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 CLASSIFYING SPACES OF TOPOLOGICAL MONOIDS AND

 CATEGORIES

 By Z. FIEDOROWICZ

 0. Introduction. In recent years, a number of curious and seem-

 ingly paradoxical properties of the bar constuction have come to light.

 These results have the general form that, in certain situations, the bar con-

 struction on a topological group, monoid, or category can be largely inde-

 pendent of the topological structure of the underlying object. Among the

 most prominent of these results is that of Thurston [28] which states that if

 G = Homeo(M) is the topological group of self-homeomorphisms of a

 compact manifold and G& is the same group endowed with the discrete

 topology, then BG6 -+ BG is a homology equivalence (cf. also MacDuff
 [16]). In a similar spirit there are two rather amazing results, due to Kan-

 Thurston [14] and MacDuff [15], that given any connected CW complex X

 there is a discrete group G and a homology equivalence BG -+ X and a
 discrete monoid M and a homotopy equivalence BM - X. Most recently

 Friedlander and Milnor have conjectured that for any Lie group G,

 BG- BG is a homology equivalence with finite coefficients.
 This paper analyzes in detail one particular class of these phenomena,

 the case when BM6 -+ BM or BC 6 -+ BC is a weak homotopy equivalence
 for a topological monoid M or a topological category C. The author's inter-

 est in this sort of phenomenon arose in trying to understand

 Waldenhausen's work on the algebraic K-theory of spaces (cf. [30]). If X is

 a connected space, Waldhausen considers the topological category C,,k of
 G-equivalences of spaces having the homotopy type of G + A V kSn, where

 G is the Kan loop group of X. He then defines the algebraic K-theory A(X)

 in various ways, among them (1) A(X) = Z X limnk(BC6 ,k) and (2)

 A(X) = Z X lim nk(BCn,k)+. Here Cn,k is the discrete category obtained
 from Cn,k by discarding the topology on the function spaces of Cn,k. Both
 of these definitions play an important role in Waldhausen's theory: (1) is

 required to compare A(X) with Hatcher's higher simple homotopy theory;

 Manuscript received September 5, 1980.
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 302 z. FIEDOROWICZ

 (2) is required to relate A(X) to something whose (rational) homotopy

 groups can be computed (cf. [30], [26], [18], [8], [10]).

 This paper consists of eight sections. The first three deal directly with

 questions relating to the equivalence of these two definitions of A(X). In

 the first section we derive a criterion for a category C and its discretization

 C 6 to have equivalent classifying spaces (Theorem 1.2). In the second sec-
 tion we apply that criterion to the case Waldhausen considers (Theorems

 2.1, 2.2). Proceeding further along these lines we obtain that the topologi-

 cal monoid H(X) of self-equivalences of X has the same weak homotopy

 type as the discrete monoid limn H(X X I') 6 (Theorem 2.4). In the third
 section we give an analogous procedure for replacing any topological mo-

 noid whatsoever by a discrete monoid with equivalent classifying space

 (Theorem 3.4). This gives an alternate proof of the aforementioned result

 of MacDuff that for any path connected space there is a weak equivalence

 BM - X with M a discrete monoid. Our method moreover gives a some-

 what stronger result: M is a functor of X and the weak equivalence is natu-

 ral (Theorem 3.5).

 Sections 4 and 5 deal with the question of determining the homotopy

 type of the classifying spaces of amalgamated free products of discrete mo-

 noids. Here we establish the analog of J. H. C. Whitehead's classical theo-

 rem that the classifying space of an amalgamated free product of discrete

 groups is the pushout of the classifying spaces of the factors (Theorem

 4.1). We also give a "flat mapping cylinder" construction for discrete mo-

 noids (Proposition 4.5) which can be used along with the result on amalga-

 mated free products of monoids to furnish another proof of MacDuff's

 result, along the lines of Kan-Thurston (Theorem 4.7).

 In section 6 we use the results of the preceding two sections to give a

 simple proof of the folklore result that the classifying space of the James

 construction JX on any space X has the homotopy type of EX (Theorem

 6.10). We also introduce a Moore suspension functor Z left adjoint to the

 Moore loop functor A and obtain a natural homorphism of topological mo-

 noids JX -- AEX which is an equivalence if X is path connected and a
 "group completion" otherwise. This is a sort of natural monoidal version

 of James' classical result.

 The last two sections deal with the following question: How can we

 characterize the classifying space construction as a functor on the category

 of topological monoids? This is not merely an academic question, since in

 addition to the bar construction and its minor variants, there is another

 family of classifying space functors based on the two sided bar construction
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 CLASSIFYING SPACES 303

 of Beck and May. This latter family of constructions is the basis of May's

 theory of iterated loop spaces and is connected with other important topics
 in homotopy theory such as homology operations and stable splittings of
 free loop spaces. In [27], Thomason compared these two types of classify-
 ing space constructions and showed that they are naturally weakly equiva-

 lent. Unfortunately Thomason's proof is rather long and complicated. In

 section 7 we show how the ideas of section 6 can be used to streamline and
 simplify Thomason's arguments. Finally in section 8 we take another ap-
 proach to this question and derive a definitive axiomatic characterization

 of classifying space functors. Our main result (Theorem 8.5) says that clas-

 sifying space functors on topological monoids are completely determined
 by their restrictions to the category of discrete free monoids.

 Let us proceed to fix some conventions. Throughout the paper we take
 the word equivalence to mean weak homotopy equivalence. All spaces will
 be taken to be compactly generated weak Hausdorff. Products and func-

 tion spaces will be topologized appropriately to stay in this category. All
 based spaces will be assumed to have non-degenerate basepoints. All sim-
 plicial spaces considered will be taken to be proper: that is we assume that

 all the degeneracy maps are cofibrations. Whenever this is not obvious we
 will comment as to why our simplicial constructions are of this type. We
 collect here for general reference some basic properties of geometric real-
 ization.

 LEMMA 0. (a) Let f *: X* -+ Y* be a map of proper simplicial
 spaces such that each f,, :X,, -- Y,, is a (weak) homotopy equivalence.
 Then If*I : IX*|I - Y*I is a (weak) homotopy equivalence.

 (b) Realization commutes with fiber products:

 Ix* Xz* Y*I _ IX*I x 1Z*1 I Y*I

 (c) If X is a topological space regarded as a constant simplicial space
 (i.e. X,, = X all n and all the faces and degeneracies are identity maps)
 then IXI X.

 (d) If X** is a bisimplicial space, there are natural homeomorphisms

 Im a In *XmnII I Im +XmmI, - In a Im F-*XmnII

 (e) If X* is a based proper simplicial space such that each X,n is path
 connected, there is a natural weak equivalence I n * Q2Xn I Q IX* I
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 304 Z. FIEDOROWICZ

 (f) If X* is a based proper simplicial space such that each Xn is path
 connected, there is natural homomorphism of topological monoids

 In + AX,, I A X* I which is also a weak equivalence. Here A denotes the
 Moore loop functor.

 For proofs, the reader is referred to [25; Appendix A] or [20; Appen-

 dix] (cf. also [5; Appendix, Proposition 4.8]) for part (a). The reference for

 parts (b) and (c) is [21; 11.6, 11.8]. A convenient source for (d) is

 [23; page 10]. For (e) the reader should consult [2]; Theorem 12.3]. Part

 (e) also follows from the fact that geometric realization preserves fibrations

 over a path connected base (cf. [29; Lemma 5.2], [21; Theorem 12.7] or

 [1], [7] for more general versions). Finally (f) is a slight modification of (e).

 I would like to take this opportunity to express my thanks to Peter

 May, Mark Steinberger and Bob Thomason for many stimulating discus-

 sions which contributed to the writing of this paper. I would also like to

 thank the referee for suggesting numerous improvements in the original

 draft.

 2. A discretization criterion for topological categories. In this sec-

 tion we derive a general criterion for determining when a topological cate-

 gory C and its discretization C 6 have equivalent classifying spaces. While

 our applications will deal with topological categories having a discrete

 space of objects, our discretization criterion is equally easy to state and

 prove in the more general setting.

 However we do need to impose one important restriction on the type of

 topological categories C we consider. In order for BC to be a proper sim-

 plicial space it is necessary to require that the map which assigns to each

 object the identity map associated to the object be a closed cofibration

 from the space of objects to the space of morphisms. Note that this is a

 nonvacuous assumption even when C has a discrete space of objects. If C

 does not satisfy this condition, then we can rectify this by "growing a

 whisker" from each identity of C. More precisely we consider the category

 e X Iwhere Ob(C X I) = Ob C and Mor(C X I) = (Mor C) X Iwith the

 obvious source and target maps. Composition in C X I is defined by

 (f, s) * (g, t) = (f *g, st) whenever f *g is defined in C. The identities of
 e X I are the morphisms of the form (id, 1). We now take C' to be the

 subcategory of e X I having the same objects as C and whose morphisms

 have one of the forms (f, 0) or (id, t) t E l. Then C' satisfies the cofibration

 condition on identities and the projection C' -+ C is an equivalence of
 topological categories.
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 CLASSIFYING SPACES 305

 We shall henceforth assume in this section and the succeeding ones

 that our topological categories shall have cofibered identities or that the

 above whiskering construction has been employed prior to taking classify-

 ing spaces. We will use the notation B *C for the nerve of the category C
 and BC = IB*C for the classifying space of C. We will denote by e 6 the

 discretization of the topological category C (i.e. we discard the topology on

 both objects and morphisms of C).

 Our discretization criterion is based on the following function space

 construction for categories.

 Definition 1.1. Let C be a topological category and let X be a

 topological space. The function category ex is the category with objects

 (Ob C)x (i.e. continuous functions X -+ Ob C) and morphisms (Mor C)x.
 The source, target, identity and composition of Cx are those induced

 from eC by passage to function spaces.

 The construction Cx is a covariant functor of C and a contravariant

 functor of X. In particular there is a natural functor

 induced by the constant map.

 In the following theorem and throughout the paper, we use the nota-

 tion Ito denote the unit interval, A' to denote the standard n-simplex, and

 J to denote the functor (*) above. In this notation our discretization crite-

 rion may be started as follows:

 THEOREM 1.2. Let C be a topological category. Suppose that for
 every n

 JC : (C Ay)

 induces an equivalence of classifying spaces. Then the natural map

 BR6 -- BC is an equivalence.

 Proof. Construct a discrete simplicial category 6 6 such that
 ( = (CA,n)6 and whose faces and degeneracies are induced by the edges
 and collapses of the standard simplex.

 The nerve of the simplicial category C 6 is a bisimplicial set which in

 bidegree (m, n) is

 ((Mor C X Ob e Mor C X Ob e ... X Ob e Mor ),)A.

 m factors
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 306 Z. FIEDOROWICZ

 By Lemma 0(d) its geometric realization BC , = I B *C * I is homeomor-

 phic to I m + TBm C I where TBm C, is the geometric realization of the total
 singular complex of the space of m- simplices of the nerve B * C. By Lemma

 0(a), since the natural map TBm C Bm C is an equivalence, so is the
 induced map BO -* BC.

 The inclusion of vertices C 0 -? 6 is the functor

 ja : Ca (CAn)6.

 By assumption, it induces an equivalence of classifying spaces. It follows

 (Lemma 0(a), (c)) that the induced map BCa BC 6 is an equivalence.
 Combining all the information above we obtain that the functor C a Ce
 induces an equivalence

 BCa -+ BC.

 Remark 1.3. What happens to the above argument when C does not

 satisfy the cofibration condition on identities? Well the discrete categories

 a 6, (,An)6 are perfectly fine in this regard. On the other hand consider the

 category C' obtained by whiskering C. The functor C' -+ C induces a
 homotopy equivalence TBm C' TBm C for all m (notation as in the proof
 above) and hence an equivalence B(eC)6 BC*6. Under the hypothesis
 of Theorem 1.2 one therefore has a chain of equivalences

 BCa -+ BC*6 B(eC)6 -+ BC'

 COROLLARY 1.4. Let C be a topological category and let C a denote

 its discretization. Then the natural map BC a - BC is an equivalence un-
 der either of the following two circumstances:

 (i) For each n there is a functor

 K :(CIn)6 _, Ca

 such that the composite

 (C n)6 K C J- (C n)6

 induces an equivalence on classifying spaces.
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 CLASSIFYING SPACES 307

 (ii) There is a continuous functor

 K: e'- e

 and a (continuous) natural transformation between

 1K eJ I

 and the identity functor.

 Proof. Since A' is homeomorphic to I, there is an isomorphism of

 topological categories CI" = ,Btn. In view of Theorem 1.2 it suffices to
 show that for each n

 jb: e _+ (CIn)b

 induces an equivalence of classifying spaces. Moreover any map * In
 induces a functor

 S: (C In)_ ,

 such that SJa is the identity functor on e 6. Clearly then, under the hypoth-
 esis of (i), Ja induces an equivalence.

 Now suppose that (ii) holds. Observe that there is an obvious isomor-
 phism of topological categories (C')'n _ In+l. Hence by iteration (and
 functoriality in the function space variable) we obtain a functor

 K': eCn _+

 and a natural transformation between JK' and the identity of C ' . We
 conclude that (i) holds and hence we get the required equivalence.

 2. Categories and monoids of homotopy equivalences. In this sec-

 tion we apply our discretization criterion to categories and monoids of self-
 equivalences, and consider some questions raised by those aspects of
 Waldhausen's work discussed in the introduction. The reader should be
 forewarned that in the statements of the results below we are implicitly
 using the conventions adopted in section 1 to deal with cofibration prob-
 lems.
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 308 Z. FIEDOROWICZ

 THEOREM 2.1. Let C be a topological category whose objects are a

 set of topological spaces and whose morphisms are all the homotopy equiv-

 alences between these spaces. (The morphisms in e are given the function

 space topology). Then BCa and BO have the same weak homotopy type

 provided thefollowing condition holds: If X is an object of C, then C also

 contains an object homeomorphic to X X L

 Proof. We apply Corollary 1.4(ii): it suffices to construct a continu-

 ous functor

 K:e'-- e

 and a natural transformation from the identity of C' to the composite JK.

 Since C has a discrete set of objects, C' has the same objects as C. We

 may regard a morphism from X to Y in C'I to be a map F: I X X -X Y. The
 compositeofF:I X X- YandG:I X Y- ZisthemapH:I X X -Z
 where

 H(s, x) = G(s, F(s, x))

 The functor K: C' -+ e is defined by K(X) = X X I on objects. On

 morphisms, given F: I X X -+Y we define K(F): X X I -+ Y X I by
 K(F)(x, t) = (F(t, x), t). We define the natural transformation

 U: id,e -+ JK

 to be given by the map U: I X X -+ X X I = JK(X) where U(s, x) = (x, s).
 It is easy to check that the diagram

 X - JK (X)

 | F | JK(F)

 Y- 30 JK(Y)

 commutes:

 U(s, F(s, x)) = (F(s, x), s) = JK(F)(s, (x, s)) = JK(F)(s, U(s, x)).

 This completes the proof.
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 The above argument is based on ideas of Mark Steinberger and Bob

 Thomason. This kind of result also appears in a simplicial setting in

 Dwyer-Kan [11].

 There are numerous variations of this theorem: e.g. based versions,

 equivariant versions, etc. The particular variation which is directly rele-

 vant to Waldhausen's work on the algebraic K-theory of spaces is the fol-

 lowing.

 THEOREM 2.2. Let G be a topological group. Let C be a topological

 category whose objects are a set of based G-spaces and whose morphisms

 are all the based G-equivariant homotopy equivalences between these

 spaces. (The morphisms are given the function space topology.) Let C 6
 denote the discretization of e. Then Be& and Be have the same weak ho-

 motopy type provided thefollowing condition holds: If X is an object of C,

 then e also contains an object G-homeomorphic to X A I+ = X X I/* X I

 (with G acting trivially on I).

 The proof of Theorem 2.2, like that of many other variants, follows an

 identical pattern to that of Theorem 2.1.

 Before proceeding on, we draw the following curious consequence of

 Theorem 2. 1, which was pointed out to me by M. Steinberger. For a topo-

 logical space X, let H(X) denote the topological monoid of self homotopy

 equivalences of X.

 COROLLARY 2.3. Let M be a Hilbert cube manifold and let H(M)6

 denote the discretization of H(M). Then BH(M)6 -+ BH(M) is a weak ho-
 motopy equivalence.

 Proof. By the stability theorem for Hilbert cube manifolds (cf. [2])

 we have M X I _ M. Hence we can apply Theorem 2.1 to the topological

 category whose single object is M and whose morphisms are the self equiv-

 alences of M (with the function space topology).

 A similar sort of argument can be applied to the self equivalences of

 any topological space X. For if Q denotes the Hilbert cube, then arguing as

 above we see that BH(X X Q)6 has the same weak homotopy type as

 BH(X X Q) and hence also as BH(X).

 Now what all the preceding results show is that if we have a topologi-

 cal category or monoid which is "stable" with respect to the functor
 - X I, then the weak homotopy type of the classifying space of that cate-

 gory or monoid does not depend on the underlying function space topology
 on the morphisms. This suggests the following theorem.
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 310 Z. FIEDOROWICZ

 THEOREM 2.4. Let X be a topological space. Let the map H(X)

 H(X X I) be given by f a-* f X 1 and let M(X) be the colimit of the
 sequence

 (* H(X) c+H(X x I) c+H(X X I2) *)+
 Then there is an equivalence BM(X) 6 -+ BH(X), where M(X) 6 denotes the
 discretization of M(X).

 Proof. Clearly the inclusion map H(X) c M(X) is an equiva-
 lence and hence induces an equivalence on classifying spaces (by
 Lemma O(a), (b)).

 It therefore suffices to show that BM(X) BM(X) is a weak homot-
 opy equivalence. We do this by applying Theorem 1.2. We regard mo-

 noids, such as M(X), as categories with a single object.

 By Corollary 1.4 it suffices to show that for all m there is a functor

 ( K: M(X)Im - M(X)

 such that the composite

 (M(X),M) ),5 M(X)6 J') (M(X)IM)'5

 induces an equivalence on classifying spaces.

 We begin by noting that since Im is compact, M(X)Im may be re-
 garded as the colimit of the sequence

 H(X)Im c H(X X I)Im c H(X X I2)Im ', *

 We construct functors

 Kn: H(X X In)Im -+H(X X Im +n)

 as follows. As in the preceding proof, we consider the elements of

 H(X X In)Im to be maps F :Im X X X In - X X In with composition
 given by

 (G * F)(s, x, t) = G(s, F(s, x, t))
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 CLASSIFYING SPACES 311

 We define

 Kn(F)(X, tl, t2, s tm+n)

 =(Fl (tl, * .. * tm 9 Xg tm+ls * .. 9 tm+n)g tls * .. . tms

 F2(tl 9 . . .9 tm 9 Xg tm+ls * .. * tm+n)).

 It is easy to see that the K, 's are a compatible family of functors and thus
 define a functor K: M(X)Im -+ M(X).

 We construct natural transformations U,, (not a compatible family)
 from the inclusion functor

 H X XIn )Im Sn,m HXX I m+n )Im

 to the composite

 H(X X In)Im -n H(X X Im+n) J H(X X im+n)Im

 by specifying Un Im X X X Im+n X X Im+n by the formula

 Un (S1 S2, * . *, Sm, X, tl, t2, . ..., tm+n)

 = (X, Sl, S2, * , Sm, tl, t2, *, tn)

 It is easy to see that the following diagram commutes for any element

 FEH(X X In)Im

 Un

 Sn,m(F) JKn(F)

 Un

 We now observe that the inclusion functor

 R n H(X X IJn)Imi M(X)Im
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 312 Z. FIEDOROWICZ

 factors as the composite

 H(X XIn)Im H(Xm X Im+n)Im m+n M(X)m,

 while the composite

 H(X X In)Im i KI , H(X X Im+n) H(X X im+n)Im

 Rm- M(X)'M

 can also be written as the composite

 H(X X in)Im Rn 4M(X)Im K MM JM(X)

 Therefore Rm+n Un is a natural transformation Rn -b JKRn . This implies
 that the classifying map of the composite

 (M(X)I K MmX I J (M(X) IM) I

 is weakly homotopic to the identity map (i.e. homotopic on compact sub-
 spaces of BM(X)b), and hence is an equivalence as desired.

 We conclude this section with an application of our discretization

 criterion to Andre homology, which was brought to my attention by Em-

 manuel Dror. Let X be a topological space. Let 91Z denote any set of topo-
 logical spaces having the following properties

 (i) If M E 91Z then M is contractible

 (ii) If M E em then M X I E 91Z (up to homeomorphism).

 The standard example is 91Z = { IA n 2 0 }. Let C(X)b denote the discrete

 category whose objects are maps {M XI M E 91Z }. Morphisms in C (X)b
 are commutative diagrams

 x
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 CLASSIFYING SPACES 313

 Let T: C(X)b -+ Iso(Ab) be a functor with values in the category of abelian
 groups and isomorphisms. Then Andre (cf. [32]) defines a chain complex
 A *(X; T) by

 A,,(X;T) i) T(MO- X)
 MO-Mv * * -Mn

 with differentials given as the alternating sum of faces, with the i-th face

 given by dropping Mi (and applying the functor T if i = 0). The Andre
 homology H*A(X; T) is defined to be the homology of this chain complex

 and it fits in a broad categorical framework. We also note that the functor
 T defines a local coefficient system T on X as follows. We pick a fixed

 object Mo E 9M1. To each point x E X we assign the abelian group

 T(c : Mo -b X) where cx is the constant map at x. To each path a: I X
 we assign the isomorphism

 io

 /MO MO xi

 T(Cca(O) MO X) T(& :Mo X I X)

 /MO MO xi

 -T(c (1) : Mo - X)

 where it :Mo - Mo X I, &:Mo X I X are given by it(m0) = (mi0, t),
 &(mo, t) = a(t) respectively. It is easy to see that this assignment gives a
 local coefficient system T on X which (up to isomorphism) does not depend

 on the choice of Mo. We now use Corollary 1.4 to give a simple proof of the
 following theorem of Andre [32, p. 48].

 THEOREM 2.5. There is a natural isomorphism

 H*j(X; T) H*(X; T).

 Proof. Consider the topological category e(X) where the objects and

 morphisms of e(X)b are endowed with the function space topology. Then
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 314 Z. FIEDOROWICZ

 there is a continuous natural transformation K: e(X)' -b e(X) which as-

 signs to each parametrized family of objects I -+ Ob e(X) = 11 Mew Xm
 the adjoint map M X I -+ X regarded as an object in e(X) and to each

 parametrized family of morphisms I -b Mor e(X) = L M,M'cs
 M'M X XM' the corresponding adjoint diagram

 M X I -M' X I

 x

 regarded as a morphism in e(X). It is easy to see that K satisfies the hy-

 pothesis of Corollary 1.4(ii) and hence Be(X)b -+ BCe(X) is an equivalence.
 Next let (?'(X) denote the full subcategory of e(X) whose objects are all

 the constant maps {c, : M - X IM e MZ }. Then it follows immediately
 from the contractibility of the objects of 9MZ and Lemma 0(a) that

 BC'(X) r > BC(X) is an equivalence. Now consider the topological cate-

 gory DC whose objects are the points of X and whose morphisms are the

 identities. Then the functor DC - C '(X) which assigns to each object x of

 9X the object c,: Mo -b X evidently induces an equivalence X =
 B9C- Be '(X).

 We thus obtain a natural chain of equivalences

 X = BX -+ BC'(X) ^ - BC(X) +- BC(X)b.

 Now the functor T: C(X)b -+ Iso(Ab) defines a local coefficient system T
 on Be (X)b and it is easy to see that T corresponds under the above chain of

 equivalences to the system T on X. Thus we get a natural isomorphism

 H*(X; T) -H*(BC(X)b; T). But the Andre chain complex A *(X; T) is
 evidently the same as the cellular chain complex C*cell(BC(X)b; T), so

 H*(BC(X)b; T) = H*A(X; T). This completes the proof.

 3. Discretizing topological monoids. In this section we construct an

 analog of the stabilization procedure of Theorem 2.4 thus obtaining a

 functor which replaces any topological monoid by a discrete monoid whose

 classifying space has the same weak homotopy type. Specializing to the

 case of Moore loops, we recover MacDuff's result that any connected CW
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 CLASSIFYING SPACES 315

 homotopy type can be realized as the classifying space of a discrete mo-

 noid.

 As usual we restrict our attention to topological monoids for which the

 unit element is a nondegenerate basepoint.

 The following wreath product construction serves as the basis of our

 replacement procedure.

 Definition 3.1. Let M, N be topological monoids. Suppose N acts

 from the left on a space X. The wreath product N 5 Mx is the following

 topological monoid

 (a) NSMX = N X Mx as a space
 (b) multiplication in N 5 Mx is defined by

 (a, f )(f, g) = (af3, u)

 where u(x) = f (fx) * g(x)

 (c) theunitofNSMxis(1, c)wherec(x) = 1 forallx eX.

 In the case when N is a finite permutation group acting on a finite set

 X, our construction N 5 Mx is the usual wreath product N 5 M.

 We next make an observation on constructing maps between wreath

 products.

 Observation 3.2. Let N -+ N' be a homomorphism of topological
 monoids. Let X be an N-space, X' and N' space and r: X' -+ X a map
 such that

 r(O(n)x') = nr(x') Vn eN, x' eX'

 Then the map r 5r*: NSM' - N5S Mx' given by

 ( r*)(a, f ) = (O(a), f * r)

 is a homomorphism of topological monoids.

 Example 3.3. (1). Let X be an N space, {1} the trivial monoid.

 Then : { 1 } -+ N and idx: X -+ X satisfy the hypothesis, so there is an
 induced homomorphism

 idx:Mx -+ N MX
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 (2) Letr : X X I -X be the projection, and let :H(X) - H(X X I)
 be given by +(a) = a( X 11. Then

 r('X(a)(x, t)) = ir(ax, t) = ax = ir(x, t)

 Hence there is an induced homomorphism

 4 W *: H(X) MMX cH(X X I) |MXXI

 Using these constructions we produce the desired procedure for con-

 verting topological monoids into discrete monoids with equivalent classify-

 ing spaces. Since the argument is basically a reprise of the proof of Theo-

 rem 2.4, we shall be content to sketch a brief outline leaving details to the

 diligent reader.

 THEOREM 3.4. Let M be a topological monoid. Let H(In) denote the

 topological monoids of self-equivalence of the n-cube. Let M denote the

 colimit of the sequence

 M C-- H(I) |MI c-., H(I2) |MI2

 (where the maps are as in 3.3(2) above). Then there is an equivalence

 BM? -) BM.

 Proof. Since the inclusion M c M is a homotopy equivalence, it
 suffices to show BM? is weakly equivalent to BM.

 As in the proof of Theorem 2.4, it suffices to produce two pieces of

 data:

 (1) a compatible family of functors (i.e. homomorphisms)

 Kn: (HIn) M -IN H(I m +n ) |MM

 where m is a fixed nonnegative integer and n 2 0.

 (2) a (incompatible) family of natural transformations Un from the
 inclusion functor

 Sn,m (H(In) V M (H(In+m) f Min+m)
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 to the composite

 (HnI ) Mjn) n H(Im+n) MIm+n

 O (H(Im+n) t MIm+n)

 We denote elements of (H(P) 5 MP)` as parametrized families of

 elements (cis, f)M s E Im in H(In) 5 MIn. In this notation we define Kn by
 the formula

 Kn (Cisfs) = (,f)

 where &x: Im X In I+ m X In is given by

 O0(s, t) = (s, cs(t)) s EIm , t EIn

 andwhere f :Im X In - Mis givenby

 f (s, t) = fs(t)

 It is easy to check that the Kn are a compatible family of functors and thus
 define a functor

 K M' M

 We now define an element (us, is) E (H(Im+n)SMIm+n)Im with
 us :Im+n jm+n given by

 Us(tl, t2, * *., tm+n) = (S1, S2, ., Sm, tl, t2, ... * tn)

 and is :Im+n M given by

 is(t1, t2, ** tm+n) 1

 It is easily checked that the following diagram commutes for any element

 ((cis 9s (H(In) IMjn) Im

 (US 9 is)

 Sn,m(cis,fs) | JKn(cixsfs)

 (us ,is)

 The rest of the argument then follows the pattern of the proof of Theorem

 2.4.
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 An immediate consequence of Theorem 3.4 is the following functorial

 and natural version of MacDuff's result on the homotopy type of classify-

 ing spaces of discrete monoids.

 Let 1 8 denote the category of discrete monoids and 30 the category of
 based path connected spaces.

 THEOREM 3.5. There is afunctor D:3 o b and a chain of natu-

 ral equivalences

 BDX X

 Thus every path connected space has the weak homotopy type of the classi-

 fying space of a discrete monoid.

 Proof. Let AX denote the topological monoid of Moore loops on X.

 According to [19; Lemma 15.4] there is a natural equivalence

 t :BAX -+ X

 Let AX, AXb be as in Theorem 3.4. Obviously AX, AXb are functors of X

 and we have a natural chain of equivalences

 BAXBAX -BAX- X

 Hence we can define DX = AXb.

 4. The classifying spaces of pushouts of discrete monoids. In this

 section we extend a result of J. H. C. Whitehead [31] on the classifying

 spaces of amalgamated free products of discrete groups to the case of dis-

 crete monoids and discuss its relation to Theorem 3.5. This result will also

 play a crucial role in our axiomatic characterization of classifying space

 constructions on topological monoids.

 Of course, Theorem 3.5 is strongly reminiscent of the result of Kan

 and Thurston [14], which states that, for any path connected space X,

 there is a discrete group G and a homology equivalence BG -b X. One of
 the main ingredients in their proof is the following result.

 THEOREM 4.0 (J. H. C. Whitehead). Let K = 11 {G Hi HiEj be a
 pushout diagram of discrete groups with each Xi a monomorphism. (i. e. K
 is thefree product of the Hi's amalgamated over G.) Then the natural map

 I BGBHi -+ BK

 is a homotopy equivalence.
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 The corresponding result for discrete monoids, which will be proved
 in the next section, is

 THEOREM 4.1. Let P = 11 { W I Mi }iec be a pushout diagram of
 discrete monoids. Assume that

 (i) all the i's are injections

 (ii) the monoid ring Z[Mi] is flat as a left Z[W] module for all i

 Then the natural map

 11 BWBMi -+ BP

 is a homotopy equivalence.

 A special case of Theorem 4.1 was proved by MacDuff in [15].

 Remark 4.2. The proof of Theorem 4.1 will show that if hypothesis
 (i) is deleted while (ii) is retained, then we obtain that the natural map of

 the homotopy pushout of the BMi's over B W into BP is a homotopy equiv-
 alence.

 Remark 4.3. In the case of groups, hypothesis (i) implies (ii). For
 monoids however flatness phenomena over the monoid ring appear to be
 much more complex and seem to play a very important role in determining

 the homotopy type of the classifying space. For instance it is well known

 that, for a discrete monoid M, 7riBM = 0 for i 2 2 if M is either a group or
 a commutative monoid [17]. On the other hand, according to Theorem
 3.5, ir1BM can be anything at all in general. The following result accounts
 for this startling difference.

 PROPOSITION 4.4. Let M be a discrete monoid and let GM be the
 nonabelian Grothendieck group of M (i.e. GM is thefree group on M mo-
 dulo relations of the form [m1m 2] = [im 1 ][m2 ]). Then the following state-
 ments are equivalent:

 (i) riBM = Ofor i 2 2

 (ii) BM BGM is an equivalence
 (iii) Torz[M](Z, Z[GM]) = Ofor all i 2 1.

 Proof. It follows from the standard calculation of the fundamental
 group of a reduced simplicial set that ir1BM = GM. It follows that
 (i) X (ii). Next one observes that the universal covering space of BM is the

 two-sided bar construction B(*, M, GM) (cf. [19]). To see this, it suffices
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 to note that GM = ir1BM acts freely on B(*, M, GM) with orbit space

 B(*, M, *) = BM. If C*( ) denotes cellular chains, then

 Hi(B(*, M, GM)) Hi(C*(B(*, M, M)) (?Z[M] Z[GM])

 ToriZ[M](Z, Z[GM])

 since C*(B(*, M, M)) is the standard Z[M]-free resolution of Z. This

 completes the proof. Alternatively one can appeal to [9; Chapter X,
 Proposition 3.11.

 We recover immediately the aforementioned results about 7riBM = 0

 for M a discrete group or commutative monoid. In both cases Z[GM] is

 flat over Z[M]. In the first case M = GM, while in the second case

 Z[GM] = Z[M] [Ml -1 is a localization and hence flat over Z[M].
 Theorem 4.1 can be used together with the following "flat mapping

 cylinder construction" to give a simplified version of MacDuff's original
 proof of Theorem 3.5.

 PROPOSITION 4.5. Let f: M -- N be a homomorphism of discrete
 monoids. Then there is a discrete monoid Mf together with homomor-

 phisms i: M -+ Mf, p Mf -+ N, and a nonunital homomorphism
 j: N -Mf such that pj = idN and

 (i) the diagram Mf commutes

 i Jv~~p

 M - N

 (ii) i is an injection
 (iii) Z[Mf ] is free as a left Z[M] module
 (iv) Bp* BMf -+ BN is a homotopy equivalence
 (v) Mf is functorial in f: a commutative diagram

 f

 M' --N'

 induces a homomorphism Mf -b Mf' and this correspondence is
 functorial.
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 Proof. LetN U 1 denoteNwith another unit adjoined. Define Mf =

 M X (N U 1) with the following multiplication

 ((mm', y) if x=1
 (m, x)(m', y) =

 Q(m, xf(m')y) if x eN

 Define i(m) = (m, 1), p(m, x) = f (m)x, j (n) = (1, n). Then p j = idN,
 (i), (ii), (iii) and (v) follow immediately. To prove (iv) we proceed as fol-

 lows. If we regard Mf as a category with one object, the commutative dia-

 gram

 (m,x)

 OM O

 I (1,1) I (1,1)

 (1 ,f (m)x)

 provides a natural transformation between idmf and the "nonunital func-

 tor" j * p. Now since j is nonunital, Bj: BN -- BMf preserves faces but not
 degeneracies. However it is well known that the homotopy type of the geo-

 metric realization of a simplicial set depends only its faces and not on its

 degeneracies [25, Appendix A]. Hence Bj provides a homotopy inverse for

 Bp, which is therefore an equivalence.

 Remark 4.6. In the special case of the trivial homomorphism

 {1}-+NwehaveMf=NU 1). Hence4.5impliesthatB(NU 1)-+BN
 is an equivalence.

 We now obtain the following version of Theorem 3.5 which follows

 more closely the approach taken by MacDuff and Kan-Thurston. For

 technical reasons, we prefer to work in the category of A-sets (simplicial

 sets with faces but not degeneracies, (cf. [24]).

 THEOREM 4.7. There is a functor which assigns to each connected

 A-set X a discrete monoid RX such that BRX is equivalent to IX I.

 Proof. We inductively construct a sequence of functors Rn: con-
 nected A\-sets of dimension c n -- discrete monoids, having the following
 properties

 (i) There are natural nonunital homomorphisms

 R lX n-1 R X
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 (ii) There is an equivalence IX | BRnX which is natural up to ho-
 motopy and such that the following diagram homotopy com-

 mutes.

 lxn-1 'IO

 BRn-1 X BR nX

 Here and throughout Xm denotes the m-skeleton of the A-set X.

 If X is of dimension c 1, we define R 1X = Xr 1 X . It is a classical
 result of homotopy theory that there is an equivalence IX - BR 1X which
 is natural up to homotopy.

 Now assume that we have defined R_ n. Let X be a connected A-set of
 dimension ? n. We then have a pushout diagram

 (1) || I aAn I 11 IA

 l l
 lxn-1 -|

 where An2 is the A-set consisting of all the nondegenerate faces of the stan-

 dard n-simplex and the coproduct 11 is taken over the (possibly empty) set

 of n-simplices of X. By induction the map oa: I1 Rn-1 (ay) -Rn-Xn-1
 is defined. We now perform the flat mapping cylinder construction of

 Proposition 4.5 on the map o and on the trivial map

 0: 11 Rn-1((ay) -+ {1} and define RnX via the pushout diagram of mo-
 noids

 (2) 1 LRn_(dA1 ) MO

 Mou R X

 It is clear from construction that X - RnX defines a functor on
 n-dimensional A-sets. By Proposition 4.5 we have a natural nonunital

 homomorphism

 Rn_l4- j Mot -+ RnX
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 By Theorem 4.1 the classifying space of diagram (2) is also a pushout dia-

 gram. Thus the equivalence I I -BR 1( ) on (n - 1)-dimensional A-sets
 induces an equivalence of pushout diagrams from (1) to the classifying

 space of (2). Hence we obtain an equivalence I X I - BRnX which is natu-
 ral up to homotopy and compatible up to homotopy with BR X BXn-1

 BRnX.

 Now let X be an arbitrary connected A-set. Then lim RnXn is a semi-
 group, i.e. it has an associative multiplication but no unit. Let RX =

 (lim R X') U 1. Clearly RX = lim(R Xn U 1), and by Remark 4.6

 BRX = lim B(RnXn U 1) = lim BR Xn. The equivalence IXn

 BRnXn thus induces an equivalence I XI -+ BRX.
 We conclude our discussion of classifying spaces of discrete monoids

 with an amusing example whose details we leave as an exercise for the

 reader. Let M be the five element monoid consisting of a unit 1 and ele-

 ments xl>, i, j = 1, 2 which multiply according to the rule XijXke = Xif .
 Then BM = S2. It seems likely that any finite simply connected complex

 should be equivalent to the classifying space of a finite monoid.

 5. Proof of Theorem 4.1. Our proof of Theorem 4.1 follows the

 same line of argument as Gruenberg's homological proof of J. H. C.

 Whitehead's Theorem 4.0 (cf. [13]). In the following we will use the nota-

 tion I(M) for the augmentation ideal of the monoid ring Z[M] Z.

 LEMMA 5.1. For any pushout of monoids there is an isomorphism

 A( 1 wmi)- 1 I(W)(zfW1Z[ " WMi] A(mi oZ[Mi] Z[ 11 wmi]

 of right Z[ 11 WM] modules.

 Proof. We construct a category Monmod whose objects are pairs

 (M, A) where M is a monoid andA is a right Z[M] module. A morphism in 91Zonmod from (M, A) to (N, B) is a pair (c/, A) where c: M -+ N is homo-
 morphism of monoids and ,6: A -+ B is a homomorphim of abelian groups
 such that

 /(am) = 0(00(m)

 There is a functor F: Monoids -+ Monmod given by F(M) = (M, I(M)).
 The functor G: SMtonmod -+ Monoids given by G(M, A) = M X A (split
 extension of M byA) is a right adjoint for F. Hence F preserves all colimits,
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 in particular pushouts. Since the pushout in Monmod of { (W, 1(W))

 (Mi I I(MM) bie, is

 ( H wmig 11 I(W)(DZ,[ I" WMi] A(mi &Z[Mi] Z[ 11 wMi]),

 the result follows.

 LEMMA 5.2. Let { W -+ Mi }iI be a pushout diagram of monoids
 such that each Z[Mi] is flat as a left Z[W]-module. Then

 (a) Z[ 11 wMi] isflat both as a left Z[W] module and as a left Z[Mj]
 module for each j E I

 (b) I(W) (?z[w] Z[ 11 wMi] -+ I(Mj) $Z[Mj] Z[ 11 wMi] is an injection
 for all j E I

 (c) The sequence

 0 -() Z zwiZ[ 1[ WMi] -E Z Z[Mi Z[ 1 WMj]- Z -0

 is exact.

 Proof. (a) This is immediate since Z[ 11 wMi] is the direct limit of

 Z[Mj] ?z[w] Z[Mi1] ? Z[W] Z[MK2] (Z[W] ... ?z[WI Z[Mik]

 il, i2, .. ik EI

 as a left Z[Mj] module and hence is flat over Z[Mj] and therefore also over
 Z[W]

 (b) We have a commutative diagram

 AMW (@z[wl Z[ 11 wmi] I(Mj) (03Z[Mj] Z[ 11 wmi]

 Z[WJ ?Z[WI Z[1LwMi] -- Z[M3 ] Oz[MwI Z[ 11 wMi]

 The left hand vertical arrow is an injection since Z[ 11 wMi] is flat over
 Z[W]. Hence the top arrow must also be an injection.

 (c) We have a commutative diagram of right Z[ 11 wMi] modules
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 o 0 0

 O I() ZI WIz1 W ZlL W M, I Wm 9 I Z(M) ZIM,I MZl i WM, I I iL WM, I (

 Z 0 Zlz1WI1LWM,I (?)Z(6 ZZIM,IzILWM,I am- Z

 o 0 0

 The left and middle columns are exact by part (a) while the right column is

 clearly exact. The top row is exact by Lemma 5.1 and part (b), while the
 middle row is obviously exact. It follows that the bottom row is also exact.

 LEMMA 5.3. The Grothendieck construction G: Monoids

 groups preserves pushouts.

 Proof. The Grothendieck construction is left adjoint to the forgetful

 functor groups -+ Monoids.
 In what follows we assume the hypothesis of Theorem 4.1: that

 { W Mi }ieI is a pushout diagram of monoids such that each fi is an
 injection and every Z[Mi] is flat as a left Z[W] module. We denote by

 r: E( IwMi) = B(*, IwMi, I wMi) B( IwMi)

 = B(*, 1 wMi, *)

 the standard bar construction on the monoid 11 wMi (cf. [19]). We also
 note that under the hypothesis 11 BWBMi can be considered as a subcom-
 plex of B(lLwMi).

 LEMMA 5.4. The space 7r 1(11 BWBMi) is acyclic.

 Proof. We have a Mayer-Victoris sequence

 *.. *~ * Hs(7r (BW)) 3Hs (7r(BMi))
 I-io I

 Hs(7r (I BMi)) 0 Hs-l(-r1(BW))
 BW I-io
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 On the level of cellular chains we have

 C*(7r-1(BK)) -C*(EK) OZ[K] Z[ 1 WBMi] K = W or Mj, j EL

 Consequently

 HS (7r 1(BK)) TorsZ[K](Z, Z[ 11 WMj )

 0 if s > 0 by Lemma 5.2(a)

 LZOZ[K]Z[IWMi] if s=0

 It follows that Hs (I7r -( 1 BwBMi)) = 0 for s 2 2 and that the rest of the
 Mayer-Victoris sequence above collapses to

 0 Hl(7r 1( 1 BwBMd)) ? Z Z[ 1 wMi]

 (~ ? Z 0z[[mf] Z[ 11 wMj] -+ HO(ir1( I BM1)) -+ 0
 I ~~~~~BW

 Now it follows from Lemma 5.2(c) that

 Hl(7r -( I BWBMd)) = 0, Ho(7-'( I BwBMi)) = Z,

 which completes the proof.

 Proof of Theorem 4.1. It suffices to show that

 11 BWBMi r,* B( 11 wMi)

 induces isomorphisms on homotopy groups.

 Isomorphism on 7r1 follows from the van Kampen theorem and
 Lemma 5.3. Consider the universal cover

 fr: B(*, 11 wMi, G( 11 wMi)) B( 11 wMi)

 and its restriction

 -1 * l( r1 BWM -+ II WBM
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 This is a covering with covering group G( 11 wMM) = ir1 ( 11 BWBMi). Hence

 fr-1( 11 BWBMi) is the universal cover of 11 BWBMi. The proof now boils
 down to showing that

 7 -( 11 BWBMi) c-)-B(*, 11 wMi, G( 11 wMi))

 is a homology equivalence.

 This is easy. On the level of cellular chains we have a commutative
 diagram

 C*(ir-l( I BWBMi)) - C*(7K1( L BWBMi))OZ[I1WM]Z[G( L wMi)]

 r 2
 C*(B(*, I wMi, G( L wMi))) -- C*(E( I wMi)) ?Zu IwMi] Z[G( I wMi)]

 But C*(7r-I( IBWBMi)) ) C*(E( 1 wMi)) is a chain homotopy equiva-
 lence of right Z[ 11 wMi] complexes, since, by Lemma 5.4, both are free
 Z[ 11 wMi] resolutions of Z. It follows that

 C*(fr-l( 11 BWBMi)) _+C*(B(*, 11 wMi, G( 11 wMi))

 is also a chain homotopy equivalence. Hence

 H*(fr-l 1( BWBMi)) -+H*(B(*, 11 wMi, G( 11 wMi))

 is an isomorphism.

 6. The Moore suspension functor. One of the major advances in ho-
 motopy theory was James' construction of a tractable model JX for the free

 loop space ?2X on a based path connected space X. James showed that if
 one takes

 JX = free topological monoid on X

 = 11 x>OXn/equivalence relation generated by
 insertion and deletion of basepoint

 then there is an equivalence JX = Q2X provided that X is path connected.
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 One would like to extend the natural based map : X -Q ?2X to a
 morphism of monoids JX -- W2X, but Q2X is not a monoid. The obvious
 course is to replace the ordinary loop functor Q by the Moore loop functor

 A. Unfortunately there is no natural map X -+ AXX. The most natural
 procedure would be to replace the suspension functor E by a "Moore sus-

 pension" functor E. Then one has a natural based map X -+ AZX which
 extends to the desired homomorphism JX -+ AEX. Unfortunately, Z does
 not appear in the literature, and we need its properties for applications to

 the uniqueness theorems for classifying spaces in the following sections.

 This section is devoted to this topic.

 Since the suspension E is left adjoint to the loop functor Q, the Moore

 suspension A should be left adjoint to the Moore loop functor A. At first

 glance it would seem that no such functor exists. For if a functor has a left

 adjoint, it must preserve products, which A evidently does not. (Indeed no

 monoid-valued loop functor can preserve products [6; 6.1].) However upon

 closer inspection we see that A(X X Y) = AX XR+ A Y where the fiber
 product is taken over the parameter length functions. This is a product but

 not in the usual category of topological spaces. This insight gets us under-

 way.

 Definition 6.1. Let 3 * [R +] denote the category whose objects are

 based spaces X together with a continuous map p: X -+ R + (the nonnega-
 tive real numbers) such that p-1(0)-*. The morphisms from (X, p) to
 (Y, q) are commutative triangles

 X 30 Y

 p q

 R +

 We say that (X, p) -+ (Y, q) is an equivalence if X -+ Y is an equivalence.

 The Moore suspension functor is the functor Z: 3 * [R +] -+ 3 * (the
 category of based spaces) given on objects by

 E(X,p)=XXR+/{(x,t)It=0 or top(x)}

 and extended to morphisms in the obvious way.

 LEMMA 6.2. (i) 2: 3* [R+] 3 * is left adjoint to A: 3*
 3* [R+ J.
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 (ii) For any object (X, p) in 3* [R+] there is a natural homeomor-
 phism

 2(X, p)-EX

 Proof. (i) is obvious. As for (ii) the mutually inverse homeomor-
 phisms are

 EX 2(X, p) [x, t] [x, tp(x)]

 EMX p) EX [ x, t] [x, t/p(x)]

 Remark 6.3. The reason we imposed the condition p 1(0) = * on

 the objects (X, p) of 3* [R+ ] is precisely because we wanted (ii) to hold. If

 this condition is deleted, the above argument shows that

 -(X, p) _ (x/p- (o)).

 If (X, p) is an object of 3* [R]+ then the unit of the adjunction (E, A)
 gives us a natural map X -- AE(X, p) which extends uniquely to a natural
 map of topological monoids JX -- AE(X, p). If, however, we are to fully
 exploit all the structure inherent in this situation, we need to interpret the
 functor J in the category 3 * [R + ].

 Definition 6.4. A monoid in 3*[R+] is a pair (N, p) such that

 p :N -- R+ is a monoid homomorphism. A morphism f: (N, p)
 (N', p') of monoids in 3*[R+] is a morphism in 3[R ] such that

 f: N -- N' is a monoid homomorphism. We denote by fl[R+ ] the cate-
 gory of monoids in 3 * [R + ].

 LEMMA 6.5. (i) The free monoid J(X, p) on a space (X, p) in

 3* [R+] is the pair (JX, p) where p is the unique continuous monoid
 homomorphism filling in the following diagram

 X n > } x ix

 p /

 IP ,,
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 (ii) The free monoid functor J: 3 * [R + ] 3 * [R + ] is a monad in
 3* [R+].

 (iii) There is a morphism of monads X : J AS in 3 * [R +].

 Proof. (i) is obvious, the only point to check being that p-1(0) =
 (ii) follows immediately. For (iii) one uses freeness to fill in the following
 diagram

 (X, p) (X, p)A
 J,'

 A:m(Xg p)

 Since the domain of 2 is the category 3 * [R + I while real life goes on in

 the category 3 * we need a functor R : 3 * -+3 * [R + ] with good propel-ties.

 LEMMA 6.6. (i) The forgetfulfunctor L: 3 *[R+ I 3 * has a right
 adjoint R : 3* -+3* [R+ ].

 (ii) The unit (X, p) -+RL(X, p) and counit LR Y Y are equiva-
 lences

 (iii) R commutes with geometric realizations: if X* is a simplicial

 space, there is a natural homeomorphism I n - RXn _ R X* I
 (iv) If M is a (well-based) topological monoid, then RM has a natural

 structure of a topological monoid in 3 * [R + ]

 (v) The adjunction (L, R) induces an adjunction L : 9M [R+] -
 (R1: - M[R + ] on the corresponding categories of monoids.

 Proof. We define RX as the subspace of (X X R+,
 X X R+ - R+ ) consisting of (*, 0) and all (x, t) such that t > 0; (i)

 immediately follows. The unit (X, p) -- RL(X, p) is given byx <-+ (x, p(x))
 and the counit LR Y -- Y is given by (y, t) <-+ y. Clearly both are equiva-
 lences. Parts (b), (c) of Lemma 0 imply (iii). The monoid structure on RM
 is the one induced by the direct product structure on M X R+ .

 LEMMA 6.7. The adjunctions (E, A) and (EL, RQ) are isomorphic.

 Proof. According to Lemma 6.2(ii) there is a natural isomorphism
 h: 2 EL. There is also an obvious natural isomorphism k: A _ RQO.
 One checks immediately that the following diagram commutes for any ob-
 ject (X, p) E 3* [R+] and any object YE 35
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 3*(EL(X, p), Y), Y) _ 3*(L(X, p), QY) -3*[R+]((X, P), ROY)

 | h* ~ |k*

 3*(E(X, P), Y) 3 - * [R + ]((X, P), AY)

 To avoid notational clutter we shall usually suppress any mention of
 the forgetful functor L. It will be clear from context when we are regarding
 objects in 3 * [R+ ] as objects of 3* .

 A minor modification of the usual proof that JX and Q2X have the
 same weak homotopy type when X is path connected yields the following
 result.

 THEOREM 6.8. If (X, p) is an object in 3* [R+ ] such that X is path
 connected, then the natural map of monoids

 X: J(X, p) -- AE(X, p)

 is an equivalence in 3 * [R + ].

 The rest of this section is devoted to analyzing the natural map
 X: J(X, p) -+ AE(X, p) when X is not path connected. We will show that
 this map is a "group completion" in the sense of Thomason [27], that is,
 BX is an equivalence.

 In what follows we denote by t: EM -+ BM the natural map whose

 adjoint l: M -+ QBM is an equivalence when 7roM is a group. Our starting
 point is the following elementary consequence of Theorem 4.1.

 LEMMA 6.9. If X is a discrete based space then the composite map

 EXX EJX -4 BJX

 is an equivalence.

 Proof. WehaveX = Vx_*SandJX = 1x-*NwhereN = JS?is
 the monoid of natural numbers and the coproduct is taken in the category
 of discrete monoids. We have a commutative diagram

 EX t EJX = BJX

 VX_*ESO vx- V *EN a- Vx- *BN
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 and by Theorem 4.1 the right hand vertical map is an equivalence. This
 reduces us to the case X = So, for which we appeal to the commutative
 diagram

 EN BN

 - Z BZ

 The composite across the bottom is classically known to be an equivalence.

 The right hand vertical arrow is an equivalence by Proposition 4.4 (and the
 succeeding remarks). This completes the proof.

 We now easily deduce the corresponding result for arbitrary spaces.

 This is of interest in its own right (cf. [3]).

 THEOREM 6.10. For any space the composite

 EX ! 2JX -A BJX

 is an equivalence.

 Proof. Let TX = I T*X I be the geometric realization of the total
 singular complex of X. Let : TX -- X be the natural equivalence. Con-
 sider the commutative diagram

 In -+ ETnX| I In H-+ EJTnXI In -+ BJTnXI

 E TX 1EJTX BJTX

 | St | ~~~EJA BJt

 EX 71=__JX_ BJX

 The vertical homeomorphisms arise from the fact that the functors E, J (cf.

 [21, 12.1, 12.2]) andB (cf. Lemma O(b), (d)) commute with geometric real-
 ization. The bottom vertical maps are equivalences since the functors E, J

 (cf. [2]; 2.6]) and B (cf. Lemma O(a)) preserve equivalences. The composite
 of the horizontal maps across the top is an equivalence by Lemma 6.9 and

 Lemma O(a). Hence so is the composite across the bottom.
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 LEMMA 6.11. For any space X the following diagram commutes

 SAX-SAX- BAX

 x

 Here e is the counit of the adjunction (2, A) and t is the natural map

 BA --1 ([19; 15.4]).

 Proof. The maps E, t, t are given by the following formulas

 t[Z, t] = [z, (1-t t)], (-[W, t] = @(t),

 and

 WW1,? W C2, *.. W CM)9 (tOtl 9 .. 9 tm)] - WIW2 ..m(Em ilf(wDi)td-

 Here Q refers to the parameter length of a Moore loop. Commutativity can

 be checked by direct calculation.

 Combining these results we obtain that J(X, p) -- A2(X, p) is a group
 completion.

 THEOREM 6.12. For any object (X, p) in 3* [R+ ] the natural map

 BJ(X, p) BXAEM p)

 is an equivalence.

 Proof. By naturality of t, Lemma 6.11, the definition of X, and gene-
 ral properties of adjunctions, the following diagram commutes

 2A(X9 p) - -BJ(X, p)

 VI? / | x | BX

 2(X, p)
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 The composite across the top is an equivalence by Theorem 6.10. The map

 t is an equivalence by [19; Lemma 15.4] since ?(X, p) is path connected.

 The result follows.

 For subsequent use we derive the following easy consequence of Theo-

 rem 6.12.

 COROLLARY 6.13. Let X be a discrete based space and let GX denote

 the free group on X (based version). Then the natural map

 BJX BGX

 is an equivalence.

 Proof. Consider the space A,RX. The discretization map (which

 collapses each path component to a point)

 p: AXRX- irARX = GX

 is an equivalence since X is discrete. The result now follows from the theo-

 rem via the commutative diagram

 BX
 BJRX -X BA RX

 BJ-y Bp

 BJX - m-BGX

 where y: RX = LRX -- X is the counit of the adjunction (L, R) (cf.
 6.6(ii)), and Theorem 6.12.

 We conclude with a related result on homological group completions.

 Recall that it has been shown in [17] (cf. also [3] and [20] that for any

 topological monoid M such that iroM is in the center of H*(M) the natural
 map Z: M -Q ?BM induces a group completion in homology with coeffi-
 cients in any commutative ring k. In the present context this may be for-
 mulated as saying that

 HO(M; k) = k[roM] - k[GirOM] = HO(QBM; k)

 (*) I I

 H*(M; k) H*(Q2BM; k)
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 is a pushout diagram of graded associative algebras over k. Here we are

 using the notation of 4.4, letting GiroM denote the Grothendieck group of

 iroM. It is natural to ask whether the centrality hypothesis can be weak-
 ened. The following example shows it cannot be eliminated entirely.

 Example 6.14. Let X be any connected complex. By Theorem 3.5

 (or Theorem 4.7) we can find a discrete topological monoid M such that

 BM = X. If (*) is a pushout diagram in this case, then we would conclude

 that H*(QX; k) _ Ho(OX; k). If we take, sayX = Sn n > 1, we obtain an
 absurdity!

 Actually [17] proves the stronger result that (*) is a pushout diagram

 under the hypothesis that (H*(M), 7roM) admits a calculus of fractions.
 The following rather curious result, which I owe partly to Fred Cohen and

 Michael Barratt, proves this under a seemingly diametrically opposite hy-

 pothesis.

 THEOREM 6.15. For any topological space the natural map L: JX

 QBJX = Q2X induces a group completion in homology with field coeffi-

 cients, i.e.

 k[J7rOX] k[GiroX]

 H*(JX; k) - H*(QBJX; k) -H*(QEX; k)

 is a pushout diagram in the category of graded associative algebras over k.

 Proof. Since H*(JX; k) -T(H*(X; k)), the tensor algebra on the

 reduced homology H*(X; k), this amounts to proving that H*(72EX; k) is

 the quotient of T((n>oHn(X; k) ?)I(G roX)) by the relations g1 (g g2 =
 g1g2, g1, g2 E G7roX. Here I(GirOX) denotes the augmentation ideal of
 the group ring k[GiroX].

 By passing to the geometric realization of the total singular complex,

 we may assume that X is a CW complex. Denote X = 11 ,,OxX, and
 choose a basepoint in each component XO,. Then by a simple geometric

 argument, which we leave as an exercise, we see that EX E(v,X,) V

 EgrOX. Thus without loss of generality we may assume X XO V roX
 whereXo is connected. Now EX = EXO V E rOX, EXO is simply connected,
 and EirOX is a wedge of circles. It follows that the universal cover EX is a
 ''panoply of balloons:" one takes the tree which is the universal cover of
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 E 2roX and attaches a copy of EXO to each node. Hence EX - VgEGTOxIXO .
 The covering group G-roX acts by permuting coordinates by translation.

 By considering the split fibration

 QS ?2 X QSX 12 FlroX

 we compute that

 H*(QFX; k) -k[GirOX] ?k T(?geGXIH*(Xo; k))

 with multiplication given by (g (g ul)(g2 ( u2) g19g2 (u1 g2)u2 It
 follows that H*(QFX; k) has the required generators and relations.

 7. Uniqueness of classifying space constructions I. In this section

 we begin to consider the question raised in the introduction: how can we

 characterize classifying space functors on topological monoids? As we

 mentioned there, historically there are two basic types of classifying space

 constructions. The first type is represented by the familiar bar construc-

 tion which assigns to a topological monoid M the geometric realization BM

 of the simplicial space

 M f M M2 ,= M3 ...

 The second type of construction is the two sided bar construction

 B(E, C1, M) due to Beck [4] and May [21] which can be described as the

 geometric realization of the simplicial space

 EIM r C1M XC1C1Ms ...

 where C1 denotes a generalized James construction.

 These constructions look very different and it is not at all clear that

 they produce equivalent results. The fact that they do was first proved by

 Thomason [27]. His proof is very complicated, relying partially on brute

 force arguments to force a direct comparison between these two very differ-

 ent constructions.
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 In this section we give a much simpler proof of the equivalence be-
 tween the bar construction and the May construction. Our approach
 avoids the difficult problems of directly comparing these two construc-
 tions, by introducing a third classifying space construction which is inter-
 mediate between the two. The new construction, which is based on the
 Moore suspension of section 6, looks very much like the May construction.

 On the other hand, in certain very crucial ways its behavior resembles
 much more closely that of the bar construction. In the last section we will

 turn to more general considerations, and we will give a second independent

 proof of the equivalence of the various classifying space constructions by
 giving an axiomatic characterization.

 Since both the May construction and the new construction we will in-

 troduce are special cases of the monadic two sided bar construction, we
 recall here for the convenience of the reader some basic facts about it (cf.
 [21] for details.)

 Definition 7.0. Let D be a monad in some category of topological
 spaces (e.g. 3* or 3* [R+ ]). Thus D is an endofunctor together with natu-
 ral transformations ,: DD -k D and 71: 1 -k D satisfying associativity and
 unicity.

 A D-algebra is an object together with a map 0: DX -- X compatible
 with A and 7. Similarly a D-functor is a functor F together with a natural

 transformation X: FD -- F also compatible with A and 7. Given a monad
 D, a D-algebra X and a D-functor F, the two sided bar construction
 B(F, D, X) is the geometric realization In b-+ FDnXI where Dn =
 DD ... D. The faces of this simplicial space are induced by X: FD F,
 ,: DD -k D and 0: DX -k X. The degeneracies are induced by 71: 1 D.

 One basic property of the two sided bar construction is that

 (1) X B(D, D, X) and B(D, D, X) -+X

 (2) FX 71 B(F, D, DX) and B(F, D, DX) X

 are inverse homotopy equivalences.

 The May classifying space functor assigns to a topological monoid M
 the classifying space B(E, C1, M). We now introduce our own variant of
 this construction.

 Definition 7.1. Let A, E denote Moore loops, Moore suspension re-
 spectively. Since,- is a A,-functor and there is a map of monads J -A
 (Lemma 6.5), X is a J-functor. Thus if M is a topological monoid,
 then RM is a monoid in 3 * [R+ ] and is thus a J-algebra. Hence the two
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 sided bar construction B(2, J, RM) is defined. This gives a functor

 B(A, J, R_): M -X 3 * together with the following natural chain of maps

 EM A RM B(A-, J, RM)

 where a denote the counit of the (L, R) adjunction and T is given by inclu-

 sion of 0-simplices. By inverting a we obtain a map t: EM -- B(Z, J, RM)
 which is natural up to homotopy.

 To the casual eye our construction appears to closely resemble May's

 construction. Hence one might naturally expect it to be much easier to

 relate this construction to the May construction than to the bar construc-

 tion. Surprisingly the opposite is true.

 Before we proceed with our analysis, however, we will find it conven-

 ient to establish some notation.

 Definition 7.2. A pseudomap is a chain of maps from one space to

 another in which the wrong way maps are equivalences. We will use the

 notation -+- to denote pseudomaps. By abuse we will often refer to maps

 when we actually mean pseudomaps. A pseudomap is said to be an equiva-

 lence if every map in the chain is an equivalence.

 Naturality of pseudomaps is taken in the following sense: all objects

 along the chain are functors and all maps along the chain are natural.

 Diagrams involving pseudomaps are said to homotopy commute if they

 commute in the category obtained by inverting all weak equivalences.

 (This category is equivalent to the standard homotopy category of CW

 complexes).

 THEOREM 7.3. For any topological monoid M there is a natural

 equivalence : B(, J, RM) -- BM such that the following diagram ho-

 motopy commutes

 EM

 B (A', J, R M) B BM

 Proof. One takes P to be the chain

 B(, J, RM) BAB(, J, RM)*B,-xB(B (A, J, RM))

 B(B(X,1,1) M) B B(B(J, J, RM) BRM-Bz-BM
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 Here : BAX -- X is the classical equivalence [19; 15.4], X is the equiva-
 lence of 0(f), B(B(X, 1, 1)) is induced by the equivalence of 6.12 and O(a),
 0 is the equivalence of 7.0 and wy is the counit of the (L, R) adjunction. With

 the help of Lemma 6.11, the verification of the homotopy commutative

 diagram reduces to an easy exercise.

 We turn now to the comparison of B(,, J, R_) with the May con-

 struction B(E, C1, _). In order to carry out this comparison we need to

 work in the framework of May's theory of A spaces. We therefore sum-

 marize for the convenience of the reader the basic notions of the theory (cf.

 [21] for details).

 7.4. A . operads, monads and spaces. An A . operad C is a collec-
 tion { C(n) I n > 0 } of contractible spaces such that C(0) = * together with
 a distinguished element 1 E C(1) and maps wy: C(n) X C(kl) X ... X

 C(kn) -? C(k1 + *. + kn) which satisfy an associativity diagram and
 unicity with respect to 1 E C(1). (Note we are here using the non-E form of

 an Ao operad [21; 3.12]). A C-space is a based topological space X to-

 gether with maps 0: C(n) X Xn -- X which satisfy 0(1, x) = x and an
 associativity condition with respect to the maps 'y. The C action on X gives

 X the structure of an H-space, C(n) parametrizing n-fold multiplications.

 The contractibility of the C(n) gives a precise formulation of the statement

 that X is associative and unital up to all higher homotopies. A space is said

 to be an A 0. space if it is a C space for some A . operad C. For any based
 topological Ythere is a free C-space CY = 11 nL>OC(n) X Yn/ = where =
 is an equivalence relation induced by insertion and deletion of basepoints.

 The association Y n-+ CY defines a monad C: 3 * 3 *. We say that C is
 the monad associated to the operad C.

 There are two AO. operads in common use: the trivial operad 9 =
 { * n > 0 } and the "little intervals" operad C 1 due to Boardman and Vogt
 [5]. A J-space is exactly the same thing as a topological monoid and the

 monad associated to J is the James construction J. The operad C, has as
 nt space

 (Cl(n) = (a,, bl, a2, b2, .,. ang bn)

 10 s a, < b, ' a2 < b2 s < a < b < 1}
 each element of which is to be thought of as an ordered collection

 { [a1, b1], [a2, b2], ... , [an, bnI} of subintervals of the unit interval. The
 structure maps 7y of ,1 are given by composition of intervals. The element
 { [0, 1] } E C, (1) is the unit. The operad C1 acts naturally on any loop space
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 OX: given c ={[a 1, b 1 ] .. [an bn]} eC l(n) and (w1, ***,c E)
 (QX)n, n(c)(ol, .. . O,1) is the loop which is wi (suitably reparametrized)
 on [ai, bi] i = 1, 2, .. ., n and trivial otherwise. The monad associated to

 C1 is the May monad C1 and the map of monads C1 -- ?U is that induced
 by the C 1 action on 9.

 For any A operad C the unique map C 9 induces a map of mo-
 nads C -k J with each CX -k JX an equivalence.

 In order to relate the two constructions B(2, J, R_) and B(E , C1, _)

 we have to relate the two maps of monads

 J- A in 3*[R+]

 C1- E in 3*

 The tools for doing this are provided by Lemma 6.7 and an A 0. operad OR 1
 ("Moore little intervals") constructed below which bridges the gap be-

 tween the operads J and C 1 .

 LEMMA 7.5. There is an A 0. operad M 1 having the following proper-
 ties

 (i) M1 contains J and C 1 as suboperads
 (ii) OR1 acts naturally on Moore loop spaces AX

 (iii) The restriction of the OR1 action on AX to J gives AX the usual
 monoid structure

 (iv) The restriction of the ORM1 action on AX to C 1 gives AX the C1-

 structure induced by the inclusion AX _ RQX C OX X R+.

 Proof. We first construct an auxiliaryAo operad C ("extended lit-
 tle intervals") by taking ai ' bi (instead of ai < bi) in the definition of
 C(l(n), thus allowing subintervals with vacuous interiors). (In itself, the
 operad C 1 appears to be totally useless. For instance the natural C 1 action

 on loop spaces fails spectacularly to extend to a C 1 action.)

 We now define the operad M1 by taking

 M1l(n) = {f: Rn -+ c1 (n)If is continuous and the i-th
 subinterval of f (t1, t2, ..., tn) has nonempty
 interior if ti * 0}.

 Contractibility of M1 (n) follows from the contractibility of Rn+ and C 1 (n).
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 The structure map -y: Mt1(n) X Y1t(k1) X . X l1(kn)
 YL1(k1 + * * + kn ) is given in terms of the structure map of (51 by

 TY(; gl, 9 29 .. * gn Xtl 1 t2 * Stkl+ - -+kn)

 TY (t(l 9 i2S *9 *n); Cl,9 C2, . .,9 CO

 Ehere kl + - - +ki_1++l tj and ci = gi(tk, + +ki-_ +1 9 .. * tkl+ - -+ki).
 A routine check shows that M1 is an AO. operad. The inclusion

 9 M1 sends the unique element * E 9j(n) to the function fn E M1 (n)
 given byfn(t1, t2, .., tn) = {[O, s1], [s1, s2j, ..., [sIn, 1]} wheresi =
 (V1t1)/(E7=1t1). The inclusion C1 c--Y1tM sends an element of C1(n) to
 the constant function at that element.

 The operad X11 acts on AX -RQX C QX X R+ as follows:

 f E 1l(n) sends (cl, a1 ,co2, a2, ..., con 1 an) E (AX)n to the element
 (A, a1 + a2 + * * * + an) where Q is the loop which is wi (rescaled) on the
 i-th subinterval off(a1, a2, . ., an) i = 1, 2, . ., n and is trivial otherwise.
 It is obvious that this action restricts to j and C 1 as stated.

 Before proceeding, we take a brief pause to describe what should be

 meant by actions of operads on objects in 3 * [R +I and how to define the
 associated monads in this category. We just do the obvious things (as in 6.4

 and 6.5).

 Definition 7.6. Let C be an A. operad. We say that an object (X, p)
 of 3* [R+] is a C-object if X is a C-space and p:X : R+ is a map of C-
 spaces. (We give R+ the C-action induced by C -J.)

 LEMMA 7.7. (i) The free C-object C(X, p) on an object (X, p) of

 3* [R+] is the pair (CX, p) where p is the unique C-map filling in the
 diagram below

 x X CX

 R+z

 (ii) The free C-space functor C: 3*[R+] 3 *[R + ] is a monad in

 3 [R+ ]. (Note that LC = CL.)
 (iii) 6: C(X, p) = (CX, p5) -- RL(CX, p) = RCL(X, p) specifies a
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 map of monads in 3*[R+], where RCL is a monad via (RrlL) 6: 1

 RL -- RCL and (RpJL) * (RC&yCL): RCLRCL -- RCCL RCL.

 (iv) There is a map of monads M1 -- A in 3 * [R + ] where M1 is the

 monad associated to the A. operad 1 .
 (v) The following is a commutative diagram of monads in 3* [R+]

 J - Ml - C1 - RC1L

 Ax#I" "44 A'#11`44 A"",-4' RQU2L

 where X is the map of 6.5(iii) and the right vertical arrow is induced by

 C1 -- QE. The horizontal maps are equivalences.
 An immediate consequence is

 THEOREM 7.8. For any topological monoid N there is a natural

 equivalence t: B(4, J, RN) + B(E, C1, N) such that the following dia-
 gram homotopy commutes

 EN

 L L

 B(A, J, RN) A B(I, C1, N)

 Proof. The equivalence is given by the following chain

 B(2, J, RN) - B(, M1, RN) +- B(Z, C1, RN) -B(EL, C1, RN) =

 B(E, C1, LRN) B(E, C1, N) where the isomorphisms in the middle right
 arise from the isomorphism 2 _ EL as C1 -functors (cf. 7.7(v) above) and

 the identity LC1 = C1L (cf. 7.7(ii)). The homotopy commutativity of the

 diagram is immediate.

 Combining Theorems 7.3 and 7.8 we obtain the result we were looking

 for

 COROLLARY 7.9. For any topological monoid N there is a natural

 equivalence t: BN -+- B(E, C1, N) such that the following diagram homot-

 opy commutes

 EN

 t/
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 Remark 7.10. There is a remarkable connection between the mo-

 nads C1X and JX which is worth noting: RC1X is homeomorphic to the
 quotient topological monoid of JRX obtained by dividing out by the rela-
 tions (*, s)(*, t) = (*, s + t). This connection is of importance in proving
 uniqueness of n-fold delooping machines 2 s n < co which is the subject
 of a forthcoming paper.

 8. Uniqueness of classifying space constructions II. In this section
 we consider the general question of uniqueness of classifying space con-

 structions. In a practical sense we have already solved the main problem in

 this area by showing that the two principal classifying space constructions

 now in use are equivalent to each other. Nevertheless ideally we would like

 something more: a useful axiomatic characterization of classifying space
 construction analogous to those achieved for infinite loop space construc-
 tions (cf. [12], [22]).

 The arguments of the preceding section are direct and fairly straight-

 forward. Nevertheless in some sense they are rather ad hoc, using features
 specific to the classifying space constructions involved. It is unclear how to
 go about modifying the arguments so that they would apply to any conceiv-

 able classifying space construction. A good axiomatization would not only
 be more generally applicable, but would also give a better understanding
 of what is really involved in proving that two classifying space construc-
 tions are equivalent.

 In this section we give a very simple axiomatic characterization of

 classifying space constructions: they are completely determined by their

 behavior on discrete free monoids. Any functor with any reasonable pre-
 tensions to being called a classifying space construction is morally compel-
 led to satisfy the axioms and is therefore naturally equivalent to the bar

 construction. In particular this method provides an alternative proof that
 the May classifying space is equivalent to the bar construction.

 Definition 8.1. A classifying space construction on the category OR
 of topological monoids is a pair (W, t), where W: OR - 3* is a functor and

 t: EM -+- WM is a natural transformation subject to the following condi-
 tions.

 Axiom E (Equivalence). Iff : M -- N is a monoid homomorphism
 which is an equivalence in 3*, then Wf: WM -k WN is also an equiva-
 lence.
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 Axiom R (Realization). If M* is a simplicial topological monoid,

 there is a natural equivalence x: I n F WMn I+ WI M* which is com-
 patible up to homotopy with t.

 Axiom GC (Group Completion). For any discrete free monoid J,

 WJ is an Eilenberg-MacLane space K(G, 1) and the composite

 induces group completion on the 0-th homotopy group.

 Remark 8.2 (i) We are using the conventions of 7.2. In connection

 with Axiom GC, note that any pseudomap induces an honest map on ho-

 motopy groups, since equivalences induce isomorphisms on homotopy

 groups.

 (ii) In all classifying space constructions we are aware of, the equiva-

 lence X of Axiom R is actually a homeomorphism. However imposing the
 stronger axiom would not simplify the analysis in any way. On the other

 hand, in its present form Axiom R (as well as E and GC) are homotopy

 invariant. That is, any construction naturally equivalent to one satisfying

 the axioms will itself satisfy the axioms.

 Before proceeding with our analysis, let us check how the specific

 space constructions we have considered fit into this framework.

 LEMMA 8.3. The bar construction (B, t) satisfies Axiom E, R and

 GC.

 Proof. Axioms E and R follow directly from Lemma 0(a), (b), (d).

 Axiom GC follows from Lemma 6.9, Corollary 6.13 and the well-known

 fact, that for a discrete group G, BG is an Eilenberg-MacLane space
 K(G, 1).

 LEMMA 8.4. The May construction B(E, C1, -) satisfies Axioms E,
 R and G.

 Proof. Axioms E and R follow directly from Lemma 0 and the fact

 that the functors E and C1 preserve equivalences and realizations [21; 12.1
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 and 12.2]. To prove Axiom GC, let X be a discrete space and consider the

 diagram

 C1X X Qr'C1X ut QV B(E, C1, C1X)

 JX 7 1 QJX 2B (E, C, JX)

 where the vertical arrows are equivalences induced by the equivalence of

 monads C1X -- JX. By 7.0 we have an equivalence X: B(E, C1,
 C1X) -- EX so B(E, C1, JX) is an Eilenberg-MacLane space K(G, 1). To
 show that the map induced on -ro by the composite across the bottom is a

 group completion it suffices to prove the same for the composite

 C1X X2 C1X - 2B(2, C1, C1X)- 422X

 However by inspection this composite is given by the map of monads

 C1X -Q ?22X which does induce a group completion on -ro [21; 8.14].
 A similar argument shows that the construction B(A, J, R_) also sat-

 isfies Axioms E, R and GC.

 Thus not only are Axioms E, R and GC compulsively reasonable, they

 are also fairly painless to check directly for all known classifying space con-

 structions. Therefore the following result may be regarded as the definitive

 uniqueness theorem for classifying space constructions.

 THEOREM 8.5. Let (W, t) be a classifying space construction on Y
 satisfying Axioms E, R and GC. Then for any topological monoid M there

 is a natural equivalence t: WM -+- BM such that the following diagram

 homotopy commutes

 EM

 t t

 WM - ^ BM

 Before proceeding with the proof of Theorem 8.5, we need a few pre-

 liminaries.
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 Remark 8.6. (i) In the sequel we will use the notation p: X -- 7roX
 to denote the discretization map which collapses each path component to a

 point. This map is defined only if X is semilocally path connected (i.e. path

 components are open). This is the case for instance if X has CW homotopy

 type.

 (ii) We note here for future use that p: X -k 7roX is natural and is a
 monoid homomorphism if X is a topological monoid.

 (iii) It will be convenient for our purposes to assume hereafter that W

 takes values in the category of spaces of CW homotopy type. This is no

 restriction since we can always replace WM functorially by W'M =

 TWM, the geometric realization of the total singular complex of WM. We

 then have a natural equivalence W'M -k WM.
 (iv) Let J be a discrete free monoid. By naturality of p we have a com-

 mutative diagram

 J 7 QEJ 2 QWJ

 p

 J 7rof rout ] XoQSJ g~r0QWJ
 (Note that p is defined since, if X has CW homotopy type, so does OX). The

 left and middle vertical arrows are equivalences by the discreteness of J.

 Axiom GC implies that the right vertical arrow is an equivalence and that

 the composite across the bottom is a group completion. Hereafter we shall

 denote this composite by X : J-- -roQ WJ.

 LEMMA 8.7. For any discretefree monoid Jthere is a natural equiva-

 lence t: WJ + BJsuch that thefollowing diagram naturally commutes

 EJ

 L L

 WJ - BJ

 Proof. Consider the following diagram
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 ? SALEJ E -zAE - EJrOQ2J

 e\ (#) EQ (D

 A At1' j tro
 2AWJ # 0 S2r0AWJ E-_ > roQWJ

 X @ l~~t (D 1 (D l
 VJ _ BAWJ BoAWJ _-BBpQWJ BJ

 Here t denotes the classical equivalence BA 1, e is the counit of the

 (C, A) adjunction or of the (E, Q) adjunction and q is the unit of the (E, Q)
 adjunction. The unmarked arrows are induced by the equivalence

 AX -Q OX.

 By Corollary 6.13 the map BX is an equivalence. Thus the bottom row

 of the diagram defines a chain of equivalences t: WJ -+- BJ which is natu-

 ral in J. The diagram labelled 2 through 6 commute by the naturality of L.

 Diagrams 1 and 8 commute by Lemmas 6.11 and 6.7 respectively. Natural-

 ity of e and p makes diagrams 7 and 10 commute. Commutativity of dia-

 gram 9 follows from general properties of adjunctions. Finally commu-

 tativity of diagram 11 follows from 8.6(iv).

 Remark 8.8. The careful reader will note the use of the undefined

 term "naturally commutes" in the preceding lemma. What this means is

 that the diagram can be filled in with functors and natural maps as in the

 proof above so that the resulting diagram commutes. To be more precise

 the diagram commutes in the category of fractions of the functor category.

 Natural commutativity implies homotopy commutativity, but it is a

 stronger condition, essential to the proof of Theorem 8.5. However the

 reader can ignore all of this by regarding the "naturally commutative" dia-

 gram in the statement of Lemma 8.7 merely as a convenient shorthand for
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 the more elaborate but conventional commutative diagram of the proof of

 Lemma 8.7.

 LEMMA 8.9. There is afunctor F*from topological monoids to sim-

 plicial monoids together with a natural equivalence K: IF* I- 1 such that
 for each n, FnM is a discrete free monoid.

 Proof. Let T*M denote the total singular complex of the topological

 monoid. Then T*M is a simplicial (discrete) monoid. Define F*M = diag-

 onal of the bisimplicial set B*(J, J, T*M). Thus FnM = Jn+'1TnM is a
 discrete free monoid. The equivalence K is the composite

 In FnMI - B(J, J, IT*MI) IT*MI I M

 where 0 is the equivalence of 7.0 and t is the natural equivalence between a

 space and the geometric realization of its total singular complex.

 8.10. Proof of Theorem 8.5. Consider the diagram

 EM <__ SIF*Ml I-i- In |- EFn MI SIF*M V M

 jt jt 0 I 0 l

 Wk BKBB M WMt?_WIF*MI + In | WFnMI In F BFnMI -BIF*MZBM

 where I is induced by the natural equivalence of Lemma 8.7. Thus by
 Axioms E and R the bottom row defines a natural equivalence

 t: WM -+- BM. The diagrams labelled 1 and 2 commute by the naturality

 of t. Diagrams 2 and 4 homotopy commute by Axiom R for W and B re-

 spectively. Finally diagram 3 naturally commutes and hence homotopy

 commutes by Lemma 8.7. (Note that if the diagram of Lemma 8.7 were

 known only to homotopy commute instead of naturally commute we would

 be unable to deduce that this commutativity passed on to the level of geo-

 metric realizations in diagram 3.) Skeptical readers who are suspicious of

 the virtues of natural commutativity may prefer to fill in diagram 3 with a

 suitably modified version of the diagram used to prove Lemma 8.7.

 We conclude with a brief discussion on how our results extend to more

 general A<o input data. This gives rise to uniqueness theorem for one-fold
 delooping machines which subsumes Thomason's results in [27].
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 Remark 8.11. One-fold delooping machines accept as input the

 data some kind of notion of an H-space which is associative and unital up

 to all higher coherence homotopies. In 7.4 we discussed one version of this

 notion, that of an A -space, due to May. Another version, due to Segal

 [25], is that of a special A-space. This is essentially a simplicial space X*

 such that X = Xn. Thomason produced a common generalization of

 these two notions and showed that all these various categories of input data

 for one-fold delooping machines are essentially equivalent.

 Rather than recapitulating Thomason's results, we note that his work

 leads us to conclude that any reasonable category (a of input data for a one-

 fold delooping machine has the following two properties

 (1) (a contains the category x of topological monoids

 (2) There is a functor r: a -x Y and a natural equivalence

 r:PA -A for objects A in (i.

 Since any creditable delooping machine must preserve equivalences, any

 such machine on (a is determined up to natural equivalence by its restric-

 tion to M. Theorem 8.5 therefore implies that such delooping machines

 are unique.
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