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On the Computation of Stable Stems 

STANLEY 0. KOCHMAN AND MARK E. MAHOWALD 

ABSTRACT. This paper corrects the computation of the stable homo-
topy groups of spheres in degrees 54 through 64 which were made in 
[3] using the Atiyah-Hirzebruch spectral sequence. Many relations and 
Toda brackets as well as the differentials in the Adams spectral sequence 
in this range of dimensions are also determined. 

1 Introduction 

All spectra in this paper are localized at the prime two. In [3] the first author 
computed the first 64 stable stems 1r~, 0 ~ n ~ 64, by analyzing the Atiyah-
Hirzebruch spectral sequence (AHSS) for the homotopy of the Brown-Peterson 
spectrum BP: 

(1.1) 

Since H*BP and 1r*BP are known [1], the structure of 1r~ was determined by 
induction on n as explained in detail in [3, Section 1]. From this computation, 
the differentials in the Adams spectral sequence (ASS) 

(1.2) 

were deduced in this range of dimensions. The origin of this paper is the ob-
servation by the second author, using ASS computations, that 1JA[54, 2] = 0 in 
1r~ 5 , contradicting the computation in [3]. Since the method of computing stable 
stems in [3] is recursive, this error in the 55 stem results in other errors in the 
analysis of the 56 to 64 stems on pages 226 to 253 of [3]. In addition, the material 
in Section 7.6 and the Appendices which refer to the 56 to 64 stems are based 
upon those computations and consequently also contain errors. In Sections 2 
and 3, we use a simultaneous analysis of the ASS and AHSS to correct those 
computations. These sections replace [3, pp.226-253]. In particular, we use the 
methods of [3] to analyze the AHSS using the known structure of IE2 of the ASS 
[5] to solve some of the technical problems which arise. We also deduce the dif-
ferentials in the ASS. This method of computation is easier and more accurate 
than computing solely in either the AHSS or the ASS. We include new Toda 
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3aa S. 0. KOCHMAN AND M. E. MAHOWALD 

bracket constructions for the homotopy classes in this range. In Section 4, we 
give the table of leaders in this range which summarizes these computations. In 
Section 5, we give tables which summarize the values of these stems as well as 
the multiplicative relations given by multiplication by 'f), v and a. In Section 6, 
we depict the structure of the ASS in this range which follows from the values 
of the stable stems which were computed in Sections 2 and 3. Interestingly, we 
show that 1r~ 1 = 0 and consequently the Kervaire invariant element 05 exists by 
a straightforward argument. (See [4].) 

We use the notation of [3] to describe elements in 1r~. In particular, A[n, k] 
denotes the kth element of 1r~ of order two. We also use O:n = J.ln, f3n, In 
~o denote a generator of the image of J in degree 8n + 1, 8n + 3, 8n + 7, 
respectively. We assume that the reader is familiar with the methods of [3] and 
with the computation there of the first 53 stable stems. 

2 Computation of 7f~, 54 ::; N ::; 59 

We begin by establishing a new nonzero differential d5 (Ph5ea) = Pear in degree 
56 in the ASS. We then determine the immediate implications of this differential 
on the values of the 54 to 56 stems. We show how an error was made in [3] 
where 2A[54, 1] was determined to be zero instead of its correct value A[54, 2]. 
We conclude this section by correcting the computations in [3] of the 57 to 59 
stems by the AHSS. The following technical result will be used to analyze a 
representative of Pear. 

LEMMA 2.1 Let A[32, 2] be a representative of q such that o:1A[32, 2] = 0. 
Then {8a, 2, A[32, 2]) contains 0. 

PROOF. Observe that A[8]A[32, 2] = (v, rJ, v)A[32, 2] C (v, rJ, vA[32, 2]) 
(v, rJ, rJA[l4]C[20]) ~ (v, rJ, ryA[l4])C[20] = 2C[20]2 . Thus, 
A[8]A[32, 2]- 2C[20]2 E Indet (v, 'f), vA[32, 2]) C v · 1rg7 . Since 
A[8]A[32, 2]- 2C[20] 2 lies in Adams filtration nine and all the nonzero elements 
of v · 1rg7 project to nonzero elements of Adams filtration degrees four and five, 
it follows that 

A[8]A[32, 2] = 2C[20V. 

Since all elements of (8a, 2, A[32, 2]) have Adams filtration degree at least ten, 
this Toda bracket contains k'f/14· Thus, 
ry(8a, 2, A[32, 2]) = (ry, 8a, 2)A[32, 2] = o:1A[32, 2] = 0, and k = 0. 

We use this result to deduce the following new differential in the 56 stem of 
the ASS. 

THEOREM 2.2 In the ASS, we have the following nonzero differential: 

d5 (Ph5ea) = Pear. 

PROOF. We show that Pe0 r is represented by an element of 1r~ 5 which is zero. 
By the computations in [3], the differential of this theorem is the only possible 
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ON THE COMPUTATION OF STABLE STEMS 301 

one that can kill Pe0r. Since Ph4 = h2g in ExtA(lL/2, 7L/2), 

vC[20] E (0'2 , 2, 80', 2). 

By [3, 6.3, 7.20 and Lemma 7.4.7(c)], ryA[54, 2] = vC[20]A[32, 2] = ryA[14]C[20j2. 
In the notation of the ASS, this element is denoted by v"Kq and projects to Peor 
in E~· 55 . Therefore, 

vC[20]A[32, 2] E (0'2, 2, 80', 2)A[32, 2] c (0'2, 2, (SIT, 2, A[32, 2])) :J (0'2, 2, 0). 

Thus, Pe0r is the projection of an element of I ndet (0'2, 2, (80', 2, A[32, 2])) = 
0'2 . 11'11 + 1T'r5 . ( 11'~ . A[32, 21 + s(T. 11'~3) = 0'2 . 'f711'1o + 1T'r5 . 2c[2op = o. 

Combining this new differential with the other differentials in the ASS deter-
mined in [3], we see that there is no possibility for a nonzero element in CokJ55· 

COROLLARY 2.3 11'~5 = 71./16 "(6 

This result contradicts the computation in [3] of Cokhs as 71./2 ryA[54, 2]. 
The error there is the circular reasoning used on [3, pp. 226, 237] to determine 
whether 2A[54, 1] equals A[54, 2]. Those arguments are in fact inconclusive. By 
Theorem 2.2, ryA[54, 2] = 0, and A[54, 2]M1 must bound in the AHSS. As noted 
on [3, p.228], 2j32Mf9 survives to E 36 and d36 (2f32M{9) = 2A[54, 1]M1. This 
is the only possible way that A[54, 2]M1 can bound. Thus, 2A[54, 1] = A[54, 2], 
and we rename A[54, 1] as B[54]. By [3, 7.15] 

2B[54] E (v, ry, ry2 A[45, 2], ry). (2.3) 

By [3, Lemma 1.2.10], B[54] is indecomposable. The resulting modifications in 
the proofs of [3, Theorems 7.3.4, 7.3.5, 7.4.2 and Lemma 7.4. 7(b )] prove the 
following theorem. 

THEOREM 2.4 

11'~ 4 = lL/4 B[54] EB 71./2 ryA[8]D[45] 

11'~ 6 = 7L/2 v2 A[50, 2] EB 7L/2 'Tl'Y6 

where B[54] is indecomposable and 2B[54] = A[14]C[20j2. 

We have the following leaders remaining in degrees 58, 59 and 60 of the 
AHSS: 
degree 58: 4C[44]MJ, A[52, l]Mf, A[52, 2]M2; 
degree 59: 172'"'(1M{5 M~, aA[32, l]M{ MJ, 2D[45]M{ MJ, aC[44]M{, vA[50, l]M{; 
degree 60: 'f7A[23]Mf5 M2, A[30](M4), A[36]Mf M~, A[40, l]M2(M3), 

As shown in [3, pp.232, 235], 

d10 (A[30] (M4)) 
d18 (A[40, l]M2(M3)) = 

d22 ('f7A[23]M{5 M 2) 

d19 ( A[36]Mf M~) 

- 3 ryaC[44]M1M2, 2B[54]M1. 

aA[32, l]MtM~l, 
aC[44JMt, 

2D[45JMt M2, 

vA[50, l]Mf, 
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302 S. 0. KOCHMAN AND M. E. MAHOWALD 

From the ASS, we see that vB[54] :f. 0. Thus, there must be a hidden differential 
on f32M{ 7 M2 which lands below the 54 row making BIM]Mf a new leader of 
degree 58. 

If A[52, 2]M2 does not bound then X = d6 (A[52, 2]M2) :f. 0, there is no 
possibility for X M1 to bound and TJX :f. 0. Moreover, d6 ( rJA[52, 2]M1M 2) = 
TJX M1. However, the proof of [3, Lemma 7.4. 7] shows that 2C[20j3 = rJA[59, 2] 
where A[59,2] = d6 (2B[54]Mf). Since C[20] 2 = d8 (TJA[32,2]M1M 2), the only 
possibility for C[20]3 is B[60] = d8 (TJA[52,2]M1M 2). Thus, A[52,2]M2 must 
bound. As shown in [3, p.232], A[52, 1]Mf must bound. If d34 (f32Mf M2) = 
A[52, 2]M 2 then there would have to be a hidden differential on {32M{ 4 (M3), an 
impossibility. Thus, 

d34 (f32Mf1 M2) = A[52, 1]Mr, 

d36 ( rJ 2'nM{5 M~) = A[52, 2]M2. 

Now the leaders 4C[44]M{, B[54]Mf do not bound, and A[57] = d14 ( 4C[44]Mi), 
vB[54] are nonzero. As on [3, p.233], 

A[57] E (a-, 4C[44], v, TJ). (2.4) 

The argument on [3, p.234] shows that 2A[57] = 0. As on [3, p.301], A[57] is 
indecomposable. In addition, the leader A[57]M1 can not bound, and rJA[57] :f. 0. 
Since A[57]Mf and A[57]M2 are d1Cboundaries, 

vA[57] = 0. 

Since v2 B[54] will be seen to be nonzero, 

a-A[50, 2] = 0. 

We have thus proved the following theorem. 

THEOREM 2.5 

1rl7 = Z/2 A[57] E9 Z/2 vB[54] E9 Z/2 a7 EE1 Z/2 TJ2'Y6 

n'l8 = Z/2 TJA[57] E9 Z/2 rJa7 

where A[57] is indecomposable. 

(2.5) 

(2.6) 

We have the following remaining leaders in degrees 60 and 61 of the AHSS: 
degree 60: rJa-C[44]MlM 2, 2B[54]Mf, rJA[57]Ml. 

2- -
degree 61: A[39, 1]M1M2M3, 2D[45]Ml (M3), a-C[44]M1 M2, rJA[52, 2]M1M2. 

By the arguments on [3, pp.236,238], 

d14 (A[32, 1]M~ M 3) = 2D[45]Ml (M3). 

Define A[59, 1] = d8 (rJa-C[44]M1M 2). Then 

A[59, 1] E (TJ, v, rJa-C[44], TJ), 
A[59, 2] E (TJ, v, 2B[54]). 

(2.7) 
(2.8) 
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ON THE COMPUTATION OF STABLE STEMS 303 

Thus, 2A[59, 2] E 2(ry, v, 2B[54]) = (2, ry, v)2B[54] = 0. By the argument on [3, 
p.236], 2A[59, 1] = 0. Thus, "72 A[57] can not be divisible by two, and rJA[57]Ml 
must bound. To continue our analysis of A[57] we require the following analogue 
of [3, Theorem 2.4.6]. 

PROPOSITION 2.6 Let d14 (X Ml) = Y in the AHSS, and assume that (CT, v, X, rJ) 
is defined in 1r~. Then Y E (CT, v, X, rJ). 

PROOF. In the notation of [3, Appendix 7], XMl is represented by 
cp = /14 1\ /12 1\ X 1\ /11 U /14 1\ /12 1\ B XTJ U /14 1\ Bvx 1\ /11 U B((f,X,v) 1\ /11 

U /14 1\ B(v,X,TJ) U (/Lo2) 1\ X 1\ ILl U (tLoz) 1\ BxTJ' 
Then Y is represented by 

8¢ = CT 1\ B(v,X,TJ) U B((f,v,X) 1\ rJ U B(fv 1\ BxTJ E (CT, v, X, rJ). 

Since Cok]s5 = 0 and CokJ 49 = 0, (CT, v, 4C[44], rJ) is defined. By Proposition 2.6, 

A[57] E (CT, v, 4C[44], ry), 
A[57] E (CT, 2vC[44], 2, rJ) = (CT, 0, 2, ry), 
A[57] E (CT, Y, rJ)' 
A[57] E (CT, rJYo, rJ), 
A[57] E (CT, Yo, rJ 2) and 

ryA[57] E (CT, Yo, rJ3) = (CT, Yo, 4v) 

where Y E CokJ48 which is contained in the ideal (rJ, v). Moreover, (CT, vY1, rJ) 
contains (CT, v, ry)Y1 = 0. Thus, (a, vY1, rJ) is contained in the indeterminacy 
of (CT,rJYo,rJ). Since CTCokJ47 = 0, rJA[57] E (CT, Yo,v)4 = 0 modulo the ideal 
spanned by CT. Thus, ryA[57] is divisible by CT. The only possibility is 

(2.9) 

and therefore 
d8 (CTC[44)MfMz) = rJA[57)Ml. 

Observe that 2B[54)Mf can only bound from below the 19 row, and thus does 
not bound. Thus A[59, 2) ¥- 0. Assume that dr (A[39, 1]M1M2M3) =X where X 
is either rJCTC[44)MlM 2 or a nonzero element of rrg0 . Since A[39, 1] = CT A[32, 3), 
the boundary of a representative of A[32, 3) (Mf M2M3 + M[ Mi) shows that 
vA[32,3) (MfM3 + MtM~ + MJM:f + Mf3) also has boundary X. Thus, 
dr+4 (vA[32,3) (MfMzM3 + MfM~ + Mf 5 )) = XMf. However, 
vA[32, 3) (Mf M2M3 + Mf M~ + Mf 5 ) 

= d4 (A[32, 3] (MJ MzM3 + Mf0 M3 + Mfl Mi)). 
Therefore, X M'f must bound from the 37 row and there is no such leader of 
degree 65. Thus, A[39, 1]M1M2M3 must be a boundary. The only possibility is 

d18 (vA[19]MJ Mi(M3)) = A[39, 1]M1M2M3. 

Thus rJCTC[44)M1M2 can not bound, and A[59, 1] ¥- 0. 
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304 S. 0. KOCHMAN AND M. E. MAHOWALD 

LEMMA 2.7 A[59, 1] is indecomposable. 

PROOF. By [3, Lemma 1.3.10 and 7.31] and the ASS, the only possibili-
ties for A[59, 1] to be decomposable are (1) a 1A[50, 1], (2) A[14]A[45, 1], (3) 
A[14]D[45], ( 4) -y1 C[44], (5) a 2C[42], (6) A[19]A[40, 1], (7) A[19]A[40, 2] and 
(8) C[20]A[39, 3]. We eliminate all of these possibilities. 
(1) Note that a 1A[50, 1] E (a, 16, 17}A[50, 1] = a(16, 7], A[50, 1]} = 0. 
(2) A[14]A[45,1] E A[45,1](2,A[8],v,7]} c ((A[45,1],2,A[8]},v,7]}. Thus, 
A[14]A[45, 1] is a d6-boundary and can not equal A[59, 1]. 
(3) Since d8 (4D[45]Mf M2) = A[52, 1]Mf and d12 (4vMf M2) = A[14], we can 
choose choose a representative € for 4D[45]Mr M 2 whose boundary is 
A[52, 1]J.t2 U B A[52,1]11" Then v€UBvA[52,1]AJ.t2 has boundary A[14]D[45]. There-
fore, A[14]D[45] E (v, A[52, 1], v}. It follows that A[14]D[45] = d8 (A[52, 1]M{) 
which is zero in E8 • Thus, A[14]D[45] can not equal A[59, 1]. 

( 4) By [3, 7.8] we have -y1C[44] E 'Yl (a, [A[31], v], [ 6 ~ ] , [ 17A[30] ] } C 

(('Ylla,[A[31],v]}, [ 6 ~ J, [ 17A[30] ]} = (('Yba,A[31]},7],v} 

modulo (17, v). Therefore, -y1C[44] is boundary in E6 and can not equal A[59, 1]. 
(5) a2C[42] E a2(2, 7], 7]aA[32, 1]} = (a2, 2, 7]}7]aA[32, 1] = 0. 
(6), (7) For k = 1, 2, we have A[19]A[40, k] = (v, 1], a 2}A[40, k] = 
v(17, a 2, A[40, k]} = 0. 
(8) C[20]A[39, 3] is a ~-boundary and therefore can not equal A[59, 1]. 

In Lemma 3.1, we will show that A[59, 2] = A[14]A[45, 2]. Thus, we have the 
following theorem. 

THEOREM 2.8 1ri9 = l/2 A[59, 1] EB l/2 A[59, 2] EB l/8 (37 
where A[59, 1] is indecomposable. 

3 Computation of 1rfJv, 60 ~ N ~ 64 

We continue the analysis of the AHSS of the preceding section to compute the 
stable stems in degrees 60 through 64. We have the following leaders remaining 
in degrees 61, 62 and 63: 
degree 61: 7]A[52, 2]M1M 2, A[59, 1]Mll A[59, 2]Ml; 
degree 62: B[38]Ml M 2M3, v2 A[50, 2]Mr; 
degree 63: 7]2aMr1Mi, 4(32Mf.9 M2, 'Y2Mf0 , aA[32,1]MfMi, 4D[45]MfM2, 

3- 2- l 2 [ l 3 7]A[50,2]M1M2, A[8]D[45]M1M2, vA[50, 1 M1 M2, vB 54 M1. 
Since 7]A[52, 2]M1M 2, A[59, 1]Ml and A[59, 2]Ml can only bound from below 

the 54 row, v2 A[50, 2]Mr transgresses. 
Assume that 7]A[59, 1] "I 0. By (2.7), 

A[59, 1] E (17, v, 7]C[44], 17a}. 

However, A[59, 1] ¢ (17, v, 7]20[44], a} because that would imply that A[59, 1]Ml = 
d14 (172C[44]Mf M2) and 7]A[59, 1] = 0. Thus, A[59, 1] E Indet(1], v, 7]20[44], a}. 
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ON THE COMPUTATION OF STABLE STEMS 

The only possibility is A[59, 1] E (1/, A[50, 1], a). Then 

11A[59, l]M1 = d10 (11A[50, l]MfM2). 

305 

Since 11A[50, 1] = 0, the element 1/A[59, l]M1 must bound from above the 51 row. 
The only possibilities are d8 (v A[50, l]M[ M2) = ,.,A[59, l]M1, d4 (v B[54, l]Mf) = 
11A[59, l]M1 or d8 (A[8]D[45]M[ M 2) = 11A[59, l]M1. The first possibility can 
not occur because vA[50, l]M[M2 = rt.1 (vA[50, l]MfM2) while 11A[59, l]M1 ¢ 
Image r t.1 • The second possibility implies the v2 B[54] = ,.,A[59, 1]. However, 

v2 B[54] E (1/, v, "l)B[54] = 11(v, 1/, B[54]). 

Then (v, ,.,, B[54]) would contain A[59, 1], and A[59, 1] would be a d6-boundary, 
a contradiction. The third possibility implies that A[14]D[45] = A[59, 1] be-
cause d8 (A[8]M[M2) = 11A[14]M1. This contradicts Lemma 2.7. Therefore, 
11A[59, 1] = 0. Thus A[59, l]M1 must bound. The only possibility is 

Let B[60] = d8 ("1A[52,2]M1M2). We now state the corrected version of [3, 
Lemma 7.4.7]. The proof is analogous to that of the original lemma. 

LEMMA 3.1 (a) 112 A[45, 2] = 11A[14]A[32, 2] and 
11A[45, 2] = A[14]A[32, 2] modulo ("12C[44], 11A[45, ll). 

(b) 2B[54] = A[14]C[20j2. 

(c) vA[52,2]=0. 

(d) A[59,2] = A[14]A[45,2]. 

(e) B[60] = C[20j3 and 2B[60] = 11A[59, 2]. 

(f) 77B[47] = A[8]C[20j2. 

Thus, 1r~ 0 = lf 4 B[60], and the remaining leaders of degree 62 are v2 A[50, 2]Mf, 
B[60]M1 and 2B[60]Ml. Observe that 2B[60]M1 = d8 (77A[52, l]M[M2 ) which 
is zero in E 8 . Thus, 2B[60]M1 must bound from above the 53 row. The only 
possibility is 

It follows that 

d4 (vB[54]Mf} = 2B[60]Ml. 

v2 B[54] = 11A[59, 2], 
A[59, 2] E (v, 1/, B[54]), 

(3.10) 
(3.11) 

and B[54]M2 is homologous to 2B[54]Mf in E 36 • In the notation of [3, Appendix 7], 
11M2 is represented by 

P = 777lo1 U B'T/v 1\ J.L1 and 
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306 S. 0. KOCHMAN AND M. E. MAHOWALD 

It follows that 
d6 (77A[50,2JMrM2) = v2A[50,2]Mr, 

Now the only remaining leader of degree 62 is B[60JM1 and d2 (B[60]M1) = 
77B[60]. Since B[60] = C[20j3, we have that 

B[60J E (v, 77, 2, A[14])C[20]2 c (v, 77, 2, A[14]C[20]2) = (v, 77, 2, 2B[54]). 

By an analogue of [3, Theorem 2.4.5(b)], d42 (4{32M[9M 2) equals an element of 
(v, 77, 4, B[54])Ml. Therefore, 

d42 (4f32M{9 M2) = B[60]M1 

and 77B[60] = 0. 
The following argument shows directly that 77B[60] = 0. All of the triple prod-

ucts below have zero indeterminacy because 1r~ = 0, O'A[14] = 0 and v · 1r~ 8 = 0. 

77B[60] = 77C[20]3 E (v2, 2, A[14])C[20]2 = (v2, 2, A[14]C[20]2) 
= (v2, 2, 2B[54]) = ( (77, v, 77}, 2, 2B[54]) = 77(v, 77, 2, 2B[54]) 
= (v, 77, (2, 2B[54], 77}} = k(v, 77, v2 A[50, 2]) 
= k(v, 77, v}vA[50, 2] = kA[B]vA[50, 2] = 0. 

Therefore, 1r~ 1 = 0 and 
O"B[54] = 0. 

By [3, Lemma 7.4.7(g)], vA[59, 2] = 772 B[60] and therefore 

vA[59, 2] = 0. 

Thus, we have proved the following theorem. 

THEOREM 3.2 

1r~ 0 = l/4 B[60] and 2B[60] = 77A[59, 2] = v2 B[54] 
7r~l = 0 

where B[60] = C[20j3. 

We have the following leaders remaining in degrees 63, 64, 65 and 66: 

(3.12) 

(3.13) 

degree 63: 7720' M'f1 M'f, 'Y2M'f0 , 0' A[32, 1]Mf Mi, 4D[45]Mf M2, A[8]D[45]M'f M 2, 
vA[50, 1]M'f M2; 

degree 64: 4C[18]MJ M2MiM3, 2B[34]MfM2M3, 77D"A[32, 1]Mf(M3}, 
A[52, 1]Mf M2, 77A[57]Mf; 

degree 65: f31M'f0 M3, {32M[ 4 M~, 2D[45](Mt}(Mi}, vC[44]Mf(Mi}, 
O'C[44]MfM2, A[59, 1]M2, A[59, l]M2; 

degree 66: A[32, 1]M'f (M4}, 77A[39, 3]Mf M 2 (M3}, 2C[44]M'f M~, 772C[44]MJ M 2, 
7 4- 3- 3 -A[52, l]M1 , A[52, 2]M1 M 2, 77A[8]D[45]M1 M 2, B[60]M1, B[60]M 2· 
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ON THE COMPUTATION OF STABLE STEMS 307 

By the arguments on [3, pages 243, 245], 

d12 (2B[34]MfM2M3) = 4D[45](MfM2+MfM3), 
22 ( 7- 2-) 6 2 d 40[18]M1 M 2M2 M 3 = a A[32, 1]M1 M2. 

Thus A[62,1] = d54 (17 2aM[1Mi), A[62,2] = d10 (11A[50,1]MfM2), B[62] = 
d40 (1'2M[0 ) and A[62, 3] = d10 (A[8]D[45]Mf M 2) are nonzero. As on [3, p.248], 

d40 (1'2M[ 8 M 2) = A[62, 3]Ml 

and thus A[62, 3] = 2B[62]. By [3, Theorem 2.4.5], 

A[62, 2] E (11, 17, 11A[50, 1], 11), 
2B[62] E (77, 11, A[8]D[45], 11). 

(3.14) 
(3.15) 

Clearly both A[62, 2] and A[62, 3] have order two. As on [3, pp.246, 248], 
A[62, 1] represents 05 , 2A[62, 1] = 0 and d54 (f31M[0 M 3 ) = B[64] with 2B[64] = 
772 A[62, 1] # 0. As on [3, p.251], 

d14 (A[32, 1JMl(M4)) = 2D[45](M{)(Mi). 

By the argument on [3, p.246], 

11A[59, 1] = 0. (3.16) 

LEMMA 3.3 A[62, 1], A[62, 2] and B[62] are indecomposable. 

PROOF. By [3, Lemma 1.3.10] and the ASS we see that the only possibilities 
for a decomposable element of of 1rg2 are (1) 0[18]0[44], (2) A[30]A[32, 1], 
(3) A[30]A[32, 2] and ( 4) A[30]A[32, 3]. We eliminate all of these possibilities. 
(1) By [3, 7.8], 

0[18]0[44] E 0[18](a, [A[31], 11], [ 6 ~ ] , [ 77A[3o] ] ) 

c ( ( 0[18], a, [A[31], 11]), [ ~ ~ J , [ 77.i[30] J) 
= ((0[18],a,A[31]),17,11) 

Thus, 0[18]0[44] is a boundary in E6 and must therefore be zero. 
(2) A[30]A[32, 1] E (77, 2, A[30])A[30] = 77(2, A[30], A[30]) c 17 • 1rg1 = 0. 
(3) Since A[32, 2] = d22 (2!31MP M 2) and d16 (!31MP M 2) = 1120[20]M 2, 

A[32, 2] E (2, 1120[20], 11, 17). 

Therefore, 

A[30]A[32, 2] E A[30](2, 1120[20], II, TJ) c ((A[30], 2, 1120[20]), II, TJ) 

which is a boundary in E 6 and must therefore be zero. 

(3.17) 

(4) By [3, 7.5], A[30]A[32, 3] E A[30](A[19], a, 11, 17) c ( (A[30], A[19], a), v, 17) which 
is also a boundary in E 6 and must therefore be zero. 
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308 S. 0. KOCHMAN AND M. E. MAHOWALD 

In the notation of [3, Appendix 7], v(M'f) is represented by 

p = v(J.to2) U Bva 1\ J.l2 and 
8(p) = Bvai\V U vi\Bav E (v,IJ,v) = IJ2 • 

Since ryA(57] = tJ2C[44], it follows that 

d12 (vC[44]Mf(Mi)) = ryA[57JMf. 

The ASS shows that the order of CokJ63 is at least eight. Thus, ryA[62, 1], 
A[63,1] = d24 (rytJA[32,1]Mf(M3)) andA(63,2] = d12 (A[52,1]MfM2) are nonzero. 
Since in the ASS ryA[62, 1], A[63, 1], A[63, 2] has filtration degree 3, 6, 7, respec-
tively, it follows that 2A[63, 1] = 2A[63, 2] = 0. By [3, Lemma 1.3.10] and 
the ASS, the only possibility for A[63, 1 J or A[63, 2] to be decomposable is as 
C[18]D[45]. However, C[18]D[45] E (v, IJ, 20")D[45] = v(O", 217, D[45]) C v · 1ri1 = 
0. Thus A[63, 1] and A[63, 2] are indecomposable. Since B[60] = C[20j3, 

vB[60] = 0. (3.18) 

All differentials in our picture of the ASS which originate in degree 65 fol-
low easily from differentials in lower degrees. Consequently, the order of 1rg4 
is 128. Thus, two of the remaining leaders of degree 65 must bound. Since 
f32M{ 4 M~, A[59, 1]M2 can only bound from below the 0 row, 38 row, respec-
tively, neither of these elements can bound. Let A[64, 3] = d6 (A[59, 1JM2) 
and A[64, 1] = d46 (f3 2 M{ 4 M~). As noted above j31M[0M3 and ryA[62, 1]M1 
can not bound. In the ASS, ds (A') = h1B21, d4 (X2) = h2B21 and B21 
represents A[59, 1]. It follows that the nonbounding infinite cycle h2A' rep-
resents elements of (A[59, 1], ry, v) and (ry, A[59, 1], v) while the nonbounding 
infinite cycle h1X 2 represents an element of (A[59, 1], v, ry) which projects to 
A[64,2] = d6 (A[59,1]M2 ) in the AHSS. Thus, A[59,1]M2 can not bound. In 
the ASS, h3Q2 is a nonbounding infinite cycle, and thus IJ A[57] is nonzero. By 
(2.4), 

1J A[57] E iJ(21J, 2C[44], v, ry) c ( (iJ, 21J, 2C[44]), v, ry). 

Note that ry(IJ, 21J, 2C(44]) = 1J(21J, 2C[44], ry) = 0. Thus, (1J, 21J, 2C[44]) is either 
zero or A[59, 1]. If it equals A[59, 1] then 

A[59, 1]Ml = d20 (2iJMfvA[30]Mi) = 0 

and A[59, 1]M1 would bound from above the 40 row, a contradiction. Thus, 
(1J,21J,2C[44]) = 0 and 1JA[57] E (O,v,ry) = (ry). Therefore, 

tJA[57] = ryA[63, 1] (3.19) 

because A[63, 1]M1 can only bound from below the 40 row. Now A[63, 2]MI and 
1JC[44]M{M2 must bound. Since A[63,2]M1, tJC[44]M{M2 can only bound 
from below the 52 row, 44 row, respectively, 

d12 (17 (A[39, 3] + 1J A[32, 1]) Mf M 2(M3)) 

d18 (ry2C[44]M[ M2) 

4-1JC[44]Ml M2, 

A[63,2]Ml· 
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ON THE COMPUTATION OF STABLE STEMS 309 

Thus, A[64, 1], A[64,2], A[64, 3], B[64], 71A[63, 1] and 712 A[62, 1] are nonzero. By 
[3, Theorems 2.4.4 and 2.4.6(c)], 

A[64, 2] E (71, v, A[59, 1]), 
A[64, 3] E (A[59, 1], ry, v). 

Thus, 2A[64, 3] E 2(A[59, 1], ry, v) = (2, A[59, 1], ry)v = 0. By (3.20), 

2A[64, 2] E 2(ry, v, A[59, 1]) = (2, ry, v)A[59, 1] = 0. 

(3.20) 
(3.21) 

Since A[64, 1] is represented by q1 of filtration degree 10 in the ASS, 2A[64, 1] = 0. 

LEMMA 3.4 A[64, 1], A[64, 3] and B[64] are indecomposable. 

PROOF. By [3, Lemma 1.3.10], A[64, 1] and B[64] are indecomposable. From 
the ASS, the only possibilities for A[64,3] to decompose are as (1) A[32,1] 2 , 

(2) A[32, 1]A[32, 3], (3) A[30]B[34] or (4) A[19]D[45]. We eliminate all of these 
possibilities. 
(1), (2) Fork= 1, 3, A[32, 1]A[32, k] E (ry, 2, A[30])A[32, k] = ry(2, A[30], A[32, k]) 
which can not equal A[64, 3]. 
(3) A[30]B[34] E A[30](A[32, 1], 2, ry) = (A[30], A[32, 1], 2)ry which can not equal 
A[64,3]. 
(4) A[19]D[45] E D[45](0'2 ,ry,v) = (D[45],0'2 ,ry)v = 0. 

Since A[64, 2] projects to h0 h2 (A+ A')= di, it follows that 
A[64, 2]- A[32, 3] 2 has Adams filtration greater than 8 and hence equals a mul-
tiple of A[64, 1]. We have thus proved the following theorem. 

THEOREM 3.5 

s 
rr62 = 

s 
rr63 

s 
7r 64 == 

l/4 B[62] E9 l/2 A[62, 1] E9 l/2 A[62, 2] 
l/2 A[63, 1] E9 l/2 A[63, 2] E9 l/2 ryA[62, 1] E9 l/128 17 

l/4 B[64] E9 l/2 A[64, 1] EB l/2 A[64, 2] EB l/2 A[64, 3] 
EB l/2 ryA[63, 1] E9 l/2 f//7 

where 2B[64] = ry2 A[62, 1] and A[62, 1], A[62, 2], B[62], A[63, 1], A[63, 2], A[64, 1], 
A[64, 3], B[64] are indecomposable. 

4 Leaders 

The following tables of leaders summarize the structure of the AHSS in degrees 
54 through 64 as determined in Sections 2 and 3. 
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310 S. 0. KOCHMAN AND M. E. MAHOWALD 

ryA[47JMr -o--r121'1Mf9 

ryaC[44]Ml --vC[44]MlM2 

8[54] j32Mf8 

28[54] ry2A[45,2]M1M2 

ryA[8]D[45] - A[8]D[45]Ml 

-A[36]M[M3 

A[50, l]M2 -4j31M[M~M3 

ryA[8]D[45]Ml ..._.__ v2D[45]Mr 

28[54]Ml 2j32Mf6 M 2 

A[52, l]Mf -4D[45]MfM2 

A[47]MfM2 

v2 A[50, 2] --- vA[50, 2]M[ 

-vA[45, IJMr 

-2vD[45JMr 

2aC[44]M[ -2C[44]M~ 

ryA[52, 2]Ml -ry8[4 7]MJ M 2 

A[57] ---

-A[52,2]Ml v8[54]+---

-A[50,1]Mf 

-A[50,2]Mf 

60 61 

ryA[57]MJ ---aC[44]Mf M 2 

aA[32, l}MtM,?-A[30](M4) A[3!l, l}M1M2M3-

ryA[57] A[57]M1 ryA[59, 2] ---A[59, 2]Ml 

-A[40,2]MfM2 2D[45]MfM2 -ryA[23]Mf5 M2 2D[45]Ml(M3)-

aC[44]Mf ----- A[40, l]M 2 (M3) A[59, l]M1 ---

vA[50, l]Mf --A[36]MfM~ 

-4C[44]MJ A[59, 1] ----ryaC[44]MJM2 

A[52, l]Mf -- j32Mf1 M2 8[60] 

2B[54]Mf --8[54]Mf A[59, 2] ---
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62 63 64 

B[60]M1 4132Mf 9 M2 B[64] 

--vA[19]MJMi(M3) 7JA[57]Mr 

A[62,1] 7J2aM[1Mi 2B[62]Ml 

--A[32, 1JMr M 3 aA[32, 1]Mf Mi -4C[18]M/ M2MiM3 

--B[38]M[ M 2M3 7JA[62, 1] A[62, l]M1 

4D[45]Mf M2 - 2B[34]Mf M 2M3 

B[62] I'2Mfo A[64,3] 

2B[62] A[8]D[45]M[ M 2 7JA[63, 1] 

A[62,3] vA[50, 1]M[M2 7]2A[62, 1] 

7JA[59,2]Ml vB[54]Mr A[64,2] 

v2 A[50, 2]Mr -7JA[50, 2]Mr M 2 A[64, 1] 

66 

A[52, 2JMt M 2 

B[60]M2, B[60]Mr 

A[52, 1]M/ 

--A[32, 1]M[(M4) 

A[63, 1] 

A[63,2] 

--7] (A[39, 3] + aA[32, 1]) Mr M2(M3) 

--7]2C[44]MJ M 2 

2C[44]M[Mr 

7JA[8]D[45]Mjl M 2 

7JA[57]M!M2 

A[62, l]M[, A[62, 2)M[ 

7JaA[32, 1]Mf(M3) 

A[52, 1]Mr M2 

B[64]Ml, A[64, 1]M!, A[64, 3]Ml, 7JA[63, 1]Ml 

311 

65 

{31M[0 M3 

vC[44]Mr(Mi) 

212Mf8 M2 

2D[45J(Mt)(Mi) .--

aC[44]M[M2-

A[63,2]Ml 

A[59, 1]M2 

A[63, 1]Ml 

7JA[62, 1]Ml 

A[59, l]M2 

{32Mf4M; 

5 Group Structure and Multiplicative Relations 

The first table gives the abelian group structure of the stable stems in degrees 
54 through 64. The second table gives the structure of C okJ * as a module over 
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(77, v, a) in these degrees. It includes a column labeled "DEC." in which we enter 
D if the element is decomposable or I if the element is indecomposable. All the 
information in these tables was determined in Sections 2 and 3. 

DEGREE STABLE STEM 
54 l/4 B[54] EB l/2 77A[8]D[45] 
55 l/16 1'6 
56 l/2 v2 A[50, 2] EB l/2 771'6 
57 l/2 A[57] EB l/2 vB[54] EB l/2 a 7 EB l/2 7721'6 
58 l/2 77A[57] EB l/2 77a7 
59 l/2 A[59, 1] EB l/2 A[59, 2] EB l/8 fh 
60 l/4 B[60] 
61 0 
62 l/4 B[62] EB l/2 A[62, 1] EB l/2 A[62, 2] 
63 l/2 A[63, 1] EB l/2 A[63, 2] EB l/2 77A[62, 1] EB l/128 1'7 
64 l/4 B[64] EB l/2 A[64, 1] EB l/2 A[64, 2] EB l/2 A[64, 3] 

EB l/2 77A[63, 1] EB l/2 "71'7 

DEG. X ADAMS 77X vX aX DEC. 
54 B[54] hoh5i 0 vB[54] 0 I 

77A[8]D[45] h1x' 0 0 0 D 
56 v2A[50, 2] gt 0 0 0 D 
57 A[57] Q2 77A[57] 0 77A[63, 1] I 

vB[54] h1Ph5eo 0 77A[59,2] 0 D 
58 77A[57] h1Q2 0 0 * D 
59 A[59, 1] B21 0 0 * I 

A[59,2] dow 77A[59,2] 0 * D 
60 B[60] g3 0 0 * D 
62 A[62, 1] h2 5 77A[62, 1] * * I 

A[62,2] h5n 0 * * I 
B[62] Co+ h8h~ 0 * * I 

63 A[63, 1] h1H1 77A[63, 1] * * I 
A[63,2] C' 0 * * I 

77A[62, 1] hlh~ 2B(64] * * D 

Note that B[62] must be represented by x E E~ 62 such that h0 x = h1x = 0. 
The only possibility is x = Co + h8h~. Also, A[63, 2] must be represented by 
y E E'[,o63 such that h1y = 0. The only possibility is y = C'. 

The product of elements in degrees less than 54 times 77, v and a which have 
degree greater than or equal to 54 are the same as those given in [3, Appendix 2] 
with three exceptions: aA[50, 2] = 0, a 2C[44] = 77A[57] and vA[52, 2] = 0. 

6 The Adams Spectral Sequence 

The tables of this section depict the structure of the ASS in degrees 54 through 
66. (The entries in degree 66 are complete only through filtration degree four.) 
The group structure of E2 was computed by Tangora [5] using the May spectral 
sequence. The product of ho and h1 with most of these elements was computed by 
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ON THE COMPUTATION OF STABLE STEMS 313 

Tangora [5]. The remaining products , which correspond to nontrivial extensions 
in the May spectral sequence in degrees 60 through 64, were computed by Bruner 
[2]. We begin with a table of notation which labels the elements in the following 
two tables. The symbol X +-- ~ indicates that the element ~ E 1r: defined from 
the AHSS projects to the infinite cycle X in the ASS. In each bidegree, elements 
are labeled from left to right. In the last two tables we use vertical lines to 
indicate multiplication by h0 , lines of positive slope to indicate multiplication 
by h1 and lines of negative slope to indicate differentials. Dotted vertical lines 
indicate nontrivial extensions given by multiplication by two while dotted lines of 
positive slope indicate nontrivial extensions given by multiplication by ry. Infinite 
cycles are indicated by circles. 

Notation: 
(6, 54) G (8,54) hsi (9, 54) hoh5i +- B[54] 

(10,54) R1 (12,54) e5g +-- 2B[54] (15,54) Pgj 
(24,54) P5do (11, 55) gm (14, 55) Peor 
(17,55) p2u (20,55) P3eodo (23,55) p4i 
(25,55) h6P4i +-- /'6 (9,56) Phseo (10,56) gt +-- v2 A[50, 2] 
(10,56) R' (13,56) dov ( 16, 56) p2g2 
(19,56) p3[ (27, 56) P6 co +-- 'rrY6 (7, 57) Q2 +-- A[57] 
(8,57) hsj (10,57) h1Phseo +-- vB[54] (12, 57) eog2 

(15, 57) Pgk (18,57) p2z (24, 57) P 5eo 
(29, 57) P 7 hl +- 07 (6, 58) D2 (14,58) Pgr 
(17,58) p2v (20, 58) p3e5 (23, 58) p4j 
( 10, 59) B21 +-- A[59, 1] (13,59) dow +-- A[59, 2] (16,59) Pe~ 
(19,59) p3m (29,59) P7 h2 +-- fh (7, 60) B3 
(9,60) B4 ( 12, 60) g3 +- B[60] (15,60) Pgl +-- 7JA[59, 2] 

(18,60) P2dor (24,60) p5g (4,61) D3 
(6,61) A ( 6, 61) A' (9, 61) x1 

(11, 61) rn (14, 61) gz (17,61) p2w 
(20,61) P3eog (23,61) p4k (2, 62) h~ +-- A[62, 1] 

(5, 62) H1 (6,62) h5n +- A[62, 2] (8,62) Co + h&h~ +-- B[62] 
(8, 62) Co +Et (10, 62) R +-- 2B[62] (10,62) B22 

(10, 62) PG (13, 62) gv (15, 62) P 2 Bt 
(16, 62) Pe5g (19,62) p2gj (22,62) p4r 
(28, 62) P6do ( 1' 63) h6 (6,63) h1H1 +- A[63, 1] 
(7,63) x2 (7,63) C' +-- A[63, 2] (8,63) h2B3 

(10, 63) h2B4 (15, 63) Pgm (18,63) P2eor 
(21' 63) p3u (24, 63) P4 doeo (26, 63) h55h6 +-- /'7 
(2,64) h1h6 +-- B[64] (5, 64) h2D3 (6,64) A" 
(7,64) h2A (7,64) hoA" +-- A[64, 3] (8,64) hoh2A +-- A[64, 2] 
(8,64) h3Q2 +-- 7JA[63, 1] (10,64) q1 +-- A[64, 1] (14,64) dogr 

(14,64) PQ1 (15,64) P2B2 (17, 64) Pd0 v 
(20,64) P3g2 (23,64) p4[ (31,64) P7 co +- 17/'7 
(3,65) h2hg (6,65) h2H1 (7, 65) h2hsn 
(7,65) h3D2 (9,65) h2Co (10, 65) B23 

(12,65) Ph5j (13,65) R2 (13, 65) gw 
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(16, 65) Pe0g2 

(28, 65) P6e0 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

54 
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(19,65) P 2gk 
(33, 65) P 8h1 +- O:g 

55 56 57 

(22, 65) P 3z 
(2,66) h2h6 

58 59 

.0 .· : 

60 61 
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0 

62 63 64 65 

315 

66 
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