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Preface 
Felix, qui potuit verum 

cognoscere causas! 

P. Vergilius Maro, Georgica 2,490 

Cellular structures play an essential role in topology, analysis and geometry; 
they appear in the form of CW-complexes, simplicial sets and so on. The 
idea of this book is to give a unified treatment of their fundamental 
geometric and topological (in the sense of general topology) properties. As 
a common basis for their representation we have chosen the C W -
complexes. 

CW-complexes were formally introduced in the literature in 1949 by 
the great English mathematician John H.C. Whitehead. To appreciate 
better the depth and perception of Whitehead's ideas, it is worth looking 
back into the development of algebraic topology; on this trip through 
history we take Solomon Lefschetz as our V i r g i l In bis beautiful history 
of the early development of algebraic topology (see Lefschetz, 1970), 
Lefschetz shows us how homology was defined by Henri Poincare - whom 
he calls the Tounder' of algebraic topology -- using Spaces with a combi-
natorial structure; Lefschetz then points out the next stage in the 
development of the subject, namely the definition of homology for 
topological Spaces and the introduction of the homotopy groups of Spaces. 
What Whitehead did was to impose again a combinatorial structure on 
the Spaces and to show how this leads to a much deeper insight into their 
homotopy groups. This and other particularly interesting properties of 
CW-complexes explain why their presence is feit throughout many 
branches of mathematics. The first two chapters of this book are devoted 
tö the theory of CW-complexes. 

Chapters 3 and 4 deal with the theory of simplicial complexes and 
simplicial sets; we feel that the existence of a very large body of research 
in that area and the importance of combinatorial structures in topology 
amply justify the relatively large size of these two chapters. 

In the fifth chapter we study the category of Spaces having the homotopy 
type of CW-complexes. We end the book with an appendix containing 
the results of homotopy theory, topology and dimension theory necessary 
to the development of the book. Normally we do not prove the results 
presented in the appendix but we indicate where the proofs can be found. 
The appendix should be read using the index, as sometimes the definitions 
are not written in order but, rather, following the flow of each section. 
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Because we emphasize geometric and combinatorial structures (and the 
arguments related to them), the material we borrowed from algebraic 
topology is mostly related to the theory of homotopy groups with only 
a minimal contribution from homology; in our minds we view homotopy 
groups as more intimately related to our geometric Intuition than 
homology groups. As a consequence, the results about cellular 
structures that are heavily dependent on homology theory (e.g., cellular 
homology, obstruction theory, Wall obstruction to finiteness, classifying 
Spaces, etc.) are not discussed in the book. However, we lay down the 
ground work needed for the development of these areas. 

Although most of the exercises can be worked out easily using the 
material in the text, there are some exercises which require the reader to 
consult the references given in each case; the problems of this latter type 
have been inserted in the book in order to draw the reader's attention to 
interesting results which, however, could not be incorporated in the text 
without enlarging it to unmanageable dimensions. We apologise to their 
authors for presenting their work as exercises, possibly giving the 
impression that we do not consider it as important enough to be in the 
text; indeed, the contrary is true: in spite of the obvious lack of space, we 
did not just pass by and overlook these results! 

With regard to the historical notes we wish to say that we have not 
done specific research to trace back carefully all the definitions and results 
presented in the book. We just give hints to our sources and apologise 
to all concerned if we have unintentionally given incorrect credits. 

The reader is assumed to be familiär with the Standard facts of general 
topology and category theory; as basic sources of information on these 
areas one can take, respectively, the classical books by John L. Kelley 
(1956) and Saunders MacLane (1971). 

A few remarks about the notation used in the book: with the exception 
of Section A . l , the symbol Top denotes the category of weak Hausdorff 
/c-spaces and continuous functions, explained just in that section. The word 
map always indicates continuity; a non-necessary continuous assignment 
between points of Spaces of simply called a function. Finally, the symbol 
x between /c-spaces always denotes the product in the category of/c-spaces. 

Many persons and institutions have given us a lot of support, 
encouragement and suggestions along the way; in particular, we wish 
to give our heartfelt thanks to: Professors Tammo tom Dieck, Philip 
Heath, Peter Hilton, Dana May Latch, Dieter Puppe; Drs Thomas Bartsch 
and Georg Peschke; Universität Konstanz, Ludwig-Maximilians-Uni­
versität, Memorial University of Newfoundland; D F G (Deutsche 
Forschungsgemeinschaft) and N S E R C (Natural Sciences and Engineering 
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Research Council of Canada). Special thanks are due to the Max-Planck-
Institut für Biochemie, in Martinsried near München, and in particular, 
to Dr Wolfgang Steigemann, Director of its Computer Centre, who 
introduced us to the wonders of 'Computer text editing'; in this field we 
were also greatly helped by Professors Herb Gaskill , Edgar Goodaire and 
P.P. Narayanaswami. Last, but not least, we wish to thank M r David 
Tranah, our friendly Mathematics Editor at Cambridge University Press, 
for his continuous assistance and support. 

RUDOLF FRITSCH RENZO A . PICCININI 

*I^9?> Institut Mathe.. „ . ^ 
der Universität M u n d e n 
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The fundamental properties of 
CW-complexes 

Balls and balloons are the Standard models for the cells used in the theory 
of CW-complexes; thus, the chapter Starts by 'playing' a bit with such 
toys. Next, it continues with a discussion of the problem of attaching 
n-cells to a space and with the actual construction of CW-complexes, 
followed by a detailed study of the fundamental properties of such Spaces. 

The unusual number given to the first section of this chapter, namely 
1.0, stems from the fact that the material discussed therein is really very 
elementary. 

1.0 Balls, spheres and projective Spaces 
The ball in the Euclidean space R " + l is the space 

B " + 1 = { s = (s 0,s 1,...,s I I): | s | ^ l } ; 
its topological boundary is the sphere 

ÖBn + l =Sn = {seBn + l : | j | = 1} 

and the difference 

Bn+1 = Bn+l\Sn 

is the interior of the ball namely, the open ball Observe that the 
ball B1 = [ — 1,1] does not coincide with the unit interval / = [0,1] (in 
the sequel, the boundary of / will be denoted by /). 

Intuitively, one may view a sphere as the skin of a ball (i.e., a balloon). 
To blow up a balloon, there must be an opening, a 'base point'; thus, set 
the point e0 = (1,0,. . . ,0) as the base point of both Bn + 1 and S". 

Spheres do not appear only as boundaries of balls; in addition to the 
inclusions 

in : Sn-+Bn + \ 

it will be necessary ttrdiscuss several Standard maps relating spheres and 
balls. The list of such maps described in this section is actually longer 
than that needed to develop the material herein. The primary two reasons 
are: 
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these maps could be used to fill in the details for the material sketched 
in the appendix; 

some of the maps discussed could be used in the homology of cellular 
structures (e.g., the Hurewicz isomorphism theorem). Although 
homology is beyond the scope of this volume, it is a natural 
continuation for the theory here developed. 

It is often convenient to view all balls Bn+1 and all spheres S" as 
contained in the space R 0 0 of all sequences which vanish almost everywhere, 
via the embeddings sh->(s,0,0,...); the topology of R 0 0 is determined by 
the family of all Euclidean subspaces R" (see Section A.2). Within this 
framework, consider the origin of R 0 0 as the 0-ball 

B° = {0}, 

whose boundary is the 'sphere' 

SB° = S~l=0, 

and which coincides with its interior 

B° = B°. 

In contrast with these 'minimal' models B° and S~ *, one has the infinite 
ball J500 = \Jn^0Bn and the infinite sphere S 0 0 = \Jn^0Sn as subspaces of 
R00. Notice that these two infinite models are determined by the 
corresponding families of finite models (see Corollary A.2.3). 

The ball Bn is embedded into the ball Bn+i as a strong deformation 
retract; a suitable retraction is the map 

j»:Bn + 1-+B\ 

given by 

f(s) = (s0,...,sn-.1). 

Define the 'eggs of Columbus' using the map i.e. the inclusions 

j + J. : B t t + l » B n + l 

given by 

j + (5) = (5 0,. . . , Sn _ 19±(SH + Jl-\f{s)\2)) 

and 

j _ (5) = (s 0 , . . . , sn _ l9±(sH - y i - l / W I 2 ) ) . 
The function 7 + (resp. jJ) maps the upper (resp. lower) hemisphere onto 
itself and the lower (resp. upper) hemisphere onto the equatorial ball Bn 

(see Figure 1). 
The deformation 

d" : (Bn x Bn)x I->Bn x Bn 
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Figure 1 

defined by 

d"((s9 s'\ t) = ((1 - t)s + t^(s + s')\(1 - t)s' + t{±{s + s'))), 
for every (s,s')eBtt x B" and every tel, shows that the diagonal subspace 
AB" a Bn x Bn is a strong deformation retract of Bn x B"; thus, balls are 
L E C spaces (see Section A.4, page 253). 

The sphere S " - 1 is included into the sphere 5" as its equator, and this 
inclusion, in turn, extend^ to embeddings 

: B"»Sn 

of the ball Bn into the southern, respectively northern hemisphere of S'\ 
given by 

/_(*)=(*,-yi-M2) 
and 

i + (s) = (s^l~\s\2l 
respectively, hav ing / |S" as common left inverse. 

The maps /_,/+ are homotopic only in a very curious way; in fact, a 
homotopy can be constructed by observing that both maps are homotopic 
to the constant map onto the base point, but there is no homotopy between 
them relative to the boundary (see the end of this paragraph). Viewed as 
maps into Bn+1 the maps are homotopic in a neat manner namely, 
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rel. Sn 1 via the map 

hn : BnxI^Bn+\ 

given by 

hn(s,t) = M2t-\)J\-\s\2). 

The importance of this map hn resides in the fact that every homotopy 
rel. S"~l given between two maps defined on B" factors through hn. In 
particular this shows: If i _ , i+ were homotopic rel. S"~ \ any corresponding 
homotopy factored through hn would yield a retraction of Bn+l onto S", 
contradicting Brouwer theorem (see TheoremA.9.4). 

Next, recall that the map (Figure 2) 

cn : Sn x + 1 

given by 

cn(*,t) = (l - t )e 0 +ts 

induces a homeomorphism 

Sn AI-+Bn+1 

where the symbol A denotes the usual smash product 
SnM = S"x I/Sn x {0} u {e0} x /. 

The formation of the smash product with one factor equal to / is also 
known as the reduced cone construction. The reduced Suspension of a based 
space {X,x0) is one step further away; this construction is given on the 
based space (X, x0) by 

I.X = X xI/X XIKJX0XI 

Figure 2 
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Figure 3 

(note that E.X is homeomorphic to the smash product X A S 1); if 
/:(Y,y0)^(X,x0) is a based map, its Suspension 

Z.f-.Z.Y^Z.X 

is the map induced by f x 1 : Y x I^X x I. 
For n ̂  1, define kn : S"~l x I-+S" (see Figure 3{a)) by 

{i_cn-l(s,2-2t), i < t < l ; 
the map fc" takes S"~l x Iue0 x I into c 0 and is bijective outside that 
space; thus, it induces a homeomorphism Z.S" + l -*S". Moreover, the 
map k" can be extended to a map k" : B" x / - » ß " + 1 (see Figure 3(b)) 
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e0 

Figure 4 

simply by taking 

fc"(c"_1(s, 0, t) = cn(kn(s,t\ 0; 

this latter map induces a homeomorphism Z.Btt-+Bn+l. Finally, notice 
that the map k" factors through the map and thus induces a map 

formally, bn°cn~l =kn. In turn, the map b" gives a homeomorphism 
between B"/S"~l and Sn. It is convenient to extend the definition of bn to 
include b° : B°->S° given by b°(£°) = { - 1}. Figure 4 indicates that hn 

is homotopic rel. {e0} to i+ via a homotopy moving Sn~1 only in the lower 
hemisphere. 

The following maps are relevant to the definition of homotopy groups: 
(i) the units 

un . ßn+1^Bn+\ ün : Sn^Sn 

defined for all n e N as the constant-based maps; 
(ii) the inversions 

ln : Bn+l^Bn + \ 

defined by l"(kn(s, t)) = k"(s, 1 — t) for every (s, t)eB" x /; this inversion on 
Bn+1 induces an inversion /" : S"-» 5" on S"; notice that /", /" are reflections 
about the hyperplane R" c R n + 1 : 

/ '(s 0 , . • . , S,„ Sn+ i) = ( s 0 , — S„+ i), 

(iii) for ^ 1, the pinchings (see Figure 5) 

given by 
((k"(s,2t\eA 0^t^$ 

p"(k»(5,0) = i 2 

l(*0,fc"(s,2r-l)), 
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Figure 5 

this means that the points with last coordinate equal to zero are mapped 
into the wedge point (e0i e0). 

The maps p" induce the pinching of the spheres 
pn . sn^Sn\/ S". 

(The symbol V denotes the usual wedge product: for any pair of based 
Spaces, say {X,x0\ (Y,y0), the space I V Y is defined to be 
X x {^oj^l^o} x >̂ regarded as a subspace of X x Y.) 

A n inaccurate but graphic description of the pinching is provided by 
cell division, a basic process in biology. 

For n ̂  2, there is another useful type of pinching: 

p : Bn+l->Bn+1 V Bn + 1 

given by 

f (kn {kn ~1 (s,2u\ t\ eA 0 ̂  u < ± 
pn(kn(k"-l(s,u)j)) = V K oh v 

\{e^k\kn-\s,2u-\\t)\ 

This means that the points with penultimate coordinate equal to zero are 
mapped into the wedge point (e0, e0). 

Next, consider the map obtained by projecting Bn+1xl onto 
Bn+i x {0}uS" x / from (0,2) in R f l + 1 x R (see Figure 6): 

rn+l . ßn+l x x |Q} <j S" X / 



l(s,t) = 

-(5,0), 0 < t < 2 ( l - | s | ) , 

— (s,2|s| + t - 2 ) , 2 ( l ~ | s | ) < t < l , | s | # 0 . 
1*1 

Notice that the restriction of rn+1 to Bn + 1 x {0} u S " x / is the identity 
and that the composition of r" + 1 with the inclusion of the latter space 
into Bn + 1 x / is homotopic rel. Bn+1 x {0} u S " x / to the identity map, 
via the homotopy 

Rn+i . xj Xj_+Bn+1 xl 

given by 

R" + 1 (s, r, M) = u (5, r) -l- (1 - u) rn + 1 (*,0; 
thus, ß M + 1 x {0} uSn x I is a strong deformation retract of Bn + 1 x I. This 
means that the inclusion of Sn in is a closed cofibration (see 
Example 1, Section A.4). 

The restriction of the homotopy R" to Bn x {1} x / ~ B" x I factors 
through the map / i " , thereby inducing a homeomorphism (see Figure 7) 
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Figure 7 

v" : Bn+l-^B" x J; 

one should notice that, regarding /+, i_ as inclusions of Bn into Bn+1, then 

vnoj_ =rn\Bn x {1} and vn°i + = inclusion. 

The homeomorphism v'\ interesting in its own right, can be used to 
interchange the components Bn x { 0 } u S " - 1 x I and Bn x {1} of the 
boundary of Bn x /: to see this, first note that vn maps the upper hemisphere 
of Sn+1 onto Bn x {1} and its lower hemisphere onto Bn x {0} u S n _ 1 x /; 
the actual interchange is then effected by the composite function 
w" = vn° Two more remarks about the map vn are called for: 
firstly, vn induces a homeomorphism 

v" : Sn^Bn x / u S " " 1 x / ; 

secondly, p" combines with the two pinchings p" and pn to yield an 
interesting commutative property: 
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Lemma 1.0.1 For every rc> 1, 
(i) there is a unique map 

qn . ^g» V ßnj x j ^ g n x f ) y ( ß„ x 

<f oO?" X l)oi;" = (y» V Vn)opn\ 

(ii) map 
qn : (5" x /) V (Bn x / ) ->(£" V Bn) x / 

induced by the obvious inclusions is a left homotopy inverse to qn: there is 
a homotopy q"°qn~\ rel.((e0,e0),l) and transforms the boundary of 
(Bn V Bn)xl into itselfi • 

In order to have enough fun in this game of balls and balloons, one 
actually needs more than one ball and one balloon in every dimension. 
Thus every space homeomorphic to the ball Bn (respectively, Bn) is called 
an n-ball (respectively, open n-ball) and every space homeomorphic to the 
sphere Sn is called an n-sphere. If B is any (n + l)-ball, its boundary sphere 
i.e., the image of Sn under a homeomorphism B"+1 ß , is denoted by dB. 

Proposition 1.0.2 For any non-negative integers p and q, Bp x Bq is a 
(p-\-q)-ball with boundary sphere Bp x Sq~l u S p _ 1 x Bq; moreover, for 
every n>Q,(B1)n is an n-ball. 

Proof Define 0 : Bp x Bq^Bp+q by setting, for every (sis')eBp x B9, 

0(5,s') = {max(|s|, |s'\)/J\s\2 + \s'\2}(s,s'), 

if (5,^)^(0,0) and 

#(0,0) = 0. 

The continuity of 0 is not difficult to prove. Its inverse is obtained as 
follows. Let s = (su...,sp,...,sp+q)eBp+q be given. Set s' = {sl9...,sp) and 

S" = ( V 1 > • • • > V ^ THEN> D E F M E 

0 - 1 ( 5 ) = { |5 | /max ( |^ | , | 5 ' 1 )} (^A 

The restriction of 0 to ö(Bp x ß 9 ) gives the second homeomorphism 
announced in the Statement. The third homeomorphism is obtained by 
induction on n. • 

Projective Spaces 

From the topological point of view, projective Spaces are intimately 
connected to spheres. However, before exhibiting this connection, one 
must give the definition of 'projective space' over a field. 
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Let F be a (not necessarily commutative) field. The n-dimensional 
projective space over F, denoted by FP" , is defined as the set of all 
1-dimensional (left) vector subspaces of the (n + l)-dimensional (left) vector 
space F" + 1 . The space FP" can be identified with the set ( F ' , + 1 \ { 0 } ) / ~ , 
where ~ is the equivalence relation defined by: s ~ s' iff there is a scalar 
teF with s' = ts. 

If F is a topological field the projective space F P " is given the identi-
fication topology induced by the projection F " + 1 \ {0} FP" . In this book, 
F represents the field R of real numbers, the field C of complex numbers 
or the skew-field H of quaternions. Then the space F" + 1 can be identified 
with one of the Euclidean Spaces Rn+l, R 2 " + 2 or R 4 n + 4 . Note that one can 
find, for every point in the projective space, a representative of length 1 
in the corresponding Euclidean space, i.e., a point in the spheres S", S2n+1 

or S 4 " + 3 . These identifications yield, respectively, the identification maps 

qR

n : S " ^ R P " , 

qc

n : S2n + 1->CP", 

qH

n : S 4" + 3 - H P " . 

The inverse image of a point in the projective space is a pair of antipodal 
points in S" for F = R, a circle (= 1-sphere) in S 2 m + 1 for F = C and a 
3-sphere in S 4 " + 3 for F = H . 

1.1 Adjunction of w-cells 

The reader should always bear in mind that all the work in this book is 
done within the context of the category of weak Hausdorff /c-spaces, 
denoted simply by Top (except in Section A . l , where it is denoted by 
wHk(Top)). 

Intuitively, a CW-complex is a space which can be considered as a 
union of disjoint 'open cells\ For instance, the ball Bn+1 can be considered 
as the union of an (n + l)-cell, namely the open ball Bn+1, an n-cell, namely 
the punctured sphere 5"\{e 0}, and the 0-cell {e0}: 

B"+1=Bn + lv(Sn\{e0})v{e0}. 

In this book the term 'cell' will often be preceded by the adjectives copen\ 
'closed', 'regulär', or the combination 'closed regulär'. The following list 
is intended to make matters clear. A subspace e of a space X is said to be 

an open n-cell in X (neN), if it is an open n-ball (recall that an open 
n-ball is a space homeomorphic to the open ball Bn); 

a closed n-cell in X, if it is the closure (in X) of an open n-cell; 
a regulär n-cell in X, if it is an open n-cell whose closure is an n-ball 

and whose boundary in the closure is an (n — l)-sphere; 
a closed regulär n-cell in X, if it is the closure of a regulär n-cell. 
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Observe that an n-cell does not have to be regulär: the punctured sphere 
S"\{e0},n > 0, as a subspace of the sphere S", is an example of this fact. 
For open, regulär or closed regulär n-cells e, the natural number n is the 
dimension of e: dim e = n (see Section A.9). By abuse of language, one also 
assigns to a closed n-cell the dimension n, although, outside the theory 
of CW-complexes, this does not necessarily coincide with the covering 
dimension of the space under consideration (see Example 5). But, if a space 
X contains an n-cell of any type, then dim X ^ n, because inside each open 
n-cell there are closed n-balls (see Corollary A.9.2). 

The ball Bn + 1 was decomposed into a union of open cells at the 
beginning of this section. In what follows, one should have this sort of 
cellular decomposition in mind. For the sake of simplicity, the formal 
constructions and proofs will often proceed in a slightly different manner. 

A pair (X, A) is an adjunction of n-cells, n e N , if X can be viewed as an 
adjunction space (see Section A.4) 

X = Aufy 

where Y is a topological sum of n-balls and the domain of / consists of 
the boundary spheres of the balls forming Y; in other words, if X is given 
by a pushout of the form 

UBX=Y >X 
x 

U S , > A, 
X 

with Bx an n-ball and Sx = öBx, for all indices X in an arbitrary index set 
A. If n = 0 the definition means simply that X is a topological sum of A 
and a discrete space. If (X,A) is an adjunction of n-cells, any 
path-component of X\A is an open n-cell in X, called an n-cell of (X,A). 
Each induced m a p l ^ - * X is called a characteristic map for the Ath cell; 
each induced mapS,

A-^>4 is an attaching map for the /Ith cell. If A is a 
based space and every map SX-*A is based, the pair {X,A) is said to be 
a based adjunction of n-cells. 

Proposition 1.1.1 / / (A,a0) is path-connected and {X,A) is an adjunction of 
n-cells, n > 0, there exists a based adjunction of n-cells (X\ A\ such that X' 
is homotopically equivalent to X via homotopies rel A. 

Proof Suppose that X = A Uf{\_\xBx). Let fx:Sx^>A be the attaching map 
for the Ath cell and let a>x : I-+A be a path such that cox(0) = fx(e0\ 
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u>x(\) = a0; choose a representative for {cox)~l{[fx']) (see page 287 in the 
appendix), for every index X. The maps f'x together define a based adjunc­
tion of n-cells (X\ A) with the properties required (see Proposition A.4.15). 

• 
Example 1 For every n>0 , the pair (B"ySn~l) is an adjunction of just 
one regulär n-cell; one can take the identity of S"'1 as an attaching map 
and the identity of B" as a characteristic map. 

Example 2 For every n e N , the pair (5W, {e0})1S a n adjunction of just one 
non-regular n-cell. If n>0 , the map b":Bn-*Sn (see page 6) can be used 
as a characteristic map; here there is no choice for the attaching map: it 
has to be the constant map. 

Example 3 For every n>0 , the pair (S" ,^" - 1 ) is an adjunction of two 
regulär n-cells. Take as components of the characteristic map the embed-
dings i+J- (see page 3) of the ball Bn as the upper, respectively the 
lower, hemisphere into the sphere Sn. 

The next example is not so trivial. 

Example 4 For every n e N , the pair (Bn+1 u Sn+\ B" u Sn) is an adjunction 
of exactly four regulär (n + l)-cells. To prove this assertion, first observe 
that 

Bn + 1 u Sn + 1 = B"+1 U B^sn(ßn vSn+l); 
then note that because of the addition law (L3), it is enough to show 
that each of the pairs (Bn+\BnuSn) and (B"uS" + 1 , ß "uS" ) is an 
adjunction of just two (n + l)-cells. Example 3 and the horizontal 
composition law (LI) are used to show that the pair (B"uSn+1

yB"uSn) 
is an adjunction of two (n + l)-cells. To prove that the pair (Bn+1,BnuSn) 
is an adjunction of just two (n -f l)-cells, construct the appropriate pushout 
using the 'eggs of Columbus' (see page 2) as components of the 
characteristic map. 

Example 5 Let / : Bl ~^Bn,n > 2, be a Peano curve, i.e., a map from B1 

onto Bn. Then, the composition f °j1\Si defines a partial map g : B2-/^>Bn 

(for the definition of the map j \ see page 2). The pair (B"UgB2,Bn) is 
an adjunction of just one 2-cell. The corresponding closed 2-cell has 
covering dimension n > 2! 

Example 6 Let F be one of the fields R, C, H , of the real, complex or 
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quaternionic numbers, respectively; also, let d be the dimension of F as a 
vector space over R. Then, for every rc>0, the pair ( F P " , F P " _ 1 ) is an 
adjunction of just one non-regular dn-cell. The composition of the inclusion 
i+:Bdn»Sdn (see page 3), the embedding Sdn»Sdn+d-\ and the 
projection q"F:Sdn+d~l ->FP n (see page 11) may serve as characteristic 
map for the adjunction; this characteristic map induces the attaching map 
qn¥-i . S d „ - i ^ F p n - i 

Proposition 1.1.2 Let {X, Ä) be an adjunction of n-cells, say 

Then the following Statements hold true: 
(i) the inclusion A^X is a closed cofibration; 
(ii) the space X is (perfectly) normal, whenever the subspace A is (perfectly) 

normal; 
(iii) the space X has dimension n, whenever the subspace A is a normal 

space of dimension ^ n and the index set is not empty; 
(iv) X\A is a topological sum of open n-cells, one for each index X; 
(v) for any map f'.A^A', the pair (Afl_\f>X,Af) is an adjunction of 

Proof The inclusion domf >-* Y is a topological sum of closed cofibrations, 
and therefore is itself a closed cofibration. Thus (i) follows because the 
attaching process preserves cofibrations. 

Since UXBX is perfectly normal, the adjunction space X is (perfectly) 
normal if A is (perfectly) normal (see Proposition A.4.8 (iv)). 

To prove (iii) note that under the first part of the condition given, the 
space X has dimension ^ n (see Proposition A.4.8 (v)); if n-cells are really 
present, dim X > n. 

Part (iv) follows from the fact that X\A is honuomorphic to 

Finally, (v) follows from the law of horizontal c< nposition of 

Remark According to (iv), the index set for uBx can be wewed as the 
set n(X\A) of path-components of X\A. Give the discre: topology to 
the set n(X\A); then the space Bn x n(X\A) can be viewed >.s the domain 
of the characteristic map for the adjunction of n-cells (X, A). xnd the space 
S"~1 x n(X\Ä) can be viewed as the domain of the a t t a c h i m a p for the 
same adjunction. • 

n-cells. 

Y\domf = u(Bx\Sx). 

Section A.4. • 
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The bridge between the point of view of considering globally all the 
cells used in the adjunction, and that of considering successive attachings 
of Single n-cells, is given by the following result. 

Proposition 1.1.3 The pair (X,A) is an adjunction of n-cells, iff 
(i) for every path-component e of X\A the pair (Aue, A) is an adjunction 

ofjust one n-cell (Aue is considered as a subspace of X) and 
(ii) the space X is determined by the family {A}u{e : een(X\A)}. 

Proof c=>': (i) Let e be an n-cell of (X, A) with attaching map fe and 
characteristic map/ e . 

To prove the equality 

AKje = AUfBe, 

observe first that Aue = Au(Be\Se), as sets. It remains to show that the 
subspace topology of A u e is the same topology as that of the adjunction 
Space A[_\feBe. Notice that by the universal property of the adjunction, 
the space A\_JfeBe has a finer topology than Aue. Next, let V c Aue be 
such that VnA is closed in A, and f~l(V) is closed in Be. Because X is 
a weak Hausdorff /c-space, Vnfe(Be) = fe(f~l(V)) is closed in X (see 
Lemma A . l . l ) , and, hence, in Aue; this, together with the fact that VnA 
is closed in A, implies that V is closed in X. 

(ii) Let U czX be such that UnA and Une are closed respectively in 
A and e, for each een(X\A). Then, if / is the characteristic map of the 
adjunction, f~l(U) = uf~l(Une) is closed. 

'<=': For every een(X\A), let fe : Se->A denote an attaching map 
generating the adjunction space A ue = A \_\feBe. Let f:\3Se->A be the 
map defined by the maps fe, and let X be the adjunction space A[_\f([jBe) 
with a fixed characteristic map / . The pair (X, Ä) is an adjunction of n-cells, 
and thus it suffices to show that the Spaces X and X coincide (up to 
canonical homeomorphism). The universal property of the adjunction 
space X giwc rise to a bijective rnapJ?-» X; thus, assume that the Spaces 
X and X ho ve the same underlying sets, and the topology of X is finer 
than that o: f. 

Notice th; ~f(Be) = e because X is a weak Hausdorff fc-space. Let V c X 
be such tha:, VnA and f~\V) are closed in A and \_\Be, respectively. 
Hence f~] 1 V)c\Be is closed in Be, for every een(X\Ä); because 
f(f~1(V)n J ') = V n e, it follows that V r\e is closed ine, for every een(X\A). 
Condition (» i implies that the set V is also closed in X. • 

The followi: 4 result, which is actually contained in the previous proof, 
has some in.:rest in its own right. 
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Lemma 1.1.4 Let (X, A) be an adjunction of n-cells and let e be an n-cell 
of{X,A). Then, 

e = f(B), 

where f denotes a characteristic map for e and B denotes an n-ball in the 
domain of f. • 

An advantage of looking at the adjunction of just one cell at a time lies 
in the fact that this process can be characterized without the explicit 
construction of a pushout diagram. 

Lemma 1.1.5 The pair (X,A) is an adjunction of just one n-cell iff 
(i) A is closed in X 

and 
(ii) there is a mapBn^X inducing a homeomorphism Bn^X\A. 

Proof '=>': clear from the definition. 
'<=': Let f : Bn-^X be a map as described in condition (ii). First, 

prove that / täkes the boundary S"" 1 of the ball Bn into the space A. To 
this end, assume the existence of a point s e S " - 1 such that f(s)eX\A. 
Then there is a unique point s'eBn such that f(s) = f(s'); furthermore, the 
inverse image of every neighbourhood of f(s') contains points close to s, 
contradicting the assumption that / induces a homeomorphism B" X\A. 

Denote by / :Sn~l-+A the map induced by / , and form the 
commutative Square 

Bn M X 

S"" 1 • A 
f 

It remains to prove that X has the final topology with respect to / and 
the inclusion AczX. To show this, first observe that the subspace A is 
closed in X, by (i), and the subspace f(Bn) is closed in X, because X is 
weak Hausdorff. Since the space X is the union of these two closed 
subspaces, a function with domain X is continuous iff its restrictions to 
the subspaces A and f(Bn) are continuous. • 

The condition (i) in this lemma is necessary, as one can deduce from the 
following. 

Example 7 The pair (B2, B^B1) satisfies condition (ii) for n = 1, but fails 
to be an adjunction of a 1-cell. 
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Because a space with a finite closed covering is determined by that covering, 
condition (ii) in Proposition 1.1.3 is superfluous if one deals with 
adjunctions of only finitely many cells. The following is an example 
showing that this condition is unavoidable in the general case. 

Example 8 Let {Bx : AeN\{0}} be a countable set of copies of the ball 
B1. For every index A, let fx : BX^I denote an embedding whose image is 
the interval [1/(A+ 1), 1/A] and define / : uBx-+I by taking f\Bx = fx. 
Since f(uSx) is contained in 

,4 = { 0 } u ß : AeN \{0}| , 

/ induces a map / : uSx^A and a commutative Square 

UBX M I 

USX —+ A 
f 

Now, for every index A, define the 1-cell ex = f(Bx) in J; then 

A\jex = A\J\ teR : —— ^t ^ - i 
1 A + l Aj 

and the pair (AueXi A) is an adjunction of just one 1-cell (see Lemma 1.1.5). 
But / is not determined by the family {Auex}\ To see this, consider the 
sequence {(2A+ 1)/2A(A+ 1)}. This sequence meets every space Auex in 
just one point, thus it is closed in the topology determined by {Auex}; 
however, it converges to 0 in the usual topology of the unit interval / . 
(This Situation may also serve as a counterexample in general topology: 
it is easy to see that, with respect to the topology of / determined by 
{y4ueA},0 is a Cluster point of f(uBx), but no sequence in f(uäx) 
converges to 0; this means that the resulting space is not a Frechet space. 
Similar ideas will be used in Example 13 of the next section.) 

There are two more relevant examples of pairs which are adjunctions of 
infinitely many n-cells. 

Example 9 The concept of the wedge of two spheres Sn V Sn was briefly 
discussed in Section 1.0; this concept has the following generalization. Let 
r be any set; for every yeT take a copy of the n-sphere Sn with its base 
point e0, i.e., (S"yie0) = (Sn,e0). The wedge product of the family of based 
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Spaces 
{(S;,eo):yer} 

(also called a bouquet of n-spheres) is the based space (V r S " , *), given by 
the set 

V Sn

y = \ (sy)e n Sn

y:sy # e0, for at most one yeF \, 
r t yer J 

endowed with the final topology with respect to the canonical map 

p:Us;- v 
yeT yeT 

and the point * taken to be the element (e0). Note that if T is finite, this 
topology coincides with the subspace topology induced by n y e r ^ " -

The pair ( V r S " , * ) is an adjunction of n-cells; notice that there are as 
many n-cells as there are elements in T. A characteristic map for this 
adjunction is given by the map 

f:\jBn^B" x T - + V Sn 

yeT r 

(here T is given the discrete topology) defined by f(s,y) = (sy), where 
sy = bn(s). 

Example 10 Let n be an abelian group and let n be a natural number 
> 1. Let FA(n) be the free abelian group generated by the elements of n, 
and let r be a basis of the kernel of the canonical homomorphism 
FA(n)-+n. Let (p:FA(n)-*nn(VnS",*) denote the homomorphism which 
assigns to a generator a of FA(n) the homotopy class of the inclusion of 
Sn into the rc-fold wedge V n S " of Sn as the ath factor. Next, for each yeF, 
choose a representative fy:Sn-+ VnSn of the homotopy class cp{y). The 
maps fy define a partial map f:Bn+1 x r~/-> V n 5 r t , whose resulting 
adjunction space M(n,n) is called a Moore space of type (n,n). The 
construction of M(n,ri) shows that the pair (M(7i,n), VnSn) is an adjunction 
of (n + l)-cells. 

What follows is more than just an example. 

Theorem 1,1.6 (i) Let (X,A) be an adjunction of n-cells and let p : X -*X 
be a covering projection. Then, the pair (X, A) with A — p~i(A), is also an 
adjunction of n-cells. 

(ii) Let (X, A) be an adjunction of n-cells, n>2, and let p : A-+A be a 
covering projection. Then, there are an adjunction of n-cells {X,A) and a 
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covering projection q:X ^ X, such that p is induced from q by the inclusion 
A-+X. In particular, if p is a universal covering projection, so is q. 

Proof (i) Consider A = n(X\A) as the index set for the n-cells of the 
adjunction (X, A). For every XeA, choose a characteristic map cx : Bn^X 
for the cell ex. Then, take A = {(z,X)eX x A : p(z) = cx(e0)} and let cj 
denote the unique lifting of cx with cx(e0) = z, for any X = (z,X)eÄ (see 
Theorem A.8.5). Next, define f:Bn x Ä-+X by (s,X)\-+cx{s). The restriction 
f\Sn~l x A factors through A therefore, inducing a map f'.S"'1 x Ä-+Ä. 
It will be shown that X may be viewed as being obtained from Ä by 
adjoining Bn x A via / . 

First, prove that every point xeX\A corresponds to a unique point in 
Bn x A. To this end, notice that p(x)$A, and so p(x) = cx(s), for a 
unique XeA and a unique seBn. Now, let W denote the line segment in 
Bn connecting s to e0 and let co : W^X denote the unique lifting of 
cx\ W, with ÜJ(S) = x. Then, x = cfa), with X = (co(e0),X). 

Second, X has the right topology. It will be shown that a subset U a X 
is open if UnA is open in A and cx~v(U) is open in Bn, for every XeA. 
Because p is a covering projection, there is an open cover {Vy : yeT} of 
X such that the induced map Vy-*p(Vy) is a homeomorphism and p(Vy) 
is open in X, for every ye^T. Since U is open in X iff C/n F y is open, for 
every y, it suffices to assume U c F y , for some y. But then, U is open iff 
p(U) is open in X . Now p(U)nA=p(UnÄ) is open in A and 
cA

_ 1(p((7)) = (J zcj _ 1([/) where the union is taken over all z's such that 
(z, X)eA, is open in ß", for every thus, because X has the final topology 
with respect to the inclusion of A and the characteristic maps cA, the set 
p(U) is open in X. 

(ii) According to the condition on n, each attaching map for an n-cell 
of (X, A) has a simply connected domain, and so it has liftings to A. 
Use each of these liftings to attach an n-cell to Ä. The result is a space X 
and the universal property of the attachings determines the covering 
projection q. • 

Collaring 
Whenever dealing with pairs (X, A) which are adjunctions of n-cells, n > 0, 
sometimes it is necessary to enlarge open sets of the subspace A to 
appropriate open sets of X. This can be done by the technique of'collaring', 
which is described next. 

Let / : UBx-+X be a characteristic map, and let / : uSx^A be the 
corresponding attaching map. Assume that every ball Bx is just a copy of 
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B"; thus, one can multiply any seBx (viewed as a vector of R") by a scalar 
tel; the product ts is still a point of Bx. The f-collar of a set F e i is 
defined to be the subset 

CT(V)=Vvf{{ts : s c / " ^ K ) , 
The following is an immediate consequence of the definition. 

Lemma 1.1.7 Let (X, A) be an adjunction of n-cells, letfbe a characteristic 
map for the adjunction, and let V be a subset of A. Then 

(i) Cj(V)nA=V; 

(ü) f'HCT(V)) = {ts:sef~l(Vl \<t< 1}; 
(iii) Cj(V) is open in X iff Vis open in A; 
(iv) ifV is a closed subset of A, the closure of the f-collar ofV is the set 

C^(V)=Vuf({ts:sef-1(V), £ < * < 1 } ) ; 

(v) if e is an n-cell of(X,A), then enCj(V)^0 iff enCj(V)^0 iff 
enV^0; 

(vi) Cj(V) contains V as a strong deformation retract; 
Moreover, if (Vy) is a locally finite family of subsets of A (respectively, a 
family of pairwise disjoint subsets of A), then 

(vii) (Cj(Vy)) is a locally finite family of subsets of X (respectively, a family 
of pairwise disjoint subsets of X). • 

The next result requires a little work. 

Lemma 1.1.8 Let (X,Ä) be an adjunction of n-cells andfbe a characteristic 
map for the adjunction. If V c= A is open or closed in A, then 

C / ( K ) = K U 9 ( / - 1 ( K ) x ( i 1]) 

where f is the attaching map corresponding to f and g : f~l(V)-* V is the 
map induced by f. 

Proof Assume first that V is open in A. Then, because of Lemma 1.1.7 
(iii), Cj(V) is open in X; the stated result now follows by application of 
the restriction law (L4) of adjunction Spaces, and parts (i) and (ii) of the 
previous lemma. In particular, notice that 

Cj{A) = AUf(r\Ä)x^\-\). 

Now if V is closed in A, then Cj(V) is closed in Cj(A), and so the Statement 
follows again by (L4). • 
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Corollary 1.1.9 / / V is an open or closed subspace of A, then the inclusion 
V>-*Cj(V) is a closed cofibration. • 

The fact that the characteristic maps are not unique might be quite 
advantageous; indeed, it permits the choice of the 'right coordinates' for a 
variety of purposes, as proved by the next proposition. 

Proposition 1.1.10 Let (X,A) be an adjunction of n-cells, V be a closed set 
of A and U be an open subset of X containing V. Then there is a characteristic 
map f for the adjunction such that the closure Cj(V) is still contained 
in U. 

Proof Choose arbitrarily a characteristic map / • uBe-+X, where the 
index e runs through all the n-cells of the adjunction. The map/determines 
an attaching map / : Se -»A whose restriction to a sphere Se will be 
denoted by fe. The objective is to construct cellwise a Transformation of 
coordinates', which keeps the attaching map / invariant. Notice that / 
must be modified only for cells e, such that 

(*) f{{ts:seSe,f{s)eV9^t^l})<f:U. 
Let e be such a cell. Then Ve=fe~1(V) is non-empty and f(Be) is not 
completely contained in U. Hence the set Ue = i ? e \ 7 ~ *(£/) is a non-empty 
closed subset of Be which does not meet the closed set Ve. The distance 
öe between the closed sets Ue and Ve is defined and different from 0, 
because these two closed sets are both compact subsets of a metric space. 
It is easy to conclude from (*) that Se ̂  \. Next, select a homeomorphism 
he : Be-+ Be which coincides with the identity map on the boundary of Be 

and shrinks the ball {seBe : |s|< 1 — <5J radially into the ball 
{seBe : \s\ ^ j}; then define 

f\Be = f\Be°h;1. 

This completes the construction of the desired characteristic map / . • 

Exercises 

1. Let (Y,D) be an adjunction of n-cells and let A be a contractible space. 
Show that any m a p / : D^A can be extended over Y. 

2. Let M(n,n) be a Moore space of type (rc, n). Show that M(n, n) is 
up to homotopy independent of the choice of the basis F selected for 
the kernel of the canonical homomorphism FA(n) -»n\ show also that 
M(n,n) does not depend on the choice of the representatives 
/ y : S " - * V^S" fsee Example 10). 
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3. Show by a counterexample that, under the hypotheses of Pro­
position 1.1.10, without the assumption that V is closed, there might 
be no collar of V contained in U. 

1.2 CW-complexes 

One of the main objectives of this book is the study of CW-complexes; 
these can now be defined. 

A filtration of a space X is a finite or infinite sequence {Xn : n = 0,1,...} 
of closed subspaces of X which is a covering of X and such that Xn~1 is 
a subspace of Xn for n = 1,2,.... 

A CW-structure for a space X is a filtration of X such that 

(0) X ° is a discrete space, 
(1) for every n > 0 the pair [Xn,Xn~l) is an adjunction of n-cells, and 
(2) X is determined by the family of subspaces {Xn : neN}. 

There are occasions when it is convenient to Start the filtration with 
X~l. If X~x = 0 , the introduction of this extra space does not change 
matters; otherwise, one is led to the notion of relative CW-complex, whose 
basic proporties are introduced at the end of this section. 

If the filtration is finite, condition (2) above is superfluous. If the filtration 
is infinite, condition (1) shows that {Xn : n = 0,1,...} is an expanding 
sequence; in this case, condition (2) makes sure that X is its union space 
(see Section A.5). 

A CW-complex is a space endowed with a CW-structure. If one wishes 
to be perfectly clear, it is convenient to use the notation 

{X;Xn : n = 0,l , . . .} 

or 

{X;X°,X\...,Xm} 

to describe the CW-complex consisting of the global space X and the 
corresponding filtration; otherwise, if the filtration is clearly understood, 
just write X instead of the previous lengthy expressions. By abuse of 
language, a space X is said to be a CW-complex if a CW-structure is 
implicitly given. Conversely, whenever referring to topological properties 
of a CW-complex {X\Xn : n = 0,1,...} e.g., dimension, it is understood 
that these are properties of the space X. 

Proposition 1.2.1 Any CW-complex is a perfectly normal k-space. 

Proof (1) A discrete Space is perfectly normal; (2) adjunction preserves 
perfect normality (Proposition A.4.8 (iv)); (3) the union space of an 
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expanding sequence of perfectly normal Spaces is perfectly normal 
(Proposition A.5.1 (iv)). • 

If {X;Xn : « = 0,1,...} is a CW-complex, then the closed subspace 
Xn, « = 0,1, . . . , has dimension ^ « (see Proposition 1.1.2 (iii)) and is called 
the n-skeleton of X; the space Xn inherits, in the obvious manner, a 
CW-structure, and thus it can be considered a CW-complex. 

Attention: whenever a letter X represents a CW-complex, Xn will denote 
the «-skeleton of X and not its «-fold product. 

Any (open) «-cell e of the adjunction (Xn,Xn~1) is-called an n-cell of 
X,n>0] the points of the discrete space X° are called 0-cells. A C W -
complex (CW-structure) is regulär if all its cells are regulär cells. 

If e is an «-cell of a CW-complex X, any map ce: Bn-+X inducing a 
homeomorphism Bn -» e is called a characteristic map for e; the compact 
image of ce in X, which, incidentally, is just the closure e of the open cell 
e (see Lemma 1.1.4), is called a closed cell of X; in contrast to Example 5 
of Section 1.1, the closed «-cells of a CW-complex have covering dimension 
« as subspaces of the «-skeleton (see Corollary A.9.2). For « > 0, any 
characteristic map ce induces an attaching map ce : = öBn-+Xn~1 

for the «-cell e. Clearly, there are characteristic maps for every cell; indeed, 
any characteristic map for the adjunction (Xn,Xn~x) gives rise to a family 
of characteristic maps for all the «-cells of X. 

Notice again that from the set-theoretical point of view, a CW-complex 
is the disjoint union of its open cells. Observe that the open cells of a C W -
complex X, in general, are not open sets of X; for instance, the only open 
«-cell of the («-1- l)-ball referred to in the beginning of Section 1.1 is not 
open in Bn+1. The unique cell e containing a given point xeX is called 
the carrier of x. 

The decomposition of a CW-complex into cells suggests the possibility 
of defining another topology, which, however, is equivalent to the topology 
determined by its skeleta. 

Proposition 1.2.2 A CW-complex is determined by the family of its closed 
cells. 

Proof Let {X; Xn : n = 0,1,...} be a CW-complex. IfUcXis closed in 
X then, clearly Une is closed in e, for all cells e of X . Conversely, suppose 
that U cz X intersects every closed cell of X in a closed set. It is clear that 
UnX° is closed in the discrete space X°. Assume, by induction, that 
UnX"'1 is closed in Xn~l; since the «-skeleton Xn is determined by 
I " " 1 and all the closed «-cells e (see Proposition 1.1.3 (ii)), the set UnX" 
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is closed in X. It follows that Ur\Xn is closed for all neN, and since X 
is determined by the family of its own skeleta, U is closed in X. • 

Remark This proposition says that a CW-complex can also be viewed as 
the codomain of an identification map from a coproduct of balls. Indeed, 
take characteristic maps for all cells; then, form the coproduct of their 
domains and the induced map to the CW-complex. 

Example 1 The ball Bn+1 has a canonical CW-structure 

{ { e 0 } , . . . , { e 0 } , S " , ß n + 1} 

(see the beginning of Section 1.1). 
As pointed out in that section, the resulting CW-complex Bn+l is not 

regulär, if n>0 . Since Sn is here the n-skeleton of Bn + 1, it inherits a 
non-regular CW-structure. There are, however, regulär CW-structures for 
balls and spheres, as we can see in the next example. 

Example 2 In view of Example 3 of Section 1.1, 

{S°,S\...,Sm,...,S\Bn + i} 

is a regulär CW-structure for Bn+l. This also proves that SM, as the 
n-skeleton of this CW-structure, can be viewed as a regulär CW-complex. 

Example 3 Example 4 of Section 1.1 gives another regulär CW-structure 
for the ball Bn + \ namely 

{B0KjS°,...,BnKjS\Bn+i}. 

Example 4 The sequence {Sn : n = 0,1,...} is an expanding sequence with 
union space S 0 0 , and, again, in view of Example 3 of Section 1.1, it is a 
CW-structure for S 0 0 . 

Example 5 Unfortunately the sequence {Bn : n = 0,1,...} fails to be a 
CW-structure for the infinite ball because the pairs ( ß \ B " - 1 ) are not 
adjunctions of n-cells. Nevertheless, there is a CW-structure for namely 

{ ß ° u S ° , . . . , ß " u S n , . . . } . 

The union space of this expanding sequence and B™ clearly coincide as 
sets. To prove that they have the same topology, consider the expanding 
sequence 

{B0,B°vS0,B\...,B\BnvSn

iBn + \Bn+1vSn+\...}, 

whose union space again concides, as a set, with the set But now, if 
/ is a function with domain B°° and values in a given space, all the 

< 
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restrictions f\B"vSn are continuous iff all the restrictions f\Bn are 
continuous; this gives the desired result. 

Example 6 Example 6 of Section 1.1 proves that 

{ R P ° , . . . , R P m , . . . , R F n } 

is a CW-structure for the real projective space R P w , n e N . 

Example 7 The previous example proves that the sequence { R P n : n = 
0,1,...} is a CW-structure for the real infinite projective space R P 0 0 ; this 
CW-structure for R P 0 0 has exactly one cell in each dimension. 

Example 8 For every neN, define 
X2n = X2n+l =Cpn 

Then {X°, X1,..., X2n) is a CW-structure for the complex projective space 
CP" , and the infinite sequence {Xn : neN} is a CW-structure for the 
infinite complex projective space C P 0 0 ; this CW-structure for C P 0 0 has 
exactly one cell in each even dimension. 

Example 9 For every neN, define 

x^n + 1 = X^n + 2 = X^n + — H P " 

Then {X°,X\...,X*n + 2} is a CW-structure for the quaternionic 
projective space HP" , and the infinite sequence {Xn : neN} is a C W -
structure for the infinite quaternionic projective space H P 0 0 ; as in the 
previous case, this latter structure has exactly one cell in the dimensions 
4n,neN. 

The next example is of a totally different nature. 

Example 10 The 2-term sequence {Z,R} is a CW-structure for the real 
line R. 

Example 11 The sequence 

{Z x Z , R x Z u Z x R , R 2 } , 

can be taken as a CW-structure for R 2 . 

Example 12 For an abelian group n and a natural number n > 0, 

{{*} , . . . , {*} , VS",M(7r,n)} 
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is a CW-structure for the Moore space M(n,n) (see Section 1.1, 
Example 10). 

Al l the examples given up to now discuss the CW-structure of well-
behaved Spaces; the example bearing the unlucky (or lucky, according to 
one's point of view) number 13 presents a space with a bad property. 
Actually, part of the scope in describing the CW-complex of this example 
is to show that a CW-complex is not necessarily a Frechet space. 

Example 13 Let X be the CW-complex having {0} and {1} as 0-cells, the 
open interval (0,1) as the only 1-cell and for every natural number k ^ 0 , 
a 2-cell ex, with ex\ex = {1/A}. Notice that 0EX\XX

9 but no sequence in 
X\X1 coverges to 0: if (xx) is a sequence in X\X1 which converges to a 
point in X1, then at least one 2-cell ex. has to contain a subsequence (yx\ 
otherwise the sequence would be closed in X and could not converge to 
a point outside X\XK But then, l\k' = l i m ^ ^ yx = l i m A ^ o 0 xx 0. 

The concept of relative CW-complex is useful for several purposes. A 
relative CW-structure for a space X is a filtration {X{n) : n = — 1,0,1,...} 
of X such that: 

(1) for every n ^ 0 , (XIN\X{N~L)) is an adjunction of n-cells; 
(2) X is determined by the Spaces Xin\ 

Notice that there are no conditions attached to the space X{~i}. If 
X{~1] = 0, then X is an honest CW-complex with X" = X{"\ for n ^ 0 ; 
moreover, if X is any relative CW-complex, then X/X{~1) is a C W -
complex. 

Let X be a relative CW-complex; if X{~i] is a singleton space, say 
X{~1) = {x0}, one obtains a based CW-complex; in this case, X° = 
Xi0) and Xn = X(n\ for every n > 0, define an ordinary CW-structure for 
X. If X is a based CW-complex, it will be considered as a based space 
with the only point in X{~1} as base point. 

Given a CW-complex X, to choose a base point means to construct a 
based CW-complex by defining X{~1) = {x0} for the x0eX° selected, and 
also, Xin) = X\ for all n > 0. 

Example 14 An adjunction of n-cells (X, A) is a relative CW-complex, with 
Xik) = A for every k<n and X ( f c ) = Xtovk^n. 

Proposition 1.2.3 Let X be a relative CW-complex. Then, 
(i) if X{~1) is a (perfectly) normal space, so is X\ 
(ii) X is determined by the family consisting of its closed cells and ofX(~l); 
(iii) the inclusion of any X{,1) into X is a closed cofibration. 
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Proof (i) Compare with the proof of Proposition 1.2.1. 
(ii) The proof is similar to that of Proposition 1.2.2. 
(iii) follows from Proposition A.5.1(iii) • 

Exercises 
1. Prove that every base {b1,b2,...,bn} of the vector space R" defines a 

CW-structure for that space by taking the /c-skeleton of R" to be the set 

(R")fc = | Z si^i SjER,s feZ for at least n — k indices / 

2. A space X is said to be a sequential space if a subset A of X is closed 
iff together with any sequence it contains all its Cluster points. Show 
that any CW-complex is a sequential space. (Note: Any Frechet space 
is a sequential space but not vice versa - see Example 13.) 

3. Let X be a CW-complex. Consider the identification map described in 
the Remark following Proposition 1.2.2. Show that this map is closed 
and that the inverse image of any point of X is compact iff X is 
metrizable. (Hint: see Morita & Hanai, 1956, Theorem 1, or Stone, 
1956, cf. Proposition 1.5.11.) 

1.3 Some topological properties 

It is not very easy to describe the open sets of a CW-complex. The notion 
of collaring defined previously is used in this section to construct open 
sets of a CW-complex. 

Let {X\Xn : n = 0,l , . . .} be a CW-complex, and let {/" : neN} be a 
sequence of characteristic maps for the adjunctions (Xn, X"'1). If Vm is a 
subset of a given m-skeleton Xm, the infinite collar C 0 0 ( V m ) is defined as 
follows. For every n ̂  m, define 

(the f" + l-collar defined in Section 1.1), and then take 

CJVm) = (J Vn 

n>m 

as a subspace of X. Clearly, the space C 0 0 ( K m ) depends on the sequence 
{/" : neN} of characteristic maps. 

The main properties of the infinite collaring are collected in the 
following. 

Proposition 1.3.1 Let {X;Xn : neN} be a CW-complex, let {fn : neN} be 
a sequence of characteristic maps for the adjunctions (Xn,X"~l) and let V 
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be an open or closed subset of an m-skeleton Xm. Then the infinite collar 
CJV)ofV 

(i) intersects Xm in V; 
(ii) is open in X iff V is open in Xm\ 
(iii) has as closure the union in X of the closures ofthe intermediate collars; 
(iv) is the union space of the expanding sequence of the intermediate 

collars; 
(v) contains V as a strong deformation retract. 

Moreover, if (Vy) is a locally finite family of subsets of Xm (respectively, a 
family of pairwise disjoint subsets of Xm), then 

(vi) the family of their infinite collars is again locally finite (respectively, 
is a family of pairwise disjoint subsets of X). 

Proof Parts (i), (ii), and (vi) are trivial; the normality of X (see 
Proposition 1.2.1) ensures that C 0 0 (K) has properties (iii) and (iv) (see 
Proposition A.5.4). Statement (v) follows from the fact that each 
intermediate collar Vn is a strong deformation retract of its successor (see 
Corollary A.5.8). • 

The next result is a first application of the technique of infinite collaring; 
it shows that CW-complexes are locally contractible in a strong sense. In 
general, a space X is said to be locally contractible if for each point xeX 
and each neighbourhood U of x there is a smaller neighbourhood V of 
x such that the inclusion V^U is homotopic to a constant map. For 
CW-complexes the following result holds true. 

Theorem 1.3.2 Let X be a CW-complex, let x0 be a point of X, and let U 
be an open neighbourhood of x0 in X. Then there is a contractible open 
neighbourhood V of x0 whose closure V is still contained in U. 

Proof Let the m-cell e be the carrier of x0 in X and let c : Bm -• X be a 
characteristic map for e. Notice that the point y = c~l(x0) lies in the 
interior of Bm, and cT *(10 is an open neighbourhood of y in Bm. Now 
choose a small m-ball B in Bm such that yeB c c~ 1(U). Since the interior 
B = B\öB is a contractible neighbourhood of y in Bm, the set Vm = c(B) 
is a contractible open neighbourhood of x0 in Xm, whose closure Vm is 
contained in U. Selecting inductively the 'right coordinates' (see 
Proposition 1.1.10), one obtains an infinite collar V=Co0(Vm) whose 
closure is still contained in U. By Statement (ii) of the previous proposition, 
V is an open neighbourhood of x0 in X; because of Statement (v) there, 
V contracts to Vm, and hence to x 0 . • 
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Recall that a space X is said to be locally path connected at x if, for every 
neighbourhood U of x, there is a path-connected neighbourhood V of x 
contained in U. Since a contractible set is path connected, Theorem 1.3.2 
has the following consequence. 

Corollary 1.3.3 A CW-complex is locally path connected, and hence locally 
connected. • 

Corollary 1.3.4 Let U be an open subset of a CW-complex X. Then U is 
connected ijfU is path connected. In particular, a CW-complex is connected 
iff path connected. 

Proof In a locally path-connected space, connected and path-connected 
components coincide.1 • 

Another application of collaring is the proof of the paracompactness of 
CW-complexes. 

Theorem 1.3.5 A CW-complex is paracompact. 

Proof* Let X be a CW-complex and let {Ux:XeA} be an open covering 
of X. The objective is to construct inductively a graded index set 

oo 

r= u r„ 
n = 0 

and subsets Vyn, for every yeT and every neN, such that the family 
{Vy : yeT} with 

is an open, locally finite refinement of the covering {Ux}. Moreover, it 
will be shown that for a fixed meN, the family {V } is an open, locally 
finite refinement of the covering {XmnUx} for the m-skeleton Xm. 

An index y is said to have degree n (notation: degy = n), whenever yeTn. 
As soon as an index y is constructed, another index X = X(y) will be selected 
and the constructions will be done in such a way that V is contained 
in UX{y). Furthermore, the set Vy m will be taken as a non-empty subset of 
Xm\Xm~x for m = deg7,7^ = 0 for m<degy and Vy^Vy^%y for 
m > deg y. 

f For another proof of the second part see Corollary 1.4.12. 
* For an alternative proof see Section 1.5, Exercise 1. 
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Start the construction of T by taking T0 = X°; then, for every yeT0, 
select an indexX(y) such that yeX°r\UX{)9 and, for these y, define 

Now assume that the sets Tn are constructed up to and including the 
index m—1, together with the corresponding sets V ,yern, and the 
corresponding indices X(y). 

In order to take the induction Step, first define Vym,yeTn,n = 0 ,1 , . . . , 
m— 1. Choose an arbitrary characteristic m a p / for the adjunction 
(Xm

iXm"i) of m-cells, and, for any y as before, define 

Because of the induction hypothesis, the family {Vy>m- x) is open and locally 
finite, and so is the family {Vym) (see Lemma 1.1.7(iii) & (vii)). Note that Vm = 
\JyVym (where y runs over the sets rn,n = 0, l , . . . , m — 1) is an open set 
in Xm which contains Xm~l. With a suitable choice of the 'right coordi­
nates' (see Proposition 1.1.10), one can arrange matters so that the closure 
of the collar of Xm~l is still contained in Vm. 

Let e be an m-cell and let fe:Bm-+X be its corresponding character­
istic map. The family {U'x = /" 1{UJ} Covers the m-ball B' = {seBm:\s\ ^ 
| } ; since B' is compact, finitely many members of this family, say U\i,..., 
U'Xk, suffice to cover B'. With this in mind, define 

re = • • • 
moreover, for every y e F e , define 

X{y) = y 
and 

Finally, define 

rm=ure, 
e 

where e runs over the set of all m-cells of X. 
One must prove now that the indices y and the sets V actually perform 

the tasks they are supposed to. First, prove that the family {V : degy ^ 
m} is locally finite. Let x be a point of X whose carrier is an m-cell e. On 
the one hand, it is already known that x has a neighbourhood U which 
meets only finitely many sets V , with deg y < m, and, on the other hand, 
e meets only finitely many sets V with degy = m, namely those with 
yeTe; then Une is a neighbourhood of x in Xm which meets only finitely 
many Vym with d e g y ^ m . Suppose now that xeXm~l. The idea now is 
to prove that any open neighbourhood U of x in Xm~l meeting only 
finitely many V 19 with degy < m, can be enlarged to a neighbourhood 
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V of x in Xm, meeting only finitely many V , with degy ^ m. This will 
be done by analysing carefully the various collaring processes. Let / be 
one of the characteristic maps used in the construction of the set Vm\ then, 
according to Lemma 1.1.7 (vii), the collar Cj(U) interesects only finitely 
many Vym, with degy < m. Notice that B = \Jefe{Bf) is a closed subset of 
Xm which does not meet Xm~l. Therefore, U' = Cj(U)\B is a neighbour­
hood of x in Xm having the desired property. 

At this point, one should notice a property which will be needed in the 
sequel: U' intersects V iff U intersects K r 

The final step of the proof can now be taken. For every index y, 

V n Xm = V 

and therefore Vy is open in X. Moreover, the inclusions 

show that the family (Vy) is a refinement of the family (Ux). For an arbitrary 
point xeX, take a non-negative integer m such that xeXm and choose a 
neighbourhood Um of x in Xm which intersects only a finite number of 
sets Vy. As proved before, the neighbourhood Um of x can be enlarged, 
inductively, to neighbourhoods Un of x in Xn, all of which intersect only 
a finite number of sets Vy, which already intersect Um. Thus \J™=mUn is 
a neighbourhood of x in X intersecting only finitely many sets Vy; this 
proves that the family (Vy) is locally finite. • 

Remark Theorem 1.3.5 actually follows from the fact that the formation 
of adjunction Spaces and union Spaces of expanding sequences preserves 
paracompactness (see Exercise 5 of the Appendix and Proposition A.5.1 
(v)); the text, however, offers an independent direct proof; one reason for 
selecting this procedure is to pinpoint the use of the axiom of choice. The 
reader will have noted that several choices were made during the proof 
of Theorem 1.3.5. Then, one may ask if the axiom of choice is really 
necessary to prove the paracompactness of CW-complexes. Couldn't one 
have the same Situation as in the Tychonoff theorem (the Cartesian product 
of a collection of compact Spaces is compact relative to the product 
topology) which is known to be equivalent to the axiom of choice? A 
systematic examination of the proof of Theorem 1.3.5 shows that the 
following two weak forms of the axiom of choice would be enough to 
yield the theorem. 

(i) Axiom of countable choice: it is possible to select just one element 
from any member of a countable family of sets. This is used to choose 
the characteristic maps/needed to construct the sets Vm. 

(ii) Axiom of multiple choice: it is possible to select a finite set of elements 
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from any member of an arbitrary family of sets. With this axiom, instead 
of choosing one X(y) for each y, one chooses a finite set Ly of indices X, 
so that the sets Ux,XeLy contain the set V in question. Then one can 
proceed by assuming that the subsequent sets Vyn are all contained in the 
open set f]XeLUx. 

The choice of a finite subfamily of the covering (U'x) of the ball B' is 
not really necessary. One can get the Lebesgue number e of this covering 
without using any axiom of choice, and then it is possible to construct 
explicitly open sets with diameter e. The selection of the 'right coordinates' 
does not require a choice. 

The previous considerations show that one is not really faced with a 
Situation analogous to that of Tychonoff's theorem. For compact 
Hausdorff Spaces, it is known that the theorem of Tychonoff is equivalent 
to the ultrafilter theorem, a weaker form of the axiom of choice, but in 
another direction. The ultrafilter theorem is not equivalent to the axiom 
of multiple choice. This question leads to more sophisticated problems in 
set theory. 

Theorem 1.3.6 Every CW-complex is an LEC space. 

Proof Let X be a CW-complex. Because coproducts of balls are L E C 
Spaces, Corollary A.4.14 shows, by induction, that all the skeleta X" are 
L E C and so is their union space X (see Corollary A.5.6). • 

Remark L E C Spaces are locally contractible (see Proposition A.4.5); thus, 
the previous theorem proves again that CW-complexes are locally con­
tractible. However, the previous proof of this fact (see Theorem 1.3.2) is 
not wasted, since it indeed furnishes a stronger result. 

Corollary 1.3.7 Let X be a CW-complex and x be an arbitrary point of X. 
Then, the inclusion map {x} X is a closed cofibration. 

Proof Because X is L E C , there is a neighbourhood U of AX in X x X 
which is deformable to AX in X x X rel. AX; moreover, there is a 
mapa : X x A W such that a~i{0) = AX and a\(X x X\U) = 1 (see 
Proposition A.4.1 (iv)). Take 

ax : X->I 

to be ocx(y) = oc(y,x), for every yeX, and Ux = a x

- 1 ( [0 ,1)) . Then, 
a j c

_ 1(0) = {x} and <xx\(X\Ux)=L Now, H : U x I-+X x X isa suitable 
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deformation, take Hx : Ux x J X to be 

H , ( y , 0 = { P r i O / f ( ( 3 ; ' X ) ' 2 0 ' 
lpr 2 oH ( (y ,x) ,2-2t ) , £ < * < 1 

for every yeUx,teI. Notice that Hx deforms the neighbourhood Ux of x 
into {x} rel. {x}. Thus, the inclusion of {x} into X is a closed cofibration 
(see again Proposition A.4.1 (iv)). • 

Exercises 

1 A space is hereditarily paracompact if every subspace is paracompact. 
Show that it suffices to require this condition for open subspaces and 
that CW-complexes are hereditarily paracompact. 

2 Prove that CW-complexes are stratifiable. (Borges, 1966) 
3 Let X b e a CW-complex and C be a compact Hausdorff space. Show 

that the function space Xc is stratifiable. (Cauty, 1976) 
Later on, it is proved that Xc has the type of a CW-complex (see 

Corollary 5.3.6). 
4 Generalize the Statement of Exercise 3 to Spaces C for which there is a 

sequence {Cn : neN} of compact Hausdorff subspaces Cn such that 
every compact Hausdorff subspace of C is contained in some C„. (Thus, 
C may be any locally compact CW-complex or any locally compact 
metric space satisfying the second axiom of countability.) 

1.4 Subcomplexes 
Let X be a CW-complex. A CW-complex A is a subcomplex of X, if 
(1) A is a subspace of X and 
(2) for all n e N , the n-skeleton of A is the intersection of A with the 

n-skeleton of X: 

An = XnnA. 

Condition (2) implies that the CW-structure of A is determined by the 
space A and the CW-structure of X; thus, by abuse of language, one also 
says that a subspace A of the CW-complex X is a subcomplex of X, if 
the filtration 

X°nAaX1nAcz..-ciXnr\Acz'.-

is a CW-structure for A. 
Every skeleton Xn of X is a subcomplex of X. Moreover, a subcomplex 

of a subcomplex of X is again a subcomplex of X. 

Lemma 1.4.1 If A is a subcomplex of the CW-complex X then every cell 
of A is a cell of X. 
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Proof Let e be an n-cell of A; as a subset of A"\A"~l, the set e is also a 
subset of Xn\Xn~l, that is to say, e is contained in an open n-cell e' of 
X. By the theorem of invariance of domain, e is an open subset of e'. On 
the other hand, e\e<^A"~l aX"'1, and so ene' = e. But e is compact, 
and hence is closed in X. This implies that e is also closed in e'. Being a 
non-empty open and closed subset of the connected set e', the set e must 
coincide with e'. • 

Corollary 1.4.2 Let A be a subcomplex of a CW-complex X and let e be a 
cell of X. Then, e is a cell of A iff enA is not empty. 

Proof Only the sufficiency will be proved, since the necessary condition 
is trivial. Let x b e a point in ec\ A and let e' be the carrier of x in A. The 
lemma implies that e' is also a cell of X, and, since e n e' is not empty, it 
follows that the cells e and e' must coincide. • 

The skeleta of a CW-complex and those of a subcomplex are related as 
follows. 

Lemma 1.4.3 Let A be a subcomplex of a CW-complex X. Then, 
(i) the pairs (Xn"1 u An, X""1) are adjunctions of n-cells; 
(ii) the pairs (X",Xn~1 KJA") are adjunctions of n-cells; 
(iii) the inclusions of An into X" are closed cofibrations. 

Proof Let j : A-*X denote the inclusion of A into X. If e is an n-cell of 
A and c' : Bn->A is a characteristic map for e, then the composition 
joc' : Bn->X is a characteristic map for e considered as an n-cell of X. 
Conversely, if e is an n-cell of A and c : F 1 -> X is a characteristic map 
for e considered as a cell of X, then c factors through A, giving a chara­
cteristic map c' : Bn-*A for the cell e. Consider simultaneously the 
characteristic maps for all n-cells of X; then A" is closed in Xn (by induction) 
and (i) follows from Proposition 1.1.2(v) while (ii) is a consequence of the 
addition law for adjunction Spaces. 

Finally, assume inductively that the inclusion of An~l into Xn~l is a 
closed cofibration. Then, by the horizontal composition law, 

Xn-lKjAn = Xn-1l_\An-xA\ 

and therefore the inclusion of An into Xn~1uAn is a closed cofibration. 
Composition of this inclusion with the closed cofibration Xn~luAn-^Xn 

of (ii) completes the induction. • 

As seen before, a subcomplex of a CW-complex is a union of cells of the 
CW-complex; one should then ask: which unions of cells of a CW-complex 
form a subcomplex? This question is taken up by the following result. 
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Proposition 1.4.4 Let X be a CW-complex, let Q be a set of cells of X and 
let A be the union of all cells of ü. The following conditions are equivalent: 

(i) A is a subcomplex of X; 
(ii) A is a closed subspace of X; 
(iii) for every cell eeü, the closure e of e is contained in A. 

Proof (i)=>(ii): Since X has the final topology with respect to the Xn and 
since Xn n A = An, it follows that A is closed in X. 

(ii) =>(iii): Trivial. 
(iii) =>(i): Define An = XnnA; then A is determined by the subspaces An, 

according to Proposition A.5.4 (ii). Thus, it remains to prove that every 
pair (An, A"'1) is an adjunction of n-cells, for every neN. This will be done 
by induction on n, establishing at the same time the fact that An is closed 
in Xn. Choose a characteristic map cx : BX^X for every n-cell ek of Q. 
Condition (iii) implies that the corresponding attaching maps cx factor 
through An~l. It is immediate that at the set theoretical level 

To show that An has the correct topology, take a subset U of An such 
that UnAn~1 and cx

l(U) are closed in An~l and Bx, respectively, for 
every X. Now, since An~1 is closed in X n _ 1 (use the inductive hypothesis), 
it follows that U is closed in Xn\ for the special case U = An this already 
shows that An is closed in Xn. But if U is closed in Xn it is also closed in 
the subspace A" of X'1. • 

Corollary 1.4.5 Arbitrary unions and intersections of subcomplexes of a 
CW-complex X are subcomplexes of X. • 

Proposition 1.4.6 Let X be a CW-complex and A be a subcomplex. Then 
the filtration 

{X{n) = XnKjA : n= -1 ,0 , . . . } 

gives X the structure of a relative CW-complex. 

Proof The space X{n) is the union of the closed subspaces Xin~1] and Xn 

whose intersection is Xn~l\jAn. Since the inclusion Xn~l\jAn a Xn is a 
closed cofibration (see Lemma 1.4.3(ii)) X(n) may be viewed as obtained 
from X{n~l) by attaching Xn via the inclusion X"~l^Anc: X{n~X). But the 
pair (Xn,Xn~l\jAn) is an adjunction of n-cells (see again Lemma 1.4.3 
(ii)), and so the pair (X(n\X{n~l)) is also an adjunction of n-cells (see the 
horizontal composition law (LI)). 
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Since X is determined by the family {Xn : neN}, it is also determined 
by the family of the subspaces X(n) (see Proposition A.2.1). • 

In the previous proof one uses the fact that a subcomplex is always a 
closed subspace; this is part of Proposition 1.4.4. Moreover, the following 
finer result holds true. 

Corollary 1.4.7 The inclusion of a subcomplex into a CW-complex is a 
closed cofibration. 

Proof See Proposition 1.2.3 (iii). • 

Example 1 For any subset L of a CW-complex X, the intersection of all 
subcomplexes of X containing L is a subcomplex X(L) of X. Moreover, 
because any subcomplex is closed, it follows that 

X(L) = X(l). 

In general, the closed cells of a CW-complex are not subcomplexes (see 
Example 13 in Section 1.2). 

Example 2 For any subset L of a CW-complex X, the star of L is the 
subcomplex 

St(L)= (J X(e). 

A pair consisting ofa CW-complex and one of its subcomplexes behaves 
nicely with respect to Serre fibrations. 

Proposition 1.4.8 Let D be a subcomplex of the CW-complex Y and let 
p : Z^X be a Serre fibration. Moreover, let a homotopy H : Y x /-+X 
andamapH : Y x {0}uD x / -*Zwithp°H = H\Y x {0}uD x I be given. 
Then, there exists a homotopy H : Y xl-±Z such that H\ Y x {0}uD x 
I = H and poH = H. 

Proof The proof is done using the 'method of the least criminal'. Using 
Zorn's lemma, find a subcomplex A of Y containing D and which is 
maximal with respect to the property: there is a homotopy G : A x I -> Z 
such that G\AX{0}UDXI = H\AX{0}KJDXI and p°G = H\A x I. 

Assume A to be different from Y and take a cell e cz Y\A of lowest 
dimension, say dim e = n. Let c : Bn -> Y be a characteristic map for the 
cell e; its associated attaching map factors through a unique map 
c : S"~1-+A. The space A' = Aue, obtained by attaching Bn to A via c, 
is a subcomplex of Y strictly bigger than A. It will be shown that the 
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homotopy G can be extended suitably over Ä x /, contradicting the 
maximality of A. 

To simplify the notation, assume that A = D and that Ä = Y. Note that 
in this case, Y x / is obtained from Yx {0} u D x I by attaching B" x / via 
the restriction f : B" x { 0 } u S " _ 1 x Y x {0}uD x / of c x 17; more­
over, poHof = H°(c x lj)\Bn x { 0 } u S n _ 1 x /.Next, takeahomeomorphism 

Ä : Bnxl-+Bnxl 

which induces a homeomorphism 

h : ß" x {0}-»£" x { O j u S " - 1 x / 

(this can be obtained from the homeomorphism wn defined on page 9 
by 'turning top to böttom'). Now apply the defining property of Serre 
fibrations in order to obtain a homotopy C : IT x J->Z, such that C\Bn x 
{0} = ßof oh and p ° C = H ° c x l 7 °n . Since Coh~l\Bn x { 0 } u S w _ 1 x / = 
Hof, the universal property of attaching yields a homotopy C : Y' x I-*Z 
with the desired properties. • 

Corollary 1.4.9 Let D be a subcomplex of the CW-complex Y which is a 
strong deformation retract of Y and let p : Z-+X be a Serre fibration. 
Moreover, let mapsf : Y-+X andf : D-+Z with p°f = f\Dbe given. Then, 
there is a mapf : Y-+Z such thatf\D = f and p°f = /. 

Proof Let H : Y x I -+ Y be a deformation of Y into D, i.e., a homotopy 
rel.D from a map which factors through a retraction r : Y^D to 17. The 
restriction of to Y x {0} u D x / can be decomposed in the form p°H; 
the proposition proves the existence of a homotopy H : Y xl-+Z with 
H\Y x {0}uD xI = H and pofl = H. Now take / : Y^Z9y\-+H(y91). 

• 
Theorem 1.4.10 / / X is a regulär CW-complex, the closure of any cell e of 
X is a subcomplex, i.e., e = X(e). 

Proof Clear, if dim e = 0. Assume the theorem true for all cells of dimension 
strictly less than n. Let e be an n-cell of X. It is enough to prove that e\e 
(which is an (n— l)-dimensional sphere, by the regularity assumption) is 
a subcomplex. Let e' be an open (n — l)-cell meeting e\e. Clearly, e' n(e\e) 
is closed in e' and open in e\e, and thus it is also open in e' (see the 
theorem of invariance of domain). It follows that e'n(e\e) is a non-empty 
component of e', and, hence, e' <= e\e. Now let Q' denote the set of all 
(n— l)-cells of X meeting e\e; by the induction hypothesis, the closures 
of all these (n — l)-cells e' are subcomplexes of X and so is A = (Je<eß>e'. 
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It is clear that A <^e\e; however, the opposite inclusion also holds true, 
as can be seen via the following decreasing induction: 

e\ec AuXq=>e\ec A\jXq~l. 

It is already known that e\ea AKJX"~2. For the inductive Step, take a 
g-cell e" with e"nA = 0; this implies that e" is open in AuXq, and thus 
e"n(e\e) is open in e\e. If e"n(e\e) ^ 0, then one would have an open 
(n — l)-ball contained in the open g-ball e" and this, because q ^ n — 2, is 
a contradiction to the theorem of invariance of domain. Therefore, 
e"n(e\e) = 0, implying that e\ea A\jXq~x. • 

Proposition 1.4.4 also has some consequences about the Connectivity of 
a CW-complex. 

Proposition 1.4.11 A connected component (respectively, a path-component) 
of a CW-complex X is a subcomplex of X. 

Proof Let A be a connected component (respectively, a path-component) 
of X. Any cell (respectively, any closed cell) meeting A is completely 
contained in A. Thus, A is a union of cells and condition (iii) of 
Proposition 1.4.4 holds true. • 

The previous ideas permit one to re-prove one of the conclusions of 
Corollary 1.3.4: 

Corollary 1.4.12 Any connected CW-complex is path-connected. 

Proof Let A be a path-component of a connected CW-complex X. Both 
A and X\A are subcomplexes of X, the latter as the union of the remaining 
path-components of X. Thus, A is open and closed in X and therefore it 
is equal to X. • 

A similar argument proves the following fact. 

Corollary 1.4.13 Any CW-complex is the topological sum of its (path-) 
components. • 

In particular, this means that a path-component of a CW-complex is 
open. This property is shared by all Spaces which are dominated by 
CW-complexes: 
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Proposition 1.4.14 If a space Y is dominated by a CW-complex X, then the 
path-components of Y are open. 

Proof Let / : Y->X and g : X -* Y be maps such that g°f is homotopic 
to the identity of Y and let U be a path-component of Y. Let y be an 
arbitrary point in U and let V be a path-connected neighbourhood of 
f(y) in X (see Corollary 1.3.3). 

Any point zef~l(V) can be joined by a path to g°f(z) by means of a 
homotopy l y ~ 0 ° / ; since f(z)e V, there is a path from /(z) to f(y) which 
is transformed into a path from g°f(z) to 0 ° / ( y ) by the map#. Using a 
homotopy # ° / ~ l y , there is a path from g°f(y) to Altogether, this 
gives a path from z to y, implying that / " l(V) <= (7; thus, £/ is a neighbour­
hood of y, and, since this fact holds true for all ye U, the set 1/ is open in 7. 

• 

Remark The previous result is not as general as it seems, because, as will 
be seen in Chapter 5, Spaces dominated by CW-complexes already have 
the type of CW-complexes (see Proposition 5.1.1). • 

A trivial consequence of Proposition 1.4.4 is that any collection of 0-cells 
is a subcomplex. One should finally note that any non-empty CW-complex 
contains 0-cells. 

Proposition 1.4.15 IfXisa CW-complex then, every path-component ofX 
(respectively, Xm) contains at least one 0-cell. 

Proof By its very definition, a path-component of a space is non-empty. 
Thus, a given path-component of X must contain a cell e0. Clearly, the 
result holds true if e0 is a 0-cell. Otherwise, e0\e0 # 0, and so there exists 
a cell ei of lower dimension. If el is not yet a 0-cell, the same argument 
shows the existence of a cell e2 of even lower dimension. A 0-cell must be 
obtained after only finitely many Steps. • 

Exercises 

1 If X is a contractible CW-complex and A is a contractible subcomplex, 
prove that A is a strong deformation retract of X. 

2 Let A and Y be subcomplexes of a CW-complex X with X = A u Y and 
A,Y,AnY contractible. Prove that X is contractible. 
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1.5 Finiteness and countability 

In the theory of CW-complexes, one uses several kinds of countability 
assumptions: a CW-complex (CW-structure) X is 

finite, if X has only finitely many cells; 
locally finite, if every (open) cell of X meets only finitely many closed 

cells of X; 
of finite type, if every skeleton Xn is a finite CW-complex; 
countable, if X has countably many cells. 

There is still another type of finiteness condition, satisfied by every 
CW-complex. 

Theorem 1.5.1 A CW-complex is closure finite, i.e., the closure of every cell 
meets only finitely many (open) cells. 

Warning: Be careful to distinguish between the notion of 'closure 
finiteness' given in 1.5.1 and that of local finiteness' described before. The 
latter is a very restrictive condition (see Propositions 1.5.10 and 1.5.17). 
A way to view this distinction is perhaps to observe that for any given 
cell e, closure finiteness deals with the lower dimensional cells which meet 
the closures e of e, while local finiteness has to do with the higher 
dimensional cells whose closure meet the open cell e. • 

The proof of Theorem 1.5.1 is an immediate consequence of the following. 

Proposition 1.5.2 A compact subset of a CW-complex is contained in a finite 
union of (open) cells of the CW-complex. 

Proof Let X b e a CW-complex and K be a compact subset of X. Let E 
denote the set of all cells of X which intersect K. Choose a point xeeK 
in every cell eeE. It will be shown inductively that the set Z = {xe : eeE} 
intersects any skeleton in only finitely many points; thus, Z will be a 
discrete closed subset of X, and also of K. Recalling that any discrete 
closed subset of a compact space is finite, one obtains that Z is finite. 

Clearly, ZnX° = KnX° is a discrete closed subset of the compact 
space K, and so it is finite. Assume now that Zr\Xn~l is finite. Since Z 
meets any closed n-cell in a finite number of points, and X" is determined 
by the family consisting of Xn~{ and all closed n-cells of X (see 
Proposition 1.1.3 (ii)), ZnXn is a discrete closed subset of Xn contained 
in the compact space K, and hence is finite. • 

Proposition 1.5.2 has other interesting consequences. 
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Corollary 1.5.3 If X is a CW-complex and e is any of its cells, then the 
subcomplex X(e) is finite. 

Proof The proof is by induction on the dimension of the cells. If e is a 
0-cell, then X(e) coincides with e itself and therefore is finite. Suppose that 
X(e) is finite for every cell e of dimension strictly less than n. Let e be an 
n-cell of X. Because e\e is compact and contained in Xn~l, the proposition 
implies that e\e is contained in the union of finitely many open cells 

eue2,.,.,ek 

of dimensions < n. By the induction hypothesis, the subcomplexes X(ei), 
i = 1,..., k are finite; moreover, the union 

X = euX(ex)u ••• KjX(ek) 

is a (finite) subcomplex of X (Proposition 1.4.4 (iii)). The proof is completed 
by noticing that X(e) is contained in the finite subcomplex X. • 

Corollary 1.5.4 If X is a CW-complex and L is a relatively compact subset 
of X then the subcomplex X(L) is finite. 

Proof Since X(L) = X(L), one may assume that L is compact. By 
Proposition 1.5.2, L is contained in a union of finitely many cells, say 
el,e1,...,ek\ but then 

J f ( L ) c % ) u . . . u % ) , 

the latter being a finite subcomplex of X. • 

This corollary has a very general application (but read the remark after 
Proposition 1.4.14). 

Corollary 1.5.5 A compact space dominated by a CW-complex is dominated 
by a finite CW-complex. 

Proof Let X be a compact space and let Y be a CW-complex which 
dominates X; let / : X-> Y and g : Y-+X be maps such that g°f^ lx> 
Since X is compact, f(X) is compact, and hence contained in a finite 
subcomplex Y' of Y, which also dominates X. • 

Another application of Proposition 1.5.2 concerns the notion of 
path-connectivity. A CW-complex X is said to be cell path connected if, 
for every two points x,yeX, there is a sequence {x = x0,...,xn = y} of 
points of X such that, for every i = 1,..., n, {xt_ ^x,} is contained in some 
closed cell of X. 
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Proposition 1.5.6 A CW-complex is path connected iff it is cell path 
connected. 

Proof Clearly, a CW-complex which is cell path connected is also path 
connected. Assume that one is given a path-connected CW-complex X, 
two different points x,yeX and a path a : I->X from x to y. The 
compactness of the path implies that it meets only finitely many cells of 
X (see Proposition 1.5.2). Perform an induction on the number of these 
cells. If the path is contained entirely in one cell, there is nothing to prove. 
Otherwise, from the set of cells under consideration whose closure contains 
x, select one cell ex having maximal dimension and take xx = o(t^) to be 
the last point of the path that belongs to the closure of ex. Notice that 
xx is a point on the boundary of ex and that a([_tii l'])nel = 0. Now we 
apply the inductive hypothesis to the path c\ltu 1]. • 

Some subcomplexes of a CW-complex are always cell path connected, 
independently of the fact that the CW-complex is path connected or not. 
The following is an example. 

Proposition 1.5.7 Let e be a cell of a CW-complex X. Then X(e) = X(e) is 
cell path connected. 

Proof By induction on the dimension of the cell e. The proposition is 
obvious if e is O-dimensional; suppose that dim e = n and that the result 
is true for all cells of dimension < n. 

As seen in the proof of Corollary 1.5.3, the CW-complex X(e) can be 
written in the form 

X(e) = X{e) = evX(ei)v--v X{ep), 

where ex,..., ep are the finitely many cells of X that intersect e. Now take 
x, yeX(e). The result is clearly true if x, yee. If xee and yeX(ei\ let 
zeenet ^ 0; by the induction hypothesis, there is a sequence {x' 0 , . . . ,x^} 
of points belonging to X(ei\ and therefore to X, and cells e\,...,e'q of 
X\ei) such that x' 0 = z,x'q = y and {x^^x^.} c e'y Now take the sequence 
{x 0 , . . . ,x q + j} and the cells eu...,eq+1, so that x 0 = x,xx = x ' 0 , . . . 9 x q + l = 
x'q and e{ = e,e2 = e\,...,eq+1 =e'q. Finally, if xeJ^(e t) and yeX(e}\ take 
zeenehwGenej and reduce the argument to the previous case. • 

A property P of a CW-complex X is said to be topologically invariant if 
P depends only on the space X and not on the specific CW-structure 
chosen for X. As a consequence of Proposition 1.5.2, the property of 
'finiteness' is topologically invariant. 
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Proposition 1.5.8 A CW-complex is finite iff it is compact. • 

Finite-dimensional balls, spheres and projective Spaces with the C W -
structures described in Examples 1, 2, 3, 6, 8 and 9 of Section 1.2 are 
examples of finite CW-complexes. Clearly, all finite CW-complexes are 
locally finite; the CW-structures of the Spaces R 1 and R 2 described in 
Examples 10 and 11 of Section 1.2 respectively are locally finite but not 
finite (the same will be true for the CW-structures of the higher-dimensional 
Euclidean Spaces given in Example 1 of Section 2.2). Local finiteness is 
another topologically invariant property of CW-complexes. 

Lemma 1.5.9 / / X is a locally finite CW-complex and e is any of its cells, 
then the star St(e) of e is a compact neighbourhood of e. 

Proof Because X is locally finite, e meets only finitely many closed cells 
of X, and thus 

St(e)= U X(e') 

is a finite subcomplex of X, and so is a compact space. 
Now one has to show that St(e) is a neighbourhood of e. Let Q be the 

finite set of all closed cells of X which meet e; the union 

W= [j e" 
e'eü 

is a subset of St(e). The idea is to prove that W is already a neighbourhood 
of e. To this end, let Q! be the set of all closed sets of X which meet W 
but not e. Closure finiteness (see Theorem 1.5.1) and the hypothesis 
imply that ü' too is finite; thus the union 

C= U ? 
e'eü'\Ü 

is a compact, in particular, a closed subset of X disjoint to e. Next, choose 
an infinite collar V=CO0{e) of e. Since V is open (see Proposition 1.3.1 
(ii)), the difference set V\C is an open neighbourhood of e. It will be shown 
by induction that, for every w ^ m = dime, the set Vn = Xnn(V\C) is 
contained in W, implying that V\C c= W as desired. Clearly, Vm = ec:W. 
For the induction step, consider a point yeVn+l\Vm with carrier ey. Since 
y belongs to a collar of Vn, the closed cell ey meets Vn (see Lemma 1.1.7 
(v)), and thus W, by the induction hypothesis. Now, if ey would not belong 
to the set Q, it would be an element of Q' and, consequently, a subset of 
C, contradicting the assumption that yeeyn(V\C). But eyeü implies that 
yeey c W, as desired. • 
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One may think that the assumption of local finiteness on X in Lemma 1.5.9 
is only necessary to prove the compactness of St(e) and that St(e) is always 
a neighbourhood of e9 for any cell e of a CW-complex X. To see that this 
is not the case, take the CW-complex X constructed in Example 13 of 
Section 1.2 and observe that the St({0}) = X1 is not a neighbourhood of 
{0}. 

Proposition 1.5.10 A CW-complex is locally finite iff it is locally compact. 

Proof '=>': See Lemma 1.5.9. 

'<=': Let X be a locally compact CW-complex and let ß be a cell of X. 
Every point of the closed cell e has a compact neighbourhood; since e is 
compact, e is covered by finitely many of these compact neighbourhoods, 
and therefore e has a compact neighbourhood V in X. Now observe that, 
on the one hand, e does not intersect the closure of any cell of X contained 
in X\V9 because V is a neighbourhood of e9 and, on the other, V intersects 
only finitely many cells of X9V being compact (see Proposition 1.5.2). 
These observations prove that the cell e intersects only finitely many closed 
cells of X. • 

Corollary 1.5.11 A CW-complex X is locally finite iff its closed cells form 
a locally finite (closed) covering of X. 

Proof '=>': Let xeX be an arbitrary point of X and let K be a compact 
neighbourhood of x. According to Proposition 1.5.2, K is contained in a 
finite union of open cells of X. Now, local finiteness implies that each of 
the open cells meeting K interesects only finitely many closed cells. 
'<=': Let e be an open cell of X. For each point xee9 choose a neighbour­
hood Ux of x with the property that Ux meets only finitely many closed 
cells of X. Since e is compact, finitely many neighbourhoods UXQ9..., UX9 

are enough to cover the cell e. Then each closed cell of X which encounters 
e must meet one such set Ux.9 i = 0,.. . ,r. Since each Ux. intersects only 
finitely many closed cells of X9 the open cell e meets only finitely many 
closed cells of X. • 

Remark There are still some other topological characterizations of local 
finiteness whose proofs depend on results not yet stated; for this reason, 
they are postponed to Proposition 1.5.17. • 

The discussion about locally finite CW-complexes is continued with the 
following result. 
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Proposition 1.5.12 A locally finite and connected CW-complex X is 
countable. 

Proof Let ü be the set of all cells of X and let e0 be a fixed cell of X; 
for each neN, let 

An = {(e0,el,...,en) : eieQ,ei_^ei + 0,i=\,...,n}. 

Claim: the sets An,neN are all finite. In fact, every component et of any 
element (e0,el,...,en)eAn is a cell of St(e._j),i= \,...,n; then, use the fact 
that each St(e._ t ) is finite (this follows from the local and closure finiteness 
properties of X). 

Now take the countable set 

A={jAn 

neN 

and define the function 

OL : A^Q 

whose restriction to An is the function taking (e0,...,en) into en. Because 
of cell path-connectivity (see Proposition 1.5.6) a is an epimorphism and 
therefore ü is also countable. • 

Proposition 1.5.13 A locally finite and countable CW-complex is the union 
space of an expanding sequence of finite subcomplexes Xn such that, for 
every n, Xn is contained in the interior of Xn+1 (the interior taken with 
respect to the topology of X). 

Proof Let e0, eu..., ep... be an enumeration of the cells of X. Define X0 

as the empty set and assume that Xn has been constructed. Consider the 
integer i defined by 

i = min{/ : e}^Xn}, 

and also the finite set Q of all cells contained in Xn; then define the 
subcomplex Xn+l by 

X „ + 1 = S t ( ß i ) u U S t ( e ) . 

Because of Lemma 1.5.9, Xn+l is a finite subcomplex of X, and, moreover, 
is a neighbourhood of Xtr By construction, each cell e} belongs to some 
Xn; thus, 

(see Proposition A.5.3). 

x={jxn 

neN 

• 
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Another topologically invariant property for CW-complexes is the dimens­
ion. The finite case can be described easily. 

Proposition 1.5.14 A CW-complex X is finite-dimensional iff it coincides 
with one of its skeleta, i.e., if the CW-structure can be described by a finite 
filtration. If this is the case, the smallest number m such that X = Xm is the 
dimension of X: 

Proof If dim X = n then the space X cannot contain m-cells with m > n 
(see Corollary A.9.2); thus X = Xn. Conversely, if X coincides with one of 
its skeleta it has the finite dimension of that skeleton. 

Clearly, X = Xm implies dim X ^ m; thus the dimension of X is smaller 
than or equal to the minimum described. If this minimum is n, then 
X ^Xn~l implies that there must be m-cells with m^n i.e., dim X^n. • 

The questions Coming up now have to do with embeddings of C W -
complexes into Euclidean Spaces. 

Theorem 1.5.15 Every locally finite and countable CW-complex of 
dimension m can be embedded in R 2 m + 1 . 

Proof Let X be a locally finite, countable and m-dimensional C W -
complex. The bulk of the proof consists in the explicit construction of an 
embedding / : X-+Rk(m), with k(m) = ±(m + l)(m + 2). Once this is done, 
it follows that X is metrizable and satisfies the second axiom of 
countability; thus, as a space of dimension m, X can be embedded in R 2 m + 1 

(see Theorem A.9.7). 

The construction of the map / will be done by induction on the skeleta 
of X. Start by enumerating the 0-cells of X and defining f0 : X°->Rl as 
the function which sends the only point of the jth 0-cell of X into 27'eR. 
Suppose that / „ : Xn-+Rm has been defined. Let 

be an enumeration of the open (n + l)-cells of X, and for each / e N let äj 
(respectively, Cj) denote a characteristic map (respectively, the induced 
attaching map) for the cell e}. Then, define the injection 

[2j(l - t)em + 1 + ltfn(cj(s)),(l - t)ts, 1 - t], x = Cj(ts)eep 

where ek{n) + ieRk{n + l ) is the unit vector with the (k(ri)+ l)th coordinate 
equal to 1. Finally, set f = fm. 

d i m X = min{meN : X = Xm}. 

e§,ex, —, ej,... 

xeX 
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One now proves, using an induction procedure, that each / „ , n = 0,..., m, 
is an embedding. This is visibly so for n = 0. Assume that / „ has been 
proved to be an embedding and take fn+i : X"+1 ^Rk{n+1). Consider the 
given enumeration of the (n+l)-cells and observe that fn + 1(ej) = 
f(Xn + 1)nVp where 

K , = {z = ( z 1 , . . . , z f c ( w + 1 ) ) 6 R ^ + 1 > : ( 2 y - l ) z f c ( w + 1 ) 

for each yeN; therefore, fn + 1(ej) is open in f(Xn+l). Finally, one has to 
show that fn+l takes open sets of Xn + 1 into open sets of f(Xn+l). Let V 
be an arbitrary open set in Xn + 1 and take xeV. Claim: fn+i{x) is an 
interior point of fn+l(V) with respect to fn + l(Xn"rl). 

Case 1 Assume xeXn + l\Xn and let the (n + l)-cell e} be its carrier. Because 
f„+l\ej is a homeomorphism, fn + l(Vnej) is open in fn + 1(e~j); thus, 
fn + i ( V n e j ) i s ° P e n i n fn+i(ej) a n d therefore in fn+l{Xn+1). 
Case 2 Now suppose that xeX". According to Corollary 1.5.11, assume 
that V meets only finitely many closed (n + l)-cells, say eJQi..., ejr. It suffices 
to prove that no sequence in fn + 1(Xn + 1)\fn + l(V) converges to 
f„ + i{x) = f„(x). Assume the contrary i.e., suppose that there is sequence 
{xt : IGN} in Xn+1\V such that 

lirnfn + 1(xi) = fn + i(x) = fn(x). 

By the induction hypothesis, fn+l(Vr\Xn) is open in fn+1{Xn\ and 
therefore the sequence {x,} cannot have a subsequence contained in Xn. 
Hence, one may assume that {x,- : ieN} a Xn + 1\Xn; this means that each 
x, is of the form 

for some p(i)eN,t,-e[0,1) and s feSw. Considering that the last coordinate 

of fn+, (x,) is 1 — tt and that the last coordinate of fn(x) is 0, it follows that 

l i m ( l - O = 0, 
i-» CO 

that is to say, 

lim tt = 1. 
i-> co 

This implies that 

f„(x)= l im/„ + 1 ( c , p ( i ) (* , ) ) = / „ ( Hm (cJpJsA 
i -* co \ i -> oo / 

From the induction hypothesis one obtains that 

x = lim (Cjp{i}(Si)), 
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so one can assume that 

{ g S i ) : i e N } c r n K ; 

hence, {j {i) : ieN} cz {j0i... Jr}. This implies that the sequence {p(i)} must 
contain a constant sequence, i.e., there is a subsequence {yk : fceN} of the 
sequence { x j which is contained in one open (n + l)-cell ep with 0 ^ 5 ^ r. 
Finally, this shows that x = l i m ^ ^ j ^ , contradicting the fact that 
{yk}<=ej.\V. • 

Disregarding the hypothesis on dimension in the previous theorem, one 
still obtains an interesting embedding theorem. 

Theorem 1.5.16 Every locally finite and countable CW-complex can be 
embedded in the Hilbert cube. 

Proof Let X be a locally finite and countable CW-complex. Take an 
expanding sequence {Xn : neN} as described in Proposition 1.5.13. Every 
Xn can be embedded into a Euclidean space (by the previous theorem). 
Now one can construct a countable basis of X = (J %L0X„ using Cantor's 
diagonal procedure. Because X is normal, Urysohn's metrization theorem 
implies the metrizability of X. Thus, X is metrizable and satisfies the 
second axiom of countability; consequently, it can be embedded in the 
Hilbert cube (see Theorem A.9.8). • 

Now the stage is ready for the presentation of the other topological 
characterizations of local finiteness announced earlier (see the Remark 
after Corollary 1.5.11). 

Proposition 1.5.17 For a CW-complex X, the following conditions are 
equivalent: 

(i) X is locally finite; 
(ii) X is metrizable; 
(iii) X satisfies the First Axiom of Countability. 

Proof (i)=>(ii): If X is locally finite, so is each one of its path-components. 
Thus the path-components, being locally finite and countable (see 
Proposition 1.5.12), are metrizable (see Theorem 1.5.16). Finally, X, 
being the topological sum of its path-components (see Corollary 1.4.13), 
is metrizable. 

(ii) =>(iii): Trivial. 
(iii) =>(i): Assume X not to be locally finite. Then, there is a cell e in X 

which meets the closure of infinitely many cells. Choose a sequence 
\es : yeN} of pairwise distinct cells such that ec\e~j^0, and, for every 
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7*GN, choose a point Xjeenej. Because e is compact, the sequence 
{xj : J G N } contains a convergent subsequence; thus, one may assume, 
without loss of generality, that the sequence {XJ} is itself convergent, say 
to a point x. 

Now let U0 3 U1 =3 ••• => Un-~ be an open basis of the neighbourhood 
system of x. Notice that each Ut meets infinitely many open cells eP Define 
a sequence of natural numbers {jt : i'eN} by taking 

7o = min{/ : Uonej^0}, 
ji+1=min{j :y>j\. and Ui+1nej*0}. 

Next, for every i e N , choose a point z^Uine^. On the one hand, the set 
{z( : IGN} is closed, because any open cell of X contains at most one 
dement of this sequence, and thus, by closure finiteness, any closed cell 
contains at most finitely many points zt. On the other hand, every 
neighbourhood U of x contains one Un, and thus all the points z{ with 
i ̂  n; this implies that x = l i m . ^ Z ; , contradicting the fact that {zt : IGN} 
is a discrete subset of X. • 

Remark For a better understanding of the proof of this theorem, the 
reader should go back to Example 13 of Section 1.2; that is, to an example 
of a CW-complex which is not locally finite. • 

The embedding theorems given before (Theorems 1.5.15 and 1.5.16) have 
a converse. 

Theorem 1.5.18 Let X be a CW-complex. 
(i) / / X is embeddable in the Hilbert cube, then X is locally finite and 

countable. 
(ii) IfX is embeddable in the Euclidean space Rm, then X is locally finite, 

countable and has dimension ^ m. 

Proof (i) As a subspace of the Hilbert cube, X satisfies both axioms of 
countability. By the previous results, the first axiom implies that X is 
locally finite. Moreover, its path-components are locally finite and 
countable (see Proposition 1.5.12). If X is not countable, then it cannot 
have a countable number of path-components and therefore it cannot 
satisfy the second axiom. 

(ii) By the theorem of invariance of domain, R m cannot contain open 
cells of dimension > m. • 

The concluding results of this section are based on a simple consequence 
of closure finiteness. 
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Lemma 1.5.19 Let X be a CW-complex and let Z be a subset of X which 
meets every open cell of X in at most one point. Then Z forms a discrete 
closed subspace of X. 

Proof Because of closure finiteness, every subset of Z meets a closed cell 
of X in a finite and, therefore, closed subset. Since X is determined by its 
closed cells this implies that every subset of Z is closed in X and so, in 
Z , yielding the result. • 

One application of this fact is the topological invariance of countability. 

Proposition 1.5.20 A CW-complex is countable iff it does not contain an 
uncountable discrete subset. 

Proof Assume X to be a countable CW-complex with an uncountable 
discrete subset A. But X is a codomain of an identification map / : B -» X, 
where B is a coproduct of countably many balls. Since B satisfies the 
second axiom of countability, it cannot contain an uncountable discrete 
subset; on the other hand, by taking one point in the inverse image of 
each point in A, one obtains an uncountable discrete subset of B. 

'<=': See Lemma 1.5.19. • 

Finally, there is an analogue to proposition 1.5.2 and Corollary 1.5.4 for 
the Lindelöf property. Recall that a Hausdorff space is called Lindelöf if 
every open covering contains a countable subcovering. 

Proposition 1.5.21 If K is a Lindelöf subspace of a CW-complex X, then 
X(K) is a countable subcomplex of X. 

Proof Let E denote the set of all open cells of X which intersect K. The 
choice of a point xeeK in each cell eeE produces a discrete closed subspace 
Z of X (see Lemma 1.5.19), and therefore of K. By the Lindelöf property, 
Z must be countable. This, together with closure finiteness, implies the 
result. • 

Exercises 
1 Prove that a CW-complex is topologically dominated by the family of 

its finite subcomplexes (this gives another proof for the paracompactness 
of CW-complexes - see Theorem A.2.5). 

2 Give an example of a CW-complex which is not topologically dominated 
by the family of its closed cells. 
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3 A CW-complex X is locally countable if every (open) cell of X meets 
only countably many closed cells of X. Show that a CW-complex X is 
locally countable iff each point xeX has a neighbourhood meeting only 
countably many cells. (Lundell & Weingram, 1969, Proposition 2.3.6; 
compare also with Lemma 1.5.9 and Proposition 1.5.10 given before in 
this section.) 

1.6 Whitehead complexes 

The objective of this section is to prove that the definition of C W -
complexes given in Section 1.2 coincides with that originally given by 
J. H . C Whitehead. 

First recall the definitions introduced by Whitehead. A cell complex 
is a Hausdorff space X, which is the union of disjoint open cells subject 
to the following condition. The closure e of each n-cell e of X is the 
image of a map / : Bn-*e such that: 

(1) / induces a homeomorphism Bn^e\ 
(2) f(ÖBn) = e\e dXn~\ where Xn~1 - the (n - l)-skeleton ofX-is the 

union of all m-cells of X with m < n. (Note: X ~ 1 = 0.) 

The definitions given in Sections 1.1 and 1.2 show that any CW-complex 
is a cell complex; the converse is not true. 

Example 1 Take X = I and consider every point of X as a 0-cell. 
A cell subcomplex A of X is a union of cells of X such that if e is a cell 

of A then e cz A. It is clear from this definition that the union and the 
intersection of a set (finite or infinite) of cell subcomplexes of X are cell 
subcomplexes of X. Moreover, from (2) above, for every non-negative 
integer n, Xn is a cell subcomplex of X. A cell subcomplex of X is finite 
if it is the union of finitely many cells of X. Notice that a finite cell 
subcomplex A of X is a closed subset of X, and, indeed, a compact subset 
of X, for A is a finite union of finitely many compact Spaces e, e in A. 
However, an arbitrary cell subcomplex of X need not be closed: in 
Example 1, every subset A of X is a subcomplex, even if A is not closed in X. 

If L is a subset of X, analogously to the definition given in Section 1.4, 
define X(L) to be the intersection of all cell subcomplexes of X which 
contain L ; clearly X(L) is a cell subcomplex of X. Note that X(L) is the 
union of all X(e), for all cells e of X which intersect L: 

X(L)= U Me). 

In fact, the union on the right-hand side is a cell complex containing L, 
and, conversely, if xeenL^ 0, X{x} = X(e) a X(L). Moreover, X(e) = 
X(e\ for every cell e of X. 
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As in Section 1.5, a cell complex is said to be closure finite if the closure 
of each one of its cells meets only finitely many cells. 

Lemma 1,6.1 A cell complex X is closure finite iff X(e) is finite, for every 
cell e of X. 

Proof '=>': The claim is analogous to the Statement of Corollary 1.5.3 for 
CW-complexes. The proof given there remains valid in this more general 
Situation. 

'<=': Suppose that X(e) is finite for every cell e of X. Notice that for 
any given cell e0 of X, 

X(e0) = X(e0)= U *(*')• 

Since every cell e' of Ue'ne o^0^( e ' ) appears also in X(e0) and the latter 
subcomplex is finite by hypothesis, there are only finitely many cells e' 
meeting e0. • 

The cell complex of Example 1 is closure finite. 

Example 2 Let X be the space of the ball B2 with a 0-cell for each point 
of S 1 and just one 2-cell, namely 5 2 \ S 1 . The cell complex obtained is not 
closure finite. In contrast to the cell complex of Example 1, this new space 
is determined by the family of the closures of all of its cells. • 

The necessary definitions to formulate Whitehead's definition are now all 
in place: a Whitehead complex is a cell complex X such that 

(1) X is closure finite, 
(2) X is determined by the family consisting of the closures of all cells eeX. 

As stated by Whitehead in his paper, the name CW-complex is an 
abbreviation for Closure finite complex with the Wea/c topology (i.e., the 
topology determined by the family of the closure of all cells). 

Condition (1) above implies that, for any cell e of a Whitehead complex 
X, the cell subcomplex X(e) = X(e) is finite. Thus, every closed cell is 
contained in a finite subcomplex; this, together with condition (2) shows 
that: 

(2') X is determined by the family of all finite cell subcomplexes (see 
Proposition A.2.1). 

In contrast with the Situation in an ordinary cell complex, subcomplexes 
of Whitehead complexes behave as expected. 
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Lemma 1.6.2 Let A be a cell subcomplex of a Whitehead complex X. Then 
A is a closed subset of X and is itself a Whitehead complex. In particular, 
the skeleta Xn are Whitehead complexes. 

Proof The intersection of A with any finite cell subcomplex of X is a 
finite cell subcomplex, and thus is closed. 

In order to see that A is a Whitehead complex, it is only necessary to 
check that A is determined by the family consisting of the closures of its 
cells, since its closure finiteness is evident. Let L be a subset of A such 
that e n L is closed in e, for all cells e of A. Take any closed cell e' of X. 
Because of closure finiteness, e' c\A is contained in a finite union of finitely 
many cells eu...,ek of A\ thus 

k k 
e' nA =e'n (J e{ = (J e' n eh 

i=l i = 1 

and thus 
k 

e'nL = e'nLnA= (J e ' n ^ n L 
i= 1 

is a finite union of closed sets and therefore is itself closed. Because X is 
determined by the family {£'}, it follows that L is closed in X, and hence 
also in A. • 

Theorem 1.6.3 The skeletalfütration of a cell complex X is aCW structure 
iff X is a Whitehead complex. 

Proof '=>': Proposition 1.2.2 shows that X is determined by the family 
of the closure of its cells. Theorem 1.5.1 shows closure finiteness. 

(1) X° is discrete: Let L be a subset of X°. Since X is closure finite, 
every closed cell e meets only finitely many 0-cells, and hence contains 
only a finite subset of L; therefore e n L is closed. But X is determined by 
the closures of its cells; so L is closed in X and thus in X°. 

(2) For every n > 1, the pair (Xn,Xn~l) is an adjunction of n-cells: If e 
is an arbitrary n-cell of X, condition (1) of the definition of cell complex 
and Lemma 1.1.5 prove that (X"~1 ue,Xn~l) is an adjunction of just one 
n-cell. Moreover, X" is determined by the family consisting of all closed 
cells of dimension at most n (see Lemma 1.6.2), and therefore is determined 
by the family {Xn~l}u{e : eeniX^X"'1)}, according to Proposition A.2.1. 
The claim is now proved (see Proposition 1.1.3). 

(3) The covering of X by the closed cells refines the covering by the 
skeleta; thus X is determined by the subspaces Xn (see again 
Proposition A.2.1). • 
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Remark In the construction of CW-complexes given in Section 1.2, it is not 
necessary to worry about Hausdorffness; this is a trivial consequence of 
Proposition 1.2.1. However, in the approach presented by Whitehead, 
such a Separation axiom is an intrinsic part of the definition. What follows 
is an example of a cell complex which is closure finite and is determined 
by the family of its closed cells, and yet fails to be Hausdorff. • 

Example 3 Let X be the 'interval with a double point' i.e., the quotient 
space 

/ x { 0 , l } / [ ( £ , 0 ) - ( t , l ) : 0 < t < l ] . 
The cellular structure of X is given as follows. Let p : I x {0,1} X be 
the identification map and take p((0,0)) = p((0, l ) ) ,p(( l ,0)) ,p(( l , 1)) as 
0-cells and p((/\{0,1}) x {0}) = p((/\{0,1}) x {1}) as the only 1-cell. 

Exercise 

Given a (not necessarily Hausdorff) space X and a family {fx : XeA} of 
maps 

fx : B^X9 

let Xn denote the union of all ex = fx(B"x) with nx ^ n. Prove that the 
filtration {Xn : neN} of X is a CW-structure for X if the following 
conditions are satisfied: 

(i) each ex is an open nA-cell of X via the map fx\ 
(ii) X is the disjoint union of the cells ex, 

(iii) for every XeA, fx(öBn>) c X \ 
(iv) a subset of Xn is closed whenever its inverse image in each Bn?,nx ^ n 

is closed. (Milnor, 1956). 

Notes to Chapter 1 

Balls, spheres, projective Spaces and most of the maps relating them are due to 
John Folklore. The construction of Suspension was introduced first in 
Freundenthal (1938), with the German name Einhängung. 

The notion of'CW-complex', the basic notion of the whole text, was introduced 
in Whitehead (1949a), where also many of the results given in Chapters 1 and 2 
are proved, including the famous realizability theorem (see Section 2.5). The 
development of the theory of CW-complexes presented in the book, although 
leading to the same geometric structures invented by J. H . C. Whitehead (see 
Section 1.6), has a more categorical flavour; this allows us to streamline many of 
the proofs and to obtain new results. This approach is not really new, but was 
employed before, for instance, in H u (1964), Brown (1968) and Piccinini (1973). 
In contrast to the more or less widespread use of the term 'weak topology', we 
elected to follow the advice of Ernest Michael and speak of 'topologies determined 
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b y . o n e reason for this is the fact that the 'weak' topology on a simplicial 
complex in general has more open sets than the 4strong' topology (see Section 3.3, 
Example 3). The basic processes in our presentation are: (1) attachings, and 
(2) Formation of the union space of expanding sequences in which the attached 
Spaces are certain metric Spaces; if one allows the attaching of arbitrary metric 
Spaces, one obtains the slightly larger category of M-spaces studied in Hyman 
(1968). 

As far as the Examples are concerned, the following texts can be used for the 
relevant definitions: 

Peano curve: Dugundji (1966). 
Frechet space: Engelking (1977). 
Moore Spaces: Moore (1955); Varadarajan (1966). 

The technique of collaring is a basic tool for exhibiting topological properties 
of CW-complexes; it is intrinsically already contained in Whitehead (1949a), where 
the local contractibility of CW-complexes already appears. (The paracompactness 
of CW-complexes could be expected after this property was proved for simplicial 
complexes; it was shown for the first time in the case of CW-complexes in Miyazaki 
(1952), where also the simplicial sources are mentioned.) Local equiconnectivity 
of CW-complexes is due to Dyer & Eilenberg (1972). 

Subcomplexes were extensively studied in Whitehead's original paper. The fact 
that a compact space dominated by a CW-complex is always dominated by a 
finite CW-complex (see Corollary 1.5.5) suggests the following question: under 
what conditions will a space, which is dominated by a finite CW-complex, have 
the type of a finite CW-complex? A subtle answer to this question relying on 
algebraic X-theory is given in Wall {1965). The proof of the fact that the closure 
of any cell of a regulär CW-complex is a subcomplex (see Theorem 1.4.10) is 
inspired by the presentation in Lundell & Weingram (1969). 
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Categories of CW-complexes 

The objective of this chapter is to study four categories whose objects are 
CW-complexes, namely: 

(i) the category CW of CW-complexes and maps, 
(ii) the category CWC of CW-complexes and cellular maps, 

(iii) the category CWX of CW-complexes and regulär maps and 
(iv) the category RCW° of relative CW-complexes and cellular maps. 

2.1 Morphisms 

Let Y, X be CW-complexes. A map / : Y-* X is: 

(i) cellular, if for all neN , f(Yn) c Xn; 
(ii) regulär, if / is cellular and takes every open cell of Y onto an open 
cell of X.* 

Let Y,X be relative CW-complexes. A map / : Y ->X is: 

(iii) cellular, if for n = - 1 and all neN,f{Yn) cz X * . 

Note that, in all cases, the dimension of the cells is not necessarily 
maintained; indeed it may decrease. 

Clearly, identity maps are cellular and regulär with respect to the same 
CW-structure on domain and codomain, and composition of cellular 
(respectively, regulär) maps yields a cellular (respectively, regulär) map; 
indeed, cellular (respectively, regulär) maps form subcategories of CW. 
Because regulär maps are cellular, 

CWrczCWc. 

Proposition 2.1.1 Let Y, X be CW-complexes and let f'.YX be a regulär 
map. Then, 

(i) the Image by f of a closed cell of Y is a closed cell of X; 
(ii) f(Y) is a subcomplex of X; 

(iii) the induced map Y-> f(Y) is an Identification. 

Proof (i) Let e' be a cell of Y; then, by regularity, e = f(e') is a cell ofX. Since 
e' is compact, f(e') is a closed subset of X containing e, and thus e c f(e'). 

f A better and more intuitive terminology would be to use the words 'skeletal' instead of 
'cellular' and 'cellular1 instead of 'regulär'. However, we stick to the usual Convention. 
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On the other hand, if yee' and U c X is a neighbourhood of / (y) then, 
by the continuity of / , the inverse image of U by / is a neighbourhood of 
y and meets e'\ therefore U meets e. Since this holds for every 
neighbourhood off(y), it follows that f(y)ee. 

(ii) By the definition of regularity,/(y) is a union of open cells of X. By 
(i), the closure of any cell in f(Y) belongs also to f(Y); thus f(Y) is a 
subcomplex of X (see Proposition 1.4.4). 

(iii) one has to show that a subset C <=f(Y) is closed if its inverse image 
by / i s closed in Y. Now, C is closed in f(Y) if Cne is closed for every 
cell e oif(Y). But this is true because of the compactness off~1(C)ne\ 
where e' is a cell of 7 with /(ef) = e and the equation f(fl(C)r\e') = Cr\e 
which follows from (i). • 

Corollary 2.1.2 A surjective regulär map between CW-complexes is an 
identification. • 

Example The covering projection 

R S 1 , £i—>(cos 27it, sin 2nt) 

is a regulär map with respect to the CW-structures of R and S 1 described 
in Example 10 in Section 1.2 and Example 2 in Section 1.1, respectively. 

• 
2.2 Coproducts and products 

The categories CW, CW\CWT and RCWC have arbitrary coproducts; 
more precisely: 

Proposition 2.2.1 Let 

{{Xx;Xx

n : n= -1 ,0 ,1 ,2 , . . .} : XEÄ] 
be a family of (relative) CW-complexes. Then, 

{ U * A ; U * / : " = - 1 , 0 , 1 , 2 , . . . } 

is a CW-complex, which, together with the canonical inclusion maps, satisfies 
the properties of a coproduct of the CW-complexes Xx in the categories 
CW, CWc,CWr and RCWC (in particular, this means that the inclusions 
Xx-+ \_JXeAXx are regulär maps). Moreover, if all Xx are regulär 
CW-complexes, \_\X€ÄXX is regulär. Finally, 

dim | | Xx — max {dim Xx : XeA}. • 
XeA 
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The categories CW, CWC and CWT have also finite products, but these 
are harder to obtain. 

Theorem 2.2.2 Let {X;Xn : n = 0,1,2,...} and {7; Y" : n = 0,1,2,...} be 
CW-complexes. Then, 

(i) {X x 7; | J p + ( ? = n X p x Yq : n = 0,1,2,...} is a CW-complex, which, 
together with the canonical projection maps, satisfies the properties of a 
product of the CW-complexes X and Y in the categories CW, CWC and 
CWT; 

(ii) the open (closed) cells of the CW-complex X x Y are the products of 
the open (closed) cells of X and Y respectively; 

(iii) the projection maps X x Y -> X and X x Y^Y are regulär; 
(iv) if X and Y are regulär CW-complexes so is X x 7; 
(v) if dim X = l ̂  0, dim Y = m ^ 0 then, 

d\m(X x y) = / + m. 

Proof Define 

(X xY)n= (J Xp x 7 P . 

Clearly, (X x 7)° is discrete. 
Next, note that, for every pair (p, q) of natural numbers, Bp x Bq is a 

(p + (?)-ball with boundary ß p x S ^ u S ' " 1 x (see Proposition 1.0.2). 
Thus, the multiplication law (L5) for adjunction Spaces shows that the pairs 

(Xp x Yq,Xp x Y r l u l r l x Yq) 

are adjunctions of (p + g)-cells, whose attaching maps are denoted by fPA. 
Next, fix neN. Then, for (p,q) with p + q = n, the union x 7 9 _ 1 u 

x y<? j s a s u bspace of (X x 7)"" 1 and the corresponding maps 
together determine a map /„ from the coproduct of their domains to 
(X x Y)"~l. Now, (X x 7)" is obtained from (X x 7 ) n - 1 by adjunction of 
n-cells via /„ . This construction of the map /„ shows implicitly Statement 
(ii) of the theorem.-

In order to prove that X x 7 is determined by the family 
{(X x 7)" : neN}, observe first that, for every peN, Xp x 7 is the union 
space of the expanding sequence {Xp x Yp : q = 0,1,...} and that X x 7 
is the union space of the expanding sequence {Xp x 7 : p = 0,1,...}. Thus, 
X x 7 is determined by the family { X p x Yq : p,qeN} and hence also by 
the family {(X x 7)" : neN}. This completes the proof of Statement (i). 

Statements (iii) and (iv) are immediate consequences of (ii). 
Finally, if X = X1 and 7 = 7 m , then X xY = (X x Y)l+m, which proves 

(v) (see Proposition 1.5.14). • 
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Examples 10 and 11 of Section 1.2 exhibit CW-structures for R l and R 2 

respectively. Now one is able to extend this to higher-dimensional 
Euclidean Spaces. 

Example 1 The Euclidean space R m , meN, is a locally finite CW-complex 
of dimension m. In fact, because R is locally compact, every Euclidean 
space R m can be considered as an iterated product of R in the category 
of /c-spaces; thus, by the previous theorem it inherits a CW-structure which 
is locally finite (see Proposition 1.5.10). Moreover, it follows from this 
consideration that R m actually has covering dimension m. • 

In the proof of Theorem 2.2.2, it is crucial to use the product in the 
category of /c-spaces and not the usual Cartesian product, as one can see 
from the following example. 

Example 2 Let S be the set of all sequences of non-zero natural numbers. 
Form a one-dimensional CW-complex X as follows. The 0-skeleton X° 
is equal t o5u{0} . Next, for every seSdefine the map/ s : öB1 = { — 1,1}-> 
X° by taking / s (— 1) = 0 and / s ( l ) = s. These maps fs together define 
a map 

/ : { - U } x S - > A T 0 . 
Then, a CW-complex X is obtained by the adjunction of 1-cells to X° 
v i a / ; the characteristic map for the 1 -cell corresponding to seS will also 
be denoted b y / s . 

A second one-dimensional CW-complex Y is defined as follows. Take 
Y° to be the set N of natural numbers. For every / G N \ { 0 } , define the 
map Qi : { - 1,1} -» Y° by g{( — 1) = 0 and gt(l) = L These define a map 

g : { - l , l } x ( N \ { 0 } ) - > y ° ; 
then, y is obtained by adjunction of 1-cells to Y° via g; the characteristic 
map for the 1-cell corresponding to ieN\{0} will also be denoted by gv 

Now, if the Cartesian product of X and Y - which will be denoted by 
X x c y in the sequel - were a CW-complex in the sense of Theorem 2.2.2, 
it would have the topology determined by the products of the closed cells 
of X and Y i.e., the cells of X x Y (see Proposition 1.2.2). It will be shown 
that this is not the case. Take 

K = {{f,(srlUfcr1)) : feOeX0 x (y° \{0})} . 
Since K intersects any closed cell of X x Y in at most one element, K is 
a closed subset of I x y. However, K is not closed i n l x j ! This will 
be done by showing that the point (0,0), which does not belong to K, is 
a Cluster point of K. 
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Any open neighbourhood of (0,0) in X x CY contains an elementary 
neighbourhood U x V where: 

U = {fs(t):seS,t<as} 

V = {gi(t):ieN\{0},t<bi} 

with {as : seS} a family of real numbers 0 < as ^ 1 and {bt : ieN\{0}} a 
sequence of real numbers 0<f t f < 1. Given an open neighbourhood of 
(0,0) choose such an elementary neighbourhood and define a sequence 
seS by taking st= 1 + [maxftfc," 1)] (here, for any ZGR, [Z] means as 
usual the greatest integer contained in z); moreover, define the integer 
i= l + [a s ~ 1 ] . Then 

5,"1 < MINO'" 1 ,^-) 

for all ieN\{0} and 

Si'1 <i~x <as; 

thus, 

(fs(srl),gi{srl))e{UxV)nK. 

This means that every neighbourhood of (0,0) contains a point of K. 
Since X x Y is the /c-ification of X x C Y , one also obtains that X x CY 

fails to be a /c-space; thus, there does not exist any CW-structure for 
X x CY (see Proposition 1.2.1)! • 

Remark Whenever forming a product X x Y of CW-complexes, if at least 
one of X, Y is a locally finite CW-complex, then the /c-topology on the 
product set coincides with the topology of the Cartesian product, because 
one factor is locally compact (see Proposition 1.5.10 and Section A. l ) . The 
same is also true under some other circumstances. 

Proposition 2.2.3 //X, Y are countable CW-complexes, then the Cartesian 
product of X and Y is homeomorphic to the product X x Y in the category 
CW. 

Proof It is enough to show that the Cartesian product X x CY has the 
topology determined by the closed cells of the CW-complex X x Y (see 
Proposition 1.2.2). Take U czX x CY such that Un(e x e') is open, for all 
cells e cz X, e' a Y. Consider a point (x0,y0)sU and enumerate the cells 
of X and Y so that e0 is the carrier of x0 and e'0 is the carrier of y0. Let 
Xt and Yt denote the closures of the unions of the first i cells of X and 
Y respectively; the sets Xt and Y f , being finite unions of closed cells, are 
compact and the intersections U r\(Xd x Yt) are open in Xi x Y f. Moreover, 
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the Spaces X, Y are determined by the families {Xt : IGN}, {YF : ieN} (see 
Propositions 1.2.2 and A.2.1). 

Because Un(e0 x e'0) is open in e0 x e'0, one can find neighbourhoods 
V0 and W0 of x 0 and j ; 0 in X0 and 7 0 respectively, such that the product 
of their compact closures is still contained in U. Suppose by induction 
that neighbourhoods K, and W{ of x 0 and y0 in Xt and Yt respectively 
have been constructed so that Vi_1a Vh Wi_iczWi and V{ x W{ <= U. To 
perform the induction, first construct an open set Vi+1<=Xi+1 such 
that F jC Vi+l and K t + 1 x Wtc: U; the open set Wi+l can then can be 
constructed in a Symmetrie fashion. To begin with, for every point 
(x,y)eVi x Wh choose open neighbourhoods V(xy), W{xy) of x,y in Y* 
respectively, such that their product is contained in U. For a fixed y, it is 
possible to find finitely many sets K ( v v ) whose union Vy contains Vi9 in 
view of the compaetness of the latter set. Let Wy denote the intersection 
of the corresponding finitely many W{ Js. Now finitely many sets Wy 

cover Wt\ the intersection V of the corresponding Ky's is an open set 
containing V{ such that K ' x ^ c U. Normality permits one to find an 
open set Vi+l whose compact closure is still contained in V. 

Finally, the sets ( J / e N K £ , ( J i e N Wi are open neighbourhoods of x 0 , j ; 0 in 
X, Y respectively, whose product is contained in 17, and hence (x 0 ,j; 0) is 
an interior point of U. • 

A interesting application of products in the category C W is obtained by 
means of the telescope. To this end, consider an increasing sequence 
{Xn : neN} of subcomplexes of a CW-complex X whose union is X; note 
that any such sequence is an expanding sequence (see Corollary 1.4.7) and 
that X is actually its union space (see Propositions 1.2.2, A.2.1). Moreover, 
endow the half line [0, oo) with the CW-structure {N, [0, oo)} (cf. Section 
1.2, Example 10). The key to the desired result is given in the following 
Statement: 

Lemma 2.2.4 Let X be a CW-complex and let {Xn : neN} be an increasing 
sequence of subcomplexes of X. Then, the telescope T of the expanding 
sequence {Xn} is-up to homeomorphism - the subcomplex of the 
CW-complex X x [0, oo) formed by the cells e x {n}, e x (n, n + 1) with e a 
cell of Xm,m^ n\ T is a regulär CW-complex iff X is regulär. • 

With this in mind one obtains: 

Proposition 2.2.5 Any countable CW-complex has the type of a locally finite 
and countable CW-complex. 
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Proof Let e0,e{,.. .,ep... be an enumeration of the cells of a countable 
CW-complex X. Then the subcomplexes Xn = {j"=0X(ej) are finite (see 
Corollary 1.5.3) and form an increasing sequence with union space X? 
Observe that each of the products Xn x [n,n + 1] is a finite subcomplex 
of the corresponding telescope T and each open cell of T meets only 
closed cells of at most two of these finite subcomplexes. Thus, T is locally 
finite. • 

Remark The previous Statement is not devoid of sense: Example 13 of 
Section 1.2 presents a countable, but not locally finite, CW-complex. 

Exercise 

Show that the cartesian product of two locally countable CW-complexes 
is homeomorphic to the product in the category CW. (Lundell & 
Weingram, 1969, Corollary 2.5.5) 

2.3 Some special constructions in the category CWC 

Let Y, A be CW-complexes. A partial m a p / : Y-j^A is cellular if 
D = d o m / is a subcomplex of Y and / is cellular as a map £)-»/!; in this 
Situation, the restrictions of / to maps Dn -* An are denoted by / " . The 
basic result of this section is the following theorem. 

Theorem 2.3.1 Let 7, A be CW-complexes and let f : Y-/-+A be a cellular 
partial map. Then, taking X = A |_J/ Y and X" = An\_JfnY", the following 
are true: 

(i) {X;Xn:n = 0,l...} is a CW-complex, 
(ii) A is a subcomplex of X and 
(iii) there exists a cellular characteristic map for the adjunction. 

Proof (i) Clearly, X° is a discrete space. To prove that the pair (X", Xn~l) 
is an adjunction of n-cells, for every n > 0, show the existence of a space 
X' containing X"~l and contained in X" such that the pairs (X',Xn~l) 
and (Xn, X') are adjunctions of n-cells, the latter with an attaching map 
factoring through Xn~l; then the addition law (L3) for adjunction Spaces 
yields this claim. 

f The reader should be aware of the difference in procedure between this proof and that of 
Proposition 1.5.11. 
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Set X' = An\JA»-*Xn~'1- T h e n , 

^ " • ^ ( D ^ u Y " " 1 ) , 

using the law of horizontal composition (LI). 
Since D " u Yn~l is a subcomplex of the CW-complex Y", and Dn is a 

subcomplex of DnuYn~\ the inclusions D ^ ^ u f " 1 , D " u Y " - 1 Y " 
are closed cofibrations (see Corollary 1.4.7); thus the law of vertical 
composition (L2) can be applied to give: 

Xn = A" U / » Yn = (An Uf»(Dnu Y"~])) \JfYn = X' j j / Y " , 

where f:DnuYn~i^An\_Jfn(DnKjYn~l) denotes a suitable character­
istic map. 

Because the pairs {A\An~l)9 ( Y " , D w u Y " _ 1 ) are adjunctions of n-cells 
(the latter by Lemma 1.4.3 (ii)), so are the pairs {X\Xn"1)i(Xn,X,y A n 
attaching map for the latter pair has to factor through D " u 7 " " 1 , thus 
through Y , , _ 1 ; but the induced m a p Y " - 1 - ^ factors through Xn~\ 
completing this part of the proof. 

It remains to show that X has the final topology with respect to the 
canonical maps / : X"^X. A function g from X to a topological space 
Z , such that all compositions g° j" are continuous gives rise to compatible 
sequences of maps A" Z , Y" Z , thus to maps A -> Z , Y^Z. These give 
a map which as a function coincides with # (apply the universal property 
of adjunction Spaces). 

(ii) follows immediately from the construction, which also implies that 
the characteristic maps for the adjunction Spaces Xn together determine 
a characteristic map for the adjunction space X, thereby proving (iii). • 

The theorem gives rise to some interesting constructions in the category 
CWC, which will be described in the following examples. 

Example 1 If A is a subcomplex of the CW-complex X9 then X/A is a 
CW-complex. • 

Example 2 If / : Y -> X is a cellular map, then the mapping cylinder M(f) 
is a CW-complex, containing both Y and X as subcomplexes. • 

Example 3 If / : Y-+X is a cellular map, then the mapping cone C(f) is 
a CW-complex, containing X as a subcomplex. • 

Example 4 If X is a CW-complex, then its cone CX and its Suspension 
EX are CW-complexes. • 
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Examples 2, 3 and 4 have reduced analogues defined for based 
CW-complexes. 

Example 5 The smash product of two based CW-complexes is a based 
CW-complex. • 

Recall that the wedge product of a family of based Spaces {(Yy,zy) : yeT} 
is the based space (V rYy,z) given by the set 

V Yy = < (yy)e Yy:yy # zy for at most one yeT >, 

endowed with the final topology with respect to the canonical map 

p:UYy-> V y v , 
yer >-er 

and the point z taken to be the element (zy). If one takes (Yy,zy) = (Y,z 0 ) , 
for all y in a given set T and a given based space (Y,z 0 ) , then the wedge 
product ( V rY,z) = ( V rYy,z) is called the T-fold wedge of (Y,z 0 ) ; in 
particular, the i^-fold wedge of the based n-sphere (S", e0), neN, is referred 
to as a bouquet of n-spheres (see Section 1.1, Examples 9, 10). 

Any wedge product of a family of based CW-complexes carries a 
CW-structure in the obvious manner. In particular, this appears in the 
following. 

Example 6 For any CW-complex X and any neN, the CW-complex 
Xn+ l/Xn is a bouquet of (n + l)-spheres. • 

If one wishes to construct a CW-complex out of a given CW-complex by 
the adjunction of further n-cells, these have to be attached via attaching 
maps into the (n — l)-skeleton; more precisely: 

Proposition 2,3.2 Let X be a CW-complex and let the pair (Y,Xn~l) be an 
adjunction of n-cells, n fixed. Then, the union X * = X Ux»-» Y is a 
CW-complex such that 

(i) X*H = XH\Jx«-iY 
and 

(ii) X/X" = X*/X*n. 

Proof From the hypotheses, it is clear that Y is a CW-complex containing 
Xn~l as a subcomplex, and it is trivial that the inclusion m a p X " - 1 -+X 
is cellular. Thus, X* is a CW-complex and X"[_Jx„-i Y is its n-skeleton 
(see Theorem 2.3.1). 
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To prove (ii), denote by j the inclusion Xn-+X*tt and by c the constant 
map from X*n to the singleton space {*}. Then: 

x*/x*» = {*} u * * = {*} Uc(x* UjX) = {*} Ucjx = x/x». • 

The next proposition shows that a modification of the n-skeleton of a 
CW-complex does not alter its higher dimensional part. 

Proposition 2.3.3 Let A be a subcomplex of a CW-complex X, let Ä be an 
n-dimensional CW-complex and let f : A"->Af be a cellular map. Then, 
X' = A'UfX is a CW-complex such that 

X'IX,n = x/xn. 

Proof The n-skeleton of X' is given by X,n = A' |_J f X" (see Theorem 2.3.1); 
let f:Xn^X'" be a suitable characteristic map and let c:X'"^>{*} be 
the constant map. Then: 

x'/xln = {*}UJ' = {*} UXX,n U ,-*) = {*} Ujx = x/x\ • 

The following is a technique to blow up a CW-complex within its type. 
Let X be a CW-complex and let b : Bn -> X be a cellular map (with respect 
to the CW-structure of B" described in Section 1.2, Example 1). Attach an 
n-cell to X, using b\S"~l as attaching map; the resulting space X is a 
CW-complex consisting of the subcomplex X (see Theorem 2.3.1) and an 
extra n-cell. Let b denote a characteristic map for the new n-cell, such that 
blS"'1 = /?|S"" J . Define c:Sn-+X by taking b on the lower hemisphere 
of S" and b on the upper one; this is again a cellular map. Attaching an 
(n + l)-cell to X via c, one obtains the elementary expansion of X along 
b; this is again a CW-complex, denoted by Xb and containing both X and 
X as subcomplexes. 

Proposition 2.3.4 Let X be a CW-complex and let b : B"-*X be a cellular 
map. Then, the elementary expansion Xh of X along b contains X as a 
strong deformation retract with a cellular retraction. 

Proof Let c:Bn + 1-+Xb denote a characteristic map for the new 
(n + l)-cell of Xb, and define H : Bn + 1 x I-*Xb by taking 

H{hn(s, t),u) = coh\s, tu), 

where hn denotes the canonical homotopy deforming the lower hemisphere 
of Sn into the upper one (see page 4). Consider the composition 
H' = (H\Sn x J )o ( i + x \j) : B" xl-*Xb, its restriction to Sn~l xl is 
nothing but the composition of the projection onto S"" 1 with the map 
b\Sn~l and the inclusion X->Xb. Thus, H' gives rise to a homotopy 
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rel. X, which retracts X to X within Xb, and which in turn extends to a 
homotopy deforming the entire Xb into X, via the homotopy H . • 

A CW-complex X' (respectively, its CW-structure) is a subdivision of a 
CW-complex X (respectively, its CW-structure) if X and X' coincide as 
Spaces and every cell of X' is contained in a cell of X. This definition has 
the following immediate consequence. 

Proposition 2.3.5 Let the CW-complex X' be a subdivision of the CW-
complex X; then: 

(i) the identity map is cellular as a map X X'; 
(ii) // X is finite, locally finite or countable the same holds true for X'\ 
(iii) dim X' = dim X. • 

Remark If the CW-complex X' is a subdivision of the CW-complex X, 
then, as a consequence of the cellular approximation theorem (to be proved 
in the next section), the identity map regarded as a m a p X ' - > X is 
homotopic to a cellular map (but is itself cellular only if, also, the 
CW-structures of X and X' agree). • 

Example 7 The CW-structure for the ball Bm + 1 described in Example 3 
of Section 1.2 is a subdivision of the CW-structure given in Example 2 
there, which in turn is a subdivision of the CW-structure in Example 1. 

• 

Proposition 2.3.6 Let the CW-complex X' be a subdivision of the 
CW-complex X and let Abea subcomplex of X. Then, there is a subcomplex 
A' of X' which is a subdivision of A. 

Proof Let Q denote the set of all cells e' <= X' which meet A. Clearly, A 
is contained in the union of all the cells of Q. If a cell e'eQ is contained 
in the cell e of X, then e is contained in A (see Corollary 1.4.2), and so 
e' c A. Thus, A is the union of all the cells of Q, and because A is closed 
in X, these cells form the desired subcomplex A' of X' (see Proposition 
1.4.4 (ii)). • 

The requirement that the base point of a based CW-complex should be 
the only point of a 0-cell is not an essential restriction. This will be 
demonstrated by the following technical lemma which is a strengthening 
of the fact that, for any point x0 of a CW-complex X, the pair (X,xQ) is 
a well-pointed based space (see Corollary 1.3.7). 
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Lemma 2.3.7 If x is a point of a CW-complex X, then there is a subdivision 
X' of X containing {x} as a 0-cell 

Proof Let X be a CW-complex, let x be a point of X and let the /i-cell e be 
the carrier of x. The construction will be by induction on 1, leaving 
the skeleta Xm for m^n unchanged. Let ce : Sn~l->Xn~1 denote an 
attaching map for e\ by the induction hypothesis, one may assume it to 
be cellular with respect to the CW-structure 

{{e0},...,{e0},S"->} 

for S " - 1 . Now let c:S"~l -+Xn\e be the composition of ce with the 
inclusion Xn~l ->Xn\e, which is again a cellular map. By Example 3, its 
mapping cone is a CW-complex; this CW-complex is homeomorphic to 
X" where the homeomorphism can be chosen as the identity on Xn\e and 
transforming the peak of the mapping cone into x. Then, the image of 
the CW-structure of the mapping cone under this homeomorphism is the 
desired subdivision of Xn. • 

Another special construction relates to covering projections. Their 
existence is no problem whenever one deals with CW-complexes. 

Proposition 2.3.8 Let X be a path-connected based CW-complex and let n 
be a subgroup of its fundamental group. Then, there is a based covering 
projection p : X^X such that n is the image of the fundamental group of 
X under the homomorphism p}. 

Proof See Proposition A.8.4 and Theorem 1.3.2. • 

If the base of a covering projection is a CW-complex, its total space inherits 
a canonical CW-structure. 

Proposition 2.3.9 Let X be a C W-complex and let p : X -> X be a covering 
projection. Then, the sequence {X" = p~l(X") : neN} is a CW-structure for 
the covering space X. 

Proof (0) Take xeX°. Then, x = p(x) belongs to X°, which by assumption 
is discrete. Thus, there is an open neighbourhood U of x in X, which does 
not meet any other 0-cell of X and such that p~1(U)= uUx with each 
Uk open in X and containing exactly one inverse image of x. One of these 
Vk contains x and cannot contain any other point of X°. Therefore, X° 
is a discrete space. 
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(1) The pairs (X",X"~l) are adjunctions of n-cells, for every neN\{0} 
(see Theorem 1.1.6(i)). 

(2) It remains to prove that the covering space X is the union space of 
the expanding sequence {Xn : neN}. To this end, take U aX such that 
UnXn is open in Xn, for every neN. To show that U is open in X, it 
suffices to assume U sufficiently small, namely such that U is open in X 
iff p(U) is open in X (cf. last part of the proof of Theorem 1.1.6(i)). Because 
all the restrictions p\Xn are open maps, p(U)nXn = p(UnX") is open in 
Xf\ for all neN; thus, p(U) is open in X. • 

In the context of covering projections, another fact deserves rrientioning. 

Corollary 2.3.10 Let X be a CW-complex and let p : X^X be a covering 
projection. Then, p is a regulär map in the strict sense that it maps open 
cells homeomorphically into open cells; the same holds true for covering 
transformations. • 

2.4 The cellular approximation theorem and some related topics 
The categories CW and CW° have a deeper relationship than just that 
given by the fact that CWC is a subcategory of CW. This section is mostly 
devoted to showing that any map between two CW-complexes is 
homotopic to a cellular map. 

Let X be a space, (Y,D) a pair of Spaces and / : Y^X a map. An 
approximation rel. D to / is a map g : Y -> X, which is homotopic rel. D 
to / . 

Lemma 2.4.1 Let (Y, D) be an adjunction of n-cells, n>0, and let (X, A) be 
a pair of Spaces such that nn(X,A,x0) = 0,for every base point x0eA. Then 
any map f : Y-*X with f(D)c:A has an approximation g : Y^X rel. D 
with g(Y)c A. 

Proof Suppose such a map / is given and let / : D A denote the induced 
map. Take an n-cell een(Y\D) and choose a characteristic mapc : Be = 
Bn-+ Y for e with corresponding attaching mapc : S"" 1 The pair 
(/°^ f°c) represents an element of the relative homotopy group 
nn(X,A,x0) with x0 = f °c(e0). By assumption, this group vanishes; thus, 
there exists a homotopy He rel. S"" 1 between f °c and a map with image 
in A (see the description of the zero element of a relative homotopy group 
given in Section A.8). Now, because 

XxI = (AxI)u U (Bexl), 
een{Y\D) 
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the homotopies He,een(Y\D) all together induce a homotopy 
H : X x / -• X' connecting / to the desired map#. • 

From this, one obtains another characterization of rc-connectivity for pairs 
of Spaces. 

Lemma 2.4.2 A pair of Spaces (X, A) is n-connected, n ̂  0, iff 
(i) every path-component of X meets A and 
(ii) for every map f : Y-+X, where Y is a relative CW-complex and 

f(Y{~l)) cz A, there is an approximation g : Y->X rel Y ( _ 1 ) to f with 
g(Y<n))^A. 

Proof '<=': For 1 ^ k ̂  n, consider Bk provided with the usual 
CW-structure {{e0},..., {e0}, Sk" \ Bk} and apply (ii) to a map b : Bk^X 
with 6 ( S k " ! ) c A 

4=>':(i) is clear (ii) : l e t / : Y-*X be a map with the required properties. 
One constructs inductively maps gk : 7 -* X , — 1 ^ k ̂  n, such that 

(1) 9 - 1 = / , 
(2) 0 k + 1 ^ t r e l . - l ^ k ^ n , 
(3) ft(y(«)cz/l, 

as follows. Suppose gk is given. Take an approximation g' : y ( f c + 1 ) ->A' 
to gk\Y(k+l) rel. Y ( k ) with g'{Y{k + 1))c: A (see Lemma2.4.1); let 
H : Y{k+1] x X denote the homotopy involved. Since the inclusion 
y<*+n_> y i s a c i o s e d cofibaticn (see Proposition 1.2.3 (iii)), there is an 
extension of H to a homotopy from gk to a map gk+x as desired. 

Finally, take g = gn. • 

Lemma 2.4.3 / / the pair (X, A) is an adjunction of n-cells, n>0, any map 

b : {Bk,Sk~l)^{X,A) 

with k<n is homotopic rel Sk~x to a map b' : Bk^A. 
In other words, if the pair (X, A) is an adjunction of n-cells, n > 0, then 

it is (n — \)-connected. 

Before giving the proof of this lemma note the following: 

Corollary 2.4.4 For every natural number k<n, 

nk(Sn,eo) = 0. 

Proof It is enough to take an element ßenk(S",e0) = nk(Sn,{e0},e0) 
represented by b : (Bf,^~l)-*{S",{eo})- • 
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Proof of Lemma 2.4.3 The proof is done by induction on n. Since the 
corollary is valid whenever the lemma holds true, one can use Corollary 
2.4.4 for the inductive Step on the lemma itself. 

If n = 1 and k = 0, both the lemma and the corollary are trivial; suppose 
that the lemma is true for n. Without loss of generality, one can assume 
/c>0. Let f be a characteristic map for the adjunction of (n + l)-cells 
(X9A), and, for every een(X\A\ let the induced characteristic map be 
denoted by ce. Then take the open sets 

U = Cj(A) 

(the collar of A in X\ see Section 1.1) and 

Ue = {ce(t)'0^\t\<ll 

for every een(X\A). Clearly, 

n = {U}v{Ue : een(X\A)} 

is an open covering of X. 
Let B* be the Jfc-fold product of the ball B1 with itself and let b* : B*-+X 

be the composition of the map b with the canonical homeomorphism from 
B* onto Bk (see Proposition 1.0.2). Let e. be the Lebesgue number of the 
covering b*~ l(ü). Subdivide Bl into finitely many closed intervals of finite 
length smaller than Izjjk, giving rise to a new finite regulär CW-structure 
on the product space ß*; in the sequel, it will be assumed that ß* is always 
endowed with this CW-structure. Its essential feature is that the covering 
of B* by its closed cells refines the covering b* _ 1 ( i2) . 

Let V be the union of all open cells of B* whose closures are contained 
in b*~l(U). The closure of each of these open cells is also contained in 
V, and thus, by Proposition 1.4.4, V is a subcomplex of B*. Extend V 
dimensionwise to B* be defining inductively V_1= V and Vt= Vt _ j u B*1, 
for / = 0,...,/c. 

This is done in order to construct a map b : B* -> X which is homotopic 
to b* rel. V and takes the sets b*~l(Ue) into UnUe, for all een(X\A). 
Assume b^^ =b\Vl.l defined, and look at an /-cell e'eniV^V^y). Since 
its closure is not contained in b*~ l(U\ there is a (unique) n-cell een(X\A) 
such that e' <z fo* " 1 (Ue). Now b{_ l {e'\e') cz U n Ue, thus bt _ l \{e"\e') may be 
thought of as representing an element of (L /n Ueix0\ where x 0 is a 
suitable base point. But U n Ue is homotopically equivalent to 5", and, 
hence 

%l _! (U n Ue, x0) ^ 7E, _ ! (Sn, e0). 

The induction hypothesis on Corollary 2.4.4 implies that the group on 
the right-hand side of this isomorphism is trivial. So bi-l\(e'\e') extends 
to a map e'-*X whose image is contained in U n Ue. 
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This can be done for all the /-cells of #* which do not belong to V, 
yielding the desired extension of 1 over Vt and ultimately the map b. 
It is still necessary to show that b is homotopic rel. V to b*. The desired 
homotopy K* : 2?* x /-> X is defined to be trivial over V and linearly on 
the cells. More precisely, take K*(v,t) = a*(v) = b(v), for veV, and 
K*(v,t) = c e ( ( l - t)u + tw\ where 6*(y)e(/c, fc*(t>) = ce(u) and 5(u) = ce(w). 
To show the continuity of this function X * : B* x I^X, it is enough to 
show that its restriction to each e' x I is continuous, for each cell e' of 
B*. If e' is a cell of V9 there is nothing to prove; otherwise for vee' the 
assignments v\-+u, v\-^w are continuous and so is their linear combination 
(v9t)\-+(\ -t)u + tw. 

Now switch back to Bk from B*. Compose K * with the canonical 
homeomorphism Bk x I-+B* x I to obtain a homotopy K : Bk x I-^Xvel 
a subset of Bk which contains S * - 1 . Clearly, K( - ,0 ) = Z? and 

x {1}) c 17. Finally, use the deformation from (7 to A to move 
x {1}) into A. • 

Remark The lemma would be trivial if one could be sure, whenever, k < n, 
that every map b : Bk-*X would miss at least one point in every n-cell 
of the adjunction space.X, since then the image of b would be contained 
in a subspace oiX having A as strong deformation retract. But the existence 
of 'Peano curves', i.e., of maps from B1 onto Bn, shows the impossiblity 
of avoiding the deformation of the map b into a homotopic map which 
misses points in each of the n + 1-cells. • 

In case k = n, the proof just given leads also to an interesting result. 

Lemma 2.4.5 Let (X, A) be an adjunction of n-cells with simply connected 
A, n ^ 2; for every cell een(X\A)9 let ce denote a characteristic map. Then, 
the homomorphism 

© (<?.)„: © nn(B\S»-\e0)^n„{X,A,x0) 
een(X\A) een(X\A) 

is an epimorphism, for any choice of a base point x0eA. 

Proof Start the considerations in the proof of Lemma 2.4.3 with a map, 

The construction of the map b can be carried out until bn_l : Vn_ x U is 
reached. This map bn_ 1 is homotopic rel. V to 6*| Vn_ x . By the homotopy 
extension property, bn_1 can be extended to a map b, taking values in X 
rather than in U. Since A is assumed to be simply connected, this map b 



72 Categories of CW-complexes 

(up to composition with the canonical homeomorphism ß"-*i?*) 
represents the same element of Kn(X,A,x0) (see Proposition A.8.15). By 
the homotopy addition theorem (see Theorem A.8.16), this is the sum of 
the elements represented by the restrictions be. of b to the M-cells e' of B*. 
Each e' either belongs to V, in which case be> represents 0, or its image 
under b is contained in exactly one n-cell een(X\A); then, the 
corresponding element of nn(X,A,x0) belongs to the image of (ce)„. • 

Lemma 2.4.3 has several consequences for CW-complexes. 

Proposition 2.4.6 If X is a relative CW-complex, then the pairs (X,X(n)) 
are n-connected, for every neN. 

Proof Note, first, that any compact subset K cz X is contained in some 
X(m). Indeed, the image of K under the projection X X/X{~1] is contained 
in some m-skeleton of the CW-complex X/X{~1) (see Proposition 1.5.2); 
but the inverse image of this skeleton is just X(m). 

Let b : Bk-+X be a map with b(Sk'1) cz Xin\ 0 ̂  k ̂  n. Because b(Bk) 
is compact, it is contained in a finite skeleton of X, say Xm. If m > n, the 
lemma allows to deform b homotopically rel. Sk ~1 into a map Bk X(m ~1}. 
The result is obtained by repeating this procedure finitely many times. 

• 
Corollary 2.4.7 If X is a relative CW-complex, then the pairs (X(m), Xin)) 
are n-connected, for every m^n^O. 

Proof Notice that X(m) is a relative CW-complex with ( X ( m ) ) ( n ) = X(n). • 

Proposition 2.4.6 and Corollary 2.4.7 can be reformulated in terms of 
homotopy groups. 

Corollary 2.4.8 //X is a relative CW-complex and x0eX(~l), then 
(i) for n>k^0 

7ik(Xin\x0)^nk(X,x0); 

(ii) for n^O, the canonical homomorphism 

is an epimorphism; 
(iii) for n^m^k>0, 

nk(X<"\ x0) = nk(X, X™, x0) = 0; 
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(iv) for n> k> m ̂  — 1, k> 0, 

nk(X™X™xJ*nk(X9X™xJ, 

(v) for n > m ^ — 1, n > 0, the canonical homomorphism 

nn(X^,X^,x0)^nn(X,X^,x0) 

is an epimorphism. • 
In particular, choosing a base point and setting n = 1, k = 0 in (i), one 

obtains: 

Corollary 2.4.9 A CW-complex is path-connected iff its 1-skeleton is 
path-connected. • 

The previous two corollaries have an application to the study of covering 
projections onto CW-complexes. 

Corollary 2.4.10 Let p : X^Xbe a universal covering projection where X 
is a CW-complex and X has the induced CW-structure (see Proposition 2.3.9). 
Then, for n ^ 2, the induced maps pn : Xn -+ X" are universal covering 
projections. 

Proof A map induced by a covering projection is always a covering 
projection (see Proposition A.4.17). Thus it sufiices to show that the skeleta 
Xn are simply connected. Since X is path-connected, so are the Xn (see 
Corollary 2.4.9). Moreover, for any choise of a base point x0eX" and n > 2, 
7t! (Xn, x0) ^ 7t! (X, x0) = 0 (see Corollary 2.4.8(i)). • 

The main theorem of this section is proved next. 

Theorem 2.4.11 (The cellular approximation theorem) Let f : Y -+X be a 
map between CW-complexes Y and X, whose restriction to a subcomplex 
D ofY is cellular. Then there exists a cellular approximation g to f rel. D. 
Moreover, it is possible to choose a homotopy H : f'~ g, so that, for every 
cell eczY, H(Y(e) x /) c X(f(Y(e))). 

Proof Consider Y x / as the union space of the expanding sequence 
{Yn = Y x {0}u Yn~l XIKJD x I : neN}. The proof is done by construct-
ing a compatible sequence {Hn} of maps Hn : Yn->X satisfying the 
following properties (see Proposition A.5.7): 

(1) Hn(-,0)=f; 
(2) H„(-, 1) is cellular; 
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(3) Hn\D x I is the composition of the projection onto D with f\D: 
(4) for every cell e' cz Y"~\ Hn(Y(e') xl)cz X(f(Y(e'))). 

For n = 0, take H 0 to be the map/on 7 x {0} and the composition of the 
projection map D x / - • £ ) with / |D o n D x / . Assume that H„ has been 
suitably defined. Let e be an n-cell of Y\D and choose a characteristic map 
ce : -+ 7 for it. The composition 

ce x 1,1(5" x { O j u ^ - 1 x l)orn\Bn x {1} 

(where rn denotes the map defined in Section 1.0) induces a map 
b'e : Bn Yn. Now observe that, according to property (4), the composition 

be = Hnob'e:(B\S»-l)->(X,X"-1) 

takes values only in the subcomplex X = X(f(Y(e))); since Y(e) is finite 
(see Corollary 1.5.3), and therefore compact (see Proposition 1.5.8),/(7(e)) 
is compact and thus X is finite (Corollary 1.5.4). Because the pair (X,Xn) 
is n-connected (see Proposition 2.4.6), the map be is homotopic rel. S w _ 1 

to a map Bn-+Xn. The homotopy involved factors through the restriction 
of the homotopy Rn : B" x / x I->Btt x / (see page 8) to ß " x { l } x / = 
J5N x /, giving rise to an extension of 

ce x l j ß " x { 0 } u S n _ 1 x / 

over Bn x 7, which in turn factors through the characteristic map ce x l x 

for the (n + l)-cell e x / of Y x /, and therefore induces an extension 
tf„+! | (y n ue) of /f„ which takes values only on X. This procedure, applied 
to all n-cells e cz Y\D, yields Hn+l. • 

The Statement of the cellular approximation theorem given here is sharper 
than the usual one; its advantage lies in the following fact: 

Corollary 2.4.12 Let f : Y-*X be a map between CW-complexes Y and 
X. Then, there is a homotopy from f to a cellular map which deforms f(D) 
only within A, for all given subcomplexes D cz Y and A cz X with f(D) cz A. 

• 
Remark Thus the cellular approximation theorem implies that for any 
two homotopic cellular maps j\g : Y^X it is possible to choose a 
homotopy which deforms the image of Y" entirely within Xn+i. This 
follows by considering 7 x / as a CW-complex in the obvious manner 
and taking a cellular approximation to an arbitrarily given homotopy 
y x / - ^ * f r o m / t O 0 r e l . Y x { 0 , l } . • 

This section is closed by two useful technical lemmas. 
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Lemma 2.4.13 Let (X,A) be a pair of Spaces with A a CW-complex. Then 
(X, A) is n-connected, n^O, iff every path-component of X meets A, and, 
for 0<k^n, every map b : Bk^>X with b(Sk~l) cz Ak~1 is homotopic rel. 
Sk~l to some map Bk^Ak, i.e., iff the canonical homomorphisms 

7tk(X,Ak-\x0)^nk(X,Ak,x0) 

are zero, for any 0-cell x0 of A. 

Proof '=>': If (X, Ä) is n-connected then a map b, as described in the 
Statement, can be deformed rel. S f e _ 1 into a map with target A. By 
Proposition 2.4.6, the pair (A, Ak) is /c-connected, and thus the new map 
can further be deformed rel. into a map of the desired kind. 

'<=': Since, by Corollary 2.4.8(iii), nk-1(Ak,Ak~1,x0) is equal to zero, it 
follows from the hypothesis and the exact homotopy sequence of the triple 
(X,Ak,Ak~l,x0) that the relative homotopy group nk{X,Ak,x0) vanishes. 
Now use the exact homotopy sequence of the triple (X, A, Ak, x0) to show 
that nk(X,A,x0) is trivial. • 

Lemma 2.4.14 Let Y be a subcomplex of the finite CW-complex X such 
that the pair (X, Y) is (n — 1 )-connected, n>0. Then, there exists a finite 
CW-complex Z containing Y as a subcomplex and satisfying the following 
conditions: 

(i) Z M _ 1 = 
(ii) Z has the same number of cells as X in each dimension > n + 1: 
(iii) Z is homotopy equivalent rel. Y to X. 

In particular, if X is a finite, n-dimensional CW-complex, Z is finite and, 
at most, (n + \)-dimensional. 

Proof Consider a cell e in X\Y of lowest dimension r < n. The following 
is a procedure to get rid of this cell at the expense of introducing one new 
(r + 2)-cell. Döing this finitely many times one obtains the desired 
CW-complex Z . 

Let c be a characteristic map for the cell e; by the cellular approximation 
theorem, one may assume c to be cellular with respect to the canonical 
CW-structure for Br (see Theorem 2.4.11 and Section 1.1, Example 1). Since 
(X, Y) is (n — l)-connected, there is a cellular map c : Br^>Y whose 
composition with the inclusion Y -+X is homotopic rel. S r _ 1 to c. Choose 
a corresponding homotopy and let : Br+1 -*X denote the map induced 
by factoring out hr (see Section 1.0). Form the elementary expansions 
and Xb. Recall that Yc is obtained from Y by attaching an r-cell and an 
(r + l)-cell; likewise, Xb contains one (r + l)-cell and one (r + 2)-cell more 
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than X. Now, can be considered as a subcomplex of Xbi by identifying 
the new r-cell of Y* with the initial cell e, and the new (r+ l)-cell of Yc 

with the new (r + l)-cell of Xb. Let d : Y* 7 denote a cellular deformation 
retraction (see Proposition 2.3.4) and attach Xb to Y via d. Let d : X f t -+ X * 
denote a corresponding characteristic map; d is a homotopy equivalence 
(see Proposition A.4.11) and so is the composition dot d with the inclusion 
X->Xb. The cells of X* are those of Y and also those of Xb which do 
not belong to Yc (see Proposition 2.3.1); that shows the claim on the cells 
of the constructed space. Because d\ Y is just the inclusion of Y into X*, 
d is a homotopy equivalence, rel. Y (use Lemma A.5.10 with f=d, 
f = g = lY and H the projection Y x / - • Y). • 

Exercises 

1. Give an example of a universal covering projection onto a CW-complex 
such that the induced map between the 1 -skeleta fails to be universal. 

2. Prove the following version of Corollary 2.4.8: If X is a CW-complex, 
A is a subcomplex of X and x 0 is a chosen base point belonging to A, 
then 
(i) for every n > k> 0, 

nk(X\A\x0)^nk(X,Ax0); 

(ii) for every /c>0, the canonical homomorphism 

nk(X\A\x0)^nk(Xk + \Ak + \x0) 

is an epimorphism. (Note that the difficulty lies at k = 1!) 

2.5 Whitehead's realizability theorem 

Perhaps one of the best-known results of J .H.C. Whitehead is the following. 

Theorem 2.5.1 A weak homotopy equivalence between CW-complexes is a 
homotopy equivalence. 

The theorem states that, if X, Y are CW-complexes and the map f : Y -+X 
induces isomorphisms between the corresponding homotopy groups at 
all levels, then there is a map g : X -> Y - called a realization 
of the isomorphisms nn(X, f{y<^)-*nn(Y, y0) - which is homotopy inverse 
to/. 

Proof First of all, a weak homotopy equivalence induces a bijection 
between the sets of path-components. Therefore it suffices to 
consider path-connected CW-complexes. Let Y, X be CW-complexes and 
let f : Y->X be a weak homotopy equivalence; by the cellular 
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approximation theorem 2.4.11, one can assume/to be cellular and thus 
the mapping cylinder M(f) to be a CW-complex (see Section 2.3, Example 
2). The pair (M( / ) , Y) is n-connected for all n e N (Proposition A.4.10(vi)); 
one must show that Y is a strong deformation retract of M(f) (Proposition 
A.4.10(v)). 

To this end, one has to deform the identity map of M ( / ) into a 
deformation retraction M ( / ) - > Y. This is done in exactly the same way 
as the deformation of the map / into a cellular map in the proof of the 
cellular approximation theorem (see Theorem 2.4.11), just replacing the 
reference to the n-connectivity of the pair (X,Xn) by the n-connectivity of 
the pair (M( / ) , Y). • 

Remark One might think that a sufficient condition for two 
CW-complexes to have the same homotopy type is that their homotopy 
groups are isomorphic. But it is essential that these isomorphisms are 
realized - at least in one direction - by a map. To clarify this point, the 
reader should look at the remark after Exercise 3, Section 4.4. • 

There is a sharper version of Theorem 2.5.1 for finite-dimensional 
CW-complexes. 

Theorem 2.5.2 Let Y and X be finite-dimensional CW-complexes and let 
/ : Y-+X be a map inducing isomorphisms fk : nk(Y,y0)-*nk(X9f(y0)) for 
every 0-cell y0 of Y and any k = 0 ,1 , . . . , n, where n = max {dim Y, dim X}. 
Then f is a homotopy equivalence. 

Proof As in the proof of Theorem 2.5.1, assume X, Y to be path-connected, 
/ to be cellular and the mapping cylinder M(f) to be a CW-complex. The 
assumptions imply that the pair (M(/ ) , Y) is n-connected. Therefore, there 
is an approximation g : M(f)-*M(f) to the identity map of M( / ) r e l . Y 
with g(M(f)n) c Y (see Lemma 2.4.2). If dim M(f) = n, i.e., if dim Y < n, 
the induced map M(f) Y is the desired homotopy inverse to the inclusion 
iY: Y -> M(f). 

Otherwise, d i m M ( / ) = n + l . In this case, one first constructs a 
retraction g' : M(f)-+ Y as follows. On M ( / ) n , one takes the map induced 
by g. Any (n + l)-cell e' of M(f) is of the form ef = e x (0,1), where e is an 
n-cell of Y. Let ce. be a characteristic map for e'. Its composition with the 
map g represents an element of 7i„ + 1 ( M ( / ) , Y,y0), where y0 is a suitable 
base point. Since the induced homomorphism nn(Y,y0)-^nn(M(f\ y0) 
is an isomorphism, the boundary homomorphism nn+l(M(f)9Y,y0)-> 
nn(Y,y0) vanishes. Hence, g°ce>\Sn i s - a s a map into Y - homotopically 
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trivial, and thus it has an extension ge. : B"+ 1 -» Y which factors through 
e' via the map ce.. This defines the desired map g'\e'. Note that g'\Y = lY; 
thus g' is a retraction; but it still remains to show that i Y ° g ' ^ 1MU> where 
iY denotes the inclusion of Y into M(f). To this end, take an approximation 
k : X -» M ( / ) to the inclusion of into the mapping cylinder M(f) rel. 
0 with /cpO c y (see again Lemma 2.4.2). Now recall tha t / = rf°iY (see 
Proposition A.4.10(iv)) and note that k = iY°k' for a certain map 
k : X^Y. Since k°rf^lMif)> 

i Y ° g ' ~ iY°g'°k°rf 

— i Y ° g ' ° i Y 0 k , o r f 

= iY°k'°rf 

- lM(fy • 

The following results are simple applications of the theorem. 

Corollary 2.5.3 Let Y and X be finite-dimensional CW-complexes and let 
f : Y^X be a map such that f0 : n0(Y,y0)-+n0(Xf{y0)) is onto and 
nk(f, y0) = 0, for every 0-cell y0 of Y and any fc=l,2,...,w+l where 
n = max {dim Y,dim X}. Thenf is a homotopy equivalence. 

Proof See Proposition A.8.9. • 

Corollary 2.5.4 A one-dimensional CW-complex is contractible iff it is 
simply connected. 

Proof The necessity of the condition is trivial; the sufficiency follows by 
application of the theorem to the constant map. • 

2.6 Computation of the fundamental group 

As a consequence of the cellular approximation theorem, the fundamental 
groups of CW-complexes depend only on their 2-skeleta (see 
Corollary 2.4.7). Since the fundamental groups of 0-dimensional 
CW-complexes are trivial, it is only necessary to inspect CW-complexes 
of dimensions 1 and 2. The basic result of this section concerns the sphere 
S 1 viewed as a CW-complex with one 0-cell and one 1-cell (see Section 1.1, 
Example 2). 

Theorem 2.6.1 n^S1, e0) ^ Z. 

Proof The covering projection R-^-S 1 (see Section 2.1, Example) has a 



Computation of the fundamental group 79 

simply connected domain and the group of its covering transformations 
is Z. Thus, the fundamental group of its codomain is isomorphic to Z 
(see Theorem A.8.6). • 

Corollary 2.6.2 For any set r, the fundamental group of the F-fold wedge 
of S 1 is {up to isomorphism) the free group generated by F. 

Proof Let X denote the T-fold wedge of S 1 . Take U as the collar of the 
base point of X, and, for every yeF, take Uy as the union of U and the 
1-sphere corresponding to y. The family {U}u{Uy : yeT} is an open 
covering of X (see Lemma 1.1.7(iii)), closed under intersections. The space 
U is contractible (see Lemma 1.1.7(vi)), and so has trivial fundamental 
group; the spaces Uy contain a 1-sphere as a strong deformation retract, 
so have fundamental group isomorphic to Z . Thus, the fundamental group 
of X is the free product of T ' copies of Z (see Proposition A.8.20), i.e., a 
free group with one generator for each element of F. • 

The two CW-complexes whose fundamental groups were just computed 
share the property that they have only one 0-cell. This fact does not 
represent a real restriction for Computing the fundamental groups of 
CW-complexes, as will be seen in the sequel. To this end, a further notion 
is necessary. Given a CW-complex X, a tree of X is a non-empty, simply 
connected subcomplex of X with dimension at most 1. The set of trees in 
X is ordered by (set-theoretical) inclusion. 

Lemma 2.6.3 Each tree of a CW-complex is contained in a maximal tree. 

Proof Let TlaT2<^ • • <= Tfc c • • • be an increasing chain of trees of a 
CW-complex X containing a given tree T 0 . Then, its union T= [jk = 0Tk 

is a CW-complex (see Corollary 1.4.5), which evidently is 1-dimensional. 
Since any pair of points of T is contained in some (path-connected) Tk, 
the space T is path-connected; thus, T is connected. A loop in T is a 
compact subset of T; therefore, it meets only finitely many cells of T, and, 
consequently, it is contained in a tree Tfe, for some fceN. Since Tk is simply 
connected, the loop is trivial, and so T is simply connected; hence, T is 
itself a tree. Zorn's lemma now implies the existence of a maximal tree 
containing T 0 . • 

There is a useful characterization of maximality for trees. 

Lemma 2.6.4 A tree T in a connected CW-complex X is maximal iff it 
contains all 0-cells of X, i.e., iff T° = X°. 
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Proof Since a connected CW-complex is path-connected (see Corollary 
1.4.12), and since a CW-complex is path-connected iff its 1-skeleton is 
path-connected (Corollary 2.4.9), one may assume dim X = 1. 

'=>': Let T be any tree in X. If there are 0-cells in X not belonging to 
T, there is one of them, say e0, that is in the boundary of a 1-cell ex 

meeting T. Then, T = T u e 1 u e 0 is a connected, 1-dimensional 
subcomplex of X, which contracts to T, and therefore to a point. Thus, 
T is a tree in X larger than T, and so T cannot be maximal. 

'<=': Assume the tree T with T° = X° is contained in a tree T. The 
quotient T/T is a bouquet of 1-spheres whose fundamental group is a 
free group (see Corollary 2.6.2). On the other hand, this quotient can be 
thought out as obtained by attaching V to a point * via the constant 
map T->*. Since T is contractible (see Corollary 2.5.4), this attaching 
map is a homotopy equivalence, and then so is the projection T -» T'/T, 
which can be viewed as a characteristic map for the adjunction (see 
Proposition A.4.11). But T is simply connected; thus, the free group above 
is trivial, implying that the quotient T/T can consist only of the base 
point, i.e., T=T. • 

Now, if X is a connected CW-complex and if T is a maximal tree of X 
then, X/T is a CW-complex with exactly one 0-cell and the (homotopy) 
type of X (for a more precise exposition see Corollary 2.6.10). This leads 
to the following 'omnibus' theorem. 

Theorem 2.6.5 Let X be a connected, 1-dimensional based CW-complex. 
Then: 

(i) The fundamental group TI^X^XQ) is a free group generated by a set 
of cardinality smaller than or equal to the cardinality of the set of 1 -cells ofX\ 

(ii) if X has only finitely many 1 -cells then n^X, x0) is finitely gener ated; 
(iii) if TZ^X^XQ) is finitely gener ated then X is homotopically equivalent 

to a CW-complex with finitely many 1 -cells. • 

The fundamental group of a connected CW-complex of arbitrary 
dimension > 1 is an epimorphic image of the fundamental group of its 
1-skeleton (see Corollary 2.4.7); this implies the following. 

Corollary 2.6.6 Let X be a connected, based CW-complex with only finitely 
many 1 -cells. Then, TI^X^Q) is finitely gener ated. • 

Now turn to 2-dimensional CW-complexes. To this end, recall that a pair 
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of sets {F,R) is a presentation of the group G if F is a subset of G,R is a 
subset of the free group F (F) generated by /"*, and G ̂  F(r)/N, where AT 
is the intersection of all normal subgroups of F(F) that contain the set 
K; the elements of r are said to be generators of G and the elements of 
R are the relations. For later use, recall also that a group G is finitely 
presented if it has a presentation (F,R), where both sets T and R are 
finite. 

Lemma 2.6.7 Let (X, A) be an adjunction of exactly one 2-cell with A a 
path-connected space. Then, for any x0eA, the group 7ti(X,x0) is afactor 
group of nx{A,xQ) produced by just one relation. 

Let c : B2 — /-> A be a partial map generating the adjunction (X, A). This 
gives rise to the pushout 

ni(B\e0) = {l}-+n1(X,c(e0)) 

T T 
nl{S\e0)= Z^nx{A,c{e0)) 

(see Theorem A.8.19). So the claim is proved for x0 = c(e0). The general 
case is proved using the isomorphisms induced from paths connecting this 
specific base point to arbitrary ones (see Section A.8, page 287). 

Theorem 2.6.8 The fundamental group of a connected CW-complex X has 
a presentation (XUR), where X1 is a set of 1 -cells outside of a maximal 
tree and R is in a bijective correspondence with the set of 2-cells of X. 

Proof As mentioned in the beginning of this section, assume dim X = 2. 
Let / be a characteristic map for the 2-cell adjunction (X, X1) and let X2 

denote the set of 2-cells of X. Take U to be the /-collar of X1 that is 
open in X, and, for each eeX2, take the open set Ue = euU. The family 
{U} u {Ue : eeX2} is an open covering of X, closed under intersections. U 
contains X1 as a strong deformation retract; thus, its fundamental group 
is isomorphic to the free group FiX^. Each pair (Ue, U) is an adjunction 
of just one 2-cell and gives rise to a relation in F{XX) (by the previous 
lemma). The fundamental group of X is now obtained by taking all these 
relations together (see Proposition A.8.20). • 

The following is the CW-version of the Seifert-van Kampen Theorem. 
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Theorem 2.6.9 Let (X, x0) be a connected, based CW-complex and let 
{(Xx,x0) : XeA} be a family of connected based subcomplexes which Covers 
(X,x0) and is closed under intersections. Then, the group Ki(X9x0) is 
isomorphic to the colimit group of the diagram whose objects are all groups 
nx(X x,xQ) and whose morphisms are the homomorphisms induced by all 
possible inclusions Xx cz Xß. 

Proof Take a sequence {/" : neN} of characteristic maps for the 
adjunctions {Xn,Xn~l). For every neN and every XeA, let / " denote the 
induced characteristic map for the n-cell adjunction (Xx\jXn,XxuXn~1). 
Then, define inductively open sets U XnczXxKjXn by taking Ux,0 = 
I A u I ° and l / A t l l + 1 as the / " + ^ c o l l a r of UXn. Then, for every XeA, the 
union \J™=0Ux,n * s a n ° P e n s e t *n X containing Xx as a strong deformation 
retract (cf. the proof of Proposition 1.3.1). Moreover, the family 
{Ux : XeA} is a covering of X, satisfying the property UxnUß=U.„ 
whenever XxnXß = Xr Thus, the diagram described in the Statement of 
the theorem does not change (up to isomorphism) if, for its construction, 
one uses the open sets Ux instead of the subcomplexes Xx; this implies 
the result (see Proposition A.8.20). • 

Lemma 2.6.4 also has a nice consequence, which is independent of any 
considerations on fundamental groups. 

Corollary 2.6.10 Any non-empty, connected CW-complex X is homotopy 
equivalent to a CW-complex Z with exactly one 0-cell and whose 
higher-dimensional cells have based characteristic maps i.e. all pairs 
( Z n , Z n _ 1 ) are based adjunctions of n-cells. 

Proof A non-empty, connected CW-complex X contains a 0-cell (see 
Proposition 1.4.15) which may be considered as a trivial tree. This is 
contained in a maximal tree T (see Lemma 2.6.3) which Covers the 
0-skeleton of X. The quotient X/T is a CW-complex (see Section 2.3, 
Example 1) which contains only one 0-cell. As in the proof of the sufficiency 
part of the Lemma 2.6.4, it can be viewed as obtained by attaching X to 
a singleton space * via the constant map T -> * and the same argument 
shows that the projection X X/T is a homotopy equivalence. 

Now, assume X to be a CW-complex with exactly one 0-cell. Construct 
inductively the n-skeleta Zn of the desired CW-complex Z (allowing based 
characteristic maps) and homotopy equivalences h{n) : Xn^Zn which fit 
into a commutative ladder in order to give a homotopy equivalence 
h : X-+Z (see Proposition A.5.11). The induction Starts with Z 1 = X1 and 
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ft(1)= 1. Assume Z"~~l and n ( " ~ l ) have been constructed and satisfy the 
required conditions. Let/denote an attaching map for the adjunction of 
n-cells (X'\ Xn~ l); its domain is a coproduct of (n — l)-spheres and can be 
viewed as a CW-complex possessing only 0-cells and (n— l)-cells. Then, 
form 

the characteristic map h' : Xn^Z' is a homotopy equivalence (see 
Proposition A.4.11) and the pair ( Z ^ Z " - 1 ) is an adjunction of n-cells, for 
which the composition hn~lof may be chosen as attaching map (see the 
horizontal composition law (LI) in Section A.4). Now, approximate 
hin~i]°fby a cellular map f (see Theorem 2.4.11) and attach n-cells to 
Z " " 1 via / ' to obtain the CW-complex Zn and a homotopy equivalence 
h" : Z ' - ^ Z " r e l . Z " _ 1 (see Proposition A.4.15). Finally, take h(n) = h"°hf. 

• 

2.7 Increasing the Connectivity of maps 

In this section a technique is developed to transform a map between 
CW-complexes into a homotopy equivalence by attaching cells to its 
domain. To begin with, one has to inspect the lower dimensions. 

Lemma 2.7.1 Let f : Y->X be any map. Then there is a O-connected 
map f : Y' -» X such that: 

(i) Y' is obtained from Y by an adjunction of 0-cells; 
(ii) f'\Y = f; and 
(iii) Y ' \ Y is finite ifn0(X,f{yo))\f0(n0(Y9yo)) is finiteJor any choice of 

a base point y0eY. 

Proof Choose one point in each path component of X that does not meet 
/ ( Y ) and add it to Y as a 0-cell. This gives Y' and induces the desired 
map / ' . • 

Once a map is O-connected, one can consider it as a sum (= coproduct) 
of based maps with path-connected codomain. Therefore one may restrict 
the attention to such maps in the sequel. 

Lemma 2.7.2 Let X be a path-connected space and let f : Y^X be a 
O-connected map. Then there is a \-connected map f : Y'-*X such that: 

(i) Y' is obtained from Y by an adjunction of 1-cells; 
(ii) f'\Y = f; and 
(iii) Y ' \ Y has finitely many path components (i.e., Y ' \ Y consists offinitely 

file:///-connected
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many open l-cells only) if nx(f,y0) is finite, for any choice of a base 
point y0eY. 

Remark The assumption on the path-connectivity of X implies that the 
requirement on / to be O-connected excludes the case Y = 0. 

Proof of Lemma 2.7.2 There are two types of elements in nx(f, y0) : those 
that are in the image of the function fti^/GO^^iCA-Vo) and those 
that are not. 

The latter correspond to the path-components of Y, and, if the condition 
of (iii) holds true, Y consists of finitely many path-components only. Choose 
a base point y0 whose path-component will be denoted by X0 and a family 
{yx : Xen0(Y,yo)\{Xo}} of points such that yxeX for every Xen0{Y,yo)\{Xo}. 
For each such X, attach a 1-cell with boundary {^.VA} to the space Y 
and extend the map / over these 1-cells by choosing a path in X from 
f(y0) to f{yx). 

Thus, one may assume Y to be path-connected. The function 
nx(X, f (y0)) ^ n^f, yQ) is surjective, and so the elements of nx(f,y0) can 
be represented by loops in X. For each such element y, choose a 
representative fy : = Sl ->X. Then, take Y' as the wedge product of 
(Y,y0) and the bouquet of the circles (S*,e0), and define / ' as the wedge 
of all the maps / , fy. • 

Lemma 2.7.3 Let X be a path-connected space and let f : Y -> X be a 
1 -connected map. Then there is a map f : Y'^X inducing an isomorphism 
of fundamental groups such that: 

(i) Y' is obtained from Y by an adjunction of 2-cells; 
(ii) f'\Y = f; and 
(iii) Y'\Y has finitely many path components (i.e., Y'\Y consists offinitely 

many open 2-cells only) if ker (fx) is finitely gener ated. 

Remark j\ denotes the induced homomorphism nx(Y,y0)-^nx{X,j\yo)) 
obtained after the choice of a base point y0eY. Moreover, ' k e r ^ ) finitely 
generated' means that there is a finite set T cz n^Y,y0) such that ker( / t ) 
is the smallest normal subgroup of n^Y,yQ) containing F; it does not 
mean that kQv(fx) is finitely generated as a group. 

Proof of Lemma 2.7.3 Choose a base point yQeY. Since the m a p / is 
assumed to be 1-connected, the homomorphism fx is an epimorphism. 
Let {ax} be a family of based maps ax : S\ = Sl^Y whose homotopy 
classes generate the kernel of j\. Because a composition f°ax represents 
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the neutral element ofn^X^fiyJ) one can extend it to a map bx\ B2 -> X. 
Now use the maps ax to attach 2-cells to Y, thus obtaining a space Y', 
and the maps bx to extend the map / over the new 2-cells, which yields a 
m a p / ' : Y'-+X. 

Let f: Y-»Y' denote the inclusion. Turn to the induced homomor-
phisms between the corresponding fundamental groups. Firstly, f\ is an 
epimorphism, since its composition with Tx yields the epimorphism fv 

Secondly, the homomorphism Tx itself is an epimorphism, since the pair 
(Y', Y) is 1-connected (Lemma 2.4.3); this implies kerfo) c ker ( / J . On the 
other hand, the characteristic maps of the attached cells allow to deform 
the compositions i°ax into constant maps (within Y'); therefore, k e r ^ ) 
contains a System of generators of ker(/ x). Thus, ker(r x) = ker (f\), and 
consequently f\ is an isomorphism. • 

Lemma 2.7.4 Let Y,X be path-connected Spaces and let f : Y ->X be a 
map that induces an isomorphism of fundamental groups. Then, there is a 
2-connected map /' : Y'-+X such that: 

(i) Yf is obtained from Y by an adjunction of 2-cells; 
(ii) f'\Y = f; and 
(iii) Y ' \ Y has finitely many path components (i.e., Y'\ Y consists offinitely 

many open 2-cells only) if n2(f, y0) is a finitely gener ated A-module,for any 
choice of a base point y0. 
(A = Znl(X,f(y0)) denotes the integral group ring of the fundamental 
group of the based space (X,f(y0)).) 

Proof Let {(bx,ax)} be a family of representatives for a System of 
A-generators for n2(f,yQ). As in the preceding proof, use the mapsa A as 
attaching maps to get the space Y' and the maps bx to extend the given 
m a p / to a m a p / ' : Y'-*X. Again, let I: Y - > Y ' denote the inclusion. 
The same argument as before shows that the induced homomorphism f\ 
is an epimorphism; thus, the map / ' is at least 1-connected. 

Now look at the exact homotopy sequence of the pair (/', i). Its essential 
part is 

n2(h y0) -* M / , yQ) n 2 ( f , yQ) ^ n {(i, y0). 

The construction of the space Y' and the m a p / ' shows that the image of 
the homomorphism on the left contains a set of generators of its codomain; 
thus, it is an epimorphism. On the other hand, the right end of the display 
is trivial since it comes from an attaching of 2-cells (once more 
Lemma 2.4.3). Now the exactness forces 7i2(f',y0) to be also trivial. Thus, 
/ ' is 2-connected. • 
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Lemma 2.7.5 Let Y, X be path-connected Spaces and let f : Y -> X be an 
(n — \)-connected map, n ̂  3. Then there is an n-connected map f : Y' X 
such that: 

(i) Y' is obtained from Y by an adjunction of n-cells; 
(ii) f\Y = f; and 
(iii) Y'\ Y has finitely many path components (i.e., Y'\Y consists offinitely 

many open n-cells only) if nn(f,y0) is a finitely generated A-module,for any 
choice of a base point y0. 
(The assumption here automatically implies that the map / induces an 
isomorphism of fundamental groups.) 

Proof Construct the space Y' and the map / ' as in the preceding proofs. 
Once more, let i : Y -> Y' denote the inclusion. Then, for k < n — 1, the 
induced homomorphisms TK are isomorphisms, since the pair (Yf, Y) is 
(n— l)-connected (Lemma 2.4.3). By assumption, the same holds for the 
homomorphisms fk. Thus, the equation f = f'°T yields that also the 
homomorphisms f'k are isomorphisms. Again by assumption, the 
homomorphism fn_l is an epimorphism, and so is the homomorphism 
f'n-v Therefore, the m a p / ' is at least (n — l)-connected. The same 
considerations on the exact homotopy sequence of the pair (/', F) as before 
show that the map / ' is also n-connected, as desired. • 

Addendum 2.7.6 / / the space Y considered in the Statements of the Lemmas 
2.7.1 to 2.7.5 is provided with a CW-structure, then the Spaces Y' may be 
constructed in such a way to get CW-complexes containing the given ones 
as subcomplexes. 

Proof The maps used to attach the necessary cells can be taken as cellular 
(use the cellular approximation theorem 2.4.11 and the homotopy 
extension property of the pairs (B w , 5 , , _ 1 ) ) , thus giving CW-structures to 
the Spaces Y' (see Theorem 2.3.1). • 

These considerations are summed up in the following Statement: 

Theorem 2.7.7 Let Y be a CW-complex, X be a space and f : Y^X be 
a map. Then, there are a CW-complex Y' containing Y as a subcomplex 
and a map f : Y'-*X which extends f and is a weak homotopy equivalence. 

Proof As described in the previous results, construct CW-complexes Y(n) 

containing Y{n~l) as subcomplexes and n-connected extensions f(n) : Y ( M ) -> 
X of / (starting with Y{~1] = Y). Define Y' to be the union space of the 
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expanding sequence {Yin)} and take / ' : Y' -> X as the unique map induced 
by the sequence {f[n)}. • 

Taking Y = 0 in the preceding theorem, one obtains: 

Corollary 2.7.8 Any space is the codomain of a weak homotopy equivalence 
whose domain is a CW-complex. • 

The assumption that Y should be a CW-complex in Theorem 2.7.7 is 
needed only in order to obtain Y' as a CW-complex again. Dropping this 
assumption and taking X as a singleton space yields: 

Corollary 2.7.9 Any space can be enlarged by means of cell adjunctions to 
a weakly contractible space, i.e. space with only trivial homotopy groups. 

• 

Exercises 

1. Let 7i be a group. Construct a based CW-complex with fundamental 
group 7i and vanishing higher homotopy groups (Eilenberg-MacLane 
space of type (71,1)). 

2. Let 71 be an abelian group and n > 1. Construct a based CW-complex 
X with nn(X) = n and nk(X) = 0, for all k ^ n (Eilenberg-MacLane space 
oftype (n,n)). 

3. Let {nn : neN} be a sequence of groups such that, for every n ̂  2, nn 

is abelian and provided with an action of n1. Construct a based 
CW-complex whose homotopy groups are the given ones with the 
prescribed action of the fundamental group. Observe that this 
CW-complex may be taken as locally finite if all the groups are 
countable. (Whitehead, 1949b) 

Notes to Chapter 2 

The example of two CW-complexes whose cartesian product fails to be a 
CW-complex (see Section 2.2, Example 2) is due to Dowker (1952). The product 
of two CW-complexes, one of them locally finite (see Remark before Proposition 
2.2.3), was already handled by J. H . C. Whitehead; the case of two countable factors 
can be found in Milnor (1956). 

The technique of elementary expansions (see Propositions 2.3.5, 2.3.6 and 
Lemma 2.4.14) is another of J. H . C. Whitehead's masterful contributions to 
combinatorial topology; it was actually started long before the CW-theory itself 
(Whitehead, 1939,1950). The cellular approximation theorem (see Theorem 2.4.11) 
is already contained in Whitehead's basic paper (Whitehead, 1949a); the proof 
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given here relies on the expositions in Schubert (1964, 1968) - exploiting the idea 
of 'Freimachen eines Punktes' (see Remark after the proof of Lemma 2.4.3) and 
Brown (1988), where it is credited to ideas of J. F. Adams. The classical approach 
to the fundamental group of simplicial complexes by means of the 4edge path 
group', due to Poincare (1895), was, with time, carried over to CW-complexes; 
for special CW-complexes, one could consult Schubert (1964,1968), and, for the 
general case, Massey (1984). The ideas about increasing the Connectivity of maps 
were first published in Wall (1965), where credit is given to unpublished work of 
J. Milnor . 



3 

Combinatorial complexes 

3.1 Geometrie simplices and eubes 

While balls and spheres may be thought of as made out of rubber, and 
therefore as easily deformable, simplices form the solid bricks of the Spaces 
under consideration. Recall, first, that a finite family {s0,..., sk} of 'points' 
i n R " + 1 is affinely independent iff the family {s1 — s0,...,sk — s0} oPvectors' 
is linearly independent. A (geometric) simplex in R" + 1 is simply the convex 
hull 

A = H{{s0,...9sk}) 

of an affinely independent family {s 0 , . . . ,s f c }, whose members are called 
vertices of the simplex. A simplex A with k + 1 vertices will be given the 
specific name of k-simplex. 

Example 1 Define a binary, reflexive and antisymmetric relation R on 
Zn+1 c R n + l b y 

sRs'oSi ^ sj. ̂  sf + 1, i = 0 ,1 , . . . , n. 

Every subset of Z" + 1 that is totally ordered with respect to the relation 
R is an affinely independent family of R" + 1 whose convex hull is a geo­
metric simplex in R M + 1 . • 

A 0-simplex is a point, a 1-simplex is an interval or an edge, a 2-simplex 
is a triangle and a 3-simplex is a tetrahedron; sometimes it is also convenient 
to consider the empty set as a (—l)-simplex. Given a fc-simplex A, any 
set L of vertices of A forms a face of the simplex by taking its convex 
hull A+= H(L), which is again a simplex; if Ldoes not contain all vertices, 
one speaks of a proper face. Given a face A+ of a simplex A, the vertices 
of A outside A + form the complementary face A _ to A +; if A is a /c-simplex 
and A+ is an /-simplex, then A_ is a (/c — / — l)-simplex. 

The union of all proper faces of a simplex A is its boundary bA\ note 
that this combinatorial boundary is the topological boundary of A in its 
affine hull and it is the topological boundary in R M + 1 only if k = n+ 1. 
The difference A = A\öA is the interior of A, the open simplex; a point of 
A is an interior point if it belongs to A. 
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If s0,...,sk are the vertices of a simplex, its points can be uniquely 
described in the form 

k 
s = £ ttsh 

i = 0 

with tt€l for all i and 
k 

I t,= l ; 
i = 0 

the real numbers t( are called barycentric coordinates of the point s. 
A point of a simplex zl is an interior point if all its barycentric coordi­

nates are different from zero. Every point seA determines a unique face 
of A, for which s is an interior point; hence, A= |_J(^+)° where A+ runs 
through all faces of A. Given a point seA, the unique face containing s 
as an interior point is called the carrier of s and is denoted by As. 

Let Ax be a geometric simplex and let A0 be a proper face of Z i ^ A 
simplicial retraction from Ax to A0 is a retraction ^ z l 0 that is induced 
by the composition of a linear map and a translation mapping vertices 
onto vertices. Simplicial retractions performed within a larger simplex do 
not really alter the simplex. 

Lemma 3.1.1 Let A be a simplex, let Ax be a proper face of A, let A0 be 
a proper face of Ax and let </> : 4 t -> A0 be a simplicial retraction. Let the 
space X be obtained from A0 by attaching A via </3. Then there is a 
homeomorphism h : X -> A extending the inclusion A0 cz A. 

Proof Take n + 1 = dim A and m + 1 = dim Ax\ without loss of generality, 
assume dimz1 0 = m. A l l of the following considerations are staged in the 
one-point compactification 1 of 

R"+

+l={(to,...,tn):tn>0}. 

Choose an n-dimensional face A2 of A containing Ax and make the 
identifications: 

Ao = H({0,eo,eu...,em_l}), 
Al=H({0,eo,e1,...,em}\ 
A2 = H({0,e0,eu...,en_1}\ 

<l>{tQ,.-.,tm) = {t0,...,tm_l\ 
for all (t0,...,tm)eAl. 

Define a map \j/ : R w

+

+ 1 A0 by assigning to each point f e R + + 1 the nearest 
point of z l 0 . The existence of such a point follows from the compactness 
of A0, its uniqueness from convexity and Pythagoras' theorem; the con-
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tinuity of if/ is due to the fact that it is a contraction; i.e., 

Mr)-WOI<|f-t '|, 

for all pairs t9feRn+l. Note that \I/\A1 = <I). Next define maps 
/ : R " +

+ 1 - * R + by assigning to each point f e R + + 1 its distance from Al 

and g : Rtt+l\A0-+I by taking 

Next, take h : 1 1 given by 

The continuity of h has to be checked only near A0 and at infinity. In the 
first case, one has again a contraction; in the second, note that |f|->co 
implies g(t)-+l, and consequently h(t)^>t. Furthermore, one still retains 
the equality h\Al = 4>. It remains to show that h maps R ^ X z ^ 
homeomorphically onto R + + 1 \ z l 0 . This is a consequence of the following 
observations. Given a point feR+ + 1 \^ i> the half line L starting at \j/(t) in 
the direction of f is mapped surjectively onto itself by h. For the injectivity, 
assume t' to be another point on L outside Au and suppose h(t') = h(t); then 
f — \j/(f) is a real multiple of t — \jj(t) and, consequently,/(f') = f(t\ implying 

An affine embedding is a map R " + 1 ->R m + 1 , which is the composition of 
an injective linear map and a translation. Such maps preserve affine 
independence. Therefore the image of a simplex under an affine embedding 
is again a simplex. 

Recall that for any subset S of a metric space the diameter of S - notation: 
diam (S) - is defined to be the supremum of the set of the distances between 
any two points of S. The diameter of a geometric simplex can be easily 
computed. 

Lemma 3.1.2 The diameter of a geometric simplex is equal to the maximum 
of the lengths of all its edges. 

Proof The assertion ensues from a double application of the following 
fact. Let s be a point of a simplex A. Then, for any point seA,s^ s, there 
exists a vertex of A which is not nearer to s then to s. To see this, let 
s 0 , . . . ,5 K denote the vertices of A and let t0,...,tk be the respective 
barycentric coordinates of s. Without loss of generality, we may assume 
s ^ 5 0 , . . . , sk. Then it is enough to show that there is a vertex Sj ^ s such 
that the (possibly degenerate) triangle ssSj has a non-acute angle at the 

t' = t. • 
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vertex s, i.e., such that the scalar product (§ — s) • (Sj — s) is not positive. 
But this follows from the equation 

k 
X tt(s-s) • (Si-s) = (s-s) • ( s - s ) = 0 

i = 0 

since all ff's are non-negative and some of them are positive. • 

Every /c-simplex has a distinguished interior point, its barycentre; that is, 
the point with all barycentric coordinates equal to l/(fc+ 1). In the next 
section, the notion of 'barycentric subdivision' will be discussed; one of 
its crucial properties comes out of the following fact. 

Lemma 3.1.3 Let A0,A1 be non-empty faces of a k-simplex A with A0 cz A1 

and let b0,b1 denote their respective barycentres. Then, the distance of b0 

and bx is smaller than or equal to k/(k + 1) • diam(zl). 

Proof Let />_ denote the barycentre of the complementary face z l _ to A0 

in zip Then, b{ can be represented in the form 

l + d i m z l _ , l + d i m z l 0 , 
* i = b_ + - A 0 , 

l + d i m z l i l + d i m z l i 

which leads to 

bl — b0 = - (b _ — b0). 
1 + dim A x 

The result now follows from 

1 + d imzl_ d imzi i k 
< — < 

1 + d i m z i i 1 + d imz l ! fc+1 

(since A0^ 0 implies dim zl _ < dim Ax) and 

|Ä_ - A 0| ^ d i m z l . • 

In Euclidean Spaces, there is a more specific concept of cone than that 
introduced in Section A.4, after Corollary A.4.16. A (Euclidean) cone in 
R" + 1 is a triple (C,B,p), consisting of subsets C,BczRn+1 and a point 
peRn + 1 such that the map B x I-+Rn + 1,(s,r)i—^(1 - t)s + tp, induces a 
homeomorphism B x I/B x {()}-• C. If the triple (C,B,p) is a cone then 
the set C is its global set, the set B is its base and the point p is its peak. 
By abuse of language, a subset C of R" + 1 is also called a cone if it is the 
global set of a cone. Conversely, if a set B and a point p are such that 
they may form the base and the peak of a cone respectively, then the cor­
responding global set is uniquely determined. In this case, the point p and 
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the set B are said to form a cone whose global set is denoted by pB. Note 
that the base of a cone might be empty, i.e., one-point sets are also 
considered as cones: p=p0 for all points peR"+1. 

Example 2 Let A be a geometric simplex, s0 a vertex of A and A0 the 
complementary face of A. Then the triple (A, A0, s0) is a cone: A = s0A0. • 

Example 3 Let A be a geometric simplex and s an interior point of A. 
Then the triple (A,dA,s) is a cone: A =s(SA\ • 

This is a special case of a more general Situation. 

Example 4 Let C be any compact convex set in R M + 1 , let B denote its 
boundary (in its affine hull) and let p be an interior point of C. Then, the 
triple (C,B,p) is a cone. • 

Example 5 Let A be a /c-simplex in R w + 1 and let the point peRn + l be 
affinely independent of the vertices of A. Then,/? and A form the conepA 
which is a (fe -h l)-simplex. • 

The standard-n-simplex in R " + 1 is the n-simplex 

whose vertices are the vectors ehi = 0, l , . . . , n , which form the canonical 
basis of R " + 1 . Every fe-simplex A is homeomorphic to the standard-fc-
simplex Ak\ if {s0,...,sk) is the set of vertices of A, the linear map 

induces a homeomorphism Ak-+A. 
Simplices are balls; suitable homeomorphisms can be easily constructed 

(Exercise). For the needs of homology a family of maps : A"-+Bn 

satisfying a certain coherence condition is presented here. The construction 
of this maps is done inductively. The Spaces A° and B° are singleton Spaces; 
so there exists one and only one map A°^B° which is taken as Now 
assume \j/n to be given and define a map : / x A"^Rn + l by taking 

and its image is contained in the ball Bn+l. Thus, xj/' induces a map 
A" + 1->B"+1 which is taken as \j/n + l. The properties of these map are 
listed in the following Statement. 

R f c + 1 - * R ' >n+ 1 

i/,(t,s) = te0 + (l-t)b"(r(s))-
This map factors through the identification 

IxA"^An+i, (t,s)\-^(t,(l-t)s) 
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Lemma 3.1.4 For all neN 
(i) ij/n maps the interior of A" homeomorphically onto the interior of Bn; 
(ii) ij/n+l maps the boundary of An+i onto Sn; 
(iii) i//n + 1 maps the interior of the face opposite to the vertex e 0 in z T + 1 

homeomorphically onto Sn\{e0}; 
(iv) ij/n + 1 maps the faces of Att + i containing the vertex e 0 constantly onto 

the base point e0; 
(v) the diagram 

Bn ^ S" cz B 

An cz A n + l 

S h-+ (0,5) 
commutes. 
Proof by induction and direct computation. • 

The following remark will be useful to the readers familiär with the basic 
facts of Singular homology. These are briefly reviewed in Section A.7. 

Remark It follows from (ii) that the 'singular simplex' \j/n + l represents a 
cycle and thus a homology class (indeed a generator) of the relative 
homology group Hn + 1(Bn+\S") while the composition represents 
a generator of Hn(Sn). The diagram shows that these generators are related 
in a neat way, that is, they are 'coherent'. • 

The considerations on Single simplices are closed with a theorem which, 
although not related to other subjects in this book, has a certain 
importance and deserves to be mentioned. 

Theorem 3.1.5 Let AQz3 Axzz> zz^ AjZz> be a decreasing sequence of 
simplices in R " + 1 . Then, 

00 
A=C]Aj 

j = o 
is a simplex in R " + 1 . 

Proof The sequence {dirnzl,-} of natural numbers is decreasing; thus it 
becomes stationary. Therefore, one may assume dim Aj = n + 1 for all jeN. 
Let ^ o » - - - ' * j , » + i denote the vertices of Aj. The sequence 

{{ 5j ,0>*"> 5j,n+l}}j GN 

contains a convergent subsequence; thus, assume that this sequence is 
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itself convergent. If one takes, for 0 < / ̂  n + 1, 

Si = lim shi, 

then A is the convex hull of the points s t. Clearly, all st are contained in 
the intersection A; the converse requires a preliminary consideration. Let 
seA be given; then there is, for every j e N , a representation 

s = Z tjjsu> 
i = 0 

with t}iel for all / and 

n + l 

1 = 0 

Let (r 0 , . . . J be a Cluster point of the sequence { ( ^ 0 , . . . >tjn + l)}\ then, 
o * s a convex combination of the st representing s. 

Now assume the elements of the family {so>...,sn+1} to be labelled in 
such a way that, for some /ceN with 0 ̂  k ̂ n + 1, the family {s0,...,sfc} 
is a maximal convexly independent subfamily. It is necessary to show that 
the family {s0,...,sk} is affinely independent. 

To this end, define maps : Aj-+Ak+1 by taking the restrictions of 
the affine maps which send SJJ to ehi if Sj = sh with O^h^k, and to ek + 1 

otherwise. The main Step of the argument consists in proving that 
lim (f>j{sh) = eh 

for 0 ̂  h ̂  k. Fix h with O^h^k, and denote by Aj+9 Aj- the face of Aj 
spanned by vertices s j V with Sj = sh and its complementary face, respecti­
vely. Then, for every v'eN, there is a unique representation 

Sn = t'jS'j+t"jS"j 

with (t,j,tj)eAi,s,j€Aj+ and SJSAJ-. Ify->oo, the simplices Aj+ contract 
to the point s,„ which implies 

lim |5 F C -s^| = 0. 

On the other hand, the simplices Aj_ converge to the convex hull of all 
st 7̂  sh; since sh is no convex combination of these sf's, one finds 

lim inf \Sj—s'j\ >0. 

This implies 

0 = lim ̂ f^A = i j m t» = n m (i _ 
j-»00 \Sj ~Sj\ j~> oo J-» 00 

and so 

1 = lim t'p 
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which gives finally 

lim (t>j(sh) = lim (t'jöjis'j) + <£,(*;)) = ( lim t) ] • eh = eh. 
j-+co j->co \j-> GO / 

Now assume that one of the sh,0^h^k, say sk, is affinely dependent 
of the remaining, i.e., 

fc-1 
sk = Z 

with 
fc -1 

I «, = i -
i = 0 

Then, it follows that 
k-1 

<l>j(Sk)= Z trfM) 
i = 0 

and thus, 
k-1 k-1 

ek = lim < (̂sfc) = £ '/um <M5*)= Z 
j-*-co i = 0 j-»oo i = 0 

contradicting the affine independence of the family {e09...,ek}. • 

There is another type of solid brick in these constructions which is needed 
only in a very standardized form. Given a point s = ( s 0 , . . . , s J e R " + 1 and 
a real number e > 0, the set 

W(s;e) = {xeRn+l : |xB. —sÄ |^e for all 1} 

is called the (n + \)-cube with centre s and edge length 2s. A subset W of 
R " + 1 is a cube if it is of the form W = W(s;£) for a point s e R n + 1 and a 
real number e > 0; in this case, one also says that the cube W is centred 
at s. Given a cube W = W(s; s\ a subset of the form 

Wi+ = {xeW : t^st + e} 
or 

Wi-={xeW : t£ = sf — e} 
(/ fixed) is called an (n-dimensional) face of note that it can be viewed 
as the image of a cube in R n with respect to an affine embedding R" -» R n + 1 . 
The union of all n-dimensional faces of a cube is its boundary (in the 
topological sense, as a subspace of R " + 1 ) . A cube can be considered as a 
cone with its boundary as base and its centre as peak. Cubes are balls: 
the composition of the translation sending s to the origin and the multipli-
cation by the scalar 1/e induces a homeomorphism W(s;s)-*(Bl)n+1; but 
(B1)n + 1 is an (rc+l)-ball (see Proposition 1.0.2). Consequently, the 
boundary of a cube in R M + 1 is an n-sphere. Finally, observe that cubes 
may be arbitrarily small, i.e., given a point s in an open set U cz Rn+1 there 
exists a cube centred at s and completely contained in U. 
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Exercise 

Describe homeomorphisms 4"1 : zT ->ß"by means of coordinate functions 
such that there is a based homotopy of pairs (zT,<5zl")-->CB/\S/,'~1) 
connecting these homeomorphisms and the Standard maps \j/n of 
Lemma 3.1.4. 

3.2 Euclidean complexes 

The previous section was devoted to an analysis of Single simplices. 
Conglomerates of these bricks are now going to be studied. A Euclidean 
complex is a set K of simplices in a fixed R" + 1 , such that 

(1) K contains all faces of all members of K\ 
(2) the intersection of two members of K is a face of both; and 
(3) every member of K has a neighbourhood which intersects only finitely 

many members of K. 

A set of simplices satisfying only the second und the third condition 
generates a Euclidean complex; it is obtained by adding to the given set 
all faces of its elements. 

The vertices of the simplices of a Euclidean complex K will be called 
vertices of K. The third condition in the definition of Euclidean complexes 
implies that the set A = AK of vertices of K forms a discrete subspace of 
R " + 1 . Since a simplex is uniquely determined by the set of its vertices, 
there is an injective function from K to the set of finite subsets of A 
associating to each simplex the set of its vertices. The image of K with 
respect to this function is called the vertex scheme of K. 

The union of all the simplices of a Euclidean complex K - taken in 
R M + 1 - i s the underlying polyhedron; it will be denoted by \K\. More 
generally, a (Euclidean) polyhedron is a subspace of some R " + 1 , which is 
the underlying polyhedron of some Euclidean complex. Given a 
polyhedron P, a Euclidean complex K with | K | = P is called a simplicial 
decomposition of P. 

Example 1 The set of all faces of a simplex A cz R" + 1 forms a Euclidean 
complex whose underlying polyhedron is the simplex itself and which - by 
abuse of notation - will also be denoted by A. Again, the set of all proper 
faces of A is a Euclidean complex whose underlying polyhedron is the 
boundary 5A of A and which is also denoted by öA. • 

Example 2 In R " + 1 , take all the simplices described in Example 1 of 
Section 3.1. They form a Euclidean complex whose underlying polyhedron 
is the space R " + 1 itself. • 

Clearly, a Euclidean complex is finite if it consists of finitely many simplices 
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only; in this case, the third condition in the definition of Euclidean 
complexes is meaningless. Examples are the Euclidean complexes A and 
SA, derived as in Example 1 from a geometric simplex A in R' , + 1 . The 
underlying polyhedron of a finite Euclidean complex is a finite union of 
compact sets and therefore compact. 

Lemma 3.2.1 Let K be a Euclidean complex. Then every point se\K\ is 
(i) contained in only finitely many simplices of K\ and 
(ii) an interior point of exactly one simplex of K. 

Proof Let a point sel^CI be given. Among the simplices of K containing 
5, let A be one with minimal dimension. To prove (i), take a neighbourhood 
of A that meets only finitely many simplices of K. Clearly, any simplex 
of K containing s meets this neighbourhood; so there can be only finitely 
many of those. 

If s would not be an interior point of A it would be contained in a 
proper face of A, i.e., in a lower-dimensional member of K, in contradiction 
to the choice of A. To obtain uniqueness, it suffices to observe that two 
simplices of a Euclidean complex having an interior point in common 
must be equal. • 

Given a Euclidean complex K and a point s e | K | , the unique simplex of 
K that contains s as an interior point is called the carrier of s in K and 
is denoted by As. 

A Euclidean complex L is a subcomplex of the Euclidean complex K if 
L cz K, i.e., if every simplex of L belongs to K. The k-skeleton Kk of K is 
the subcomplex consisting of all simplices AeK with dimzl ^ / c ,0^ / c ; if 
n + l is the dimension of the ambient Euclidean space, then one has 
Kk = K for every k ^ n + 1. The boundary of every (k + l)-simplex of K 
can be considered as a subcomplex of Kk. In contrast to the Situation for 
CW-complexes (see Corollary 1.4.5), the following result is evident. 

Proposition 3.2.2 An arbitrary union or intersection of subcomplexes is a 
subcomplex. • 

Given a Euclidean complex K and a subset LczK, the intersection K(L) 
of all subcomplexes of K containing L is the subcomplex generated by L ; 
K(L) consists of all faces of all the members of L . 

Since any simplex has only finitely many faces, this implies: 

Lemma 3.2.3 A finite subset of a Euclidean complex generates a finite 
subcomplex. • 
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The image of a polyhedron under an affine embedding is again a poly­
hedron; more precisely: 

Lemma 3.2.4 Let K be a Euclidean complex in R n + 1 and let 
f : R n + 1 - > R m + 1 be an affine embedding. Then, {f(A) : AeK} is a 
Euclidean complex in R m + 1 . 

Proof The set {f(A) : AeK} is a collection of simplices satisfying the 
axioms of a Euclidean complex. • 

Corollary 3.2.5 Given any simplex z l c R " + 1 , there exists a Euclidean 
complex K with AeK and underlying polyhedron R " + 1 . 

Proof Let L denote the simplicial decomposition of R" + 1 described in 
Example 2 and choose an affine homeomorphism RM + 1 ->R" + 1 , taking 
one simplex of L onto A. • 

Corollary 3.2.6 Cubes are polyhedra. 

Proof The described simplicial decomposition of R " + 1 contains a sub­
complex whose underlying polyhedron is the cube (B1)n+1. Any other 
cube can be obtained from this as the image under an affine homeo­
morphism R " + 1 -> RM + 1 . • 

In order to make a connection between Euclidean complexes and C W -
complexes the following fact is needed. 

Lemma 3.2.7 The underlying polyhedron of a Euclidean complex K is 
determined by the family of all the simplices of K. 

Proof Firstly, assume K to be finite and let V be a subset of which 
intersects every simplex A of K in a closed set. Since a simplex is closed 
in R n + 1 and only finitely many simplices are under consideration, V is a 
closed subset of R n + 1 and thus of \K\. 

Secondly, let K be infinite. Let U be a subset of \K\ which intersects 
every simplex A of K in an open set. Choose for every A an open set U A 

in | K | , which meets only finitely many simplices of K. Let LA denote the 
finite subcomplex of K which is generated by these simplices. Then, in 
view of the part of the assertion already proved, Ur\\LA\ is open in \LA\. 
Now, UnUA=Un\LA\nUA is open in UA and thus open in \K\. 
Therefore, U being the union of the open sets Ur\UA, it is open in \K\. 

• 
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Theorem 3.2.8 A simplicial decomposition provides a Euclidean polyhedron 
with the structure of a finite-dimensional, countable, locally finite and regulär 
CW-complex. 

Proof Let K be a Euclidean complex in Rn+l. Its underlying polyhedron 
\K\ is Hausdorff as a subspace of R " + 1 . The interiors of the simplices of 
K provide \K\ with a cell decomposition (see Lemma 3.2.1 (ii)) whose 
/c-skeleton is just \Kk\. If A is any /c-simplex in K, any homeomorphism 
Bk-+A (for the existence of such homeomorphisms use an appropriate 
modification of Lemma 3.1.4) maps the boundary sphere Sk~1 of Bk into 
the boundary öA of A, contained in the (k — l)-skeleton of this cell 
decomposition. Now, the choice of such a homeomorphism for each AeK 
completes the structure of a cell complex for This structure is closure 
finite because a simplex has only finitely many faces and the space \K\ 
has the right topology (see Lemma 3.2.7). Thus, | K | is a Whitehead 
complex, and, consequently, a CW-complex (see Theorem 1.6.3). 

The CW-complex obtained, being embedded in the Euclidean space Rn+\ 
is locally finite, countable and of dimension ^ n + 1 (see Theorem 1.5.18 
(ii)). Moreover, its closed cells are simplices, i.e., balls, and thus the C W -
structure is regulär. • 

This is the theorem that brings into light the interplay between C W -
complexes and Euclidean complexes. 

Corollary 3.2.9 Let K be a Euclidean complex. Then: 
(i) a (CW-)subcomplex of\ K \ is the underlying polyhedron of a (Euclidean) 

subcomplex of K; 
(ii) K is finite iff\K\ is compact; and 
(iii) d i m | K | = min{feeN : Kk = K} = max {dimA : AeK}. • 

Statement (ii) appears here as a consequence of the corresponding fact for 
CW-complexes (see Proposition 1.5.8); note that an easy direct proof also 
is possible. 

In view of (iii), the dimension of a Euclidean complex K is defined as 
the dimension of its underlying polyhedron: 

d i m X - d i m | K | . 

Corollary 3.2.10 All simplicial decompositions of a polyhedron have the same 
dimension. • 

Cubes and simplices are ANRs (see Proposition A.6.3). More generally: 

Proposition 3.2.11 A compact polyhedron is an ANR. 
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Proof Given a compact polyhedron, choose for it a simplicial decomposi­
tion K which is a finite Euclidean complex (Corollary 3.2.9 (ii)). The 
proposition is proved by induction on the number k of simplices in K. 

If k = 0, then \K\ = 0 and the Statement holds true. Assume the 
proposition to be correct for k < m. From a Euclidean complex with m 
simplices, take a simplex AeK of maximal dimension. Then K = K\{A} 
and öA have less than m simplices, and therefore, by the induction 
hypothesis, | K | and 5A are A N R s . Since also A is an A N R , one concludes 
finally that the union | K \ = \ K | |_J ÖA A is an A N R (see Proposition A.6.6). 

• 
Remark A certain converse Statement is true: any compact A N R has the 
homotopy type of a compact polyhedron. This fact is beyond the scope 
of this book. • 

Let p be a point in the underlying polyhedron | K | of a Euclidean complex 
K. The finitely many simplices of K that contain the point p generate a 
finite subcomplex of K, the star of p, denoted by stK/>; the simplices of 
%\Kp that do not contain p form a subcomplex of $tKp, called the link of 
p in K. The notions 'star' here and in Section 1.4 are related by 

|stK/>| = St({/>}), 

where that star St is taken in the CW-complex \K\.lt follows that \stKp\ 
is a compact neighbourhood of p in Unlike the stars of points in 
CW-complexes, the stars in Euclidean complexes are cones. 

Proposition 3.2.12 Let p be a point in the underlying polyhedron \K\ of a 
Euclidean complex K, and let L denote the link of p in K. Then the triple 
(|st x/>|,|L|,p) is a cone. 

Proof One has to show that the map 

/ : \L\xI^Rn+1,(s,t)>-+ts + (\-t)p 

has \stKp\ as image and is injective on | L | x (/\{0}). 
'image / c \stKp |': take (s, £)e|L| x / . The carrier As of s in L is a face of 
a simplex AeK, which contains p (Lemma 3.2.1). Since A is convex, it 
contains the whole interval {ts + (1 — t)p : tel), and, in particular, the 
point f(s, t). 
'\stxp\ C image / ' : clearly peimage/; take se\stKp\\{p}. If its carrier As 

belongs to L , then one has s' = f(s', 1). Otherwise, the array 
{p 4- t'(s' —p):t'>0} meets the boundary of As. in a point s = p + tf(s' — p) 
with t' > 1, whose carrier belongs to L ; then one has s' = f(s, I/O-
Injectivity: assume that f(s0, t0) = f(s1,ti), and, without loss of generality, 
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that 0 < t0 ^ tx, Then compute sl = f(s0, t 0 Ai)- The carrier of s0 is a face 
of a simplex A in K which contains p (Lemma 3.2.1). Choose A so that 
it has minimal dimension. Then the points p and s0 belong to A but no 
proper face of A contains both of them. Therefore the open interval 
{ts + (1 — t)p : 0 < t < 1} is completely contained in the interior of A and 
does not meet \L\. In view of s ^ l L I , this implies t0/t{ = 1, i.e., t0 = tu 

and, consequently, s0 = sl. • 

From the general theory of CW-complexes, one derives that a Euclidean 
complex K' is a subdivision of a Euclidean complex K if K' is a refinement 
of K; i.e., if every simplex of K' is completely contained in a simplex of 
iC (see Section 2.3). If K' is a subdivision of X , and L is a subcomplex of 
K, then the simplices of K' that are contained in | L | form a subcomplex 
of K ' that is the induced subdivision of L . 

For the explicit construction of subdivisions, the following combinatorial 
analogue of the C W cone construction (see Section 2.3, Example 4) is very 
helpful. 

Proposition 3.2.13 Let (C,B,p) be a cone where B is the underlying 
polyhedron of a finite Euclidean complex L. Then, the global set C is the 
underlying polyhedron of the finite Euclidean complex 

pL = Lu{pA : AeL}. 

In other words, cones with a compact polyhedral base are polyhedra. • 

Example 3 Let K be a Euclidean complex in R ' , + 1 . Define inductively the 
barycentric subdivisions Sd Kk of the skeleta Kk by taking Sd K° = K° and 
Sd Kk+1 = Sd Kku\JbA(ÖA)\ where the union ' u ' runs through all the 
(fe + l)-simplices AeK, bA is barycentre of A and (SA)' denotes the induced 
subdivision of SA with respect to SdK*. The Euclidean complex 
Sd K = Sd Kn obtained in this way is called the barycentric subdivision of 
K. Its vertices are the barycentres of the simplices in K; its fe-simplices 
correspond to the strongly increasing sequences A0 cz Al c ••• c Ak of 
simplices of K: the corresponding barycentres span a simplex. Since the 
distances between two barycentres forming an edge of Sd K are smaller 
than the diameter of their carrier in K (see Lemma 3.1.3), and the 
diameters of the simplices are determined by their edges (see Lemma 3.1.2), 
it follows that the simplices of S d X are 'smaller' than the simplices of K; 
more precisely, 

sup{diamzl : AeSdK} ^ 
tt + 2 

n + l 

) •sup{diam4 : AeK}. • 
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This implies, for finite Euclidean complexes, that by repeated barycentric 
subdivision one can obtain a Euclidean complex with sufficiently small 
simplices, a fact that will be used mainly in the following form: 

Proposition 3.2.14 Let K be afinite Euclidean complex and let {Ux : XeA} 
be an open covering of\K\. Then, there is a subdivision K' of K such that 
the covering {|st/^-fc| : KEK'0} refines {UX : XeA}. 

Proof Take d = max{diamzl : AeK}. Then, choose r e N such that 
2-((n+ l)/(n + 2))r'd becomes smaller than the Lebesgue number of the 
covering. The r-fold subdivision S d r X has the desired properties, since 
the diameter of each |st ( S dr X )fc| is less than or equal to 2-max {diam A : Ae 
SdrK}. • 

There is a slightly different type of subdivision process based on an 
analogue of Lemma 2.3.8: 

Lemma 3.2.15 Given a Euclidean complex K and a point pe\K\, there is a 
subdivision of K for which p is a vertex. 

Proof Let L denote the link ofp in K and take the subdivision of K given 
by(K\stKp)\jpL. • 

The construction of the subdivision in this proof will be referred to as the 
starring of K at p. Tterated used of it will be made in announced 
subdivision process. 

Example 4 Let K be a Euclidean complex and let Q be a finite subset of 
\K\. Enumerate the elements of Q say,p { , . . . ,p h so that the corresponding 
sequence of dimensions of the carriers is weakly decreasing. Then perform 
the starring Operation, first at pl9 next at p2, and so on. This process is 
the starring at a finite set of points in order of decreasing dimension. Note 
that the barycentric subdivision of a finite Euclidean complex can be 
viewed as a starring at the set of the barycentres of all simplices in order 
of decreasing dimension. • 

Proposition 3.2.2 stated that arbitrary unions and intersections of 
subcomplexes of a Euclidean complex are Euclidean complexes; the 
Situation is far different if one deals with arbitrary Euclidean complexes 
not contained in a 'supercomplex', even if these are supposed to live in 
the same Euclidean space. 
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(0,1) ( M ) 

(0,0) (1,0) 

Figure 8 

Example 5 In R 2 , let K 0 denote the Euclidean complex formed by the 
standard-simplex A1 and its vertices, and let Kx denote the Euclidean 
complex formed by the triangle H({(0,0),(1,0),(1,1)}), and its faces (see 
Figure 8). Then, K0nKl consists of the 0-simplex (1,0) and is a Euclidean 
complex; on the other hand, since A1 and H({(0,0), (1,1)}) are 1-simplices 
in K 0 u X b whose intersection is not a common face of both, the union 
KQUK^^ fails to be a Euclidean complex. • 

This example reflects the general Situation. Given two Euclidean complexes 
K0, Kx in the same space Rn+l, their intersection K0nKx is again a 
Euclidean complex with | K 0 n K J cz I K o I n l K J ; in general, one has a 
proper inclusion and no equality. By chance, the union K0KJK1 could be 
a Euclidean complex. A necessary condition for this to happen is the 
following: 

the intersection of a simplex belonging to K0 and a simplex belonging 
to K± is a face of both. 

If the union is a Euclidean complex, then one has \K0vK1\ = \K0\v\Kl\, 
as well as \K0nKi\ = \K0\n\K1\. 

Figure 8 suggests that although the union of the Euclidean complexes 
in question is not a Euclidean complex, the union of their underlying 
polyhedra is still a polyhedron. However, this is also not true in general, 
as is seen in the next example. 

Example 6 The subsets {0} and {1/n : neN\{0}} of R are 0-dimensional 
polyhedra, but their union fails to be a polyhedron. • 

Certain classes of polyhedra allow unions. To see this, one needs a 
somewhat technical fact. 

Proposition 3.2.16 Let K0,KX be finite Euclidean complexes in R " + 1 and 
let L be a subcomplex of K0 such that \L\n\Kl\ = 0. Then there are 
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subdivisions K'Q9K\ of K0,K1 respectively, such that K'0 contains L as a 
subcomplex and K'0vK\ is again a Euclidean complex whose underlying 
polyhedron is P = \K0\KJ\K1\. 

Proof Let AuA2,...,Ar be any enumeration of the simplices in K 0 K J K X . 
Choose, for every index7, a Euclidean complex K} with AJEKJ and P <=\Kj\ 
(Corollary 3.2.5). Now, P is covered by the intersections of the form 
A\ n-'-nA'.n-'-nA' with Ä.eK; for all /, and A'. = A-. for at least one 

1 J j J j j 
j. These sets are convex, and any intersection of them is again of this form. 
The boundary of any such set (in its affine hull) is a union of such sets of 
lower dimension. Now assume, by an induction on dimension, that a 
simplicial decomposition of such a boundary is given; choose an interior 
point and get a simplicial decomposition of the whole set by means of 
the cone construction (see Section 3.1, Example 4, and Proposition 3.2.13). 
Collecting all the simplices obtained in this way, one obtains a simplicial 
decomposition K of P containing subdivisions K"0,K'[ of K0,Kl9 

respectively, as subcomplexes. At this point, it is already clear that the 
union of two compact polyhedra is again a polyhedron. 

Let / : \KQ\-*1 denote the map which sends every vertex of L to 0, 
every other vertex to 1, and maps the higher-dimensional simplices linearly. 
Choose a real number e > 0 such that / _ 1 [ 0 , ß ] does not contain any 
vertex of K not belonging to the induced subdivision of L . Thus, every 
simplex of K meeting / - 1 [ 0 , e ] meets also | L | ; if such a simplex does not 
belong to \L\ then it has an interior point in common with the set / " i {e}. 
Choose such a point pA in every corresponding simplex A, and apply the 
Operation of starring at these points in order of decreasing dimension to 
K; let K' denote the resulting Euclidean complex. K' contains a simplicial 
decomposition K of l j u l K J as a subcomplex, which in turn 
contains the subdivision K'[ of Kx (see Figure 9). Clearly, L u K is a 

Figure 9 
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Euclidean complex; it remains to describe a suitable simplicial decomposi­
tion of the remaining part of I K J u I K J . This is the union of the 
intersections Af = Au/_1[0,£], where A runs through the simplices of 
K0\L that have at least one vertex in L . Each such set is convex; by 
induction on the dimension, one may assume a simplicial decomposition 
Af of its boundary which does not subdivide the touched simplices of 
L,K respectively. Taking an interior point p, one gets the simplicial 
decomposition pAf of Af (see Proposition 3.2.13). Because of the inductive 
procedure, these simplicial decompositions of all the sets Af are compatible 
with each other and yield, all together, a Euclidean complex of the desired 
kind. • 

The first part of this proof and the ideas expressed therein allow two 
further conclusions. 

Corollary 3.2.17 The union of finitely many compact polyhedra in the same 
Euclidean space is a compact polyhedron. • 

Corollary 3.2.18 Two Euclidean complexes with the same underlying 
polyhedron have a common subdivision. 

Proof Let K0 and X x be Euclidean complexes, with \K0\ = \K1\— P. The 
intersections A0nAx with A0eK0 and AleKl form a covering of P by 
compact convex sets, which can inductively be refined to a simplicial 
decomposition as in the previous proof. • 

Remark This result is to be seen in contrast to the so-called 'Hauptver-
mutung', which will be explained in the Remark following Example 2 of 
the next section. • 

Compact polyhedra are not closed under infinite unions, not even under 
infinite unions of expanding sequences. 

Example 7 The subsets Pk = { 0 } u { l > : rceN,0 < n ̂  fc},/ceN,of R 1 form 
an expanding sequence of compact polyhedra, but their union in R 1 , fails 
to be a polyhedron. Note that this union is not the union space of the 
expanding sequence in the sense of Section A.5. • 

However, under an additional hypothesis, expanding sequences of compact 
polyhedra converge to a (not necessarily compact) polyhedron. 

Proposition 3.2.19 Let P0 cz P : cz ••• cz Pj cz • be an expanding sequence 
of compact polyhedra in R", such that, for every j e N , Pj is contained in the 
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interior (Pj+1)° of Pj+l with respect to the union P = \JfL0Pj- Then, P is 
again a Euclidean polyhedron. 

Proof Let Kj be a simplicial decomposition of Pp jeN. The assumption 
PjC(Pj+1)° implies that the pair {P j + 2 \ P j , ( P J + 1)°} is an open covering 
of Pj+2> therefore, one may assume the appearing simplices to be so small 
that the carrier of any point in Pj+2\Pj+1 with respect to Kj+2 does not 
meet Pj (see Proposition 3.2.14). Then, define subcomplexes Lj of Kj by 
taking L 0 = X 0 , Lx=Kl9 Lj = {ÄeKj : AnP}_2 = 0} for j>\. This 
implies immediately that Pj+ x = P j U \ L J + x|, for all j, and Pj_1n\Lj+1\ = 
0 , f o r j > O . 

Take a subdivision K'[ of L x = X x containing a subdivision K'0 of K0 

as a subcomplex (using Proposition 3.2.16 with L=0). This Starts an 
inductive construction of subdivisions X ^ X ^ of the Euclidean 
complexes Kj,Kj_l respectively, such that K'j_l is a subcomplex of XJ 
and contains (for j> 1) K'._2 as a subcomplex as follows. Assume the 
construction is done up to the natural number v>0 . Then, apply 
Proposition 3.2.16 to X 0 = X J , X X = L . + 1 and the subcomplex L=K'j_1 

of K". and take X ; + x = X 0 u K \ , K ) = X ' 0 . Now, X ' 0 cz x ; cz ... cz K'. cz ... 
is an expanding sequence of finite Euclidean complexes. For every simplex 
in K'j the finitely many simplices of K'j+1 form a neighbourhood; thus, 
the union of the sequence is again a Euclidean complex: it is a simplicial 
decomposition of P. • 

Remark The previous proposition Covers all polyhedra, i.e., every 
polyhedron may be viewed as the union space of an expanding sequence 
of compact polyhedra, each of them contained in the interior of the 
subsequent one. This follows from the fact that polyhedra are locally finite 
and countable CW-complexes (see Theorem 3.2.8), that such C W -
complexes are unions of compact subcomplexes in the described manner 
(see Proposition 1.5.13), and that (CW-)subcomplexes of the underlying 
polyhedron of a Euclidean complex are polyhedra (see Corollary 3.2.9 
(i)). • 

It is now possible to derive a local characterization of polyhedra in R n + 1 . 

Theorem 3.2.20 A subspace P o / R " + l is a polyhedron iff every point peP 
is the peak of a cone with compact base which is a neighbourhood of p in P. 

Proof *=>': If X is a Euclidean complex with | X | = P , then a point peP 
is the peak of the cone \stKp\ (see Proposition 3.2.12) whose base is 
compact, as the underlying polyhedron of the link of p in X , which is a 
finite Euclidean complex. 
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W : Some preliminary considerations are needed. Let P be a subspace of 
R " + l and let (C,£,/>) be a cone with its peak p in P, its base B compact 
and its global set C a neighbourhood of p in P. Because of compactness, 
the set B and the point p have a positive distance; thus there are small 
(n + l)-cubes centred at p, which do not meet B. If W is such a cube, and 
5Wdenotes its boundary, then (WnC,öWnB,p) is a cone with the same 
properties as the original one. Thus, in this context, one can always deal 
with cones whose bases are contained in the boundaries of small cubes 
centred at their peaks. (Given two cones with the same peak and the bases 
in the boundary of the same cube centred at the common peak, their 
intersection is again a cone with these properties. This shows that the 
intersection of two subspaces satisfying the hypothesis has the same 
property.) 

What follows is the main part of the proof. First, assume P to be 
compact. Perform an induction on the dimension of the affine hull A(P) 
of P. In dimension 0, there is just a point and nothing to prove. Assume 
that dim A(P) = k+ 1. For every point /?eP, choose a cone as described 
in the beginning and with the particular property that its base is contained 
in the boundary of a small cube centred at p. By compactness, finitely 
many of these cones cover P; thus, it suffices to show that each of them 
is a polyhedron (Corollary 3.2.17). The intersection of P with any proper 
face of these cubes has dimension at most k; thus, one can use the induction 
hypothesis and obtain that this intersection is a polyhedron. The boundary 
of a cube is the union of its finitely many proper faces. Thus, the inter­
sections of P with the boundaries of the cubes in question are polyhedra. 
Since cones with compact polyhedral bases are polyhedra (see 
Proposition 3.2.13), the desired result follows in this case. Note that this 
already shows that an intersection of two compact polyhedra is a 
polyhedron. 

Now assume P to be non-compact. Since the Euclidean space R " + 1 

satisfies the second axiom of countability, there is a sequence {Wt} of 
(n-h l)-cubes such that every cube ^ c R n + 1 contains at least one cube 
Wh which in turn contains the centre of W as an interior point. For a 
given point peP, take a cube W centred at p such that WnP is a compact 
neighbourhood of p in P; by the previous argument, Wr\ P is a polyhedron. 
But then, there is a cube W{ whose intersection WtnP with P is also a 
compact neighbourhood of /?, and, moreover, a polyhedron. Let {W\} 
denote the subsequence of the sequence {Wf} consisting of the cubes 
appearing in this form. Then, clearly, all P'.^W'^P are compact 
polyhedra whose interiors (with respect to P) cover P. But - as explained 
before - the fact that P is the union of the P"s is not enough! In view of 
the preceding proposition, one has to construct an expanding sequence 
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P0 cz Pj C ••• cz Pj cz ••• of compact polyhedra contained in P such that, 
for every yeN, Pj is contained in the interior of Pj+l with respect to P 
and such that P= ( J j L 0 ^ r This w ^ ^ e ^ o n e inductively, starting with 
p 0 = p'Q, Assume Pj already constructed. The boundary of Pj is compact; 
thus it is covered by the interiors of finitely many polyhedra P'r Adding 
these and the P\ having the smallest index which is not yet contained in 
Pj, one obtains Pj+i- • 

This local description, together with the technique of using cones whose 
base is contained in a cube, yields also the general intersection property. 

Corollary 3.2.21 The intersection of finitely many polyhedra in the same 
ambient space is again a polyhedron. • 

Moreover, as a consequence of the theorem there is a whole mass of 
further examples for polyhedra. 

Corollary 3.2.22 Open subspaces ofRn+1 or a Euclidean polyhedron are 
polyhedra. 

Exercises 

1. Prove that the carrier of a point s in the underlying polyhedron of a 
Euclidean complex K is the intersection of all simplices of K which 
contain the point. 

2. Show that cones with a non-compact base can never be polyhedra. 
3. Develop a technique for performing a starring at infinitely many points. 

3.3 Simplicial complexes 

The underlying polyhedra are, up to homeomorphism, determined by the 
vertex schemes of the corresponding Euclidean complexes; more precisely: 

Proposition 3.3.1 Let K and L be Euclidean complexes and letf : AK^AL 

be a bijection between the corresponding vertex sets such that a set xcz AK 

spans a simplex of K iff its image f(x) cz AL spans a simplex of L. Then f 
extends to a homeomorphism \K \ « | L | . 

Proof Take a point se\K\; let s0,...,sk denote the vertices of its carrier 
As and let t0,...,tk denote its barycentric coordinates with respect to As. 
Then define 

f(s)= £ tJ(Sl). • 
; = o 
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This fact leads to a more abstract notion. A simplicial complex is a set K 
of finite sets closed under the formation of subsets, i.e., any subset of a 
member of K is also a member of K; more formally: 

xeK A y cz x=>yeK. 

The vertex schemes of Euclidean complexes are examples of simplicial 
complexes; one should keep them in the back of one's mind for the 
following considerations. 

The members of a simplicial complex K are again called simplices of 
K; more precisely, one has a simplex of dimension /c, or a k-simplex for 
short, if the simplex has exactly k + 1 elements. In this abstract setting, 
denote simplices as above just by small italic letters as x, y,..., and write 

dim x = k 

if x is a /c-simplex. If x, y are simplices of K with y cz x, then - in accordance 
with intuition - y is called a face of x. The simplices of K are sets, and 
so one may form their union; this is the set A = AK of vertices of K or 
the vertex set of K for short. Considering the vertices as singletons, i.e., 
as one-element sets, identify the set A with the set K0 of 0-simplices of 
K. More generally, denote by Kk the set of all /c-simplices of K: 

Kk = {xeK : dimx = k} 

and by Kk the k-skeleton of K: 

Kk = {xeK : d i m x ^ / e } ; 

the skeleta are subcomplexes of K, i.e., subsets of K which are simplicial 

complexes themselves. 
Other classes of interesting examples for simplicial complexes are the 

nerves of coverings and ordered simplicial complexes defined presently. 

Example 1 Let {Ux : XeA} be a family of arbitrary sets; then the set K(A) 
of all finite subsets of A such that 

is a simplicial complex. Note that in general the vertex set of this simplicial 
complex K(A) is not the index set A itself, but only its subset consisting 
of the indices X with Ux # 0 . Now, if Z is a space and {Ux : XeA) is a 
covering of Z (see Section A.3), then the simplicial complex K(A) obtained 
in this way is called the nerve of the covering {Ux : XeA}. • 

Example 2 This generalizes Example 1 of Section 3.1. Let JT be a set and 
let K b e a binary, reflexive and antisymmetric (in general non-transitive) 
relation on f. Then the set K = K(f,R) of all finite subsets x c f such 
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that K n x x x i s a total order on x forms a simplicial complex. The pair 
(K,R) is called an ordered simplicial complex. If (K, R) is an ordered 
simplicial complex, then the relation JR is called a local vertex ordering on 
K. Note that any simplicial complex K can be turned into an ordered 
simplicial complex (in many ways) by means of the following procedure: 
choose a total order R on the vertex set of K and take 

R = (J Rnx x x. • 
xeK 

Given two simplicial complexes K and L , a simplicial map f : K - > L is 
defined as a function / : K 0 -> L0 which maps every simplex of K onto a 
simplex of L , i.e. satisfying the condition 

xeK=> f(x)eL. 

Simplicial complexes and simplicial maps form a category that will be 
denoted by SiCo in the sequel. If local vertex orderings R and R are given 
for K and L respectively, a simplicial map f : K-+L such that 

(l,y)eRMm\f(y)eR 
is called order preserving. Again, ordered simplicial complexes and 
order-preserving simplicial maps form a category, denoted by OSiCo. 
Although the procedure of ordering an arbitrary simplicial complex 
described in Example 2 is not at all functorial, there is an interesting 
functor Sd : SiCo -> OSiCo, called barycentric subdivision. It associates to 
a simplicial complex K the ordered simplicial complex (K\R) having the 
vertex set F' = K and local vertex ordering 

R = {(x,y)eKxK : xczy}; 

it associates to a simplicial map / : K -» L the order preserving simplicial 
map / ' : K' L given by 

fix) = f(x) 
where, on the left-hand side, x is an element of the domain of the function 

which, on the right-hand side, is interpreted as a subset of the domain 
on the function / . The notation Sd for this functor reflects its geometrical 
meaning as a kind of barycentric subdivision, which will be exhibited later 
in this section. (Note that instead of the relation R one could also have 
taken the opposite relation 

R0*> = {(x,y)eK x K : yczx}.) 

Remark Clearly, two simplicial complexes K and L are isomorphic if there 
is a bijection / : K0^L0 such that 

xeKof(x)eL 
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for every subset xczK0, i.e., such that / and f~l can be considered as 
simplicial maps. In this terminology, Proposition 3.3.1 says that the 
underlying polyhedra of two Euclidean complexes having isomorphic 
vertex schemes are homeomorphic. Evidently, the converse Statement fails 
to be true: the underlying polyhedra of two Euclidean complexes may be 
homeomorphic without the corresponding vertex schemes being 
isomorphic. In view of Corollary 3.2.18, one might expect two Euclidean 
complexes with homeomorphic underlying polyhedra to have subdivisions 
with isomorphic vertex schemes. That is the famous 'Hauptvermutung' 
(main conjecture) of algebraic topology. But this also turned out to be 
wrong (cf. the notes at the end of this chapter)! • 

Now let us turn from combinatorics to geometry. Let K be a simplicial 
complex. To each (abstract) simplex xeK associate the (concrete, 
geometric) simplex formed by the set 

and the subspace topology with respect to Ix; thus Ax is homeomorphic 
to the standard-dim x-simplex. View Ax as a subset of IA. Define the 
geometric realization \ K | of K to be the union u Ax in IA, with the topology 
determined by the family {Ax : xeK} of all simplices. By abuse of 
language, one often refers to the geometric realization of a simplicial 
complex simply as a simplicial complex and omits the bars in the notation. 
In this sense, simplicial complexes are CW-complexes - like Euclidean 
polyhedra. 

Theorem 3.3.2 //K is any simplicial complex, the sequence {\Kn\ : neN} 
provides \K\ with the structure of a regulär CW-complex. 

Proof Clearly, the chosen topology on | K | is finer than the subspace 
topology with respect to the inclusion of \K\ into the product space lA, 
and therefore it is Hausdorff. The remainder of the proof is the same as 
in the corresponding part of Theorem 3.2.8. • 

In the sequel, the geometric realization | K | of a simplicial complex K will 
be tacitly assumed to be provided with the CW-structure described in the 
preceding proposition. Its closed cells are just the sets Ax; thus, they 
correspond bijectively to the simplices of K. So, given a point s e |K | , the 
simplex x = xs is said to be the carrier of s if the cell Ax is the carrier of 
5 in the sense of Section 1.2. 

Xex 
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In the proof of Proposition 3.3.2, already another topology has been 
considered on the underlying set of \K\, namely the trace of the product 
topology. One may also think about a third topology, namely the metric 
topology; i.e., the topology induced by the metric d : \K \ x \K\-»R, 

d(s,s)= IZ(sx-sx)2. 

But this is nothing new: 

Proposition 3.3.3 For a simplicial complex K, the metric topology and the 
trace of the product topology on the underlying set ofits geometric realization 
\K\ coincide. 

Proof First observe that the metric topology is finer than the trace of the 
product topology, since, for every XeA, the restriction of the corresponding 
projection px: IA^I to \K\ provided with the metric topology is 
continuous. 

Conversely, it will be shown that, for any positive real number e, an 
e-neighbourhood U of a point se\K\ in the metric topology is also a 
neighbourhood of s in the trace of the product topology. For s fixed, 
k = dim x v , define the positive real 

e 

y/ik+m+i) 
and the set 

Ü = {se\K\ : Xexs=>\sx-sx\ <r}. 
Then U is evidently open in the trace of the product topology. Next, 
consider a Single point seU. From '£X€Asx = Z A € / \ ^ A = h it follows that 

Z h= Z (sx-Sx)< Z ISA-SAI 
Â x-S Aexs Ae.xs 

and this allows us to estimate 

d(s, ~s)2 = X (sx-S,)2 + Z ~s2 ̂ (k+ W + (k+ l ) 2 r 2 = £2, 

which implies se U. Since this holds for all se Ü, one concludes that U cz U. 

• 
The equivalent metric or product topologies on | K | are often referred to 
as the strong topology of the simplicial complex K. The underlying set of 
| K | endowed with the strong topology will be denoted by \K\m. The 
following is an example in which the strong topology is really different 
from the topology determined by all simplices. 
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Example 3 Let AN be the simplicial complex consisting of all finite subsets 
of the set N of natural numbers; its geometric realization AN = \AN\ is 
often referred to as the infinite simplex. A basis for the set of open sets of 
4 N is given by all sets 

U = ANn X UX9 

A = 0 

where every set Ux is of one of the following types 

(aX9bx)9 0^ax<bx^l 

[09bx)9 0<bx^l9 

(aX9\l 0^ax<l9 

[0,1]. 

On the other hand, a basis for the open sets in the strong topology is 
given by those sets U which satisfy the added condition that Ux = [0,1] 
for almost all X. Thus, 

CO 
ANn X [0 , i ) 

Ä = 0 

is open in Z i N , but not in | 4 N | M . • 

As will be proved in the sequel, the difference between these two topologies 
is hardly important, as in fact they agree up to homotopy. What follows, 
while included here as preparation for this, is also of more general interest. 
Given a space X and a partition of unity {px : XeA} on X9 there is an 
interesting function xj/A : X->\K(A)\9 where K(A) denotes the nerve of 
the induced open covering of X. It is defined by 

for all xeX. Moreover, if this partition of unity is subordinated to a 
covering {Ux} with nerve K(A)9 then K(A) is a subcomplex of K(A) and 
\jjA can also be considered as a function with values in 

Lemma 3.3.4 Let X be a space and let the family {ux : XeA} be a partition 
of unity on X subordinated to the covering {Ux}. Then, 

(i) ij/Ä : X-+\K(A)\m cz \K(A)\m is continuous; and 
(ii) \J/A : X —>\K(A)\ cz\K(A)\ is continuous provided {fxx} is locally 

finite. 

Proof (i) is trivial. As for (ii), take a point xeX and a neighbourhood U 
of x in X that meets only finitely many Ux. Then x = {XeA : pk\ U # 0} 
is a simplex of K(A) and the function xj/Ä\U factors through the geometric 
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simplex A~. The induced function U-+Axcz Ix has the continuous compo­
nents px\ U, for every Xex; thus, it is continuous. Clearly, the inclusion of 
A- into |/C(/1)| is continuous and thus, the same holds for the function 

This shows that the function \p A is continuous at x, and, since this is true 
for every point x e l , it is globally continuous. • 

If K is a simplicial complex, the projections px : \K\m-+I,XeAK form a 
point-finite, but in general not locally finite, partition of unity for \K\m 

as well as for \K\ (see Section A.3). For every XeAK, the interior of the 
star of the 0-cell X, namely 

St(Xy = {se\K\m:Px(s)*0} 

is the open star of X\ the family {St(/l)° : XeAK} is an open covering of 
both | K | m and called the star covering. 

Proposition 3.3.5 The nerve of the star covering of a simplicial complex K 
is the simplicial complex K itself Moreover, the canonical function induced 
by the partition of unity on \K\m given by the projections px : \K\m^I, 
XeAK, is nothing but the identity function \K\m^\K\. 

Proof For the first Statement, one has to show that a finite, but non-empty, 
subset x cz AK is a simplex of K iff the open stars of its elements have a 
non-empty intersection. Now, if x is a simplex then the intersection of the 
stars of its vertices contains the non-empty interior of Ax. O n the other 
hand, take a point se\K\m with px(s)^0 for all Xex; then, x is a subset 
of the carrier of s, and thus a simplex itself. 

The second Statement of the proposition is trivial. • 

Corollary 3.3.6 For a simplicial complex K, the identity function \K\m^\K\ 
is continuous if its star covering is a locally finite covering o / | X | m . • 

Later on (see Proposition 3.3.14), it will be seen that the given condition 
is not only sufficient, but also necessary for the continuity of this identity 
map. 

One is now ready for the actual comparison between the topologies of 
| K | a n d | K | m . 

Proposition 3.3.7 The geometric realization \K\ of a simplicial complex K 
is homotopy equivalent to \K\m. 

Proof There is a trick leading towards a locally finite partition of unity. 
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To this end, define functions p : \K\m-+l and px : \K\m-*f, for all 
XeA = K0, by taking 

p(s) = max{sA : XeA}, 

pA(s) = max{0,2sx-p(s)}. 

The function px will be continuous if the function p can be shown to be 
continuous. This latter claim is proved by showing that p is continuous 
at any fixed point se\K\m. Take the set 

Ü = {se\K\m: £ s A > l - i - p ( s ) | , 

and, for every XeA, the set 

Ux = {se\K\m : s A > f p(s)}. 

Now U and all Ux are open in \K\m, so is 

U = Ün\JUx. 
XeA 

Clearly, seU, and, for all seU, 

p(s) = max {sxel : Xexs}. 

Thus the restriction p\ U can be viewed as the maximum of finitely many 
continuous functions and therefore is also continuous. 

Next, take s and U as just defined, and note that, for all XeA\xs, 
px\ U = 0. Thus, U is a neighbourhood of s with px\ U / 0 for only finitely 
many XeA. Then, the maps px : | K | m - » J given by 

where the summation runs over all / l e / l , form a locally finite partition of 
unity on | K | m . 

Now observe that the nerve of the covering that is induced by this 
partition of unity is again the given simplicial complex K itself. Indeed, 

the vertex set is A; 
if a subset x c A is a simplex of K, take the barycentre b of Ax and 

find px(b) 7^0, for all Aex, showing that x belongs to the nerve; 
if a subset xczy l belongs to the nerve, then there is a point s e | K | m 

such that px(s) ̂  0, for all Xex, which yields px(s) ̂  0, for all Xex, by 
the construction of the maps px, and thus xeK. 

The canonical function p : \K\m->\K\ given by 

P(s) = {Px(s) • XeA} 
is not only continuous (see Lemma 3.3.4 (ii)), but also a homotopy inverse 

for the identity map id : \K\->\K\m. The mapsH : | X | xI->\K\ and 
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Hm:\K\mxI^\K\m, given by 

H(s,t) = t • (p°M(s)) + (l - 0 • 5 
and 

//M(s,f) = f •(W°p(*)) + ( l - 0 ' * 
respectively, show that id and p are homotopy inverse to each other. • 

CW-complexes, in particular simplicial complexes, are L E C Spaces (see 
Theorem 1.3.6). Although the main thrust of this book is directed towards 
cellular structures with the topology determined by the 'closed cells', 
sometimes the strong topology has to be taken into account. This is why 
the next result is included here. 

Proposition 3.3.8 A simplicial complex K with the strong topology is an 
LEC space. 

Proof Let X denote \K\m. The proof consists in exhibiting a 
neighbourhood U of AX czX x X, which is deformable to AX in X x X 
rel. AX. Since X x X is a metric space, and therefore perfectly normal, 
there is also a mapa : X x l - > l such that a~l(0) = AX and <x\(X x 
X\U)= 1, and therefore the diagonal mapzl : X-+X x X is a closed 
cofibration (see Proposition A.4.1 (iv)). 

Take U to be the union of the sets Ux = St(X)° x St(A)°, for all XeA. 
Note that the nerve of the covering {Ux} of U is just the simplicial complex 
K itself. Indeed, if a finite intersection of Uxs is non-empty, then the 
intersection of the corresponding open stars is non-empty, and therefore 
the vertices involved form a simplex of K; on the other hand, given a 
simplex x of K with barycentre b (in X), the point (b, b) belongs to all the 
Ux with XeX, and so the intersection of these Uxs is non-empty. 

Now construct a partition of unity {px} on U, subordinated to the 
covering {Ux}, as follows. Take the function p : (7->R given by 

p(s,s') = Yjmin {sx,s'x}, 

where the sum runs over all the vertices X of K. This function is nowhere 
zero and continuous; the former Statement follows because (s,s')eUx 

implies min {sx,s'x} > 0. To prove continuity at the point (s0,s'0), 
decompose p in the form p = p! + p", where p! takes care of the finitely 
many summands corresponding to the vertices of the carriers of s, s', and 
p" collects the other ones. Clearly, p! is continuous, as a sum of finitely 
many continuous functions. The function p" takes the value 0 at the point 
(s 0, s'0); to show its continuity at this point, let e > 0 be a given real number 
and observe that p" takes only values on the open set 
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{(s9s') : J^sx> 1 — 89J^s\> \ — s9X running through the finitely many 
vertices of the carriers of s9s'}. Thus p is a map with strictly positive real 
values and allows to define maps pk : [/-•/, for each A, by taking 

px(s, s') = min {sA, s'x}/p(s, s') 

which form the announced partition of unity on U. 
This partition of unity induces a map ip : U^>X (see Lemma 3.3.4 (i)), 

which in turn leads to the homotopy H : U x I->X x X given by 

J ( ( l - 2 0 s + 2 ^ ( 5 , 5 ' ) , A O ^ r ^ i , 

1(2(1 - OMs, *') + (2t - 1)5', 5'), I < t < 1. 

This homotopy yields the desired deformation of U into AX. • 

In the preceding proof, another structure on a simplicial complex with 
the strong topology became transparent; this is based on the convexity 
of balls and simplices, used often and fruitfully. The essential property of 
convex sets in linear Spaces is that they are not only path-connected but 
also allow a canonical choice for paths ox connecting two points x,y, 
which depends continuously on these points and becomes constant if the 
points coincide; this is done by taking ox y(t) = (1 — 0 * + ty9 for all tel. 
The applicability of this idea leads to the consideration of metric Spaces 
in which it can be imitated at least locally. More precisely, an equilocally 
convex structure - or ELCX structure for short - on a metric space X 
consists of an open covering {Vy : yeT} of X and a homotopy 
E : U xI-+X such that 

(1) U = uVy x VyaX xX; 
(2) E is a homotopy from the restriction of the first projection to U to 

the restriction of the second projection to U rel. to the diagonal 
AX cz (7, i.e., E(x, y9 0) = x, £(x, y, 1) = y9 for all (x, y)e U9 £(x, x, t) = x, 
for all XEX and all tel; and 

(3) E(Vy x Vy xl)cz Vv for all yeT. 

An ELCX-space is defined to be a metric space provided with an E L C X -
structure. If one wishes to be perfectly clear, one should use the notation 

{x;{vy},E} 

to describe the ELCX-space consisting of the metric space X9 the convex 
covering {Vy} and the equiconnecting homotopy E; otherwise, if the 
ELCX-structure is clearly understood, just write X instead of the previous 
lengthy expression. By abuse of language, a space X is said to be an 
ELCX-space if it is metric and an ELCX-structure for it is implicitly 
understood. 
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A subspace A of an ELCX-space X is an ELCX-subspace of X if 

(1) A is a closed subset of X; and 
(2) E((A x A)nU x I)czA; 

in this case, the family {AnVy} and the induced homotopy 
(A x A)nU x I-+A form an ELCX-structure on A. 

In light of these definitions the proof of Proposition 3.3.8 shows that: 

Corollary 3.3.9 Any simplicial complex with the strong topology has an 
ELCX-structure for which every subcomplex is an ELCX-subspace. 

Proof Let K b e a simplicial complex. Take the covering by the open stars 
of the vertices of K as in the proof of Proposition 3.3.8 and define 

Simplicial complexes with the strong topology possess another intersting 
property. 

Theorem 3.3.10 A simplicial complex with the metric topology is an absolute 
neighbourhood retract. 

Proof Let K be a simplicial complex, let A denote its vertex set, let A' be 
the union of A and one extra element co and let AA' denote the simplicial 
complex formed by all finite subsets of A'. Furthermore, let R(/T) denote 
the vector space consisting of all functions s : / T - * R which vanish almost 
everywhere, endowed with the Euclidean norm 

Then, | A / i ' | m is a convex subspace of the normed linear space R(/V), and, 
hence, an A N R (see Proposition A.5.3). Now consider the subspace 
CK a\AA'\m consisting of all points s such that {XeA : s(X)^0} is a 
simplex of K\ geometrically, one can view C K as a cone with base \K\m 

and peak co. Define a retraction r : \AA'\m->CK as follows. Clearly, one 
must set r(co) = co. Assume that se |4 / t ' | m with s^co is given. Take the 
carrier x s of s and choose an ordering X0 < ••• < Xn of x s\{co} such that 
s(X0) ^ 5(A t) ̂  ••• ^ s(Xft). Take the maximal index k such that r(s) = s by 
the formulae 

E(s,s\ t) = 
(1 -2t)s 4-2^(5, s'\ 0 < K | , 

2(1 - t W ( s , s') + (2t -1)5', £ < f < l . • 
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s(X) = s(Xt\ if X = Xh 0 ^ i < fc = w; 

s(X) = s(Xi) - s(Xk + 1)9 if X = Xh 0 ^ i ̂  fc < w; 

s(A) = 0, if Ae/1\{A £ : 0<i<fc}; 

s(co) = 1 — £s(A), ^ e s u m t a k e n over all Ae/1. 
The definition is independent of the choice of the ordering for x s\{co}; 
however, a little effort is needed to show that all the coordinate functions 
rx : |zJ/T| m->R, s\—>s(X) are continuous. 

This will be proved by showing the continuity of each rx at any fixed 
point 5 0 e | 4 / l ' | m . Assumes0(X0) > 5 0(^i) ̂  ••• > s0(?in) > 0and s0(X) = 0,for 
XeA\{X09...,Xn}. To begin with, consider the open set 

V = {se\AA'\ : - s<A)l < s0(Xn)/l4(n + 1)], 

for 0 ̂  i ̂  rc, and |s(co) — s0(co)| < 50(A„)}. 

Let i(\)< <i(m)<n denote all the indices with s0(Xi(p))>s0(Xi{)+l\ 
for p = l , 2 , . . . , m and define tp as the arithmetic mean of s0(Xi{p)) and 
so(Ai(P) + i)' Take 

l / 0 = {«=[/ : Ä(Aj)>t! for i<i(0)}; 

then, for every p = 1,2,..., m — 1, take 

Up = {seU : t P > 5 ( ^ ) > t p + 1 , for i(p) < i < i{p + 1)}, 

and, finally, take 

(7m = {set/ : tm > ^/l^), for i(w) <i^n}. 

For each p = 0,1 , . . . , m, the sets Up are open and so is their intersection 

m 

^= n vP. 
p = 0 

If all s0(Xi) are equal, i.e., if there are no indices i(p)9 then take U = Ü. 
Now the restrictions rx\ U are continuous at the point s0, thus completing 

the proof of the continuity. 
This establishes C X as a retract of | / 4 / l ' | m , and, consequently, as an 

A N R (see Proposition A.6.4). Next, CK\{co} is an open subspace of C K , 
and so is A N R (see again Proposition A.6.4). Finally, the retraction 
C K \ {co} - • | K | m , sh+ [1 /(1 - s J ] {s - saco) establishes | K \ m as an A N R (see 
once more Proposition A.6.4). Q 

The idea of geometric realization extends to a functor. Let K and L be 
simplicial complexes with vertex sets A and r respectively, and let 
/ : X - ^ L be a simplicial map. One considers | K | and | L | as subsets of 
the vector Spaces R A and R r respectively, and forms the linear function 
/ : R ^ - ^ R 7 ^ , taking the basis vector ehXeA9to the basis vector ef(X)eRr. 
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Then / maps every simplex Ax continuously into the simplex Af{x); thus, 
it induces a map | / | : | K | | L | , called the geometric realization of f; with 
respect to the CW-structures given in Proposition 3.3.2 the m a p | / | is 
regulär in the sense of Section 2.1. This altogether establishes geometric 
realization as a functor from the category SiCo to the füll subcategory of 
the category CWT generated by the regulär CW-complexes. As for 
simplicial complexes, one often refers to the geometric realization of a 
simplicial map simply as a simplicial map, and omits the bars in the 
notation. 

The finiteness notions for CW-complexes (Section 1.5) have trans-
lations in the context of simplicial complexes. A simplicial complex K is 
said to be 

finite, if it contains only finitely many simplices; 
locally finite, if every simplex of K is a face of only finitely many 

simplices of K, which is the same as requiring that every vertex 
belongs to only finitely many simplices; 

countable, if it contains only countably many simplices; 
finite-dimensional, if K = Kk for some natural number k (in this case 

the natural number 

d i m K = d i m | K | 

is called the dimension of K). 

The following fact is evident: 

Proposition 3.3.11 The functor 'geometric realization' \-\ : SiCo-+CWr 

preserves and reflects finiteness, countability, local finiteness and finite-
dimensionality. • 

There is also a slightly more delicate Statement: 

Proposition 3.3.12 The nerve of a covering of a space is locally finite iff the 
covering itself is star-finite. • 

Local finiteness delivers a criterion for the coincidence of the two 
topologies on a simplicial complex. First, note 

Lemma 3.3.13 If the simplicial complex K is locally finite, the star covering 
of K is a locally finite covering of\K\m. 

(As in Corollary 3.3.6, the sufficient condition given here turns out to be 
necessary also; this is a consequence of the next proposition.) 
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Proof Take a point se\K\ and consider the open neighbourhood 
U = n{St(A 5)° : Xsexs}, where xs is the carrier of s. By the local finiteness 
of K - being the nerve of its star covering (see Proposition 3.3.5) - each 
of the finitely many open stars St(A s)°, Xsexs meets only finitely many 
stars St (A)°, XeA\xs. Thus, U is a neighbourhood of s, meeting only finitely 
many members of the star covering of \K\m. • 

Proposition 3.3.14 The topology determined by all simplices agrees with the 
strong topology on a simplicial complex iff the simplicial complex is locally 
finite. 

Proof '=>': The assumption implies that the corresponding CW-complex 
is metrizable. Thus the result follows from Proposition 1.5.17. 

4<=': This follows immediately from Lemma 3.3.13 and Corollary 3.3.6. 

• 
Moreover, the finiteness notions permit the comparison of simplicial 
complexes to Euclidean complexes. A Euclidean complex K is called a 
Euclidean realization of the simplicial complex K, if the vertex scheme of 
K is isomorphic to K. 

Theorem 3.3.15 A simplicial complex has a Euclidean realization iff it is 
finite-dimensional, countable and locally finite; if the dimension of such a 
simplicial complex is n, then its Euclidean realization can be taken in R2n+i. 

Proof It is a consequence of Theorem 3.2.9 that the given conditions on 
K are necessary. Conversely, let K be a countable and locally finite 
simplicial complex of dimension n. In order to construct a Euclidean 
realization K of K, choose first a sequence {vj : j e N } of points in R 2 W + 1 

such that every In + 2 members of the sequence are affinely independent 
and such that the sequence {(v^oJeN} of the Oth coordinates is 
monotonically increasing with (vj+ , ) 0 ^ (^) 0 + 1, for all jeN. This can be 
done by means of the following inductive process. Start with v0 = 0, and 
take for j = 1,2,...,In, 

Vj = ej+je0 

where e0,el,...,e2n denotes the canonical basis of the vector space R 2 M + 1 . 
Now assume that vk is chosen up to k ̂  In. Every 2n + 1 of the points 
v0,...,vk span an (affine) hyperplane of R 2 / , + 1 . But there are only finitely 
many ofthose hyperplanes in R 2 " + 1 , thus their union does not cover the 
total space R 2 N + \ and one may choose vk+1 outside of this union, so that 
the extra condition on the Oth coordinates is satisfied. 
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Since K is assumed to be countable, its vertex set K 0 is countable. 
Therefore, there is an injective function / : K 0 -> R 2 n + 1 taking values only 
in the set {v,}. Then, for every simplex x e K , the convex hull x of the set 
f(x) is a geometric simplex in R 2 n + 1 , with d imx = dimx. The following 
claim is now made: the set K = {xc: R2n + l : x e K } of geometric simplices 
is an Euclidean complex. The first condition is clear: a face of a geometric 
simplex x is spanned by the image of a subset of x under the function / ; 
this subset is a simplex of K , because K is a simplicial complex. Looking 
at an intersection x n y , one notes that the total number of vertices 
involved, i.e., the cardinality of x u y , is not greater than 2n + 2, since, 
under the assumption dim K = n, every simplex of K has at most n + 1 
vertices. Thus, f(xKjy) is an affinely independent set in R 2 n + 1 and spans 
a simplex, of which both x and y are faces. But the intersection of two 
faces of a geometric simplex is a common face of both. 

It remains to verify the third condition of the definition of Euclidean 
complexes; this says that every element of K has a neighbourhood meeting 
only finitely many elements of K . Since geometric simplices are compact, 
this is equivalent to the requirement that every point of se\jK has a 
neighbourhood meeting only finitely many elements of K . Take such a 
point 5 = (s 0 , . . . , s2n) and consider the cube W(s\ 1). It is a neighbourhood 
of s and contains only points of those members of K which have at least 
one vertex with the Oth coordinate less than s0 + 1. But there are only 
finitely many vertices of this kind in this game, and by the local finiteness 
of K each of them belongs to only finitely many simplices of K . 

Thus, K is a Euclidean complex, and, by construction, its vertex scheme 
is isomorphic to K , thus proving the theorem. • 

In general, a simplicial complex L is called a subdivision of the simplicial 
complex K if there is a piecewise linear homeomorhism h : | L | - > | K | , i.e., 
a homeomorphism mapping each simplex ( = closed cell) of | L | by a 
restriction of an affine embedding into a simplex of | K | . If K is the vertex 
scheme of a Euclidean complex K , and L is a subdivision of K (see 
Section 3.2), then the vertex scheme L of L is a subdivision of K ; the 
homeomorphism required by the definition can be taken as induced from 
the identity on the underlying polyhedron | K | = | L | . In view of this 
definition, the next Statement is not a tautology. 

Proposition 3.3.16 For any simplicial complex K , the barycentric subdivision 
K ' is a subdivision of K . 

Proof Define a function h : A' = K^>\K\ by associating to each vertex 
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x of K\ which is a simplex of K the barycentre of the simplex Ax, which 
is a closed cell in | K | . Let JC = { x 0 , x l 5 . . . , x f c } be an arbitrary /c-simplex 
of K'\ assume, without loss of generality 

X 0 CZ X ! CZ • • • CZ Xfc, 

and let A0, A A k denote the simplices (= cells) of |K| corresponding 
to x 0 , x l 5 . . . , x f c respectively. Then, all Ah are faces of Ak. Now 
interpret h\x as a function defined on the vertices of Ax cz \K'\ (a basis of 
the vector space Rx) with values in Ak (in the vector space RXk and extend 
it to a map hx : Ax-*Ak cz | K | , which is the restriction of an affine 
embedding. These maps hx, taken for all simplices xeK\ fit together to 
define a map/i : which is continuous because its restriction to 
each closed cell of is continuous. 

In order to recognize h as a homeomorphism, one exhibits its inverse 
map. Take a point se\K\. Let X0,Xl9...,Xk denote the vertices of x s , the 
carrier of s, numbered in such a way that s 0 > sx ^ ••• ̂  sk, for the 
corresponding barycentric coordinates. Take Xj = {X0, Xi,..., Xj} and let b} 

denote the barycentre of the cell ot\K\ corresponding to the simplex xj9 

for O^j^k. Then s has a unique barycentric representation 
k 

s= X Sj • bj. 
j=o 

Now x = (x 0, x 1 ? . . . , xk) is a simplex of K' and gives rise to the closed cell 
Ax in \K'\. By assigning to s the point of Ax whose coordinate at the place 
Xj is just s'jy one obtains a well-defined and continuous function | K \ -»| K' \ 
which is an inverse map to h. • 

Remark The homeomorphism h is canonical but not natural. Moreover, 
the following example shows that there cannot be any natural equivalence 
between the functors 'geometric realization' and 'geometric realization 
composed with barycentric subdivision'! 

Example 4 Take K to be the power set of {0,1,2} and L the power set 
of {0,1}. Clearly, | K | , | K ' | can be identified with the standard-2-simplex 
A2 and | L | , | L ' | with the Standard-1-simplex A1. Let /,g : K-+L denote 
the simplicial maps given by 

/(O) = 0(O) = O, /(1) = 0, <7(1)= 1, /(2) = 0(2) = 1. 
A natural equivalence between the two functors described above would 
require homeomorphisms (see Figure 10) h2 : | K ' | - » | K | and hx : |L ' | -» 
| L | , such that 

l/l°Ä2 = V I / ' l , l0hA2 = M f l a 
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Figure 10 

Now consider the vertex v of K' corresponding to the simplex {0,1,2} of 
\K\. In the geometric realization, it yields an interior point v of the 
geometric simplex A2. Thus h2(v) also has to be an interior point of A2. 
But note that f'(v) = g'(v)\ This implies h x ° | /' | (v) = h x ° | g' \ (v) = w, forcing 

h2{v)e\f\-»r^\g\-». 
But this intersection contains only a Single point, which belongs to the 
boundary and is not at all an interior point. • 

As an application of barycentric subdivision, one can prove the following 
classical theorem. 

Theorem 3.3.17 (Simplical approximation theorem) Let KyL be simplicial 
complexes with K finite and let g : | K | - » | L | be a map. Then there is a 
subdivision K' of K together with a piecewise linear homeomorphism 
h : \K'\->\K\ and a simplicial map f : K' L , such that 

(i) 0ofc and 
(ii) for every xe\K'\9 \f\(x) belongs to the carrier of g°h(x) in L (the 

homotopy between these two points will be given by the line segment 
connecting them in this carrier). 

Proof Since | K | is compact, its image by g in | L | is contained in the 
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geometric realization of a finite subcomplex of L (see Proposition 1.5.2); 
thus, one may also assume L as finite, and, moreover, one may take K, 
L as Euclidean complexes in some R" (see Theorem 3.3.15). For any vertex 
XeL0, let Vx denote its open star; the family {g~ 1(VX) : XeL0} is an open 
covering of \K | and thus there is subdivision K' of K such that the covering 
{|stK<#r| : KEK'0} o f\K'\ — \K\refines the covering {g~i(Vx) • AeL 0 }(see 
Proposition 3.2.14); according to the discussion about the definition of 
subdivision, one can take h to be the identity. Now choose, for any vertex 
KEKQ, a vertex XeL0 such that |stA-ir| czg~l{Vx). The assignment K*I—>A 
gives a function/ : K ' 0 - > L 0 . The objective is to prove that this function 
/ is a simplicial map with the desired properties. To this end, consider a 
point JCG|K ' | ; let K09...,KQ denote the vertices of its carrier. Then, 

g(x)eC\g{\stK.Ki\)c:f]VfiKl)9 

and so the intersection on the right-hand side is non-empty, implying that 
the ver t ices / ( i r 0 ) , . . . , / ( i r g ) form a simplex of L , and hence the function 

/ i s a simplicial map. Moreover, the simplex {f(K0),...,f(KQ)} IS a f a c e °f 
the carrier of g(x) and contains | / | (x) . Thus, the homotopy 
H :\L\xI-*R\ (x,r)h->r • g(x) + (l -t) • |/ |(x) factors through |L | , thus 
completing the proof. • 

Exercises 

1. Show that the forgetful functor SiCo-*Sets, which assigns to every 
simplicial complex its vertex set, has a left as well as a right adjoint. 

2. Show that the Operation of 'taking the vertex scheme of a Euclidean 
complex' commutes with 'barycentric subdivision'! 

3. Show that the category SiCo has products, but that the geometric 
realization does not commute with products! 

4. Let X be a space and let the family {ux : XeA} be a locally finite 
partition of unity on X. Let {Vx : XeA} denote the induced open 
covering of X and form its nerve K(A). Let L be a subdivision of K(A) 
with vertex set A and let h : | L | - H K ( / \ ) | be a homeomorphism 
mapping each simplex of \L\ linearly into a simplex of |K(/1)|. 

(a) Show that the family (px°h~l°ipA : XeA) is a locally finite 
partition of unity on X\ (Here, as in the main text, px denotes the 
restriction of the coordinate function IÄ^I to |L| . ) 

(b) Let {Uy : yeT} denote the covering of X which is induced by 
the partition of unity in (a). Show that its nerve K(F) can be considered 
as a subcomplex of L , and that 

fc||K(r)Wr = ^ ! 

5. Let X be a space and let the families {ux : XeA}, {uy : yeT} be locally 
finite partitionsof unity on X. L e t { l / A : XeA} and {Uy : yeT} denote 
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the respective induced open coverings and \p A : X ->|K(/1)| , 
ipr : X ->\K(r)\ the canonical maps (Exercise 4). 

(a) Assume {Uy : yeT} to be a refinement of {L/A : XeA}. Show 
that there isa simplicial map / : K(JT)-> K ( / l )such that | / | ° ^ r — *A 

(b) Show that the nerve of the covering A x r, which is induced by 
the product of the given partitions of unity, has a canonical embedding 
j : K(A x r)^K(A) x x K(r) into the product x 
(in the sense of Exercise 3), such that \pA

0J\0{l/Axr={l/A a n d 
\Pr J\^ A x r = l l / r- (Here p A and p r denote the projections from the 
product K(A) x K(F) onto the respective factors.) 

6. For any space X, the proper diagram of nerves is the diagram containing 
all nerves of locally finite partitions of unity on X as objects, and having 
as maps either the embeddings h \ \K(r)\ of Exercise 4 or the 'project­
ions' \pA\K(A x r)l \pr\K(A x r)\ of Exercise 5(b). Show that any 
paracompact space is the (inverse) limit of its proper diagram of nerves. 
(Alder, 1974) 

7. A simplicial complex is said to be füll if any finite set of vertices that 
pairwise form 1-simplices is a simplex itself. Let K be any simplicial 
complex and let L be a füll simplicial complex. Show that a function 
/ : K0 L0 is a simplicial map K L iff it is a simplicial map K1 -> L. 

8. Show for simplicial complexes K , L : 

Here the isomorphism on the right-hand side is not assumed to be 
order preserving; but this property automatically holds if K (and 
therefore also L) is not the vertex scheme of the boundary Ä of a 
geometric simplex A. Prove that in this case every isomorphism g on 
the right-hand side is of the form g = / ' for some isomorphism on the 
left-hand side. (Finney, 1965) 

9. Show for simplicial complexes K,L : 

K^Lo(K')l^{L)1. 

(Segal, 1965) 
10. In some textbooks, the proof of Theorem 3.3.15 is based on the 

assumption that the sequence {v^JeN}, besides being of general 
Position, only satisfies the condition of not having a Cluster point in 
the ambient space R 2 m + 1 . Show by a counterexample that the given 
construction does not then necessarily yield a Euclidean complex. 
(Hint : Take K = Nu{{2n,2n + 1} : neN} and choose the sequence 
{v ; JeN} in such a way that the sequence of barycentres of the 
1-simplices obtained converges to one of them.) 

11. Prove that any ELCX-space is an LEC-space. 
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12. Prove the relative simplicial approximation theorem: let X , L be finite 
simplicial complexes, and D a subcomplex of X . L e t / : | X | - » L | be 
a map such that f\ \D \ = \ g\ for a simplicial map g : D-»L . Then, 
there exist a subdivision X ' of X containing D as a subcomplex and 
a simplicial map k: K'-^L such that k\D = g and | / c | ^ / r e l . 
(Zeeman, 1964) 

For the fatidic number 13, a bad property: 
13. Show by an example that for relative simplicial approximation one 

cannot require the homotopy to move every point only on the carrier 
of its image. (Zeeman, 1964) 

3.4 Triangulations 

Simplicial complexes will also be used in connection with general Spaces. 
If X is a space, a pair (X, h) consisting of a simplicial complex X and a 
homeomorphism h : \K\^X is called a triangulation of X. A space X is 
said to be triangulable if it possesses a triangulation. Clearly, simplicial 
complexes are triangulable, but this does not hold true for all 
CW-complexes. 

Example Intuitively, the CW-complex to be constructed is obtained by 
taking a sheet of paper and folding it infinitely many times with one edge 
pressed into one line segment. To render this precise, first define an 
auxiliary m a p / : /->R by taking/(0) = 0 and f(t) = t • sin(7i/2f) for t > 0. 
This function has the absolute maximum 1, and, furthermore, has an 
infinite sequence t\ > t'2 > •••£'„ > ••• of relative maxima (1 > t\). Denote 
by t" the absolute minimum of / . 

Now take the space X to be the image of the Square I2 under the map 
g : / 2 - » R 3 , (s,r)k-»(s,s * t, f(t)). The following filtration is evidently a 
CW-structure for X: 

X° = {0, e0, e2, e0 + ex + e2, t"e2}> 

Xl = {{s,s • r , 0 | s e / , t e{0 , l}}u{ te 2 | r e [ r , l ] }u{( l , r , / ( r ) ) | r e /} , 

X2 = X. 

The corresponding cell decomposition of X contains five 0-cells, five 1-cells 
and one 2-cell (see Figure 11). 

The space X is compact. Thus, if (X,/i) were a triangulation of X, | X | 
would be compact and therefore X would be a finite simplicial complex 
(see Proposition 3.3.2 and Proposition 1.5.8). But it will be shown that 
the infinitely many points t'le2,t'2e2,...j'ne2,... must correspond to 
vertices of any triangulation of X\ 
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eo + e, + e2 

Figure 11 

Because dim X = 2 (see Proposition 1.5.14), a triangulation of X could 
contain only simplices of dimension ^ 2. A n interior point of a 2-simplex 
has neighbourhoods homeomorphic to the interior of the 2-ball. Thus, 
none of the points te2, tel can correspond to an interior point of a 
2-simplex. Now assume, for some n,t'ne2 corresponding to an interior 
point of some 1-simplex. Take a point xeX, X ^ t'ne2, belonging to the 
same 1-simplex as an interior point. Then, every sufficiently small 
neighbourhood of t'ne2 has to be homeomorphic to an open 
neighbourhood of JC. But this is impossible, as one can see from the shape 
of the following typical neighbourhoods of t'ne2 and JC. 

There is a local base (base for the neighbourhood System) at t'ne2 in X 
consisting of subspaces homeomorphic to the space V constructed below 
via a homeomorphism mapping t'ne2 to the centre v of V. The basic bricks 
of V are half discs 

D 1 / 2 = {(s, t) : - l < s < l , 0 < t < y/l -s2}. 

First, take 2n— 1 copies of D 1 / 2 and patch them together along their 
bounding diameters. Denote the resulting space by Vn. Secondly, take a 
further copy of D1/2 and identify (s, 0) with (— s, 0), thus obtaining a space 
V. Thirdly, take the canonical embeddings [ 0 , 1 ) V m [0,1)-» 7', both 
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describable by si—>(s,0), and define V to be the union space 

v=vU{0A)vn. 
On the other hand, considering x close to t'ne2, one can find three 

different types of local bases, consisting of Spaces of the following forms: 
(i) open 2-cells, (ii) Vn as described before, (iii) Vn+ x in the same sense. But 
all these bases are incompatible with the local base at t'„e2 described. 

• 

However, regulär CW-complexes are well behaved. 

Theorem 3.4.1 A regulär CW-complex is triangulable. 

Proof Let X be a regulär CW-complex. Construct inductively 
triangulations (K(n),h„) of the skeleta X", such that every closed cell of 
dimension ^ n corresponds to a subcomplex of K(n). Clearly, one can take 
K{0)= {{x} : xeX0} and h0 : \K(0)\^X° induced by the identity. 

Now, suppose {K(n— 1), /*„_!) is already given. Take an n-cell e of X. 
Its boundary e\e is a subcomplex of X (see Theorem 1.4.10), and thus 
triangulated by the inductive hypothesis; let (KeJie) denote this 
triangulation of e\e. Moreover, let Le be a Euclidean realization of Ke 

(Theorem 3.3.15). Choose the dimension of the ambient Euclidean space 
high enough to be able to form a cone (C, \Le\,p). C has a canonical 
simplicial decomposition (Proposition 3.2.13) whose vertex scheme Ke 

may be viewed as containing Ke as a subcomplex. Extend the 
homeomorphism he : \Ke\-*e\e to a homeomorphism he : \Ke\->e. 

The homeomorphisms hn^x and he, for each «-cell of X, fit together 
into a homeomorphism 

hn:\K(n)\ = \K(n-l)u[)Ke\-+X». 

This finishes the induction. 
Now define the simplicial complex K = [jneNK(n); since the covering 

of \K\ by its simplices refines the covering by the family {|X(n)| : neN}, 
the space | K | is the union space of the expanding sequence {|K(n)| : neN} 
(see Proposition A.2.1). Thus the desired homeomorphism h : \K\^X is 
obtained from the fact that X is the union space of the expanding sequence 
{Xn : neN}. • 

Remark A careful analysis of the preceding proof shows that, for every 
cell e of X, there is exactly one vertex peeK° with h(pe)ee. Thus there is 
a one-to-one correspondence between the vertices of K and the cells of 
X. Moreover, the inclusion relation between the closed cells of X provides 
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K with a distinguished local vertex ordering. In particular, if X is (the 
geometric realization of) a simplicial complex L , then the simplicial 
complex K is nothing but the barycentric subdivision of L , K = L. • 

Notes to Chapter 3 

Plane triangles have been the subject of mathematical research already at 
prehistorical times; they naturally evolved to arbitrary dimensions in the form 
of geometric simplices. The topological invariance of simplices under simplicial 
retractions (see Lemma 3.1.1), which is crucial for the proof of the triangulability 
of simplicial sets (see Corollary 4.6.12), is due to Barratt (1956); an alternative, 
but not simpler, approach can be found in Lundell & Weingram (1969). The 
intersection property (see Theorem 3.1.5) was conjectured by A . N . Kolmogorov 
and proved in Borovikov (1952); our presentation follows Winkler (1985), where 
one also can find applications to probability theory, in particular Markov chains. 

The history of polyhedra, the objects which form the main theme of Section 3.2, 
is nearly as old as that of the plane triangles. The outline given here is similar to 
that in Rourke & Sanderson (1972), where the local characterization of polyhedra 
in Theorem 3.2.20 was originally developped. The first counterexample to the 
'Hauptvermutung' (see Remark following Example 2 in Section 3.3) was exhibited 
in Mi lnor (1961). 

The abstract notion of a simplicial complex (see Section 3.3) appeared for the 
first time with füll clarity in Alexandroff (1925). The nerve of a covering (see Section 
3.3, Example 1) was also introduced by Alexandroff; this notion proved to be 
essential for the development of certain cohomology theories - Eilenberg & 
Steenrod (1952) and Dold (1972). Different topologies for a simplicial complex 
were compared in Dowker (1952). In particular, it is there shown that the topology 
determined by the simplices and the metric topology lead to Spaces of the same 
homotopy type (see Proposition 3.3.7); the proof given here is based on ideas in 
Mather ((1964). The class of LEC-spaces was first studied in Fox (1943) and Serre 
(1951); the subclass of ELCX-spaces and its relationship to simplicial complexes 
with strong topology (see. Proposition 3.3.8, Corollary 3.3.9) are due to Milnor 
(1959). In Hanner (1951), it is proved that those complexes are also A N R s . The 
embedding theorem for finite-dimensional, countable and locally finite simplicial 
complexes (see Theorem 3.3.15) can be found in Seifert & Threlfall (1934), but 
might be much older. The absolute simplicial approximation theorem (see Theorem 
3.3.17) is due to Alexander (1915). 

The example of a non-triangulable CW-complex (see Section 3.4, Example) 
presented here in a purely combinatorial fashion was first given by Metzler (1967) 
who proved its crucial property by means of local homology; it was the first 
example of that sort. 
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Simplicial sets 

4.1 The category A of finite ordinals 
In the most general form of the theory of combinatorial complexes, the 
interplay between the different simplices of a structure is ruled by an action 
of the category A of finite ordinals, whose morphisms serve as Operators. 
Therefore it is necessary to describe this category in minute detail. The 
main part of the abstract material in this section can be better understood 
if one looks at the geometric Interpretation of the objects and morphisms 
of the category A. Hence the necessary geometric considerations are 
included here. 

For every natural number n, let [n] denote the corresponding ordinal, 
i.e., the set {0,1,...,n} of natural numbers equipped with its natural 
ordering. Geometrically one should view [n] as the standard-n-simplex 
An of R M + l defined in Section 3.1. In this context, it is often convenient 
to label the vertices et of An just by the natural number i; et is said to be 
the ith vertex of An. The (small) category A of finite ordinals has as objects 
the ordered sets [n], for all neN, and, as morphisms - which already now 
will be called Operators - all order-preserving, i.e., weakly increasing, 
functions between such ordered sets. Geometrically, an Operator 
a : [m] ->[n] describes the map Aa : Am^An induced by the linear map 
R m + 1 ->R W + 1 , e,h-»£ a ( i ); the natural number m is called the dimension of a, 
notation: 

m = dim a; 

thus, in accordance with the intuition, 

dim a = dim (dorn Aa). 

Note that all the maps Aa are closed maps because the geometric simplices 
are compact Spaces. 

In abstract language the assignments [n]h-»zT, <x\->Aa form a covariant 
functor A~\A^> Top. But one may also think of a left action of the category 
A on the (disjoint) union of the Spaces An; according to this, it is customary 
to use the short notation 

at = Aa(t), 
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for all teAdima. The coordinates of at can be computed by 

{at\= X ty 

There is a tricky, but useful, application of the geometric Interpretation 
of the category A. 

Lemma 4.1.1 For fixed m, neN, an Operator a : [m]->[tt] is uniquely 
determined by the value at for one fixed interior point te(Am)°. 

Proof Let a, ß : [m] [n] be different Operators. Then there is a 
smallest ie\m~] such that a(/) ^ ß{i)\ assume a(i) < ß(i). Take te(Am)° and 
look at the a(i)th (barycentric) coordinates of at and ßt. The first is the 
sum of all coordinates t} of t, with a(j) = a(i); the second is the sum of the 
r/s, with ß(j) = a{i). Thus 

A more formal feature of the category A - without a convenient geometric 
interpretation - is the order structure on the sets 4([m], [n]) of Operators 
from [m] to [w]. It is a partial order, inherited from the fact that Operators 
are number-valued functions. Define for Operators a,ß : [ m ] - » [ n ] : 

a ̂  ßoa(i) ^ ß{i) for all ie[m\. 

Clearly, this order is compatible with composition; thus A has the structure 
of a 2-category. 

The subcategory of A formed by its monomorphisms will be denoted 
by M. A monomorphism - in general, denoted by p or v - is an injective 
Operator, i.e., a strictly increasing function. If p : [fe] -> [n] is an injective 
Operator, then fe ^ n; geometrically, there is an embedding of the 
standard-fe-simplex Ak as a fe-dimensional face, the pth face, into 
the standard-n-simplex An. Therefore the morphisms of M, i.e., the 
monomorphisms in A, are called face Operators. Every point seAn 

determines a unique face Operator s# and a unique interior point sbeAk, 
with fe = dim s # such that 

s = sus\ 

Special face Operators are: 

(1) the identity Operators 

f : [ n ] ^ [ n ] 

mapping every element onto itself; 
(2) the elementary face Operators 

31 : [ n - l ] - [ n ] , 
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which are injective and omit the index i in the image; geometrically, 
they represent the embedding of An~x into An as the zth face, which 
is the (n — l)-dimensional face opposite to the vertex i\ 

(3) the vertex Operators 

ß? : [ 0 ] - M 
mapping the unique element 0 in the domain onto the element i of 
the codomain; geometrically, these Operators exhibit the vertex /, with 
0 ^ i ^ n; 

if no confusion arises, the (upper) index n will be suppressed from the 
notation. 

The composition of the elementary face Operators is subject to the rule 
öi°öj = öj°öi-l9 j<i. 

The category M is generated by the elementary face Operators; every 
proper, i.e., non-identity, face Operator p : [/c] [n] has a unique 
decomposition of the form 

A Z = ^ v o . . . o < 5 . i ? 

with 0 ̂  i1 < • • • ir ^ rc; the indices ij are those elements of [n] that are not 
in the image of a, i.e., those vertices of An that do not belong to the pth face. 

The assignment p\-+im p induces a bijection between the set of the face 
Operators with the same fixed codomain [n] and the set of non-empty 
subsets of [n], and thus the set of the face Operators with codomain [n] 
inherits another order, the structure of a (partially) ordered set with 
suprema. This leads to the following notations: 

(1) p cz v, if image p cz image v, i.e. if the pth face of An is contained in 
its vth face, and 

(2) pw for the unique face Operator whose image is image puimage v, 
i.e., which corresponds to the convex hull of the union of the pth face 
and the vth face, 

whenever p and v are face Operators with the same codomain [n]. 
Viewing the face Operators as sets, one can easily describe a functor 

A : useful in the context of simplicial subdivisions (see 
Lemma 4.6.14). It associates to every face Operator p : [/c] [n] the unique 
face Operator p : [/c + 1] -» \n + 1], satisfying 

image p = image juu jn+1) . 

The function ß is given explicitly by 

.[p(i\ ie[fc] 
( n + l , i = fc+l, 

showing the functoriality of the assignment Notice that, up to the 
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dimensia indices, the face Operators p and fr have the same 
decompcition into elementary face Operators; more precisely, if 

then 
fi = S l + l o . . . o ö k + 2 . 

Dualhto the category M, one considers the subcategory E of A formed 
by the epnorphisms in A. A n epimorphism - in general denoted by p or 
t - i s jusa surjective Operator. If p : [m]-*[fc] is a surjective Operator, 
then m*k; if it is proper, i.e., if m>k, then geometrically the 
standardw-simplex Am 'degenerates' to the standard-/c-simplex Ak. 
Therefor, the morphisms of E, i.e., the epimorphisms in A, are called 
degeneray Operators. Special degeneracy Operators, besides the identity 
Operator, are 

(1) the lementary degeneracy Operators 
< : D i + l ] - [ n ] , 

0 ^ < n, which are surjective and map the index i, as well as its 
succssor /+ 1, to i, i.e., which degenerate the line Segments parallel 
to tb edge connecting the vertices / and i + 1 in A"+1 to a point; 

(2) the reterminal Operators 

< : [m]^[l], 

0 ^ < m - 1, characterized by co?(i) = 0 and co™(i 4-1) = 1, i.e., the 
map which degenerate the /-dimensional face of Am spanned by the 
verwes 0,...,i to the vertex 0 of A1 and the opposite face of Am to 
the ertex l of A1; 

(3) the trminal Operators 

co'n : [ m ] - [ 0 ] , 

maping all elements of the domain onto the unique element 0 in 
the odomain, i.e., the constant functions 

Am^>A°. 

Agai, if no confusion arises, the (upper) indices n, m will be suppressed 
fron the notation. 

The ccnposition of the elementary degeneracy Operators is subject to 
the following rule: 

(Tjo(Ti = CIi-.1°Gj, j<L 

This impes that every proper degeneracy Operator p : [m] [/c] has an 
unique dcomposition of the form 

p = ah°~-°oh, 
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with 0 ^7! < • • -js < m, where the indices j are the element of [m] that have 
the same image as their successor under a. The following geometric 
preservation property of degeneracy Operators holds true. 

Lemma 4.1.2 Degeneracy Operators preserve interiors; i.e., if p : [m] -»[fc] 
is a degeneracy Operator and t is an interior point of Am then pt is an interior 
point of Ak. 

Proof It is to be shown that all the barycentric coordinates 

(pt)i= Z tj 
PÜ) = i 

of pt are positive. Because p is surjective there is, for every ie[fc], at least 
one summand tj on the right-hand side of the above equation and because 
t is an interior point, each of the r/s is positive. • 

The categories E and M are related to each other in several ways. To 
begin with, observe that the assignment cr?i-+<S? + 1 induces a contravariant 
functor 

- 1 : £ - > M , pn+p 1 , 

which is an embedding and can be explicitly described by 

p 1 0 ' ) = maxp- 1 (7) 

for all jecod p; hence, 

pp 1 = z. 

This implies, for every degeneracy Operator p, 

p 1 = max (peM : pp = i), 

i.e., p 1 is the maximum of the set of the sections of p with respect to the 
order Similarly, one obtains a contravariant functor - ± : £ - > M , 
pi—>p±, which assigns to each degeneracy Operator its minimal section 
and is also an embedding. Conversely, one has the functors - 1 , -L\M-+ E, 
p\-^pL, p{, which assign to each face Operator its maximal and minimal 
retraction respectively. These are not embeddings: two face Operators 
P, v : [fc] [n~\ have the same maximal retraction if they differ only at the 
fcth place, i.e., if p(i) = v(i) for 0 < / < fc; they have the same minimal 
retraction if they only differ at the Oth place. 

The composition of elementary face and elementary degeneracy 
Operators is subject to the rules 

aioSj = öj°oi_1, j<i, 
Gi°öj = i, i^j^i+ 1, 
<Tioöj = öj-1°ah ; > i +1; 
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a useful crib for these and the former interchanging laws is that the smaller 
index is maintained, with only one exception. Noteworthy also are the 
following composition laws involving vertex Operators: 

o°&i = £a{i), fedoma, 
(OjOSi = <5}, 

There are some technical characterizations of face and degeneracy 
Operators that will prove useful in the sequel. 

Lemma 4.1.3 (i) Any degeneracy Operator is uniquely determined by the set 
of its sections; 

(ii) any face Operator of dimension > 0 is uniquely determined by the set 
of its retractions; 

(iii) all vertex Operators with a fixed codomain have the same set of 
retractions. 

Proof (i) Let p, x be degeneracy Operators with the same set of sections. 
Then, the maxima of these sets coincide, i.e. p x = T 1 , implying that p — x. 

(ii) Let p, v : [fe] [n], fe > 0, be face Operators with the same set of 
retractions. Then, p1 = v1; this implies that p(i) = v(i) for 0 ^ i < fe. But 
also pL = v±; because fe> 0, one finally obtains p(k) = v(fe). 

(iii) The set of retractions of a vertex Operator contains just one element, 
namely the corresponding terminal Operator. • 

Thus, to distinguish between vertex Operators, another criterion is needed. 

Lemma 4.1.4 Let eh Sj be vertex Operators with the same codomain. Then 
i > j iff there is a degeneracy Operator x such that xst = ö0 and xSj = ö1. 

Proof l=>': Take x = a>j. 
'<=': Since x is non-decreasing, the equations xe^O) = <50(0) = 1 and 
T£.(0) = (5^0) = 0 together imply i = e,(0)> e(0) = j. • 

An arbitrary Operator a : [m] -» [rc] has a unique decomposition into a 
degeneracy Operator ab, followed by a face Operator a#: 

# i? 
OL = OL °0C . 

With respect to composition, one has the evident rules 

(ocßf = a #(a b/? #) #, (aßf = (a"ß#fß\ 
The images under a map Aa of two faces of Am, one of which is contained 

in the other, are two faces of A", one of which is again contained in the 
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other; this consideration proves that 

p cz v=>(ap)# cz (avf 

for face Operators p, v and any Operator a such that dorn a = cod p = cod v. 
For some purposes, it is convenient to use another coordinate 

description for the points of the standard-simplex An. The sum coordinates 
of the point t = (t0, tlt...,, tn) are the n + 2 numbers s_ l 5 s0,..., s„ given by 

j 
SJ = I 

i = 0 
for — 1 ̂  7 < n; note 

s_! = 0 < s 0 ^ < s „ - ! ^ s „ = 1. 

A point is an interior point of A" iff it has n -f 2 different sum coordinates. 
The effect of an Operator to the sum coordinates consists in omitting some 
of them and repeating some others. More precisely, 

(7l(s _ j , . . ., S. _ 1 , Sj,. .. , SN + j ) = (S_ !,. . ., Sf _ j, S- + j, . . . , S„ + j ), 

<5j(5_ x , . . . , Sj-_ i, Sj,..., SN_ j)= (s_ 1 ? . . ., Sj_ l 5 Sj_ l 5 S,-,.. ., Sn_ 

for 0 < i ̂  n. The following rather technical fact will be needed. 

Lemma 4.1.5 Let t'eAm be an interior point and let teA" be a point whose 
sum coordinates are among those of t'. Then there is a unique Operator 
oi : [m] [n] with af = t. 

Proof Compose an Operator a of the degeneracy Operators that are 
necessary to kill the superfluous sum coordinates of t' and the face 
Operators that force the desired repetitions. Because t' is assumed to be 
an interior point of Am, the result is uniquely determined (see Lemma 4.1.1). 

• 
The abstract framework for the development of the next sections is given 
by the notions of: 

simplicial object in a category <?; that is, a contravariant functor A -> 
cosimplicial object in a category that is, a covariant functor A ->^; 

and 
presimplicial object in a category ^; that is, a contravariant functor 

These objects, together with the corresponding natural transformations, 
form functor categories, which will be denoted by Si%\ CSfä and PSi^ 
respectively. Moreover, the forgetful functor that assigns to a functor with 
domain A its restriction on the subcategory M will be denoted by 
P : 
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Exercise 

If p, v : [fe] -+ [«] are such that 

P — ^ir°'"°^i^ v = djs°'"°dji 

with r = s , i 1 < ••• <irJi < ••• <y"s, prove the equivalence 

p^voik^jk for fe = 1,...,r = s. 

4.2 Simplicial and cosimplicial sets 

A simplicial object in the category Sets of sets, i.e., an object of the category 
SiSets, is called a simplicial set. In dealing with simplicial sets, it is more 
convenient to think of a simplicial set X as an N-graded set X = [_\Xn 

with the small category A operating on the right; more precisely, X is 
considered to be the disjoint union of the sequence X0 = X([0]),..., Xn = 
X([ri])9... of sets together with given set maps 

a* = Ar(a) : Xn-+Xm, X\-+XOL 

for each Operator a : (m) -> [w], such that 

and 
(aß)* = ß*a* 

for every pair a ,ß of Operators whose corresponding composition is 
defined, i.e., 

x(aß) = (xa)ß 

for all x, a, ß for which xa and aß are defined. The elements of X are called 
simplices of X and the elements of a single Xn are called, more specifically, 
n-simplices of X; a pair (x,a) consisting of a simplex xeX and an Operator 
aeA such that xa is defined will be called composable. If xeX, , , then, in 
the terminology of N-graded sets, the natural number n is the degree of x; 
however, here one opts for the denomination dimension of x - notation: 

n = d imx 

- in view of the geometric intuition behind the concept of simplicial set: 
one should think of every (abstract) simplex xeXn as a copy Ax of the 
geometric standard-simplex An, and these are glued together by means of 
the maps A*:AX0L-+AX; more precisely, the geometric realization \X\ of 
the simplicial set X is defined to be the quotient space of \_\Xnx An - all 
Xn endowed with the discrete topology - with respect to the relation 

(xa, t) ~ (x, at) 

for any simplex xeXn, any Operator a : [m]-^[n] and any point teAm. 
The class of a pair (xJ)eXn x An with respect to the induced equivalence 
relation, which is a point of \X\9 will be denoted by [x,f]. 
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Remark Since the codomain of an identification map whose domain is a 
/c-space is automatically a /c-space, the geometric realization \X\ of a 
simplicial set X as defined here is always a /c-space. The fact that \ X\ also 
belongs to the class of weak Hausdorff /c-spaces, the favourite Spaces of 
this book, remains unproved until it will be shown that | X | has an intrinsic 
CW-structure (Theorem 4.3.5). 

Example 1 The (simplicial) standard-p-simplex A[p] is the contravariant 
hom-functor A->Sets represented by the ordinal [/?]; its n-simplices are 
all the Operators y : [/?] -» [/?]. Notice that an Operator cx : [m] -» [n] acts 
by composition: 

a*(y) = ycc = y°a. 

There is a geometric justification for the terminology. The geometric 
realization of a simplicial standard-simplex is a geometric standard-
simplex, up to the natural homeomorphisms which are induced by the 
assignments 

[y,f]H>yf, fi-*[i,f]. • 

The morphisms of the category SiSets are called simplicial maps. Taking 
the operational point of view, a simplicial map f : Y-+X from a simplicial 
set Y to a simplicial set X is considered to be a function Y->X9 which 
preserves the grading and is compatible with the Operators, i.e., which 
satisfies 

/0>a) = (/(y))a, 

for all composable pairs (y,a). Clearly, the monomorphisms and 
epimorphisms in the category SiSets of simplicial sets are just the simplicial 
maps which are given by injective and surjective functions, respectively. 
The geometric realization of the simplicial map / is the well-defined 
map | / | : | Y | - * | X | given by [y, f] •[/()>)>']• Thus, one has defined a 
geometric realization functor \-\: SiSets-* Top, which will be discussed in 
great detail in the next section. 

Example 1 m An Operator (p : [ p ] g i v e s rise to a simplicial 
map A(p : by composition 

Aq>(y) = cp°y. 

Identifying and \A\_q~\\ with Ap and Aq, respectively, via the 
homeomorphisms described in Example 1, one obtains the geometric 
realization of the simplicial map Acp to be \A(p \ = A*. • 

Examples 1 and l m may be summed up by some categorical terms. The 
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assignments [p]>—>4[p], (ph^Acp yield a functor A — : A^ SiSets, which 
satisfies the equation 

\A-\ = A~, 

and is a füll embedding, a so-called Yoneda embedding in category theory (it 
may also be viewed as a cosimplicial object in SiSets). To formulate the 
corresponding Yoneda lemma, another rather abstract but quite useful 
construction is helpful. To each simplicial set X, one associates a small 
category Cx, the category of simplices of X: 

the objects are the simplices of X; 
the morphisms are the composable pairs (x, a); 
the domain of (x, a) is xa, the codomain is x; 
lx = (x, i); 

if the domain of (x, a) is equal to the codomain of (x', a'), i.e., xa — x', 
then (x,a)o(x\a') = (x,aa'). 

The category of simplices is connected to the category of finite ordinals 
by the forgetful functor DX:CX-*A, x\-»[dimx], (x,a)i-»a; its composi­
tion with the Yoneda embedding will be denoted by AX. Any simplicial 
m a p / : Y X gives rise to the functor Cf:CY^> Cx, y\-+ f(y), (y, a)\-^(f(y), a), 
which satisfies the equation DxoCf = DY; thus, one has the category of 
simplices functor 

C _ : SiSets-±Cat, 

where Cat denotes the category of small categories. 

Lemma 4.2.1 (Yoneda lemma) Let X be a simplicial set. 
(i) The assignment f^f(ip\ where f:A[p~]-*X is a simplicial map, 

describes a natural one-to-one correspondence between the set of all simplicial 
maps A[p~]^>X and the set Xp. 

(ii) X = colim AX. 

Instead of an explicit proof, done in general form in category theory, 
only the inverse assignment needed for proving (i) is indicated: make the 
simplicial map 

correspond to each p-simplex x. Moreover, note that in the language of 
category theory, Statement (ii) expresses the fact that every set-valued 
functor is a colimit of representable functors. • 

As a set-valued functor category, the category SiSets has all kinds of limits 
and colimits. They are computed pointwise; i.e., the set of n-simplices of 
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a desired (co)limit is taken as the (co)limit of the involved sets of n-simplices 
in the category Sets. Thus, a simplicial map is a monomorphism iff it is 
injective and an epimorphism iff it is surjective. 

Some kinds of limits have to be discussed in detail. A simplicial set Y 
is a simplicial subset of a simplicial set X if Y is a subset of X such that 
the inclusion Y -> X is a simplicial map. A subset Y of a simplicial set X 
forms or is a simplicial subset of X if it is closed under the Operations. For 
example, the image of a simplicial map (in the set theoretical sense) is a 
simplicial subset of its codomain; conversely, given a simplicial subset of 
the codomain of a simplicial map, its inverse image (again in the set 
theoretical sense) is a simplicial subset of its codomain. Clearly, arbitrary 
intersections and unions of simplicial subsets of a fixed simplicial set X 
again form a simplicial subset of X. Thus, every subset Y of a simplicial 
set X generates a simplicial subset Y, the intersection of all simplicial 
subsets of X that contain the set Y; Y consists of all simplices xeX that 
have a representation of the form x = ya for some simplex ye Y and some 
Operator aeA. A special application of this generation process yields the 
skeletal decomposition of a simplicial set X; its n-skeleton Xn is the 
simplicial subset of X that is generated by the set of all simplices of 
dimension at most n. (Another specific type of simplicial subset is the 
following. Let a simplicial map p : X-*Zbe given; then, a simplicial subset 
Y of X is a retract of X over Z if there is a simplicial map r:X-+ Y such 
that r | Y = 1 y and p | Y ° r = p.) A simplicial map / : Y -> X is called constant 
(with value x) if its image is generated by a 0-simplex (by the simplex xeX0). 

Example 2 The proper face Operators with codomain [p] generate a 
simplicial subset of A\_p\ namely, its boundary SA[p]; it is the 
(p— l)-skeleton of A[p~]. The geometric realization of <54[p] is clearly 
homeomorphic to the boundary of the geometric standard-p-simplex (in 
the sense of Section 3.1). • 

The product of the simplicial sets Y and X is the simplicial set Y x X 
given by (Y x X)n =Ynx Xn, for all neN , and (y,x)a = (ya,xa) whenever 
coda = [dimy\ = [dimx]. The simplicial maps prY:Yx X^> Y, (y,x)\-^y 
and prx:Yx X-+X, (y,x)!—>x are the projections of Y x X onto Y and 
X respectively. It will be shown in the next section that geometric 
realization commutes with (finite) products. 

Now, pullbacks in SiSets can be explicitly described. Given simplicial 
m a p s p : Z - > X , / : Y - > Z , one takes the simplicial subset 

W = {(y,z):f(y) = p(z)} 

of the product Y x Z . Then, the map p:W->Y, (y,z)\-+y is induced from 
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p by f and the map / : W ->Z, (y,z)t-+z is induced from fbyp.k specific 
form of pullback is hidden in the following notion. Given any simplicial 
map p : Z^X and a simplex x e X 0 , the inverse image of the simplicial 
subset generated by x is called the fibre of p over x; it is (up to isomorphism) 
the domain of the map induced from p by the simplicial map A [0] -»X, 
i\-*x. 

Forming the product with the standard-simplex A\\\ one can transfer 
the basic notions of homotopy to the combinatorial theory. Le t / , g : Y-> X 
be simplicial maps. A simplicial homotopy from f to g is a simplicial map 
H : Y x 4 [1 ] -+X such that H&ö^) =f(y) and H(y,ö0co) = g{y\ for all 
yeY. If D is a simplicial subset of Y, such that the restriction of H 
to D x z i [ l ] factors through the projection of D x Zl[ l ] onto D, one 
has a simplicial homotopy rel. D\ if p:X->Z is a simplicial map such 
that the composition of ff with p factors through the projection of 
Y x Zl[ l ] onto Y one has a simplicial homotopy over Z . Clearly, these 
definitions induce relations called simplicial homotopies (rel. D, over Z) on 
the set of simplicial maps from Y to X\ in general, these relations are 
reflexive, but neither Symmetrie nor transitive. Nevertheless, they allow 
to define simplicial homotopy equivalences, simplicial deformation retracts 
and simplicial contractibility] all these notions are based on the induced 
Symmetrie relation. This will be explained for contractibility: a simplicial 
set X is simplicially contractible to the 0-simplex x0eX if there is either a 
simplicial homotopy from lx to the constant simplicial map with value 
x 0 , or a simplicial homotopy from the constant map to lx. 

Example 3 The standard-simplex A [/?] is simplicially contractible to e0, 
as well as to ep. A simplicial homotopy H from the constant map with 
value to to lA[p] is given by taking, for a : [n] -+[/?], 7*e[n— 1], 
H(a, a)j) = cc\ with a'(/c) = 0, for 0 ^ k and a'(/c) = a(k) otherwise (note 
that the simplicial set A[p~] x A[\~] is generated by the pairs (a,a>;)). • 

There is another geometric notion whose simplicial analogue can be 
defined by means of products. A simplicial map p : Z-> X is locally trivial, 
if, for every simplicial map / : A\_ri]->X, there is an isomorphism 
h : W-^A[ri] xF with prA[n]°h — p, where p : W^>A[ri] denotes the 
simplicial map which is induced from p by / , and F denotes the fibre of p 
over f(e0)- A locally trivial simplicial map does not have many really 
different fibres. 

Proposition 4.2.2 If p : Y -+X is a locally trivial simplicial map and x, x 
are simplices in X with x = xa, for some Operator a, then the fibres over 
xe0 and xe0 are isomorphic. 
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Proof Assume xeXm xeXm and define/ : by taking f(i) = x. 
By assumption, the simplicial map p, which is induced from p by / , can 
be chosen as the projection of the product A[n\ x F onto A [n], where F 
denotes the fibre of p over f(e0) = xe0. Then, the simplicial map p, which 
is induced from p by A(ocs0) can be chosen as the unique simplicial map 
F->/4[0]. Since foA(as0)(i) =f(ae0) = xae0 = xe0 the domain F of p is 
isomorphic to the fibre of p over xs0. • 

The existence of colimits in the category SiSets implies that simplicial sets 
have an intrinsically algebraic nature. One consequence of this fact is that 
simplicial sets may be described in terms of generators and relations. A 
subset Y of a simplicial set X is said to be a set of generators for X if it 
generates the whole simplicial set X itself. Any N-graded set Y generates 
the free simplicial set FY, consisting of all formal expressions yoc with 
yeY, OLSA and coda = [dimy] (here, 'dim/ clearly means the degree 
of y) and the evident Operations; for convenience, one shortens the notation 
to y instead of writing 'yi\ A relation in a free simplicial set is an equation 
of the form 

ya = zß, 

with y, a and z, ß as above, and dorn a = dorn ß. Any set of relations R 
induces an equivalence relation on the set FY which is compatible with 
the grading. Thus, the resulting set of equivalence classes has a canonical 
grading and allows an induced Operation of the category A. This is the 
simplicial set generated by the set Y, subject to the relations R. 

A special colimit construction is the simplicial analogue of attachings. 
Given a simplicial subset D of a simplicial set Y, a simplicial set A and 
a simplicial map / : D->/4, one has a partial simplicial map f : Y-/-+A 
with domain D and forms the simplicial set X by taking 

Xn = Anu(Yn\Dn) 

with suitably defined Operations. This simplicial set X is said to be obtained 
from A by (simplicially) attaching Y via f; the canonical simplicial map 
/ : Y-+X is called-as in the continuous case-a characteristic map of 
the simplicial attaching. 

A simplex x of a simplicial set X is called degenerate if x splits off a 
degeneracy Operator, i.e., if it can be represented in the form x = ycr, with 
some yeXdimx_ x and some fe[dim y]\ otherwise, one has a non-degenerate 
simplex. Clearly, all O-simplices are non-degenerate. The non-degenerate 
simplices in the standard-simplex zl[p] are the face Operators with 
codomain [p]. If X is a simplicial set, denote by X^ the set of its 
non-degenerate simplices, and by X b the set of its degenerate simplices; 
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specifying dimension n, one also writes X% and X\ respectively. With this 
terminology, one proves a basic fact in the simplicial theory, namely, the 
'Eilenberg-Zilber lemma'. 

Theorem 4.2.3 Any simplex x of a simplicial set X has a unique 
decomposition in the form 

x = x # x b , 

with a non-degenerate simplex X#GX and a degeneracy Operator x b . 

Proof Splitting off a degeneracy Operator decreases the dimension. Since 
the dimension numbers are bounded below, this cannot be done infinitely 
many times (after starting with a certain simplex x). Taking the remaining 
non-degenerate simplex, and composing the split degeneracy Operators, 
one obtains a representation of the desired form. 

To prove uniqueness, assume that 

xp = yx 

with x,y non-degenerate simplices and p,x degeneracy Operators. 
Application of a section p of p to this equation yields x = yxp. Since x is 
non-degenerate, the Operator xp cannot contain a proper degeneracy 
Operator; thus it is a face Operator, and therefore dim x ^ dim y. The 
opposite inequality is obtained by symmetry, and thus dim x = dim y. But 
then, xp is a face Operator, whose domain and codomain coincide, and, 
consequently, an identity Operator. This implies that yxp = y, and so x = y. 
Moreover, xp = i shows that every section of p is also a section of T, and 
vice versa. But degeneracy Operators with the same set of sections are 
equal (see Lemma 4.1.3(i)). • 

As an application, one can describe the n-skeleton Xn of a simplicial set 
X in terms of a simplicial attaching. 

Corollary 4.2.4 (i) A simplicial set is generated by the set of its 
non-degenerate simplices. 

(ii) The n-skeleton X" of a simplicial set X is obtained from its 
(n — \)-skeleton Xn~l by attaching the non-degenerate n-simplices; more 
precisely: if Ax denotes a copy of the standard-simplex A[n] and 
öcpx : 5Ax^Xn~l is the simplicial map given by S(px(oc) = x<x,for each xeX%, 
then X is obtained from X""1 by attaching \jAx via {ö<px}. • 

Example 4 Take p e N and let / denote the unique simplicial map 
<54[p ] -»4 [0 ] . The simplicial p-sphere S[p] is obtained from 4[0] by 
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attaching A [p] via/; S[p] contains exactly two non-degenerate simplices, 
one in dimension 0 and a further one in dimension p (thus two O-simplices 
in case p = 0). Moreover, can easily be described in terms of generators 
and relations; indeed, it can be obtained by taking one generator x in 
dimension p subject to the relations 

xön

0 = = xön

n = xen

0con~l. 

In the next section, it will be explained that the geometric realization of 
S(p) is actually a sphere (see the Example in Section 4.3). • 

Given a simplicial set X and simplices x,yeX such that x = yoc, for some 
Operator a, then x is a (proper) face or degeneracy of y if a is a (proper) 
face Operator or degeneracy Operator respectively. The simplicial subset 
of X which is generated by the proper faces of a simplex x is the boundary 
Sx of x. 

The following facts are evident. 

Lemma 4.2.5 (i) A proper degeneracy of a simplex is degenerate. 
(ii) / / two degenerate simplices have the same faces they are equal. 
(iii) The non-degenerate part of a simplex is a face of this simplex. 
(iv) / / Y is a simplicial subset of the simplicial set X then a simplex of 

X belongs to Y iff its non-degenerate part belongs to Y. 
(v) An injective simplicial map transforms non-degenerate simplices into 

non-degenerate simplices. • 

A non-empty simplicial set X always has simplices of arbitrary high 
dimensions, which can be exhibited by applying suitable degeneracy 
Operators; however, the dimensions of the non-degenerate simplices of X 
may be bounded. In this case, the simplicial set X is said to have finite 
dimension and its dimension - notation: dim X - is defined by taking 

dim X = max {dim x : xeX#}. 

Now turn to cosimplicial sets, i.e. cosimplicial objects over the category 
Sets. Again, it is convenient to view cosimplicial sets as N-graded sets 
with the category A operating on them, but now by a left action. In this 
sense, a cosimplicial map between cosimplicial sets is clearly a function 
between the corresponding sets which respects the grading and is 
compatible with the left action. The functor A~:A-*Top described 
in Section 4.1 composed with the forgetful functor V : Top Sets provides 
an illuminating example for a cosimplicial set and explains the following 
terminology. If Y is a cosimplicial set then the elements of Y = u Yn are 
called points of Y. Dually to the notion of a non-degenerate simplex, one 
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has interior points: these are the points yeY which cannot be written in 
the form y = ötz for some suitable point z and some suitable Operator 8b 

i.e., which do not allow the extraction of a face Operator. Now one may 
be interested in dualizing the Eilenberg-Zilber lemma. Because of the 
formal differences between face and degeneracy Operators (see 
Lemma 4.1.3), this is not possible in general. 

Proposition 4.2.6 For a cosimplicial set 7, the following conditions are 
equivalent: 

(i) every point yeY has a unique decomposition of the form 

y = y#y* 

with yü a face Operator and y b an interior point; 
(ii) for all points yeY0, 

öoy^öty. 

Proof (ii) is a special case of (i), so it suffices to show that (ii) also implies 
(i). This is done by dualizing the proof of the Eilenberg-Zilber lemma (see 
Theorem 4.2.3). The only problem lies in the fact that vertex Operators 
are not determined by their set of retractions (see lemma 4.1.3(ii) and (iii)). 
Thus an extra argument is necessary for an equation of the form 

Assume / > j; then applying coj to the previous equation would yield the 
equation ö0y = ö1y contradicting condition (ii). • 

A cosimplicial set is said to have the Eilenberg-Zilber property if it satisfies 
the equivalent conditions of Proposition 4.2.6. Similarly, a cosimplicial 
space, i.e., a cosimplicial object in Top, has the Eilenberg-Zilber property 
if its composition with the underlying set functor has the Eilenberg-Zilber 
property. As pointed out in Section 4.1, the cosimplicial space A~ is an 
example of a cosimplicial space with the Eilenberg-Zilber property. Also, 
a cosimplicial object in a set-valued functor category has the 
Eilenberg-Zilber property if it has this property pointwise. More down 
to earth: a covariant functor <P : A-+ SiSets has the Eilenberg-Zilber 
property if, for all neN, the functors 

0n : A^Sets, [p]M<*>[/>])„ 

have the Eilenberg-Zilber property. 

Example 5 Normal subdivision of standard-simplices is a cosimplicial 
object in SiSets with the Eilenberg-Zilber property (see Lemma 4.6.2). • 
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If, within an algebraic context, there are given a set of Operators acting 
on one object on the right and on another object on the left, then the 
familiär procedure is to form a tensor product. Similarly, a tensor product 
X ® Y of a simplicial set X and a cosimplicial set Y can be defined. One 
takes the disjoint union L\Xn x Y„ and generates on this set an equivalence 
relation ~ by 

(xct9y)~(x9ay)i 

then X®Y is just the set of the corresponding equivalence classes. Clearly, 
with respect to this definition, the underlying set of the geometric 
realization of a simplicial set X is nothing but the tensor product of X 
and VA ~ where V : Top Sets again denotes the underlying set functor. 
This also justifies the notation [x, y] for the equivalence class of the pair 
(x9y)eXn x Yn9 in the general case. Evidently this concept is bifunctorial, 
i.e., a simplicial m a p / : X' and a cosimplicial mapgr : Y-+Y' yield a 
well-defined function f ® g : X® Y^X'® Y' by taking / ® g{ [x, y]) = 
\_fx9gy]\ the interchanging law f®\r°lx®g = lx.®g°f ®1Y holds 
true. 

As in algebra, the tensor product of a right action and a left action is 
just a set. But if the object with the left action has also a right action, 
then the tensor product inherits also a right action. More precisely, if X 
is a simplicial set and <P : A -> SiSets is a covariant functor, then the tensor 
product X®<Pis the simplicial set given by (X ® &)n = X ® <Pn9 [x, y]a = 
[x, yoc]. Again, this construction is bifunctorial, i.e., a simplicial 
m a p / : X^X' and a natural transformation g : &^><P' yield a well-
defined simplicial map f ®g : X ® < P X ' ® <P' by t ak ing /®g ( [x , y]) = 
[/x, and the corresponding interchanging law holds. 

Example 6 For any simplicial set X9 X ® A — ̂  X holds true. Isomor­
phisms are provided by the assignments [ x , > x y and xi—>[x,i]. Using 
functoriality in the first variable, one obtains that the functor 
-®A-: SiSets -+SiSets9 i.e., the tensor product with the Yoneda 
embedding, is naturally equivalent to the identity functor Id on the 
category SiSets. • 

Example 7 For any simplicial set X9 the tensor product with the normal 
subdivision of simplices 

SdX = X®Ä 

yields the normal subdivision of X (see Section 4.6). • 

An agreeable feature of the algebraic part of this theory is that in many 
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cases there are canonical representatives for the elements of a tensor 
product. To describe them, a further notion should be introduced. If X 
is a simplicial set and Y is a cosimplicial set, a pair (x, y)eXnx Yn is called 
minimal if x is a non-degenerate simplex and y is an interior point. 
Moreover, given an arbitrary pair (x,y)eXn x Yn, it is convenient to say 
that one has a pair of dimension n - notation: 

dim(x, y) = n. ~ 

Proposition 4.2.7 Let X be a simplicial set and let Y be a cosimplicial set 
with the Eilenberg-Zilber property. Then, any element of the tensor product 
X ® Y can be represented by a unique minimal pair. 

Proof TakeZ = \jXn x Yn and define functions tt,tT,t : Z^Z bysetting 

ty(x, y) = (x§, x'y), tr(x9 y) = ( x / , / ) 

and 

t = tx°tr. 

Then the following facts are evident: 

(i) (x, y) ~ tx(x, y) ~ tT(x9 y) ~ t(x, y)9 

(ii) t(x, y) ^ (x, y) => dim t(x9 y) < dim (x, y)9 

(iii) tx(x,y) — (x,y)ox is a non-degenerate simplex, 
(iv) tr(x9 y) = (x, y)oy is an interior point and 
(v) t(x9 y) = (x, y)o(x, y) is a minimal pair. 

From (iii) and (iv), it follows that the functions ty and tt are idempotent, 
i.e., t2 = tl9 and t2 = tT9 respectively. Moreover, since the set of dimensions 
is bounded below, it follows from (ii) that, for any pair (x, y)9 the sequence 
(tn(x9 y)) becomes stationary. Thus, by (v), it contains a minimal pair which, 
by (i), is equivalent to the initial pair (x, y). This proves the existence of 
a minimal pair in every class. This part of the assertion does not depend 
on the Eilenberg Zilber property for Y. 

Now assume simplices x9x'eX9 points y9y'eY and an Operator a to be 
given such that x = x'a and ay = yThen, the pairs (x, y) and (x', y') are 
equivalent and one says that the pair (x9y) is directly equivalent to the 
pair (x', / ) (via a). In this Situation, it follows that the pair tx(x'9 y') is directly 
equivalent to the pair t(x, y) via 

a, = (x'(ocy#fY((ocyufy"f. 

Observe that the idempotency of the function tr implies ttx = t. Thus, by 
iteration, it follows that, for all neN, the pair tTtn(x, y) is directly equivalent 
to the pair tn(x', y'). For sufficiently large n, these pairs are the minimal 
pairs associated to the original pairs (x, y) and (x', / ) respectively, given 
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in the first part of the proof; but minimal directly equivalent pairs are 
equal. Since the equivalence relation under consideration is generated by 
the (non-symmetric) direct equivalence, this finishes the proof. • 

A technical detail of the given proof deserves special attention. 

Addendum 4.2.8 Let X be a simplicial set and let Y be a cosimplicial set 
with the Eilenberg-Zilber property. Then, if(x,y)eXn x Yn is an arbitrary 
pair and (xm, ym)eXm x Ym is the minimal pair representing the same element 
of the tensor product X ®Y as (x, y), there are a (not necessarily unique) 
face Operator p : [m] -> [n] and a (not necessarily unique) degeneracy 
Operator p : [n] -> [m] such that xm — xp and ym = py. 

Proof Inspect the functions tx,tT, t : Z-+Z of the proof just given, and 
observe that x# can be obtained from x by applying the face Operator 
( x V and that yb can be obtained from y by applying the degeneracy 
Operator (y*)1. • 

Remark In many applications of the proposition, the cosimplicial sets 
under consideration have the property that interior points are mapped 
onto interior points by degeneracy Operators (see Lemma 4.1.2 and 
Exercise 2). In this case, the pair t(x, y) is already minimal, for any pair 
(x, y). But that this is a special property becomes quite clear if one looks 
at the dual Situation. It would say that any face of a non-degenerate 
simplex should be non-degenerate, giving a presimplicial set (to be 
discussed in Section 4.4). The geometric appeal of simplicial sets is derived 
from the fact that non-degenerate simplices may have degenerate 
faces. • 

Corollary 4.2.9 If Y is a cosimplicial set with the Eilenberg-Zilber property, 
then the tensor product -® Y : SiSets^Sets preserves and reßects 
monomorphisms. 

Proof Let / : Z -» Y be an injective simplicial map. Assume (z, y), (zf, y') 
to be minimal pairs such that 

/ ® 1 ( [ ( ^ ) ] ) = / ® 1 ( [ > \ / ) ] X 
i.e., 

LAzXy] = U m / ] . 
Since / is injective, the pairs (f(z),y) and (f(z'),yf) are still minimal (see 
Lemma 4.2.5 (v)). Thus, the uniqueness of the representation by minimal 
pairs implies f(z) = f(z') and y = y'. Again using the injectivity of / , one 
obtains z = z' and, finally, [(z, y)] = [(z', / ) ] . 

Let a simplicial map / : Z-> X be given such that / ® 1 is injective and 
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take z l 5 z 2 e Z with f(z1) = f(z2); without loss of generality, one may 
assume zx to be non-degenerate. Define n = dimzi = d i m z 2 and choose 
an interior point y in Yn. The injectivity of f ® 1 implies \_zl,y] = [z 2 , j ;] . 
Since the pair (z1,y) is minimal, the simplex zl is a face of the simplex z 2 

(see Addendum 4.2.8) and since d i m z t = d i m z 2 it follows that z : = z 2 . 

• 
Another property of these tensor products follows from the adjoint functor 
generating principle (see Section A.10). 

Proposition 4.2.10 / / Y is a cosimplicial set, then the tensor product 

- ® Y : SiSets Sets is left adjoint to the functor SY : Sets SiSets given by 

(SYT)„ = set of all functions Yn-+T 

for all sets T, all neN. 

xa = x° Y(a) 

for all elements xe(SYT)n, all Operators a with coda = [n], 

SYf(x) = foX 

for any function f with domain T and any xeSYT. • 

This fact has an essential consequence. 

Corollary 4.2.11 / / Y is a cosimplicial set, then the tensor product 
-® Y : SiSets^Sets preserves all colimits. • 

Taking a cosimplicial object in the category SiSets, one obtains similarly. 

Proposition 4.2.12 / / 0 : A-* SiSets is a covariant functor, then the tensor 
product -® <P is a left adjoint functor and preserves all colimits., Moreover,, 
if 0 has the Eilenberg-Zilber property, then -®0 transforms simplicial 
attachings into simplicial attachings. 

Proof See the adjoint functor generating principle (Section A.10) and 
Corollary 4.2.9. • 

Finally, note a very general Statement which nevertheless is sometimes 
useful. 

Proposition 4.2.13 Let either be Sets or SiSets and let 0 : A->%> be a 
cosimplicial object in Then, for any simplicial set X, 

X® <2> = colim 0°DX 

where Dx : Cx -» A denotes the forgetful functor. • 
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In view of this fact, one extends the terminology 'tensor product' to a 
more general Situation. A cosimplicial object <P in an arbitrary cocomplete 
category ^ induces, by the adjoint functor generating principle (see 
Section A.10), a cocontinuous functor SiSets which is given on the 
objects by the right-hand side of the equation in Proposition 4.2.13. Thus, 
this functor will be called again tensor product with 0. 

Exercises 

1. Show that the standard-simplex A[p~\ is not contractible to any ek with 
0 < k < p. 

2. Give explicit descriptions of the simplicial dunce hat, i.e., the simplicial 
set generated by one 2-simplex x subject to the relations 
xö0 = XÖX = X<52, and the simplicial projective plane, i.e., the simplicial 
set generated by one 2-simplex y subject to the relations yö0 = yö2, 
yöi=ye0o0. 

3. Construct examples for cosimplicial sets 

which do not have the Eilenberg-Zilber property, and/or 
such that interiors are not preserved by degeneracy Operators. 

4. Let (K, R) be an ordered simplicial complex. Its associated simplicial 
set (K, R)s is generated by the set K and subject to the relations 

xöt = x( 

with x e K , i e [ d i m x ] and x( the ith face of x, i.e., the face obtained by 
omitting the ith vertex. Extend this definition to an embedding of the 
category OSiCo into the category SiSets as a coreflective subcategory. 
(Coreflective means that the embedding is a right adjoint functor, i.e., 
the embedding has a coadjoint, a so-called coreßector, and that the 
restriction of the coreflector to the subcategory obtained is equivalent 
to the identity.) 

5. Construct simplicial mapping sets; i.e., show that, for any simplicial set 
Z , the product functor - x Z has a right adjoint (-) z. (Hint: According 
to the Yoneda lemma (Lemma 4.2.1), the n-simplices of a simplicial 
mapping set Xz have to be in one-to-one correspondence with the 
simplicial maps A[n\^Xz, which in t u r n - b y adjointness - should 
correspond to the simplicial maps A[n~] x Z—>X; take the set of these 
maps as (Xz)n, define suitable Operations and show functoriality.) 

4.3 Properties of the geometric realization functor 

In the preceding section, the geometric realization \X\ of a simplicial set 
X was defined as the quotient space oi \jXnx An - all Xn endowed with 
the discrete topology - with respect to the relation 

(xa, t) ~ (x, at) 
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for any simplex x e X „ , any Operator a : [m]->[n] and any point teAm; 
recall that the class of a pair (x,t)eXn x An with respect to the induced 
equivalence relation, which is a point of \X\, is denoted by [x,f]. 

Moreover, the geometric realization of a simplicial mapf:Y->X has 
been defined as the m a p | / | : | 7 | - > | A ' | , taking [)^]i-+L/*(;y),f]. This 
completed the definition of the geometric realization functor \-\:SiSets-* 
Top. 

There is another description of the geometric realization \X\ of a 
simplicial set X which is useful for some purposes. First - as exhibited in 
the previous section - the underlying set of the space \X\ can be considered 
as the tensor product of the simplicial set X and the cosimplicial set VA "; 
second, the topology of | X\ is the final topology with respect to the family 
of maps 

cx : Adimx^\X\, t^lxjl 

for all xeX; note that cx can be considered as the geometric realization 
of the simplicial map A[n~\ -+X, ai—»xa, up to the natural homeomorphism 
| 4 [ d i m x ] | - > Z i d i m x . Because 

c = r o Aa 

^xa ^x *-* 

whenever xa is defined, this point of view immediately yields the following 
fact. 

Proposition 4.3.1 the set Y generates the simplicial set X, then the 
geometric realization \X\ of X is a quotient space of the subspace 
U(YnXn) x An of uXn x An. • 

Corollary 4.3.2 The geometric realization \X\ of a simplicial set X is a 
quotient space of the subspace \jXl x A" of \jXnx An. 

(Recall that X* denotes the set of non-degenerate n-simplices of X.) 

Proof A simplicial set is generated by its non-degenerate simplices (see 
Corollary 4.2.4 (i)). • 

Next, apply the Eilenberg-Zilber property of the cosimplicial space 
A~ : A-+Top. 

Proposition 4.3.3 (i) / / X is a simplicial set, then any point of its geometric 
realization | X \ has a unique representation by a pair (x, t\ with x a non-
degenerate simplex of X and t an interior point of Adimx. 

(ii) The geometric realization of a simplicial map is injective iff the 
simplicial map itself is injective. 
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Proof (i) In the presence of the Eilenberg-Zilber property, the representa­
tion of the elements of a tensor product by minimal pairs is unique (see 
Proposition 4.2.7). 

(ii) The tensor product with a cosimplicial set satisfying the Eilenberg-
Zilber property preserves and reflects monomorphisms (see 
Corollary 4.2.9). • 

Later on, it will be shown that the geometric realization of an injective 
simplicial map is even a closed cofibration. A part of this fact is proved 
immediately below. 

Lemma 4.3.4 / / the simplicial set Y is a simplicial subset of the simplicial 
set X, then the geometric realization | Y\ of Y is a closed subspace of the 
geometric realization \X\ of X. 

Proof To begin with, observe that a point [x,f] of | X | belongs to | Y\ iff 
xtu is an element of Y (see Lemma 4.2.5 (iv)). Now, let C be 
a closed subset of | Y\ and take an n-simplex x of X. One has to show 
that c~1{C\ the inverse image of C in An with respect to the 
mapc x : 4" -»1^1 given at the beginning of this section, is closed in An. 
The set c~l(C) is the union of the sets Aß(c~x{C)) taken over the finitely 
many face Operators p with xpeY. Since C is closed in | Y\, the sets c~^{C) 
are closed in dorn Aß. The desired result now follows from the fact that 
all the maps Aß are closed. • 

Now it is possible to establish the connection between simplicial sets and 
CW-complexes. 

Theorem 4.3.5 //X is a simplicial set then the sequence {\Xn\ : neN} is a 
CW-structure for its geometric realization \X\. The corresponding cell 
decomposition of\X\ is given by the subsets 

= {[*,<] : te(Adin°}, 

of\X\, x running through X#, the set of non-degenerate simplices of the 
simplicial set X; the closed cells are the subsets ex = cx(Adimx), for all xeX#. 
Consequently, if X has a finite dimension, then \ X\ is finite-dimensional and 
it holds true 

d i m | X | = d i m X 

Proof According to the previous result, all the \Xn\ are closed subspaces 
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of \X\. Thus, the sequence {\Xn\ : neN} is a Filtration of \X\. Since 
\X°\ = X0 x A° (see Corollary 4.3.2), is a discrete space. 

Next, one has to show that every pair (\X"\,\Xn~11) is an adjunction 
of n-cells. For every non-degenerate n-simplex x, the mapcx\S(A") factors 
through a unique mapc x : ö(An)-+\Xn~l\. A l l these mapsc v fit together 
to define a partial map c : X* x Ä1-/ -+\Xn~l\. It follows from the unique 
representation of the points of \Xn\ (see Proposition 4.3.3 (i)) that 
\Xn\ = \Xn~l\ucXu

n x 4", at least at the set level. Now observe that the 
i d e n t i f i c a t i o n m a p U ^ ^ f c X Z l ^ l X " ! (induced by Corollary 4.3.2) 
factors through a unique identification map \Xn~11 u^J x A" -* \Xn\. Thus, 
\Xn\ is endowed with the final topology with respect to the induced 
restrictions\X n~ 11 ->|X"\andX* x An-+\Xn\.BecauseXft x An % X* x B" 
andX«nx SA" KX#nxSn-\ the pair 11) is an adjunction of 
n-cells. 

Finally, one must prove that the space | X\ has the topology determined 
by the family (\Xn\ : neN). For this, take a function / : \X\ ->Z,Z any 
space, whose restrictions to all \Xn\ are continuous. Since each of the 
mapsc x factors through some \Xn\, for all xeX, the compositions / ° c x 

are continuous, and thus / is continuous; this finishes the proof. • 

Corollary 4.3.6 / / X is a simplicial set, 

d i m X = d i m | X | . • 

Corollary 4.3.7 (i) The geometric realization of a simplicial map is a regulär 
map; 

(ii) the geometric realization of a constant simplicial map is a constant map. 

Proof (i) Since the degeneracy Operators A p preserve interiors (see 
Lemma 4.1.2), the image of an open cell under the geometric realization 
of a simplicial map is always an open cell. 

(ii) A constant simplicial map factors through 4[0]; thus its geometric 
realization factors through A°, which is a one-point space. • 

Thus geometric realization can be viewed as a functor SiSets-^CW. The 
fact mentioned before Lemma 4.3.4 is now also evident: 

Corollary 4.3.8 (i) / / Y is a simplicial subset of the simplicial set X, then 
\Y\ is a CW-subcomplex of \X\; 

(ii) if Y is a (CW-) subcomplex of the geometric realization of a simplicial 
set X, then Y is the geometric realization of a simplicial subset Y of X\ 
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(iii) iff : Y-+X is an injective simplicial map, then \ f\ is an embedding 
of a CW-subcomplex, and thus a closed cofibration. • 

Remark The Statement of Theorem 4.3.5 also implies that there are 
canonical characteristic maps for the cells of the geometric realization of 
a simplicial set, at least after fixing a sequence of homeomorphisms 
Bn->An. Just combine those homeomorphisms with the corresponding 
ma.pscx:An->\X\. In this sense, the mapsc x themselves will be called 
characteristic maps, for all non-degenerate simplices xeX. • 

Some crucial properties of geometric realization follow from the fact that 
it has a right adjoint S : Top -> SiSets, called the Singular functor. Again 
(see Propositions 4.2.10 and 4.2.12), its existence is a consequence of the 
adjoint functor generating principle (see Section A.10), which gives still 
another interpretation of the geometric realization of a simplicial set. 

Lemma 4.3.9 / / X is a simplicial set, then 

\X\ = colim Ax, 

where Ax = A~ °DX is the composition of A~ with the forgetful functor 
Dx- • 

Historically, the singular functor gives the first simplicial sets that were 
considered and can be explicitly described as follows. The singular set of 
a space T is the simplicial set ST obtained by taking 

(ST)n = set of all maps An T 

for all neN and 
xa = x°Aa 

for all elements xe(ST)n, all Operators ae4[n]. The elements of (ST)n are 
the singular n-simplices of the space T. A continuous map f : T^U gives 
rise to a simplicial map Sf : ST^SU by taking 

Sf(x) = f°x; 

this formula really yields a simplicial map as a consequence of the 
associativity law for compositions of maps. It is worthwhile to exhibit in 
detail the tools that are provided by this adjointness: for a simplicial set 
X, one has the unit rjx : X^S\X\, which is the simplicial embedding 
associating to a simplex xeXn the singular simplex 

nx(x):An^\X\, t^\x9t]. 

For a space T, the co-unit jT : \ST\ T is given by 

JT(lx9t]) = x(t\ 
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for every singular simplex x\A"-> T and every point teA". (Later on - see 
Theorem 4.5.30 - it will be shown that the mapjT is a weak homotopy 
equivalence, for every space T.) The main point of the adjointness is that 
it gives a bijective correspondence between maps g : | X | -> T and simplicial 
maps / :X The adjoint of the map g is the simplicial map g' = Sg°nx; 
the adjoint of the simplicial map / is the map jT°\f\. That these processes 
of forming adjoints are inverse to each other is due to the fundamental 
equations between unit and co-unit: 

)|x|°l«xl = l|*p SJT°1ST = IST-
As a left adjoint functor, geometric realization preserves all colimits. 

More specifically, geometric realization preserves pushouts and also has 
a somewhat stronger property. 

Proposition 4.3.10 Geometric realization transforms simplicial attachings 
into (topological) attachings. 

Proof Since geometric realization transforms injective simplicial maps 
into closed cofibrations (see Corollary 4.3.8 (iii)), partial simplicial maps 
go over into partial (continuous) maps; thus, the pushout obtained from 
a simplicial attaching is indeed an adjunction Square. • 

Example Take the simplicial p-sphere S[p] (see Example 4 of Section 4.2). 
The proposition teils us that its geometric realization is nothing but the 
quotient space AP/8AP. A homeomorphism AP-*BP induces a homeomor­
phism Ap/öAp^Bp/Sp "1 whose codomain is a p-sphere via the Standard 
map bp (see Section 1.0). • 

The adjointness also implies that geometric realization preserves 
epimorphisms. More precisely: 

Proposition 4.3.11 A simplicial map is surjective iff its geometric realization 
is an identification. 

Proof '=>': Since epimorphisms are preserved under geometric realization, 
a surjective simplicial map is transformed into a surjective regulär map 
(see Corollary 4.3.7 (i)) which is an identification (see Corollary 2.1.2). 

'<=': Let / : Y->X be a simplicial map such that | / | is surjective. Since 
X is generated by its non-degenerate simplices, it suffices to exhibit an 
inverse image for each non-degenerate simplex of X. Take xeX# and an 
interior point teAdimx. The surjectivity of | / | implies the existence of a 
simplex yeY and a point seAdimy such that 

[*,'] = l / K M ) = U(y\s] = Uf(y))*,(f(y)M9 
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one may assume s to be an interior point (see Proposition 4.3.3 (i)). Then, 
(f(y))bs is also an interior point (see Lemma 4.1.2), and consequently the 
pair ((f(y)f, (f(y))*s) is minimal; therefore, x = (f(y)f (again by 
Proposition 4.3.3 (i)). Thus, x is a face of j\y) (see Lemma 4.2.5 (iii)), and 
so it is the image of the corresponding face of y under the simplicial 
map / . • 

There is still another type of colimit construction, which has yet to be 
mentioned. 

Proposition 4.3.12 Let X0 cz Xt cz c= Xj cz ••• be an increasing sequence 
of simplicial sets and X = \jXr. Then, {\Xr\:reN} is an expanding 
sequence with union space \X\. • 

Geometric realization also commutes with finite limits. To see this, one 
has to show that it commutes with equalizers and finite products. Indeed, 
geometric realization preserves and reflects equalizers: 

Proposition 4.3.13 Let fig : Y^X be a pair of simplicial maps and let Z 
be a simplicial subset of Y. Then Z is the difference kernel of the pair (f g) 
iff | Z | is the difference kernel of the pair (| /' |, | g |). 

Proof The geometric realization | Z | of Z is a closed subspace of the 
geometric realization | Y\ of the simplicial set Y (see Lemma 4.3.4). 

'=>': Let Z be the difference kernel of the pair {f,g\ i.e., 
Z = {yeY : f(y) = g(y)}. Then its geometric realization | Z | is clearly 
contained in the difference kernel of the pair (|/|,|#|). Now consider a 
point in the difference kernel of (|/|,\g\); assume / to be an interior 
point (see Proposition 4.3.3 (i)). Then, 

Uf(y))*,(f(y))>*l = Uiy),f] = l/KO,']) = \g\ity,0) 
= Lg(y)Jl = l(g(y)fMy)m 

Since (f(y)Y and [g{y)f are degeneracy Operators, (f{y)ft and {g{y)ft 
are interior points (see Lemma 4.1.2). The uniqueness of the representation 
by minimal pairs (see again Proposition 4.3.3 (i)) now gives 

(f(y)f = (g(y)f, (f(y)?t = (giy)H 
The second of these equations implies (f(y))Q = (g(y)jQ (see Lemma 4.1.1); 
combining it with the first, we obtain 

fiy) = (f(y)f(f(y)T = m f m ? = g(y\ 
i.e., yeZ; thus, [ y , f ] e |Z | . 
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'<=': Take | Z | to be the difference kernel of the pair (|/|,\g\). Consider 
a simplex yeY and choose an interior point teAdimy. Now, if y e Z , the 
same argument as above shows f(y) = g(y). On the other hand, if y is in 
the difference kernel of the pair (/, g\ then 

= U(y\t\ = lg(ym = \g\{Ly,tl\ 
i.e., [ y , f ] e | Z | ; this implies yeZ. • 

Now turn to finite products. Consider the product Y x X of the simplicial 
sets Y and X. The projections pY : Y x X Y and px : 7 x 1 - ^ 1 induce 
a natural map fcy^ = (|p y | , |p^|) : \ Y x X\^>\Y\x \X\. 

Lemma 4.3.14 For g ,peN, the natural map 

/s a homeomorphism. 

Proof Identify and | 4 [ p ] | with Aq and Ap respectively (via the 
homeomorphisms described in Example 1 of Section 4.2). The aim is to 
construct a function g : Aq x Ap^>\A[q] x 4 [ p ] | which is inverse to the 
m a P ^A[q), A\PY T ° ̂ s enc*> c o n s i d e r (t9t')eAq x Ap. Order all of the sum 
coordinates of t and t' to form an (r + 2)-tuple (w_ l 9 w 0 , . . . , ur) such that 

0 = w_ j < w0 < ••• < ur_ l < u r = \ 9 

thus obtaining the sum coordinates of an interior point veAr. Now there 
are unique Operators a : [r] -> [g], /? : [r] -> [p] such that av = f and 
ßv = t' respectively (see Lemma 4.1.5). The pair (a, ß) is an r-simplex of 
A[_q] x 4[p] ; thus, it is possible to define g(t91') = [(a, /?), t?]. But 

Äj l f l).4(ri 0^^ ,) = Ä^ ] i i i [ p ] ( [ (a ,^) , i?] ) 

= ([a,»],[j8,o]) = (ao,j8o) = (r,r'), 
and so 

For the other composition, take ([(a,ß\v~\)e\A[q~] x 4 [p ] | and assume 
(a, ß) to be a non-degenerate r-simplex of A\_q~\ x 4[p] and ve(Ar)°. One 
again obtains 

HA[Q],A[p]([(a>ßl v]) = (avjv). 
Now, if g(ccv,ßv) were to be different from ([(a,/?), t?]), there would be at 
least one sum coordinate ux of i? which would be neither a sum coordinate 
of av nor of /fo. But this would imply (a, ß) = (a'cr,-,/?'^) = (a', yS')at- to be 
degenerate, a contradiction! 

Thus, the natural map hA[q]A[p] : x 4[p]|->|4[<gr]| x | 4 [ p ] | is 
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bijective. Now observe that every r-simplex (a, ß)eA\_q~] x 4[/?] with 
r > q + p is degenerated. Indeed, inspection of the unique decompositions 

with 0 ^ / ! <-"js< r,0^j\ < •••fs, <r,s^r — q and s'^r — p leads to 
s + s'^2r — q —p> r, which implies that the sets {ji,*>.Js} and 
{71> • • •' 7s'} h a v e a t l e a s t o n e element in common. Thus, A [g] x 4 [p] has 
only finitely many non-degenerate simplices; consequently, |4[g] x 4 [ p ] | 
is a finite CW-complex (see Theorem 4.3.5), and therefore compact 
(Proposition 1.5.8). But a continuous bijection with a compact domain 
and a Hausdorff codomain is a homeomorphism. • 

Remark The argument just given shows that the product of a simplicial 
set of dimension q and a simplicial set of dimension p is of dimension 
q + p. This fact is not rewarded with a special Statement because it is 
obtained from the similar theorem for CW-complexes (see Theorem 2.2.2) 
via geometric realization. • 

Proposition 4.3.15 The natural map hY x : \Y x X\ -»| Y| x |X\ is a homeo­
morphism, for all simplicial sets Y, X. 

Proof An inverse function g to hY x can be given as follows: 

g(iy,tUx,n) = iiya,xß),vn 
for ye Yq, xe Yp and with a, ß , v constructed from (f, t') as in the preceding 
proof. The closed cells of the product | Y\ x \X\ are the sets ey x ex with 
yeY^xeX^q,peN (Theorem 4.3.5 and Theorem 2.2.2). Thus, for the 
continuity of the function g, it suffices to show that all the restrictions 
g\eyxex are continuous. Moreover, the maps cy x cx induce identification 
maps AQ x Ap^eyx ex\ thus, it remains to show that the compositions 
g°{cyxcx) are continuous. These functions a r e - u p to suitable 
identifications - nothing but the compositions of the homeomorphisms 
(hAiqi A[p))~1 geometric realizations \(pyxcpx\ of the simplicial 
maps cpy x cpx : 4 [g] x 4 [p ] -> Y x X which are given by the assignment 
(y,yf)h->(yy,xyf) (cf. the sketch of the proof of Lemma 4.2.1). • 

Propositions 4.3.13 and 4.3.15 together imply, as announced: 

Theorem 4.3.16 Geometric realization preserves finite limits. • 

The fact that geometric realization commutes with products shows that 
from a geometric point of view the simplicial homotopy notions defined 
in the previous section actually do what they are supposed to do. Observe 

OL 
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that | Y x 4 [1 ] | ^ | Y | x ^ | Y | x /, according to Proposition 4.3.15 
and the homeomorphism | 4 [ 1 ] | - • / , > t \ - ^ t { . This proves 

Proposition 4.3.17 The geometric realizations of a pair of simplicially 
homotopic simplicial maps is a pair of homotopic maps. Consequently, 
simplicial homotopy equivalences are transformed into (geometric) homotopy 
equivalences by geometric realization. • 

Conversely, it is easy to construct a pair of simplicial maps whose geometric 
realizations are homotopic without the simplicial maps themselves being 
simplicially homotopic. Nevertheless, a sort of reciprocal Statement to 
Proposition 4.3.17 is true. 

Proposition 4.3.18 If f,g : T^U are homotopic maps, the corresponding 
singular maps Sf, Sg : SY -+SX are simplicially homotopic. Consequently, 
homotopy equivalences are transformed into simplicial homotopy equival­
ences by the singular functor. 

Proof Let h be a homotopy from / to g. Assume the domain of h to be 
T x \A[Y] |. As a right adjoint functor, the singular functor commutes with 
products. Thus one can consider Sh as a simplicial map from ST x 5 |4[1] | 
to SU. Now composition of Sh with the simplicial map l s r x nA[l] yields 
the desired simplicial homotopy. • 

Corollary 4.3.19 The composed functors \ S-\ and S\-\ preserve homotopies, 
homotopy equivalences, deformation retractions and contractibility. • 

Moreover, note that the composed functor \S-\ transforms subspaces into 
(CW-)subcomplexes. 

There is some further terminology in this context. A simplicial map / 
is a weak homotopy equivalence if its geometric realization \f \ is an honest 
homotopy equivalence; a simplicial set is weakly contractible if its 
geometric realization is contractible. 

The following is an application of the Eilenberg-Zilber property for 
convariant functors A -> SiSets. 

Theorem 4.3.20 (Comparison theorem) Let <P,<P' : A - • SiSets be (covariant) 
functors with the Eilenberg-Zilber property and let cp : (P 0' be a natural 
transformation such that (p[n] : &[n\^> &'[n~\ is a weak homotopy equival­
ence, for every neN. Then, the induced simplicial map 

(px = \x®cp : X®&-*X®$>' 

is a weak homotopy equivalence, for all simplicial sets X. 
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Proof The claim is evident if X is a coproduct of standard-simplices. The 
Statement will be proved next for simplicial sets having finite dimension, 
using induction on the dimension. If dim X = 0 then, X is a coproduct of 
O-simplices. Now assume dim X = n > 0 and observe that X may be 
obtained from Xn ~1 by means of a simplicial attaching of n-simplices, i.e., 

^ = r - 1

U / U 4 [ n ] 
for some simplicial m a p / : uc5zl[n]-»X"~ 1 (see Corollary 4.2.4 (ii)). 
Since the functors 0 and <P' have the Eilenberg-Zilber property, the 
tensor products -®0 and -®0' preserve simplicial attachings (see 
Proposition 4.2.12); thus, 

x ® 0 = xn ~1 ® <j>U /® * L i * M , 
as well as 

x ® <z>'= 1 ® U / 0 U #T"]-
Geometrie realization preserves attachings (see Proposition 4.3.10); 
consequently, one obtains \X®0\ and |X ® 0'| by the induced attachings. 
The map |<P ü 4 [ l l ] | : I LI 0[n\I ->I L _ l # ' M I is a homotopy equivalence as 
stated in the beginning; by the induction hyptothesis, the same holds true 
for the maps \<pudA[n]\ : U <54[/i] ®0\-+\\J 8A[ri] ® 0'\ and | ^ Y „ _ , |. The 
result now follows from the gluing theorem (see Theorem A.4.12). 

If X does not have finite dimension, one has expanding sequences 

{\Xn®0\ : neN}, {\X"®0'\ : neN} 

and a commutative ladder of homotopy equivalences connecting them; 
thus, the induced map between the union Spaces (which can be considered 
as cpx) is also a homotopy equivalence (see Proposition A.5.11). • 

This shows that replacing the simplices of a simplicial set by some more 
complicated objects does not alter the weak homotopy type as long as 
the new objects are weakly contractible. 

Corollary 4.3.21 Let 0 : A-+SiSets be a (covariant) functor with the 
Eilenberg-Zilber property and such that 0([ri]) is weakly contractible, for 
all n e N . Furthermore, let a natural transformation cp : 0-+A be given. 
Then, the induced simplicial map(px = lx®(j) : X® 0^>X is a weak 
homotopy equivalence, for all simplicial sets X. • 

Remark Clearly, the same Statement is true if one is given a natural 
transformation A -> 0 instead of that assumed in the Statement of 
Corollary 4.3.21. In some sense, it is not even necessary to require the 
existence of any natural transformation (see Section 4.5, Exercise 1). • 
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Recall that a (continuous) map p : Y -> X is locally trivial if every point 
x e X has a neighbourhood £/ such that the map induced from p by the 
inclusion U cz X can be chosen as the projection of the product U x p~ 1(x) 
onto U. 

Proposition 4.3.22 The geometric realization of a locally trivial simplicial 
map is a locally trivial (continuous) map. 

Proof Let p : be a locally trivial simplicial map and consider a 
point [ x , f ] e | X | ; without loss generality, one may assume x to be a 
non-degenerate n-simplex in X and t an interior point of An (see 
Proposition 4.3.3 (i)). The open cell of the CW-complex \ X\ corresponding 
to the simplex x is an open neighbourhood U„ of [x,7] in \Xn \ = \X\". 
Forming the infinite collar of this open cell with respect to the canonical 
characteristic maps (see the Remark after Corollary 4.3.8), one obtains a 
neighbourhood U of [x,f] m\X\ (see Proposition 1.3.1 (ii)); U is the union 
space of the expanding sequence of the intermediate collars Um, m>n (see 
Proposition 1.3.1 (iv)). Let q : K-» U and qm: Vm-* Um denote the maps 
which are induced from \p\ by the inclusions U cz \ X\ and Umcz\X\9foi 
m ̂  n, respectively; note that the maps qm can also be thought as induced 
from q by the inclusions Um cz U. The Spaces V and Vm can be considered 
as subspaces of | Z | , and V is determined by the family {Vm : m^n} (see 
Corollary A.2.3, which will be used several times in the sequel without 
explicit reference). For any non-degenerate simplex xsXm + l i let ex denote 
the corresponding open cell of \X\. Set Ux=UmKj(Um+1nex) and let 
Qx : Vx-^Ux denote the map induced from qm+l by the inclusion 
UxczUm+i. Then, Um+iis determined by the family {Um} u {Ux : xeX# +1} 
(see Proposition 1.1.3 (ii)) and Vm+1 is determined by the family { K m } u 
{Vx:xeX*m+l}. 

Now, let F denote the fibre of p over xe0. It will be shown that there 
is a homeomorphism h : V-+U x \F\ whose composition with the pro­
jection onto U is just q. Since U x \F\ is determined by the family 
{Um x \F\ : m ^ n } , this can be done by an inductive construction of 
suitable homeomorphisms hm : Vm->Umx\F\. 

Start with m = n : Because the simplicial map p is assumed locally trivial, 
there is an isomorphism h' : W^A[ri] x F, with prA[n]°h = p9 where 
p : W^>A[n] denotes the simplicial map which is induced from p by 
7 : 4[n]-»X,ai—>xa. Since geometric realization preserves finite limits 
(see Theorem 4.3.16), the projection An x \ F\->An is (up to the homeo­
morphism \h\) induced from \p\ by the characteristic map \ f\ = c~. The 
map qn can be thought as induced from this projection by the inclusion 
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Un cz A'\ [x,f]H->f; this yields the homeomorphism hn : \p\ l(Un)-^ 
Unx\F\. 

Assume hm is constructed. Again, Um+1 x \F\ is determined by the family 
{Um x \F\}u{Ux x and it suffices to construct suitable homeo­
morphisms hx : Ux x \F\. Because different Ux intersect exactly in Um9 

one can restrict the argument to a Single non-degenerate (m -f l)-simplex x. 
It follows from the definition of the collaring process that the starting 

simplex x is a face of x; thus, the fibers of p over xs0 and xe0 can be 
identified (see Proposition 4.2.2). Now, local triviality implies, as in the 
case n = m, that the projection Am + 1 x \F\-+Am + l is induced from \p\ by 
the characteristic mapc x ; let c : Am + i x | F | - > | Z | denote the map which 
is correspondingly induced from cx by |p|. Take V = c~ l(Ux\bU' = 
c~l(Vm) and observe that there is a retraction r : U'->öU'. Moreover, 
Ux is obtained from Um by attaching U' via a map with domain b U' (see 
Lemma 1.1.8); the characteristic map c' and the attaching map bc' of this 
attaching can be taken as induced from cx by the inclusion of Ux and Um 

respectively, into \X\. Consequently, Vx is obtained from Vm by attaching 
U' x \ F\ via a map with domain SU' x \F\ (see Proposition A.2.2); the 
characteristic map c and the attaching map bc of this attaching can be 
taken as induced from c by the inclusion of Vx and Vm respectively, into 
| Z | . Therefore, in order to obtain the homeomorphism hxi one needs a 
suitable map U' x \F\-> Ux x \F\ whose components h! : U' x \F\^UX 

and h" : U' x \F\^\F\ can be defined as follows. For h\ take the 
composition of the projection onto V with c'. For h'\ compose the maps 
r x l| f,,<5c,/im and the projection Um x \F\->\F\. The resulting map hx is 
bijective; it remains to show the continuity of the inverse function. Since 
the functor - x | F | preserves attachings (see Section A. l ) Uxx\F\ is 
obtained from Umx\F\by attaching U' x\F\. Thus, it suffices to establish 
the continuity of the functions hx~l\Um x \ F\ and hx~1o(ct x 1^). The 
first case is trivial: hx~l\Um x \ F\ = hm~1. For the second, note that the 
map bc is induced from bc' by qm\ thus, the universal property of pullbacks 
can be used to obtain a map g: U' x\F\->bU' x with bc°g = 
hm~io(bc'°r x 1JF|) and pröu,°g = r°pru>, where prbl}, and prv. denote the 
respective projections. Take g' : U' x \F\ U' x \ F\ whose components 
are the projection prv> and the composition of g with the projection onto 

This yields that the composition hx~1 °(cf x 1 | F () = c°g' is also 
continuous. • 

Corollary 4.3.23 The geometric realization of a locally trivial simplicial map 
is a (locally trivial) fibration. 
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Proof Let p : Z -> ̂  be a locally trivial simplicial map. Since the codomain 
of the map \ f\ is a CW-complex (see Theorem 4.3.5), and therefore para­
compact (see Theorem 1.3.5), the locally trivial map | / | is a fibration (see 
Theorem A.4.22). • 

Exercises 
1. Show that the geometric realizations of an ordered simplicial complex 

in the sense of Section 3.3 and its associated simplicial set (see 
Section 4.2, Exercise 4) are naturally equivalent. 

2. Show that the geometric realization functor OSiCo^CW preserves 
products. 

3. Construct two simplicial maps that are not simplicially homotopic, but 
whose geometric realizations are homotopic. 

4. Construct a simplicial map that is a weak, but not a simplicial, 
homotopy equivalence. 

4.4 Presimplicial sets 

A presimplicial object in the category Sets of sets, i.e., an object of the 
category PSiSets, is called a presimplicial set. In dealing with presimpli­
cial sets, it is again convenient to view a presimplicial set X as an N-graded 
set X = \jXn, now with the small category M operating on the right; the 
elements of a presimplicial set are also called simplices with the same 
notion of dimension. The category PSiSets has similar formal properties 
as the category SiSets; it has all limits and colimits as well as suitable 
notions of generators and relations. The Yoneda embedding A : A-> 
SiSets is only replaced by the Yoneda embedding M : Af-> PSiSets. But 
in a presimplicial set there is no difference between degenerate and 
non-degenerate simplices. It might also happen that almost all Xn are 
empty; it is reasonable to define the dimension of a presimplicial set 
X - notation: dim X - by taking 

dim 0 = - 1 

and, for X # 0, 
dim X — max [n : Xn # 0}. 

If X is a simplicial set viewed as a functor A Sets, one may form its 
restriction X\M to the subcategory M of A to obtain a presimplicial 
set; by evident reasons, this process will be referred to as forgetting 
degeneracies. It extends to the forgetful functor P : SiSets -> PSiSets which 
is right adjoint to a (non-full) embedding E : PSiSets-*SiSets, described 
explicitly as follows. To a presimplicial set X assign the simplicial set EX, 



166 Simplicial sets 

generated by all the elements of X (in the corresponding dimensions) and 
subject to the relations xp = y for every triple (x, p, y) satisfying this 
equation in the presimplicial set X. Thus, the n-simplices of EX can be 
viewed as pairs (x,p) consisting of a simplex x of X and a degeneracy 
Operator p : [n]->[dimx]; the Operation of A is given by the formula 

(x,p)a = (x(pa)#,(pa)b), 

for all such pairs (x, p) and all Operators a with cod a = [n]. If / : Y -* X 
is a presimplicial map, i.e., a morphism in the category PSiSets, then the 
simplicial map Ef : EY->EX is given by the assignment (y, p)i—K/(y), p). 
The unit for the adjunction is the family {ux : XeOb PSiSets} of the 
presimplicial maps ux : X-+PEX,x\-^(x,i); the counit is the family 
{px : XeOb SiSets} of the simplicial maps px : EPX-*X,(x, p)h-»xp. In 
particular, the embedding E commutes with the Yoneda embeddings, i.e., 
A\M=E<>M. 

The geometric realization of presimplicial sets is defined via simplicial 
sets, just as the composed functor | — | o £ = | £ - | . The simplices of a 
presimplicial set X correspond bijectively to the non-degenerate simplices 
of the simplicial set EX, i.e., X = (EX)*. In particular, this implies that 
the introduced notion of dimension for a presimplicial set X is compatible 
with the geometric realization: 

d i m X = d i m | £ Z | . 

For a simplicial set X, the geometric realization X = | EPX | is also called 
the fat realization of X; it is infinite-dimensional except for X = 0. 

The geometric realization functor | £ - | : PSiSets-*Top is left adjoint 
to the composite functor PS : Top-*PSiSets. The unit and the co-unit 
of this adjunction are given by the families {rj'x : XeOb PSiSets}, {j'T : 
TeOb Top} with rj'x== PnEX°ux, fr=jro\pST\ respectively. 

By abuse of language, one says that a simplicial set (map) is a 
presimplicial set (map) if it is in the image of the embedding functor £; 
this is the case 

for a simplicial set iff the faces of non-degenerate simplices are again 
always non-degenerate; and 

for a simplicial map iff domain and codomain are presimplicial sets 
and non-degenerate simplices are mapped onto non-degenerate 
simplices. 

On the other hand, pairs of presimplicial maps are simplicially homotopic 
if they are such as simplicial maps. Similarly, one carries over the notions 
simplicial or weak homotopy equivalence, simplicially or weakly contractible 
into considerations of presimplicial maps and sets respectively. 
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Remark It does not make sense to look for an analogue presimplicial 
homotopy within the category PSiSets. The formal reason is that the 
embedding E is left adjoint; thus, it does not commute with products in 
general. For instance, the product M [ l ] x M [ l ] does not yield a Square 
(after geometric realization), but, rather, the disjoint union of an interval 
and two Single points. However, there is a nice sufficient condition for 
simplicial contractibility within the category PSiSets. For this one needs 
a special construction. • 

The cone of the presimplicial set X is the presimplicial set CX given by 

( C X ) 0 = X 0 u { * } , 

where * is just one extra element which does not belong to X9 

(CX)n = XHuXH_19 

for n > 0 - if an (n — l)-simplex x of X is considered as an n-simplex of 
CX it will be denoted by % ' in the sequel -

C A ^ ) ( x ) = A ^ ) ( x ) , 

for xeX„ CZ (CX)n, 0 < i ̂  n, n > 0, 

CX(ö0)(xc) = x, 

for xeXn_l,n>0, 

CX{öx)(xc) = *9 

for xeX0cz(CX)l9 

CX(öi)(xc) = X(öi_l)(x), 

for xeXn__! cz(CX)n90<i^n,n>0. 

If x = 0 , the cone CX consists of exactly one simplex (of dimension 0); 
otherwise, CX is generated by the set {xc : xeX} subject to the relations 

xcö. = (Xs.)c 

for xeXn<z(CX)n + i,0<i^n + l , n ^ 0 . 
This construction extends in the evident manner to presimplicial maps 

giving rise to the cone functor C : PSiSets-* PSiSets. It is connected to 
the identity functor via a natural transformation which is given by the 
embeddings cx : X-+CX9 x\-^xcö0. 

Theorem 4.4.1 The cone functor C commutes with the geometric realization, 
more precisely, there is a natural equivalence \EC-\-L>C\E-\ : PSiSets^ 
CWr. 

Proof Let X be a non-empty presimplicial set. The geometric realization 
\ECX\ of its cone CX is a quotient space of \jXnxAn + 1 (see 
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Proposition 4.3.1). Consider An+1 as a cone with peak e09 i.e., represent 
any seAn+i in the form 

s = (\ -t) - ö0s' + te09 

with tel and s'eAn (see Section 3.1, Example 2). Then, define a natural 
homeomorphism h : \ECX\->CX by taking 

for xeX„ and s e 4 " + 1 . • 

Remark Notice that the homeomorphism just constructed is a regulär 
map between the corresponding CW-complexes; thus, it is cellular in both 
directions. • 

The following is a technical lemma which is useful in dealing with the 
formal apparatus. 

Lemma 4.4.2 Let the simplicial set X be a presimplicial set. Then the 
simplicial set X x 4[1] is isomorphic to the simplicial set Xf which has the 
sets Xn x [rc] as generators in dimension n + 1 and is subject to the relations 

(x9i)öj = (xöjj-l\ j<i9 

(x, i)<5; = (x, i — \ )öi9 0<i^n9 

(x9i)öj = (xöj_i9i)9 j>i+\. 

Proof The assignment (x, i)h^(xai9 cot) induces an isomorphism Xj -> X x 
4[1]. • 

Now, the announced condition for simplicial contractibility can be 
discussed. 

Proposition 4.4.3 A presimplicial set X is simplicially contractible if there 
is a simplicial retraction CX -> X. 

Proof Define a simplicial homotopy H : Xj->ECX from the constant 
mapX ^>CX with value * to the inclusion cx by taking 

H(x9i) = ((x(ö0Y)C9 K ) ' ) . 
If there is a simplicial retraction r : ECX->EX9 then the composition 
r°H shows that EX is contractible to the 0-simplex r(*). • 

Now it can be shown that standard-simplices remain homotopically trivial 
under forgetting degeneracies. 
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Proposition 4.44 The presimplicial set PA\_ri] is simplicially contractible, 
for every neN. 

Proof For an Operator a : [m]->(V| define a' : [m+ 1]->|X| by taking 

a'(0) = 0, a\i + 1) = <x(i), for ie[m]. 

The assignment aci—>a' induces a retraction CP4[n ] ->P4[w]. • 

This was the last tool to prove the following: 

Theorem 4.4.5 The simplicial map px : EPX ->X is a weak homotopy 
equivalence, for every simplicial set X. 

Proof The functor EP can be viewed as a tensor product 

EP = -<g) EPA, 

the simplicial sets EPA[n\ are simplicially - and therefore, weakly-
contractible (see Proposition 4.4.4) and p4 [_-, : EP\A->A — is a natural 
transformation; thus, the simplicial mapp* is a weak homotopy 
equivalence, for every simplicial set X (see Corollary 4.3.21). • 

The formalism of presimplicial sets allows an easy simplicial description 
of the 3-dimensional lens Spaces: 

Example Given peN\{0} and qeZp = Z/pZ the lens space L(p,q) is the 
geometric realization of the following simplicial set. Take generators 
xhieZp, in dimension 3 and require the relations 

^ 3 = xi+ iö2,xiS0 = x ^ V • 

Exercises 

1. There is also a cone construction in the category SiSets which is given 
as follows. Let X be an arbitrary simplicial set and let * be an extra 
element which does not belong to X. Set 

(CX)„ = {{x,q)eX x N : q + d imx = n}v{(*,n)}, 

for all neN, 

' (x,q- 1), 0^i<q, 

(*, q — 1), q = i, dim x = 0, 

, (x<5. q), q^i^q-\- dim x, dim x > 0, 

(x,q + l), 0^j<q, 

(x,q)öi = 

(x, q)cj = 
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for all [x,q)eX x N , and 

(*, ri)a = (*,dima), 

for all n e N and ae4[n]. Show that these facts define a simplicial set 
CX and prove simplicial analogues to the presimplicial Statements of 
Theorem 4.4.1 and Proposition 4.4.3. Compare CEX and ECX for a 
presimplicial set X. 

2. Prove the following generalization of the Comparison Theorem (see 
Theorem 4.3.20): let each of the categories ^ and <€' be either SiSets 
or PSiSets. Suppose F,G : <€' -*cß are cocontinuous (i.e., compatible 
with all colimits) functors which preserve injections. In addition, assume 
cp : F - > G is a natural transformation such that the (pre)simplicial 
maps <p4[n] or cpM[n] are weak homotopy equivalences, for all neN. Then, 
the (pre)simplicial maps<pM are weak homotopy equivalences, for all 
(pre)simplicial sets X. 

3. Show that the lens space L(p,q) has fundamental group Z/pZ and 
universal covering S 3 . Derive from this that for a fixed p, but all possible 
q, the Lens Spaces L(p, q) have the same homotopy groups. 

Remark Using cohomology rings - which are beyond the scope of this 
book - one can moreover show that L(p, q) and L(p, qf) have the same 
homotopy type iff q • q' or — q • q' is a quadratic residue mod p (Hilton & 
Wylie 1960, Section 5.10). Thus, for example, L(5, l ) and L(5,2) have 
isomorphic homotopy groups, but different type. 

4.5 Kan fibrations and Kan sets 

The categories SiSets and PSiSets admit combinatorial analogues of the 
geometric idea of fibration. The basic notions for these are the so-called 
horns and anodyne extensions. For n e N and /ce[n], take /t f c[n] as the 
simplicial subset of the simplicial standard-n-simplex A[n\ which is 
generated by all the elementary face Operators ö" with / ̂  k; in case n = 0, 
take / \ ° [0] = 0. The simplicial set Ak[n] is called the k-th horn of A[n\\ 
indeed, it is a presimplicial set (in the sense described in the previous 
section). Using the natural homeomorphism |4[n]|->4" (described in 
Section 4.2, Example 1), identify the geometric realization of the horn 
Ak[n\ with the subspace of the geometric standard-n-simplex A" which 
consists of the points t — (t0,..., tn) with tt = 0, for at least one index /* # k\ 
for n > 0, the homotopy H : An x I -> An 

(t, s)h-»(r0 — st\ ...,tk + nst', ...,£„ — st') 

with t! = min{t f : i # k] establishes | Ak[n] \ as a strong deformation retract 
of A\ 



Examples 1 s / i ^ l ] £ 4[0]; / l ' [2] , / = 0,1,2, see Figure 12. 
Let Z be a simplicial set and let / : Ak[n~]-»Zbea simplicial map. The 
image of / is called an (n — )horn in Z ; it is a simplicial subset of Z which 
is generated by a family {zt- : /e[n],/^/c} of (n — l)-simplices, subject to 
the relations zidj = zfb{_ { for 0 <_/ < i ^ nj ^ /c ̂  i; the empty set is the 
only 0-horn in Z . Each such family {z,} generates an n-horn in Z ; by 
abuse of language, one says that the family itself is an n-horn in Z . A n 
n-simplex z e Z is a filling of the horn {z j if zöt = zb for all i ^ fc; each 
0-simplex in Z is a filling of the 0-horn in Z . A horn can befilled if there 
exists a filling; this is the same as saying that the corresponding simplicial 
map Ak[n~\ -* Z can be extended over the whole standard-n-simplex A[n\. 

Let p : Z^>X be a simplicial map. If the family {z j is a horn in Z , 
then the family {p(z.-)} is a horn in X. The simplicial mapp is called a 
(Kan) fibration with base X and tofa/ set Z , if, for every horn {z,} in Z 
and every Filling x of the horn {p(zt)}, there is a filling z e Z of the horn 
{z j oüer x, i.e., such that p(z) = x. The following facts result immediately 
from the definition. 

Proposition 4.5.1 (i) The Kan fibrations form a subcategory of SiSets 
containing all isomorphisms, i.e., all identities and all other simplicial 
isomorphisms are Kan fibrations, and any composition of Kan fibrations is 
a Kan fibration. 

(ii) If Z^X is a Kan fibration and D is a retract of Z over X, the 
restriction D^X is a Kan fibration. 

(iii) IfZ^X and Y^W are Kan fibrations, their product Z x Y^X xW 
is a Kan fibration. 

(iv) If Z^>X is induced from a Kan fibration (by means of a pullback 
construction), then Z^X is a Kan fibration. 

(v) A Kan fibration with a non-empty base is surjective. In particular, 
every horn in the base is the image of a horn in the total set. • 
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In contrast to the geometric Situation (see Proposition A.4.7 (i)), it is not 
true in general that a terminal map in SiSets is a K a n fibration. Therefore, 
the simplicial set Z is called a Kan set if the unique simplicial map Z 4[0] 
is a K a n fibration. Because every horn in 4[0] has a unique filling, K a n 
sets can be characterized by the fact that all horns can be filled. 

Corollary 4.5.2 (i) A Kan set is non-empty. 
(ii) The fibres of a Kan fibration are Kan sets. 
(iii) The total set of a Kan fibration is a Kan set iff the base is a Kan set. 

Proof (i) If Z is a K a n set, then the unique simplicial m a p Z - » 4 [ 0 ] 
is surjective (see Proposition 4.5.l(v); thus, its domain cannot be 
empty. 

(ii) A fibre of a K a n fibration may be thought out as the domain of a 
simplicial map with codomain A [0] induced from the K a n fibration. 

(iii) '=>': Assume the total set is a K a n set and consider a horn in the 
base. Take an inverse image in the total set (see Proposition 4.5.1 (v)). It 
has a filling whose image in the base is a filling of the given horn. 

'<=': If the base is a K a n set, then the image of every horn in the total 
set has a filling which, by the defining property of K a n fibrations, can be 
lifted to a filling in the total set. • 

Example 2 Since | / l f c [n] | is a retract of \A[ri]\ = An, for all n e N and all 
/ce[n], the singular set S T of any topological space T is a K a n set. • 

It is often tedious to reduce Statements on K a n fibrations to Allings of 
horns. Therefore, it is worthwhile showing that K a n fibrations can be 
characterized by a more general extension property. To this end, one 
forms the subcategory A cz SiSets of anodyne extensions whose objects are 
defined inductively as follows: 

(0) all simplicial isomorphisms are anodyne extensions; 
(1) all inclusions Ak[n\ czA[n\ are anodyne extensions; 
(2) if the inclusion A cz D is an anodyne extension and D' is obtained 

from A' by attaching D via a partial simplicial map with domain A, 
the inclusion A' cz D' is an anodyne extension; 

(3) if the inclusion A cz D is an anodyne extension and the inclusion A' cz D' 
is a retract, i.e., there are simplicial maps g : D' -> D, f : D^>D' with 
f °g — \j)> and g(A') cz A cz f~l{A) the inclusion A' cz D' is an anodyne 
extension; 

(4) if the inclusions A(n) cz A(n + 1) are anodyne extensions, for all n e N , 
and D = u/t(n) the inclusion A(0)czD is an anodyne extension; 
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(5) if the inclusions A(j) cz D(j) are anodyne extensions, for all j in some 
index set, the inclusion \jA(j) cz uD(j) is an anodyne extension. 

As a consequence of (0), one can assume, in most cases, that the anodyne 
extensions under consideration are inclusions of simplicial subsets. 

Example 3 Let A be an n-horn with r holes; i.e., a simplicial subset of the 
Standard simplex A[n\ which is generated by n-h 1 — r elementary face 
Operators, 0 < r ^ n; in this sense, the horn Ak[n\ is a horn with just one 
hole. Then, the inclusion A cz A[n] is an anodyne extension. This follows 
by a double induction, first increasing on n, second on r. The key Step 
lies in the fact that an n-horn with r holes, r > 1, can be completed to an 
n-horn with r — 1 holes by means of an attaching of an (n — 1) simplex 
where the attaching is defined on an (n— l)-horn with r— 1 holes (see 
Condition (2) in the previous list). In particular, this shows that any 
embedding Aöt : A[n — 1] - M [ n ] is an anodyne extension. • 

The description of anodyne extensions given before immediately implies 
the following: 

Proposition 4.5.3 A simplicial map p : Z^X is a Kan fibration iff for each 
anodyne extension i : A -» D and each commutative Square 

A ^ Z 

'I 1-
D >X 

f 
there is a simplicial mapg : D^>Z such that g°i = /and p°g = f • 

Corollary 4.5.4 A simplicial set Z is a Kan set iff for each anodyne extension 
A cz D each simplicial map f : A-+Z can be extended over D. • 

Geometrically, anodyne extensions are more than just closed cofibrations. 

Proposition 4.5.5 The geometric realization of an anodyne extension 
i : A^D embeds \A \ as a strong deformation retract into \D\. 

Proof By induction. (0) The Statement clearly holds true for simplicial 
isomorphisms. 

(1) 1/1*1X11 is a strong deformation retract of |4 [n] | = An, for all n e N 
and all ke[_ri\ (see the beginning of this section). 

(2) Geometric realization transforms simplicial attachings into 
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attachings (see Proposition 4.3.10) and strong deformation retracts are 
preserved under attachings (see Proposition A.4.8(vi)). 

(3) If there are simplicial mapsö : D'->D, f : D-+D' with f°g = \D-
and g(A')czAcz f~1(A') and a deformation retraction H : | D | x /->|D|, 
rel. \A\, then H = \f\°H°(g x 17) is a deformation retraction \D'\ x 7->|Z)'| 
rel. 

(4) Given inclusions A(n)czA(n + 1), for all neN, and D = u/l(n), the 
sequence {|/l(n)| : neN} is an expanding sequence with union space \D\ 
(see Proposition 4.3.12). If, moreover, each \A(n)\ is a strong deformation 
retract of |/l(n + 1)|, then \A(0)\ is also a strong deformation retract of 
\D\ (see Corollary A.5.8). 

(5) If each \A(j)\ is a strong deformation retract of \D(j)\, for all j in 
some index set, |u4( / ) | = U| / l ( / ) | is a strong deformation retract of 
\uD(j)\ = u\D(j)\. • 

The analogy to geometry is more comprehensive. The following Statement 
reflects the fact that any map can be decomposed into an injective 
homotopy equivalence followed by a fibration (see Proposition A.4.18). 

Proposition 4.5.6 Any simplicial map f : Y->X can be decomposed in the 
form f = p°U where p : Z-+X isa Kan fibration and i : Y Z is an anodyne 
extension. 

Proof Define anodyne extensions Y(n) c Y(n + 1) and simplicial maps 
/(«) : Y(n)^X with fin + 1)\Y(n) = f(n), for all n e N , inductively as follows. 
First, take Y(0) = Y and f0 = f. Next, assume Y(n) and fin) are given. To 
obtain Y(n + 1), attach to Y(n) fillings for all horns which do not have 
Allings but whose images under fin) can be filled. Then, define f{n + l ) on 
an attached filling by assigning to it some filling of the image of the 
generating horn under fin). 

Since each inclusion Y(n) c Y(n + 1) is an anodyne extension, so is the 
inclusion Y = Y(0) <= u Y(n) = Z . The maps f{n) together define a 
mapp : Z^X. Since a horn is finitely generated, any horn in Z lives in 
some Y(n). If the image of such a horn has a filling in Z , the horn itself 
has a suitable filling, at least in Y(n -f 1), and therefore in Z . • 

Corollary 4.5.7 Any simplicial set can be embedded in a Kan set, by means 
of an anodyne extension. 

Proof Apply the proposition to the unique simplicial map from a given 
simplicial set to 4[0]. • 
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The main technical advantage of anodyne extensions comes from the 
following fact. 

Proposition 4.5.8 / / A is a simplicial subset of the simplicial set X, and if 
the inclusion A cz D is an anodyne extension, then the inclusion 

X x AuA x DczX x D 

is also an anodyne extension. 

Proof Again by induction. (1) The inclusions 

A[ri] x/t f c[l]u<54[n] x 4 [ l ] c 4 [ n ] x 4[1] 

are anodyne extensions, for all neN. First, consider the case fc = 0. Then, 
A\_n~] x 4[1] can be obtained from A[ri] x /l*[l]u<54[w] x 4[1] by suc-
cessive attachings of the (n -f l)-simplices (co„, on), (con_l,on_1),..., [co0, a0). 
Each single attaching is obtained via a partial simplicial map from 
z l [ n + l ] , with domain Am[n+ \~\,m = n,n— 1,...,0, and, therefore, an 
anodyne extension. Then, the same holds true for the composition of these 
attachings. Second, in case k = 1, one has to attach the described 
(n + l)-simplices in the inverse order. 

The inclusions 

X x / l f e [ l ] VJA x 4[1] c X x 4[1] 

are anodyne extensions, for all simplicial sets X and all simplicial subsets 
AczX. Define a sequence of simplicial subsets of X by taking X( — 1) = A, 
X(n) = XnuA9 for neN, and observe that X x / t* [ l ]uX(n) x 4[1] is 
obtained from x / l f c [ l ] u l ( n - 1) x 4[1] by attaching a coproduct 
Lj4[n] x 4[1] via a partial simplicial map with domain u 4 [ n ] x /1*[1] u 
8A\_n\ x 4[1]; since a coproduct of anodyne extensions is an anodyne 
extension, the inclusion 

U 4 [ « ] x /i f c[l]u<5zi[n] x c u 4 [ n ] x 4[1] 

is, according to the introductory Step, an anodyne extension, and therefore 
the inclusion 

X x / l f c [ l ] u l ( n - l ) x 4 [ l ] c J f x / l k [ l ] u X ( n ) x 4[1] 

is also an anodyne extension. Composing these anodyne extensions, for 
all n, one obtains that the inclusion of 

X x / i k [ l ] u l ( - l ) x A[_Y] = X x / l f c [ l ] u /4 x 4[1] 

into 
00 

[j Xx /1*[1] u*(n) x 4[1] = X x 4[1] 

is an anodyne extension. 
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The inclusions 

X x Ak[n\KJAX A\n\ c X x / l [ n ] 

are anodyne extensions, for all simplicial sets X, all simplicial subsets AczX, 
all neN and all kein]. First, assume k < n. According to the previous step, 
the inclusion 

X x A[ri] x 4 ° [ l ] u ( X x Ak[ri]uA x A[n\) x 4 [ l ] c l x A[n\ x z![l] 

is an anodyne extension. It contains the simplicial map under consideration 
as a retract via the embedding 

X x A[n]^X x A[n~\ x A\\\{x,a)\-^(x,a,50co) 

and the retraction 

X x x A\Y\-+X x A\_n],{x,a,ß)^{x,S), 

where the Operator a is given by a(i) = fc, for ß(i) = 0 and a(z) ^ fc, and 
a(i) = a(f) otherwise. For k = n- more generally, for fc>0 - replace A ° [ l ] 
by / l ^ l j ^ o by 5X and a by the Operator a given by d(i) = fc, for ß{i) = 1 
and <x(i) ^ fc, and a(0 = a(i) otherwise. 

(2) // D' is obtained from A by attaching D via a partial simplicial map 
with domain A and the inclusion 

X x AKJA XDCZX XD 

is an anodyne extension, then the inclusion 

XXA'KJAXD'CZXXD' 

is also an anodyne extension, because X x D' can be considered as obtained 
from X x A! u A x D' by attaching X x D via a partial simplicial map with 
domain X x AKJA x D. 

(3) / / the inclusion A' cz D' is a retract of the inclusion A' cz D' and the 
inclusion 

X x AvA xDczXxD 

is an anodyne extension, then the inclusion 

X x A'uAxD'czX xD' 

is also an anodyne extension because it is a retract of the given anodyne 
extension. 

(4) For every neN, let A(n) cz A(n + 1) be such that the inclusions 

X x A(ri)Kj A *A(n+\)<zzXx A(n + 1) 

are anodyne extensions; if D = uA(n), then the inclusion 

X xA{0)uAxDczX xD 

is an anodyne extension. Since X x A(n 4- l)uA x D can be considered as 
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obtained from X x A(n)uA x D, by attaching X x A(n + 1) via a partial 
simplicial map with domain X x A(n)Kj A x A{n + 1), the inclusions 

X x / l(w)u/l x D c X x / i ( n + l ) u / l x D 

are anodyne extensions, for all neN; but then, so is the inclusion 
00 

X x A(0)uA xDcz \J X xA(n)vAxD = X xD. 
« = o 

(5) The claim for the transition to coproducts is obvious. • 

Some tiny consequences of this proposition should be noted. 

Corollary 4.5.9 (i) If Z is a Kan set and some inclusion 4[0] <= Z is an 
anodyne extension, then Z is simplicially contractible. 

(ii) Any Kan set is the base of a Kan fibration with a contractible total set. 

Proof (i) According to the proposition, the inclusion 

Z x ÖA\_Y]u4[0] x 4[1] czZx 4[1] 

is an anodyne extension; thus, there is a simplicial homotopy H : Z x 
4 [1] ->Z with H{z,£0o)) = z,H(z,sya)) = co and H(co,ß) = co, for z e Z and 
/?G4[1]. 

(ii) A K a n set is non-empty (see Corollary 4.5.2 (i)); thus, it appears as 
codomain of simplicial maps with domain 4[0]. Apply the proposition 
to such a simplicial map. The total set Z of the resulting K a n fibration 
is again a K a n set (see Corollary 4.5.2 (iii)); as the codomain of an anodyne 
extension with domain A[0i],Z is contractible by (i). • 

Another application of anodyne extensions concerns homotopy over X. 

Proposition 4.5.10 Let Y be a simplicial set, let D be a simplicial subset of 
Y and let p : Z^X be a Kan fibration. Then, homotopy rel. D over X is 
an equivalence relation on the set of all simplicial maps Y^Z. 

Proof A l l kinds of simplicial homotopies are reflexive relations. Now let 
H : F x / 4 [ 1 ] - > Z and H : Y x 4 [ l ] - > Z b e simplicial homotopies rel. D 
over X from / to g, g respectively. Together, they define a simplicial map 

G : YXA°[2]KJDXA[2]->Z. 
The inclusion 

j : Yx A°[2]vD x A[2]-+Y x A[2] 

is an anodyne extension (see Proposition 4.5.8). Let G : Y x A[2]-+X 
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denote the composition of p°f and the projection from Y x A[2] onto 
Y. Then, G°j = p°G and the extension property (see Proposition 4.5.3) 
ensures the existence of a simplicial mapG : Y xA[2]^Z such that 
poQ = G and G°j = G. The composition G ° ( l y x Aö0) is a homotopy 
between g and g which proves the symmetry as well as the transitivity of 
the considered homotopy notion. • 

Corollary 4.5.11 / / Y is an simplicial set, D is a simplicial subset of Y and 
Z is a Kan set, then homotopy rel. D is an equivalence relation on the set 
of all simplicial maps from Y to Z. • 

There are some specific types of simplicial fibrations to consider. A 
simplicial map/? : Z-+X is an acyclic fibration iff, for each commutative 
Square 

ÖA[ri] z 

-y+x9 

where i : öA[ri] -*A[ri] denotes the inclusion, there is a simplicial 
mapg : A\yi\^Z such that a|<5zl[n] = / a n d p°g=fi 

Proposition 4.5.12 An acyclic fibration is a Kan fibration. 

Proof Let p : Z^X be an acyclic fibration and let a horn {zf} in Z as 
well as a filling xeX of the horn {p(zf)} be given. Take the simplicial 
m a p s / : Ak[p]-+Z9 S^Zt a n d / : A\_p]^X,i^x; then, p°f=f\Ak[p]. 
The inclusion Aök : 4 [p—l] ->4 [p ] induces an inclusion <5 : 8A\_p— l]-> 
A\p~] and by acyclicity there is a simplicial m a p ö : A\_p — 1]->Z such 
that g\5A\_p— 1] = /°<5 and p°g = f °ASk. Now observe that <5^[p] may 
be obtained from /l f c[p] by attaching Alp — 1] via ö; thus, the simplicial 
maps f,g together define a simplicial m a p / : <5/l[p] ->Z such that p°f = 
f\öA\_p~\. Using acyclicity again, one finds a simplicial map*? : 4[p] ->Z 
such that |̂<5^1[p] = / a n d p°g = / ; moreover, it follows that ^|/l f c[p] = / 
Therefore, the simplex g(i) is a filling of the horn { z j over x. • 

There is a characterization of acyclic fibrations similar to that of ordinary 
K a n fibrations by means of anodyne extensions (see Proposition 4.5.3). 

Proposition 4.5.13 A simplicial mapp : Z^X is an acyclic fibration iff for 
each injective simplicial mapi : A -> D and each commutative Square 
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i P 

D > X 
f 

there is a simplicial mapg : D-+Z such that g°i = f and p°g = f. 

Proof '=>': Given a commutative Square as described in the Statement, 
one may assume that the injective simplicial map i is an inclusion. Define 
a sequence of simplicial subsets of D by taking D( — \) = A, D{n) = D"vA, 
for neN. Observe that D = uD(u) and that D(n) is obtained from D(n — 1) 
by attaching a coproduct u 4 [ n ] via a partial simplicial mapd„ with 
domain u<54[n]; let dn : uA[n]-> D(n) denote the corresponding 
characteristic map. Construct inductively simplicial mapstfM : D(n)^Z 
w i t h ö _ i = f,gn\D(n- l) = öfB_1 and p°g„ = f as follows. Assume that gn_ t 

is constructed; using acyclicity, one finds a simplicial mapg,, : u4[w] ->Z 
with g|u<5zl[n] = gn-i°dn and p°gn = f\D(n)°d„. The simplicial m&psgn_1 

and gn together induce the desired simplicial mapa(n). 
Finally, define g : D^>Z by taking g\D{n) = gn. 
4<=': Obvious. • 

The ratio of K a n fibrations to acyclic fibrations can be described as follows. 

Proposition 4.5.14 (i) / / the simplicial map p : Z-+X is an acyclic fibration, 
there is a cross-section s : X-+Z for p such that the composition s°p is 
homotopic rel. s(X) over X to \ z . 

(ii) If the Kan fibration p : Z^>X is a simplicial homotopy equivalence, 
then it is an acyclic fibration. 

Proof (i) Apply Proposition 4.5.13, with A = 0 and / = lx. The result is 
a simplicial maps : X ->Z with p°s = lx; i.e., a cross-section for p. Now, 
apply Proposition 4.5.13 once more, with 

/ : Z x SA[\]vs(X) x 4[1]->Z, 

defined by {z,exco)v-*z,{z,&0co)\-*s°p(z),{s{x),ß)\-^s(x), and 

/ : Z x 4 [ l ] - » X , 

defined by (z,ö1co)\-^p(z), which gives the desired homotopy. 
(ii) First, from the assumption, one derives the existence of a cross-

section s : X-+Z for p such that the composition s°p is homotopic to l z 

over X. To reach this goal, assume that there are given a simplicial 
map q : X-+Z and simplicial homotopies H : Z x 4 [ 1 ] - > Z , H : X x 
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Z i [ l ] - > X from qop to l z and from poq to lx, respectively (for possibly 
other directions of these simplicial homotopies, the following proof can 
be suitably modified). Since p is a K a n fibration, there is a simplicial 
homotopy H : X x ^ l [ l ] - > Z from q to a cross-section s for p with 
p°H = H. Furthermore, there is a simplicial homotopy G : Z x 4 [ 2 ] - > Z 
with G(z,ö0ß) = tf(p(z), ß\ G(z,Slß) = soH(p(z\ß) and p ° G ( z , y ) = H(p(z\ 
a0y). Since the inclusion 

Z x 4[1] x y l 0 [ l ] u Z x <54[1] x 4[1] c Z x 4[1] x 4[1] 

is an anodyne extension, there is also a simplicial map 

K : Z x 4 [ l ] x 4 [ l ] - ^ Z , 
with K(zJ,s0a)) = G{z,ö2ßl K(z,e0co,jS') = s ° p o / 7 ( z , ß ' \ K{z,zxa>,ß') = 
H(z, ß') and p °K(z , ß , )8') = p°H(z , ß'). The assignment (z, ß)v->K{z, ß^w) 
describes a homotopy from s°p to l z over X . 

Now, let s : X - > Z be a cross-section for p and l e t t f : Z x Z i [ l ] - > Z 
be a simplicial homotopy over X from s ° p to l z . Consider simplicial maps 
f : <5zl[rc]->Z, f : A[ri]-*X such that /|<5zl[n] = p°f. Since p is a K a n 
fibration, there is a simplicial homotopy G \ A\n] x A[Y]-*Z with 
G(a,60ö>) = s°/(a) ,C(5 l , i8) = H(7(5 I.),i8) and p<>G(a, ß) = f(a). Then, the 
simplicial map # : ^[n] ->Z,ai-^G(a,a 1) satisfies the necessary equations 
for proving that p is an acyclic fibration. • 

Corollary 4.5.15 A Kan set Z is simplicially contractible iff any simplicial 
map öA\_ri] -*X can be extended over A[n\. • 

It follows from Proposition 4.5.14 that the geometric realization of an 
acyclic fibration not only is a homotopy equivalence but also has another 
nice property: 

Proposition 4.5.16 The geometric realization of an acyclic fibration is a 
fibration. 

Proof Let p : Z - > I be a acyclic fibration. Consider the commutative 
Square 

z - * - » z 

i P 

Z x X >X 
f 

where / denotes the projection onto the second factor and i has the 
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components l z , p . Since p is an acyclic fibration, there is a simplicial map 
g : Z x X^>Z such that g°i=lz and p°g = f Geometric realization 
preserves projections (see Proposition 4.3.15) and geometric projections 
are fibrations (see Section A.4, Example 5); thus, \f\ is a fibration. 
Moreover, the space | Z | is a retract via \g\ of | Z x X \ over the space \X\, 
and consequently the map | p | = | / | | | Z | i s a fibration (see Proposition A.4.7 
(ü)). • 

There is also a certain dual to Proposition 4.5.6. It corresponds to the 
geometric fact that any map can be decomposed into a cofibration followed 
by a homotopy equivalence (see Proposition A.4.10 (iv)). 

Proposition 4.5.17 Any simplicial map f : Y-+X can be decomposed in the 
form f = p°i, where p : Z-*X is an acyclic fibration and i : Y Z is an 
inclusion. 

Proof Adapt the proof of Proposition 4.5.6. • 

Let p : Z^X be a Kan fibration. Two simplices z0,z1eZn are fibre 
homotopic if the corresponding simplicial maps f} : A[_ri] -> Z , i\->Zj,je[\] 
(see Lemma 4.2.1 (i)), are homotopic rel. bA[n] over X. Clearly, fibre 
homotopic simplices have the same boundary. The next property is also 
evident (see Proposition 4.5.10). 

Proposition 4.5.18 If p : Z-+X is a Kan fibration, then fibre homotopy is 
an equivalence relation on Zn, for all neN. • 

The following are technical but useful criteria for recognizing fibre 
homotopic simplices. 

Lemma 4.5.19 Let p : Z-+X be a Kan fibration. Two simplices z0,zleZn 

are fibre homotopic if 
(i) there are homotopies H0,H1 : A[ri] x Ä[\~\^>Z such that 

(a) HQ\ÖA\n\ x 4[1] = Hx |<54[n] x 4[1] , 
(b) p o t f 0 = p o / / l 5 

(c) Hk(i,e0(o) = zk,ke\_\~\,and H 0(i,8 1co) = H^1,8^^00) 
(or 

(c') Hk{i,8X(D) = zk and H0{I,Z0(D) = H^1,80(0)); 

or 
(ii) there are simplices z'0, z\eZn + 1 with p(z'0) = p(z\) such that z'0öj, z\öj 

are fibre homotopic for some je[n+ 1] and z'0ör — z0,zf

1ör = z1 for some 
re[n+ l ] , r 
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Proof (i): First assume (c). Since p is a K a n Fibration, there is a simplicial 
m a p / / : A\_n\ x zl [ 2 ] Z such that H(a,ökß) = Hk(a,ß),H(öhy) = Hk{öh 

a0y) and poH(a,y) = poHk(oc,o0y), for ae4[n], j8e (4[ l ] ) d i m a , ye (4 [2] ) d . i n a , 
(A[2])n_x, respectively, fce[l] and ie[ri] (see Proposition 4.5.8 with 
A = A2\1\D = A[2]). The composition H°(lA[n] x 4<52) is a homotopy 
needed to show that z 0 and Zj are fibre homotopic. 

Second, if the conditions (c') are satisfied the argument is similar. One 
has only to replace the Operators Sk,a0 by the Operators ök+l,a{ 

respectively, the horn A2[2] by the horn / i ° [ 2 ] and the simplicial map 
Aö2 by the simplicial map Aö0. 

(ii): The inclusion Aöj : A[ri] aA\n+ 1] is an anodyne extension (see 
Example 3) and so is the induced inclusion 

A[n + 1] x &A{Y\ u 4 [ n ] x 4[1] c A[n + 1] x 4[1] 
(see Proposition 4.5.8). Now, since p is a K a n fibration, there is a simplicial 
map H : A[n + 1] x 4 [ l ] - > Z such that H(i,ekco) = z'k,H(xJ) = H(aJ) 
andp°JJ(a \ j80 = p(z;)a\forJte^^ x 

where H : zl[n] x z l [ l ] ->Z denotes a homotopy over X connecting 
z'0öj and z'^^. Then, H°(ASr x 1 4 [ 1 ] ) is a homotopy over X connecting 
z 0 and z L . • 

A simplicial map p : Z-+X is a minimal fibration if it is a Kan fibration 
and fibre homotopic simplices are always equal. The simplicial set Z is a 
minimal Kan set if the unique simplicial map Z->zl[0] is a minimal 
fibration. Again, the following facts result immediately from the definitions. 

Proposition 4.5.20 (i) The minimal fibrations form a subcategory of SiSets 
containing all isomorphisms, i.e., all identities and all other simplicial 
isomorphisms are minimal fibrations, any composition of minimal fibrations 
is a minimal fibration. 

(ii) If Z-> X is a minimal fibration, and A is a retract of Z over X, the 
restriction A-+X is a minimal fibration. 

(iii) IfZ-*X is induced from a minimal fibration (by means of a pullback 
construction), it is a minimal fibration itself. 

(iv) The fibres of a minimal fibration are minimal Kan sets. • 

One essential property of minimal fibrations is the following. 

Proposition 4.5.21 A minimal fibration is locally trivial. 

Proof Let p : Z-> X be a minimal fibration and consider a simplicial map 
/ : A[_m~]-+X. The simplicial map p : Y->4[m] induced from p by / is 
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a m i n i m a l f ibra t ion (see Propos i t ion 4.5.20 (iii)). It is to be shown that 
the s impl ic ia l set Y is isomorphic to the product of A\m~\ and the fibre 
F of v over SQ. T O simplify the notat ion, assume that p = p, and, 
consequently, Y = Z and X = A[rn\. 

Let C : z l [ m ] x 4 [ l ] - » 4 [ m ] denote the (unique) homotopy from the 
constant m a p wi th value e0 to 1 A [ m ] (see Section 4.2, Example 3). Since p 
is a K a n fibration, there is a s impl ic ia l deformation C : Z x Z l [ l ] - + Z 
rel. F f rom a retract ion q : Z^F to l z wi th p°C = C°(p x lA[l]) (see 
Propos i t ions 4.5.8 a n d 4.5.3). The s impl ic ia l maps p and q together define 
the m a p r : Z - M [ m ] x F,zi—>(p(z), g(z)). The existence of this s impl ic ia l 
map r depends on ly o n the fact that p is a K a n fibration; min imal i ty now 
wi l l be used to show inductively that r is an isomorphism. 

Injectivity T a k e two simplices z0, z1eZn wi th r (z 0 ) = r(zx), i.e., p(z 0 ) = 
p(zj) and C(z0,e0co) = q(z0) = q(z1) = C(zl9e0ü)). B y the inductive 
hypothesis, they have the same boundary; thus, the homotopies 

Hj :A£ri]x 4 [ 1 ] - Z , (a, ß)^C(z^ ß\ 

7 'e [ l ] , satisfy the necessary properties wh ich assure that these simplices 
are fibre h o m o t o p i c (see L e m m a 4.5.19 (i)). B y minimal i ty , this implies 

Surjectivity T a k e (K,z)e(A\m~\ x F)n. B y the inductive hypothesis and 
the already p roven injectivity of the s impl ic ia l map r, there is a s impl ic ia l 
m a p « : (5z l [n] ->Z such that r°h(öi) = (K,z)öh i.e., poh(öi) = KÖt and 
C(h(öi\s0co) = q°h(öi) = zöh for a l l ie[n\. Since p is a K a n fibration, 
there is a s impl i c i a l homotopy G : A[ri] x A\Y\^Z wi th G(oc,s0co) = za, 
G{Shß) = C(h(öi\ß) and p°G(a, ß) = C(KOLJ) (see Proposi t ions 4.5.8 
and 4.5.3). T a k e H0 = G : 4 [ n ] x 4 [ 1 ] - Z and : A[_n~\ x 4 [ l ] - > Z , 
(a,ß)h-+C(G{a,e,lco), ß)\ these homotopies show that the simplices z and 
tf(z) wi th z = G(z.e 1 o)) are fibre homQtppic, (see, L e m m a 4.5.19 (i)). B y 
min imal i ty , one obtains z = q(z\ and, finally, (*c, z) = r(z). • 

Corollary 4.5.22 T/ie geometric realization of a minimal fibration is a (locally 
trivial) fibration. 

Proof The geometric realization of a local ly t r iv ia l s impl ic ia l map is a 
(locally t r iv ia l ) f ibra t ion (see C o r o l l a r y 4.3.23). • 

Proposition 4.5.23 Any Kan fibration contains a minimal fibration as a 
strong deformation retract. 

Proof Le t p : Z X be a K a n fibration. Choose a System Z ' of represent-
atives for the fibre homotopy classes of simplices of Z such that Z b c Z ' ; 
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this is possible because each fibre homotopy class contains at most one 
degenerate simplex (see Corollary 4.2.4 (ii)). Using Zorn's lemma, find a 
simplicial subset Z of Z which is maximal with respect to the property 
Z cz Z ' . The maximality of Z implies that any simplex in Z ' whose faces 
all belong to Z also belongs to Z . 

It will be shown that Z is a strong deformation retract of Z , over X\ 
i.e., that there is a simplicial homotopy rel. Z over X from a simplicial 
map whose image is contained in Z to l z , by the method of the least 
criminal. Again, using Zorn's lemma, one finds a simplicial subset A of Z 
which is maximal with respect to the property that there is a homotopy 
G : A x z l [ l ] - > Z rel. Z over X from a simplicial map whose image is 
contained in Z to the inclusion of A into Z . Assume A^Z and choose 
a simplex zeZ\A of lowest dimension, say dimz = n. The simplex z is non-
degenerate (see Lemma 4.2.5 (iv)) and its boundary belongs to A. Let 
G : A x<4[l]->Z denote a simplicial homotopy rel. Z over X, with 
G(z,s0(o)eZ and G(Z,£1CL>) = z, for all zeA, which exists by the hypothesis 
on A. The simplicial subset A' of Z generated by X u {z} is strictly bigger 
than A. Since p is a K a n fibration, there is a simplicial homotopy 
K : 4[n] x 4[1] ->Z over X , with K f o e ^ ) = za and K(<5<, ß) = G(zöi9 ß). 
The rc-simplex z" = K(i9s0co) has its boundary in Z ; the representative 
z 'eZ ' of the fibre homotopy class of z" has the same boundary and therefore 
belongs also to Z . Let K' : A\n\ x A[Y] ->Zdenote a simplicial homotopy 
rel. <54[n] over X , with K'(z,£0co) = z' and K ' ^ ^ c o ) = z". Again using the 
fact that p is a K a n fibration, one obtains a simplicial map K \ A[n\x 
4 [ l ] x 4 [ l ] - > Z with K{a9ß9elco) = K(a9ß)9 K{a9e0co9ß') = K'(a9ß')9 

k{a98xo}9ß')^za9 K(öi9ß9ß') = G(zöi9ß) and p ° £ ( a , Ä ß ' ) = p(za). Now, 
the homotopy G can be extended to a homotopy G' : A' x z l [ l ] ->Z with 
the desired properties by taking G '(z, ß) = K(i9 ß9s0a>)9 contradicting the 
maximality of A. Thus, A = Z , and so Z is a strong deformation retract 
of Z over X. 

It remains to show that the restriction p | Z is a minimal fibration. Since 
Z is a retract of Z over X9 it is a K a n fibration (see Proposition 4.5.1 (ii)). 
Finally, observe that fibre homotopic simplices in Z are fibre homotopic 
in Z . Since Z e Z ' contains at most one simplex of every fibre homotopy 
class in Z , fibre homotopic simplices in Z must be equal. • 

Corollary 4.5.24 Any Kan fibration may be factored into a composition of 
an acyclic fibration followed by a minimal fibration. 

Proof Let p : Z ^ X b e a K a n fibration. Let Z be a simplicial subset of 
Z such that p | Z is a minimal fibration; take a homotopy G : Z x z l [ l ] - > Z 
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rel. Z over X from a retraction p : Z - > Z to l z . It will be shown that p 
is an acyclic fibration. To this end, let a commutative Square of the form 

ÖA 

4[n] >z 
f 

be given. Since p is a K a n fibration, there is a simplicial homotopy 
H0 : Zi[n] x 4 [ 1 ] - Z with tf0(a,60a>) = /(a), H0{öi9ß) = G(f{öi),ß) and 
p°/f (a, 0) = p(/(a)), for ae4[n] , x , ( 4 [ l ] ) d i m a respectively, and 
ie[n]. Take z = H0(i,ei)and H x : 4[n] x 4[1] - Z , ( a , jß)h->G(za, 0). Then, 
the simplices /(/) and p(z) are fibre homotopic (see Lemma 4.5.19 (i)); 
since both belong to Z , they are equal, by minimality. Thus, the simplicial 
mapg : A[p~\-*Z,i\-±z, has the required properties. • 

Now it is possible to prove the essential fact that fibrations are preserved 
under geometric realization. 

Theorem 4.5.25 The geometric realization of a Kan fibration is a fibration. 

Proof The geometric realization of an acyclic fibration is a fibration (see 
Proposition 4.5.16), the geometric realization of a minimal fibration is a 
fibration (see Corollary 4.5.22) and a composition of fibrations is a fibration 
(see Proposition A.4.7(i)). • 

Remark This result states that the geometric realization of a K a n fibration 
has the homotopy lifting property for homotopies which are defined on 
weak Hausdorff /c-spaces. The problem of deciding whether geometric 
realization transforms Kän fibrations into Hurewicz fibrations is still öpeh, 
but is not a very interesting question. The difficulty arises from the fact 
that the product in the category Top used here is the cartesian product 
only in special cases. Thus, one surely obtains a Hurewicz fibration if the 
total set of the K a n fibration is transformed into a countable or locally 
finite CW-complex (see Proposition 2.2.3 and the remark preceding it). 

• 
Conversely, one may ask which (continuous) maps are transformed into 
Kan fibrations by the singular functor. 

Proposition 4.5.26 If p : Z-+X is any map, then the simplicial map Sp is 
a Kan fibration iff p is a Serre fibration. 



186 Simplicial sets 

Proof '=>': Let a map g : 4 " ->Z and a homotopy / / : 4 " x / -»X starting 
at p°g be given; one has to look for a homotopy starting at g which is a 
lifting of Identify 4 " with |4[/?] | and 4 " x / with |4[n] x 4(1 )|. Then, 
one can use the adjointness between geometric realization and the singular 
functor to obtain a simplicial map g' : 4 [ r c ] - » S Z and a simplicial 
homotopy H' : 4 [ n ] x 4 [ 1 ] - > S X starting at Sp°g'. Since the inclusion 

4 [ n ] = 4 [ n ] x 4 ° [ l ] c z 4 [ n ] x 4 [ l ] 

is an anodyne extension, and Sp is assumed to be a K a n fibration, the 
simplicial homotopy H' lifts to a simplicial homotopy G' : 4 j V ) x 4 [ 1 ] -> 
SZ starting at The adjoint G : 4 " x / - > Z of G' is a homotopy of the 
desired kind. 

'<=': One has to fill n-horns in SZ whose images under Sp have fillings 
in SX. Thus consider simplicial maps / : Ak[n]-+SZ and / : A[n]-+SX 
such that /|4 f c [n] | = Sp°f The respective adjoints are maps / ' : |4 f c[n] | -> 
Z a n d / ' : A[n~]-^>X such that f'\\Ak\_p]\ = p°ff. Since the subcomplex 
^ [ n J I is a strong deformation retract of the CW-complex 4 " , and p is 
assumed to be a Serre fibration, there is a map g' : 4 [n] -> Z such that 

I ^ M I = / ' a n d P°g' — f ( s e e Corollary 1.4.9). Its adjoint is a simplicial 
map g : 4 [ n ] - » S Z such that g(i) is a filling of the horn given b y / o v e r 
the filling/(z) of its image under p. • 

Another nice property of K a n fibrations consists in the possibility of 
approximating certain maps by simplicial maps. 

Theorem 4.5.27 Let p : Z X be a Kan fibration, let i : A -> D be an 
injective simplicial map and let 

« p 

D >X 
f 

be a commutative Square in the category SiSets. Then, for each map 
g' : |D | -> |Z | with 0 '° | i | = | / | and \p\°g' = 1/1 there is a simplicial map 
g : D^Z with g°i =f and p°g =/whose geometric realization is homotopic 
to g' rel. \A \ over \X\. 

Proof If D = A[n\ and 4 = ÖA[n], the claim can be reformulated in terms 
of fibre homotopic simplices: A singular simplex z' of\Z\ with 6z' cz Z and 
x = \p\°z'eX is fibre homotopic to a simplex zeZ. This will be proved, first 
by an induction on n and then by a further induction on T = x b ; the latter 
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refers to the (partial) order given on the finite set of all degeneracy Operators 
with dimension n by 

T' ^ T<=>T'(0 ̂  T(/), for all ie[_n\ 

which has co as minimum and / as maximum. Note that any simplicial 
set X can be considered as a simplicial subset of the singular set S\X\, 
via the injective simplicial map rjx. 

If n = 0, one has a point z'(l) = [z, f]e | Z | such that p([z, f]) = [p(z)> 0 = 
[x, 1]. This implies p(z) = xco and thus, z = ze0 is a 0-simplex over x; 
furthermore, the homotopy J -> | Z | , si-> [z,(l - s)e0 + sf] fulfils the required 
conditions. 

Now suppose that n > 0 and T = CO. Then, x # is a 0-simplex and the 
fibre F over x # is a Kan set (see Corollary 4.5.2(ii)) containing the 
(n— l)-simplices z'öb for all ie\_n\ Since geometric realization commutes 
with pullbacks (see Theorem 4.3.16) the CW-complex \ F\ can be identified 
with I p T ^ D * ^ 1)] and in this way, it contains the image of the map z'. 
Choose a K a n fibration q : W->F with contractible total set W (see 
Corollary 4.5.9(ii)), an n-horn {w{: ie[n-Y]} in W over the n-horn 
{z'öt : /e[n — 1]} (see Proposition 4.5.l(v)) and a singular simplex w'eS\ W\ 
which fills this n-horn over z'\ the latter choice is possible since \q\ is a 
fibration (see Theorem 4.5.25) and consequently S\q\ is a K a n fibration 
(see Proposition 4.5.26). The singular simplex w'ön is fibre homotopic to a 
simplex wneWn„ l9by the inductive hypothesis; let i f : A[n — 1] x 4 [ l ] - > 
S | d e n o t e a simplicial homotopy rel. öA[n — 1] over 5 |F | , with 
H(i,e0) = vv„ and H^s^ = w'Sn. Since W is contractible, there is a simplex 
we Wn with we),- = wt-, for all ie[n] (see Corollary 4.5.15). Next, consider the 
simplicial map 

H : 4[n] x<54[l]u<54[n] x 4 [ l ] ^ S | ^ | 

given by H(a,£0d) = WA, ff (Ä,^iw) = w'a;H(Öhß) = vv'bf, för all /e[n - 1], 
and H{ö„,ß) = H{i9ß). The adjoint ff' of ff is a map from the boundary 
sphere S = An x {0,1} u ÖA" x f of the ball 14 [n] x A [1] | = An x f to | W |. 
Since the CW-complex | W\ is contractible (see Proposition 4.3.17), H' can 
be extended to a homotopy H : An x f | W\ whose adjoint if ' , in turn, is 
a simplicial homotopy extending ff. The composition q^H' shows that 
z = q(w)eZ is fibre homotopic to z\ 

For the last step of the induction, assume that T ̂  co; this implies 
m = dim x # > 0. Let k denote the smallest element of [n] with z(i) ^ x(i + 1). 
Since p is a K a n fibration, there is a filling z of the horn {z'ö{ : /e[n — 1]} 
in Z , over x. As before, since p is a K a n fibration, the simplicial map S\p\ 
also is a K a n fibration. Thus, there exists a singular simplex zeS\Z\ with 
£5k = znJ5i = z'(Tköi9 for /e[n]\{/c,/c + 1}, and |p|°z = x<7k. Compute 
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(\p\°z)Sn+l = xakön+l and (xcrkön+1 )B < T. Thus, by induction, the singular 
simplex zön + l is fibre homotopic to a simplex z , I + 1 e Z M ; let 
H : A[n] x z l [ l ] - > S | Z | denote a simplicial homotopy rel. 5A[n\ over 
S | X | with H(i,£0) = zn+l and H(i9sl) = zön+ {. Using once more that p is 
a Kan fibration, one finds an (n + l)-simplex weZ with w<5k = z„, 
w<5,1+1 = z „ + 1 , w<5t- = zaköh for ie[/i]\{/c,/c + 1}, and p{w) = xak. Since S|p| 
is a Kan fibration and the inclusion 

4 [ n + l ] x<54[ l ]u / l f c + 1 [ n + 1] X 4 [ 1 ] C Z 4 [ H + 1] X 4 [ 1 ] 

is an anodyne extension (see Proposition 4.5.8), there is a simplicial 
homotopy # : 4[rc+ 1] x 4 [ 1 ] - > S | Z | with £(a,e 0oü) = wa, H(a,£1a>) = 
za, H(Shß) = zöi = wöh for / c + l ^ e M , H(ön+lJ) = H(i,ß) and 
|p|°H(a,ß) = xaka. The composition H ° ( 4 < 5 k + 1 x 1 4 [ 1 ] ) shows that 
z = wök+1eZ is fibre homotopic to z7. This finishes the induction for the 
case in which one considers a single singular simplex. 

The general case is dealt with using the method of the least criminal. 
Choose a simplicial subset D <= D containing A which is maximal with 
respect to the property that there are a simplicial map g : D -> Z and a 
simplicial homotopy from rjz°g to Sg'°rjD\5 = (%'|S|5|) on/) rel. /I over 
51X1. Assume that such a simplicial map g and a corresponding homotopy 
H are fixed. To simplify notation one may further assume that D is obtained 
from D by attaching a simplicial standard-simplex A [n] via a simplicial 
map with domain ÖA [w]; it is to be shown that g can be extended over 
D such that the geometric realization of the extension is homotopic to g' 
rel. \A\ over \X\. Since S\p\ is a K a n fibration, one has a homotopy 
H : D x 4 [1] ->S |Z | , over 5 | X | , from a simplicial map : D ^ 5 | Z | to 
Sg'°r\D which extends H . Let a : <54[n]->i5 and ä : 4[n]->D denote 
the attaching and characteristic map respectively of the simplicial attaching 
which generates D out of D; take d = dä(i) and z' = H(d, e0co). Then, choose 
a simplex z e Z which is fibre homotopic to z' and a simplicial homotopy 
G : A[n\ x 4 [1 ] ->S |Z | rel. (54[n] over S\X\. Extend g to a simplicial 
map g : D-+Z by taking #(d) = z. To obtain a suitable simplicial 
homotopy, first observe that D x z l [ l ] is obtained from D x 4[1] by 
attaching 4 [ n ] x 4 [ l ] via a x l 4 ( 1 ] . The universal property of this 
attaching implies the existence of a homotopy G : D x 4 [ l ] - + S | Z | rel. 
D over S\X\9 from rjz°g to g", with G(d9ß) = G(i,/ff). A homotopy rel. D is 
also a homotopy rel. A; since S|p| is a K a n fibration, homotopy rel. A 
over S\X\ is an equivalence relation (see Proposition 4.5.10). Therefore, 
the homotopies H and G show that the simplicial maps r\D°g and g'°r\z 

are homotopic rel. A over S | X | ; thus, by adjointness, the maps \g\ and 
g' are homotopic rel. over \X\ as desired. • 
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Corollary 4.5.28 A Kan set is a strong deformation retract of the singular 
set of its geometric realization. 

Proof Let p : Z - » 4 [ 0 ] be a K a n fibration. In the diagram of 
Theorem 4.5.27, take 

i = rjz : Z-*S\Z\, the unit of the adjunction, 
7 = l z : Z - Z , 

/ : S | Z | - » 4 [ 0 ] , the unique possible simplicial map, and 
Q' = j\z\ : | S | Z | | -> |Z | , the co-unit of the adjunction. 

Then there is a homotopy \S\Z\ x 4[1] | -> |Z| , whose adjoint is a 
deformation of S\Z\ into Z (see Theorem 4.5.27). • 

If the K a n set under consideration is the singular set of a space, then there 
is a distinguished retraction among those whose existence is assured in 
this Statement; it arises from the co-unit of the adjointness between 
geometric realization and singular functor. Recall the fundamental 
equation 

SJT011ST = ^ST 

and consider the converse composition of unit and co-unit. One cannot 
expect equality, but the best possible Statement holds true. 

Proposition 4.5.29 / / T is a space, the composition rjST°SjT of unit and 
co-unit is homotopic to ls^SY\ rel. ST. 

Proof The simplicial set ST is a K a n set (see Example 2); thus, one has 
a simplicial homotopy H : S |ST | x A[\]->S\ST\ rel. ST from 1 S | S T | to 
the composition n S T ° r of the unit rjST and some simplicial retraction 
r : 'SjST'l ->ST. The composition >7 s r

ö 5 / r

o / / is ä simplicial homotopy rel. 
ST from r]sr

oSjT to rjST°SjT°rjST°r = rjsr°r. Since S\ST\ is also a K a n set, 
homotopy rel. ST is an equivalence relation on the set of all simplicial 
maps S\ST\ S\ST\ (see Corollary 4.5.11) yielding the desired result. (That 
is, cum grano salis, the Standard proof for showing that, given an invertible 
elements, any left inverse is also a right inverse.) • 

Now it is possible to prove a deep result which has been already announced 
(see the discussion of the adjointness between geometric realization and 
singular functor in Section 4.3). 

Theorem 4.5.30 The co-unit jT : \ST\->T is a weak homotopy equivalence, 
for any space T. 

file:///S/Z/
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Proof Let a space T be given; without loss of generality, one may assume 
T to be non-empty and path-connected. Choose a base point x0eT and 
let x 0 denote the unique point of the 0-cell in \ ST\ which corresponds to 
the singular simplex 4 ° - > T , Ii—>x0. One has to show that the functions 

JT,n ' nn(\ST\,x0)-*nn{T,x0) 

are bijective, for all neN. 
For n = 0, the assertion means that \ST\ should be path-connected, 

since T is assumed to be path-connected. Recall that every path component 
of the CW-complex \ST\ contains a 0-cell (see Proposition 1.4.15). It 
suffices to check that for every 0-cell x ^ x 0 in \ST\ there is a 1-cell in 
\ST\ with boundary {x,x 0 }. To see this, take a path in T joining the points 
jT(x) and x 0 ; it gives rise to a singular 1-simplex, and thus to a 1-cell in 
\ST\ of the desired kind. 

Now assume n > 0 and take a representative a : S" T for an element 
of 7i„(T,x0). Identify Sn with \5A[n + 1]|, such that e0 corresponds to some 
0-cell of the CW-complex \ÖA[n + 1]| and let ä : SA[n + 1] ->ST denote 
the adjoint of a. Then, the geometric realization \a\ of o! represents an 
element of nn(\ST\,x0) which is mapped into the class of a. This shows 
the surjectivity of the function jT n. 

To prove the injectivity, note that one deals with homomorphisms. 
Therefore, it is sufficient to verify that the appearing kernels are trivial, 
i.e., that any mapa : \öA[n + 1]| ->\ST\ whose composition with jT has an 
extension ä : \A[n+ 1]|->T can be extended over 1]| itself. Let 
such maps a,ä be given and let ä : öA[n + 1] -*S\ST\,äf : A\_n + 1] -+ST 
denote their respective adjoints. Let H : S\ST\ x 4[1] ->S |ST| denote a 
simplicial homotopy rel. ST from 1S\ST\ t 0 the composition rjST°SjT (see 
Proposition 4.5.29) and define a simplicial map ä : A[n+ 1] x / l 1 [ l ] 
vöA[n + 1] x 4[1] ->S |Sr | by taking ä(a,e{co) = r]ST

oä'((x) and ä(öhß) = 
H(a'(Si),ß\ for aeA[n + l ] , i?e(4[l]) M and f e [ n + l ] . Its adjoint has a 
domain which is homeomorphic to \A\_n + 1]| and because it agrees with 
the mapa on the boundary it can be considered as the desired extension 
of a. • 

Corollary 4.5.31 (i) The co-unit jT : \ST\-+T is a homotopy equivalence, 
for any CW-complex T. 

(ii) A map f : U^T is a weak homotopy equivalence iff \Sf\ : \SU\-+\ST\ 
is a homotopy equivalence. 

(iii) Let Y, X be Kan sets. Then, a simplicial map f : Y^X isa simplicial 
homotopy equivalence iff\f\ : | Y | - > | X | is a homotopy equivalence. 

(iv) A map f : U-+T is a weak homotopy equivalence iff Sf : SU -+ST 
is a simplicial homotopy equivalence. 
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(v) A simplicial set X is weakly contractible iff the singular set S\X\ is 
simplicially contractible. 

(vi) For any simplicial set X, the unit r\x : X -+S\X\ can be decomposed 
into an anodyne extension followed by an acyclic fibration. 

Proof (i) follows from WhiteheacTs realizability theorem (see Theorem 2.5.1). 
For (ii), consider the equation 

f°Ju=h°\Sf\ 

which arises from the naturality of the co-unit. Since the maps jvJT are 
always weak homotopy equivalences, by the previous theorem it follows 
that / is a weak homotopy equivalence iff \Sf\ is a weak homotopy 
equivalence. But the latter holds true iff \Sf\ is a homotopy equivalence, 
again by Whitehead's realizability theorem. 

(iii) '=>': Geometric realization transforms simplicial homotopy 
equivalences into homotopy equivalences (see Proposition 4.3.17). 

'<=': Let g : \X\ ->| Y\ be a homotopy inverse for \f\ and let r : S\Y\-*Y 
be a simplicial homotopy inverse for wy. Then, the composition r°Sg°rjx 

is a simplicial homotopy inverse for / . In fact, the composition 
r°Sg°nx°f = r°Sg°S\f\°rjY is homotopic to r°w y , which in turn is 
homotopic to l y ; since homotopy between maps with a K a n set as 
codomain is transitive (see Corollary 4.5.11), r°Sg°rjx°f is homotopic to 
ly . The composition f°r°Sg°nx is homotopic to r'onx°f °r°Sg°rjx = 
r,0S\f\Qrjy°r°Sg°n_x, where r' denotes a simplicial homotopy inverse for 
r\x. The latter composition is homotopic to r'°S\f\°Sg°rfx and two further 
homotopies lead to lx; again, one has to use the transitivity of the homo­
topy relation which is assured by the hypothesis that X is a K a n set. 

The Statement (iv) is an immediate consequence of (ii) and (iii); (v) results 
from application'of (iv) to' thö üriicjue kiinplicial riiäp'A -*4[0]. 

(vi) For any simplicial set X, the unit rjx can be decomposed in the 
form p°i where p is a Kan fibration and i is an anodyne extension (see 
Proposition 4.5.6). Moreover, \ rjx \ is a homotopy equivalence, since is 
a homotopy equivalence, by (i), and ;'|A:I0IWXI = by adjointness. But 
| p | o | / | = \rjx\, and \i\ is a homotopy equivalence (see Proposition 4.5.5); 
thus, |p| is a homotopy equivalence. The base of p is a Kan set, and thus 
the total set of p is also a Kan set (see Corollary 4.5.2 (iii)), and, con­
sequently, p is a simplicial homotopy equivalence, by Statement (iii). 
Finally, a Kan fibration which is a homotopy equivalence is an acyclic 
fibration (see Proposition 4.5.14 (ii)). • 

A special sort of Kan fibrations is given by the simplicial resolutions of 
groups defined as follows. Let G be a group with unit element denoted by 
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1. The classifying set of G is the simplicial set BG given by (BG)n = G" for 
all neN together with the face Operations 

gd) = * 

for j = 0, 1, where * denotes the unique element of {BG)0 — G°, 

(9i>--->9n)öno = (92>'-->9nl 

(9i>>->9n)ött

n = (9i,-'.,9„-i), 

for n> 1 and 0<j<n, and the degeneracy Operations 

(9I, • • • y9n)<*ni = (91, • • • ,9b h 9i + 1,.. • , 0„), 

for « > 0 and 0 ̂  / ̂  n. This will be the base of a K a n fibration, with total 
set EG given by {EG)n = G M + 1 for all neN, together with the face Operations 

(9o>--->9n)öj = {go>'->9j ' 9j+w-,9«)> 

( g u . . . , g n ) ö n

n = ( g l , . . . , g n „ i \ 

for n > 0 and 0 ̂  j < n, and the degeneracy Operations 

(9 o> • • • > 0 „ K = (0O, . . . , g h \ , g i + l , . . . , gn), 

for n ̂  0 and 0 ̂  i ̂  n. Now, complete the construction of the simplicial 
resolution of G by defining the simplicial map 

pG : EG-+BG, ( g 0 , - - - , g n ) ^ ( g D . - . , g n ) -

Lemma 4.5.32 Let Y be a simplicial subset of the simplicial set X, let G be 
a group and let f : Yr -* EG be a simplicial map. Then there is a simplicial 
map f : X^EG extending f. 

Proof The key to this fact lies in the Observation that any simplex 
S = (#o> • • • >6Ü is uniquely determined by its ordered set of vertices 
0 > £ ( b - s i n c e the following relations hold true: 

g£i = 9o ' ••• " 9b 
9o = gB0, g i + l = (gSi) ~ 1 • (gEt +!); 

moreover, the previous formulae show that every ordered set of n + 1 
0-simplices of EG is the ordered set of vertices of a unique n-simplex of EG. 

Now, in order to prove the Statement, extend f\ Y° arbitrarily over X°. 
Then take an xeXn, with n>0. The image of the vertices is already 
determined, and one just assigns to x the corresponding simplex of EG. 

• 
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Proposition 4.5.33 Let G be a group. Then: 
(i) the simplicial map pG is a Kan fibration with O-dimensional fibre; 
(ii) the total set EG is simplicially contractible; 
(iii) the geometric realization | BG | of BG is an Eilenberg-MacLane space 

oftype K(G,\). 

Proof (i) The simplicial map pG is surjective; thus, any 0-horn in EG can 
be suitably filled. Considering the 0-simplex g = (g)eEG as Oth 1-horn 
(respectively, Ist 1-horn) and the 1-simplex g' = (g')eBG as the respective 
filling of the corresponding 1-horns in BG, then (g,gf) (respectively, 
(9 ' ( # ' ) ~ \ ö 0 ) is a suitable filling of the horn in EG. 

For any n > 1, observe first that any n-simplex in BG is determined by 
any two different faces; thus, any n-horn in BG has at most one filling. 
A n n-horn in EG is uniquely determined by the ordered set of its vertices, 
and therefore has a unique filling. This filling lies over a prescribed simplex 
of BG because its image and the prescribed simplex have two different 
faces in common. 

Since BG has only one 0-simplex, there is a unique fibre for pG; it consists 
of the elements of the form (g,l,..., 1), and so it is O-dimensional. 

(ii) Extend the simplicial m a p £ G x (54[1] -»EG,(g,s0co)y-+g,(g,e1co)\-+ 
(1,..., 1) over EG x 4[1] (see Lemma 4.5.32). 

(iii) Since BG has only one 0-simplex, its geometric realization is, in a 
unique manner, a based CW-complex whose fundamental group is just 
G (see Theorem 2.6.8). The map | p G | is a fibration (see Theorem 4.5.25) 
with contractible total space (see (ii) and Proposition 4.3.17) and 
O-dimensional fibre (see Theorems 4.3.5, 4.3.16). An inspection of the 
homotopy sequence of this fibration (see Proposition A.8.17) shows that 
the higher homotopy groups of \BG\ vanish. • 

Remark Within the proof of part (i), it has been stated that every n-horn 
in BG (for n > 1) has at most one filling. In fact, such a filling always exists: 
since EG is a Kan set (also implicitly noted in the previous proof), so is 
BG as a consequence of Statement (i) (see Corollary 4.5.2 (iii)). • 

The previous proposition is particularly interesting for minimal Kan sets 
because their sets of 1-simplices have an intrinsic group structure which 
can be exploited to construct a useful K a n fibration. 

Proposition 4.5.34 Let X be a minimal Kan set with just one 0-simplex 
Then, the following hold true: 

(i) Xx has a canonical group structure isomorphic to the fundamental 
group of\X\; 
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(ii) there is a simplicial map qx : X ->BXU which is a Kan fibration and 
induces an isomorphism between the fundamental groups of the respective 
geometric realizations; 

(iii) the geometric realization of the fibre of qx is simply connected. 

Proof (i): Given x,yeXi9 there is a zeX2 such that zö0 = y and zö2 = x; by 
minimality, the 1-simplex zöx is independent of the chosen z (see Lemma 
4.5.19 (ii)), which allows one to define 

x • y = zöl. 

Clearly, the unique degenerate 1-simplex in X is the neutral element for 
this multiplication; the inverses can be found by filling of the corresponding 
horns. Since X has only one 0-simplex, its geometric realization can be 
viewed as a based CW-complex whose fundamental group is nothing but 
Xl (see Theorem 2.6.8). 

(ii) : Define the simplicial mapq^ : X^BXX by the unique possible 
function in dimension 0, the identity in dimension 1 and the assignment 

xi-^(x(5, J-"(5 2 , . . . ,X(5„--^. + 1 ^ i _ 2 - - ^ 0 , . . . , x ^ _ 2 - - ' ( 5 o ) . 
In order to show that this simplicial map is a Kan fibration, it suffices to 
consider n-horns for n > 1 only. Since X is a Kan set, every such horn 
has a filling; this lies over a prescribed simplex of BG, as in the proof of 
Proposition 4.5.33 (i). The second part of the Statement follows from (i) 
(by means of Proposition 4.5.33 (iii)). 

(iii) : Since qx is a K a n fibration, its geometric realization is a fibration 
(see Theorem 4.5.25), which moreover induces an isomorphism between 
the fundamental groups, by (ii). Inspection of the lowest terms of the 
homotopy sequence of \qx\ (see Proposition A.8.17) shows that its fibre 
is simply connected. • 

The concept of simplicial resolution of a group generalizes to the 
construction of simplicial universal coverings. To begin with, note that a 
simplicial set is called connected if its geometric realization is connected. 
Let X be a connected simplicial set and let n denote the fundamental 
group of its geometric realization \X\ with respect to a fixed base point 
corresponding to a 0-simplex z0eX0. Choose a twisting function for X, 
i.e., a function <p : X^n satisfying the following properties: 

(1) cp(x) depends only on the first edge of x, more precisely: 

(p(x) = (p(xdn'--ö2l 

for any simplex x with n = dim x ^ 1; 
(2) for any degenerate 1-simplex x, 

(p(x)= 1; 
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*(0)= l 
e(l)= l 
*(2) = - l 

y0 

Figure 13 

(3) for any 2-simplex x, 

(p(xöl) = (p(xö2) • <p(xö0); 

(4) any coen has a representation of the form 

co = <p(y0)ei0) • - • <p(ykY(k), 
where yjGXl9 e(j)e{ — 1,1}, for je[/c], form a 'closed edge path' based 
at z 0 (Figure 13) i.e., satisfy the relations 

yotf = y^i-g = 20 

if e(0) = ( - l ) / , e{k) = {-\)\ 

yje1.f = yj+1sg 

ite(j) = (-\y, e(j+l) = (-lY9 

for / ,0fe[ l ] . 

The values of c/> on X 0 are meaningless and are included only in order to 
have a simple domain for cp. A possible way to obtain such a function is 
the following: choose a subset SczX1 containing all degenerate simplices 
and such that the 1-cells corresponding to the non-degenerate 1-simplices 
in S span a maximal tree,in | X | . . T o the elements of 5, one associates the 
value 1 G7c; to each other 1-simplex, assign the element of n that is generated 
by the corresponding 1-cell (in the direction given by the simplex; see 
Theorem 2.6.8). Condition (1) then forces the values on the higher-
dimensional simplices; condition (3) is trivially satisfied for degenerate 
2-simplices, while each non-degenerate 2-simplex gives a 2-cell, inducing 
the desired relation. 

Now, the simplicial universal covering X of the simplicial set X (with 
respect to the function cp) is given by Xn = n x Xn for all neN, together 
with the face Operations 

{co9x)ö0 = (co-cp(x)9 xS0\ 

(co9x)öj = (co,xöj)9 

(co, x)oi = {co9xoi), 
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for all co ETZ, xeX, 0<j^ dim x and 0 ^ i < dim x.1" 

Proposition 4.5.35 Let Xbea connected simplicial set and let cpbea twisting 
function for X. Then, the simplicial map 

p : X-+X, (co,x)h-+x 

is a minimal fibration whose geometric realization is a universal covering 
projection. 

Proof Let / : Ak[n\-*X be a simplicial map such that the composition 
p°f has an extension / : A[n\ -*X\ one has to look for a simplicial map 
g : A\n~\-+X such that #|/l k[n] = / a n < 3 P°g = / . Consider the case k^n; 
take f(ön) = (co,x), f(i) = x and define g by ar-»(co,x)a. If k = n and n > 1, 
take f(ön _!) to find co; if k = n = 1, assume /(<50) = (co, x), f(i) — x and define 
g(v) — (co • (p{x)~ l,x)a. This shows that p is a K a n fibration. The fibres p 
are O-dimensional; hence, at least fibre homotopic O-simplices have to be 
equal. Consequently, fibre homotopic simplices (co,x), (a/,x) must have 
the same Oth vertex: 

(co, X8 0 ) = (co, x)ß 0 = (co', x)e0 = (co', xs0), 

implying co = co'; therefore, p is a minimal fibration. 
It follows that the geometric realization \p\ of p is a locally trivial 

fibration (see Corollary 4.5.22) with discrete fibre (see Theorem 4.3.16), and 
thus a covering projection. It remains to prove that \X | is simply connected. 
To see that \X\is path-connected, fix the base point z 0 e | X | corresponding 
to the 0-simplex z0eX0 used in the definition of the twisting function cp. 
Now consider first a point xe\X\ not belonging to the fibre over z. Take 
a path in \X\ from \p\(x) to z and lift it to a path in \X\ starting at x. 
The lifted path ends in a point of the fibre over z; thus, it suffices to check 
that any point in this fibre can be connected to the point corresponding 
to the 0-simplex ( l , z 0 ) by a path in \X\. Take coerc and represent it in the 
form described in condition (4) of the definition of twisting functions. 
Then, define elements cpren, for re[/c], by the formulae: 

f l , g(0) = l , 

° W ) " 1 , e ( 0 ) = - l , 

r \<P(yoTm • - • <p(yry(r\ e(r)=-l. 

Now, the 1-simplices(cp 0 ,y 0 ),(cp k ,y k )form a path connecting the points 
corresponding to the O-simplices ( l , z 0 ) a n d (o>>z0). 

* The simplicial set obtained in this way is sometimes called the twisied cartesian product 
of X and n with respect to the twisting function cp. 
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The given argument also shows that n acts fixed-point-free on the fibre, 
implying thereby that \X\is simply connected (see Corollary A.8.18). 

• 
Exercises 

1. Let 0 : A-± SiSets be a (covariant) functor satisfying the Eilenberg-
Zilber property and such that the simplicial sets #([n]) are weakly 
contractible, for all neN. Then, the Spaces \X\ and \X® <P\ have the 
same homotopy type, for all simplicial sets X. (Fritsch & Latch, 1981, 
Lemma 4.7) 

2. A Kan fibration is minimal iff any two n-simplices of the total set with 
the same image in the base have the same boundary whenever n of 
their (n— l)-dimensional faces coincide. 

3. Show that a K a n set is connected iff each pair of O-simplices generates 
the boundary of a 1-simplex. Show that a minimal K a n set is connected 
iff it contains exactly one 0-simplex. 

4. Let Z be a connected minimal K a n set, and, for n > 0, let nn(Z) denote 
the set of n-simplices of Z whose boundary is generated by the unique 
0-simplex z 0 e Z . Define a binary Operation on nn(Z) as follows. Given 
z,z'enn(Z) take a simplicial m a p / : z l [ n - F l ] - > Z with /(<50) = z, 
f(ö2) = z' and /(<Sf) = z0co, for all i > 2. Then, set z • z' = /(c^). Show 
that this Operation is a well-defined group structure on nn(Z) which is 
abelian for n > 1. 

5. Let Z be a connected K a n set, choose a 0-simplex z 0 e Z , and, for n > 0, 
let nn(Z9z0) denote the set of fibre homotopy equivalence classes of 
n-simplices of Z whose boundary is generated by z 0 . Define 
analogously to the previous exercise a binary Operation on n„{Z,z0), 
and show that it has the same properties. Moreover, show that the 
group obtained, the nth homotopy groüp of Z, depehds ön the choice 
of z 0 only up to isomorphism. (Kan, 1958c) 

6. Extend the definition of homotopy groups for Kan sets to functors 
which are defined on the füll subcategory of SiSets generated by the 
Kan sets. Show that these functors composed with the singular functor 
just yield the ordinary homotopy groups for based Spaces. 

7. Prove the simplicial analogue of Whitehead's realizability theorem (see 
Theorem 2.5.1): a simplicial map between K a n sets is a simplicial 
homotopy equivalence iff it induces isomorphisms for all homotopy 
groups. (Lamotke, 1968, VII,7.2 Folgerung) 

8. Let pG be the simplicial resolution of a group G. Show that the map 
\pG\ is a universal covering projection. 

9. Show that the construction of the simplicial universal covering 
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depends only up to simplicial isomorphism on the choice of the 
twisting function. 

10. Let X be a connected simplicial set and let n be a subgroup of 
the fundamental group of \X\. Construct a Kan fibration p : Z^X 
whose geometric realization |p| is a covering projection with image 
|p l l =7Ü. 

11. Show that the categories of fractions (see Gabriel & Zisman, 1967) 
Top/{jT} and SiSets/{rjx} are equivalent to the homotopy category of 
CW-complexes, i.e., the category whose objects are the CW-complexes 
and whose morphism are the homotopy classes of maps between 
CW-complexes. (Ringel, 1970) 

12. Degeneracy Operators were not used for the definition of horns. So 
one can define presimplicial K a n sets by requiring that all horns can be 
filled. Show that any presimplicial K a n set alows the Operation of 
degeneracy Operators, i.e., belongs to the image of the forgetful functor 
P : SiSets PSiSets. (Kan, 1970; Fritsch, 1972) 

4.6 Subdivision and triangulation of simplicial sets 
For every peN , define the simplicial set A'\_p\ the normal subdivision of 
A\_p\ as follows: take as n-simplices all weakly increasing (with respect to 
a) sequencesp=(p0,... ipn)o(face Operators with codomain [p] and set 
pa = (ju a ( 0 ) , . . . , paim)l for all Operators a : [m] -» [n ] . 

Geometrically, one should view a Single face Operator pt of a sequ­
ence ßi as the barycentre b{ of the ptih face of Ap; the whole sequence 
p then corresponds to the simplex spanned by the vertices br The 
assignment 

n 

i = 0 

describes a homeomorphism 0P \ \A'\_p~\\-+Ap (cf. the proof of 
Proposition 3.3.16). Thus, c a n be viewed as barycentric subdivision 
of the Euclidean complex Ap (see Section 3.2, Example 3). Clearly, one 
speaks of an interior point in |/4'[p]| if it is a point which is mapped 
onto an interior point of Ap by 0P; the inverse image of the interior of Ap 

with respect to 6P is the interior of | A' [p] |. A nice combinatorial property of 
these subdivided standard-simplices is the following. 

Lemma 4.6.1 The simplicial set A'\_p~] is simplicially contractible to the 
vertex (i). 

Proof A homotopy H from lA.[p] is given by taking for p = (p0,...,pn) 
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and je[n — 1], 

(H{ßi9<os))k = 
ph O^k^j, 
i , otherwise. • 

An Operator cp : [p]->[g] gives rise to a simplicial map A'cp : Ä(p)-> 
Ä(q) by taking 

thus, there is a covariant functor A' : zl SiSets - the normal subdivision 
of simplices - which is a cosimplicial object in SiSets. Because A operates 
on the left of the zl '[p], instead of writing Äcpiji), one uses the shorter 
notation cpp. A n n-simplex p of A'\_p~] is an interior n-simplex iff pn = zp, 
i.e., if its highest vertex is an interior point of Ap, namely its barycentre. 

Lemma 4.6.2 The cosimplicial simplicial set A' has the Eilenberg-Zilber 
property. 

Proof The condition that any p is a non-decreasing sequence implies, for 
any pair of indices ij with i < j, that there is a unique face Operator pj{ 

with Pi = PJPJJ. This gives p the unique representation 

The cosimplicial simplicial sets A- and A' are related by a natural trans­
formation d' : Ä-^A-; it consists of the simplicial mapsd'p : Ä[p~]-> 

which assign to each n-simplex p€Ä\_p~\ the Operator 
d'p : [n] -> [p] given by d'p(i) = p^Axm pi\ the last element of p-. 

Remark In contrast to the simplicial maps d'p, the homeomorphisms 
0P : | / i / [p] | ->4 p , although canonical, are not natural (see Section 3.3, 
Example 4, interpreting the simplicial maps fig there as AaQ,Aax 

respectively! Moreover, this example sliows that there cannot be any 
natural equivalence between the functors \Ä \ and \A-\ = A~. In this sense, 
the natural transformation d! is the best available connection between the 
functors A' and A-. • 

Reversing the order, i.e., replacing 'non-decreasing' by 'non-increasing' in 
the definition of ^'[p]^ o n e obtains the opnormal subdivision of simplices 
('op' derived from 'opposite'), again as a covariant functor A" : A SiSets 
satisfying the Eilenberg-Zilber property. The interior simplices are now 
those sequences p which Start with p0 = i. The simplicial sets A"[p~\ are 
also simplicially contractible to the vertex (i). The corresponding natural 
transformation d" : Ä'-^A- is given by d"ßi(i) = pt{0), the 'first element 
of p-. 

A'cp(ji) = ({cpp0f,..., 

• 
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The cosimplicial sets discussed here suggest the formation of tensor 
products (see Section 4.2). The simplicial set SdX = X®A' is called the 
normal subdivision of the simplicial set X. Functoriality in the First 
variable yields the functor normal subdivision Sd : SiSets SiSets and 
bifunctoriality with fixed second variable d' : A'-+A-leads to a natural 
transformation d' : Sd-1» 1. In a similar way, the opnormal subdivision of 
simplices induces a functor opnormal subdivision S d o p : SiSets -» SiSets and 
a natural transformation d" : S d o p - ^ l . The general theory of tensor 
products (see Section 4.2) yields the following properties of the normal 
subdivision. 

Proposition 4.6.3 (i)Any simplex of the normal {resp. opnormal) subdivision 
Sd X (resp. S d o p X) of a simplicial set X has a unique representation by a 
pair (x,p), with x a non-degenerate simplex of X and p an interior simplex 
of A'\_d\m x] (A" [dim x]). 

(ii) Normal subdivision preserves monomorphisms and simplicial attachings. 
(iii) The simplicial maps d'X are weak homotopy equivalences, for all 

simplicial sets X. 

Proof For (i), see Proposition 4.2.7 and Lemma 4.6.2; for (ii), 
Corollary 4.2.9 and Proposition 4.2.12; for (iii), Corollary 4.3.21 and 
Lemma 4.6.1. • 

A relative subdivision is necessary for some considerations. To describe 
it, let X be a simplicial set and let A be a simplicial subset of X. The 
normal subdivision Sd A of A can be viewed as a simplicial subset of the 
normal subdivision Sd X of X (see Proposition 4.6.3(ii)). Thus the natural 
simplicial map d'A : Sd A A can be considered as a partial simplicial 
map S d X - \ - > / l ; forming the corresponding simplicial attaching, one 
obtains a simplicial set X' which is called the normal subdivision of X rel. 
A. Furthermore, one has a unique canonical simplicial map d : X' -*X 
whose composition with the characteristic map d : SdX-*X' of this 
simplicial attaching is just the natural simplicial map d 'X and whose 
existence is ensured by the naturality of the simplicial maps d'A, d'X. This 
process really yields a subdivision in the geometric sense, as one can 
deduce from the absolutely non-trivial content of the following Statement. 

Theorem 4.6.4 The geometric realization \X'\ of the normal subdivision X' 
of a simplicial set X rel. to a simplicial subset A of X is homeomorphic to 
the geometric realization \X\ of the simplicial set X itself, via a 
homeomorphism which is homotopic rel. \A\to the geometric realization \d\ 
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ofthe canonical simplicial map d : X' -+X, and which allows one to consider 
the CW complex \X'\ as a subdivision of the CW-complex \X\ (in the sense 
of Section 2.3). 

Proof Since SdX = colim A'°DX (see Proposition 4.2.13) and geometric 
realization preserves colimits, one has |Sd X\ = col im( \A'-\°D X ) . Thus, in 
order to obtain a map h : | S d X | - » | X | , one needs a family {hx : xeX} of 
maps hx : | 4 ' [ d i m x ] | -+Adimx such that 

(1) Aa°hxa = hx°\A'a\, for all composable pairs (x,a). 

Searching for a map defined on \X'\, one has to look for a map h 
decomposable in the form /z'°|d|, where d:SdX-+X' denotes the 
characteristic map of the attaching which produces X'. Moreover, this 
requires 

(2) hx = \d'n\, for each rc-simplex xeA. 

The resulting map b! should be a homeomorphism; this is ensured by the 
condition: 

(3) hx maps the interior of | z l ' [d imx] | bijectively onto the interior of 
^ d i m x f o r e2iCfa n o n>degenerate simplex xeX\A. 

The bulk of the proof consists in the construction of a family {hx} satisfying 
properties (1), (2) and (3). Once this is done, the remainder of the claim 
is nearly evident. The map \d\ may be thought of as obtained from a 
family {dx} of maps dx : | 4 ' [ d i m x ] | -+Adimx satisfying similar conditions 
(1) and (2); in particular, observe that dx = hx, for all xeA. Since the maps 
Aa are induced by linear maps, the family {Hx} consisting of the 
homotopies 

Hx : \Ä[d\mx]\ x I^Ad'm\ (i,s)v->(\ - s) • hx\t) + s - dx{t) 

again satisfies such conditions; for xeA, these homotopies factor through 
the projection onto |z l ' [d imx] | . Since the product functor - x / preserves 
colimits, all homotopies Hx together define a homotopy H : \X'\ x I-*\X\ 
rel. \A \ from the homeomorphism h' to the canonical map d. Finally, each 
cell e of \X'\ is contained in the image of a map \d\ x c'x, for some 
non-degenerate simplex xeX where c'x : | z i ' [d imx] | —> | Sd X | denotes the 
corresponding map from | A' [dim x] | to the colimit; thus, h!(e) is contained 
in the cell of \X\, corresponding to the simplex x (see Theorem 4.3.5). This 
proves that \X'\ can be considered as a (CW-)subdivision of \X\. 

Now, fix xeXn. To define the map hx, consider a pair (ji,u), with 
p = (p0,...,pq)eA'[ri], u = (u0,...,uq)eAq. Depending on p, one has 
unique face Operators pkj, and unique degeneracy Operators pk, pkj, for 
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O^j ^k^q, such that 

pk = co d i m^ k , for xpkeA, and pk = (xpkj9, otherwise; 

Pkj = (PkVkj)b-

Recall that the maximal section of any degeneracy Operator p is denoted 
by p1 (see Section 4.1) and let bkj denote the barycentre of the PjPkjth 
face of An. Now take 

K(\ji,u]) = - ^ uk+ i)hk + ZUjUkbkj, 

where the first and the second sum run over all /ce[q] and all pairs (j,k) 
with 0 < k ^ q respectively; for k = q, the expression in parentheses is 
taken to be 1. In order to verify that this formula yields a well-defined 
function |^'[n]|->A n, one has to check that the expression on the 
right-hand side depends only on the class [/*,«], but not on the specific 
pair (//,M). This is like saying that the expression does not change if one 
replaces the given arbitrary pair by the minimal pair in the same class 
which can be obtained by an iteration of the following two Steps: 

skip pj and Uj if Uj = 0, 
skip pj+ x and combine «,-, uj+1 to Uj + uj+ x if pj+ { = p} 

(see Proposition 4.2.7 and its proof). In both cases, this does not have 
any effect on the expression under consideration (The coefficients in both 
sums are all non-negative and their sum is equal to 1; thus, one has a 
convex combination of points in An, which, by the convexity of zT, also 
belongs to An.) Since addition and multiplication of real numbers are 
continuous Operations the function hx depends continuously on u as long 
as p is fixed. But l^'MI is covered by the finitely many closed sets 
{[/!,«] : w e 4 d i m / i } , with non-degenerate p\ thus, the functions hx are 
continuous, i.e., maps. 

It remains to establish conditions (1), (2) and (3). For (1), take an Operator 
a : [ m ] - » [ n ] and a pair (v,n), with v = (v 0 , . . . , vq)e(Ä\_m~\)r ueÄ1. 
Construct vkj9 xky xkj and b'jk dependent on xa and v, just as pkj, ph pkj and 
bjk respectively were derived from x and p = av. By the linearity of the 
mapA a, it is sufficient to verify ab'jk = bjki for all pairs (/,k) with 0 <7 
k^q. Notice that p} = (av ;) #, pkj = ((avk)bvfcJ.)#, TK = pk(ocvk)\xkj = pkj{aVj)\ 
and, by the functoriality o f - 1 , av^r^. = PjPkj. Therefore the Operator 0LVjTkj 

is injective, and consequently Aa maps the Vyi^th face of Am isometrically 
onto the PjPkjth face of A"; in particular, the barycentre b'jk is transformed 
into the barycentre bjk. 

Now, assume xeA. In this case, all pk, pkj are terminal Operators and 
all bkj are vertices of An\ more precisely, bkj is the last 'last' vertex of the 
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^•th face of An. Thus, the defining formula for hx is nothing but an explicit 
description of the geometric realization of d'n, which confirms condition (2). 

For (3), first show that hx transforms interior points into interior points 
if x is non-degenerate. To this end, note that the pair (p,u) represents an 
interior point of l ^ ' M I iff pq = i and uq > 0. If x is non-degenerate, one 
has, moreover, pqq = i and the ith coordinate of hx([p, «]) can be estimated 
by 

( M l > , « ] ) ) * > w « ( * w ) i = M n + V> 

for all ie[w]. Thus, all coordinates of hx ( [ / i ,« ] ) are strictly positive, which 
characterizes an interior point of Ä\ 

Next, turn to injectivity. Every point in l ^ ' M I can be represented by 
a pair (/I,H), with p = (p0,...,pn)eA'[n\ dimju ;=), for all je[n\ and 
W = (Ü 0 , . . . ,M„)GZ1 m ; in particular, that means that pn = i. Moreover, one 
obtains a permutation cp of the set {0,1,...,n}, such that image 
Pj = <p({0,1,... j ' } ) , for all je[n\. If x is non-degenerate, then pnj = p\ = i\ 
again for all je[n\. Now assume pairs (p,u) and {p\u') with the described 
properties are given such that 

MI>.«]) = M[^« ' ] ) = Uo»...»0. 
A l l the following constructions will be done simultaneously for both pairs 
and distinguished by attaching the prime ' to an object which comes from 
[p\u'). It has to be shown that u} = u'}, for all ye[rc], and p} = p'} if Uj > 0. 
This will be done by decreasing induction on j. Observe that (AfcJ)t = 0 if 
/^image^-. This implies, in particular, that uj(n + \) = tip{n)^u'J(n + 1), 
i.e., u„ ̂  i ^ ; by symmetry, one obtains un ̂  ŵ , and, so, un = u'n, thereby 
starting the induction. Assume the claim is proved for all j > 1. Then 
consider the point 

i = (?o,..., tn) = '£uk(1 - un - • • • -u k + + £Uju k b k j eR n + 1 , 

where the first and the second sum run over all /ce[/] and all pairs (j,k) 
with 0 ^ 7 ^ / , j<k^n respectively; this point is obtained from the 
right-hand side of the defining equation for hx by cancelling all summands 
depending only on indices j9k>l. By induction, ? is equal to the 
corresponding point ?'. Now, if p{ ^ p\ there is an element ieimage pt which 
does not belong to image p\. For such an /, one computes 

"«"„/({ + 1) = < £ = F; = 0, 

since the ith component of all summands forming f vanishes. Thus ut = 0, 
and, by symmetry, u\ = 0. If pt = p\, then, again by induction, the points 

/ = (f0, ...Jn) = (l-un ul + OAfcfc + £ > A ; e R N + 1 

the sum running over k with l<k^n and £' coincide. Moreover, for 
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i = cp(l), one has 

ti/ff = it = i\^ uß = u'fii. 

Because tt ^ uj(l + 1) > 0, this implies ux ^ u\, and, once more by symmetry, 
u{ ^ u\. Thus, ut = u\ completing the induction. 

Finally, one has to check that hx maps the interior A! of |4 ' [n ] | onto 
the interior A of An if x is non-degenerate. By the theorem of the invariance 
of domain (see Theorem A.9.6), hx(Ä') is open in Ä. On the other hand, 
hx(A) = 4n / i x ( | z l ' [ ^ ] l ) is closed in A. Thus, being non-empty, hx(Ä) must 
be equal to A. • 

Taking A = 0 in this theorem, one obtains as a special case: 

Corollary 4.6.5 The geometric realization of the normal subdivision of a 
simplicial set is homeomorphic to the geometric realization of the simplicial 
set itself. The homeomorphism is not natural but homotopic to a natural 
map. In particular, the natural map \d'X\ : | S d X | - > | A ' | is a homotopy 
equivalence, for every simplicial set X. • 

The subdivision process must be iterated. Formally, this will be done as 
follows. Define inductively functors Sd" : SiSets-*SiSets, and natural 
transformations d" : Sd" iSiSets9 for all n e N , by taking Sd° = lSiSets, 
Sd B + 1 = Sd°Sd" and d°X = lx,d" + 1X = d"AT°d'Sd"X, for all simplicial sets 
X. The functor Sd" is called rc-th normal subdivision and gives rise also to a 
relative subdivision. For this, let X be a simplicial set, let A be a simplicial 
subset of X and let n be a natural number greater than 0. The simplicial 
set S d M can again be viewed as a simplicial subset of the simplicial set 
Sd"^ . Thus, the natural simplicial map d M : Sd"A -> A can be considered 
as a partial simplicial map SdnX-/-+A; forming the corresponding 
simplicial attaching, one obtains a simplicial set X(n) which is called the 
n-th normal subdivision of X rel. A. Again, one has a unique canonical 
simplicial map d : X(n) -> X whose composition with the characteristic 
map d : SdnX^Xin) of this simplicial attaching is just the natural 
simplicial map dnX. Now, the obvious analogue of Theorem 4.6.4 also 
holds true. 

Proposition 4.6.6 The geometric realization | X{n) \ of the n-th normal 
subdivision X{n) of a simplicial set X rel. to a simplicial subset A of X is 
homeomorphic to the geometric realization \X\ of the simplicial set X itself, 
via a homeomorphism which is homotopic rel. \A\to the geometric realization 
\d\ of the canonical simplicial map d : X'-+X and which allows one to 
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consider the CW-complex \X'\ as a subdivision of the CW-complex \ X\ (in 
the sense of Section 2 . 3 ) . 

Proof By induction on n. For n = 0, there is nothing to prove; assume 
the Statement is true for some n. Take X as the simplicial set which is 
obtained from S d M by simplicially attaching S d " + 1 X via d'(SdM); thus, 
the geometric realization \X\ of X is homeomorphic to the geometric 
realization | Sd" X\ of the simplicial set Sd" X via a homeomorphism which 
is homotopic rel. | S d M | to the geometric realization \d\ of the canonical 
simplicial map d : X -^>Sd"X and which allows one to consider the C W -
complex \X\ as a subdivision of the CW-complex | S d " X | (apply 
Theorem 4.6.4). Let H : \X\ x / —>|SdMX| denote a homotopy from such 
a homeomorphism h to d. By the law of horizontal composition (see 
Section A.4) + 1 may be viewed as obtained from A by simplicially 
attaching X via d^; let d"+i : X-*Xin+1) denote a corresponding 
characteristic map. The universal property of the simplicial attaching yields 
a simplicial map g : X(n+l)^X{n) such that g\A is the inclusion of A into 
X{n) and g°dn+1 is the composition of d with the characteristic map 
d" : SdnX->X{n\ Now, \Xin+l)\ x / is obtained from \A \ x / by attaching 
\X\ x I via \ d"A \ x 1, (see Proposition 4.3.10 and Proposition A.4.8(i)). The 
universal property of this attaching yields a homotopy H : | X ( M + 1 ) | x / - * 
| X < n ) | such that H | | A \ x J is the composition of the projection onto \A\ 
with the inclusion of \A\ into \X{n)\ and ff <>| J w + 1 | x 1 7 is the composition 
of ff with the geometric realization \dtt\ of d". Since H( — ,0) = h is a 
homeomorphism the map h = H( —, 0) is at least bijective. Because h~11| A. | 
is nothing but the inclusion of | >11 into | X(n + 1 > | and h ~1 ° | dn \ = \ dn +11 o h ' 1 

the inverse function h'1 is also continuous; thus, h is a homeomorphism, 
which, moreover, is homotopic to the geometric realization \g\ of the 
simplicial map g and allows one to consider the CW-complex as 
a subdivision of the CW-complex \Xin)\. Thus, the result follows from the 
application of the inductive hypothesis. • 

Normal subdivision has some special properties when restricted to 
presimplicial sets. The normal subdivision of a presimplicial set is again 
a presimplicial set and the subdivision functor applied to a presimplicial 
map yields a presimplicial map. Thus, one has an induced normal 
subdivision functor on the category PSiSets, which also will be denoted 
by Sd, yielding the compatibility relation 

ESdX = SdEX, 

for all XeOb PSiSets. The main feature of SdX for a presimplicial set X 
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is that in order to construct the homeomorphism h : | S d X | - » | X | (see 
Theorem 4.6.4), all the maps hx can be taken as 0 d i m" v. This implies that 
one obtains a natural family of homeomorphisms, and, moreover, although 
the natural simplicial maps d'EX fail to be presimplicial, the homotopies 
connecting h to \d'EX\ are also natural. 

The next objective is to study a special natural transformation of the 
composite functor \EPS-\, i.e., the composition of the singular functor 
with the fat realization into itself. For any space T, let 

hT : \ESdPST\-+\EPST\ 

denote the natural homeomorphism described before and take 
gT : Sd PST -+ PST as the adjoint of fT°hT9 i.e., its composition with the 
co-unit of the adjointness \E-\-\PS. Then, define the announced natural 
map as 

bT = \EgT\oh-1 : \EPST\^\EPST\. 

Before proceeding, one should try to understand what this map is doing. 
To this end, consider a singular simplex x : An-+ T, which is an element 
of ST as well as of PST. It corresponds to a cell ex of \ EPST\ giving rise 
to a canonical map cx : An->\EPST\, which, up to homeomorphism, may 
be viewed as a characteristic map. On the other hand, x induces a 
presimplicial map A[n]-*PST whose normal subdivision x' : Ä[n\^> 
Sd PST can be composed with the presimplicial map gT to yield a 
presimplicial map bx : A'[n]->PST. 

Lemma 4.6.7 For all xe(PST)n 

\Ebx\ = bToCxo0». 

Proof The map cx may be viewed as the geometric realization of a 
presimplicial map, and then the naturality of the homeomorphisms hr, 0" 
yields cx°8n = hT°x'. Consequently, 

\Ebx\ = \EgT\o\x'\ = \EgTHhTyloCxo0" = bTocxoO\ • 

The importance of this result lies in the following fact: the cell ex is mapped 
by bT into the union of the cells corresponding to the singular simplices 
x o Q n o C f i where c ^ ° z l m - > | z l ' [ n ] l denotes the map associated to the 
non-degenerate m-simplex peÄ[n\. Thus, the image of the cell ex by the 
kth iteration of bx is contained in the union of the cells corresponding to 
the singular simplices x°9"°c/l, where p runs through the non-degenerate 
simplices of the /c-fold normal subdivision of A[n]. This also explains the 
choice of the letter 'b' for these maps: it refers to 'barycentric' (subdivision). 

Another interesting property of the map bT is the following: 
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Lemma 4.6.8 The map br is naturally homotopic to the identity of the fat 
realization of ST. 

Proof Since the co-unit pST : EPST-+ST is a weak homotopy 
equivalence (see Theorem 4.4.5) and therefore \pST\ is a homotopy 
equivalence, it suffices to show that | p S T | ° f c T ^ \ PST\- This will be done by 
simple but lengthy computations using units and co-units of the adjoitness 
relations involved. In order not to overload the formulae, the subscripts 
indicating the respective Spaces or (pre)simplicial sets will be dropped 
from the notation. Start with 

p°Eg = p°EPS(j' °h)°Er]' = S(f°h)op°EPrioEu 

= S(f' oh)or]°poEu = Sf°Sh°rj. 

Now use the fact that h is naturally homotopic to the geometric realization 
of a simplicial map d, implying (see Proposition 4.3.18): 

p°Eg ~ Sf°S\d\°n = Sj'°nod = Sj°S\p\°n°d = Sj°rjop°d = p°d. 

Consequently, 
| p | o f c = | p | o | £ f i f | o / I - l = | p o £ f l f | o Ä - l Ä | p | o | d | o A - l Ä | p | . • 

All these considerations prepare the way for the Simplicial Excision 
Theorem: 

Theorem 4.6.9 Let T be a space and let U= {Uy : yeT} be a family of 
subsets of T whose interiors form a covering of T. Then, the geometric 
realization of 

S(T9U)= U SUy 

is a strong deformation retract of\ST\. 

Proof It is enough to show that the inclusion \S(T,U)\->\ST\ is a 
homotopy equivalence (see Proposition A.4.2(v)). Since the co-unit 
p : £ P - > 1 is a weak homotopy equivalence (see Theorem 4.4.5), it suffices 
to prove that the inclusion of the corresponding fat realizations is 
n-connected, for all neN (see Theorem A.8.9 and Whitehead's realizability 
theorem, Theorem 2.5.1). 

To begin with, consider a singular simplex x : An-*T. The inverse image 
of the family U under the map x forms a covering of An for which there 
is a /c-fold barycentric subdivision of An whose open simplices form a finer 
covering (see Proposition 3.2.14). The means that the cell excz\EPST\ 
corresponding to x is mapped under the kth iterate of bT into the subspace 
\EPS(T, U)\. 
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Now consider an arbitrary map b : Bn^\EPST\ such that b(S"~1)c: 
\EPS(T, U)\. By compactness, the image of b is contained in a finite union 
of cells of \EPST\ (see Proposition 1.5.2). Thus there is a number /ceN 
such that {bT)k°b factors through \EPS(T, U)\. By naturality, the map bT 

transforms each \EPSUy\ (and consequently \EPS(T, U)\) into itself; the 
same holds true for the homotopy deforming bT to 1\EPST\- Thus, there is 
a homotopy 

H : (\EPST\ xI,\EPS(T9U)\ x I)^(\EPST\9\EPS(T9U)\) 

from (bT)k to 1|£ P S T|; now, the composition H°b x lI<>vn°hn, where v" and 
/ i " denote the Standard maps (defined in Section 1.0), shows that b is 
homotopic rel. Sn~x to a map factoring through |£PS(T , U)\, proving the 
desired n-connectivity. • 

CW-complexes are not triangulable, in general; a sufficient condition 
assuring this property is regularity (see Theorem 3.4.1). Here is its simplicial 
analogue. A non-degenerate n-simplex x in a simplicial set X is regulär if 
the simplicial subset X of X which is generated by x may be obtained 
from the simplicial subset X„ which is generated by xön by simplicially 
attaching A [n] via the simplicial map fn : A [n — 1] Xn, ah->x^wa; clearly, 
A[n— 1] is considered as a simplicial subset of A[n\ via the simplicial 
injection Aön. A simplicial set is regulär if all its non-degenerate simplices 
are regulär. There is an easy way to obtain a regulär simplicial set out of 
an arbitrary one. 

Proposition 4.6.10 The normal subdivision of any simplicial set is a regulär 
simplicial set. 

Proof Let X be a simplicial set. A non-degenerate «-simplex of the normal 
subdivision SdX of X may be represented by a pair (x,/i), with x a 
non-degenerate simplex in X and p a non-degenerate interior n-simplex 
in Zi'[dimx] (see Proposition 4.6.3). For aeA[n~]\A[n — 1], the simplex 
pa is still an interior simplex of 4 ' [d imx] , which implies the claim (again 
by Proposition 4.6.3). • 

The more crucial property of regularity is that it commutes with geometric 
realization. 

Proposition 4.6.11 The geometric realization of a regulär simplicial set is 
a regulär CW-complex. 

Proof Let X be a regulär simplicial set. Take a non-degenerate n-simplex 
x; without loss of generality, assume X to be generated by x. If no face 
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of x is degenerate, then the corresponding simplicial map A[ri]^X is 
injective and there is nothing to show. Otherwise, regularity implies the 
existence of a maximal degenerate face xx =xpx, with p± = 8n8n-1'-8k, 
for a fce[w]. Take yx = (xxf = x ^ , with v 1 = ( x 1 ) b l ; recall that (x^1 

denotes the maximal right inverse face Operator to the degeneracy Operator 
(Xi) b (see Section 4.1). The same construction applied to yx instead of 
x = y0 yields x 2 = y±p2 and y2 = x 2 v 2 ; the process continues to end up at 
xp = yp-1pp and yp = xpvp where yp has only non-degenerate faces. Take 
mj = dim xj,nj = dim yj. Define inductively pairs of Spaces (ZpAnj) iri the 
following fashion. Firstly, take Z 0 = An. Secondly, given (Z y , Anj\ regard 
Anj+i as a subspace of Anj via Aßj+{ and so as a subspace of Zp then, 
attach Z ; to A"j+l via A{Xj+l)Q to obtain Z J + 1 . Observe that Z p can be 
identified with \X\. Now, by induction, it follows that every pair (Zp Anj) 
can be identified with the pair (A'\ Anj\ where in the latter case the inclusion 
is induced by the face Operator PiVlp2--PjVj (see Lemma 3.1.1). • 

Corollary 4.6.12 The geometric realization of any simplicial set can be 
triangulated. 

Proof See Theorem 3.4.1, Theorem 4.6.4 and Proposition 4.6.10. • 

Remark This shows that simplicial sets do not cover all CW-complexes, 
because not every CW-complex can be triangulated (see the Example in 
Section 3.4). • 

This section is continued with two technical lemmas needed in the 
preparatory work for the proof of the relative simplicial approximation 
theorem (see Lemma 4.6.15 and Proposition 4.6.19). 

Lemma 4.6.13 For any neN and any /ce[n], there is a simplicial map 

X „ , k : S d M M - , S d y l f c [ n ] 

such that % „ , , | S d 2 / t 'M = Sd(d7ifc[rc]). 

Proof The objective is to construct a simplicial map 

which factors through Sd/ l k [n ] and such that the induced map% n f c 

satisfies the required property. 
In order to obtain a simplicial map with the desired domain and 

codomain, it is sufficient to define a function 

X : S d 2 4 | > ] - S d . 4 [ n ] 

Z o : ( S d 2 4 M ) 0 ^ ( S d 4 [ n ] ) , 
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such that the images of two vertices in Sd 2 zl[ / i ] spanning a 1-simplex 
either coincide or span a 1-simplex in SdZl[n] (in the same order). The 
vertices of Sd 2 A\n~] correspond to the non-degenerate simplices of Sd A[n~]\ 
thus, they may be represented by strongly increasing (with respect to cz) 
sequences p = (p0,...,pr) of face Operators with codomain [n]. On the 
other hand, the vertices of Sdzi[rc] correspond to the face Operators with 
codomain [w], and so they may be considered as subsets of [«]. In this 
sense, define 

Xo(f*) = {s(fAo)>--->s{pr)} 

where, for any face Operator p with codomain [n], 

(p(d\mp\ p^i9ök9 

The resulting simplicial map% extends the simplicial mapSd(d'/l f c[n]); it 
remains to show that its image is contained in Sd/ l f c [«] , i.e., that [ri] and 
[n]\{/c} are not in the image of Xo-

Firstly, assume [ri] = Xo(v) f ° r s o m e /*e(Sd 2 4[n]) 0 . Since [n] contains 
n + 1 elements, one must have r = dim p = n, pn = i and since s{i) = fc, 

Now, let j denote the smallest index such that fceimage^. The definition 
of the numbers s{pt) implies j>k and s(pj) = s(pj- J if j < n or s(pn-1) = k 
otherwise; one has a contradiction in either case. 

Secondly, assume [n]\{fc} = Xo(p) f ° r some pe(Sd24[n])0. Since 
[n]\{/c} contains n elements and pr must be different from z, one must 
have r = n — 1 and pn-x= Sj for some ;e[w]\{fc}, implying j4Xo(ß)'-> t m s 

is a contradiction. • 

Lemma 4.6.14 The inclusion Sd/l f e [n] c: Sdzl[n] = Ä\_ri] is an anodyne 
extension, for every neN and fee[n]. 

Proof Since Sd Ak[n~] ^ Sd An[ri], for every /ce[n], one may assume fc = n. 
The first Step consists in defining simplicial inclusions 

g : A'tn-1~] x 4[l]-^2J ' [n] . 

To obtain / , identify the vertex Operators ej with the numbers /, which 
may be 0 or 1, and consequently the vertices of ^[1]" with the n-tuples 
( j 0 , . . . , i „ _ 1 ) . Then, require the vertex (f0, , i „ _ t ) to be mapped into the 

otherwise. 

/ : 4 [ 1 ] " - 4 ' | X | 
and 
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Figure 14 

vertex of A'[n~] that corresponds to the face Operator p, satisfying 

image)u = [n]\{j : i,. = 0}. 

This assignment extends in a unique manner to the desired simplicial map 
(the case n = 2 is illustrated by Figure 14). It also suffices to describe the 
simplicial map g on the vertices. The vertices of Ä[n — 1] x z l [ l ] can be 
considered as pairs (p, et) consisting of a face Operator p with codomain 
[n — 1] and a vertex Operator = e,1 with / e [ l ] . In this sense, take 

(see Figure 15). Since the simplicial maps / and g are injective, one may 
consider /4[1]" and A'[n — l ] x 4[1] as simplicial subsets of A'[ri]. Then, 
A = SdAn\_ri]nA[iy consists of those simplices of ^[1]" which do not 
contain the vertex (1, . . . , 1). 

To continue the proof, one needs to know that the inclusion A cz A[\~]n 

is an anodyne extension. For this, observe that the simplices of ̂ [1]" can 
be considered as matrices with entries 0 and 1, non-decreasing columns 
and each row representing a yejrtex. A ,n,oji-d$g£flie];af.e, r-simplex 
corresponds to an (r + 1) x «-matrix with pairwise distinct rows; it belongs 
to A if its matrix contains at least one column whose entries are all 0 and 

Figure 15 
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it is an interior simplex if the first row of its matrix is constantly 0 and 
the last row is constantly 1. Now, ^[1] M can be obtained from A by 
successive attachings of the interior (non-degenerate) simplices in order 
of increasing dimension. The procedure Starts with the attaching of the 
'diagonal', i.e., the only interior l-simplex. Notice that before attaching 
an interior (r-h l)-simplex x the faces x^,. . . ,x<5 r are interior simplices 
which already have been attached and the face x<5r+ { belongs to A, while 
the face x<50 is still outside the reached object; thus, one has a horn whose 
filling gives rise to an anodyne extension (see condition (2) in the definition 
of anodyne extensions, Section 4.5); but anodyne extensions form a 
category and so the composition of all these attachings yields again an 
anodyne extension. 

Since r=SdAn[ri]<uA[l']n may be considered as obtained from 
Sd An[n\ by attaching A[Y]n via a simplicial map with domain A, it follows 
that the inclusion Sd A"[ri]czr is an anodyne extension (see again 
condition (2) in the definition of anodyne extensions, Section 4.5). Consider 

K = f n 4 ; [ n - 1 ] x 4[1] = A'[n- 1] x A '[1] u S d 5A[n - 1] x 4[1]; 

then, the inclusion 
KaA'in- 1] x 4[1] 

is an anodyne extension (see Proposition 4.5.8) and moreover, A'[n] may 
be thought of as obtained from r by attaching Ä\n — 1] x z i [ l ] via a 
simplicial map with domain K. Thus, the inclusion r cz A'[ri] is also an 
anodyne extension. • 

As in the case of simplicial complexes, subdivision of simplicial sets can be 
used in order to approximate (continuous) maps by simplicial ones. There 
is no difficulty to extend the classical simplicial approximation theorem 
(see Theorem 3.3.17) to presimplicial sets. More refined techniques are 
necessary for the treatment of simplicial approximation in its most general 
form, namely the relative approximation of maps between geometric 
realizations of simplicial sets. To this end, it is necessary to consider the 
right adjoint functor Ex : SiSets SiSets to normal subdivision, called 
extension (for the existence of the right adjoint to normal subdivision, see 
Proposition 4.2.10). The following notation will be enforced throughout 
this section: the adjoint 7 -* Ex Y of a simplicial map / : Sd Y - > X will 
be denoted by / * , while the adjoint SdY^X of a simplicial 
mapg : Y^ExX will be denoted by ge\ hence the following rules hold 
true: 

(f*f = f, (a*)* = g. 
The natural transformation d' : A' ̂ A - induces a natural transformation 
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e : 1 SiSets s -
1» Ex given by 

ex = {d'X)* : X^ExX, 

for any simplicial set X. The simplicial maps ex are explicitly given by 
the formula 

for any xeXn; here cpx denotes the simplicial map A[ri] -> X corresponding 
to the simplex x via the Yoneda embedding (see Lemma 4.2.1). Since all 
the simplicial maps d'n are surjective, the simplicial maps e x are injective. 

First of all, one must list some preservation properties of the functor Ex. 

Lemma 4.6.15 The functor Ex preserves 
(i) the simplicial set A\f)~\; 

(ii) simplicial homotopies; 
(iii) simplicial homotopy equivalences, in particular, simplicial contracti­

bility; 
(iv) Kan fibrations; and 
(v) Kan sets. 

Proof (i) is trivial. For (ii), let H : Y x A\\~\ -*X be a simplicial homotopy 
from a simplicial map / to a simplicial map g. Since the functor Ex is right 
adjoint, it commutes with products, and so ExH may be considered as a 
simplicial map Ex Y x Ex 4[1] Ex X whose composition with the 
simplicial m a p l E x y x e 4 [ 1 ] is the desired homotopy from E x / to Exg. 
Statement (iii) is an immediate consequence of (i) and (ii). 

(iv): Let p : Z - ^ I be a K a n fibration and let / : Ak[n~\-±ExZ be a 
simplicial map such that the composition E x p o / has an extension 
/ : A[ri]->ExX; in view of the definition of K a n fibrations, one has to 
look for a simplicial mapg : A[n]^ExZ, such that g\Ak[ri]=f and 
Exp°g = f. By the naturality of the adjointness, one obtains 

Since the inclusion Sdyt k[n] <= Sdzi[n] is an anodyne extension (see 
Lemma 4.6.14), there is a simplicial map/e : SdZi[n]-+Z such that 
fc|Sd Ak[n] = p and p°k = f<ß (see Proposition 4.5.3); the adjoint k* of k 
has the desired properties. Now (v) is an immediate consequence of (i) 

f\SdAk[n-]=pof. 

and (iii). • 
Proposition 4.6.16 For any simplicial set X, the geometric realization | e x | 
of the natural simplicial map cx induces an isomorphism between the 
fundamental groups. 
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Proof By construction, the natural simplicial map 

d 'X = eJ : SdX^X 

factors through 

Sd(ex) : S d X ^ S d ( E x X ) ; 

since |d'A"| is a homotopy equivalence (see Corollary 4.6.5), this implies 
that | Sd (e x)| induces monomorphisms between the corresponding 
homotopy groups (see Corollary A.8.2); in particular, a monomorphism 
between the fundamental groups. Because | d ' ( E x X ) | is also a homotopy 
equivalence and 

e x o d , X = d , (Ex^)oSd(e x ) , 

by the naturality of d', it follows that 

|e*li :n1(\X\)-+nl(\ExX\) 
is a monomorphism, for every selection of a base point of \X\ (omitted 
in the notation). 

To prove that le^^ is an epimorphism, note first that the 1-cells of 
| E x X | which correspond bijectively to the non-degenerate 1-simplices of 
Ex X can be taken as generators for ^ ( l E x X \ ) (see Theorem 2.6.8). Thus, 
it suffices to check that every 1-cell of | E x X | considered as a path is 
homotopic rel. end points to a path in the image of the map \zx\. Given 
a 1-simplex in ExX, i.e., a simplicial mapx : A'[Y]^X set x{ = x({shi)\ 
for i e [ l ] and form the 2-simplex y : Ä[2]-+X by taking 

J>((£o> $u 0) = K 0) = x o ° \ 

y((ßu K0) = y((£n $2,0) = * i ^ 

jKfo» <50>0) = y((^Su 0) = x08oaoa1 = x ^ o ^ o ^ . 
Then, the path corresponding to x = y82 is homotopic rel. end points to 
the path formed by the 1-simplices = e x (x 0 ) and yS0 = ex(xi) (the latter 
taken in the inverse direction). • 

This result suggests that one should ask how the functor Ex behaves with 
respect to simplicial universal coverings. 

Proposition 4.6.17 Let X be a simplicial set and let cp be a twisting function 
for X. Then, there are a twisting function \j/ for Ex X and an isomorphism 
h : ExX-+(ExX) over ExX, where X, (ExX) denote the simplicial 
universal coverings of X, Ex X with respect to the twisting functions cp, i//. 

Proof By the previous proposition, the fundamental groups of | X | and 
| E x X | can be identified to the same group n. Now it suffices to define 
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\jj on the 1-simplices of ExX, i.e., the simplicial maps Ä\\~\ ->X. Given 
such a simplicial map x, set 

Next consider any simplex of E x X , i.e., a simplicial mapx : Ä[n~\^>X. 
Its Oth vertex xe 0 corresponds to a pair (co,z)en x X0. Taking this co, 
define h(x) = (co,p°x) where p : X-*X denotes the simplicial covering 

The process of applying the functor Ex can be iterated, giving rise to an 
infinite sequence of functors and natural transformations 

its colimit is a functor E x 0 0 : SiSets-*SiSets, which is connected to the 
identity functor by the induced natural transformation e 0 0 : 1 -»Ex 0 0 . The 
functor E x 0 0 has similar preservation properties as the functor Ex: 

Lemma 4.6.18 The functor E x 0 0 preserves 
(i) the simplicial set 4[0]; 

(ii) simplicial homotopies; 
(iii) simplicial homotopy equivalences, in particular, simplicial contracti­

bility; and 
(iv) Kan fibrations. 

Proof (i) is trivial. For (ii), note first that E x 0 0 also preserves finite products; 
then, use a similar argument as for (ii) of Lemma 4.6.15. Again, (ii) implies 
immediately (iii). Finally, (iv) is a simple consequence of the corresponding 
property of the functor Ex. • 

The attentive reader will ask for the preservation of K a n sets by the 
functor E x 0 0 ; this, clearly, is also trivial but is part of a much stronger result. 

Proposition 4.6.19 The simplicial set E x 0 0 X is a Kan set, for any simplicial 
set X. 

Proof Let X be a simplicial set and let 

/ : / l ' I X H E x 0 0 * 
be a given simplicial map, for some neN and kein]. Since Ak[n] contains 
only finitely many non-degenerate simplices, there is an r e N such that / 
factors through E x r X and also through E x r + 1 X. To simplify the notation, 
set Ak[n\ = A, Exr X = Y and let g : A^ExY denote the induced 

\l/(x) = (poX{(e0,i)) • q>oX((sui] 

projection. • 
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simplicial map; observe that E x 0 0 X ^ E x 0 0 Y. Define 

/z = / o X ; S d 2 ( Z i [ n ] ) ^ Y , 

where x • Sd 2 04[n])-*Sd/t is an extension of Sd(d'/1) (for the existence 
of see Lemma 4.6.13). Then, the computation 

( /z**| / l ) w = h\Sd2 A (by the naturality of the adjointness) 

= </^°Sd(d'/l) (by the defining property of %) 

= (g°d'Af (by the naturality of the adjointness) 

= (d'(Ex Y) o Sd 0)* (by the naturality of d') 

= ((eEx rf ° S d 0)* ( b y t h e definition of e E x Y) 

= ( e E x y ° ö f ) w (by the naturality of the adjointness) 

shows that 

h**\A =eExY°g. 

Therefore, the composition 

e£ x 2 y °Ä** : 4[n]->Ex°° Y^Ex^X 

is the desired extension of the given map 

f : Ak[n\-*Ex^X. • 
The next lemma, needed to establish the simplicial approximation theorem 
for simplicial sets, relies on homology theory; it is a pity that - up to the 
writing of this book - there has been no purely combinatorial argument 
for it. 

Lemma 4.6.20 For any simplicial set X, the natural map \tx\ : | AT| —• | Ex | 
is a homotopy equivalence; thus, | X \ can be considered as a strong deform­
ation retract of \ExX\ via \ex\. 

Proof Without loss of generality, one may consider X as a connected 
simplicial set. The map | e x | induces an isomorphism between the funda­
mental groups (see Proposition 4.6.16), and, since the functors Ex and 
|—| commute with the formation of simplicial universal coverings (see 
Propositions 4.6.17, 4.5.35), \ex\ also induces an isomorphism on the 
homology of the universal coverings (see Proposition A.7.3). Thus, \QX\ is 
a homotopy equivalence (see Proposition A.8.8). 

Moreover, \ex\ is a closed cofibration (see Corollary 4.3.8 (iii)), and 
so \X\ is embedded in | E x X | as a strong deformation retract (see 
Proposition A.4.2 (v)). • 

Corollary 4.6.21 For any Kan set X, the natural simplicial map 
tx : X -* Ex X is a simplicial homotopy equivalence. 
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Proof If X is a K a n set, so is Ex X (see Lemma 4.6.15 (v)). But a simplicial 
map between K a n sets is a simplicial homotopy equivalence iff its 
geometric realization is a homotopy equivalence (see Corollary 4.5.31 (iii)). 

• 
Corollary 4.6.22 For any simplicial set X, the natural map \ex\ : \X\-+ 
|Ex°° X\ is a homotopy equivalence. If X is a Kan set, the natural simplicial 
map ex : X->Ex°° X is a simplicial homotopy equivalence. 

Proof Each | E x M X | is embedded in | E x n + 1 X\ as a strong deformation 
retract (see Lemma 4.6.20); moreover, |Ex°°X| is the union space of the 
resulting expanding sequence (see Proposition 4.3.12). Thus, \X\ is a strong 
deformation retract of l E x 0 0 ^ ! (see Corollary A.5.8) via the embedding 
| e£ | , which therefore is a homotopy equivalence. 

The second Statement now follows as in the previous corollary. • 

Corollary 4.6.23 For every simplicial set X, 

| e x o l f x ^ | d ' ( E x X ) | rel . |Sd*| 

via the embedding \Sd(cx)\ : |SdX|->|Sd(ExX)\. 

Proof The naturality of the transformation d ' - gives the equation 

d ' (ExX)°Sd(e x ) = e x ° d % 
where the maps d'(Ex X), d'X and e* are weak homotopy equivalences (see 
Proposition 4.6.3 (iii) and Lemma 4.6.20); thus, |Sd(e x)| is a homotopy 
equivalence. Moreover, |Sd(e x) | is a closed cofibration (see Proposition 
4.6.3 (ii) and Corollary 4.3.8 (iii)), and therefore |Sd A"| is embedded as a 
strong deformation retract into |Sd(ExX) | . Then, two maps with domain 
| Sd (Ex X) | are homotopic rel. | Sd X | if their restrictions to | Sd X | coincide. 
In order to prove this equality for the maps under consideration, notice 
that the simplicial map l f x x is the co-unit of the adjunction, and therefore 

d'AT = (cx)* = l | x X o S d(e^); 

substituting l | x x 0 S d ( e x ) for d'X in the equation displayed before gives 
the desired result. • 

The following technical result is more than just a simple consequence of 
the preceding theory. 

Lemma 4.6.24 Let Y, X be simplicial sets, D a simplicial subset of Y, 
f : \Y\^\X\ a map and f : Y->Ex X a simplicial map such that 

| / | Ä | e T | o / rel. \D\. 
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Then 
\F\*f°\d'Y\ rel. | S d D | . 

Proof The naturality of the transformation d ' - implies: 

| d ' (ExX ) |o | Sd / | = | / | o | d T | ^ | e x | o / o | d ' y | rel. | SdD | . 

From the previous corollary, one now obtains that 

| e x l ° l / t f l = | e ^ o l | x j r o S d 7 | Ä | d ' ( E x A : ) | o | S d 7 | 

^ | e ^ | ° / ° | d T | rel. | S d D | . 

But the map |e^| has a left inverse r (see Lemma 4.6.20); composing (on 
the left) the first and last terms of the previous homotopy with r, one 
obtains the wanted homotopy. • 

Now one has all the technology necessary to prove the relative simplicial 
approximation theorem for simplicial sets. 

Theorem 4.6.25 Let Y be a simplicial set with only finitely many 
non-degenerate simplices, D a simplicial subset ofY, X an arbitrary simplicial 
set,f : | Y\-+\X\amapandg : X asimplicial map sucht hat f\\D\ = \g\. 
Then there are a simplicial set Y' containing D as simplicial subset, a homeo­
morphism h : | Y ' | - > | Y | which is the identity on \D\ and identifies the 
CW-complex | Y' \ with a subdivision of the CW-complex \Y\, and a simplicial 
map k : Y'-*X, such that 

k\D = g 
and 

\k\*f°h rel. | D | . 

Moreover, the homeomorphism h can be chosen homotopic to the geometric 
realization of a simplicial map inducing the identity on D. 

Proof Choose a simplicial map / : Y - ^ E x 0 0 X, with 
f\D = ^og 

and 
|/|^|e£|o/ rel. \D\ 

(see Theorem 4.5.27). 
Since Y has only finitely many non-degenerate simplices | Y | x / is 

compact, and, consequently, there are an r e N and a simplicial map 
/ : Y - E x r X , such that 

f\D = eog 
and 

l/l^leHo/ rel. 
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where e r : X -» E x r X denotes the canonical inclusion. Taking r times the 
adjoints, one obtains a simplicial map k : Sd r Y-+X such that 

\k\~fo\drY\ rel. | S d r D | 

(see Lemma 4.6.24); let H : | Sd r Y\xl-+\X\ denote a suitable homotopy. 
Take the simplicial set Y' to be the rth normal subdivision of Y rel. D. 

Let d : Sd r Y-+Y' denote the corresponding characteristic simplicial map 
and h : | Y ' | - > | Y | a homeomorphism with the following properties: 

(1) h is homotopic rel. \D\ to the geometric realization of the induced 
simplicial map d : Y ' -» Y; and 

(2) h identifies the CW-complex | Y' | with a subdivision of the 
CW-complex | Y | 

(see Proposition 4.6.6). The universal property of Y' yields a simplicial 
map k : Y ' - > X such that k\D = g and k°d = k. 

Since the functors | — | and — x I preserve attachings (see Propositions 
4.3.10 and A.4.8 (i)), one obtains \ Y'\x I as an adjunction space, and, 
consequently, a homotopy H : \ Y'\ x I-+\X\ such that H\\D\ x / is the 
composition of the projection |X>| x / —> |Z>| with \g\ and H°(\d\ x 17) = H. 
This is a homotopy rel. |Z>| between \k\ and which, in view of (1), 
implies the desired poperties. • 

Exercises 
1. Show that the two-fold normal subdivision of a presimplicial set is the 

associated simplicial set of an ordered simplicial complex. 
2. Show that SdoSd o p = SdoSd. 

Preface to Exercises 3-8: Corollary 4.6.12 has a refinement. The proof 
of Theorem 3.4.1 was based on an idea that has a purely combinatorial 
analogue described by the so-called star functor. Given a simplicial set 
X; the bihäry t d ä t i ö h "cöritäifts' a!s a face' oh the' set' X # öf the'iioh-
degenerate simplices of X is reflexive and antisymmetric; thus, it gives 
rise to an ordered simplicial complex X* (see Section 3.3, Example 2). 

3. Extend the construction of X* to a functor * : SiSets-+OSiCo. 
4. In general, the star functor has very bad geometric properties. Verify 

that, for every p > 0 , \SlpY\xA1. 
5. However, if X is a regulär simplicial set, prove that X * is isomorphic 

to the simplicial complex triangulating \X\ in the sense of 4.6.12. 
6. For a simplicial set X let X * also denote the simplicial set associated 

to the ordered simplicial complex X* (see Section 4.2, Exercise 4). 
Show that for a regulär simplicial set X the natural simplicial 
map d^ : $dopX-+X factors through a natural simplicial map 

file:///SlpY/xA1
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7. Moreover, show that (SdX)* is a subdivision of X, for any simplicial 
set X, in the following general sense: A simplicial set X' is called a 
subdivision of the simplicial set X if there are a simplicial map d : X' X 
and a homeomorphism h : | | —>| | such that the CW-complex \X'\ 
becomes a subdivision of the CW-complex \X\ and \d\~h. 

8. Show that the simplicial map of Exercise 7 may be constructed in such 
a way that it depends naturally on X; however, naturality is impossible 
for the homeomorphism. 

9. Let G be a group and let BG denote its classifying set. Show that the 
simplicial map 

QBG : BG Ex BG 

is a weak homotopy equivalence. 

Notes to Chapter 4 

The simplicial sets studied in this chapter are precisely the 'complete semi-simplicial 
complexes' introduced in Eilenberg & Zilber (1950). Since the inception of the 
theory of complete semi-simplicial complexes (c.s.s. complexes as abbreviated in 
Kan (1957)), there has been a great deal of confusion about the correct terminology. 
At Klaus Lamotke's talk given during the Moscow 1976 International Congress 
of Mathematicians, the audience exhorted the mathematical Community to call 
the objects of our categories SiSets and PSiSets (see definitions in Sections 4.2 
and 4.4) by the names 'semi-simplicial sets' and 'simplicial sets', respectively; the 
argument was that PSiSets could be viewed as a subcategory of SiSets (via the 
embedding functor £) , and thus the passage from presimplicial to simplicial sets 
weakens the defining conditions. This Suggestion was not followed up, probably 
because at a first glance simplicial sets (with their degeneracy Operators) have a 
richer structure than presimplicial sets. The objects of PSiSets have also been 
called Asels in Rourke & Sanderson (1971). Today, the expression 'simplicial set' is 
almost universally used to indicate the objects of SiSets; we follow this trend in 
the present book. 

The theory of simplicial sets was, in large part, developed by Daniel M . K a n 
(see Kan 1955,1957,1958a, 1958b, 1958c, 1970). The first comprehensive textbooks 
about it were written by John Peter M a y (May, 1967), Peter Gabriel and Michel 
Zisman (Gabriel & Zisman, 1967) - who emphasized a strict categorical treatment 
of the theory - and Klaus Lamotke (Lamotke, 1968); the latter text contains a 
fairly complete list of references up to the time of its printing. Survey articles 
broadening the scope of our exposition are Schubert (1958), Gugenheim (1968) 
and Curtis (1971). 

Owing to their strong geometric flavour, face and degeneracy Operators have 
made their presence feit since the start of the theory of simplicial sets. A short 
but systematic treatment of the category of finite ordinals can be found in MacLane 
(1971) under the name 'the simplicial category'. Our category of finite ordinals is 
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not exactly the same as MacLane's; however, it is isomorphic to the subcategory 
obtained from MacLane's category by removing its initial object. The idea of 
taking the maximal section for a degeneracy Operator proved itself fruitful in 
Fritsch & Puppe (1967) and Fritsch (1969); in an embryonal form the 2-category 
structure of A was first given in Fritsch (1972). 

Section 4.2 gives an extract from Lamotke (1968). The development of category 
theory - in particular, the famous Yoneda Lemma (attributed to Nobuo Yoneda 
by Peter Freyd, 1964) - strongly influenced the way in which this section 
was developed. The condition for the Eilenberg-Zilber property for cosimplicial 
sets (Proposition 4.2.6) can be found in Ruiz Salguero & Ruiz Salguero (1978); it 
was also obtained by Dieter Puppe (unpublished). The unique representation of 
elements in a tensor product (Proposition 4.2.7) was proved in füll generality in 
Frftscli(1983), along the lines of the special case dealt with earlier (Fritsch, 1969/1). 

At the outset, it was not clear how one should have interpreted the 'geometric 
realization' of a simplicial set; indeed, this doubt was clearly revealed, for instance, 
in the title of Kodama's paper (Kodama, 1957). However, after that time, the 
interpretations given in Milnor (1957) and Puppe (1958) were generally accepted. 
The comparison theorem (Theorem 4.3.20) was first stated in its füll strength in 
Fritsch & Latch_(J981); the compatibility of geometric realization and local 
trfviality (Proposition 4.3.22) is due to Gabriel & Zisman (1967). 

The notion of cone functor in the category of presimplicial sets came to our 
attention via a letter from Dieter Puppe to Tammo tom Dieck; the purely 
combinatorial proof of Theorem 4.4.5 presented in this book was sketched in the 
aforementioned letter; the theorem itself was first stated in Kodama (1957). 

The defining condition for K a n sets, i.e., the requirement that horns can be 
filled, is often referred to as the ' K a n condition'; it is also called the 'extension 
condition', mostly by Daniel M . K a n himself, who originally formulated it for 
'cubical sets' (see K a n , 1955) and showed that it leads to a combinatorial homotopy 
theory. The passage to simplicial sets was done in K a n (1956, 1958c); the latter 
paper also contains the definition of ' K a n fibration'. In a certain sense, anodyne 
extensions - invented by Gabriel and Zisman (see Gabriel & Zisman (1967) - are 
the combinatorial 'strong deformation retracts'. The question of deciding if the 
geometric realization of a Kan fibration is a fibration was open for a long time; 
the affirmative answer to this problem (see Theorem 4.5.25) was given in Quillen 
(1968); in that paper, Daniel Quillen also introduced the notion of'acyclic fibration'. 
The concept of minimality and the local triviality of minimal fibrations can be 
found on the road leading to the proof of Theorem 4.5.25. Minimal strong 
deformation retracts of singular sets (in the simplicial sense; cf. Proposition 4.5.23) 
were constructed in Eilenberg & Zilber (1950); in Gabriel & Zisman (1967), one 
already finds a proof for Proposition 4.5.21. The approximation property of K a n 
fibrations (see Theorem 4.5.27) was proved in its füll generality in (Fritsch, 1976); 
it leads to the simple proof, given in this book, of the fact that the counits jT are 
weak homotopy equivalences (Theorem 4.5.30). The latter result was stated in 
Mi lno r (1957), where it is credited to Giever (1950); it was completely proved for 
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the first time in Lamotke (1963). Alternative proofs for the fact that jT is a homotopy 
equivalence for CW-complexes may be found in Gabriel & Zisman (1967) and 
Puppe (1983). Twisting functions appeared in Moore (1958). 

The normal subdivision of simplicial sets was introduced in K a n (1956, 1957); 
it was also discussed in Barratt (1956). The compatibility between geometric 
realization and normal subdivision (see Corollary 4.6.5) was first proved, within 
a more general context, in Fritsch (1969/11). The explicit formula in the proof of 
Theorem 4.6.4 is due to Dieter Puppe (Fritsch & Puppe, 1967); the relative version 
is contained in Fritsch (1974). The simplicial excision theorem (Theorem 4.6.9) 
was developed in Puppe (1983) in order to get the mentioned alternative proof of 
Theorem 4.5.30. The proof of the triangulability of the geometric realizations of 
simplicial sets given in this book follows the lines of Barratt (1956). The extension 
functor Ex and its properties were first announced in K a n (1956b); they were 
studied in detail in K a n (1957), where one also fmds the proof of the (absolute) 
approximation theorem for finite domain. The relative version of that theorem 
was studied in Fritsch (1974). 



5 

Spaces of the type of CW-complexes 

5.1 Preliminaries 

This chapter's work takes place mostly within the category TC W of Spaces 
with the type of CW-complexes and maps. 

Proposition 5.1.1 A space X has the type of a CW-complex iffX is dominated 
by a CW-complex. 

Proof The necessity of the condition is obvious. To prove the sufficiency, 
let Y be a CW-complex which dominates X, with maps j : X -> Y and 
r : Y^>X such that r°j ~ lx. Form the commutative diagram 

x - U y -i+x 
Tix A T i x t 

\sx\—>\SY\—>\sx\ 
IS/1 \Sr\ 

with |Sr |o|S/ | ~ Because Y is a CW-complex, jY is a homotopy 
equivalence (see Corollary 4.5.31 (i)). Let pY be a homotopy inverse for jY 

and define 

pY = \Sr\°pY°j : X->\SX\. 

Then, one can check that :px°jx — }\$x\ &r\&Jx°lix~\x' .• 

Proposition 5.1.2 Let X be a space with the type of a CW-complex. Then, 
X has a covering {U\ : XeA} which admits a subordinated locally finite 
partition of unity and such that the inclusion maps UX^>X are homotopic 
to constant maps. 

Proof Let / : X -> Y be a homotopy equivalence, with Y a CW-complex; 
let g : Y^>X denote a homotopy inverse for / . Because Y is locally 
contractible (see Theorem 1.3.2), it has an open covering {Vx : XeA], where 
all the K / s are contractible. Define the covering {Ux} of X by taking, for 
every XeA,Ux = f~l{Vx)- Now, if H is a contracting homotopy for Vx, 
then the composition of g\Vx°H with the induced map Ux x / Vx x / is 
a homotopy between g°f\Ux and the constant map; because g is a 
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homotopy inverse to / , it follows that g°f\ Ux is homotopic to the inclusion 
of Vx into X. Observe that the open sets Ux are not necessarily contractible. 

Finally, let {px} be a locally finite partition of unity subordinated to 
the covering {Vx} (see Theorem A.3.3). Then, {px°f} is a locally finite 
partition of unity on X subordinated to the covering {Ux}. • 

Proposition 5.1.3 Let X be a space with the type of a CW-complex. Then, 
the following implications hold true: 

(i) X totally disconnected =>X discrete; 
(ii) X connected =>X path-connected; 
(iii) X weakly contractible =>X contractible. 

Proof (i): Since X has the type of a CW-complex, its path-components 
are open (see Proposition 1.4.14). But X being totally disconnected, each 
point of X is a path-component, and thus open. 

(ii) : If X has the type of a CW-complex Y, the hypothesis implies that 
Y also is connected, since Connectivity is a homotopy invariant. Then, Y 
is path-connected (see Corollary 1.4.12); but path-connectivity is also a 
homotopy invariant, and thus X is path-connected. 

(iii) : If X has the type of a CW-complex Yy the hypothesis implies that 
Y also is weakly contractible (see Corollary A.8.2), and therefore 
contractible (see Theorem 2.5.1). Since contractibility is again a homotopy 
invariant, X is contractible. • 

The remainder of this section is used for some examples. 

Example 1 Let X be the subspace of R consisting of the points 0 and 1/n, 
for all integers n ̂  1. This space is totally disconnected but not discrete, 
and thus not of the type of a CW-complex (see Proposition 5.1.3 (i)). • 

Example 2 The Cantor set (or middle third set) does not have the type 
of a CW-complex because it is also totally disconnected and non-discrete. 

• 
Example 3 Let S be the graph of the function f(x) = sin(l/x),0 < x ^ 1 
in R 2 and A = {(0, y)eR2 : - 1 ^ y ^ 1}. Take the set B = A u S and give 
it the subspace topology in R 2 ; the space B is clearly connected, but 
not path-connected, and thus not of the type of a CW-complex (see 
Proposition 5.1.3 (ii)). • 

The next is an example of a space with the homotopy type of a C W -
complex but which is not a CW-complex. 
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Example 4 For each neN\{0}, let An be the segment of R 2 with vertices 
( -1 ,0 ) and (0, l/n); let D be the segment with vertices ( - 1,0) and (0,0). 
Now define X to be the set 

X= U An^D 
neN\{0} 

with the subspace topology. Since X is contractible, it has the homotopy 
type of a CW-complex. Suppose there is a CW-structure for X. The points 
(0,0) and (0, l/n), for all neN\{0}, cannot be interior points of open cells 
of dimension > 0, in view of the theorem of invariance of domain (see 
Theorem A.9.6). Thus, they must belong to the 0-skeleton, contradicting 
its discreteness (cf. Example 1). 

Moreover, note that although X is contractible the singleton space 
{(0,0)} is not a strong deformation retract of X. In other words, there 
is no based homotopy equivalence between (X,(0,0)) and the singleton 
space. • 

This example gives rise to another space not having the type of a 
CW-complex: 

Example 5 For each rceN\{0}, consider, besides the segments An defined 
in Example 4, the segments Bn having vertices (0, — l/n) and (1,0). Let C 
be the segment with vertices ( — 1,0) and (1,0); define the space X as the set 

* = ( U Än)^Cu( |J Bn) 
\neN\{0} / \neN\{0} / 

with the subspace topology. This space is weakly contractible but not 
contractible (see Section A.8, Example 3); if it were of the type of a C W -
complex, it would be contractible (see Proposition 5.1.3 (iii)). • 

Example 6 For any based space (X,x0\ the based path-space (PX,co0) 
(see Section A.4, Example 6) has the type of a CW-complex. In fact, PX 
is contractible, and thus it has the type of a CW-complex. • 

Exercises 
1. A space X is semilocally contractible if each point of X has a neighbour­

hood K, such that the inclusion V^X is homotopic to a constant map. 
Show that any space in the category TCW is semilocally contractible 
(indeed, any space having the type of a locally contractible space is 
semilocally contractible). (Dydak & Geoghegan, 1986). 

2. Let {Ux : XeA} be a numerable covering of a space X such that 
UkeTCW, for each XeA. Show that XeTCW. 
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5.2 CW-complexes and absolute neighbourhood retracts 

As seen in Chapter 3, simplicial complexes with the strong topology are 
ANRs; this result has an inverse, up to type. 

Theorem 5.2.1 The following conditions are equivalent for a space X: 
(i) X is dominated by a CW-complex; 
(ii) X has the type of a CW-complex; 
(iii) X has the type of a simplicial complex; 
(iv) X has the type of a simplicial complex with the strong topology; 
(v) X has the type of an ANR. 

Proof (i)=>(ii): Proposition 5.1.1. 
(ii) =>(iii): Corollary 4.6.12. 
(iii) =>(iv): Proposition 3.3.7. 
(iv) =>(v): Theorem 3.3.10. 
(v) =>(i): Without loss of generality, assume X to be an A N R ; as a metric 

space, it can be viewed as a subspace of the normed linear space L = 
C{X9R)9 closed in its convex hull Z = H(X) (see Proposition A.6.1); then, 
because X is an A N R , there is a retraction r : U -> X, where U is a 
neighbourhood of X in Z . For each ueU9 let rj = rj(ü) > 0 be a real number 
such that the convex set B(u9rj) = {zeZ : d(z9u)<rj} is contained in U. 
Take U = {ueU : B(u9n(u)/2)nX # 0 } and note that {Vu : ueÜ}9 with 
Vu = B(u9rj(u)/2)nX is an open covering of X. Let P be the nerve of this 
covering; it will be proved that the simplicial complex P dominates X. 

Choose a locally finite partition of unity {pu : ueÜ} subordinated to 
the covering {Vu} (see Theorem A.3.3, noting that, as a metric space, X 
is paracompact) and let / : X - > P be the canonical map given by 
f(x) = {pu(x) : ueÜ} (see Lemma 3.3.4 (ii)). Define a mapg : P-+U by 
g(Ki) = u a n d the linear extension over all simplices of P. To see that g 
indeed takes values only in (7, proceed as follows. Let { K U o , . . . , VUn} be a 
simplex of P and take xef}n

j=0VUj. Relabelling the indices, if necessary, 
assume that n{Uj)^rj(u0),j = 0,. . . ,n. It follows that d{x9Uj) <rj(üj)/2 ^ 
n(u0)/2, and thus, d(u09Uj) <t](u0); i.e., UjeB{u0,rj{u0)). This shows that 
g({VUQ9...9 VuJ) cz B(u09rj(u0)) cz U. Now define the map g : P-^X as the 
composition g — r°g. 

Take the affine connection between g°f and lX9 i.e., the homotopy 
H : X x / Z given by 

H(x9t) = tx + {\-t)g°f(x) 

for every (x9t)eX x /; H also takes its values in U. For a given xeX9 let 
u 0 , . . . , u „ denote the points in Ü with p (x)^09j = 0,...,rc; as before, 
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assume rj(uj) ^ rj(u0). Then, the line segment connecting x to g°f(x) is 
totally contained in B(u0,rj(u0)) cz U. The composition of the homotopy 
H : X x / -+U with the retraction r : U ->X gives the desired homotopy 
from g° f to \ x . • 

Corollary 5.2.2 A compact ANR is dominated by a finite CW-complex. 

Proof See Corollary 1.5.5. 

Remark In contrast to Theorem 5.2.1 
in general, that a space dominated by 
of a compact A N R . However, in the 
refine Theorem 5.2.1. 

• 
and Corollary 5.2.2, it is not true, 
a finite CW-complex has the type 
presence of countability, one can 

Theorem 5.2.3 For a space X the following conditions are equivalent: 
(i) X is dominated by a countable CW-complex; 
(ii) X has the type of a countable CW-complex; 
(iii) X has the type of a countable simplicial complex; 
(iv) X has the type of a countable locally finite simplicial complex; 
(v) X has the type of an ANR satisfying the second axiom of countability. 

Proof (i)=>(iii): Let X-^Y-^X be given with r°j^lx and Y a 
countable CW-complex. It is known that X ~ \SX\eCW (see Proposition 
5.1.1). 

Let (K,/ i ) be a triangulation of \SX\ (see Corollary 4.6.12). Using the 
same notation as in 5.1.1, let pY : Y->\SY\ denote a homotopy inverse 
for the natural mapjY : \SY\-+Y. Form the map 

p = h-1o\Sr\opy : Y-+K 

and observe that p°j = h~lo\Sr\°pY°j is a homotopy equivalence with 
inverse jx°h. Because Y is countable, its image by p is contained in a 
countable subcomplex L ( 0 ) of K. In fact, for any cell e of Y, p(e) is compact, 
and thus is contained in a finite subcomplex (see Corollary 1.5.4); clearly, 
a countable union of finite subcomplexes is countable. 

Let 
H : K x I^K 

be a homotopy from p°j°jx°h to the identity map of K. Because L ( 0 ) x / 
is countable, there is a countable subcomplex L ( 1 ) <= K such that 
H(L{0) x I)cz L ( 1 ) . By iteration, one obtains a sequence of countable 
subcomplexes of K, say 

F(0) r ( l ) r(2) 

file:///SX/eCW
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such that H(L{n) x /) c L(n+1). The subspace 

L * = \J L ( M ) 

neN 

of K is a subcomplex of K (see Corollary 1.4.5); furthermore, L * is 
countable, 

(/£oj)(^)c=L<0>cL* 
and 

H(L* x /) c L * . 

Set 7* = j x o / j | L * and take /** as the map from X to L * induced by //°7'; 

then the homotopy 
H : L * x / - > L * 

shows that p*°j*~l. O n the other hand, 7*0/1* =Jx°h°poj — 1*, a ^ d 
therefore X has the type of the countable simplicial complex L * . 

(iii)=>(ii) and (ii)=>(i): Obvious. 
(iii) =>(iv): A countable simplicial complex Y, viewed as a countable 

regulär CW-complex (see Theorem 3.3.2), has the type of a regulär, 
countable and locally finite CW-complex T (see Proposition 2.2.5). 
Moreover, T is triangulable (see Theorem 3.4.1), and, because of the 
topological invariance of local finiteness (see Proposition 1.5.10) and 
countability (see Proposition 1.5.20), the simplicial complex obtained has 
the desired properties. 

(iv) =>(v): Suppose that X has the type of a countable locally finite 
simplicial complex Y. This complex is metrizable and satisfies the second 
axiom of countability (see Theorem 1.5.15); moreover, it is an A N R (see 
Theorem 3.3.10). 

(v) =>(i): The proof for this is similar to that for the corresponding part 
of Theorem 5.2.1. One has only to use the fact that the open covering 
{B(u,rj(u)/2)nX : ueU} of X has a countable star-finite refinement 
{V„ : neN} (see Theorem A.3.2). Its nerve is a countable, locally finite 
simplicial complex (see Proposition 3.3.12), which, like its counterpart in 
the previous theorem, dominates X. • 

Some consequences of Theorem 5.2.3 will be proved next. 

Corollary 5.2.4 Every n-manifold satisfying the second axiom of countability 
has the type of a countable CW-complex. 

Proof Let X be an n-manifold, i.e., a Hausdorff space such that each point 
xeX has an open neighbourhood Vx homeomorphic to R w ; assuming that 
X also satisfies the second axiom of countability, then X is a Lindelöf 
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Space, and hence the open covering X = [jxeX Vx has a countable 
subcovering. The open sets Vx are all A N R s and so is X (see 
Proposition A.6.9). The implication (v)=>(ii) of Theorem 5.2.3 completes 
the proof. • 

Corollary 5.2.5 / / X has the type of a countable CW-complex and C is a 
compact metric space, the function space 

Xc = {f : C^>X : / continuous] 

with the compact-open topology has the type of a countable CW-complex. 

Proof Let K be an A N R satisfying the second axiom of countability which 
has the type of X (see Theorem 5.2.3). Then, Kc is an A N R (see 
Proposition A.6.10 with C 0 = 0), has the type of Xc and satisfies the 
second axiom of countability as a subspace of (7°°)c (see Theorem A.9,8 
and Proposition A.9.9). • 

Remark The condition of compactness on C in Corollary 5.2.5 is essential, 
as can be seen by the following example: (S°) N is homeomorphic to the 
Cantor set, and thus is not of the type of a CW-complex (see Section 5.1, 
Example 2). 

Corollary 5.2.6 / / a Lindelöf space X has the type of a CW-complex, then 
X has the type of a countable CW-complex. 

Proof Let / : X Y be a homotopy equivalence, where 7 is a 
CW-complex. The subcomplex L = Y(f(X)) of Y (see Section 1.4, 
Example 1) clearly dominates X. Moreover, as the continuous image of 
a Lindelöf space, f(X) is a Lindelöf subspace of Y, and therefore L is 
countable (see Proposition 1.5.21). • 

53 /i-ads and function Spaces 
A n n-ad is a space together with a sequence of n subspaces. If one wishes 
to be perfectly clear, the notation 

{X;X0,X l9.. .,Xn_x} 

should be used to describe the n-ad consisting of the global space X and 
the corresponding sequence; otherwise, if the sequence is clearly 
understood, just write X instead of the previous lengthy expression. By 
abuse of language, a space X is said to be an n-ad if a sequence of n 
subspaces is implicitly given. 

An n-ad {X;X0,Xi,...,Xn_1} is a 
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CW-n-ad if X is a CW-complex and all the X-s are subcomplexes of X; 
simplicial-n-ad if X is a simplicial complex and all the X^s are sub­

complexes of X; 
simplicial-n-ad with the strong topology if X is a simplicial complex 

with the strong topology and all the X £ ' s are subcomplexes of X 
(with the strong topology); 

ELCX-n-ad if X is an ELCX-space and every X{ is an ELCX-subspace. 

The product of an n-ad {X\X0,...,Xn_1} and a space Z is the n-ad 
{X x Z ; I 0 x Z,...,Xn_l x Z} . If X and 7 are n-ads, then an n-ad map 
f : 7-> Z i s a map suchthat ,for every 0 ^ i < n — 1, / ( Y f ) czXt; its mapping 
cylinder {M\M09...9Mn_l} is obtained by taking the mapping cylinder 
M = M ( / ) of / , and, for each 0 < i ̂  n — 1, the mapping cylinder M-t of 
the induced map Y^X^ If 7, X are CW-n-ads and / is a cellular map, 
its mapping cylinder is also a CW-n-ad (see Section 2.3, Example 2). The 
set of all n-ad maps Y->X forms the n-ad function space XY,n as a subspace 
of the function space XY. A n n-ad homotopy is a homotopy which is 
also an n-ad map. The concepts of retraction, deformation retraction, 
deformation and homotopy equivalence are appropriately defined and 
suggested by the usual definitions. In particular, an n-ad homotopy 
equivalence is an n-ad map / : Y-+X for which there is an n-ad map 
g : X - > 7 such that: 

(1) g is a homotopy inverse of / in the ordinary sense, and 
(2) the homotopies connecting g°f and f°g to the respective identity 

maps move all the Xt's and the y,'s respectively, within themselves. 

The category whose objects are n-ads of the type of CW-n-ads, i.e., 
homotopy equivalent to CW-n-ads, and whose morphisms are n-ad maps, 
will be denoted by TCW". Conditions for an n-ad to belong to TCWn 

will be examined next; in particular, it will be shown that certain function 
space constructions, like the construction of loop spaces, do not lead 
outside the category TCW0 = TCW. 

A sufficient criterion for an n-ad to belong to the category TCWn is 
given in the following result. 

Lemma 5.3.1 Let {X; X09 ...9Xn_l}bean n-ad such that: 
(i) Xi+1 cz Xi9 for every ie[n - 2],1" 
(ii) the inclusions X{ cz X are closed cofibrations, for every ie [n — 1], and 
(iii) XeTCW, XteTCW9 for every ie[n- 1]. 
Then, {X;X09...,Xn_l}eTCW\ 

+ As in Section 4.1, the symbol [n - 2] denotes the set of integers from 0 to n — 2. 
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Proof The proof is done by induction on n. It is trivial for n = 0. Assume 
the Statement of the lemma holds true for n. Let {X;X0,...,Xn} be a 
given (n + l)-ad satisfying the hypothesis of the lemma. Then, the n-ad 
{X0;X x,...,Xn} also satisfies the hypothesis of the lemma (for (ii) use 
Proposition A.4.2 (vi)). Thus, by the induction hypothesis, {X0;Xl,..., 
Xn}eTCW". Let { Y 0 ; Y Y„} be a CW-n-ad which is n-ad homotopy 
equivalent to {X0;X1,...,Xn} via maps / : X0-+Y0,g : Y0~>X0 and 
homotopies H from / °g to l y 0 and * from g°f to 1^0. By assumption, 
the homotopy H moves any subcomplex Yt within itself; without loss of 
generality, one may further assume that H(y,t) = y, for all yeY0 and all 
t e Q , 1]. Similar assumptions can be made with respect to H*. 

Let f : X Y be a homotopy equivalence whose codomain Y is a 
CW-complex. Choose a cellular approximation j to / | X 0 ° g and construct 
the mapping cylinder Y = M(j); this is a CW-complex containing Y0 as 
a CW-complex (see Section 2.3, Example 2). Let i, T denote the inclusions 
of Y0, Y into Y, respectively. Since the inclusion i0 : X0->X is a closed 
cofibration, there is a map f : X^Y which is homotopic to 1 ° / and 
whose restriction to X0 coincides with j ° / ; notice that / is also a homotopy 
equivalence. Moreover, / is indeed an (n -h l)-ad homotopy equivalence 
of pairs (see Lemma A.5.10). • 

Condition (ii) in the Statement of this lemma is necessary. In fact, Example 4 
in Section 5.1 exhibits a 1-ad (J^,(0,0)} whose components have the type 
of a CW-complex but which does not belong to TCW1. 

Consider an n-ad {X;X0,...,Xn_l} and for each non-empty set 
S a[n— 1], define the space 

ieS 

If S — 0 , define Ä ' 0 = X; an n-ad m a p ' / : Y ^>X is ä complete weak 
homotopy equivalence if the 2" induced maps fs : Ys-+Xs are weak 
homotopy equivalences. 

Lemma 5.3.2 A complete weak homotopy equivalence in TCW" is a 
homotopy equivalence. 

Proof Let / : Y -* X be a complete weak homotopy equivalence in TCW". 
Without loss of generality, assume that X and Y are CW-n-ads; further-
more, it is possible to suppose that / is cellular (see Corollary 2.4.12). 

In order to show that / is a honest homotopy equivalence in TCW", 
one constructs, as in the proof of Whitehead's realizability theorem (see 
Theorem 2.5.1), a deformation retraction M ( / ) - > Y in TCW". The 
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hypothesis of complete weak homotopy equivalence on / assures that the 
deformation of a cell e belonging to several M / s can be chosen to take 
place within the corresponding Ms. Therefore, the procedure yields an 
n-ad deformation retraction as desired. • 

The next result gives a characterization of the category TCW". First, recall 
that the metric topology on a simplicial complex Y coincides with the 
trace of the product topology on Y, namely, the initial topology with 
respect to all projections px : Y - * / , XeA = Y 0 (see Proposition 3.3.3). 

Theorem 5.3.3 Let X be a given n-ad. Then, the following Statements are 
equivalent'. 

(i) X is dominated by a CW-n-ad; 
(ii) X is an object of TCW"; 
(iii) X has the type of a simplicial n-ad; 
(iv) X has the type of a simplicial n-ad with the strong topology; 
(v) X has the type of an ELCX-n-ad. 

Proof (ii)=>(i): This is an obvious consequence of the definitions. 
(i) =>(ii): Suppose X is dominated by a CW-n-ad Y; let / : X^Y and 

g : Y-+X be n-ad maps such that g°f ~ lx. Observe that the functor \ S-\ 
can be viewed as a functor from the category of n-ads into TCW" which 
preserves the n-ad homotopy relation (see Corollary 4.3.19). The naturality 
of the co-unit j : | S-\ Id assures that the maps jx and jY are n-ad maps; 
moreover, all the maps jYJY,s> f ° r a ^ S a[n— 1], are homotopy 
equivalences (see Corollary 4.5.31 (i)). Thus, jY is a complete weak 
homotopy equivalence and the proof can be completed along the lines of 
the proof for Proposition 5.1.1. 

(ii) =>(iii): From the preceding argument, it follows that X has the type 
of a CW-n-ad whose global CW-complex is the geometric realization of 
a simplicial set; this CW-complex has a subdivision which is a simplicial 
complex (see Corollary 4.6.12) and contains the subspaces involved as 
subcomplexes (see Proposition 2.3.6). 

(iii) =>(ii): Trivial. 
(iii) <=>(iv): see Proposition 3.3.7 and its proof. 
(iv) =>(v): see Corollary 3.3.9. 
(v) =>(i): Let { X ; * 0 , . . . b e an ELCX-n-ad . Let the E L C X -

structure on X be given by the convex covering {VY : yeT} of X and the 
equiconnecting homotopy E : U x I^X. The space X is paracompact as 
a metric space; hence, it is possible to choose a locally finite refinement 
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for X, which in turn gives rise to a barycentric refinement {Ux : XeA} of 
{Va} (see Proposition A.3.1). 

One may assume that the covering {Ux} consists only of non-empty 
sets, and, moreover, has the following property: given a pair (X,S) such 
that XeA and S c [ n - 1], then, UxnXt^ 0, for all ieS, implies that 
UxnXs # 0 . (Otherwise, replace Ux by the sets Uxs = l ^ X u p f , . : 7 ^ } 
defined for all the subsets S cz [n — 1] which are maximal with respect to 
the property UxnXs^ 0.) Notice that these conditions mean that for 
every X there is a unique maximal set Sx cz [n — 1 ] such that Ux n Xs. = 0. 

Let Y denote the nerve of the covering {Ux : XeA}. Notice that because 
{Ux} is a barycentric refinement of {Vy}, for any simplex {X0,...,Xk} of 
y, there is a convex set Vy such that ( J * = 0 UXj cz Vy. Now, for each 
ie[n— 1], let y f be the subcomplex of y consisting of the simplices 
{/0,..., Xr} satisfying the condition 

It will be shown that the CW-n-ad {Y; Y0,..., Yn_ 1 } dominates the given 
n-ad X. 

Using the paracompactness of the space X, once more choose a locally 
finite partition of unity {px : XeA} subordinated to the open covering 
{Ux}. This partition of unity determines the canonical map \j/ : X^Y 
(see Lemma 3.3.4 (ii)), which, according to the choice of the subcomplexes 
Yb is indeed an n-ad map. The objective is to construct an n-ad map 
q : y->X such that q°ij/ ~ lx. 

Turn the simplicial Y into an ordered simplicial complex by choosing 
a total order of the set A (see Section 3.3, Example 2). Define q\Y° = A 
by selecting, for each XeA, a point q(X)eUxnXS). Given s = (s 0,...,s*)e 
A { } Q ; j , with A 0 < A 1 < ••• <Xk, define 

Since {X0,...,Xk} is a simplex of Y, there is a convex set Vy containing all 
the points q(X0),..., q(Xk); the successive evaluations of the map E in the 
definition of q{s) do not lead outside of Vy, and therefore are always 
possible. Thus, q(s) is really defined for all points of Y. If some st = 0, then 
the given formula reduces to the corresponding formula for q({s0,...9s._19 

si + l,...,sk)\ showing thereby that q is well defined. The restriction of q 
to a fixed simplex is a combination of continuous functions, and so is 
itself continuous; hence, q is continuous. 

To see that, for each 1 ̂  i ̂  n — 1, q maps Yt into Xh consider a simplex 

q(s) = E(E( • • • E(E(q(X0\ qiX^sJ, q{X2\s2) • • •), q{Xk\ sk). 
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{X0,...,Xk} of Yt and a point seA[X^ by definition, 

and so, q(Xj)eXh for every j = 0,...,k. Since Xt is an ELCX-subspace of 
X, the successive evaluations of E necessary to obtain q(s) do not lead 
outside of Xt. 

Finally, since {Ux} is a barycentric refinement of {Vy}9 the map X x I-> 
X x X x I,(x,t)\-^{x,q°\jj(x),i) takes values in £/ x / , and thus can be 
composed with E : U xI^X, giving the desired homotopy. • 

Function Spaces will be focused next. Given the n-ads {X;X0,...,Xn_1} 
and {C;C0,...,Cn_i}, the function n-ad associated to them is the n-ad 

{Xc; (X9 X0)<c-C°\..., (X9 Xn _ ̂  ~> >}, 

where (X,Xi){C,Ci) is the subspace of all elements of Xc which take Ct 

into Xt. 

Proposition 5.3.4 Let {X;X09...9Xn_1} be an ELCX-n-ad and let 
{C; C 0 , . . . , Cn_ t} an n-ad. If C is compact Hausdorff, then the function 
n-ad Xc is an ELCX-n-ad. 

Proof Recall that the compact-open topology on Xc coincides with the 
metric topology induced by the metric of X (see Appendix A . l ) , and thus 
Xc is a metric space. 

Let the ELCX-structure on X be given by the convex covering 
{Vy : yeT} of X and the equiconnecting homotopy E : U x I-+X. 

Define 

W= {(fg)eXc x Xc : (f(x),g(x))eU, for every x e C } ; 

as usual, U denotes the union of all the products Vy x Vr Under the 
canonical homeomorphism Xc x Xc -+(X x X)c, the set W corresponds 
to the sub-basic open set [C, U~\ in (X x X)c (in the compact-open 
topology), and hence W is open in Xc x Xc. Moreover, note that the 
diagonal A(XC) is contained in W. 

Now define the homotopy E' : W x I -> Xc by 

E'(f,g,t)(y) = E(f(y),g(y),t) 

for every yeC and every tel. Its continuity follows from the exponential 
law. In fact, observe that W ^ [C, [/] ^ Uc, and so, by evaluation, there 
is a map ev : C x W x I -*U x I; but E' is just the adjoint of the compo­
sition E°ev. Clearly, E' is a homotopy as required in condition (2) of the 
definition of ELCX-spaces. 
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For every xeX9 choose a convex set Vy(x) containing x and an open 
neighbourhood Wx such that Wx cz Vy(xy Now, if heXc

9h(C)czX is 
compact and is covered by finitely many open sets WX9 say, WXo9..., WXk; 
then, the sets Di = h~1(WXi), i = 0,...,fc cover C, are compact and such 
that h(Di) cz V {Xi). In this way, one obtains an open neighbourhood 

zh= n v>hvy(Xi)-\ 
i = 0 

for every /eX c

9 and therefore an open covering {Zh : heXc} of Xc. 
Consider a pair (/, g)eZhx Zh. If y is an arbitrary element of Di9 i — 0,. . . , k9 

then {f(y),g{y))eVy{Xi) x Vy{Xi)<=. U; because the sets £> 0 , . . . ,D f c cover C, 
it follows that (/, g)eW. This conclusion holds true for all (/, g)eZh x Zh9 

and hence ZfxZfcz W. Also, for every pair (f,g)eZh x Zh and every 
yeDi9i = 09...,k, 

E,(fg,t)(y) = E(f(ylg(y),t)eVyiXi)9 

implying E'(Zh x Zh x I) cz Zh. 
Hence, an ELCX-structure for Xc is obtained by taking the sets Zh as 

convex sets and the evident restriction of E' as the equiconnecting 
homotopy. 

It remains to prove that, for every j = 0, . . . , n — 1, the sets{X9Xj){C,Cj) 

are ELCX-subspaces of Xc. First, observe that if fige(X9Xi){C,Ci) with 
(fg)eZh x Zh9 then the definitions show that £ V > 0 , O e ( * , ^ t ) ( C ' C i ) for all 
tel. Second, show that (X9Xj)(CtCj) is closed in Xc. To this end, for each 
xeXj9 the set 

Hx = {feXc:f(x)eXj} 
is closed because its complement in Xc is the sub-basic open set 

[{x}9X\Xj]. Hence, ( X , J Q ( C ' C , ) = C]xeCi

Hx is closed. • 

Corollary 5.3.5 IfX is an ELCX-n-ad and C is an n-ad with compact global 
space, then XceTCW". • 

Corollary 5.3.6 //XeTCW" and C is an n-ad with compact global space9 

then XceTCW" and Xc>neTCW. 

Proof If XeTCWn

9 then X has the type of an ELCX-n-ad 7. The 
application of the functor - c to n-ad maps and n-ad homotopies describ-
ing a homotopy equivalence between X and 7 yields n-ad maps and n-ad 
homotopies between Xc and YceTCWn; these show that the function 
n-ads in question have the same type. 

Finally, notice that these maps also induce homotopy equivalences 
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between 

Xc^ = Hf](X9Xj)iC'c^ 
j=o 

and 

j=o 

the latter space is an ELCX-space as the intersection of ELCX-subspaces 
of Yc, and therefore it has the type of a CW-complex. • 

In particular, this applies to loop Spaces. 

Corollary 5.3.7 •// (X,x0) is a well-pointed based space and XeTCW, then 
the loop space (QX,co0) is well pointed, and QXeTCW. 

Proof Since (X, x 0 ) is well pointed, its loop space {QX, co0) is well pointed 
(see Corollary A.4.4). Moreover, if XeTCW, it follows that {X;{x0}}e 
TCW2. Now take the 2-ad {Sx,{e0}} and note that the corresponding 
function 2-ad has the form 

{Xsl;QX}; 
this shows that QXeTCW. • 

Under special conditions on X, the preceding result has a converse, as 
follows: 

Proposition 5.3.8 Let X be a path-connected space with a covering which 
admits a subordinated locally finite partition of unity such that the inclusions 
of the members of the covering into X are homotopic to constant maps. Then, 
iffor some base point x 0 , the loop space QX has the type of a CW-complex, 
so does X. 

Proof Let / : Y-+X be a weak homotopy equivalence whose domain Y 
is a CW-complex (see Corollary 2.7.8) and choose a base point y0e Y such 
that /(y0) = x 0 . The induced map Qf is also a weak homotopy equivalence. 
But QYeTCW (see Corollary 5.3.7) and QXeTCW, by hypothesis; then, 
Qf is a homotopy equivalence (see Theorem 2.5.1). This implies that / 
itself is a homotopy equivalence (see Proposition A.4.24), and thus 
XeTCW. • 

5.4 Spaces of the type of CW-complexes and fibrations 
Let p : Y-+ X be a fibration with X path-connected and let F be any fibre; 
recall that all the fibres of p have the same type (see Corollary A.4.21). In 
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this section, the following question is analysed: given that two of the three 
Spaces X, Y, F have the type of a CW-cornplex, does the third space have 
the type of a CW-complex? 

Proposition 5.4.1 Let p : Y^X be a fibration with X path-connected and 
X, YeTCW. Then, any fibre FeTCW. 

Proof Let x be a non-degenerate base point of X. If X has no 
non-degenerate base points, it can be modified as follows. Select a point 
xeX and construct the mapping cylinder M(i) of the inclusion i : {x} -+X\ 
then, (x, l ) is a non-degenerate base point for M(i) and the retraction 
r{ : M(i)->X is a homotopy equivalence, and so M(i)eTCW. The induced 
fibration p : Af (i) Y-> M(0 has fibre F = p" l(x, 1) = p~ l{x) and the 
total space of the same type of Y, i.e., the type of a CW-complex (see 
Corollary A.4.20). Thus, one can always assume the existence of 
non-degenerate base points. 

Consider F to be the fibre of p over x. Since PX is contractible, the 
map hx : {x}^PX which takes x into the constant path co at x is a 
homotopy equivalence. Take the evaluation map vx : PX-+X, O\-+(T(1) 

and form the commutative diagram 

Y _ L _ > X ^— {x} 

lY lA-
 hx 

Y • X < PX 
p »i 

which shows that {x}\~]tY = F and PX\~~\Vv Y have the same type (see 
the cogluing theorem, theorem A.4.19). 

Decompose the mapp : Y-+X via the mapping cylinder, to obtain 
p = rp°iY, where rp : M(p)^X can be considered as a based homotopy 
equivalence (see Proposition A.4.10 (iv)). Form the commutative diagram 

PM(p)^-+M(p)<^- Y 

PX —> x <—y 
»i p 

where r / is given by tp

l(o) = rp°o is a homotopy equivalence and vx is a 
fibration (in both cases; see Section A.4, Example 6). It proves that 
Y[~\PPX and Y[~\iYPM(p) have the same type (see again the Cogluing 
Theorem A.4.19). Because Yr\pPX = Pxf~\ViY, it follows that F^ 
Yr\iYPM(p). But yni YPM(p)eTCW: to see this, form the 2-ad 
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{M(p); Y,{x}}, which belongs to TCW2; next, form the 2-ad {/;{1},{0}} 
and identify Y[~~]iYPM(j)) with the 2-ad function space M{p)L2eTCW 
(see Corollary 5.3.6). 

Theorem 5.4.2 Let p : Y -+X be a fibration with X path-connected and such 
that X and F = p~x(x) have the type of CW-complexes, for any xeX. Then, 
Y has the type of a CW-complex. 

Proof Let f:Z-+Y be a weak homotopy equivalence with Z a 
CW-complex (see Corollary 2.7.8). Consider a factorization / = pf°u, 
where p' : T(f) -> Y is a fibration and u : Z -> T(f) is a homotopy 
equivalence (see Proposition A.4.18). Notice that T(f)eTCW. Because 
pop':T(f)->X is a fibration with X,T{f)eTCW, the fibre F = 
{p°p,)~1(x)eTCW (see Proposition 5.4.1). Since u is a homotopy 
equivalence and / is a weak homotopy equivalence, it follows that p' is 
a weak homotopy equivalence. Construct the diagram formed by the 
homotopy sequences of the fibrations p : Y-+X,p°p' : T(f)^X (see 
Proposition A.8.17) and the morphisms induced by the mapsp ' |F ,p ' and 
\ x ; then, it follows from the five lemma that p ' | F is also a weak homotopy 
equivalence, and therefore is a homotopy equivalence (see Theorem 2.5.1). 
Finally, p' is a homotopy equivalence (apply Proposition 5.1.2 to X and 
Theorem A.4.23 to the fibrations p and p°p'). • 

If the total space and the fibres of a fibration have the type of a 
CW-complex, the base space does not necessarily belong to TCW (see 
Exercise 2). However: 

Proposition 5.4.3 Let p : (Y,y0)^>(X,x0) be a based fibration such that X 
is path-connected, (X, x 0 ) and(Y, y0) are well pointed and both Y,F — p~ x (x 0 ) 
have the type of CW-complexes. Then, the loop space QX has the type of 
a CW-complex. 

In particular, if X has a covering which admits a subordinated locally 
finite partition of unity and such that the inclusion maps of the members of 
the covering into X are homotopic to constant maps, then X itself has the 
type of a CW-complex. 

Proof Let vx : Z^PY = {Y;{y0}fm) be the fibration induced from 
vx : PX-+X by p°vY (see Section A.4 for the definition of these maps). 
The map p°vY is itself a fibration; its fibre is the 2-ad function space Y12 

of all 2-ad maps {J; {1}, {0}} -> {Y; F, {y0}}. Because (X, x0) is well pointed, 
the inclusion of F into Y is a closed cofibration (see Proposition A.4.17); 
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moreover, using the fact that {Y,y0) is w e U pointed, it follows that 
{Y;F,{y0}}eTCW2 (see Lemma 5.3.1). Consequently, Yul has the type 
of a CW-complex (see Corollary 5.3.6). But Y1,2 is also the fibre of the 
induced fibration Z-+PX; therefore, ZeTCW (see Corollary A.4.21 and 
Theorem 5.4.2). On the other hand, the fibre of vx is just QX, from which 
one concludes that QXeTCW (see Proposition 5.4.1). 

If X satisfies the extra hypothesis described in the Statement of the 
proposition, then XeTCW (see Proposition 5.3.8). • 

Exercises 

1. Show that the Polish circle 

P = {(x,y) : x = 0, - 2 ^ y ^ l } u { ( x , y ) : 0 ^ x ̂  ly = - 2} 

In 
u{(x,y) : x = l , - 2 < ) > ^ O } u { ( x , ) 0 : 0 < x ̂  1,); = s in- -} c: R 2 

does not have the type ofa CW-complex. (Hint: Show that all homotopy 
groups of the polish circle vanish, but a map into a singleton space is 
not a homotopy equivalence.) 

2. Show that there are continuous bijections [0,1)->P - where P is the 
Polish circle - and that all these maps are fibrations (this proves the 
existence of fibrations whose total space and fibre are CW-complexes 
and whose base does not even have the type of a CW-complex). 

3. Let X1<— X2 < be a sequence of fibrations where XneTCWfor 
f\ fi 

all n e N , and for any meN, all but finitely many fibrations /„ have 
m-connected fibres. Let X be the inverse limit of the sequence. Show 
that XeTCW iff all but finitely many of the /„ are homotopy 
equivalences. (Dydak & Geoghegan 1986). 

Notes to Chapter 5 

Since the introduction of CW-complexes almost forty years ago, various questions 
have been raised concerning their relation to homotopy theory; in a sense, 
CW-complexes are easily manipulated and their simplicity is often reflected in 
topological invariants that can be described algebraically. Thus, the question 
immediately arose of what kinds of Spaces could be represented, up to homotopy 
type, by CW-complexes; this led to Milnor's well-known paper (Milnor, 1959). 

The first three sections of Chapter 5 examine closely most of the results contained 
in Milnor 's paper. However, some of these theorems precede Milnor 's work: 
Proposition 5.1.1 is Theorem 23 of Whitehead (1950); in Theorem 5.2.3, the 
equivalence of (i), (ii) and (iv) are also due to J.H.C. Whitehead (in particular, the 
implication (i) =>(iv) is Theorem 24 of Whitehead (1950)), while the implications 
(iv)=>(v)=>(i) are in Hanner (1951). The notation of ECLX-space and its general-
ization to ECLX-n-ad are due to John Minor . 
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The development of Section 5.4 is influenced by the paper of Rolf Schön (Schön, 
1977). The first attempt to prove Theorem 5.4.2 was made by James Stasheff (see 
StashefT, 1963, Proposition (0)). For the case in which p : Y->AT is a covering 
projection, the result was already known to J.H.C. Whitehead (see Whitehead, 
1949a); in this text, the corresponding result is Proposition 2.3.9. 



Appendix 

This appendix is intended to give the reader an easy access to all the 
definitions and results which are needed but are not an intrinsic part of 
the theory in the main body of the book. The definitions are sometimes 
presented in a systematic way, within a specific context; as a result, it is 
possible that some concept is used before it has been fully described. The 
reader is invited to make füll use of the index while perusing the results 
presented here. Precise references or proofs for the results stated are given. 

A . l Weak Hausdorff A-spaces 

Because of its simplicity, the concept of topological space is an appropriate 
basis for a number of mathematical disciplines. Nevertheless, topological 
Spaces have some disadvantages when presented in their füll generality; 
in fact, some important constructions have certain useful properties only 
for restricted classes of topological Spaces. For the sake of exposition, Top 
will denote - exceptionally in this section - the category of all topological 
Spaces and maps. 

The main problem arises from the fact that for an arbitrary space Z 
the Cartesian product functor - x CZ : Top -» Top, which associates to a 
space X the Cartesian product X x CZ (endowed with the product topo­
logy), and to a map / : Y-+X the product map / x 1 : Y xcZ-*X x c Z , 
does not preserve pushouts. Even worse, the product functors - x c Z do 
not preserve identification rnaps, i.e., if / : Y-+X is an identification map 
then / x l may fail to be an identification map. 

Another disadvantage concerns mapping Spaces. Given Spaces Y and 
X, in general it is not possible to endow the set C(Y,X) of all maps Y ->X 
with a topology such that the evaluation map 

e: C(Y,X)xcY-*X, e(f,y) = f(y) 

is continuous. The best approximation to such a topology is the compact-
open topology, which has as sub-basis for the set of open sets, all sets 

[ K , U^ = {feC(Y,X): f(K)czU) 

with K a compact subspace of Y and U an open subset of X. The space 
of continuous functions Y->X with the compact-open topology is denoted 
by C0(Y, X). If Y is compact Hausdorff and X is metric, the compact-open 
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topology for C(Y, X) coincides with the metric topology determined by 
the metric 

d'{f, g) = max d(f(y),g(y)\ 

for every / , 0 e C ( Y , X ) and where d is the metric for X (see Dugundji, 
1966, Chapter XII , Section 8, Theorem 8.2 (3)). 

Several attempts have been made to Single out a 'convenient' class of 
topological Spaces, for which these difficulties do not arise. For the 
purposes of this book, the so-called 'weak Hausdorff /c-spaces' seem to be 
the most appropriate. 

k-spaces 
Let X be a space. A subset A cz X is said to be compactly closed if, for 
every compact Hausdorff space K and every map / : K^X, f~l(A) is 
closed in K , the space X is said to be a k-space whenever all its compactly 
closed subsets are closed. For Hausdorff spaces, this concept was probably 
first described in writing in Gale (1950) under the name compactly generated 
Hausdorff space and for the development of the general case see Brown 
(1988, Notes to Chapter 5). 

The property of being a /c-space is preserved by closed subspaces and 
identifcations; more precisely, if X is a /c-space and 

(1) if A cz X is a closed subspace of X, then A is also a /c-space; 
(2) if p : X->X' is an identification map, then X' is also a /c-space. 

The locally compact Hausdorff spaces and the spaces satisfying the 
first axiom of countability are /c-spaces (see Brown, 1988, 5.9.2). Thus, in 
particular, Euclidean Spaces R", balls Bn, spheres S \ and, more generally, 
all metric spaces are /c-spaces. As non-locally finite CW-complexes, J500, 
S 0 0 and F P 0 0 , F = R, C or H are examples of /c-spaces which are not locally 
compact. Moreover, they do not satisfy the first axiom of countability. 

For an arbitrary space X, let kX denote its k-ification, that is to say, the 
/c-space having the same underlying set as X, but with the topology given 
by taking as closed sets the compactly closed sets with respect to the 
topology of X. Note that k(kX) = k(X) for every space X\ moreover, since 
kX has a finer topology than X, the identity function is a map kX -• X. 

If Y is a /c-space, a function / : Y^X is continuous i f f / : Y^kX is 
continuous. Therefore, if / : Y -> X is a map, the same function is a map 
kY kX. This permits to extend the /c-ification to a functor k : Top -> Top 
by taking kf =f on maps. 

The image k(Top) of the functor k is a füll subcategory of Top, satisfying 
the following properties. 
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(1) The inclusion functor /c(Top)-» Top is left-adjoint to the functor k. 
(2) The category k(Top) is both complete and cocomplete. Tn particular, if 

X and Y are /c-spaces, then their product is given by 

X xY = k(X xcY). 

At this point, note that if at least one of the spaces X or Y is locally 
compact Hausdorff, or if both spaces are metric, then X x Y = X xcY. 

(3 ) The category k(Top) has mapping Spaces satisfying the exponential 
law. More precisely, for any /c-spaces X and Y, let XY = k(C0(X\ Y)); 
then, if X, Y and Z are /c-spaces, the following exponential law holds 
true: 

(XY)Z = XYXZ. 

The exponential law implies that the functors 

- r , - x Y : k(Top)-+k(Top) 
are adjoint to each other. Hence,- Y preserves all limits and - x Y preserves 
all colimits. In particular, the functor - Y preserves embeddings and the 
functor - x Y preserves identification maps; both functors preserve 
homotopies and homotopy equivalences. Notice that the functor - x Y 
does not normally preserve subspaces. 

The category of /c-spaces is larger than the category of compactly 
generated Hausdorff spaces. The latter category has the advantage that 
a subset A cz X is already closed if A n C is closed in C for every compact 
Hausdorff subspace C d This, on the one hand, avoids the nuisance of 
taking maps a : K X and studying a~1(A) away from X. On the other 
hand, although the category of compactly generated Hausdorff spaces has 
quotients, since it is cocomplete, these are far from the usual quotients 
because of the required Separation axiom (see Example 3 below). In this 
text, a middle course is elected, one which gives a subcategory of k(Top) 
larger than the category of compactly generated Hausdorff Spaces, and 
shares with it the advantage mentioned before, but which also has the 
usual quotients. 

Weak Hausdorff k-spaces 
A fe-space X is said to be weak Hausdorff if the diagonal Ax is closed in 
X x X. Recall that a topological space X is Hausdorff iff the diagonal Ax 

is closed in the Cartesian product X x CX; thus, a Hausdorff A;-space is 
weak Hausdorff. The weak Hausdorff/c-spaces generate a füll subcategory 
of k{Top\ denoted by wHk(Top) in this section (but simply by Top in 
the remainder of this book). 

The category wHk(Top) is closed under the formation of closed 
subspaces and finite products, these taken in k(Top); furthermore, if Y is 
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a weak Hausdorff /c-space and / : Y-+X is an identification map, then 
the /c-space X is weak Hausdorff iff (f x f)~1Ax is closed in Y x Y. 
Moreover, the functor - x Y restricted to wHk(Top) preserves subspaces. 

There is another useful characterization of the weak Hausdorff property 
for /c-spaces. 

Lemma A. l . l / / X is a k-space9 then X is weak Hausdorff iff for every 
map a : K->X9 with K compact Hausdorff, a{K) is closed and compact 
Hausdorff. 

Proof See McCord (1969, Lemma 2.1 and Proposition 2.3). • 

This implies, in particular, that weak Hausdorff /c-spaces have the 
Separation property T x ; it further implies the desired property that in a 
weak Hausdorff /c-space X9 a subset A is closed if A n C is closed in C for 
every compact Hausdorff space C d . 

The concept of relative homeomorphism is helpful in explaining why 
the category wHk(Top) is closed under the formation of quotients. A map 
of pairs / : (Y,Z))->(X, A) is called a relative homeomorphism if D is 
closed in Y, and the map / : Y->X is an identification and induces a 
homeomorphism Y\D-*X\A. Note that, except for the fact that the 
homotopy extension property is not required for the pair (Y, D), the space 
X can be viewed as the adjunction space obtained by attaching Y to A 
via / . 

Example 1 Let D be a closed subspace of a topological space Y. Form the 
quotient Y/D and let * be the point of Y/D to which D is identified. Finally, 
let / : Y^Y/D be the quotient map. Then, / : (Y,D)->(Y/D9{*}) is a 
relative homeomorphism. • 

Example 2 Let / : Y-/-+A be a partial map with domain D and take 
X = A [_]f Y; then, the projection A u Y-> X can be viewed as a relative 
homeomorphism 

{AuY9A\jD)-+(X9A). • 

Proposition A.1.2 Let Y and A be weak Hausdorff k-spaces and let 
f : (Y9D)^(X9A) be a relative homeomorphism. Then9 X is a weak 
Hausdorff k-space. 

Proof See M c C o r d (1969, Proposition 2.5). • 
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This and Example 1 prove that the category wHk(Top) has the usual 
quotients; more precisely: 

Corollary A.1.3 Let X be a weak Hausdorff k-space and let A be a closed 
subspace of X. Then X/A is a weak Hausdorff k-space. • 

In view of Example 2, Proposition A.1.2 also has the following consequences: 

Corollary A.1.4 Let f : Y~/^A be a partial map with Y and A weak 
Hausdorff k-spaces. Then, the adjunction space A[_jfY isa weak Hausdorff 
k-space. • 

The next example shows that the quotient of a Hausdorff /c-space by 
a closed subspace is not necessarily Hausdorff. This should convince the 
reader of the relevance of extending the notion of 'Hausdorff /c-space' to 
that of 'weak Hausdorff /c-space'. 

Example 3 (The T ychonoff plank; see Kelley (1955), Problem F, Chapter 4.) 
Let Q' be the set of all ordinal numbers not greater than the first 
uncountable ordinal number ü, and let co' be the set of ordinals not 
greater than the first infinite ordinal co. Endow both sets Q' and co' with 
the order topology; with this topology, both Q' and co' become compact 
Hausdorff spaces. Hence, Q' x co' is compact Hausdorff, and thus normal. 
The space 

X = Q' xö) ' \ ( f l , co) 

is locally compact, regulär, but not normal. In particular, X is a /c-space, 
because it is locally compact and Hausdorff. Now, let A and B be disjoint 
closed subsets of X which do not have disjoint neighbourhoods. The 
regularity of X implies that the quotient space X' = X/A is Hausdorff; 
moreover, X' is a /c-space, but it is no longer regulär. Let B' denote the 
subspace of X' which corresponds to B. Then, the quotient space X'/B' 
is a /c-space which is not Hausdorff. • 

Finally, the category wHk(Top) is closed under the mapping space 
construction which is essential to the development of Chapter 5. 

Proposition A.1.5 Let X and Y be k-spaces; if X is a weak Hausdorff then 
XY is a weak Hausdorff k-space. 

Proof Use the characterization of the weak Hausdorff property given in 
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Lemma A . l . l . Let a : K^>XY be a map, with K compact Hausdorff; let 
ä : K x Y ->X denote the adjoint of a. One must show that XY\a(K) is 
open. Let / be an arbitrary element of XY\a(K) and note that, for every 
ye y, the set 

Ky = {keK : ä(k,y)^f(y)} 
is open in K. Since /$a{K), for each /ceK, choose an element y(k)e Y such 
that keKy(k). The normality of K implies that, for each keK, there is an 
open set Lk which contains k and whose closure Lk is contained in Ky{k). 
Clearly, the set Lk form an open covering of K; since the latter space is 
compact, it can be covered by finitely many sets Lk, say by Lkx,...,Lkn. 
Then, because X is weak Hausdorff, for every / = l , . . . , n , the set ä 
(Lk,{y(ki)}) is closed (see Lemma A . l . l ) and hence, 

U = n[{y(ki)}9X\ä(Lk9{y(ki)m 
is a neighbourhood of / in XY which does not meet a(K). • 

A .2 Topologies determined by families of subspaces 

The topology of a space X - or in short, a space X - is determined by a 
family of subspaces Ux if a set U is open (closed) in X iff U n U x is open 
(closed) in Ux, for every X; this is equivalent to require that a function 
/ : X->Z, where Z is any space, is continuous iff f\Ux is continuous for 
every X. 

The following simple result is very useful in dealing with this concept. 

Proposition A.2.1 Let {Ux : XeA } and {Vy : yeT) be coverings of a space 
X such that {Vy} is a refinement of {Ux}. Then, if X is determined by the 
family {Vy}> it is also determined by the family {U A}. 

Proof Suppose that X is determined by {K y}; let / : X Z be a function 
from X to a space Z such that f\Ux is continuous, for every X. Take 
arbitrarily an element Vy of the family {Vy}\ since this family is a refinement 
of {Vx}, there is an index X such that Vy cz Ux. Then, f\Vy = (f\ Ux)\ Vy is 
continuous, and therefore / is continuous. • 

A space X has i\\t final topology with respect toa family of m a p s / : YX->X 
if a function / : X-+Z, where Z is any space, is continuous iff the 
compositions f °fx : Y A ^ Z are continuous for all X\ again, an equivalent 
formulation is to'say that U is open (closed) in X i f f / ' ^ t / ) is open 
(closed) in Yx, for every X. 

Proposition A.2.2 Let the space X have the final topology with respect to 
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the family {j\ : Y?, -> X : XeA } ofmaps and let p : Z->X be a map. Then, 
the space Z has the final topology with respect to the family {fx : YX->Z : 
XeA], where Jx is induced from j\ by p. 

Proof See Gabriel & Zisman (1967, Section III.2). The functor Z x - is 
compatible with colimits (see Section A. l ) ; thus, the space Z x X has the 
final topology with respect to the family { l z x fx}. 

Notice that all spaces Yx can be considered as closed subspaces of 
Z x Yx. Consider a subset C c Z such that fx

 1 (C) is closed in Yx, for 
each / . Since the domain of any map is homeomorphic to its graph, the 
space Z is embedded as a subspace in Z x X, via the assignment 
zi->(z ,p(z)); thus, C can be considered as a subset of Z x X. The sets 
fx

 ](C) = (1 Z x / ; J _ 1 ( C ) are closed in the respective spaces Z x Yx; 
consequently, C itself is closed in Z x X and also in Z . • 

Corollary A.2.3 Lef X be a space determined by the family of closed 
subspaces {Ux : XeA } and let p : Z^X be a map. Then, Z is determined 
by the family [p~l(U;) : XeA}. 

Proof Since each UX is closed in X, the inclusion p~I(UX) cz Z is induced 
from the inclusion U;L <= X by p. • 

Let a set X , a family of spaces {Yx : XeA } and a family of functions 
{fx '• YX-+X}be given and such that (fx x fx)~x (Ax) is closed in Yx x Yx,, 
for each pair X, X' of indices. Then, there is a unique topology T for X 
such that all functions fx become continuous and (X,T) has the final 
topology with respect to the family {fx}; the condition ensures the weak 
Hausdorff property for (X,x) (see McCord (1969, Proposition 2.4)). The 
process of forming the space {X, T) from the given data is referred to as 
promding or endowing X with the final topology with respect to the family 
{fx\. Under some additional hypothesis, X is determined by a family of 
subspaces: 

Lemma A.2.4 Let the space X be endowed with the final topology with 
respect to the family {fx}. Furthermore, assume that 

(i) each f x is injective; 
(ii) j\~l{f k'i^k')) is closed in Yx, for all pairs X, X' of indices, and 
(iii) the subspacesfx~1 {j\.(Y\.)) andf\r1(/\{Yx)) ofYx and Yx., respect­

ively, are homeomorphic, for each pair X, X' of indices. 
Then, for all XeA, fx embeds Yx as a closed subspace into X, and 
consequently, X is determined by the family {Yx} of subspaces. 
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Proof See Dugundji (1966, Proposition VI.8.2). • 

The concept of initial topology is dual to that of final topology; to 
wit, a space Y has the initial topology with respect to a family of maps 
fx : Y-» Xx if a function / : Z-> Y, where Z is any space, is continuous 
iff the compositions fx°f : Z^X x are continuous for all A. 

The following concept is stronger than that of determination of a space 
by a family of subspaces. A space X is said to be topologically dominated 
by a family {Cx XeA } of closed subspaces if a set C cz X is closed in X 
iff there is a subset A' cz A such that: 

(1) {Cx : XeA'} Covers C and 
(2) CnCx is closed in C A , for every XeA'. 

Clearly, if a space X is topologically dominated by the family 
{Cx ' XeA} of closed subspaces then X is determined by such a family; 
the converse does not hold true (see Section 1.5, Exercises). 

Theorem A.2.5 A space topologically dominated by a family of paracompact 
closed subspaces is paracompact. 

Proof See Mori ta (1954) and Michael (1956). • 

A.3 Coverings 

A family {Ux ' XeA} of subsets of a space X is said to be 

countable if A is countable; 
locally finite, if each point xeX has a neighbourhood which meets only 

finitely many U x\ 
star-ßnite if, for each XeA, UxnU^ # 0 for only a finite number of 

peA; 
a covering of a subset A cz X if A cz \JXeAUx (in this case, one also says 

that {Ux} Covers A)\ 
an open (closed) covering ofX if it is a covering of X and all sets Uk are 

open (closed); 
a refinement of the covering {Vy : yeT} if, for every XeA, there isa yeT 

with Ux cz Vy\ 
a barycentric refinement of the covering {Vy : yeT} if it is a covering of 

X and if the family {Üx : xeX} is a refinement of {K.}, where 

üx= U ux. 
xe V y 

Clearly, a star-finite covering is locally finite. 
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Proposition A.3.I Every locally finite open covering of a normal space has 
a barycentric refinement. 

Proof See Dugundji (1966, Chapter VIII, Theorem 3.2). • 

The space X is paracompact if it is Hausdorff and if every open covering 
of X has an open, locally finite refinement. Every paracompact space is 
normal; every closed subspace of a paracompact space is paracompact. 

Every metric space is paracompact. A sharper Statement holds true for 
metric spaces satisfying the second axiom of countability: 

Theorem A.3.2 Every open covering of a metric space satisfying the second 
axiom of countability has a countable, star-finite refinement. 

Proof See Kaplan (1947, Theorem 1). • 

A family {px : XeA} of maps px: X^>I is a (point finite) partition 
of unity on X, if, for each point xeX, px(x) = 0 for all but a finite number 
of indices X, and, furthermore, if, for all xeX, 

2 > , M = i . 

(The sum exists since it contains only finitely many nonvanishing 
summands.) 

The set of all partitions of unity for X has an interesting binary Operation. 
To wit, the product of the partitions of unity {px} and {vy} is the partition of 
unity {px vy} defined by all possible multiplications {px vy}, and indexed by 
the set of all pairs (X, y). 

The partitions of unity have a strong connection to the open coverings 
of the space X!. if • {px}•' is a partition öf unity for X, then the family 
{px~1 ((0,1])} is an open covering of X. A partition of unity {px} is locally 
finite if the covering {px~l((0, 1])} is locally finite. A partition of unity 
{px} is said to be subordinated to ( or dominated by) a given open covering 
{Ux} of X, if, for every X, the closure of {px~1 ((0,1])} is contained in Ux. 
A covering {Ux : XeA } of a space X is said to be numerable if it admits 
a subordinated locally finite partition of unity. 

The following result is true (see Dugundji (1966, Chapter VIII, 
Theorem 4.2)): 

Theorem A.3.3 IfX is a paracompact space, and if{Ux} is an open covering 
of X, then there exists a localy finite partition of unity for X which is 
subordinated to the covering {Ux}. • 
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CW-complexes, as paracompact spaces, satisfy Theorem A.3.3. 
There is an interesting property of spaces which implies paracompact­

ness. Let X be a space with a topology T (i.e., x is the set of all open sets 
of X). A stratification of X is a function 

T I - » T N , U^{Un : neN} 

such that: 

(1) {U„ : neN} covers U\ and, 
for every neN, 

(2) the closure Ün of Un is contained in V; and 
(3) U cz K, [/, K e t implies that [/„ cz K„. 

The space X is called stratifiable if there is a stratification for X. 

Proposition A.3.4 A stratifiable space is paracompact and normal. 

Proof See Ceder (1961). • 

A.4 Cofibrations and fibrations; pushouts and pullbacks; 
adjunction spaces 

This section reviews some important concepts and results of homotopy 
theory. Recall that in this book the category of weak Hausdorff /c-spaces is 
denoted by Top (except in Section A . l , where it is denoted by wHk (Top)). 

Cofibrations 
A pair (X, A) of spaces, i.e., a 1-ad in the terminology of Section 5.3, has the 
homotopy extension property if for any commutative diagram (füll arrows) 

X x / 

there is a map X x I -*Z (dotted arrow) which makes the resulting triangles 
commutative. 

Proposition A.4.1 Let A be a closed subset of a space X. The following 
conditions are equivalent: 

(i) the pair (X, A) has the homotopy extension property; 
(ii) the space X = X x {0} KJA x 1 is a retract of X x I\ 

(iii) X is a strong deformation retract of X x I; 
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(iv) there are a neighbourhood U of A in X which is deformable rel. A to A 
in X and a map x : X -*I such that cc~ '(O) = A and cc\(X\U) = I. 

Proof The equivalence of (i), (ii) and (iii) follows from Brown (1968, 
Propositions 7.2.2 and 7.2.3). The proof of the equivalence of (i) and (iv) 
can be found in Ström (1966, Theorem 2). • 

Rather than just dealing with pairs (X,A\ one expands the scope of 
Proposition A.4.1 by taking embeddings; more precisely, an embedding 
i : Y ->X is a closed cofibration if i (Y) is closed in X and the pair (X, i(Y)) 
satisfies any of the equivalent conditions of Proposition A.4.1. 

Example 1 The map r"+1 : Bn+1 x I->Bn+ 1 x {0} u S " x / introduced in 
Section 1.0 (pages 7,8) shows that the inclusion Sn -*Bn+\ n eN , is a closed 
cofibration. • 

The following is an example of an embedding of a closed subspace which 
is not a closed cofibration. 

Example 2 Take X to be the subspace of R consisting of the points 0 and 
l/n, for all integers n ^ 1, and take A to be the closed subspace of X 
consisting of the single number 0. Clearly, A has no neighbourhood in 
X which is deformable to A in X; thus, the inclusion A cz X cannot be a 
closed cofibration (see Proposition A.4.1 (iv)). • 

The following facts about closed cofibrations are known. 

Proposition A.4.2 (i) The closed cofibrations form a subcategory of Top 
containing all isomorphisms and all initial morphisms; i.e., all identities and all 
other homeomorphisms are closed cofibrations, any composition of closed 
cofibrations is a closed cofibration, all maps whose domain is the empty space 
are closed cofibrations. 

(ii) / / {Ax-+Xx : AeA} is a set of closed cofibrations, then L\Ax-+\jXx 

is a closed cofibration; i.e., a topological sum of closed cofibrations is a closed 
cofibration. 

(iii) If A-*X is a closed cofibration and Z is any space, then, A x Z 
X x Z isa closed cofibration; i.e., the product functor - x Z preserves closed 
cofibrations. 

(iv) Product theorem: / / AX->XX, A = 0,1 are both closed cofibrations 
then, 

Xo x Ay KJ AQ x X| • ^ ^I 

is a closed cofibration. 
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(v) Let i : A^Xbea closed cofibration. Then i is a homotopy equivalence 
iff A is a strong deformation retract of X. 

(vi) If j : A-+X and i : X^V are maps such that i and ij are closed 
cofibrations, then j is a closed cofibration. 

(vii) / / A0-+X, AX-*X and A0nAi-^X are closed cofibrations, so is 
AQUA]^ -*X. 

(viii) Let A{^X, ie\nf be closed cofibrations. Suppose that for every 
subset S c [n] the inclusion of As = f]ieSAi into X is a closed cofibration. 
Then u- = 0 At^X is a closed cofibration. 

(ix) Let A^X be a closed cofibration and let C be a compact Hausdorff 
space. Then A(:-^>Xc is a closed cofibration. 

Proof (\)\ Brown (1988, 7.3.2); (ii):easy; (iii):Brown (1988, 7.2.4 Corollary 
2) ; (iv):Brown (1988, 7.3.8); (v):Brown (1988, 7.2.9 Corollary 1); (vi):Ström 
(1972, Lemma 5); (vii):Lillig (1973, Corollary 2); (viii):Lillig (1973, Corollary 
3) ; (ix);Str0m (1972, Lemma 4). 

• 
A based space (X, x 0 ) is said to be well-pointed whenever the inclusion 
{x 0} cz X is a closed cofibration. 

Example 3 The based spaces (Bn+l, e0\ neN are well-pointed, since the 
inclusions, {e0}^Bn+1 are the compositions of the closed cofibrations 
{<?0}->S" and Sn^Bn+1. • 

Indeed, any based CW-complex is well-pointed (see Corollary 1.3.7 and 
Lemma 2.3.7). 

The space X described in Example 2 together with the point OeX, gives 
an example of a based space, namely (X, 0), which is not well pointed. There 
are spaces for which no choice of a base point yields a well-pointed based 
space: 

Example 4 The Cantor set is totally disconnected and every point is a limit 
point (see Bourbaki, 1966, Chapter IV, Section 2.5, Example); thus, no one 
of its points has a neighbourhood which can be contracted to it (cf. 
Proposition A.4.1 (iv)). • 

There is a relative version of Proposition A.4.2 (ix), namely: 

+As in Section 4.1, the symbol [«] denotes the set of integers from 0 to n. 
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Proposition A.4.3 Let A-+Xbea closed cofibration and let (C, D) be a pair of 
spaces with C compact Hausdorff Then, the inclusion Ac-+(X,A){C'D) is a 
closed cofibration. 

Proof Recall that (X, A){C'D) is the subspace of Xc formed by all functions 
C X whose restrictions to D take values in A. Let U be a neighbourhood 
of A in X which is deformable to A in X , rel. A and let a : X -> / be a 
map such that a~\0) = A and a\(X\U)=\. Then, (U,A){C<D) is a 
neighbourhood of Ac in (X, y4) ( C D ) , which is deformable to Ac rel. Ac. 
Furthermore, the composition 

ß = maxo(ac\(X,A){C<D)l 

where max : Ic->/ denotes the map which assigns to every map f : C->I 
its maximal value, is such that ß~1(ö) = Ac and its restriction to the 
complement of (U,A){C,D) takes the constant value 1. • 

A particular case of the previous proposition deserves to be mentioned and 
applies to spaces of based maps into well-pointed spaces. 

Corollary A.4.4 / / (X,x0) is a well-pointed based space and (C,c 0 ) is a 
compact based space, then the based space ((X,x0){CtCO\ co0\ where co0 is the 
constant map with value x 0 , is well pointed. • 

For any space X, the diagonal map A : X -> X x X is an embedding of a 
closed subspace. If, moreover, this embedding is a closed cofibration, the 
space X is called locally equiconnected ( L E C , in short). 'Roughly speaking, 
X is L E C if there are paths between sufficiently nearby points such that the 
paths depend continuously on the end points' (see Fox (1943)). A n 
important feature of L E C spaces is the following: 

Proposition A.4.5 LEC spaces are locally contractible. 

Proof See Dugundji (1965, Lemma 2.3). • 

Discrete spaces are clearly L E C . The deformation retraction 

dn : (Bn x B") xI-+Bn xBn 

of Bn x B" onto AB" introduced in pages 2,3 together with the map 

a : Bn x B"-+I, (s,s')Ms-s'| 
shows that the ball n ̂  1 is an L E C space (see Proposition A.4.1 (iv)). 
Moreover, arbitrary coproducts of balls are L E C : this follows from the 
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equation 

A(uBn*) = u(AB°>) 

(see Proposition A.4.2 (ii)). 

Proposition A.4.6 If i : A -+ X is a closed cofibration and X is an LEC space, 
then A is LEC. 

Proof The diagonal map A : A->AxA is a closed cofibration (see 
Proposition A.4.2 (i), (iii) and (vi)). • 

As a consequence of the previous result, the sphere Sn~1 = öB" is L E C , for 
every n > 1. 

Fibrations 
The concept of fibration isdualto that of cofibration. ! A map p : Y - > X i s a 
fibration if, for any commutative diagram (füll arrows), in Top, where v0 

denotes the evaluation at 0, there is a map Z Y 7 (dotted arrow) which 
makes the resulting triangles commutative. Using the adjointness between 
the functors - x I and - one obtains the description of fibrations by means 
of the homotopy lifting property: the map p : Y X is a fibration if, for 

Y 

Z T +X 
h 

every commutative diagram in Top, every homotopy H starting at h lifts 
to a homotopy G starting at i.e., gives rise to a homotopy G starting at 

f Closed cofibrations are essential for the attaching process which plays an important role 
throughout the book from the very beginning; fibrations show up in Chapters 1, 4 and 5. 
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g and such that p-G = H. Under these conditions, if X is path-connected 
and Y ^ 0, then p is a surjection. The space X is the base space or base 
of the fibration; the space Y is the total space of the fibration. For any 
point xeX, the inverse image p~l(x) is the fibre over x; a subspace of 7 
is a fibre of the fibration if it is the fibre over some point xeX. 

If, in the definition of fibration, the lifting property is required only for 
Z = B"{A"), neN, one obtains the weaker notion of Serre fibration (see 
Serre, 1951); on the other hand, if Z is any topological space (not necessarily 
a weak Hausdorff /c-space), one obtains the notion of Hurewicz fibration. 

Given the fibrations p : Y^>X, p' : Yf ~>X, a map / : Y-> Y' is a fibre 
map if p'cf = p\ a homotopy H : Y x / - » Y' is a fibre homotopy if p ' 0 / / is 
nothing but the composition of the projection Y x / Y with p (this 
is the dual concept to that of homotopy rel. a subspace). Two maps 
f g : Y -* Y ' are //£>re homotopic if there is a bifre homotopy connecting 
them; note that in this case the maps / , g are themselves fibre maps. A 
fibre map / : Y -> Y' is a /jfore homotopy equivalence if there is a fibre map 
g : Y'-> Y such that the two compositions are fibre homotopic to the 
respective identities. 

Proposition A.4.7 (i) The fibrations form a subcategory of Top containing 
all isomorphisms and all terminal morphisms; i.e., all identities and all other 
homeomorphisms are fibrations, any composition of fibrations is a fibration, 
all maps whose codomain is a singleton space are fibrations. 

(ii) If Y -+ X is a fibration and D is a retract of Y over X, the restriction 
D-*X is a fibration. 

(iii) / / Y -+X and Z^W are fibrations Y x Z-+X x W is a fibration. 
(iv) Let A^X be a closed cofibration and let Z be any space. Then, 

ZX^ZA is a fibration. 

Proof (i) and (iii) are trivial. 
(ii): Recall that for a given map p : Y -> X, a subspace D cz Y is a retract 

of Y over X if there is a map r : Y -+D such that r\D = lD and p\D°r = p. 
The claim follows immediately from the definitions. 

(iv): See Spanier (1966, Theorem 2.8.2). • 

Example 5 If Y and Z are any spaces, the projections from Y x Z to Y and 
Z respectively are fibrations. This follows from Statements (i) and (iii) of 
Proposition A.4.7. • 

Example 6 Given any space X, the map v0 : Xl-+X is a fibration (see 
Proposition A.4.7 (iv)); for a fixed base-point x0eX, the fibre over x 0 is 
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denoted by PX. The map vx : PX -> X obtained by evaluation at 1 is again 
a fibration whose fibre over x0 is the loop space QX of the based space 
(X,x0) (see Spanier, 1966, Corollary 2.8.8); the elements of QX are loops of 
X (based at x 0 ) . The loop space QX has a canonical base point, namely, the 
constant loop co0 at the point x 0 . The based space (QX, co0) is well pointed if 
(X, x0) is well pointed (see Corollary A.4.4). 

The construction of the based pair of spaces (PX,QX, co0) extends to a 
functor. It associates to a based map / : (Y, y 0 ) ^ ( X , x 0 ) the maps P / : PY 
-+PX and Qf : QY^QX, defined just by composition. • 

Example 7 A m a p p : X ->X is a covering projection if every point x e X has 
an open neighbourhood U such that p~1(U) = U ^ A , where each Ux is 
open and homeomorphic to U via p; in this Situation, the space X is 
called a covering space of X. Covering projections are fibrations (see 
Spanier, 1966, Theorem 2.2.3). • 

Pushouts and pullbacks 
A commutative diagram in Top 

is said to be a pushout if it satisfies the following universal property (called 
the pushout property): for any commutative diagram (füll arrows) 

there is a unique map X-*Z (dotted arrow) making commutative the 
triangles which arise; in other words, given maps g : A^Z,h : Y^Z such 
that gf = hi, there is a unique map k : X^>Z such that ki = g,kf = h. 

This concept is also useful in other categories, like the categories of 
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groups and groupoids. In such a Square, the space (group, groupoid) X is 
uniquely determined up to homeomorphism (isomorphism) by the diagram 

(*) 
D-

more precisely, if 

i0 and i 

are pushouts then there are unique homeomorphisms (isomorphisms) 
hx : Xk^Xx _ A , X = 0, 1, inverse to each other, such that 

hx7x = f\-x> hxTx = i1.x. 
Conversely, any diagram (*) of spaces and maps (respectively, groups, 
groupoids and homomorphisms) can be completed to a pushout. 

Pushouts are dualized by pullbacks: a commutative diagram in Top, 

D — Y 

is said to be a pullback if it satisfies the following universal property (called 
the pullback property): for any commutative diagram (füll arrows), 
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there is a unique map Z->D (dotted arrow), making commutative the 
triangles which arise. In this Situation, the space D is uniquely determined 
(up to homeomorphism) and denoted by A PI/ Y. The map p is said to be 
induced from pbyf and the map / is induced from fby p. The space A P| / Y 
can be defined as the inverse image of the diagonal with respect to the map 

AxY^XxX, (a,y)^(f(a\p(y)); 

thus, because X is weak Hausdorff, the space A PI f Y can be considered as a 
closed subspace of A x Y. If / is the imbedding of a closed subspace of X, 
then A\~\fYis homeomorphic to the closed subspace p~i(A) of Y; thus, the 
map p can be identified with the map 

p~l(A)-> A,a\—>p{a\ 

and the map / can be identified with the inclusion p~ 1(A) cz Y. 

Adjunction spaces 
A diagram of spaces and maps, 

in which i is a closed cofibration, is called a partial map from Y to A with 
domain D and is denoted by 

/: Y - /->A. 

When no confusion arises, the let ter/ ' represents either the mapf : D->A 
or the partial m a p / : Y-j-*A\ moreover, whenever the letter *D' is not 
specified, the notation dorn f represents the domain of the partial map / . 
Notice that because the product functor - x Z preserves closed cofibr­
ations (see Proposition A.4.2 (iii)), for any given partial map / : Y-J-+A 
and any space Z , there is an induced partial map / x 1 : Y x Z -> A x Z . 

A partial map / : Y- j-*A can be completed to a pushout as follows. 
For the underlying set X, take a disjoint union A u (Y\dom / ) . f Next, 
endow X with the final topology with respect to the canonical functions 
/ : Y -> X and T: A->X. Thus, by construction, the space X contains A as a 
closed subspace. Therefore, one says that X is obtained from A by attaching 
or adjoining Y via / , or, also, that X is an attaching space or an adjunction 

Alternatively, one can take the set A\__\ Y/d~f(d). 
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space. Such an attaching space will be denoted systematically by 

X = AUfY; 

moreover, the map / is called attaching map and the map / : Y i s 
called characteristic map. 

Adjunction spaces have been around for a long time; a reasonably 
complete account on the general properties for adjunction spaces can be 
found in Brown (1988). In particular, the gluing theorem (see 
Theorem A.4.12) is presented there; for CW-complexes, that theorem had 
been developed earlier in Spanier & Whitehead (1957). 

Although the previous construction of the adjunction space X seems to 
be unique, it is not. The ambiguity in the construction - only up to 
homeomorphism, as already noted - is due first to the fact that A and Y\D 
may not be disjoint. In order to form the disjoint union, one has to make the 
sets disjoint, a process which is not unique. Secondly, if X, / and fare given, 
replacing / and / with the composi t ions/ - /and i-i respectively, where 
/ : 7 -+7 and/ : A A are homeomorphisms such that/-/ = i and i-f =/, 
one obtains a new pushout Square which is equivalent to the original one. In 
other words, if the square 

y—f—+x 

i T 

is a pushout, so is the square 

i i°i 

D—j—»A 

A slightly different terminology and notation is used if, in addition, / : D 
-> A happens to be an inclusion which is also a closed cofibration. Then one 
may consider the set X to be 

X = A\DuDu Y\D = Au Y. 
In this case, X is called a union (space) of A and Y over D and it is denoted by 

X = A\JDY. 
This Situation arises whenever one is given a space X together with closed 
subspaces A, Y such that A u Y = X and the inclusions of A n Y in A and 



260 Appendix 

y, respectively, are closed cofibrations. Then the equation 

x = AuDy 
holds true, in the sense that both sides agree up to a canonical 
homeomorphism. 

Example 8 Because the inclusion S"~l-+B" is a closed cofibration, the 
sphere Sn can be viewed as the union space 

with the maps / + ,/_ : considered as characteristic maps. • 

Proposition A.4.8 Let f : Y- / -> A be a partial map and let X denote the 
adjunction space A |_J f Y. Then, the following properties hold true: 

(i) for every space Z, {A x Z) Ufxt(Y x z ) = (A U / Y) x Z; 
(ii) the inclusion A c; X is a closed cofibration; 
(iii) any characteristic map f : Y->X induces a homeomorphism 

Y\D->X\A; 
(iv) if Y and A are (perfectly) normal spaces, then X is {perfectly) normal; 
(v) y and A are normal spaces of dimension ^ n then, so is X; 
(vi) ifD is a strong deformation retract of Y then, A is a strong deformation 

retract of X; if r : Y -• D is a deformation retraction, the unique map 
r : X -» A satisfying the conditions r'\A = lA and r'°f= f°r is a deformation 
retraction. 

Proof'(i): Follows from the exponential law described in Section A . l . 
(ii) : It is enough to construct a retraction 

rx : X xI-+X=X x {0}uA x / 

(see Proposition A.4.1 (ii)). But 

X x / = ( / 4 x J ) U / x l ( y x / ) 

(see property (i)); now take for rx the unique map such that rx\A x I = 1 and 
rx°(fxl) is the composition of the retraction rY : U xI-+Y = 
Y x {0}uD x / with the canonical map from y to X. 

(iii) : Is clear from the construction of adjunction spaces. 
(iv) : In view of Tietze's extension theorem, it is enough to prove 

that any map k : C-+I, where C is a closed subset of X, can be extended 
to a map over all of X. Because A is normal, there is an extension g' : A ->/ 
of k\AnC; then, let h \J~1(C)KJD-»/ be the map given by 
h\f~l(Q = k°fc, where fc : / - 1 ( C ) ^ C is the map induced by / , and 
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h\D = g'°f. This map h can be extended to a map h : Y ->I because Y is 
normal. The pushout property now induces a map fe' : X - • / extending fe. 

A space is perfectly normal if every closed subset is the zero set of a map 
with non-negative real values. Thus, let C c X be a closed subset. If A is 
perfectly normal, one can find a map g : /4-•[(), oo) with zero set A n C . 
Then extend the composition g ° f firstly to a map over DKJJ~ l(C), taking 
the value 0 outside D, and, secondly, by means of Tietze's extension 
theorem, to a map h' : Y->[0, oo); for this, Y has only to be normal. 
Moreover, if Y is perfectly normal, there is a map fc" : Y-> [0, oo) with zero 
set D u f~ l(C). Finally, the maps g and h' + h" induce a map fe : X -* [0, oo) 
with zero set C. 

(v) : Let C cz X be a closed subset and let fe' : C -> S" be a map. Since 
/4 has dimension ^ n, the map k'\Ar\C has a continuous extension 
g : >4-*Sn (see Theorem A.9.1). Next, define h' : D u / ^ t Q - ^ S " by taking 
h'\D = gof and / z ' l / - \C) = fe'°7, where J:f-l(C)^C denotes the map 
induced by / Since Y has dimension ^ n, the map / i ' extends to a map 
/? : Y-»S" (again by Theorem A.9.1). Finally, the maps and h induce an 
extension of k! to a map fe : proving the desired result (once more 
using A.9.1). 

(vi) : Let H : Y x / Y be a retracting homotopy of Y onto D. The maps 
f°H and r°pr! coincide over D x / ; thus, by (i) above, one obtains a 
retracting homotopy X x I^X with the desired properties. • 

In the special Situation of a union space, Statement (ii) of the previous 
proposition yields the following. 

Corollary A.4.9 If X = AuDY, then the inclusions of A, Y and D = AnY 
into X = AuY are closed cofibrations. • 

Example 8' From Corollary A.4.9 and Example 8, it follows that the 
embeddings / + , /_ : Bn^>Sn introduced on page 3, as well as the inclu­
sions Sn~1 S", are closed cofibrations. More generally, it follows that the 
inclusions Sm S" are closed cofibrations, for all pairs of natural numbers 
(m,n) with m ^ n. A similar result holds for projective spaces: for F = R, C 
and H , the inclusions ¥Pm -> F F " are closed cofibrations, for all pairs of 
natural numbers (m, n) with m^n. • 

Remark For every X^X^Top, the inclusion X0^X0uXi is a closed 
cofibration (see Proposition A.4.2 (i) and (ii)). Moreover, if Ak -+ Xx, X = 0,1 
are both closed cofibrations, all the canonical inclusions in the following 
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diagram are closed cofibrations: 

(see Proposition A.4.2 (iii), (iv) and Corollary A.4.9). • 

Example 9 The based spaces (Sn,e0\ neN are well pointed. This follows 
from the fact that {e0} S° is a closed cofibration (see Remark above), and 
also because the inclusion 5° is a closed cofibration (see Example 8'). 

• 
The following 'algebraic laws' are useful in dealing with adjunction spaces. 

(LI) Horizontal composition Let / : Y-/-+A be a partial map and let 
g : A.-+A' be a map considered as a partial map A \_JfY-/-*A'. Then, 

A'UMUfY)^A'UgfY. 

The following diagram is useful for a better understanding of this law: 

>A'UAAUrY) Y^A'u« 

D >A' D-

There is a noteworthy relationship between the possible characteristic 
maps for the adjunctions in this law. Assume Ä \_Jg{A \_jf Y) and A' \_\gf Y 
to be really the same space X\ and assume that one is given fixed inclusions 
T: A->X = A[_]fY and i' : Ä-*X\ as well as a fixed characteristic map 
/ : Y X. Then, on the one hand, for any characteristic map g : X ->X\ 
the composition ̂ ° / i s a characteristic map for the attaching of Y to A' via 
gf; on the other hand, ifa characteristic map gf : Y ->X' is given, then the 
unique map £ : X ->X' with g°f= gf and g°i = /"°#isa characteristic map 
for the attaching of X to A' via g. 

(L2) Vertical composition Let / : Y-/-+A be a partial map, j : Y>^Y' 
be a closed cofibration, and / : Y-*A\_JfY be a characteristic map. 
If / is also viewed as a partial map Y'-/-+A and / as a partial map 
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Y'-/-+AUfY, then 

{AUfY)U-,Y'^AUfY'. 

This Situation may be depicted by the following diagrams: 

Y' 

263 

—-(AUfY)UfY' 

y +AU/Y 

I I 
D + A 

AU/Y D-

•+A\JfY' 

(L3) Addition Let fk: YX-/^>A be partial maps, A = 0,1. Denote by 
(/o>/i) : ^ o U 5^1-/-*4 the induced partial map from the topological sum 
of 7 0 and Yx to ,4; its domain is the topological sum dorn f0 u dorn f1, on 
which the underlying map is defined in the obvious manner. Use the 
inclusions A cz A |_Jy. Yx to consider fk also as a partial map 

YX-/^AUf,.lYl-xl 
then, 

A u{foJl)(Y0 u r,)=(A U/o y0) U„M u , , r.) 

s (-4 U/„ y0) U / , y, s U/, r.) U , „ 

(L4) Restriction L e t / : 7 — /->A be a partial map and let U be an open 
or closed subset of X = A Uf Y; then 

U^(UnA)\Jff~l(U), 

where / is a characteristic map for the adjunction space X and / ' is the 
induced partial map f~l(U)-/^>UnA. 

(L5) Multiplication Let fk : Yx-/^>Ak be partial maps, ,1 = 0, 1. Take 
= Ax l_\fYk, X = 0, 1, and define canonically a partial map 

/ = (7oX/ 1 )u(/ 0 x/ 1 ) : ^ 0 x V / ^ o X ^ i ^ x ^ 

with domain Y0 x dorn f1 u rfom / 0 x Yx \ then, 

X 0 x ̂  =(X0 x ̂ u ^ o x X J U / ^ o x Yi)-
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Mapping cylinders 
Mapping cylinders constitute an important special case of adjunction 
spaces. Let / : D A be any map and let i : D -> D x / be the embedding 
x\-^(x,0); consider / as a partial map D x / — / -> A. Then, the mapping 
cylinder o f / is defined by 

M(f) = AUf(DxI). 

Proposition A.4.10 Let f : D^A be any map. Then, 
(i) the inclusion i : A^> M(f) is a closed cofibration; 
(ii) A is a strong deformation retract of M(f); 
(iii) the composite map 

iD.D^Dx {\}czD x I-*M(f) 

is a closed cofibration; 
(iv) the map f factors through iD; more precisely, f=rf°iD, where 

rf : M(f)^A denotes the deformation retraction determined by 
r^f^fipr^ 

(v) / : D -> A is a homotopy equivalence iff the embedding iD is a homotopy 
equivalence iffD is a strong deformation retract of M(f) via the embedding iD; 

(vi) / : D->A is a weak homotopy equivalence iff the pair (M(f),D) is n-
connected, for every neN; 

(vii) if j : D' cz D is a closed cofibration, the mapping cyclinder M(f°j) 
is a strong deformation retract of M(f). 

Proof'(i): Follows immediately from Proposition A.4.8 (ii). 
(ii) : Follows from Proposition A.4.8 (vi), because D x {0} is a strong 

deformation retract of D x I. 
(iii) : Observe that A[_]f(Dxl) = A[jD and by the law of vertical 

composition, M{f) = (AuD)Uj(D x I), where f:Dxi-+A\_jD is a 
characteristic map. Then, iD is the composition of the closed cofibrations 
D cz AuD cz M{f). 

(iv) : Given arbitrarily xeD, 

rMx) = rf(f(x, 1)) = f(prx(x, 1)) = f(x). 

(v) : From the previous property, and the fact that rf is a homotopy 
equivalence, one concludes that / is a homotopy equivalence iff iD is a 
homotopy equivalence. But iD : D-+ M(f) is a closed cofibration; then, iD is 
a homotopy equivalence iff D is a strong deformation retract of M(f) (see 
Proposition A.4.2 (v)). 
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(vi) : The map rf is a homotopy equivalence, and therefore induces 
isomorphisms of the homotopy groups; then, the equation f = rf°iD 

implies that / induces isomorphisms of the homotopy groups iff iD induces 
isomorphisms of the homotopy groups. But the latter condition is 
equivalent to the n-connectivity of the pair (M(/) ,D), for every neN (see 
Corollary A.8.12). 

(vii) : First note that the mapping cylinder M(i) = DU^D'x 1)^ 
D x { 0 } u D ' x / is considered to be a subspace of D x / containing 
D x {0}, with all inclusions involved being closed cofibrations. Then 

M(f) = A U / ( ö x /) by definition of M(f) 
= (A \_\fM(i)) U / P x I) by vertical composition 
= (A Uf(0 UiD' x I)) \Jj(D x /) by definition of M(i) 
= (A \_JfD' x I) \_Jj{D x I) by horizontal composition 
= M(f') Uf(D x /) by definition of M(f') 

where dorn f = D x {0} u D' x I. Since / : D' cz D is a closed cofibration 
dorn f is a strong deformation retract of D x I. Now Proposition A.4.8 (vi) 
implies that M(f') is a strong deformation retract of M(f). • 

Some important results for the development of this book will be discussed 
next; their proofs are obtained using mapping cylinders. 

Proposition A.4.11 Let f : Y-/-+A be a partial map. If f : D-+A is a 
homotopy equivalence, so is any characteristic map f : Y->A\_JfY. 

Proof First notice that D is a strong deformation retract of M(f) via iD 

whenever / is a homotopy equivalence (see Proposition A.4.10 (v)); then, 
observe that Y is a strong deformation retract of YUtM{f) = M{f)uiDY 
(see Proposition A.4.8 (vi)). 

Next, compute A \_]f(D x Iv Y x {!}): 

A\Jf(D x IuY x {l}) = M(f)\_\j{D x IuY x {l}}by vertical composition 

= M(f)\_\iDY by horizontal composition. 

Let / : D x Z u Y x {1} ->M(/ ) |_J i D Y be a characteristic map. Then, by 
vertical composition, it follows that 

M(f) = AUfYxI 

= (M(f)UiDY)UfYxI. 

file:///_JfD'
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Since i.D^Y is a closed cofibration, D x / u Y x { l } is a strong 
deformation retract of Y x / (see Proposition A.4.1 (iii)); then, M(f)\_JiD Y 
is a strong deformation retract of M(f). Therefore, Y is a strong 
deformation retract of M(f). Finally, / is a homotopy equivalence (see 
Proposition A.4.10 (v)). • 

The next result shows that for every partial map / : Y-/-+A with 
domain D, the type f of A \_\f Y depends on the types of A and (Y,D). 

Theorem A.4.12 (The gluing theorem) Let 

be a commutative diagram in which i, /'' are closed cofibrations, and hY, hD, hA 

are homotopy equivalences. Then A\_JfY and A' Uf. Y' have the same type. 

Proof See Brown (1988, 7.5.7). • 
Take up again the diagram of the gluing theorem; changing some of its 
assumptions, one obtains another interesting result. 

Proposition A.4.13 Let 

i f 

K 

•D'-jr+A' 

be a commutative diagram in which i,i',hY,hD and hA are closed cofibrations 
and D = D' nY, where Y, D and D' are considered as subspaces of YThen, the 
induced map h : A\_Jf Y-*A'\__\f.Y' is a closed cofibration. 

t In this book, 'type' means 'homotopy type'; more precisely, two Spaces are said to have the 
same type whenever they have the same homotopy type. 
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Proof See Lewis (1982, Proposition 2.5). • 

The LEC-property for adjunction Spaces given in the next corollary is 
due to Dyer & Eilenberg (1972); the simplified proof presented here is 
inspired by that of Lewis (1982). 

Corollary A.4.14 Let f : Y-j^A be a partial map such that the inclusion 
i : D = dorn f -> Y is a closed cofibration. If A and Y are LEC spaces, so 
is the adjunction space A |_|y Y. 

Proof Because of the multiplication law (L5), the product space (A \_JfY) 
x (A \_\fY) is homeomorphic to the adjunction space of the partial map 

( / x / M / x / ) : Y x Y-/^(AUfY)x AvAx(AUfY) 

with domain Y x D u D x Y (the inclusion of the latter space in Y x Y is a 
closed cofibration; see Proposition A.4.2 (iv)). Consider the partial maps 

V D : Y xDUDx Y-/-+DxD 
and 

V x : (AUfY)xAl_\Ax(AUfY)-/^AxA 

whose respective domains are D x D\jD x D and A x A\_\A x A and 
whose restrictions to these domains are the appropriate folding maps. By 
construeting their adjunction spaces, one obtains the closed cofibrations 

7! : DxD^Y x DuD x Y 
and 

j2 : A x A^(AUfY) x AvA x (AUfY). 
Let AA : A -* A x A, AY : Y -* Y x Y and AD : D - > D x Z ) b e the diagonal 
maps; the hypotheses of the Proposition imply that these three maps are 
closed cofibrations (see Proposition A.4.6 for A^). The proof is concluded 
by taking the closed cofibrations 

AY : Y-> Y x Y, 

Ji°AD : D->Y x D[_JD x Y, 

j2oAA : A-+{AUfY)xA\jAx{A\JfY), 

the diagonal map of A[_JfY into (A [_\f Y) x (A \_\fY) and applying 
Proposition A.4.13. • 

The next result makes precise the effect of changing the attaching map 
within its homotopy class. 
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Proposition A.4.15 Let i : D>^Y be a closed cofibration and fk : D^A, 
k = 0,1, be homotopic maps. Then the adjunction spaces X0 = A | _ | / o Y and 

f l Y are homotopically equivalent, via homotopies rel. A. 

Proof Fix inclusions ix : A cz Xk and characteristic maps fk : Y -»> Xk. 
Form the union space X = X0\_\AXi and fix inclusions jk : XkczX. 
Note t ha t / 0

o / 0 =jl°i1 = j is an inclusion of A into X. Now take fk : Yx 
{k}^>X to be the map obtained by composition of the canonical 
homeomorphism Y x {k} Y with the maps / A and jk. Next, let h : D x I 
-> /I be a homotopy connecting / 0 and / , . Define a map 

öf: y = y x {0}uD x / u y x 
by 

0 | Y x { / } = / \ , 2 = 0,1, 

xI=joh. 

(Note that gf can also be interpreted as a partial map Y x /-/ X.) For the 
moment, note that g takes the subspace Y = Y x {0} u ß x / of Y into the 
space X0; thus, g induces a map g0 : Y ^>X0 which will be considered both 
as a partial map Y-/-*X0 and as a partial map Y x / - / - > A T 0 . Let 
k\ Dez Ydenote the inclusion which takes D into D x (1); this implies 
that Y ^ YLJfc^ The commutative diamond 

where / 0 denotes the inclusion, gives rise to the following sequence of 
equations: 

X = X0\JAXi = *o Ui0(A U / , Y) by definition 
= U i o / i ^ by horizontal composition 
= X 0 |_| ö ok ^ by commutativity of the diamond 
= Ligo(Y U/c Y) = X0 Ugo Y by horizontal composition. 

Assuming that g : Y -*X is a characteristic map for the attaching of Y 
to X0 via #0, the law of vertical composition guarantees that 

X = X\Jg(YxI) = (X0UgoY)UgYx =X0\J9oYxl. 

Because Y = dorn g0 is a strong deformation retract of Y x / , the 
adjunction space X0 is a strong deformation retract of the large space X. By 
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the Symmetrie argument, the same is true for the adjunction space Xx. 
Gluing together the appearing maps and homotopies, both X0 and Xx are 
homotopy equivalent, via homotopies rel. A. 

Thus, it remains to show that g is a characteristic map for the attaching of 
Y to X0 via g0. The map k : Y -> Y given by k(y) = (y, 1) is a characteristic 
map for the attaching of Y to Y via fc. Since7 x ° 7 i : Y X is a characteristic 
map for the attaching of Y to X 0 via i 0 ° f{ = g0°K the equations #| Y 
=Jo°Qo a n c * g°k=jl°f1 imply that # has the desired property. • 

The previous proposition is particularly interesting in the case of the 
mapping cylinders. 

Corollary A.4.16 Let fx : D^A, / = 0,1 be homotopic maps; then, the 
mapping cylinders M(f0) and M(fl) are homotopy equivalent via a homo­
topies rel. A\jD. 

Proof The mapping cylinder M(f) of any map f : D->A can also be 
viewed as the adjunction space (A\JD)[_\J(D x /), where f : D x {0,1} 
-*A\jD is induced by / at the level 0 and by 1 D at the level 1. • 

Now for some variations of the construction of mapping cylinders. If 
/ : D -> A is any map, then the quotient space C{f) = M(f)/D9 where D is 
thought as embedded into M(f) via the map iD (see Proposition A.4.10), is 
called the mapping cone of / . The unique point of C(f) corresponding to the 
shrunken space D is the peak of the mapping cone. The composition of the 
inclusion A^M(f) with the projection M ( / ) - > C ( / ) is again a closed 
cofibration. In the special case where / = 1 D , one has the cone CD = C(1D) 
over D which contains D as a subspace in the obvious way. The quotient 
space ED = CD/D is the Suspension of D. 

If (D, d0)9 (A, a0) are well-pointed based Spaces and / : (D, d0) -> (A, a0) is 
a based map, then one might view the interval {d0} x / a s a subspace of 
M ( / ) , embedded via the restriction of a characteristic map / and form the 
quotient space M.(f) = M(f)/({d0} x /) which has a distinguished point, 
the class z 0 corresponding to the set {d0} x /; the well-pointed based space 
(M.( / ) , z 0 ) is the reduced mapping cylinder off At last, analogously to the 
unreduced case, one obtains the reduced mapping cone (C.(/) ,z 0 ) , the 
reduced cone (C .D,z 0 ) and the reduced Suspension (Z.D,z0). The reduced 
cone (C.D,z 0 ) for the case (D, d0) = (S", e0) was already discussed in 
Section 1.0; in that context, the reduced Suspension was also defined. 

Finally, observe that the reduced cone construction can also be 
considered as a special case of the smash product (D A A , z 0) of two based 
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spaces (D, d0), (A, a0) given by 

D A A = (D x A)/(D x {a0} u {d0} x A) 
and the evident base point. 

Induced fibrations, mapping tracks and some further results 
in the theory of fibrations 

Recall the definition of pullback and the related notion of 'map induced 
from a map by another map'. 

Proposition A.4.17 If p : Y^X is a fibration (resp. a covering projection) 
and f : A->X is any map, then the map induced from p by f is also a 
fibration (resp. a covering projection). If moreover, f is a closed cofibration, 
then the map induced from f by p is also a closed cofibration. 

Proof See Spanier (1966, Proposition 2.8.6) and Str^m (1968, Theorem 12). 

• 

The dual of the mapping cylinder is the mapping track: given a map 
/ : Y X form the pullback of the fibration v0 : X1 -> X and the map / 
to obtain a fibration v^ : T(f) = Y\~\fX! -> Y; the space T(f) is a mapping 
track of / ; there are two other maps connected to this Situation: the 
cross-section u : Y -> T(f) defined by u(y) = (y, cofiy)) (where cofiy) is the 
constant path at f(y)) for every yeY, and p' : T(f)-+X defined by 
p'(y',X) = 2(1), for every (y\X)eT(f). 

The following result holds true (compare with Proposition A.4.10). 

Proposition A.4.18 Let f : Y^X be any map. Then, 
(i) the map v0 : T(f) -*Y is a fibration, 
(ii) the composition uGv0 is fibre homotopic to l r ( / ) ; in particular, 

u : 7 -> T(f) is a homotopy equivalence; 
(iii) the map p' : T(f) -*X is a fibration; 
(iv) f = p'°u; 

(v) / : Y X is a homotopy equivalence iff p' is a homotopy equivalence. 

Proof For the non trivial parts, see Spanier (1966, Theorem 2.8.9). • 

The gluing theorem (Theorem A.4.12) has a dual for fibrations: 

Theorem A.4.19 (The cogluing theorem) Let 
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be a commutative diagram, in which p,p' are fibrations and hY, hx, hD are 
homotopy equivalences. Then, the spaces D\~~]fY and D'\~\rYf have the 
same type. 

Proof See Brown & Heath (1970, Theorem 1.2). • 

This theorem has several interesting consequences. 

Corollary A.4.20 Let p : Y -> X be a fibration and let f : A X be a 
homotopy equivalence. Then, f : A n Y Y is a homotopy equivalence. 

Proof See Brown & Heath (1970, Corollary 1.4). For an alternative proof 
see tom Dieck, Kamps & Puppe (1970, Satz 7.30). • 

Corollary A.4.21 Let p : Y^X be a fibration with path-connected base 
space X; then, the fibres of p have the same homotopy type. 

Proof Let co : fe0-^i a path in X connecting the points b0 and bx. 
Then, the fibres over b0 and b{ are both homotopy equivalent to the total 
space of the fibration induced by co : I^X. For an alternative proof, see 
Spanier (1966, Corollary 2.8.13). • 

A map p : Y -> X is locally trivial if every point xeX has a neighbourhood 
U such that the map induced from p by the inclusion U czX can be chosen 
as the projection of the product U x p _ 1 ( x ) onto U; then, the following 
Statement holds true. 

Theorem A.4.22 A locally trivial map with paracompact codomain is a 
fibration. 

Proof See tom Dieck, Kamps & Puppe (1970, Satz 5.14). • 

Remark Here a word of warning is necessary. The products which appear 
in the definition of local triviality are taken in the category of weak 
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Hausdorff /c-spaces. Thus, one can only apply the lifting property to 
homotopies whose domain also is a weak Hausdorff /c-space. That means 
that one does not obtain Hurewicz fibrations in their most general sense, 
but still in a somewhat stronger sense than that of Serre fibration. • 

The following theorem is an important result in the theory of fibrations; 
it is an inverse to the fact that a fibre homotopy equivalence induces 
homotopy equivalences for all fibres and also, in a certain sense, is an 
inverse of Corollary A.4.21. 

Theorem A.4.23 Let X be a path-connected space with an open covering 
{Ux : eA} which admits a subordinated locally finite partition of unity and 
such that the inclusion maps UX^X are homotopic to constant maps. 
Moreover, let p : Y-> X and p' : Y'^X be fibrations and letf : Y -+Y' be 
a map such that p'^f = p. Then, f is a fibre homotopy equivalence if the 
restriction of f to some fibre is a homotopy equivalence. 

Proof See Dold (1963, Theorem 6.3). • 

The assumptions on X in the previous theorem are satisfied, e.g., by all 
spaces having the type of a CW-complex (see Theorem 5.2.1). The theorem 
also allows 'delooping homotopy equivalences'. 

Proposition A.4.24 Let Y, X be path-connected spaces with locally finite 
open coverings which admit subordinated locally finite partitions of unity 
and such that the inclusions of the members of the coverings into the respective 
spaces are homotopic to constant maps. Then, a based map f : {Y,y0)-> 
(X,x0) is a homotopy equivalence iff the induced map Qf : QY ̂ QX is a 
homotopy equivalence. 

Proof '=>': By direct computation. 

'<=': See Allaud (1972, Theorem 1). Let % : Z-> Y denote the fibration 
induced from vx : PX^X by /whose fibre over y0 is ÜX. The unique 
map g : PY^Z satisfying vx°g = vy andf°g = P/induces the homotopy 
equivalence Qf when restricted to the fibres over y0; hence, g is a fibre 
homotopy equivalence (see Theorem A.4.23). Because PY is contractible, 
this shows that Z is contractible. 

Next, note that the fibre PX over x 0 of the fibration vx : X1 -+X,co\-^ 
co(\), is contractible. The fibre over x 0 of the canonical fibration 
p' : T(f)->X is also contractible because it is homeomorphic to Z ; 
moreover, p factors through vx and the induced map T(f)^>XJ is a 
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homotopy equivalence (see again Theorem A.4.23). But vx itself is 
a homotopy equivalence and so is p'. Since / is the composition of a 
homotopy equivalence and p', it is also a homotopy equivalence. • 

A.5 Union spaces of expanding sequences 
An expanding sequence of spaces is a sequence {Xn : neN} of Spaces such 
that, for every neN, Xn is a subspace of Xn+l, and every inclusion 
X„^>Xn+1 is a closed cofibration; the union space of the expanding 
sequence is the space X = [J™=0Xn endowed with the final topology with 
respect to the family of inclusions Xn cz X. Then, all Xn are closed subspaces 
of X (see Lemma A.2.4) and X is determined by the family 
{Xn : neN}. 

Given an expanding sequence {Xn : neN} of spaces with union space 
X, a sequence {/„ : neN} of m a p s / „ : Xn->Z, where Z is any space, is 
said to be compatible, if, for every neN,fn+i\Xn = / „ ; every such sequence 
induces a unique map f : X-+Z such t h a t / | Z w = / „ . 

Proposition A.5.1 Let {Xn : neN} be an expanding sequence and let X be 
its union space. Then, 

(i) for every space Z , the sequence {Xn x Z : neN} is an expanding 
sequence with union space X x Z ; 

(ii) {Xn x Xn} is an expanding sequence with union space X x X; 
(iii) the inclusions Xn->X are closed cofibrations, for every neN; 
(iv) X is (perfectly) normal iff all spaces Xn are (perfectly) normal; 
(v) X is a paracompact iff all spaces Xn are paracompact. 

Proof (i): Since all the inclusions Xn-+Xn + i are closed cofibrations, so 
are the inclusions Xn x Z - > X „ + l x Z (see Proposition A.4.2(iii). In order 
to show that X x Z is determined by the spaces Xn x Z , take a function 
/ : X x Z-+Y such that f\Xn x Z is continuous, for every neN. Then, 
according to the exponential law, the adjoint functions fn : X„^> Yz are 
all continuous and so is the adjoint of / , since X is determined by the 
family {Xn}. Again, using the exponential law, it follows that / itself is 
continuous thus, proving the assertion. 

(ii): The inclusions Xn x Xn-> Xn x Xn+ { and Xnx Xn+l-+Xn + l x 
Xn+1 are closed cofibrations (see Proposition A.4.2(iii)) and so is the 
inclusion XnxX„-+Xn+1xXn+l (see Proposition A.4.2(i)); thus, 
{Xn x Xn] is an expanding sequence. The space X x X \% determined by 
the subspaces Xmx X (see (i)) and each Xmx X is determined by the 
family of subspaces {Xm x Xk : keN} (again, use (i)); therefore X x X is 
determined by the family {Xn x Xk : m,keN}. Since every Xm x Xk is 
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contained in some Xn x Xn, the space X x X is determined by the family 
of subspaces {Xn x Xn) (see Proposition A.2.1). 

(iii): For every /ceN, take a retraction rk:Xk + 1 xI-+Xk+l x j O j u ^ x l 
(see Proposition A.4.1(ii)). According to (i), X x I is the union space of 
the expanding sequence {Xn x I}; thus, in order to construct a retraction 
r : X x I-+X x { 0 } u l „ x / , it is sufficient to exhibit a compatible family 
of suitable maps fk : XkxI-+Xx{0}vXnx I, for all keN. For k^n, 
take fk to be the canonical inclusion; for larger /c's, define inductively 

(iv)=>: Closed subspaces of (perfectly) normal spaces are (perfectly) 
normal. 

(iv) <=: Let C be a closed subset of X and l e t / : C->7 be an arbitrary 
map. Using the normality of the spaces Xn, define inductively extensions 
/„ : Xn^Ioi the maps/ ; : A ^ u f C n * „ ) - / , defined byf'JX»^ =fn.u 

f'n\CnXn=f\CnXn. The set of maps {/„ : neN} now defines a map 
f^-.X-^l which extends / , thereby proving the normality of X. 

Now assume that all Xm are perfectly normal and take a closed subset 
CczX. The sets Cn = CnXn are closed in the respective Spaces Xn. 
Construct inductively a compatible sequence {/„ : neN} of maps 
/„ : Xn -» [0, oo) with zero sets C„, in the following manner. To begin with, 
take any suitable map / 0 whose existence is guaranteed by the perfect 
normality of X0. If the map fn_i is constructed, first extend it over 
Cn\jXn_l by assigning the value 0 to the points outside X n _ 1 ? and then 
extend the latter to a map f : X„-> [0, oo) via Tietze's extension theorem. 
Now use the perfect normality of Xn to obtain a m a p / " : X„-• [ ( ) , oo) 
with zero set CnvXn_x\ the map hn=f + / " has the required property. 

(v) =>: Trivial. 
(v)<=: The union space of an expanding sequence is topologically 

dominated by the sequence, and so it inherits paracompactness (see 
Proposition A.2.5). • 

The reader might question the fact that no mention has been made to the 
restriction agreed upon at the beginning of this book, namely, that all 
work be done in the category of weak-Hausdorff /c-spaces; the previous 
proposition is true in the category of topological spaces, but is it true in 
the more restricted category used here? The next result proves that it is! 

/k+i(*>0 = < 

(x,0), t = 0, 
rk(x,t), rk(x,t)eXk+1 x {0}, 
fk(rk(x, t)\ otherwise. 

Proposition A.5.2 The union space of an expanding sequence of weak 
Hausdorff k-spaces is a weak Hausdorff k-space. 
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Proof Let {Xn : neN} be an expanding sequence of weak Hausdorff 
/c-spaces and let X denote its union space in the category of topological 
spaces. The space X can be viewed as a colimit in the category of 
topological spaces of a diagram in the subcategory k(Top). Since k(Top) 
has colimits, and the inclusion functor of k(Top) into the category of 
topological spaces preserves colimits, the space X is a /c-space. 

To prove that X is weak Hausdorff, first note that the product X x X 
is the union space of the expanding sequence {Xn x Xn : neN} (see 
Proposition A.5.1(ii)). Then, observe that, because the spaces Xn are weak 
Hausdorff, AX n(Xn x Xn) = AXn is closed in Xn x Xn; hence, the diagonal 
AX is closed in X x X. • 

A space may be the union - as a set - of an expanding sequence of 
subspaces, and yet may fail to be determined by these subspaces; the 
following result describes a case in which the topology of a space coincides 
with the topology determined by a family of subspaces. 

Proposition A.5.3 Let {Xn : neN} be an expanding sequence of subspaces 
of a space X such that X = \ J n e N Xn (eis sets) and for every neN, XnczXn+1 

(with respect to X). Then, X is the union space of the expanding sequence 
{Xn : neN}. 

Proof The assumption Xncz Xn+l implies that X is already the union of 
the open sets X„. Now, take a set W cz X such that WnXn is open in Xn, 
for every n e N . Then, Wr\Xn is open in Xn, and thus in X. Therefore, 

W=WnX=Wn[j Xn= \J WnXn 

neN neN 

is open in X. • 

In the presence of normality there are still stronger connections between 
the topologies of the spaces forming the sequence and the topology of the 
union space. 

Proposition A.5.4 Let {Xn : neN} be an expanding sequence of normal 
spaces and let V be a subspace of its union space X. Then, 

(i) the closure of V is the union of the closures of all intersections VnXn; 
i.e., 

_ oo 

v= u y^x„-
n = 0 

(ii) Vis determined by the family {V nXn : neN}. 
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Proof (i): Let xeX be a point such that x$V nXn, for all neN, and let 
m e N be such that xeXm. The normality of Xm implies the existence of a 
neighbourhood Um of x in Xm with the property: Umn Vr\X^= 0. 
Using the normality condition over and over again, one finds inductively 
open sets Un in Xn, for every n>m, such that U„ZD Un^1, and 
TTHnVnX„ = 0. It follows that the set U = \J™=m U„ is a neighbourhood 
of x in X such that UnV=0; hence, x$V. This implies State­
ment (i). 

(ii): Because of its universal property, the topology determined by the 
family {V r\Xn : neN} is finer than the subspace topology. Conversely, 
let U cz V be closed in the topology determined by the family {VnX„}, 
that is to say, such that UnXnnV = UnXn, for all neN. Hence, 

Proposition A.5.5 Let {An : neN} and {Xn : neN} be given expanding 
sequences of normal spaces; suppose that for every neN, An is a subspace 
of Xn and the pair (Xn, A„) has the homotopy extension property. Then, the 
union space A = [JNE^A„ is a subspace of X — ( J „ e N Xn and the pair (X, A) 
has the homotopy extension property. 

Proof The space A is a subspace of X (see Proposition A.5.4(ii)). Now, 
suppose one is given an arbitrary space Z and maps g : X x {0} ->Z and 
H : A x / -> Z which agree on A x {0}. Because (X0, A0) has the homotopy 
extension property, there is a homotopy K0:X0xI-+Z such that 
K 0 | / 4 0 x / = //|y4 0x / and K01X0 x {0} = g | X0 x {0}. Assume by induc­
tion that there is a homotopy Kn : Xnx I-+Z such that KN\AN x / = 
H\AnxI, Kn\Xnx{0}=g\Xnx{0} and Kn\Xn. x x I = K„_ x . The 
homotopies H\AN+1 x I and Kn define a homotopy Kn + l : (A„+1KJXn) x 
1^>Z. But the pair (Xn+ 1,AH+1KJ Xn) has the homotopy extension property 
(see Proposition A.4.2(vii)) and therefore Kn+{ and g\Xn+l x {0} induce 
a homotopy Kn + l : X„+1 x I^Z. The homotopies Kn obtained in this 
way form a compatible sequence, and thus give rise to the desired extension 
K : X x I -> Z of the given homotopy H. • 

Corollary A.5.6 Let {Yn : neN} be an expanding sequence of normal LEC 
spaces; then, the union space Y = ( J n e N Yn is an LEC space. 

Proof For every neN, take Xn = Yn x Yn and A„ = AYn. Because all Yn's 
are L E C spaces, the inclusions An->XN9An+l->Xn+l are closed 

00 

UnV= Q UnXnnV = 
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cofibrations. Moreover, the inclusion Xn^Xn+l is a closed cofibration 
(see Proposition A.5.1 (ii)); thus, the inclusion An->Xn+l is a closed 
cofibration (see again Proposition A.4.2 (i)) and factors through An + 1. 
This implies also that the inclusion An->An+l is a closed cofibration (see 
Proposition A.4.2 (vi)). Therefore, {A„ : neN} and {Xn : neN} are 
expanding sequences satisfying Proposition A.5.5. • 

A very useful technical tool in dealing with union spaces of expanding 
sequences consists in the possibility of 'gluing' homotopies; we borrowed 
this technique from Schubert (1968, page 202). 

Proposition A.5.7 Let {Xn : neN} be an expanding sequence with union 
space X. Let Z be a space and {gn : neN} be a sequence of maps gn : X-+Z 
such that gn+i^gn rel. Xn. Then, the map g:X-+Z defined by 
g\Xn = gn\Xn, for every n eN , is homotopic to g0 rel X0. 

Proof Observe first that, for every m ^ n , gm\Xn = gn\Xn, and so g is 
well-defined and continuous. 

For every neN, take a homotopy Hn : X x / ->Z rel. Xn, from gn to 
gn + i, and define the function H : I x / - > Z b y 

f H„(x,(n + l)(n + 2)t - n(n + 2)), ^ t ̂  
H(x,t)=\ n + 1 n + 2 

[g(x\ t = l. 

To prove the continuity of H, one must show that, for every neN, H\ Xn x / 
is continuous (see Proposition A.5.1 (i)). The continuity of H\XnxI 
follows from the fact that, for every (x, t)eXn x (n/(n + 1), 1], H(x, t) = g(x). 
The map H is a homotopy rel. ^ 0 between g and g0. • 

Corollary A.5.8 Let {Xn : neN} bean expanding sequence with union space 
X and such that Xn is a strong deformation retract of Xn+l, for every neN. 
Then, X0 is a strong deformation retract of X. 

Proof Letin : Xn-*Xn+vjn : Xn -> X denote the respective inclusions and 
choose retractions rn : Xn.vl -+Xh so that 

for every neN. Now, for all n,/ceN, define inductively the retractions 
: Xn+k^Xn by taking r„t0 = lXn and r M + 1 = r„,k<>rn+k. For a fixed n, 

these retractions together yield retractions sn : X^Xn such that 
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sn = r„°sn + l; take gn = jn°sn:X-+X. Notice that 

Gn Jn°^n Jn + 1 ° *n ° ° $n + 1 

Since AT,, = j„ = l x | ATB, for all neN, it follows that \ x ~ g0 rel. A ^ . • 

Given an expanding sequence of spaces, it is possible to derive from it 
another one whose union space has the same type but nicer properties 
than the original one; this is done by means of the telescope construction 
(see Milnor, 1962). More precisely, let {Xn : neN} be an expanding 
sequence of spaces and let X be its union space. For every n e N , define 
fn = Xn x [n, n + l ] and Tn = (j£ = 0 fk as subspaces of X x [0, oo). Because 
the inclusion Xn-+X is a closed cofibration (see Proposition A.5.1 (iii)) 
and the same holds true for the inclusion [n, n + 1] [0, oo), the inclusion 
T „ - > I x [0, oo) is a closed cofibration (see Proposition A.4.2 (iv)). By 
induction, this shows that every inclusion Tn+l = Tnufn + l^X x [0, oo) 
is a closed cofibration (see Proposition A.4.2 (vii)), and, consequently, 
every inclusion Tn->Tn + l is a closed cofibration (see Proposition A.4.2 
(vi)). Thus, the sequence {Tn} is again an expanding sequence whose union 
space T is called the telescope of the expanding sequence {Xn}. From this 
definition, it is immediately clear that the telescope T can be considered 
as a subspace to the product X x [0, oo). 

The notion of telescope of an expanding sequence was originally 
introduced in (Milnor, 1962); we use the gluing of homotopies to derive a 
simple proof of the fundamental property of telescopes: 

Corollary A.5.9 The union space of an expanding sequence and its telescope 
have the same type. 

Proof Take an expanding sequence {Yn : neN} defined by Y0 = T and 
Yn = Xn x [0,oo)uT, for every neN\{0}; observe that each term isa strong 
deformation retract of its successor. Then, T i s a strong deformation retract 
of X x [0, oo) (see Corollary A.5.8). • 

The final results of this section need some preparatory considerations. A 
map of pairs / : (Y,D)^>{X,A) is a homotopy equivalence of pairs if there 
is a map of pairs g : (X,/1)->(Y,D) such that: 

(1) g is a homotopy inverse of / in the ordinary sense; and 
(2) the homotopies connecting gof and f°g to the respective identity 

maps move A and D respectively, within themselves. 

The second condition is neither trivial nor automatic; however, it holds 
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true if the inclusion maps / ) -» Y and A^X are closed cofibrations. More 
precisely: 

Lemma A.5.10 Let f : (Y, D) -• (X, A) be a map of pairs which is an ordinary 
homotopy equivalence and assume that the induced map f : D-+A is also 
a homotopy equivalence. Furthermore, suppose that the inclusions i : D -> Y 
and i : A-+X are closed cofibrations. Then, f is a homotopy equivalence 
of pairs. Moreover, given a homotopy inverse g for f and a homotopy 
H : f°g~\Ai the needed homotopy inverse g of f and the homotopy 
H : f °g ~ \ x can be chosen to extend g and H, respectively. 

Remark The proof of this result is contained in Brown, 1988, Section 7.4; 
the proof given here is more direct. 

Proof of Lemma A.5.10 Let g be a homotopy inverse of / and let H be 
a homotopy from f °g to 1A. First, take an extension H : X x /->X of 
i°H such that H(-, 1) = \ x , then, h = H(-,0) extends / ° g . Next, choose a 
homotopy inverse of / , say fc, a homotopy K : k° f ~ lY and an extension 
K of K°(i°gx lj) such that K(-,0) = kQh; then g = K{-, 1) is again a 
homotopy inverse of f, extends g, and therefore is a map of pairs 
(X,A)^(Y, D). The bulk of the work consists in constructing a homotopy 
from Jo /c to l y whose restriction to D x / is i°H. To this end, one uses 
several times the homotopy extension property of the pair (X x / , 
X x {0,1} u A x /) given by the product theorem (see Proposition A.4.2 
(iv)). 

Take L0 : X x I x I^Y as a homotopy satisfying the following 
properties: 

(x,t, l ) i -^ (x ) , for xeX andre/ , 
(x, 0, s)h->K(g(x), s, for xeX and sei, 
(x, 1, s) i-> K(x, s), for x e X and s e I, 
(x,t,s)\-+K(i°g(x),s), for xeA and t,sel. 

Thus, L 0 ( - , - , 0 ) is a homotopy from fco f°g to fc°/i, rel. A. Next, let H be 
a homotopy from /°fc to 1* and take ^ : X x / x l - ^ X a s a homotopy 
satisfying the following properties: 

(x, t,0)h^/(L o(x, t, 0)), for xe X and tel, 
(x, 0, s)\->H(f°g(x), s), for x e X and se/, 
(x, \ ,s)h^H(h(x),s), f o r x e X a n d s e / , 
(x, t, s)\-^H(h°i(x), s), for xeA A and t, sei. 

Now, L i ( - , - , 1) is a homotopy from f°g to / i , rel. Z). 
Let G : X x /-> X be an extension of t °H to a homotopy from f°g to 
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a map/i; then, take L 2 : I x / x / - * X a s a homotopy such that: 
(xiti0)i-^Ll{x, t, 1), for xeX andre/, 
(x, 0,5) G (x, s), for x e X and s e / , 
(x, l,s)i—>H(x,s), forxeA r andse/, 
(x, t,s)\-*i°H(x,s), for xeA and t,sel. 

Without loss of generality, one may assume that the homotopy H has the 
following property: H(x,t) = x, for all xe.4 and all te[_\, 1]. This allows 
to find a homotopy L 3 : X x / x I-+X satisfying the conditions: 

(x, t, \)\->L2{x,t, 1), forxeATand tel, 
(x, 0, S)H-> G(X, S), for x e A and sei, 
(x, l,s)i—>x, for xeXand . se / , 
(x,£,s)h-H°//(x,£ + s), for x e A , se /and £ + s ^ ^, 
(x, t, S)I-M(X), for xe/4, t, se / and and t + s^j. 

Then, L 3 ( —, — ,0) is a homotopy connec t ing / °# to lx and extending the 
given homotopy H on A 

Thus, g is a right homotopy inverse to / and is of the desired kind. 
Similarly, one finds a right homotopy inverse/for g, such that the homotopy 
connecting g°f to \ Y induces a homotopy on D. In the string 

g°f - g°f°g°f - 0 0 / - l y , 
all homotopies deform A (respectively, D) into itself, showing finally that 
g can be considered as a homotopy inverse for / in the category of pairs 
of spaces. • 

The compatibility of homotopy equivalences of expanding sequences and 
union spaces (see proposition below) has been made explicit in tom Dieck 
(1971). 

Proposition A.5.11 Let 

Y0 »Yt +Y2 * 

fo fx 

? 1 
* X1 * X 2 * 

be a commutative ladder between two expanding sequences where fn is a 
homotopy equivalence, for every neN. Then, the map f : Y -+X, where Y, X 
are the union spaces and f is the induced map, is a homotopy equivalence. 

Proof See tom Dieck (1971, Lemma 6). Construct inductively right 

http://xeXand.se/
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homotopy inverses gn for the maps / „ , n e N such that gn+l extends gn and 
homotopies Hn : Xn x I^>Xn such that Hn+i extends Hn (see Lemma 
A.5.10). This gives rise to a mapg : X-* Y and a homotopy H : f°g ~ l x . 
Thus, g is a right homotopy inverse of / . As in the proof of the lemma, 
one shows that this is also a left homotopy inverse for / . • 

A.6 Absolute neighbourhood retracts in the category 
of metric spaces 

Proposition A.6.1 (Kuratowski-Wojdysfawski embedding theorem) A metric 
space X can be embedded in the normed vector space Z = C(X, R) of all 
bounded maps X-+R by an isometry i : X^Z such that i(X) is closed in 
its convex hull H(i(X)). 

Proof See Mardesic & Segal (1982, Chapter I, Theorem 3.2). • 

The definition of absolute neighbourhood retract is based on the 
next result. 

Proposition A.6.2 The following two conditions on a metric space X 
are equivalent: 

(i) for every metric space Z , every closed subspace C aZ and every 
map f : C-*X> there are a neighbourhood U of C in Z and a 
mapf: U->X such that f\C = f\ 

(ii) if X is a closed subspace of a metric space Z then there are a 
neighbourhood U of X and a mapr : U -»X such that r\X = lx. 

Proof See Mardesic & Segal (1982, Chapter I, Theorem 3.1 (ii)). • 

A metric space X satisfying the equivalent conditions of Theorem A.6.2 
is called an absolute neighbourhood retract (abbreviated to ANR) . Note 
specifically that the empty space is an A N R . A wide class of models of 
A N R s is given by the following: 

Proposition A.6.3 (Dugundji extension theorem) A convex subset of 
a normed linear space is an ANR. 

Proof See Mardesic & Segal (1982, Chapter I, Theorem 3.3). • 

As a consequence of this result, Euclidean spaces, balls, geometric 
simplices and cubes are A N R s . 
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Proposition A.6.4 A retract of an ANR is an ANR; an open subset 
of an ANR is an ANR. 

Proof Let X be an A N R , Y czX and r : X -+Y be a retraction. 
Given any closed subset C of a metric space Z and any 
map / : C -> Y, the composition of / with the inclusion map of Y 
into X can be extended to a map f : U -> X, where U is a 
neighbourhood of C in Z . Then the m a p / = r ° / e x t e n d s / o v e r 17. 

As for the second part, let W be an open subset of X and let / : C->W 
be a map defined on a closed subspace C of a metric space Z . Extend the 
composition of / with the inclusion W cz X to a map / : V->X, where 
K is a neighbourhood of C in Z . Then, / " H ^ O is a neighbourhood of C 
in Z and J = 7 | 7 " 1 ( W ) extends / over f~\W). • 

The class of A N R s has finite products. 

Proposition A.6.5 //X l and X2 are ANRs, so is Xt x X2. 

Proof Let CczZ be closed and let f = (fl9f2) : C-^X1xX2 be a 
given map. The maps fi give rise to neighbourhoods Ut of C in Z 
and maps / f : U^Xi extending f = 1,2. Define U = U 1nU2 and 

7 = ( A l l / , V ^ X x x X 2 . • 

Proposition A.6.6 Let X be a metric space which is the union of two closed 
subspaces Xl and X2. If X0 = XlnX2, Xx and X2 are ANRs, so is X. 

Proof See Borsuk (1967, Chapter IV, Theorem 6.1). • 

In contrast to open subspaces, closed subspaces of A N R s are not A N R s 
in general. A condition for this to happen will be given next. 

Proposition A.6.7 Let X be an ANR and let Abe a closed subset ofX. The 
following are equivalent: 

(i) the inclusion i : A-+X is a closed cofibration; 
(ii) A is an ANR. 

Proof (i)=>(ii): Take a neighbourhood U of A in X which is deformable 
to A in X, TQIA (see Proposition A.4.1 (iv)). Let H : U x I^X be a 
corresponding deformation. Notice that H(-, 1)| Ü is a retraction of U to 
A. But U is an A N R , as an open subspace of the A N R X; thus, A is an 
A N R as a retract of U (see Proposition A.6.4). 
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(ii)=>(i): If A is an A N R , then X = X xOvAxI is an A N R (see 
Propositions A.6.5 and A.6.6). Since X is a closed subset of X x J, there 
are a neighbourhood V of X in X x I and a retraction r : V^X. 

Observe that, for every aeA there is an open neighbourhood Wa of a in 
X such that Wax I <zzV. It follows that W = ( J a e y l W f l is an open 
neighbourhood of >4 in X and that W x / c F . Using Urysohn's lemma, 
construct a mapa : X^I with a (X\W0 = {0},a{A) = {1} and define a 
map <p : X x / V by 

(p(x, t) = (x, a(x)t). 

The composition r°cp : I x / - > I is a retraction, and therefore the 
inclusion of A into X is a closed cofibration (see Proposition A.4.1 (ii)). 

• 
Corollary A.6.8 Every ANR is an LEC space. 

Proof If X is an A N R , AX is also an A N R , being homeomorphic to X 
and closed in X x X. • 

Theorem A.6.9 A metric space which is the union of countably many open 
ANRs is an ANR. 

Proof See Borsuk (1967, Chapter 4, Theorem 10.2). • 

The last proposition in this section shows that spaces of functions from 
compact spaces to A N R s are themselves ANRs ; more precisely: 

Proposition A.6.10 Let C0 be a subset of a compact space C and let x0 be 
a point of an ANR space X; then, the function space (X, x 0 ) ( C , C o ) is an ANR. 

Proof See Borsuk (1967, Chapter IV, Theorem 5.1). • 

A .7 Simplicial homology 

The reader is assumed to be familiär with the basic concepts of homological 
algebra as developed in Northcott (1960), MacLane (1963) or Hilton & 
Stammbach (1971). 

For any given simplicial set X=[_]™=l0Xn and any N E N , let 
CnX = FA(Xn) be the free abelian group generated by all n-simplices xeXn; 
define homomorphisms 

dn : CnX^>Cn_lX 
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by setting 

dn(x)= i(-iy-x8t 

i = 0 

where xeXn and öh i = 0,l,...,n are the elementary face Operators (see 
Section 4.1). A simplicial map f:Y^X induces a chain homomorphism 

Cf = {Cnf = (Cf)n : neN} : CY^CX; 

in this way, we obtain the chain complex functor C(-) from SiSets to the 
category of chain complexes.* 

The (integral) homology of a simplicial set X is defined as the homology 
of the chain complex CX (see Northcott, 1960, Section 4.6) and is denoted 
by 

H(X) = {Hn(X) = Hn(CX):neN}. 

This definition can be extended, giving rise to the homology functor from 
the category SiSets to the category of graded abelian groups GAG. This 
latter functor is obviously defined as the composition of the chain complex 
functor C(-) with the homology functor H(-); the graded homomorphism 
induced by a simplicial map / : Y X will be denoted by 

f* = {f*n'-ntN}. 

Example 1 The simplicial set ^[0] has one simplex in every dimension; 
thus, for every neN, C„.4[0] ^ Z ; moreover, dn = 0 if n is odd, and dn = 1 
if n is even. Consequently, H0(A[0])^Z, and, for every neN\{0}, 
Hn(Am = 0. • 

Proposition A.7.1 If fx : Y -> X, X = 0,1 are homotopic simplicial maps, then 
( / o )* = Consequently, simplicial homotopy equivalences induce 
isomorphisms on homology. 

Proof See Gabriel & Zisman (1967, Appendix II, Lemma 1.4), Northcott 
(1960, Theorem 4.7) or Lamotke (1968, V.2.3). • 

Example 2 The Standard simplex 4[p] contains the simplex A[G] as a 
strong deformation retract (see Example 3, Section 4.2). Consequently, 
H{A[p]) ^ H(A[G]), computed in the example above. Similar observations 
can be made with respect to the normal subdivision 4'[p] of Alp'] (see 
Lemma 4.6.1) and the simplicial sets Ex Ä\_p~] (see Lemma 4.6.15 (iii)). 

• 
f Do not confuse the chain complex functor C(-) with the cone functors C.Top-> Top (see 

Section A.4) or C : PSiSets-*PSiSets (see Section 4.4). 
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We now turn to geometry. The singular homology functor is the functor 
Top GAG obtained by composition of the singular set functor with the 
homology functor from SiSets to GAG. The following notation will be 
used in this context: 

H(X) = {Hn(X) = Hn(SX):neN} 

for any space X and 

/ * = {/*„ = ( S / W » e N } 

for a map / . 
The next result is attributed to S. Eilenberg. 

Theorem A.7.2 There is a natural isomorphism between the homologies of 
a simplicial set and its geometric realization. 

Proof See Gabriel & Zisman (1967, Appendix II.l). • 

In this book only the following fact is needed. 

Proposition A.7.3 The geometric realization \ex\ of the natural map 
Q x : X Ex X induces an isomorphism on homology. 

Proof As in the proof of the fact that \QX\ induces an isomorphism 
between the fundamental groups (see Proposition 4.6.16), one concludes, 
from the existence of a left homotopy inverse for the map |e x | , that 

\ex\,:H(\X\)^H(\ExX\) 

is a monomorphism. The remainder of the proof can be done at the 
simplicial level (see Theorem A.7.2) and is given in the next lemma. 

Lemma A.7.4 For every simplicial set X, the natural map ex:X^ExX 
induces an epimorphism on homology. 

Proof The essence of this proof is to construct a natural right chain 
homotopy inverse for the chain homomorphism C(e x). The chain 
homomorphism / : C(ExX)-+CX needed to achieve that goal will be 
defined inductively. First of all, note that 

(e x) 0 : X 0 - > ( E x X ) 0 

is a natural bijection, whose inverse is used to define f0 on the generators. 
Next, given a generator x : Ä[_Y\-*X of Cx(ExX), define 

/!(X) = X ( ( £ 0 , 1 ) ) - X ( ( S U 1 ) ) . 
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Assume fn:Cn (ExX)-+CnX constructed for n^ 1 and all simplicial sets 
X. Consider the generator \]-*Ä[n+ 1] of Cn+ L(Ex A'[n + 1]) 
and choose, once and for all, a chain deCn + i{A'\n + 1]) which is mapped 
onto fn°dn + l(i) by the boundary homomorphism; the choice of d is 
possible since the simplicial sets A'[n] have the same homology as A[tt] (see 
Example 2), and therefore the chain complexes C(4[rc]) are exact at all 
places with k>0. Now, if X is an arbitrary simplicial set and 
X : + is a generator of C „ + 1 ( E x X ) , define 

fn + 1(x) = Cn+lx(d). 

This completes the definition of the chain homomorphisms / ' . 
It remains to define a chain homotopy s = {s„ : neN} between the 

composite chain homomorphism C(ex)° f and the identity. By 
construction, C0(ex)° fo l s equal to the identity, and therefore one can 
take s0 = 0. Again, assume that 

sn : Cn(ExX)^Cn+l(ExX) 

has been suitably constructed. Observe that the simplicial sets Ex A'[n\ 
have the same homology as 4[0] (see Example 2). As before, take the 
generator l:A'[n + \~]^>Ä[n+ 1] of Cn+ t (Ex A'[n 4- 1]) and obtain a 
chain ceCn + 2{ExA'[n +1]) which is mapped onto 

C„ + 1 (e^)o /„ + 1 ( l ) - 1 -s„odn + x{l) 

by the boundary homomorphism. For an arbitrary simplicial set X, take 
a generator xeA'[n + 1] -+ X of Cn+i(Ex X) and define 

5n+ i ( x ) = Cn + 2(C)' 
This completes the definition of the chain homotopy s and the proof of 
the lemma. • 

Remark The method of proof just given can be used under various 
circumstances. The common features of these proofs are subsumed by 
referring to a proof 'using acyclic models'. This technique is due to S. 
Eilenberg and S. Mac Lane (see Eilenberg & Mac Lane, 1953); the reader 
can find a sophisticated treatment of the theory in Dold (1972). 

A.8 Homotopy groups, «-Connectivity, fundamental groupoid 

Homotopy groups: absolute case 
A map between based spaces is called a based map if it preserves the base 
point; a homotopy between two based maps is called a based homotopy 
whenever it is constant on the base point. Based spaces and based 
homotopy classes of based maps form the category hTop^. If (Y,y(0) and 
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(X, x 0 ) are based spaces, the set of all based homotopy classes of based maps 
(Y9y0)-+(X,x0) will be denoted by [ 7 , * ] * . 

The case in which (Y,y0) = (Sn,e0), n e N is of special interest; in this 
Situation, 

nn(X,x0)=tStt,X]t 

is the n-th homotopy group of the based space {X, x0). 
Every homotopy group has a distinguished element, namely, the class of 

the constant map. Thus, every nn{X,x0) is a pointed set. Observe that 
nQ(X9 x0) can be considered as the set of all path-components of X; its 
distinguished element is just the path-component containing the base point. 
Write n0(X) or simply n(X) for the set of all path-components of the space 
X. The higher homotopy groups (for n > 0) live in the distinguished path-
component; they have a group structure - induced by the pinching of the 
sphere (see page 7) -which is abelian for n > l (see Spanier, 1966, 
Theorem 1.6.8). 

Example 1 nn(Bn

9 e0) is the trivial group, for all n > 0. 

Example 2 The assignment Ii—•[ls..] induces an isomorphism Z-+nn 

(S",e0), for all n > 0 (see tom Dieck, Kamps & Puppe, 1970, 
Section 16). 

The group n^X, x 0 ) is called the fundamental (Poincare) group of (X, x 0 ) . 
The fundamental group of a space does not have to be abelian: the 
fundamental group of the space X = S1 V S1 - figure eight - is the free 
group in two generators. 

A space X is said to be simply connected if X is path-connected and its 
fundamental groups (with respect to any base point) are trivial. 

For each n > 0, every path o : I-+X gives a natural isomorphism 

cr„ : nn{X,xl)-*nn(X>xQ\ x0 = er(0), xx = <r(l), 

which depends only on the homotopy class of the path a, rel. end-points (see 
Spanier, 1966, Theorem 7.3.8). 

As an immediate consequence of this fact, one can deduce that the 
fundamental group n^X, x0) acts on n„(X, x 0 ) , n ̂  1. In particular, if n = 1, 
this is an action by inner automorphisms; if n > 1, it extends to an action of 
the integral group ring A = Zn1(X,x0\ thus making nn(X,x0) a left A-
module (see Spanier, 1966, Theorem 7.3). 

If (Y, yö) is a second based space and / : (X, x 0 ) -> (Y, y0) is a based map, 
composition with / induces a collection of functions 

f«={fn:nn(X,x0)-*7in(Y,y0):n>0}. 
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The functions / „ are homomorphisms if n^ 1; f0 preserves the distingu­
ished element. 

Based spaces and based maps form a category, denoted by Top^. The 
constructions described before yield functors 

7i0 : Top^^ pointed sets 
ni '• Top^^groups 

nn : Top^-^ Abelian groups, n> 1. 

Homotopic maps induce the same homomorphisms, in the following sense. 

Proposition A.8.1 Let H : Y xI^X be a homotopy from f to g. Then, for 
every y0eY, 

9n = On°fn 

where o denotes the pathH\{y0} x I from f(y0) to g(y0). In particular, if H is 
a based homotopy, gn = /„. 

Proof See Spanier 1966, Theorem 7.3.14. • 

Thus, any map / : X->X homotopic to the identity map induces 
isomorphisms of the homotopy groups. More generally, given maps 
/ : Y-+X, g : X^Y with g°f ~ l y , it follows that / induces monomor­
phisms and g induces epimorphisms of the homotopy groups. If the spaces 
X and Y are related by maps / and g as above, one says that X dominates Y 
(or that Y is dominated by X). 

The following is a consequence of these observations: 

Corollary A.8.2 / / / : Y-+X is a homotopy equivalence, then, for every 
y0eY and every neN, the homomorphisms 

L • nn(Y,y0)^n„(X,f(y0)) 

are isomorphisms. • 

This suggests a lessening of the notion of homotopy equivalence. A map 
/: Y -» X is said to be a weak homotopy equivalence if Y ^ 0 and if for every 
point y0eY the induced homomorphisms 

fn-7in(Y,y0)-^nn(X,f(y0)) 

are isomorphisms; notice that it would suffice to require the latter condition 
for just one point in every path-component of Y. Clearly, any homotopy 
equivalence with non-empty domain has this property. The following is an 
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example (often quoted but seldom explained) of a weak homotopy 
equivalence which is not a homotopy equivalence. 

Example 3 In the plane R 2 , for every neN\{0}, consider the following 
segments: 

An, the segment with vertices (— 1,0) and (0, l/n); 
Bn, the segment with vertices (0, — l/n) and (1,0). 

Moreover, let C be the segment with vertices (— 1,0) and (1,0) and take 
the subspace of R 2 

based at the origin p = (0,0) (compare with Example 4, Section 5.1). 
Consider the constant map k : Z-+{p). Then, the following two 

Statements hold true: 

(1) k is a weak homotopy equivalence (because all homotopy groups 
7!„(Z, p) vanish); 

(2) k is not a homotopy equivalence (because k has no homotopy inverse). 

Proof of (1): Consider a based map a : (Sn, e0) -> (Z, p) and let 

notice that Ä is an open subset of Sn. Let H : Sn x I - » Z be the function 
defined by 

The function H is continuous. This follows from the fact that, for all 
sequences {(shti)eÄ x I : ieN} that converge to a point, (s,t)e(Sn\Ä) x I, 
a(s)=(- l ,0) . Assume that a(s)=^(-l,0); then, IT = Z \{ ( -1 ,0 )} is a 
neighbourhood of a(s)eC. Since Sn is locally path-connected, there exists a 
path x> : I-^>a~l(U) connecting s to some st; hence, a°co is a path in U 
connecting a(s) and a(st\ which is impossible. 

Hence, H is a based homotopy from a to a map a! whose image is 
contained in C u ( ( J * = 1 5 „ ) . Similarly, deform the map a' to a map a" 
whose image is contained in C; but a" is clearly homotopic to the constant 
map irom S" to p. Gluing all these homotopies together, one obtains that 

Proof of (2): The existence of a homotopy inverse for k would require 
the existence of a homotopy H:ZxI-*Z such that H0 = l z and 

seÄ 

[a]=0e7i„(Z,p) . 
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Hi(z) = p = (0,0), for every zeZ . Consider the sequences 

{z„ = (0 , l /n ) :neN\{0}} 
and 

{ - Z „ = ( 0 , - l / n ) : n e N \ { 0 } } . 

Notice that both converge to the point p. 
Since H0(zn) = zn and H1(zn) = p, there must be a tnel such that 

H(zn, tn) = ( — 1,0), for every neN\{0}. The sequence {tn} has a Cluster point 
and hence, without loss of generality, one may assume that it converges, 
say 

Thus, the set {tel : H(p, t) = ( —1,0)} is non-empty and compact. Assume 
t0 to be its minimum. 

Observe that 

implies that, at least for a subsequence of the sequence { — z„}, the values 
H( — zn, tQ) must be contained in Cu/4„. Again, assume that this is true for 
all neN\{0}. Therefore one can find t'n^t0 such that H(-zn,t'n) = (1,0), 
for every rceN\{0}. As above, one obtains a t'0 < t0 with H(p,t'0) = (1,0). 
Finally, repeating this argument, one obtains a t'o < t'0 such that 
H(p, t'o) = (—1,0), contradicting the minimality of t0. • 

Covering projections 
Based covering projections form another class of based maps which induce 
interesting homomorphisms between homotopy groups. 

Proposition A.8.3 / / p : (X, x0)-+(X,x0) is a based covering projection 
then, for n= 1, the induced homomorphism px is a monomorphism and, for 
n> 1, pn is an isomorphism. 

lim t„ = t0. 

From the continuity of H it follows that 

= lim H(zn,tn) = (-1,0). 

lim H ( - z M , t o ) = ( - l , 0 ) 

Proof See Hilton & Wylie (1960, Theorem 6.5.10). • 
A partial converse to the previous result says that an inclusion of a 
subgroup into the fundamental group of a space can be realized, under mild 
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conditions on the space, as the induced homomorphism of a covering 
projection: 

Proposition A.8.4 Given a connected and locally contractible based space 
(X,x0) and a subgroup n cz TI^X^XQ), there is a based covering projection 
p : (X, x0) -> (X, x0) such that pl(n1(X,x0)) = n. 

Proof See Hi l ton & Wylie (1960, Theorem 6.6.11). • 

An important property of covering projections is the following: 

Theorem A.8.5 (Lifting theorem) Let p : (X,x0)-*(X,x0) be a based 
covering projection and let f : (Y,y0)^(X,x0) be a based map such that 

fiMY.yo^^PiMX^o)). 
Then, if Y is connected and locally path-connected, there is a unique based 
map f:(Y,y0)^(X,x0) which lifts f, that is to say, such that p°f — f. 

Proof See Hil ton & Wylie (1960, Lemma 6.6.12). • 

If p : X X is a covering projection, a homeomorphism a : X X such 
that p°ä = p is called a covering transformation. The covering transform-
ations of a covering projection form a group G(p) under composition. 

Theorem A.8.6 Let p : X -> X be a covering projection, with X locally 
path-connected. If X is simply connected, then G(p)^nl(X,x0), for any 
choice of base point. Moreover, given any two points x0, xyeX such that 
p(x0) = p(x x), there is a unique covering transformation a : X->X such 
that ä(x0) = X j . 

Proof See Hil ton & Wylie (1960, Corollary 6.7.4 and Proposition 6.6.17). 

• 
A simply connected covering space of a Space X is called a universal 
covering of X; the corresponding covering projection is called universal 
covering projection. 

Propositon A.8.7 / / p:X^»X is a universal covering projection and 
f : Y^X induces an isomorphism of fundamental groups, then Y[~\fX-+Y 
is a universal covering projection. 

Proof Follow from Propositions A.4.17 and A.8.3. • 
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Proposition A.8.8 Let p : X->X, q :Y->Y be universal covering 
projections. A based mapf:Y-+X is a weak homotopy equivalence iff it 
induces an isomorphism of the fundamental groups and the lifting f:Y^X 
induces isomorphisms of the integral homology groups. 

Proof The map / :Y->J? is a lifting of f°q:Y-+X (see Theorem A.8.5); 
now use Proposition A.8.3 and Spanier (1966, Theorem 7.6.25). • 

Homotopy groups of maps; relative homotopy groups 
Relative homotopy groups as developed by Eckmann & Hilton (1958) 

play an important role in homotopy theory. The abstract framework for 
their development is the category Top 2 of based maps in Top*. The 
objects of Top 2 are the based maps / : (Y, y 0 ) - » ( X , x 0 ) ; its morphisms, 
say from / to / ' , are the admissible pairs (b,a) : f ->f \ namely, pairs of 
based maps a : dorn f -+dom f\ b : cod f -+cod f with f'°a = b°f. A 
homotopy between two admissible pairs, say from (fc,a) to (fc',a'), is an 
admissible pair (H, G) : / x l , - > / ' such that H0 = b9Hl = b\G0 = a and 
G1=a'. Clearly, this homotopy is an equivalence relation. The homotopy 
class of an admissible pair (fc, d) is represented by [fc, a]. Given a based map 
/ , i.e., an object of Top 2 , the set of all homotopy classes of admissible pairs 
from the based map i""1 : (Sn ~ 1 , e0) (JB", e0) into / is denoted by nn(f y0).f 

In the special case where / is the inclusion of a subspace A into a space X, 
one also writes nn(f y0) = nn(X9 A; x0); moreover, in this Situation the 
admissible pair (fc, ä) : f 1 - 1 - » / is nothing but a map b : (Bn

iSn~l)->(X,A\ 
and thus the homotopy class of (fc, a) is denoted simply by [fc]. On the other 
hand, if / is a constant map Y -+{y0}> then, nn(fy0) = nn_i(Y,y0). 

Then set nn(f y0) is defined for n > 0. It has a distinguished element, 
namely, the class consisting of the admissible pairs (fc, a) for which there 
exists an extension b':Bn-*dom f of a such that /°fc ; is homotopic to fc, rel. 
Sn"1 (the proof is similar to that given in Theorem 7.2.1 of Spanier, 1966, for 
inclusions). Thus, every nn{f, y0) is at least a pointed set. 

As in the absolute case, if n> 1, the units, inversions and pinchings 
introduced on page 6 provide the set nn(f,yo) with the structure of a 
group which is abelian if n ̂  3. The group nn(f, y0) is the nth-homotopy 
group of {f,y0). 

A n admissible pair (b9a):f -* f induces, by composition, a homomor­
phism (of pointed sets or groups) 

(fc,a)„ : nn(fyQ)^nn(f\y'Q)\ 

thus, %n becomes a functor on Top 2 . 

tWarning: do not confuse n„{f,yQ) with the induced homomorphism /„. 
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Now consider a commutative triangle of based maps 

(2, z 0 ) 

(Y.yo) 

f 

and define the natural homomorphisms 

<5„ + i : 7rw+i(/>yo)-^n(0>zo) 
by taking a representative (6, a) : in->f for each element of 7 c „ + y 0 ) and 
associating to it the class of the admissible pair (a°i",c) • i"'1 ->g, where 
bn:Bn-+Sn is the map introduced on page 6 and c:Sn~1-+Z is the 
constant map. The fact that Sn + i is a homomorphism comes out of the 
equation 

p"obn = (bn Vbn)°pn-\ 

The groups (pointed sets) together with the morphisms defined up to now 
can be arranged into a long exact sequence; more precisely: 

Theorem A.8.9 The sequence of groups {respectively pointed sets) 

— -* +1(/> yo) ~—• rc„(0, z 0 ) ——• nn(K z0) —* 
<5„+l CM)n (l,9)n 

Knif yo) —+ 7ln _ !(flf, Z 0 ) • • • 7T2(/, J\>) ~ 

z o) 7777+ z0) —> nx(f9 y0) 

is exact. 

Proo/' The proof is done by the Standard arguments in diagram chasing. 
The only non-trivial Step is to prove exactness at nn(g,z0). 

0) (f l)n°d„+i =0: Take a representative (b,a) for an element of 
7in + l(fyQ). Its image is the pair ( / ° a ^ " 5 c ) . Let c' : (£", * ? 0 ) ( Z , z 0) be the 
constant based map; then, c ' |S"~ 1 = c, and, moreover, the composite map 
b°cn°{bn x 1) is a homotopy from / ° a ° b n to h°c' rel.5"""1. 

(2) ker(f \)na imdn+1: Suppose that (b,a) represents an element of 
nn(g9z0) which is mapped onto 0enn(h9zo) by (/, 1)„. Then, there is a based 
map V : Bn-*Z such that b'\Sn-1 =a and / o b - h o & ' r e L S " " 1 . Let 

H \ Bnx l-*X 

denote the corresponding homotopy; the map H factors through Bn + 1 via 
the map hn defined on page 4, thus giving rise to a map b":Bn + 1-+X 
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with b"°i+ =h°b' = f °g°b' and fc"°/_ = f °fc. Therefore, there is a unique 
mapa" : S n - Y witha"o/ + = #°fc',a"°*_ = band f*cT = b"\Sn. Hence,the 
pair (fc", a") represents an element of nn+1(f y0). It remains to show that its 
image under 3 n + 1 is the class of (b9a). This is done by considering the 
homotopy 

Some particular cases are of special interest: 

Case 1 The maps / and g are inclusions of subspaces; then, the exact 
sequence of the theorem above becomes the exact sequence of the based 
triple (X, Y,Z,z0) (see Spanier, 1966, Theorem 7.2.15). 

Case 2 Suppose that X is a singleton space; then, one gets the exact 

homotopy sequence of the map g, namely: 

• • • -> nJJ> yo) nB(0, z0) -* 7t„_ X(Z, z 0 ) 7c„_ X(Y9 y0) - » TT„_ Z 0 ) 

yo) (̂gr, *o) -» n0(Zy z0) -> 7r0(y, y0). 

Case 3 Moreover, if in the previous case, the map g is an inclusion, one 
obtains the usual homotopy sequence of the based pair (Y ,Z ,z 0 ) (see 
Spanier, 1966, Theorem 7.2.3). As an application, consider the case 
Z = {y0}l then 7i„(Z,z0) = 0, for every n e N , and the homotopy sequence 
shows 

again for all neN. 

The veracity of the following result stems from the exact sequence discussed 
in Case 2 above. 

Proposition A.8.10 A map f : Y^X is a weak homotopy equivalence iff 
fo : rc0(Y,)>o)^rc0(X,/();0)) is onto and nn(fyo) = 09 for every y0eY and 
every neN\{0}. • 

H' : (Sn~l x / ) x / - > Y 
given by 

nn(Y 9y0)^nn(Y9{y0}9y0)9 

The condition given in the preceding proposition is equivalent to saying 
that every path-component of X meets f{Y)9 and, for any admissible pair 
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(b,a):in~l f(n ^ 1) there is an extension fc':£"-> Y of a such that / o f t ' 
is homotopic to re l S"1"1. A map / : Y - > X is said to be m-connected 
(meN) - or, / is said to be an m-equivalence - if this condition holds true 
for every n such that 1 ̂  n ̂  m; for m = 0, this just means that every 
path-component of X meets f(Y). In view of Proposition A.8.10, one can 
give the following characterization of m-connectivity: 

Proposition A.8.11 A map f : Y-+X is m-connected (meN) 

ifffo : no( Y> yo) no(x> f(yo))is o n t o <™d nn(f, y0) = 0, for every y0eY 
and every 1 ̂  n ̂  m; 

W fm • nm(Y,y0)^>nm(X,f{yo)) is an epimorphism and fn : 7E„(Y,y0) 
-*nn(X,f(y0)) is an isomorphism, for every y0eY and n such that 
0 ^ n < m. • 

A pair (X, Y) is said to be m-connected (meN) if the inclusion Y-» X is m-
connected; in this case one has the following version of the previous 
proposition. 

Corollary A.8.12 (i) The pair (X, Y) is O-connected iff the function 
i0 : n0(Y,y0)-+n0{X,y0) induced by the inclusion i : Y-*X is onto, for any 
choice of the base point yQeY. 

(ii) The pair (X, Y) is m-connected (m ^ 1) 

ff io : n 0( Y, yo) no(X, y0) is onto and nn(X, Y, y0) = 0, for every choice 
of base point y0eY and every n such that 1 ^n^m, 

iff L • nm(Y>yo)-¥*m(X>yo) i s a n epimorphism and in : 7r„(Y,y0) 
-+nn(X,y0) is an isomorphism, for every yQeY and every n such that 
0 ^ n < m. • 

The following two properties are easily derived from the concept of n-
equivalence. 

(1) If g is an m-equivalence, a composition f °g is an m-equivalence iff / is 
an m-equivalence. 

(2) Any map homotopic to an m-equivalence is an m-equivalence. 

According to Proposition AAlO( iv ) , any m a p / : Y X decomposes in 
the form / = rf°iY, where cod iY = dornr f = M(f) is the mapping cylinder 
of / , iY is an inclusion and rf is a homotopy equivalence. Selecting a point 
y0e Y as a base point of both Y and M(f) and taking f{y0) = x 0 to be the 
base point of X, one may regard the maps / , rf and iY as based. Then, using 
the exact sequence of Theorem A.8.9 and applying Proposition A.8.10 to rf, 
one can conclude that the following result holds true. 
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Proposition A.8.13 For every n^ 1 and every choice of base point y0e Y, 

(rf,\)n:nn(M(f),Y;y0)^Kn(f,y0) 

is an isomorphism. • 

As in homology, homotopic maps of pairs induce the same homomorph­
isms of homotopy groups; more precisely, if fx : (Y, D) (X, A), X = 0,1 are 
homotopic maps of pairs via homotopies moving the image of D only 
within A, then, for every n ̂  1, (/ 0) n = (fi)n. Consequently, a homotopy 
equivalence of pairs induces an isomorphism of the corresponding 
homotopy groups. This, together with Proposition A.8.13, allows one to 
State the following generalization of Theorem A.8.9: 

Proposition A.8.14 Given maps g : (Z , z 0 ) -+ (Y , y 0 ) , / : (Y , y 0 ) -> (X , x 0 ) and 
h : (Z, z 0)-> (X , x 0 ) such that f°g~h, there is a long exact sequence 
connecting the homotopy groups of (/, y 0 ) , (g, z0) and (h, z 0). • 

The action of the fundamental group of a space on its homotopy groups can 
be extended to an action of the fundamental group of the domain of a map 
on the homotopy groups ofthe map. More precisely, let / : ( Y , y 0 ) - + ( X , x 0 ) 
be a based map; then, for every (fc,a):j n _ 1 -> / and every <r:(/,0)->(Y,yo) 
make the following construction: firstly, the maps a and o induce a map 
Sn~1 x {0} u {e0} x / -> Y which extends to a homotopy a' : Sn~1 x /-> Y; 
secondly, f °a' and b induce a map Bn x {0} u S " " 1 x X which extends 
to a map b' : B" x I-+ X; thirdly, notice that the homotopies b' and a' end at 
an admissible pair (b'v a\):in~1 - » / (with respect to the base points cr(l) 
and /°<x(l)) whose homotopy class depends only on the homotopy classes 
of (fc, a) and er. Thus, a induces a well-defined function 

<r* : nn(f9y0)^nn(fM^)l 
which is an isomorphism. If one now assumes that er is a loop and n > 2 (so 
that nn(f,y0) is abelian), one obtains the announced Operation of ^ ( Y , ) ^ ) 
on 7r„(/,)>o)> turning nn(f,y0), n>2 into a left /1-module, where A is the 
integral group ring of T T ^ Y , ^ ) . If n = 2, one often considers only the 
case in which fl : ^ ( Y , J'OJ-^IC^/O'O))* 8 a n isomorphism; then, 7c 2(/, ^o) 
is abelian, as a quotient of the abelian group n2(X, f(y0)) and the above 
argument applies. The case in which / is the inclusion of a space A into a 
space X is of particular interest: 

Proposition A.8.15 Let (X , A) be a pair of spaces with A path-connected and 
suppose that n^A,x0) acts trivially on 7iN(X9A9x0) for some base-point x0. 
Then, there is a bijection between K„(X, A,X0) and the set of free homotopy 
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classes of maps (B",Sn l)-+(X, A); if n^A, x 0 ) = 0, this happens for every 
n^l. 

Proof See Spanier, 1966, Section 7.3. • 

Sometimes it is possible to decompose an element of a homotopy group 
of a map into a sum of elements. Let (fc, a) : in~1 -+ / be an admissible pair, 
w i t h / : Y - > X ; l e t c : Bn~l-+ 7 be a map such that c\Sn~2 = a\Sn~2 and 
/ ° c = fc|jBn_1 (in particular, if / : Y cz X this means that fc restricted to 
the equator factors through Y). Let a + : S"'1 • -* 7 (resp. a_ : S"" 1 -> Y) 
be defined by a+°i+ = a°i + , a + °i_ =c (resp. = a ° / _ , + =c). 
Then, under these assumptions: 

Theorem A.8.16 (The homotopy addition theorem): 

[fc,a] = [ fc° / + , f l + ] + [fco/_,a_]. 

Froo/ Observe that 

i+ V*_°p„ : ( ^ F ' - ^ S ^ ^ ^ ^ ^ - ^ S " - 1 ) 

is homotopic to lB», as maps of pairs. • 

The homotopy sequence of a fibration 
Another long, exact sequence of homotopy groups appears in connection 
with the theory of fibrations. 

Proposition A.8.17 Let p : Y -+Xbea fibration with fibre F = p~ 1(x), xeX. 
Then, for any yeF cz Y,the following sequence of groups (and sets) is exact: 

• ' ' rc„(F, y) — • nn( Y, y) • nn(X, x) nn _ x(F, y) 
In Pn 

• • • -> n t(X, x) -+ 7i 0(F, y) 7c0( Y, y) TC0(X, X) 

(here in is the morphism induced by the inclusion i : F -> Y). 

Proof See Spanier (1966, Theorem 7.2.10). • 

Corollary A.8.18 Let p : X-+X be a covering projection with X path-
connected and let F = p~l(x0). If n^X.Xo) acts fixed point free on F, then 
p : X -*X is a universal covering projection. 

Proof The proposition implies that the sequence of groups and Spaces 

0 -> n l (X, x0) n l (X, x0) -* F -+ 0 
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is exact; since TL^X^XQ) acts fixed point free on F, the map 7ri(X,x 0)-> F is 
injective and so, K^X.XQ) = 0. • 

Fundamental groupoid 
As seen before, among the functors nn, the fundamental group functor nl 

plays an exceptionally important role. Sometimes it is necessary to study 
the fundamental group of a space in connection to several different base 
points at the same time. The abstract setting for this Situation is given by the 
so-called fundamental groupoid FIX of a space X. Recall that a groupoid is a 
small category with all its morphisms invertible. The objects of the 
groupoid FIX are the points of the space X; the set FIX(x,y) of its 
morphisms from x into y is the set of all homotopy classes (rel. end points) of 
paths from x into y, i.e., a morphism from x into y may be represented by a 
map 

w:I-+X 

with w(0) = x, w(l) = y and two maps wl9 w 2 represent the same morphism 
iff Wj Ü W 2 rel. / = {0,1}. The identities in FIX can be represented by 
constant maps; morphisms are composed in the obvious way. Moreover, 
for every XQEX, there is a canonical isomorphism 

nX(x0,x0)^nl(X,x0). 

Clearly, every continuous map / : X -*Y gives rise to a functor 
Flf : FIX -> FI y, and hence there is a functor FI from Top to the category 
of groupoids. Note the following useful properties of this functor. 

(i) If f:X-* Y is a homotopy equivalence, then Flf is an equivalence of 
groupoids (as categories; see Brown, 1988, 6.5.10 Corollary.). 

(ii) If / : Y-/->A is a partial map, then the induced square 

FIY +n(AUfY) 

/ 7 d o m / + 11A 

is a pushout of groupoids. (Because f is a partial map, d o m / c ; Y is 
a closed cofibration; see Brown, 1988, 8.4.2 Theorem.) 

Next is a review of the Statement of the celebrated Seifert-van Kampen 
theorem, and an interesting generalization of that result. 
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Theorem A.8.19 (Seifert-van Kampen) If f : Y-j->A is a partial map such 
that A,Y and D = dorn / are path-connected, then, for every xeD, the 
induced square of groups 

M D , * ) 

is a pushout in the category of groups. 

Proof See Brown (1988, 8.4.2 Theorem). 

Let {X,x0) be a based space, with X path-connected. Let {Ux,XeA} be a 
covering of X by path-connected open sets such that: 

(i) for every XeA, x0eUx; 
(ii) for any two indices Xu X2eA, there exists an index XeA such that 

UXlnUXl=Ux. 

Let 

<t>x,ß : nl(UXix0)->n1(Ull9x0) 

be the homomorphism induced by the inclusion Ux cz Uß. • 

Under these conditions, the following result holds true. 

Proposition A.8.20 The group n^X, x0) is isomorphic to the colimit group of 
the diagram (i.e., small category) whose objects are all groups n^U x, X 0 ) and 
whose morphisms are the identity homomorphisms and the homomorphisms 

Proof See Massey (1984, Chapter 4). • 

A.9 Dimension and embedding 
In this book, the dimension of a space is always understood to be the 
covering dimension (see Pears, 1975, and Engelking, 1978). For normal 
spaces it is characterized by the following. 

Theorem A.9.1 A normal space X has dimension ^ n iff for each closed 
subset C cz X, each map C-+S" has a continuous extension over the entire 
space X. 
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Proof See Engelking (1978, Theorem 3.2.10). • 

Corollary A.9.2 / / Y is a closed subspace ofa space X, then dim Y ^ dim X. 

• 
Example 1 The ball BX has dimension 1. By the intermediate value 
theorem, the identity map of S° cannot be extended over B1 (maintaining 
the target 5°), implying that d i m ß 1 >0. On the other hand, consider a 
map / : C S1 defined on a closed subset C c B1. By continuity there are 
open subsets U, V of BL such that e0$f(CnU), -e0$f(Cr\V) and 
B1 = UKJVU(B1\C). Thus, {U, KB^C} is an open cover of B\ and by 
compactness one may find finitely many numbers, say a0, ax,..., ak + x such 
that —1 =a0<a1 < ••• <ak+i = 1, and, for i = 0 ,1, . . . ,k, f(Cn[ahai+ J ) 
does not contain both e0 and — e0. One may assume ateC, for all i; 
otherwise, extend / by taking f{a^ = ev Now, by Tietze's extension 
theorem, extend each restriction / | ( C n [ a f , ai+ J ) over the whole interval 
[ a , , a l + 1 ] and glue these extensions together to an extension of / over 
BL. The possibility of this extension shows dim B1 ^ 1 . • 

In order to proceed to higher-dimensional balls, one needs two deeper 
theorems. 

Theorem A.9.3 (Product theorem) If X and Y are compact Hausdorff spaces, 
at least one of which is non-empty, then, 

dim X xY^ dim X + dim Y. 

Proof See Engelking (1978, Theorem 3.2.13). • 

Example 2 For every neN, dim B"^n, since B"^(B1)n (see 
Proposition 1.0.2). • 

Example 3 For every n e N , dim Sn ^ n9 since an n-sphere can be considered 
as a union of two n-balls (see Example 8 of Section A.4 and 
Proposition A.4.8 (v)). • 

Theorem A.9.4 (Brouwer theorem) The sphere Sn is not a retract of the ball 
Bn+l,for every neN. 

Proof See Milnor (1965, §2.) For n = 0, this is just the intermediate value 
theorem. For n > 0, the following is a rough sketch of Milnor's argument. 
It is given in order to make clear that the proof can be done with analytical 
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methods independent of the combinatorial ideas developed in the main 
text, and that the reader is not being misled by the use of the Brouwer 
theorem from the very beginning. Assume one is given a retraction 
r\Bn^>S"~1. Then, the assignment s\-+ — r(s) describes a fixed point free 
map Bn+1 -> Bn+1 which can be approximated by a fixed point free smooth 
map / : B"+1 -+Bn+l, by the Weierstrass approximation theorem. This 
/ in turn induces a smooth retraction r : Bn+1 ->S". By Sard's theorem, r 
has at least one regulär value, say s. The inverse image r~ l(s) is a compact 
smooth 1-manifold, and therefore it has an even number of boundary 
points. But r~l(s) has a unique boundary point namely, the point s 
itself. • 

Example 2' For every neN, dim Bn = n, since dim Bn ^ n — 1 would imply 
that the identity map of S"~1 could be extended over Bn (see Theorem A.9.1), 
contradicting the Brouwer theorem. • 

Example 3' For every neN, dim S" = n, since every n-sphere contains 
n-balls as closed subsets (see Corollary A.9.2). • 

Note: The question of the dimension of the Euclidean Spaces is left open 
here because it is discussed in the main body of the book (see Section 2.2, 
Example 1). 

To continue the development of this section, it is necessary to prove a 
rather technical lemma, which characterizes boundary points of compact 
sets in Euclidean Spaces. 

Lemma A.9.5 Let X be a compact subset of R" and x a point of X. Then, 
x is a boundary point of X iff x has arbitrarily small neighbourhoods U, 
open in X, with the property that any map X\U-+Sn~l can be extended 
over the entire X. 

Proof Cf. Hurewicz & Wallman (1948, Chapter VI , Section 6.) 

=>: Let BE denote the closed e-neighbourhood of x in R n , for any positive 
real e, and take U = XnBe. Given a map / : X\U-+Sn~\ choose a 
continuous extension / ' : öB^S"'1 of f\Xn öB^; this is possible since öBE 

is a sphere of dimension n — 1 (see Theorem A.9.1 and Example 3'). Since 
x is assumed to be a boundary point of X, one can find a point yeBe\U 
and a retraction r:BE\{y} -+öBF. The desired extension giX^S"'1 of / 
can now be defined by taking g\U = f'°(r\U). 
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<=: Assume x to be an interior point of X. Choose a positive real number 
e such that the closed e-neighbourhood BE of x is completely contained 
in X. Identify its boundary öBe with Sn~x and choose a retraction 
r : R" \{x} ->S M _ 1 . Now, if BE would contain an open neighbourhood U 
of x such that the map / = r\(X\U) : XXU^S"'1 could be extended to 
a map g : X->Sn~\ then g\BE would be a retraction from BE to S"" 1 , 
which cannot exist according to the Brouwer Theorem (see Theorem A.9.4). 

Theorem A.9.6 [Theorem of the invariance of domain) ifXa R" is open and 
f : X ->R" is an injective map, then f(X) is an open subset o/R". 

Proof Take a point xeX and a closed e-neighbourhood Be of x in R" 
which is completely contained in X. The map / induces a homeomorphism 
J3£-> f(BE); thus, the fact that x is an interior point of Be implies that f{x) 
cannot be a boundary point of f(B£) (see Lemma A.9.5). Therefore, f(x) 
is an interior point of f(BE) with respect to Rn, and, consequently, an 
interior point of f(X). • 

The question of embedability is settled by the next two theorems. 

Theorem A.9.7 (Theorem of Menger-Nöbeling) A metrizable space of 
dimension n satisfying the second axiom of countability can be embedded into 

Recall that the Hilbert cube is defined as the metric space consisting of 
the set 

As a topological space, the Hilbert cube is homeomorphic to the cartesian 
product of countably many intervals / (see Dugundji, 1966, Chapter IX, 
Proposition 8.4). 

Theorem A.9.8 A metric space satisfies the second axiom of countability iff 
it is homeomorphic to a subspace of the Hilbert cube. 

Proof See Engelking (1978, Theorem 1.11.4). • 

and the metric d : /°° + /°° [0, oo) given by 
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Proof See Bourbaki (1966, Chapter IX, Section 2.8, Theorem 12). • 

In this context, another important property of the Hilbert cube should 
be mentioned: 

Proposition A.9.9 / / C is a compact metric space, then the function space 
(Ix)c satisfies the second axiom of countability. 

Proof Since C is compact metric, there is a sequence {fn : neN} of maps 
/„:C—>R that is separating, i.e., for every pair of points x ,yeC , 
with x ^ y, there is an neN, such that fn(x) # fn(y). Then, by the Weierstrass-
Stone theorem (see Bourbaki, 1966, Chapter X , Section 4, Proposi­
tion 6), every map / : C R can be approximated, in the metric topology, 
by polynomials in the functions fn with real coefficients. But, since the 
rational numbers form a dense subset of the reals, it is enough to consider 
only polynomials with rational coefficients. Thus, R c has a countable 
dense subset in the metric topology and therefore, satisfies the second 
axiom of countability. Notice that the metric topology of R c coincides 
with the compact-open topology (see Section A. l ) . The second axiom of 
countability property carries over to the subspace 1° of R c and to the 
countable product (/ C) N = (I™)€ (cf. the exponential law, Section A. l ) . • 

A.10 The adjoint functor generating principle 

The following basic construction (see Kan , 1958a, b) is used in several places 
throughout the text. Let D be a small category and let DSets denote the 
category of contravariant functors D Sets. One might view the objects of 
DSets as sets graded by the objects of D with the morphisms of D operating 
on the right. (As a particular example of this Situation, one can quote the 
definition of simplicial sets given in Section 4.2.) Let <P : D -> Sets be an 
arbitrarily given covariant functor; associated to it, construct a pair of 
adjoint functors 

T0 : DSets Sets, 

S0: Sets-> DSets, 
as follows: 

(1) The left adjoint functor /"Vcalled realization /uncfor-associates to 
each object X of DSets the set of equivalence classes of pairs 
(x,t)e[JX(d) x 0(d) modulo the relation 

(xa,t)~(x, 0(a)(t)). 

Given a morphism / : Y -> X, i.e., a natural transformation, one has 
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the function 
r0f: r0Y^r0x,tx9ti-+if{x)9t'} 

where [x, t] denotes the equivalence class represented by the pair (x, t). 
(2) The right adjoint functor S ̂ -called singular/twctor-associates to each 

set Z the object of DSets given by 

(S*Z)(d) = Z * W ) , 

for each object d of D9 and 

a * : z *(d)_ z o> ( <n x^x°&(a)9 

for each morphism a:d' ̂ d of D. 

The unit and the co-unit of the adjunction r 0-\ S 0 are given as follows: 

(1) Let X be an object of DSets. To each element xeX(d) associate the 
function 

x : <P(d) -» r0X9 t -> [x, t]; 

then, the unit consists of the morphisms 

t\ : X ^ S 0P0X 9 x • x. 

(2) The co-unit consists of the functions 

Jz' r0s0z^>z9 [x9t]-*x(t). 

The Situation can easily be generalized to functors d> whose codomain is 
an arbitrary cocomplete category C instead of just sets. In this book, C is 
taken to be Top9 SiSets or PSiSets. The construction of the singular functor 
S0 : C DSets remains almost unchanged: one takes 

(s*z)(d) = {0(dHZ} 
and 

a* : {<P(d)-*Z}^>{0(d')^Z}9x-+xo<P(<x). 

As for the realization functor, observe that if C = Sets9 one can consider r0 

as a coequalizer of an abstractly defined pair of functions; the definitions of 
these functions can be imitated in any cocomplete category C (see Gabriel 
& Zisman, 1967). 

Exercises (to the whole Appendix) 

1. Let i : Y-+X be a closed cofibration. Prove that the mapping cone C(i) 
has the same homotopy type as X/Y. 

2. Let i : A^>X9 i! : A-*X' be closed cofibrations and let / : X -> X' 
be a homotopy equivalence such that f°i = i'. Prove that / is a 
homotopy equivalence rel. A9 i.e., there exists a homotopy inverse 
g : X'-*X such that g°i' = i and g°f ~ \ x rel. y4 , / °^^ l^re l . i4 . 

3. Let p : Y - ^ I b e a Hurewicz fibration and / : Z - > X be a map; if X9 
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Y and Z are L E C spaces then, Z\~\fY is L E C (See Heath, 1986.) 
4. Let / : Y— /-+A be a partial map with Y and /4 paracompact. Prove 

that the resulting adjunction space X is also paracompact. (See Michael, 
1953, 1956.) 

5. Let / : Y—/->A be a partial map with Y and A stratifiable. Prove that 
A r\f Y is stratifiable. (See Borges 1966.) 

6. Show that the union space of an expanding sequence of stratifiable 
spaces is stratifiable. (See Borges, 1966.) 

7. Let X be the union space of the expanding sequence {Xn : neN}. Show 
that any compact subset of X is contained in some Xn. 
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Symbols 

Table 1. Abbreviations 

Introduced or 
Symbol Explanation Example first used on page 

• indicates the end of a proof, 
remark or the description of 
an example 

10 

iff introduces a necessary and 
sufficient condition 

15 

* 
shows implication; in a proof: 

the given condition is 
necessary 

111,15 

<= shows, in a proof, that the 
given condition is sufficient 

15 

o indicates logical equivalence 
or a definition 

111,133 

c; denotes an embedding 94 
partial map / : Y-I-+A 258 

Table 2. Operations 

Symbol Meaning Example 
Introduced or 

first used on page 

X product in the categorical Bn x Bn 2 
sense 

Xc Cartesian product of XxcY 59 
spaces 

V binary wedge product Bn v B" 10 
V r 

wedge product over VRS"R 18 
objects indexed by Y 

A binary smash product DAA 270,4 
n pullback AHfY 258 
u attaching AUfY 259 

U = U,eA coproduct over objects 1 1 XeA% X 57 
XeA indexed by A 
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Table 2. (Cont) 

Symbols 

Introduced or 
Symbol Meaning Example first used on 

ur-o formation of a countable 2 7 3 ur-o union, mostly of the 
union space of an 
expanding sequence 

(appears also in 

slightly different forms 

like Q or ( J „ 6 ^ 

® tensor product X®Y 148 
o composition of maps b°c 6 
o interior Bn + 1 1 

s boundary ÖBn + 1 
1 

( - , - ) „ induced homomorphism (b,a)H 2 9 3 
between the n-th 
homotopy groups 

[ - . - ] » set of all based homotopy 2 8 7 [ - . - ] » 
classes of based maps 

Cf(-) / -col lar Cj(V) 2 0 

C o o ( - ) infinite collar cjvj 2 7 
colim colimit colim AX 141 

deg degree deg 7 2 9 
dim dimension of a cell dim e 12 

a CW-complex dimX 4 6 
of a Euclidean complex d i m X 1 0 0 
of a simplicial complex d i m X 121 
of an Operator d ima 1 3 2 
of a simplex in a d imx 1 3 9 

simplicial set 
of a simplicial set d i m * 1 4 6 
of a presimplicial set d i m X 165 
of a space d i m X 3 0 0 

dorn domain, source dorn f 2 5 8 , 1 4 
n tt-th power F" 11 
n n-skeleton Xn 2 2 , 9 8 

_(«> n-skeleton of a relative X(n) 2 6 

5 = 5#5B 

CW-complex 
5 = 5#5B unique presentation of a 133 

point seA" by a face 
Operator s # applied to 
an interior point sb 

X = XFFX Eilenberg-Zilber 145 

decomposition of a 
simplex into a 
degeneracy Operator 
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Introduced or 
Symbol Meaning Example first used on page 

x* applied to a 
non-degenerate 
simplex x # 

Eilenberg-Zilber 147 
decomposition of a 
point in a cosimplicial 
set into a face Operator 

y\> applied to an interior 
point y# 

Table 3. Objects 

Introduced or 
Symbol Explanation first used on page 

B° 0-ball 2 
Bn+l (n + l)-ball 1 

infinite ball 2 
Bx 

indexed copy of a ball 12 
BG classifying set of the group G 192 
C field of complex numbers 11 
(CB,p) (Euclidean) cone with base B and peak p 92 
C(f) mapping cone of the map / 269,63 
CD cone over the space D 269,63 
cw reduced mapping cone of the based map / 269 
CD reduced cone over the pointed space D 269 
C(Y,X) set of maps Y -+ X 241 
C0{Y,X) Space of maps Y -> X , provided with the 241 

compact-open topology 
CP" complex projective n-space 11,25 
e cell 15 
e closed cell 15 
F R ,C, or H 11 
H skewfield of quaternions 11 
HP" projective rc-space over the quaternions 11 
K(A) simplicial complex obtained from a A - 110 

indexed family of sets 
L(P,q) lens space of type (/?, q) 169 
M(f) mapping cylinder of the map / 264,63 
MW reduced mapping cylinder of the based 269 

m a p / 
M ( 7 C , n) Moore space of type (n,n) 18 

ordered set of the numbers 0 ,1 , . . . , n 132 
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Table 3. (Cont) 

Symbols 

Introduced or 
Symbol Explanation first used on page 

N set of natural numbers, including 0 11 
pB global set of a Euclidean cone with base B 93 pB 

and peak p 
pL Euclidean complex describing a cone with 

base | L | and peak p 
102 

R field of real numbers 11 
R" + 1 Euclidean (n + l)-space 1 
RP" real projective n-space 11 
S\_p] simplicial p-sphere 145 
s, indexed copy of a sphere 12 
S" n-sphere 1 

infinite sphere 2 
stKp star of p in the Euclidean complex K 101 
St(L) star of the subset L in a CW-complex 36 
T(f) mapping track of the map / 270 
X(L) subcomplex of a CW-complex, generated 36 

by the subset L 
X covering space of X 256 

z additive group or ring of integers 78 
Z p = Z / p Z residue class group of Z mod p 169 

integral group ring over the group n 287 
(r,R) group presentation 80 
A geometric simplex 89 
A" standard-n-simplex 93 
Ak[n\ k-th horn of A[n] 170 
Q' set of all ordinals not greater than the first 

uncountable ordinal 
245 

Tab le 4. Functions (maps, homomorphisms) 

Introduced or 
Symbol Explanation first used on page 

bn 

c" 
dn 

f* 

6 
4 
2 

284 

h 287 
hn 4 
f 1 

f 
3 
2 

J+J- eggs of Columbus 2 
kn 5 
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Introduced or 
Symbol Explanation first used on 

k" 5 
l" 6 
p" 6 
P" 
P 

7 
7 

q" 10 
4" 10 
qRn,qC",qK" 11 
R«+ I 7 
Rn+1 8 
vn 9 

9 
ön = öt elementary face Operator 133 
S" = Bi vertex Operator 134 

face Operators 134 
degeneracy Operators 136 

a"t = <rt elementary degeneracy Operator 135 
preterminal Operator 135 

0 10 
X-*\K(A)\ 114 

Table 5. Categories of... 

Symbol Meaning 
Introduced or 

first used on page 

CSiC simplicial objects in C 138 
CW CW-complexes and maps 56 
CWC CW-complexes and cellular maps 56 
cwr CW-complexes and regulär maps 56 
DSets contravariant functors D^Sets 303 

based spaces and based homotopy 286 
classes of maps 

/c(Top) /c-spaces 242 
OSiCo ordered simplicial complexes 111 
PSiC presimplicial objects over C 138 
PSiSets presimplicial sets 165 
RCWC relative CW-complexes and cellular 56 

maps 
Sets Sets 139 
SiC simplicial objects over C 138 
SiCo simplicial complexes 111 
SiSets simplicial sets 140 
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Table 5. (Cont.) 

Symbol Meaning 
Introduced or 

first used on page 

Top = wHk(Top) weak Hausdorff /c-spaces (except 11 
Section A . l ) 

Top^ based Spaces and based maps 288 
A finite ordinals 132 

Table 6. Functors 

Introduced or 
Symbol Explanations first used on page) 

l - l underlying polyhedron of a Euclidean 97 
complex 

l - l geometric realization of simplicial complexes 112 
of simplicial sets 139 

A M-> M , ph^-fi 134 
_ 1 maximal section, retraction 136 
— 1 minimal section, retraction 136 
c presimplicial cone functor 167 
c chain complex functor 284 
cn 

n-chain functor 283, 284 
c_ category of simplices functor 140 
Dx 

CX^A 141 
E PSiSets-^SiSets 165 
Ex SiSets-> SiSets 212 
E x 0 0 SiSets -> SiSets 215 
F formation of the free group 80 
FA formation of the free abelian group 18 
H(-) homology functor 284 
HJL-) rc-th homology 284 
k /c-ification 242 
P based path space functor 256 
S singular functor Top-*SiSets 156 
S <j> (general) singular functor 303 
Sd barycentric subdivision of Euclidean 102 

complexes 
S d * normal subdivision of simplicial sets 200, 148 
Sd°" opnormal subdivision of simplicial sets 200 
Sd" n times iterated normal subdivision 204 
r0 

realization functor 303 
A Standard simplices functor 141 
A- Yoneda embedding 141 
AX 141 
71 = 7TQ set of path components 14,287 
* 1 fundamental group 80 
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Table 6. (Cont.) 

Symbol Explanations 
Introduced or 

first used on page 

* . ( - , - ) n-th homotopy group of a based Space 287,69 
n-th homotopy group of a based map 292 

* „ ( - , - , - ) relative n-th homotopy group 292, 68 
77 fundamental groupoid functor 298 

Suspension 269,63 
reduced Suspension 269.4 

Ü loop Space functor 256 

Table 7. Natural transformations 

Introduced or 
Symbol Explanation first used on page 

d' S d A l 200 

d" S d o p A l 200 

e 213 

j | S - | - l 7 . o p 
156 

connecting homomorphism 293 

'/ i s « « - s i - l 156 
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absolute neighbourhood retract (ANR) 
281 

Adams, J.F. (1930-1989) 88 
acyclic fibration 178 
acyclic models 286 
addition law (L3) 263 
adjoint (of a simplicial map) 157 
adjoint functor generating principle 303 
adjunction of M-cells 12 
adjunction space 258 
admissible pair (of maps) 292 
affine embedding 91 
affinely independent 89 
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