ExtsA(ll)’t(ZQK, F2) — Ext’y,) (M, F2) — Ext’y() (A(1)@a(0) M, F2) — Ext’y,) (52K, Fa) = ... .
Here Extjzl)(A(l)(@A(o)M, Fq) = Exti{'go)(M7 F3). Since M is free as an A(0)-module, Exti{lt (M,TF3) =0

(0)
for s > 1, so that the connecting homomorphism ¢ in the long exact sequence above is surjective.

Furthermore, Ext’y ) (S?K, F2) = Ext’ ;" (K, F2) is 0 for (f —2) — (s — 1) < s — 1 by the inductive

hypothesis, i.e., for t — s < s. Hence Exti"fl)(M, Fy) =0 for t — s < s, as asserted. O

((Can we get vanishing also for ¢ — s = s when s = 37 If so, we may use €'(s) = 2 for s =3 mod 4,
€’(s) =1 and 2 for s = 0 and 3 mod 4, and €(s) = 3 and 2 for s = 0 and 1 mod 4, in the following
results.))

Proposition 15.9. Let €'(s) =0, 1, 2 and 3 for s =0, 1, 2 and 3 mod 4, respectively, and let M be a
connective A(1)-module that is free as an A(0)-module. Then Exti{fl)(M, Fy) =0 fort—s<2s—¢€(s).

Proof. As remarked above, we may assume that this has been proved for 0 < s < 3. We prove the claim
for s > 4 by induction.
We tensor the exact sequence from Corollary with M, to obtain an exact sequence

0— 220 2 5TA(1)//A0) 0 M 2% v A1) o M 2% n24(1) 0 M 2% A1)//A0)e M 125 M 0
of A(1)-modules. It splits into four short exact sequences

0—-im(l®d) — A(1)//AO)@M — M — 0

0 — im(1®dy) — L2A(1) @ M — im(1®0;) — 0

0—im(1®0d;) — B*A(1) @ M — im(1® d) — 0

0— Y2M — ¥7A(1)//A0) ® M — im(1 ® d3) — 0
of A(1)-modules, which induce long exact sequences for EXtZ:l)(—, F5). By the untwisting isomorphism,
A(1)//A0)®@ M = A(1)® 40y M, and since M is free as an A(0)-module, Exti{ﬁl)(A(l)//A(O)@)M, Fy) =

Exti{ﬁo)(M, Fy) is 0 for all s > 1. Likewise, A(1) ® M is free as an A(1)-module, so Exti{’él)(A(l) ®M,TFy)

is 0 for all s > 1. Hence there is a chain of surjections

Ext’y 5 2 (M, Fa) = Ext’y 5 (12M, F2) — Ext’y 3 (im(1 @ 05), Fa)

s Bxt'y 5 (im(1 ® 9y), Fa) — Bxt'y 3 (im(1 ® 8y), Fa) — Ext’y( ) (M, F2)

for all s > 4.
By induction, we know that ExtsAf(f)’tfu(M, Fy) =0for (t—12) — (s —4) < 2(s—4) — €' (s —4), or
equivalently, for t — s < 2s — €/(s). This completes the inductive step. O
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Theorem 15.10. Let €’(s) =2, 1, 2 and 3 for s =0, 1, 2 and 3 mod 4, respectively, and let M be a
connective o -module that is free as an A(0)-module. Then Ext®)(M,Fa) =0 fort —s < 2s — ¢"(s).

Proof. Since M is connective, it is clear that Extg’;(M, Fo) = 0 for ¢t < 0, which is stronger than the
claim for s = 0. We prove the claim for s > 1 by induction on s. The function €’ is chosen so that
€'(s) <€'(s) and €’(s —1) — 1 < €”’(s) for all s > 1.

Note that <7 //A(1) = Fo{1, Sq¢*, ...} with the remaining generators in degrees * > 4. The .«/-module
action on M induces a short exact sequence

0= 3L — & @40y M — M =0

of o/-modules, where L is connective. Hence there is a long exact sequence
o Bt YL, Fy) -2 Bxt®) (M, Fa) — Ext® (of @40y M, Fa) — Ext® (S*L,Fa) — ... .

Here Exti’;(.sz/ ®aq1) M,Fy) = Ext:El)(M, Fy) is 0 for t — s < 2s — €/(s), by the previous proposition.
By induction, Ext®, (240, Fy) = Ext®, V"% (L,Fy) is 0 for (t —4) — (s — 1) < 2(s — 1) — ¢’(s — 1), or
equivalently, for t —s < 2s+1—¢"(s—1). If t —s < 2s — €”(s) then both inequalities are satisfied, which

implies that Exti’;(M ,F3) = 0. This completes the inductive step. O

Theorem 15.11 (Adams vanishing (weak form)). Let e(s) =4, 3,2 and 3 fors =0, 1, 2 and 3 mod 4,
respectively. Then Ext®) (Fy,Fy) =0 for 0 <t —s < 2s — €(s).

Proof. Define an «7-module M by the short exact sequence

0— %M — o/ //A0) = Fy — 0.

Recall the basis for &7 = Fo{Sq’} given by the admissible monomials Sq’, where I = (iy,...,i;) with
iy > 2iy41 for each 1 < u < ¢, and iy > 1. The admissible monomials with i, > 2, including the empty
monomial I = (), give a basis for &/ as a free right A(0)-module, hence also for o/ //A(0) as Fa-vector
space. The nonempty admissible monomials with i, > 2 then give a basis for ¥2M. In particular, M is
connective. Note now that M is free as a left A(0)-module. A basis is given by the Sq with I admissible,

iy = 2k even and i, > 2, in view of the Adem relation Sq'Sq¢?* = Sq?*+1.
Consider the long exact sequence

c o Bt Y (SR ML Fy) s Exctf By, Fa) — Ext (o @4(0) Fa, Fa) = ... .

Here Ext®) (o ®4(p) F2,Fa) =2 Exti{’éo) (Fo,Fy) is 0 for t — s # 0. Furthermore, Ext®, " (22M,Fy) =
Ext®, 72 (M, Fy) is 0 for (t—2)—(s—1) < 2(s—1)—€”(s—1), or equivalently, for t—s < 2s—1—¢”"(s—1).
We have defined ¢(s) = €’(s — 1) + 1, hence Ext®/ (F2,F2) = 0 for 0 < t — s < 25 — €(s), as asserted. O]

Remark 15.12. With more work, Adams (19667) proved that one may deduce the same conclusion with
e(s)=1,1,2 and 3 for s =0, 1, 2 and 3 mod 4, respectively, which is the optimal result for s > 1.

((Can the optimal result be deduced from periodicity and the low-dimensional calculations?))

15.4. Adams operations. For each natural number r, Adams (1962) defined natural operations ¢" : KO(X) —
KO(X)and ¢": KU(X) — KU(X). For a sum of line bundles, E = L1 @ - - ® Ly, the Adams operation
is given by the sum of tensor powers ¢"(E) = LY @ --- @ L?T. This determines its behavior on general
vector bundles by naturality and the splitting principle. A recursive construction can be given in terms
of exterior powers A*(E) of vector bundles, using Newton’s identities, by the formula

r—1

—¢T(B) =) (=1)'A(E) @ 9" () + (—=1)"rA™(E).

i=1
The resulting operation is additive and multiplicative, hence extends over the group completion, to
ring operations as indicated above. The real and complex Adams operations are compatible under
complexification.

The Adams operations do not commute with the Bott periodicity isomorphisms. In the complex case,
the Bott isomorphism KU (X) = KU(X2X) is induced by the product with the generator v = 1 — H
of KU(S?), where KU(S%) = Z{1, H} is generated by the isomorphism classes 1 and H of the trivial
and the canonical (Hopf) complex line bundles over S? = CP!, respectively. Here H + H = 1 + H?, so
u? = (1 — H)? = 0. The complex Adams operation 1" maps the generator u to

Y (u)=¢9"1-H)=1-H =1-(1-u)"=1-(1—ru) =ru,
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i.e., acts by multiplication by r on I’('\T?(Sg). To extend the Adams operation to the graded groups
KU™(X) = I?U(E"’X), where n+m = 2k, we must localize by inverting r, and define " on KU™(X)[1/7]
as (1/r)y" on ﬁ](EmX)[l/r]. The result is a map of ring spectra ¢": KU[1/r] — KU][1/r], which
restricts to a map of connective ring spectra " : ku[l/r] — ku[l/r]. At the level of homotopy groups,
Y7 (uF) = r¥u¥ in degree 2k, for all integers k. Similarly, the real Adams operation induces ring spec-
trum maps " : KO[1/r] — KO[1/r] and ¥": ko[1/r] — ko[1/r]. If we complete at a fixed prime p, then
Y’ ko — ko and 9" : kuy — kuy) are defined for all 7 that are prime to p. For instance, when p = 2,
1" is defined for all odd r.

The natural numbers prime to p are dense in the topological group Z,; of p-adic units, and it is possible
to define p-complete Adams operations " : K Ulﬁ\ — K UpA for all p-adic units r € Z;. This defines actions
through E, ring spectrum maps of Z5 on KU} and ku;,, with » € Z) acting by 9" (u) = ru in homotopy.
In particular, 1»~! acts as complex conjugation on KU and ku, taking a complex vector bundle to the
same real vector bundle but with the opposite complex structure. There are compatible actions on K Oz/)\

and koj’g\, with 9" (a) = r?a and " (8) = r*B. In this case ¢~ ! acts as the identity.

15.5. The image-of-J spectrum. Let all spectra be implicitly completed at 2. The Adams operation
3 ko — ko is compatible with the unit map d: S — ko, hence the latter lifts to a unit map

S — ko’ = hoeq(¢3,1: ko — ko)

to the homotopy fixed points of 13 acting on ko. Here ko'’ is an Es ring spectrum, and additively
there is a homotopy (co-)fiber sequence

3_
2 ko —s ko™ — ko "= ko.

The unit map d: S — ko is 3-connected, in the sense that 7;(S) — m;(ko) is an isomorphism for ¢ > 2,
and is surjective for i = 3. Hence 13 — 1 induces the zero homomorphism in degrees i < 3, so the unit
map S — ko"¥” is not an equivalence in low degrees. We correct for this in the following definition.
Let j be the F ring spectrum defined by the right hand pullback square in the following commutative
diagram:

S—° 4 ko’
P2§ —— P25 — P2(ko"")

Here P?X denotes the second Postnikov section of X, obtained by attaching cells (in the category of
E ring spectra) to kill 7;(X) for ¢ > 3. There is then a homotopy (co-)fiber sequence

3_
Y tbspin i>j S ko T bspin .
Here 4% — 1 maps a3 to 327** — 1 times o3, which is 8 times an odd number, for all £ > 0. Likewise
it maps 8% to 3*% — 1 times 8*, which has 2-valuation 4 + v,(k) for all k > 1. In other words, ¥ — 1

multiplies by 16k in degree 8k, up to multiplication and division by odd factors.
We can use this to calculate the homotopy groups of the connective E,, ring spectrum j = j§"

Zo{e} for i =0,
Z/2{n} fori =1,
7.)2{n?} for i =2,
Z/8{v} for i = 3,
N for i =4,5,6 mod 8,

milJ) = Zy /16k{ psi—1} for i = 8k — 1,
Z/2{npsk-1} for i = 8k,
Z)2{pgp+1,m*psi—1} for i =8k + 1,
Z)2{npsk+1} for i = 8k + 2,
Z/8{Csk+3} for i = 8k + 3.

for k > 1, where pgi_1 = 9(5*) and Cgry3 = O(aB¥). (The case i = 3 coincides with the case i = 8k + 3
for k = 0.)
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The map e: S — j induces a homomorphism e, : m,(S) — m.(j), called the KO-theory e-invariant.
As a consequence of the Adams conjecture (proved by Quillen, by Sullivan, and by Becker—Gottlieb),
this homomorphism is split surjective in each degree.

Recall that H* (ko) & o/ /<7 {Sq', Sq?} and H*(bspin) =S4/ |/ {Sq', S¢®Sq3}.

Proposition 15.13 ([Dav75], [MM76|, [AR05|, Bruner). The lift 9> — 1: ko — bspin induces the
homomorphism Sq*: X4e/ |/ {Sq*, Sq*Sq®} — o |/ {Sq', Sq*}, mapping X0 to 0Sq*. It has kernel
Y8K where
K = o |/{Sq",5q",5¢"Sq° + S¢°Sq'}
and cokernel C = o/ | JA(2) = o | /{Sq*, Sq%, Sq*}. Hence there is an < -module extension
0—o///AQ2) — H*(j) — XK = 0.
There are precisely two such extensions, and H*(j) is the nonsplit one. A presentation is

H*(5) = o {10,01}/ 9 {Sq 10, 5% 00, Sq 10, Sq% 10 + Sq' 7, Sq 17, (Sq* Sq® + Sq®Sq*)er} .

The Es-term of the Adams spectral sequence for j is shown in Figure In this range, only one
pattern of differentials is compatible with the known abutment 7. (j), leaving the F.-term in Figure
The map e: S — j induces a map

€y Extij(Fg,Fz) — Eth’t(H*(j)7F2)

of Adams spectral sequences, mapping the unit 1 € Eg’o for S to the generator 1 € Eg’o for j. Hence the
map of Ea-terms is determined by the S-module structure of j and the induced Ext}*(F2, F2)-module
structure on the Adams Es-term for j. In this range, this can be directly calculated, and shows that the
map of F..-terms is surjective for 0 < ¢t — s < 24, except for t — s = 15, when the map of E..-terms is
trivial.

Proposition 15.14. The permanent cycles h% fork >0, hy, h?, hkhy for0 < k <2, h5hs for0 < k < 3,
Co, hlco, Phl, hlphl, thhQ fOTO § k S 2, PCO, hl.PCo, chl, hlpzhl, hgpzhg fOT’O S k S 2, (hlpdo,)
h’g"'zz’ for 0 < k < 3 and P2%cy in the Adams spectral sequence for S map to (nonzero) survivors in the
Adams spectral sequence for j, hence are themselves (nonzero) survivors.

Corollary 15.15. hohy and g are permanent cycles.

Proof. These classes could only support differentials hitting hy Pco, P2hy or hf P2hy for 0 < k < 2, which
we have now shown are not the targets of differentials. O

Remark 15.16. In degree n = 15 (and more generally, in all degrees n = 15 mod 32) the homomorphism
ex: T (S) = 7, (j) induces a zero homomorphism of FE..-terms. Nonetheless e, is split surjective. This
is a case of a shift in Adams filtration. There is a class p € m15(S) that is represented by hjhs in Adams
filtration s = 4, and which maps to a generator of 715(j), which is represented in Adams filtration s = 5.
Once we prove that np is represented by Pcg, so that there is a hidden n-multiplication in the Adams
spectral sequence for S, then since e, (np) generates m6(j), it is clear that e.(p) must generate my5(j).

15.6. The next fifteen stems.

Theorem 15.17.  (14) m14(5)% = Z/2{k, 0%}, with k represented by dy and o2 represented by hs.
(15) m15(9)5 = Z/2{nk} ® Z/32{p}, with nk represented by hidy and p = p15 represented by h3hy.
(16) m6(S)y = Z/2{np,n*}, with np represented by Pcy and n* = ny represented by hihy. ((Check

that np #0.)) ((Is o = np?))
(17) m17(8)s = Z/2{fi,n*p, vk, mm*}, with i = p1y represented by P%hy, n?p represented by hy Pcy,
vk represented by hady and nn* represented by h3hy. ((Check that 2vk =0.))

(18) m1s(9)s = Z/2{nii} ® Z/8{v*}, with nji represented by hy P>hy and v* represented by hohy.
(19) m19(9)% = Z/8{C} ® Z/2{5}, with { = (19 represented by P?hy and & represented by cy .

(20) w0(S)y = Z/8{k}, with k represented by g = g;.

(21) m21(S)y = Z/2{nk,vv*}, with nk represented by h1g and vv* represented by h3hy. ((Check that

2uv* = 0, which follows from n?k #0.))

(22) ma2(9)s = Z/2{n?*k,v5}, with N’k represented by Pdy and vv* represented by hacy. ((Check
that n’k # 0 and that 2vG = 0. The latter follows from 0k # 0, since then n°k #0.))

(23) m23(S)y = Z/16{p} ® Z/8{vk} ® Z/2{on*}, with p = pa3 represented by hZi, vk represented by
hog, 2R represented by hohag, 4vk = 03K represented by hiPdy, and on* represented by haco.
((Check that on* is represented by hycg.))
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m24(S)s = Z/2{opn} ®Z/2{non*}, with ofi represented by P%cy and non* represented by hihycy.
((Check that np #0.)) ((Is o = pp =np?))

7o5(9)5 = Z/2{p2s,n?p}, with pas represented by P3hy and n?p represented by hiP?cy.
m26(9)5 = Z/2{nuzs, V?K}, with nugs represented by h1P3hy and v?F represented by hig.
m27(9)5 = Z/8{(ar}, with (a7 represented by P3hy, 2(or represented by hoP2hy and 4Ca7 = 0 a5
represented by h3P3hs.

78 (9)5 = Z/2{k?*}, with Kk? represented by d3.

729(8)% = 0. ((This assumes that the differential d3(r) = h1d3 is known.))

730(S)0 = Z/2{04}, with 04 represented by h3. ((This assumes that the differentials from t —s =
31 are known.))

Alternatively, we might just list ker(e.) C m.(5)%, also known as the cokernel of J. These are the
homotopy groups of the homotopy fiber ¢ = hofib(e). Note that e, maps both € and no to the generator
of m5(j), so U = € + no generates 7g(c). Here nv = v3. ((Is vv* = 037))

((ETC))

16. TOPOLOGICAL MODULAR FORMS

((Calculations involving A(2). Adams periodicity.))

[Ada58]
[Ada66]
[ARO5]
[AH61]
[BMT70]
[Boa99]
[BK72]

[Bru93]
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n () gen. | rep
6 72 V2 h3
8 Z/2 v hihs
9 Z)]2 nw ]’Lzhg
7./2 2 K 0
| @ | x|
15 Z]2 nK hidg
16 Z/2 ’17* h1h4
17 (Z/2)2 VKR tho
m* | hiha
18 Z/8 v* haohy
19|  Z/2 G c1
20 Z/8 R g
21| (2/2)* | nRk | Mg
vv* h3hy
22 (7)2)? N2k Pd,
Vo hacy
23 | Z/8®Z/2 | VR hag
on* haco
24 Z)2 non* | hihaco
26 Z)]2 V2R h3g
28| 7/2 k2| &2
30 z/2 04 h?
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