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1. Introduction 

1.1. The simplicial localization. The localization of a category C with respect to a 
subcategory W is the category C[W-‘1 which has the same objects as C and is 
obtained from C by formally inverting the maps of W. Our purpose here is to show 
that C[W-‘1 reflects just one aspect of a much richer object, the simplicial localiza- 
tion LC. This simplicial localization LC is a simplicial category with in each 
dimension the same objects as C (i.e. for every two objects X, YE C, the maps 
X + YE LC form a simplicial set LC(X, Y)), which has the localization C[W-‘1 as its 
“category of components”. By this we mean that, for every two objects X, YE C, 

IroLC(X, Y) = C[W_‘1(X, Y) 

i.e. the components of UZ(X, Y) are (in l-l correspondence with) the maps 
x-, YE C[W_‘]. 

In the present paper we define this simplicial localization and develop some of its 
basic theory. A more thorough homotopy theoretical analysis of the simplicial sets 
LC(X, Y) will be given in [4], partly for its own sake, and partly in preparation for 
[5], where we deal with our main 

1.2. Application and justification. Let C be a closed simplicial model category in the 
sense of Quillen [lo], i.e. C comes with three classes of maps (calibrations, fibrations 
and weak equivalences) satisfying certain axioms and C has an additional simplicial 
structure which makes it possible to define, for every two objects X, YE C, a function 

complex hom(X, Y). If one takes for WC C the subcategory of the weak 
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equivalences, then we show in [5] that, for every cofibrant object X and fibrant 
object Y, LC(X, Y) has the same homotopy type as hom(X, Y). Thus one can use the 
simplicial localization to define functorial function complexes in an arbitrary model 
category, even if there is no additional simplicial structure. Moreover these function 
complexes depend only on the weak equivalences and not on the cofibrations or the 
fibrations. 

1.3. Organization of the paper. After fixing some notation and terminology (in 1.4) 
we start, in Sections 2 and 3, with some results on free categories and their 
localizations and observe that free categories are better behaved under Iocalizations 
than more general categories. Guided by this we define, in Section 4, the (standard) 
simplicial localization L(C, W) (for short LC) as the dimension wise localization of the 
standard free simplicial resolution of C. We also list there some immediate 
consequences of this definition and observe that any other natural free simplicial 
resolution would have done as well, as least up to homotopy. In Section 5 we note the 
not so obvious fact that, for subcategories Wi, WZ c C, the simplicial localizations 
L(C, Wi) and L(C, W,) are homotopically equivalent whenever C[W;‘] = C[W;‘]. 
We also discuss there a few extreme cases of simplicial localizations. In Section 6 we 
consider the obvious generalization of the definition of simplicial localization from 
pairs of categories to pairs of “simplicial categories with (see 1.4) the same objects in 
each dimension.” 

Except for two lemmas (6.2 and 6.4) our results up to this point are not hard to 
prove, once they have been formulated. To prove these two lemmas, as well as to put 
things a bit more in perspective, in the remaining sections of the paper we approach 
the simplicial localization from the point of view of homotopical algebra. In Sections 7 
and 8 we note that the category SO-Cat (see 1.4) of simplicial categories with a fixed 
set 0 of objects, can be given the structure of a closed simplicial model category. We 
also discuss there in some detail the notions of cofibration and pushout in this 
category and prove that SO-Cat is a proper model category, i.e. the pushout (resp. 
pullback) of a weak equivalence along a cofibration (resp. fibration) is again a weak 
equivalence. Finally, in Section 9, we deal with the groupoid completion in SO-Cat, 
which can be considered as an absolute version of the localization and, in Section 10, 
with the localization itself and, of course, a proof of Lemmas 6.2 and 6.4. 

1.4. Notation, terminology, etc. (i) Categories. Except for the categories O-Cat and 
SO-Cat defined below, all categories will be small and, unless otherwise noted, 
subcategories will contain all the objects. If C is a category and X, YE C are objects, 
then C(X, Y) will denote the set of maps X+ YE C. 

(ii) The category O-Cat. Let 0 be an arbitrary but fixed set (of objects). Then 
O-Cat will be the category with as objects the small categories which have 0 as their 
set of objects and with as maps the functors which are the identity on the objects. For 
instance, if 0 consists of only one element, then O-Cat is just the category of 
monoids. 
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(iii) Free products in O-Cat. The categorical sum in O-Cat will be denoted by * and 
called free product. Theire is an obvious l-l correspondence between the non- 
identity maps of a free product C * D and the finite compositions of non-identity maps 
of C and D in which no two adjacent maps are both in C or both in D. 

(iv) The category SO-Cat. This is the category of simplicial objects over O-Cat. 

An object BE SO-Cat thus is a simplicial category with the same set 0 of objects in 
each dimension. The category O-Cat is sometimes identified with the subcategory of 
SO-Cat of the “discrete” simplicial objects. 

(v) Weak equivalences in SO-Cat. These are the maps A+ BE SO-Cat which, for 
every two objects X, YE 0, induce a weak homotopy equivalence of simplicial sets 
A(X, Y) - B(X, Y). 

(vi) The nerve functors for O-Cat and SO-Cat. For a category C E O-Cat, its nerve 
is, as usual [ll], the simplicial set NC which has as its k-simplices the sequences 

of maps in C. Dimensionwise application of this functor N to an object B E SO-Cat 

thus yields a bisimplicial set and the diagonal of the latter will be denoted by NB and 
called the nerve of B. 

(vii) Homotopy invariance of the diagonal of a bisimplicial set. We will often use, 
explicitly or implicitly, the following result [3, Chapter XII, Section 41. 

If K + L is a map of bisimplicial sets such that, for every integer i 2 0, the restriction 
Ki,* + Li.* is a weak homotopy equivalence, then its diagonal diag K + diag L is also a 
weak homotopy equivalence. 

This readily implies: 
If A + B E SO-Cat is a weak equivalence, then the induced map NA + NB is a weak 

homotopy equivalence. 
(viii) Main references. The paper is essentially self contained, except for the last 

four sections which rely heavily on the results of Quillen [lo] and once (in Section 8) 
on May [9]. Of course we assume a knowledge of basic simplicial homotopy theory 
such as can be found for instance in [8] or [3, Chapter VIII]. 

2. Free categories 

We start with a few results on free categories which will be needed later. First we 
recall the definition [7, p. 501. 

2.1. Free categories. A category C E O-Cat (1.4) is called free if there exists a set S of 
non-identity maps in C such that every non-identity map in C can uniquely be written 
as a finite composition of maps in S. If such a set S exists, it is clearly unique; its 
elements are called the generators of C. 

One readily verifies (see 1.4) 
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2.2. Proposition. A free product of free categories is a free category. 

2.3. Proposition. Every free category is the free product of free categories with only one 
generator. 

An important example of a free category is provided by 

2.4. The free category FC on a category C. Let CE O-Cat (1.4): Then the free 
category on C is the free category FCE O-Cat which has a generator Fc for every 
non-identity map c EC. Of course, as with any such free construction, there are 
functors 

FC’-C and FC$-F*C 

given by Fc WC and Fc -F(Fc) respectively, which satisfy the comonad (cotriple) 
identities [7, p. 1351 

CPU?) = V&F), (WM = (WM (Fp)$ = id = (cpF)& 

They therefore can be used to construct 

2.5. The standard resolution F,C. Let CE O-Cat be a category. Then the standard 
resolution of C is the simplicial category F,CE SO-Cat (1.4) which in dimension k 
consists of the category FkC = Fkf’C, and which has the functors 

di (Fkc- Fk_lC) = (Fk+‘C F’aFr-i F’(J), 

(F/cc- 
‘i Fk+lcJ = tFk+lc F’+F*-’ 

- Fk+*C) 

as its face and degeneracy functors. 
There is, of course, also the map (i.e. functor) cp : F,C --* C E SO-Cat (1.4) given by 

(FkC 5 C) = (Fk+‘C 2 C) 

which has the useful property 

2.6. Proposition. The map 9 : F,C+ C E SO-Cat is a weak equivalence (1.4). 

Proof. For every two objects X, YE C, the function a -Fa yields a contracting 
homotopy of F,C(X, Y) onto C(X, Y). 

For later reference we mention the somewhat related 

2.7. Proposition. If two maps A --* A’ and B + B’ E SO-Cat are weak equivalences, 
then so is their free product A * B + A’ * B’ (1.4). 
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Proof. It clearly suffices to prove the case B = B’, and this is done by 
(i) first proving the case that B is discrete and free (which is straightforward), 

(ii) then, using a diagonal argument (1.4 (vii)), extending it to the case that B is 

not necessarily discrete, but still free in each dimension, and 
(iii) finally observing that the argument of the proof of 2.6 also yields that, for all 

B, the obvious maps A * F,B + A * B and A’ * F,B + A’ * B are weak equivalences. 

We end this section with a brief discussion of the homotopy type of 

2.8. The nerve of a free category. For a free category C E O-Cat one can consider 
not only its nerve NC (1.4), but also, for every integer k 2 1, the k-dimensional 
subcomplex Nk C c NC generated by the k-simplices 

of NC, for which each of the maps Xi + Xi-i is either a generator of C or an identity 

map. One then has 

2.9. Proposition. Let C E O-Cat be a free category. Then, for every integer k 5 1, the 
inclusion Nk C c NC is a weak homotopy equivalence. 

Proof. It is not hard to verify that, for every integer k 3 1, the geometric realization 
IN’C] is a strong deformation retract of ]Nk*’ Cl. The desired result now follows from 
the fact that NC is the union of the NkC. 

3. The (old) localization 

Next we briefly review the (old) notion of localization and note (3.7) that, in the 
free case, this localization does not affect the homotopy type of the nerve. 

3.1. The localization of a category with respect to a subcategory. Let C E O-Cat be a 
category and W c C a subcategory (1.4). The W-localization of C then is [6] the 
category C[W-‘1 obtained from C by formally inverting all maps of W. In other 
words, C[W-‘1 has the same objects as C and its maps are obtaned from the 
“composable words” in the maps of C and the formal inverses of the maps of W, by 
means of the obvious equivalence relation [6]. 

3.2. Example. If C = D * W (1.4), then 

C[W-‘1 = D * W[W”] and C[C’] = D[D-‘1 * W[W-‘1. 

If moreover D and W (and hence C) are free categories then the non-identity maps of 
C[W-‘1 are (in l-l correspondence with) the non-empty “composable reduced 
words” in the generators of C and the formal inverses of the generators of W. 
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3.3. The universal functor p : C + C[W-‘I. Let C E O-Cat be a category and W c C a 
subcategory. Then the obvious functor p : C+ C[W-‘1 is initial among the functors 
from C which send all maps of W into equivalences. 

Related to this is the notion of 

3.4. Closed subcategories. Let C E O-Cat be a category. A subcategory W c C then 
will be called closed (in C) if W consists exactly of those maps of C which go to 
equivalences under the functor p : C --, C[W-‘I. Similarly the closure of a subcategory 
W c C will be the smallest closed subcategory of C containing W. 

These definitions immediately imply 

3.5. Proposition. Let C E O-Cat be a category, W c C a subcategory and %% its 
closure. Then the induced map C[W-‘I-, C[c-‘1 is an equivalence. 

3.6. Corollary. Let Cc O-Cat be a category. Then the (equivalence classes of, 
localizations of C are in l-l correspondence with the closed subcategories of C. 

We end with observing that, although (see Cl]) the functor p : C+ C[W-‘1 in 
general does not preserve the homotopy type of the nerve, one has 

3.7. Proposition. If C = D * W, where W is a free category, then the map 

Np N(D * W)=A-C- NC[W-‘1 = NEW-‘1 = N(D * W[W-‘1) 

is a weak homotopy equivalence. 

Proof. This is easy to verify when C is a free category on one generator. The general 
case then follows using 2.3, 3.2 and the following 

3.8. Lemma. Let C = D * E. Then the inclusion 

NDUNE+N(D*E)=NC 

is a weak homotopy equivalence. 

Proof. If D and E are free, then this follows from 2.9. To prove the general case, one 
considers the commutative diagram (1.4 and 2.5) 

NF*D U NF,E - N(F,D * F,E) 

I I 
NDUNE-N(D*E)=NC 

and notes that 
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(i) The top map is a weak homotopy equivalence in view of 1.4 (vii) and the fact 
that the result has already been proved for the free case, and 

(ii) the vertical maps are also weak homotopy equivalences, in view of 1.4 (vii), 2.6 
and 2.7. 

4. The (standard) simplicial localization 

Now we tinally define the simplicial localization in a manner which is suggested by 
Propositions 2.6 and 3.7. We also list a few of the most immediate consequences of 
this definition and mention some (of course homotopically equivalent) variations. 

4.1. The (standard) simplicial localization. Let C E O-Cat be a category and W c C a 
subcategory. Then the (standard) simplicial localization of C with respect to W is the 
simplicial category L(C, W) E SO-Cat defined by (see 2.5 and 3.1) 

UC, W) = F*C[F*W_‘I. 

When no confusion can arise, we will abbreviate L(C, W) to LC. 
This definition immediately implies 

4.2. The simplicial localization has the (old) localization as its “category of 

components”. Forevery two objects X, Y E C, the components of LC(X, Y) are in l- 1 
correspondence with the maps X + YE C[W-‘I, i.e. 

TOLC = C[W_‘]. 

Combining 1.4 (vii) with propositions 2.6 and 3.7 one gets 

4.3. The simplicial localization preserves the homotopy type of the nerve. By this we 
mean that the obvious maps 

NC + NF,C --, N(F,C[F,W-‘I) = NLC 

are weak homotopy equivalences. 
Also easy to prove is 

4.4. Proposition. A map u : X + YE C is in W if and only if, for euery object V E C, 
“composition with u” yields isomorphisms 

LC(V, X) z LC( V, Y) and LC( Y, V) g LC(X, Y). 

Note that these maps are not isomorphisms if u is not in W, even if u is an 
equivalence. To prevent this from happening, one can assume that W is a closed 
subcategory (3.4) of C, which, in view of 5.1, is no serious restriction. 

We end with observing that there are, of course 
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4.5. Variations on the definition of simplicial localization. Let CE O-Cat be a 
category and W c C a subcategory. Moreover let BE SO-Cat be free (i.e. B is a free 
category in each dimension and all degeneracies of generators are generators), let 
V c B be a subcategory which is a free factor in each dimension and let S : B -, C E SO- 

Cat be a functor which sends all of V into W. If S : B --* C and its restriction S : V + W 

are both weak equivalences, then so are the obvious functors 

B[V-‘1 t diag F,B[F,V-‘I+ F,C[F,W-‘1 = LC. 

Proof. This follows immediately from homotopy Lemma 6.2, which in turn follows 
from Proposition 10.3. 

4.6. Example. Take, for instance, B = diag F,F,C and V = diag F,F,W. 

5. Some special cases 

We note (5.2) that, up to homotopy, the simplicial localizations of a category C are in 
l-l correspondence with the closed (3.4) subcategories of C, and show (5.3-5) that, in 
some extreme cases, the simplicial localization admits a simple description in terms 
of C and W. First the 

5.1. Closure lemma. Let C E O-Cat be a category, W c C a subcategory and W its 
closure (3.4). Then the induced functor L(C, W) + L(C, W) E SO-Cat is a weak 
equivalence. 

Proof. This is a special case of closure Lemma 6.4 which in turn is a consequence of 
Proposition 10.5. 

As in 3.6 the closure lemma implies 

5.2. Corollary. Let C E O-Cat be a category. Then the “weak equivalence classes” of 
simplicial localizations of C are in l-l correspondence with the closed subcategories 
of c. 

In the following situations the simplicial localization does not really yield anything 
new. 

5.3. The trivial case. If W contains only isomorphisms, then the functor ITO: LC+ 
C[W-‘1 is a weak equivalence. 

Proof. If W contains only identity maps, then LC = F,C and 5.3 reduces to 2.6. The 
general case now follows from 5.1. 
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5.4. The free case. if C= D * W, where W is a free category, then the functor 
7ro : LC -+ C[W-‘1 is a weak equivalence. 

Proof. This is not hard to prove using 2.6, 2.7, 3.2 and 6.2. 

More interesting is 

5.5. The “invert everything” case. If W = C and NC is connected, then 
(i) LC is a simplicial groupoid and hence the simplicial sets LC(X, Y) are all 

isomorphic, while the simplicial sets LC(X, X) are actually simplicial groups and are 
all isomorphic as such, and 

(ii) the classifying complex of LC(X, X) has the homotopy type of NC and each 
LC(X, Y) thus has the homotopy type of the loops on NC. 

Proof. Part (i) is trivial. To prove part (ii) note that, in view of 2.9 and 4.3, for every 
integer k 2 0, the universal covering map 

&F&F&-‘])+ N(FK[FK-‘I) 

is a principal fibration with a contractible total complex and with LC(X, X), as fibre 
over X. Together these maps form a bisimplicial map and the desired result now 
follows by taking the diagonal and using 4.3. 

6. A generalization 

As the simplicial localization goes from (pairs of) categories to simplicial cate- 
gories, it, not unexpectedly, admits the following 

6.1. Generalization. Let BE SO-Cat and let V c B be a subcategory. The simplicial 
localization of B with respect to V then is the simplicial category L(B, V) E SO-Cat 

defined by 

L(B, V) = diag F,B[F,V-‘I. 

Again, when no confusion can arise, we will abbreviate L(B, V) to LB. 
Clearly the category of components is the (old) localization 

TOLB = (7roB)[(im ?roV)-‘1 

and 4.3 readily implies that this simplicial localization also preserves the homotopy 
type of the nerve, in the sense that the obvious maps 

MS + NF,B + N(F,B[F,V-‘1) = NLB 

are weak homotopy equivalences. 
Another useful but not surprising property is formulated in 
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6.2. Homotopy lemma. Let A and BE SO-Cat be free (see (4.5)), let U c A and 
V c B be subcategories which are a free factor in each dimension, and let S : A + B E 
SO-Cat be a functor which sends all of U into V. If S: A-, B and its restriction 
S : U+ V are both weak equivalences, then so is the induced map A[U-‘I-, B[V-‘1. 

6.3. Corollary. Let A, BE SO-Cat, let UC A and Vc B be subcategories and let 
S: A+ B E SO-Cat be a functor which sends all of U into V. If S: A+ B and its 
restriction S : U + V are both weak equivalences, then so is the induced map LA -* LB. 

However less expected is 

6.4. Closure lemma. Let B E SO-Cat, let V c B be a subcategory and let 3 c B be the 
“TO-closure” of V in B, i.e. the counter image of 3 c rroB, where g denotes the 
closure (3.4) in 7roB of the image of aoV. Then the inclusion L(B, V)+ L(B, 3) is a 
weak equivalence. 

6.5. Corollary. The “weak equivalence classes” of simplicial localizations of a 
simplicial category BE SO-Cat are in l-l correspondence with the closed (3.4) 
subcategories of roB. 

The proofs of Lemmas 6.2 and 6.4 are non-trivial and will only be given in Section 
10, after the development of some more machinery in Sections 7-9. 

7. A homotopical algebra approach 

In the remaining sections of this paper we develop a homotopical algebra approach 
to the simplicial localization, which will put the results of the preceding sections more 
in perspective and simultaneously provide a proof for the not yet proven lemmas 6.2 
and 6.4. 

We start with the construction of 

7.1. A closed simplicial model category structure for SO-Cat. Consider the follow- 
ing three classes of maps in SO-Cat: 

(i) Weak equivalences (see 1.4). 
(ii) Fibrations. These are the maps A+ B E SO-Cat which, for every pair of objects 

X, Y E 0, induce a fibration of simplicial sets A(X, Y) + B(X, Y). 
(iii) Cofibrutions. These are the maps which have the left lifting property [lo, I, 

p. 5.11 with respect to those fibrations which are weak equivalences. 
One then has [lo, I, Section 41: 

7.2. Proposition. The category SO-Cat, with the above classes of weak equivalences, 
fibrations and cofibrations and with the obvious simplicial structure, is a closed 
simpliciai model category. 
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In fact one even has 

7.3. Proposition. The above closed simplicial model category structure on SO-Cat is 
proper, i.e. [2] whenever a square 

I 
c-c 

I I B 8’ 

D j l D’ 

in SO-Cat is 
(i) a pullback with g’ a fibration and i a weak equivalence, then i is a weak 

equivalence, and 
(ii) a pushout with g a cofibration and i a weak equivalence, then j is a weak 

equivalence. 

Proof. Part (i) is trivial (because simplicial sets form a proper closed simplicial model 
category), but part (ii) is not and its proof will therefore be postponed until the end of 
Section 8, after a more detailed investigation of pushouts. 

We end with a more useful description of cofibrations in SO-Cat than the above 
one. To formulate it we need the following two definitions. 

7.4. Free maps in SO-Cat. A map f : A+ BE SO-Cat will be called free if 
(i) f is l-l, 

(ii) in each dimension k, Bk admits a (unique) free factorization BI, = f(Ak) * Fk, 

in which FI, is a free category, and 
(iii) for each k SO, all degeneracies of generators of Fk are generators of FL+I. 

In particular, if A is the initialobjectofsO-Cat (i.e. A has only identity maps), rhenfis 
a free map if and only if B is free in the sense of 4.5. 

7.5. Strong retracts of maps. A map f: A+ B is called a strong retract of a map 
f’: A + B’ if there exists a commutative diagram 

id 
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The argument of [lo, II, p. 4.111 then yields the following 

7.6. Characterization of the cofibrations in SO-Cat. A map in SO-Cat is a cofibration 
if and only if it is a strong retract of a free map. In particular, an object in SO-Cat is 
cofibrant if and only if it is a retract of a free one. 

8. Pushouts in SO-Cat 

Our main object in this section is to show (8.1) that pushing out a cofibration has 
homotopy meaning in SO-Cat, and then use this to prove the second half of 
Proposition 7.3. 

8.1. Proposition. Let 

A-C A’- C’ 

II I 4 I 
B-D B’-D’ 

be a map between two pushout squares in SO-Cat, which induces weak equivalences 
A - A’, B - B’ and C - C’ and assume that f andf’ are cofibrations. Then the induced 
map D + D’ is also a weak equivalence. 

Proof. This follows immediately from 2.7 and the following proposition. 

8.2. Proposition. Let 

A-C 

f 

I I 
B-D 

be a pushout square in SO-Cat in which f is a cofibration and let (B, A, C) denote the 
simplicial object over SO-Cat (i.e. bisimplicial object over O-Cat) which, in dimension 
i, consists of the free product with (i + 2) factors 

(B,A,C)i=B*A*.***A*C 

and which has the obvious face and degeneracy operators [9, p. 691. Then the induced 

map 

diag(B, A, C) + DE SO-Cat 

is a weak equivalence. 
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Proof. In view of 7.6 we may assume that fis a free map. If A, B, C and D are discrete 
(i.e. in O-Cat), then there is a free category FE O-Cat such that B =F * A and 

D=F * C. Hence 

(B, A, C)i z F * A * * * * * A * C 

is a free product with (i + 3) factors and it is not hard to construct a contracting 
homotopy which contracts (B, A, C) onto D. The non-discrete case follows by a 
diagonal argument. 

Now we are ready for a 

8.3. Proof of the second part of 7.3. In view of 7.6 we may assume that g is a free 
map. Next one observes that each free map is the direct limit of a sequence offree maps 
in which all the non-degenerate generators are in the same dimension. Thus one only 
has to show that, given a free category FE O-Cat and a diagram in SO-Cat 

[ 10, Chapter II] 

FOd[k] -C I l C’ 

in which all squares are pushouts and i is a weak equivalence, then the map j is also a 

weak equivalence. But this now follows immediately from Proposition 8.1. 

9. Groupoid completions in SO-Cat 

Localization is a relatiue notion; it is defined for maps of SO-Cat. We therefore first 
discuss here the corresponding absolute notion, which is also called 

9.1. Groupoid completion. The groupoid completion of a simplicial category V E SO- 

Cat is the dimensionwise V-localization of V, i.e. the simplicial category V[V-‘]E 

SO-Cat obtained from V by formally inverting all maps. This definition readily 

implies that 

~0~~~v-'1~=~~0v~~~~0~~-*1. 

To obtain further results one has, however, to assume that V is cofibrant. 

9.2. Proposition. If VE SO-Cat is cofibrant, then the natural map V-, V[V-‘1 in- 
duces a weak homotopy equivalence NV - N(V[V-‘I). 

Proof. This follows by a diagonal argument from 7.6 and 3.7. 
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9.3. Proposition. A map U + V E SO-Cat between cofibrant objects induces a weak 
equivalence U[U-‘I- V[V-‘1 if and only if it induces a weak homotopy equivalence 
NU- NV. 

Proof. It is clearly no restriction to assume that NU and NV are connected. It then 
follows from 7.6 and the argument used in the proof of 5.5, that the simplicial sets 
U[U-‘1(X, Y) and V[V-‘1(X, Y) have the homotopy type of the loops on NU and 
NV respectively. The desired result now follows readily. 

9.4. Corollary. A weak equivalence U- VE SO-Cat between cofibrant objects 
induces a weak equivalence between their groupoid completions U[U-‘1 - V[V-‘I. 

Less obvious is 

9.5. Proposition. Let V E SO-Cat be @brunt. Then the natural map V+ V[V-‘1 is a 
weak equivalence if and only if ITOV is a groupoid. 

9.6. Corollary. Let U, VE SO-Cat be cofibrant and such that aoU and IT~V are 
groupoids. Then a map U-+ V E SO-Cat is a weak equivalence if and only if the 
induced map NU+ NV is a weak homotopy equivalence. 

Proof. The “only if” part is trivia1 since WO(V[V-‘I) is a groupoid. To prove the “if” 
part, one first constructs the simplicial set N(V, V) which has as k-simplices the 
sequences 

Xk4X&l4’ * *4x,4x_., 

of maps in Vk and which has the obvious face and degeneracy operators, and observe 
that the components of N(V, V) are contractible and are in l-l correspondence with 
the objects of V. Next one considers the map p : N(V, V) 4 NV obtained by omitting 
the “last map” and notes that, in view of the generalization of [9, Theorem 7.61 
described in [9, Section 121, the fact that rroV is a groupoid implies that the geometric 
realization of the map p : N(V, V) 4 NV is a quasi-fibration. Hence the intersection 
of the counter image of a vertex X0 E NV with the components of N(V, V) have the 
homotopy type of the loops on NV at X0. But it is easy to verify that these 
intersections consist exactly of the simplicial sets V(X,, Y), where Y runs through 
the objects of V. The desired result now follows readily from 9.2 and the argument 
used in the proof of 9.3. 

9.7. Remark. According to [lo, I, p. 4.21, Corollary 9.4 implies that the groupoid 
completion functor SO-Cat 4 SO-Cat has a total left derived functor Ho-SO-Cat 4 Ho- 

SO-Cat given by V 4 diag F,V[F,V-‘1. 
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10. Localizations in SO-Cat 

Finally we consider the notion of localization of maps in SO-Cat and obtain some 
of its basic properties, in particular Propositions 10.3 and 10.5, which immediately 
imply the not yet proven Lemmas 6.2 and 6.4. 

10.1. Localization. Given a map f : V+ BE SO-Cat, the V-localization of B (the 
mapfis understood) is the simplicial category B[V-‘1 E SO-Cat in the pushout square 
in SO-Cat 

v - V[V_‘1 

B - B[V-‘1 

This definition readily implies 

m(B[V-‘I) = (qB)[(m,V)-‘I= (roB)[(im 7&-‘] 

To obtain further results one has, however, to assume that V and B are cofibrunt 
and that f is a cojibration, (such an f will be called a strong cofibrution). 

10.2. Proposition. If V+ B E SO-Cat is a strong cofibration, then the natural map 
B --* B[V-‘1 induces a weak homotopy equivalence NB - N(B[V-‘I). 

Proof. This follows, by a diagonal argument, from 7.6 and 3.7. 

10.3. Proposition. Let 

u-v 

I I 
A-B 

be a commutative diagram in SO-Cat in which the horizontal maps are weak 
equivalences and the vertical maps are strong cofibrations. Then the induced map 
A[U-‘I+ B[V-‘1 is also a weak equivalence. 

Proof. This follows immediately from 9.4 and 8.1. 

Less obvious is 

10.4. Proposition. Let V + B E SO-Cat be a strong cofibration. Then the induced map 
B + B[V-‘1 is a weak equivalence if and only if every map of mB which is in the image 
of q,V is invertible. 
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Proof. The “only if” part is trivial. To prove the “if” part we first consider the special 
case that mB is a groupoid, in which case the desired result follows from 9.6 and 10.2. 
To prove the general case consider the subcategory A c B consisting of all the maps 
which project to invertible elements of aoB and construct a commutative diagram 

V, -A,-B, 

j I id. i 

V-A-B 

in which 
(i) the bottom map V+ B is the given one, 

(ii) the vertical maps are weak equivalences, and 
(iii) the top maps are strong cofibrations. 

In view of (ii) and 10.3 it then suffices to prove that the induced map B, + B,[V;‘] is a 
weak equivalence, but this follows readily from the special case considered above 

(GROAN =rTTOA is a groupoid), 7.3 (ii) and the fact that (in view of (iii) the following 
diagram is a pushout 

A, - A,[V;‘] 

B, - B,[V-‘1 c 

Now we are ready for 

10.5. Proposition. Given a commutative diagram in SO-Cat 

u\ I 
f 

/ B 

8 
V 

in which f and g are strong cofibrations, then the induced map B[U-‘I+ B[V-‘1 is a 
weak equivalence if and only if 

im aog c imf 

i.e. the image of noV in roB is contained in the closure (3.4) of the image of woU in 

TOB. 
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Proof. The “only if” part is trivial. To prove the “if” part of we may assume that the 

map U + V is also a strong cofibration. Then the diagram 

V[W] ------qv-‘1 

I I 
B[U-‘1 p B[V-‘1 

is a pushout in which the map on the left is a cofibration. Construct a commutative 

diagram 

Y l B[U-‘1 

in which the horizontal maps are weak equivalences and the map on the left is a 

strong cofibration. In view of 9.6 and 10.2, the induced map X[X-‘I+ V[V-‘1 then is 

a weak equivalence and hence (8.1) so is the induced map Y[X-‘1 --f B[V-‘I. It thus 

remains to show that the induced map Y +Y[X-‘1 is a weak equivalence, but this 

follows immediately from the fact that the map X+ Y satisfies all the conditions of 

10.4. 

10.6. Remark. Let SO-Cat’ denote the category of maps in SO-Cat. Then [2] the 

closed model category structure on SO-Cat induces one on SO-Cat’ in which the weak 

equivalences are the obvious maps and the cofibrant objects are the strong cofibra- 

tions of SO-Cat. According to [lo, I, p. 4.21 Proposition 10.3 then implies that the 

localization functor so-Cat’+ SO-Cat has a total left derived functor Ho-SO-Cat’ + 

Ho-SO-Cat. 
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