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Preface

Felix, qui potuit rerum
cognoscere causas!

P. Vergilius Maro, Georgica 2,490

Cellular structures play an essential role in topology, analysis and geometry;
they appear in the form of CW-complexes, simplicial sets and so on. The
idea of this book is to give a unified treatment of their fundamental
geometric and topological (in the sense of general topology) properties. As
a common basis for their representation we have chosen the CW-
complexes.

CW-complexes were formally introduced in the literature in 1949 by
the great English mathematician John H.C. Whitehead. To appreciate
better the depth and perception of Whitehead’s ideas, it is worth looking
back into the development of algebraic topology; on this trip through
history we take Solomon Lefschetz as our Virgil. In his beautiful history
of the early development of algebraic topology (see Lefschetz, 1970),
Lefscheiz shows us how homology was defined by Henri Poincaré — whom
he calls the ‘Founder’ of algebraic topology - using spaces with a combi-
natorial structure; Lefschetz then points out the next stage in the
development of the subject, namely the definition of homology for
topological spaces and the introduction of the homotopy groups of spaces.

" What Whitehead did was to impose again a combinatorial structure on
the spaces and to show how this leads to a much deeper insight into their
homotopy groups. This and other particularly interesting properties of
CW-complexes explain why their presence is felt throughout many
branches of mathematics. The first two chapters of this book are devoted
to the theory of CW-complexes.

Chapters 3 and 4 deal with the theory of simplicial complexes and
simplicial sets; we feel that the existence of a very large body of research
in that area and the importance of combinatorial structures in topology
amply justify the relatively large size of these two chapters.

In the fifth chapter we study the category of spaces having the homotopy
type of CW-complexes. We end the book with an appendix containing
the results of homotopy theory, topology and dimension theory necessary
to the development of the book. Normally we do not prove the results
presented in the appendix but we indicate where the proofs can be found.
The appendix should be read using the index, as sometimes the definitions
are not written in order but, rather, following the flow of each section.
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Because we emphasize geometric and combinatorial structures (and the
arguments related to them), the material we borrowed from algebraic
topology is mostly related to the theory of homotopy groups with only
a minimal contribution from homology; in our minds we view homotopy
groups as more intimately related to our geometric intuition than
homology groups. As a consequence, the results about cellular
structures that are heavily dependent on homology theory (e.g., cellular
homology, obstruction theory, Wall obstruction to finiteness, classifying
spaces, etc.) are not discussed in the book. However, we lay down the
ground work needed for the development of these areas.

Although most of the exercises can be worked out easily using the
material in the text, there are some exercises which require the reader to
consult the references given in each case; the problems of this latter type
have been inserted in the book in order to draw the reader’s attention to
interesting results which, however, could not be incorporated in the text
without enlarging it to unmanageable dimensions. We apologise to their
authors for presenting their work as exercises, possibly giving the
impression that we do not consider it as important -enough to be in the
text; indeed, the contrary is true: in spite of the obvious lack of space, we
did not just pass by and overlook these results!

With regard to the historical notes we wish to say that we have not
done specific research to trace back carefully all the definitions and results
presented in the book. We just give hints to our sources and apologise
to all concerned if we have unintentionally given incorrect credits.

The reader is assumed to be familiar with the standard facts of general
topology and category theory; as basic sources of information on these
areas one can take, respectively, the classical books by John L. Kelley
(1956) and Saunders MacLane (1971).

A few remarks about the notation used in the book: with the exception
of Section A.1, the symbol Top denotes the category of weak Hausdorff
k-spaces and continuous functions, explained just in that section. The word
map always indicates continuity; a non-necessary continuous assignment
between points of spaces of simply called a function. Finally, the symbol
x between k-spaces always denotes the product in the category of k-spaces.

Many persons and institutions have given us a lot of support,
encouragement and suggestions along the way; in particular, we wish
to give our heartfelt thanks to: Professors Tammo tom Dieck, Philip
Heath, Peter Hilton, Dana May Latch, Dieter Puppe; Drs Thomas Bartsch
and Georg Peschke; Universitit Konstanz, Ludwig-Maximilians-Uni-
versitdt, Memorial University of Newfoundland; DFG (Deutsche
Forschungsgemeinschaft) and NSERC (Natural Sciences and Engineering
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Research Council of Canada). Special thanks are due to the Max-Planck-
Institut fiir Biochemie, in Martinsried near Miinchen, and in particular,
to Dr Wolfgang Steigemann, Director of its Computer Centre, who
introduced us to the wonders of ‘computer text editing’; in this field we
were also greatly helped by Professors Herb Gaskill, Edgar Goodaire and
P.P. Narayanaswami. Last, but not least, we wish to thank Mr David
Tranah, our friendly Mathematics Editor at Cambridge University Press,
for his continuous assistance and support.

RuUDOLF FRITSCH RENZO A. PICCININI

Mathematischas ynstituk
der Unive s iinchen
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The fundamental properties of
CW-complexes

Balls and balloons are the standard models for the cells used in the theory
of CW-complexes; thus, the chapter starts by ‘playing’ a bit with such
toys. Next, it continues with a discussion of the problem of attaching
n-cells to a space and with the actual construction of CW-complexes,
followed by a detailed study of the fundamental properties of such spaces.

The unusual number given to the first section of this chapter, namely
1.0, stems from the fact that the material discussed therein is really very
elementary.

1.0 Balls, spheres and projective spaces
The ball in the Euclidean space R"*! is the space

B" ! ={s=(50sS15---»Sn) : |8| < 1};
its topological boundary is the sphere

SB"* ! =8"={seB"*' : |s| =1}
and the difference
Bn+ 1 Bn+ 1\Sn

is the interior of the ball B"*!, namely, the open ball. Observe that the
ball B! =[ —1,1] does not coincide with the unit interval I =[0,1] (in
the sequel, the boundary of I will be denoted by D).

Intuitively, one may view a sphere as the skin of a ball (i.e., a balloon).
To blow up a balloon, there must be an opening, a ‘base point’; thus, set
the point e, =(1,0,...,0) as the base point of both B"*! and S".

Spheres do not appear only as boundaries of balls; in addition to the
inclusions

i Sn_an+1’
it will be necessary to-disguss several standard maps relating spheres and
balls. The list of such maps described in this section is actually longer

than that needed to develop the material herein. The primary two reasons
are:
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these maps could be used to fill in the details for the material sketched
in the appendix;

some of the maps discussed could be used in the homology of cellular
structures (e.g., the Hurewicz isomorphism theorem). Although
homology is beyond the scope of this volume, it is a natural
continuation for the theory here developed.

It is often convenient to view all balls B**! and all spheres S" as
contained in the space R® of all sequences which vanish almost everywhere,
via the embeddings s+ (s,0,0,...); the topology of R*® is determined by
the family of all Euclidean subspaces R" (see Section A.2). Within this
framework, consider the origin of R® as the 0-ball

= {0},
whose boundary is the ‘sphere’
0B°=S"1'= @,
and which coincides with its interior
B°=B°.

In contrast with these ‘minimal’ models B® and S, one has the infinite
ball B® =\ J,>0 B" and the infinite sphere S* =|J,5,S" as subspaces of
R*. Notice that these two infinite models are determined by the
corresponding families of finite models (see Corollary A.2.3).

The ball B" is embedded into the ball B"*! as a strong deformation
retract; a suitable retraction is the map

jn . Bn+1—>B",
given by
J(8)=(S0s- -1 Su-1).
Define the ‘eggs of Columbus’ using the map j", i.e. the inclusions
j+,j— . Bn+1HBn+l
given by
J o) = (505 +s8,- 138, + /1= [ O

and

Jo ()= (50s-+s5p- 135, = /1= 17 G)P).
The function j, (resp. j_) maps the upper (resp. lower) hemisphere onto
itself and the lower (resp. upper) hemisphere onto the equatorial ball B"
(see Figure 1).
The deformation

d": (B" x B") x [ > B" x B"
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Figure |

defined by
d"((s,8), 1) = ((1 = O)s + tG(s + 8)), (1 = O)s' + t(3(s + 5))),
for every (s,s')eB" x B" and every tel, shows that the diagonal subspace
AB"c B" x B" is a strong deformation retract of B" x B"; thus, balls are
LEC spaces (see Section A.4, page 253).
The sphere S" ! is included into the sphere S" as its equator, and this
inclusion, in turn, extends to embeddings

“i_,i, : B"S§"
of the ball B" into the southern, respectively northern hemisphere of S,
given by

L) =(s,—/1—1s?)

and

i1 (5)=(5,4/1= 1),
respectively, having j"|S" as common left inverse.

The maps i_,i, are homotopic only in a very curious way; in fact, a
homotopy can be constructed by observing that both maps are homotopic
to the constant map onto the base point, but there is no homotopy between
them relative to the boundary (see the end of this paragraph). Viewed as
maps into B"*! the maps i_,i, are homotopic in a neat manner namely,
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rel. $"~! via the map
h": B"x1—-B"t!,
given by

h(s, 1) = (s, (2t — 1) /1 — |s]2).
The importance of this map A" resides in the fact that every homotopy
rel. S"~! given between two maps defined on B" factors through A" In
particular this shows: Ifi _, i, were homotopic rel. "~ !, any corresponding
homotopy factored through A" would yield a retraction of B"*' onto S”,
contradicting Brouwer theorem (see TheoremA.9.4).
Next, recall that the map (Figure 2)
c":S"xI1-B"*!
given by
c"(s,t)=(1 —t)eg +ts
induces a homeomorphism
Sn A I—*B'H-l

where the symbol A denotes the usual smash product

S"ANI=8"x1/S"x {0} u{ey} x I.
The formation of the smash product with one factor equal to I is also
known as the reduced cone construction. The reduced suspension of a based

space (X, x,) is one step further away; this construction is given on the
based space (X, xo) by

SX=XxI/X xTuxyxI

§"x {1}
(>

S"x1 &

S~

S"x {0}

Figure 2
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Sll

S""x{l}

€

—

§"'x {0}

x
(@

Brl+l

Figure 3

(note that X.X is homeomorphic to the smash product X A S'); if
f:(Y,y0)— (X, x0) is a based map, its suspension
ZfZY-2X

is the map induced pyf x1:YxI->XxI.

For n> 1, define k" : §"~! x I - S" (see Figure 3(a)) by

k»(s’t)={i+c"'l(s,2t), o<r<t
i_c" Ys,2—21), <<

the map k" takes $"~! x Iue, x I into e, and is bijective outside that

space; thus, it induces a homeomorphism X.5"*! - S" Moreover, the
map k" can be extended to a map k" : B" x I > B"*! (see Figure 3(b))
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€ €

b"
Figure 4

simply by taking
k(e (s, '), £) = c"(k" (s, 1), t');
this latter map induces a homeomorphism X.B"— B"*'. Finally, notice
that the map k" factors through the map ¢"~*, and thus induces a map
b" : B"— 8"

formally, b"oc"~ ' =k" In turn, the map b" gives a homeomorphism
between B"/S"~! and S". It is convenient to extend the definition of b" to
include b° : B°— S° given by b°(B%) = { — 1}. Figure 4 indicates that b"
is homotopic rel. {ey} to i, via a homotopy moving "~ ! only in the lower
hemisphere.

The following maps are relevant to the definition of homotopy groups:

(i) the units

u":B"”—»B"“, "t St St

defined for all neN as the constant-based maps;

(i1) the inversions

ln . B"+l—>Bn+1

defined by I"(k"(s, t)) = k"(s., 1 —t) for every (s,t)e B" x I; this inversion on
B"*1induces an inversion I" : " — S$" on S”; notice that [", I" are reflections
about the hyperplane R" < R"*!:

1"(50,. <3S Sp+ 1) = (s0>‘ cesSpy T Syt 1);
(iii) for n = 1, the pinchings (see Figure 5)
pn . Bn+1_’Bn+1 VBn+1
given by

N

(k"(s,2t), e,), 0

n kn S —
Pilsn) {(eo, k"(s, 2t — 1)),

N =
NN
—
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Bu+l

Bn+l VBn+I
Figure 5

this means that the points with last coordinate equal to zero are mapped
into the wedge point (e, €).

The maps p" induce the pinching of the spheres

pr:S"->8"V S

(The symbol V denotes the usual wedge product: for any pair of based
spaces, say (X,xq), (Y,yo), the space X VY is defined to be
X x {yo}u{xo} x Y, regarded as a subspace of X x Y.)

An inaccurate but graphic description of the pinching is provided by
cell division, a basic process in biology.

For n > 2, there is another useful type of pinching:

ﬁ : B”+1—>Bn+1VBn+l

given by
An(Ln(ln— (kn(kn—- I(S, 214), t)’e )’ O < u< l,
Pk (k '(s,u),t)>={ > 7% DL
(egs K"(K"™ (s, 2u — 1),1)), s<u<l
This means that the points with penultimate coordinate equal to zero are

mapped into the wedge point (ey, €o).
Next, consider the map obtained by projecting B"*! x I onto
B""! x {0}uS" x I from (0,2) in R"*! x R (see Figure 6):

BTt x [ BT x {0 uS"x 1
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2

1
I
!
h 1
', B'HIX[
]
1
!
!

2
"‘—‘(S,O), 0<t<2(1 _lsl)a
-1

r"+1(s,t)= |
—(s,2]s]+t—2), 2(1—|s))<t<1,|s| #0.
s

Notice that the restriction of "' to B"*! x {0} uS" x I is the identity
"*1 with the inclusion of the latter space

and that the composition of r
into B"*! x I is homotopic rel. B**! x {0} uS" x I to the identity map,

via the homotopy
R B xIxI-B"*! xI

given by
R™ (s, t,u) = u(s,t) + (1 — uw)r"* (s, 1);

thus, B"** x {0} US" x I is a strong deformation retract of B"*! x I. This
means that the inclusion of S" in B"*! is a closed cofibration (see

Example 1, Section A.4).
The restriction of the homotopy R" to B" x {1} x I ~B" x I factors

through the map A", thereby inducing a homeomorphism (see Figure 7)
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R"|B"x{1}xI
r* (s, 1)
B"x1
hn v

Figure 7

v Bt B x
one should notice that, regarding i, ,i_ asinclusions of B"into B"*?, then
v"ei_=r"|B"x {1} and v"°i, =inclusion.
The homeomorphism v", interesting in its own right, can be used to
interchange the components B" x {0}uS"! xI and B" x {1} of the
boundary of B" x I:to see this, first note that v" maps the upper hemisphere
of S"*! onto B" x {1} and its lower hemisphere onto B" x {0} uS"™! x I
the actual interchange is then effected by the composite function
w" =" ["o(v™) 1. Two more remarks about the map v" are called for:
firstly, v" induces a homeomorphism
" S"s B x [US" ! x I
secondly, v" combines with the two pinchings p" and p" to yield an
interesting commutative property:
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Lemma 1.0.1 For every n>1,
(i) there is a unique map

q":(B"VB)xI->B"xI)V(B"xI)
such that
g"o(p" x 1)ov” = (" V v")e p;
(ii) the map
§":(B"x)V(B"xI)->(B"V B") x I
induced by the obvious inclusions is a left homotopy inverse to q": there is

a homotopy §"°q"~1 rel.((eq,e,),1) and transforms the boundary of
(B"V B") x I into itself. O

In order to have enough fun in this game of balls and balloons, one
actually needs more than one ball and one balloon in every dimension.
Thus every space homeomorphic to the ball B” (respectively, B" is called
an n-ball (respectively, open n-ball) and every space homeomorphic to the
sphere S” is called an n-sphere. If B is any (n + 1)-ball, its boundary sphere
i.e., the image of $” under a homeomorphism B"*! — B, is denoted by 6 B.

Proposition 1.0.2 For any non-negative integers p and g, B? x B? is a
(p + q)-ball with boundary sphere BP x S1~'USP~! x B?;, moreover, for
every n> 0, (B!)" is an n-ball.

Proof Define @ : B” x B!— B?*1 by setting, for every (s,s')e B” x B,
@(s,s') = {max (Is|, |s'1)//Is1* + |s'[*}(s,5),
if (s,5) #(0,0) and
@(0,0)=0.
The continuity of @ is not difficult to prove. Its inverse is obtained as
follows. Let s = (s, ... ,sp,...,sp+q)eB"+" be given. Set s’ =(sy,...,s,) and
s = (sp+1,...,sp+q); then, define
@~ (s)={|s|/max(|s],|s"|) }(s,s").
The restriction of @ to &(B” x B%) gives the second homeomorphism
announced in the statement. The third homeomorphism is obtained by
induction on n. O

Projective spaces
From the topological point of view, projective spaces are intimately
connected to spheres. However, before exhibiting this connection, one
must give the definition of ‘projective space’ over a field.
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Let F be a (not necessarily commutative) field. The n-dimensional
projective space over F, denoted by FP" is defined as the set of all
1-dimensional (left) vector subspaces of the (n + 1)-dimensional (left) vector
space F"*!. The space FP" can be identified with the set (F"*'\{0})/~,
where ~ is the equivalence relation defined by: s ~ s’ iff there is a scalar
teF with s =ts.

If F is a topological field the projective space FP" is given the identi-
fication topology induced by the projection F** !\ {0} - F P". In this book,
F represents the field R of real numbers, the field C of complex numbers
or the skew-field H of quaternions. Then the space F**! can be identified
with one of the Euclidean spaces R**!, R2"*2 or R*"**. Note that one can
find, for every point in the projective space, a representative of length 1
in the corresponding Euclidean space, i.e., a point in the spheres S", §2"*!
or $*"*3, These identifications yield, respectively, the identification maps

qr" : S"—>RP",
qcn . SZn+1 —*CP",
an : S4n+3—>HP".
The inverse image of a point in the projective space is a pair of antipodal

points in S" for F =R, a circle (= 1-sphere) in $?"*! for F=C and a
3-sphere in $*"*3 for F = H.

1.1 Adjunction of n-cells

The reader should always bear in mind that all the work in this book is
done within the context of the category of weak Hausdorff k-spaces,
denoted simply by Top (except in Section A.1, where it is denoted by
wHEk(Top)).

Intuitively, a CW-complex is a space which can be considered as a
union of disjoint ‘open cells’. For instance, the ball B"*! can be considered
as the union of an (n + 1)-cell, namely the open ball B"*, an n-cell, namely
the punctured sphere S"\{e,}, and the 0-cell {e,}:

Bn+1 — B°n+l u(S"\{eo})u {eo}'
In this book the term ‘cell’ will often be preceded by the adjectives ‘open’,

‘closed’, ‘regular’, or the combination ‘closed regular’. The following list
isintended to make matters clear. A subspace e of a space X is said to be

an open n-cell in X (neN), if it is an open n-ball (recall that an open
n-ball is a space homeomorphic to the open ball B");

a closed n-cell in X, if it is the closure (in X) of an open n-cell;

a regular n-cell in X, if it is an open n-cell whose closure is an n-ball
and whose boundary in the closure is an (n — 1)-sphere;

a closed regular n-cell in X, if it is the closure of a regular n-cell.

=gd;ﬂ’sl‘w.ls?n:g.ﬂs‘.c;’*,es Institut
erUnive Miincharm
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Observe that an n-cell does not have to be regular: the punctured sphere
S§"\{eo},n >0, as a subspace of the sphere S”, is an example of this fact.
For open, regular or closed regular n-cells e, the natural number » is the
dimension of e: dim e = n (see Section A.9). By abuse of language, one also
assigns to a closed n-cell the dimension n, although, outside the theory
of CW-complexes, this does not necessarily coincide with the covering
dimension of the space under consideration (see Example 5). But, if a space
X contains an n-cell of any type, then dim X > n, because inside each open
n-cell there are closed n-balls (see Corollary A.9.2).

The ball B"*! was decomposed into a union of open cells at the
beginning of this section. In what follows, one should have this sort of
cellular decomposition in mind. For the sake of simplicity, the formal
constructions and proofs will often proceed in a slightly different manner.

A pair (X, A) is an adjunction of n-cells, neN, if X can be viewed as an
adjunction space (see Section A.4)

where Y is a topological sum of n-balls and the domain of f consists of
the boundary spheres of the balls forming Y; in other words, if X is given
by a pushout of the form

|_|BZ=Y——>X
A

]

LS, — 4,

i
with B, an n-ball and S, = 6 B,, for all indices 4 in an arbitrary index set
A. If n=0 the definition means simply that X is a topological sum of 4
and a discrete space. If (X,A) is an adjunction of n-cells, any
path-component of X\ 4 is an open n-cell in X, called an n-cell of (X, A).
Each induced map B, — X is called a characteristic map for the Ath cell;
each induced map S;— A4 is an attaching map for the Ath cell. If 4 is a
based space and every map S; — A4 is based, the pair (X, A) is said to be
a based adjunction of n-cells.

Proposition 1.1.1 If (A, a,) is path-connected and (X, A) is an adjunction of
n-cells, n > 0, there exists a based adjunction of n-cells (X', A), such that X'
is homotopically equivalent to X via homotopies rel. A.

Proof Suppose that X = A| | (|_|;B;). Let f;:S,— 4 be the attaching map
for the Ath cell and let w, : - A be a path such that w;(0)= f,(e,),
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w,(1) = ay; choose a representative for (w;); "([f,]) (see page 287 in the

appendix), for every index A. The maps f”, together define a based adjunc-

tion of n-cells (X', A) with the properties required (see Proposition A.4.15).
g

Example 1 For every n> 0, the pair (B",S""') is an adjunction of just
one regular n-cell; one can take the identity of S"~! as an attaching map
and the identity of B" as a characteristic map.

Example 2 For every neN, the pair (S”, {¢,}) is an adjunction of just one
non-regular n-cell. If n > 0, the map b":B"— S" (see page 6) can be used
as a characteristic map; here there is no choice for the attaching map: it
has to be the constant map.

Example 3 For every n >0, the pair (S",5" ') is an adjunction of two
regular n-cells. Take as components of the characteristic map the embed-
dings i,,i_ (see page 3) of the ball B" as the upper, respectively the
lower, hemisphere into the sphere S".

The next example is not so trivial.

Example 4 For every neN, the pair (B"*!uS"*!, B"U S") is an adjunction
of exactly four regular (n + 1)-cells. To prove this assertion, first observe
that
Bn+ 1 Usn-l- 1 Bn+ 1 l_IB"us"(B"USn+ 1);

then note that because of the addition law (L3), it is enough to show
that each of the pairs (B"*!,B"uUS") and (B"uS"*!,B"US") is an
adjunction of just two (n+ 1)-cells. Example 3 and the horizontal
composition law (L1) are used to show that the pair (B"US"*!,B"US")
is an adjunction of two (n + 1)-cells. To prove that the pair (B"**, B"US")
is an adjunction of just two (n + 1)-cells, construct the appropriate pushout
using the ‘eggs of Columbus’ (see page 2) as components of the
characteristic map.

Example 5 Let f : B' - B",n> 2, be a Peano curve, i.e., a map from B!
onto B". Then, the composition f<j!|S! defines a partial mapg : B>~/ — B"
(for the definition of the map j!, see page 2). The pair (B"|],B% B") is
an adjunction of just one 2-cell. The corresponding closed 2-cell has
covering dimension n > 2!

Example 6 Let F be one of the fields R, C, H, of the real, complex or
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quaternionic numbers, respectively; also, let d be the dimension of F as a
vector space over R. Then, for every n> 0, the pair (FP", FP"!) is an
adjunction of just one non-regular dn-cell. The composition of the inclusion
i.:B™"—>8%" (see page 3), the embedding S—S*9-! and the
projection g:S**4~1 > FP" (see page 11) may serve as characteristic
map for the adjunction; this characteristic map induces the attaching map
qul:—l : Sd"_l—bFP"_l.

Proposition 1.1.2 Let (X, A) be an adjunction of n-cells, say
A

Then the following statements hold true:

(i) the inclusion A>> X is a closed cofibration;

(i) the space X is (perfectly) normal, whenever the subspace A is (perfectly)
normal;

(ii1) the space X has dimension n, whenever the subspace A is a normal
space of dimension < n and the index set is not empty,

(iv) X\A is a topological sum of open n-cells, one for each index A,

(v) for any map f':A— A, the pair (A’ 1, X,A’) is an adjunction of
n-cells.

Proof The inclusion dom f > Y is a topological sum of closed cofibrations,
and therefore is itself a closed cofibration. Thus (i) follows because the
attaching process preserves cofibrations.

Since ||;B, is perfectly normal, the adjunction space X is (perfectly)
normal if A is (perfectly) normal (see Proposition A.4.8 (iv)).

To prove (iii) note that under the first part of the condition given, the
space X has dimension < n (see Proposition A.4.8 (v)); if n-cells are really
present, dim X > n.

Part (iv) follows from the fact that X\A is hom<omorphic to
Y\dom f = Li(B;\S,).

Finally, (v) follows from the law of horizontal c: nposition of
Section A 4. O

Remark According to (iv), the index set for | B, can be iiewed as the
set m(X\A) of path-components of X\A. Give the discre: topology to
the set ©(X'\A); then the space B" x n(X\A) can be viewed :s the domain
of the characteristic map for the adjunction of n-cells (X, A). and the space
§"~! x n(X\A) can be viewed as the domain of the attachi - 1 map for the
same adjunction. O
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The bridge between the point of view of considering globally all the
cells used in the adjunction, and that of considering successive attachings
of single n-cells, is given by the following result.

Proposition 1.1.3 The pair (X, A) is an adjunction of n-cells, iff

(1) for every path-component e of X\ A the pair (Aue, A) is an adjunction
of just one n-cell (Aue is considered as a subspace of X) and

(i1) the space X is determined by the family {A} U {e : een(X\A)}.

Proof ‘=" (i) Let e be an n-cell of (X, A4) with attaching map f, and
characteristic map f,.
To prove the equality

Ave=A|l, B,,

observe first that Aue = AU(B,\S,), as sets. It remains to show that the
subspace topology of AU e is the same topology as that of the adjunction
space A| |, B,. Notice that by the universal property of the adjunction,
the space A| |, B, has a finer topology than Aue. Next, let V< Aue be
such that V"4 is closed in 4, and f (V) is closed in B,. Because X is
a weak Hausdorff k-space, V nf,(B,) = f.(f; (V) is closed in X (see
Lemma A.1.1), and, hence, in 4 Ue; this, together with the fact that Vn A4
is closed in A, implies that V is closed in X.

(i) Let U < X be such that Un A4 and U neé are closed respectively in
A and ¢, for each een(X\A). Then, if f is the characteristic map of the
adjunction, f~1(U)=uf, (U Né) is closed.

‘<= For every een(X\A), let f,:S,—~ A denote an attaching map
generating the adjunction space Aue=A|_|,, B,. Let f:[(]S,— A be the
map defined by the maps f,, and let X be theAadjunction space A (LIB,)
with a fixed characteristic map f. The pair (X, A) is an adjunction of n-cells,
and thus it suffices to show that the spaces X and X coincide (up to
canonical h.meomorphism). The universal property of the adjunction
space X gives rise to a bijective map X — X; thus, assume that the spaces
X and X h: e the same underlying sets, and the topology of X is finer
than that o: Y.

Notice th-: f(B,) = & because X is a weak Hausdorff k-space. Let V < X
be such tha: ¥n4 and f~ (V) are closed in 4 and [ |B,, respectively.
Hence f~''V)nB, is closed in B, for every eem(X\A); because
F(f~Y(V)n.i) =V né,itfollows that V néis closed in &, for every een(X \ A).
Condition (1 ' implies that the set V is also closed in X. O

The followi- .z result, which is actually contained in the previous proof,
has some in-:rest in its own right.
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Lemma 1.1.4 Let (X, A) be an adjunction of n-cells and let e be an n-cell
of (X, A). Then,

e=f(B),
where f denotes a characteristic map for e and B denotes an n-ball in the

domain of f. O

An advantage of looking at the adjunction of just one cell at a time lies
in the fact that this process can be characterized without the explicit
construction of a pushout diagram.

Lemma 1.1.5 The pair (X, A) is an adjunction of just one n-cell iff
(i) A is closed in X

and
(ii) there is a map B"— X inducing a homeomorphism B"— X\ A.

Proof ‘=": clear from the definition.

‘=" Let f: B">X be a map as described in condition (ii). First,
prove that f takes the boundary "~ ! of the ball B” into the space A. To
this end, assume the existence of a point s€S"~! such that f(s)eX\A.
Then there is a unique point s'e B" such that f(s) = f(s'); furthermore, the
inverse image of every neighbourhood of f(s) contains points close to s,
contradicting the assumption that f induces a homeomorphism B> X\A.

Denote by f:S""!—A the map induced by f, and form the
commutative square

B, — X

|

Sn—l — A
S

It remains to prove that X has the final topology with respect to f and
the inclusion 4 = X. To show this, first observe that the subspace A4 is
closed in X, by (i), and the subspace f(B") is closed in X, because X is
weak Hausdorff. Since the space X is the union of these two closed
subspaces, a function with domain X is continuous iff its restrictions to
the subspaces A4 and f(B") are continuous. O

The condition (i) in this lemma is necessary, as one can deduce from the
following.

Example 7 The pair (B2, B2\ B') satisfies condition (ii) for n = 1, but fails
to be an adjunction of a I-cell.
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Because a space with a finite closed covering is determined by that covering,
condition (ii) in Proposition 1.1.3 is superfluous if one deals with
adjunctions of only finitely many cells. The following is an example
showing that this condition is unavoidable in the general case.

Example 8 Let {B, : AeN\{0}} be a countable set of copies of the ball
B!. For every index 4, let f; : B, —I denote an embedding whose image is
the interval [1/(1+ 1),1/4] and define f : L B;—I by taking f|B, = f;.
Since f(LS,) is contained in

A= {O}u{}1 : AeN\{0} }

f induces a map f : US;— 4 and a commutative square
p q

UB, L 1
|__|S/1 — A
S

Now, for every index 4, define the 1-cell ¢, = f(B,) in I; then

Aue,.=Au{teR : —Lstsl}
A+1 A

and the pair (4 Ue,, 4) is an adjunction of just one 1-cell (see Lemma 1.1.5).
But I is not determined by the family {4 Ue,}! To see this, consider the
sequence {(24 + 1)/2A(4 + 1)}. This sequence meets every space AuUe; in
just one point, thus it is closed in the topology determined by {Aue,};
however, it converges to O in the usual topology of the unit interval I.
(This situation may also serve as a counterexample in general topology:
it is easy to see that, with respect to the topology of I determined by
{Aue,},0 is a cluster point of f(L B,), but no sequence in f(LB;)
converges to 0; this means that the resulting space is not a Fréchet space.
Similar ideas will be used in Example 13 of the next section.)

There are two more relevant examples of pairs which are adjunctions of
infinitely many n-cells.

Example 9 The concept of the wedge of two spheres S" V S” was briefly
discussed in Section 1.0; this concept has the following generalization. Let
I” be any set; for every yel take a copy of the n-sphere S" with its base
point ey, ie., (S",,e,) = (5", €,). The wedge product of the family of based
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spaces
{(S;, eO):yer}

(also called a bouquet of n-spheres) is the based space (V S}, x), given by
the set

\;5': = {(sy)el_[ S7:s, # ey, for at most one ye]’},

yelm
endowed with the final topology with respect to the canonical map
p:LISy;—> VvV S,
yell vell
and the point = taken to be the element (e,). Note that if I” is finite, this
topology coincides with the subspace topology induced by [, -S7.

The pair (V -S" ) is an adjunction of n-cells; notice that there are as
many n-cells as there are elements in /. A characteristic map for this
adjunction is given by the map

filLIB"=B"xTI'-»V §"
vell r

(here I' is given the discrete topology) defined by f{(s, y) =(s,), where
s, = b"(s).

Example 10 Let = be an abelian group and let n be a natural number
> 1. Let FA(m) be the free abelian group generated by the elements of =,
and let I be a basis of the kernel of the canonical homomorphism
FA(n)>n. Let ¢:FA(n)— n,(V,S", %) denote the homomorphism which
assigns to a generator o of FA(n) the homotopy class of the inclusion of
S" into the n-fold wedge V,S" of S” as the ath factor. Next, for each yer,
choose a representative f,:S"— V,S" of the homotopy class ¢(y). The
maps f, define a partial map f:B"*! x I'-/— V,S", whose resulting
adjunction space M(m,n) is called a Moore space of type (m,n). The
construction of M(m, n) shows that the pair (M(=n,n), V,S") is an adjunction
of (n+ 1)-cells.

What follows is more than just an example.

Theorem 1.1.6 (i) Let (X, A) be an adjunction of n-cells and let p : XX
be a covering projection. Then, the pair ()? , Z) with A = p~!(A), is also an
adjunction of n-cells.

(i) Let (X, A) be an adjunction of n-cells, n>?2, and let p: A— A be a
covering projection. Then, there are an adjunction of n-cells (X, A) and a
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covering projection q: X — X, such that p is induced from q by the inclusion
A— X. In particular, if p is a universal covering projection, so is q.

Proof (i) Consider A =n(X\A) as the index set for the n-cells of the
adjunction (X, A). For every A€ A, choose a characteristic map¢, : B"— X
for the cell e, Then, take A = {(z,)eX x A : p(z) =C,(eo)} and let ¢;
denote the unique lifting of ¢, with ¢;(eq) =z, for any I=(z,)eA (see
Theorem A .8.5). Next, define /:B" x A —» X by (s, Z)v—»é;(s). The restriction
f18"~1 x A factors through 4 therefore, inducing a map f:8" ! x A— A.
It will be shown that X may be viewed as being obtained from A by
adjoining B” x A via f.

First, prove that every point %eX \A corresponds to a unique point in
B"x A. To this end, notice that p(%)¢A, and so p(%)=c,s), for a
unique AeA and a unique seB". Now, let W denote the line segment in
B" connecting s to e, and let @ : WX denote the unique lifting of
¢;| W, with w(s) = X. Then, X = ¢(s), with 1= (w(eg), A).

Second, X has the right topology. It will be shown that a subset U < X
is open if UNA is open in A and ¢;~'(U) is open in B, for every TeA.
Because p is a covering projection, there is an open cover {V, : yeI } of
X such that the induced map V,—p(V,) is a homeomorphism and p(V,)
is open in X, for every yel . Since U is open in Xiff Un V, is open, for
every 7, it suffices to assume U < V,, for some y. But then, U is open iff
p(U) is open in X. Now p(U)nA=p(UnA) is open in A and
¢,"Y(p(U)) = J,¢;~*(U) where the union is taken over all z’s such that
(z, HeA, is openin B, for every Ae A; thus, because X has the final topology
with respect to the inclusion of A and the characteristic maps ¢,, the set
p(U) is open in X.

(i) According to the condition on n, each attaching map for an n-cell
of (X, A) has a simply connected domain, and so it has liftings to A.
Use each of these liftings to attach an n-cell to A. The result is a space X
and the universal property of the attachings determines the covering
projection gq. O

Collaring

Whenever dealing with pairs (X, A) which are adjunctions of n-cells, n > 0,
sometimes it is necessary to enlarge open sets of the subspace A to
appropriate open sets of X. This can be done by the technique of ‘collaring’,
which is described next.

Let [ : LUB;— X be a characteristic map, and let f : uS;— A be the
corresponding attaching map. Assume that every ball B, is just a copy of
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B”; thus, one can multiply any se B, (viewed as a vector of R") by a scalar
tel; the product ts is still a point of B,. The f-collar of a set V < 4 is
defined to be the subset

C,—(V)=Vuf—({ts s sef YY), 1<e<y)).

The following is an immediate consequence of the definition.

Lemma 1.1.7 Let (X, A) be an adjunction of n-cells, let f be a characteristic
map for the adjunction, and let V be a subset of A. Then

@) G(V)nA=V;

() 7N G ={ts :sef T V), d<t<i)

(iti) C;(V) is open in X iff Vis open in A, B

(iv) if Visaclosed subset of A, the closure of the f-collar of V is the set

CG(V)=Vuf({ts:sef'(V), s<t<1})

(v) if e is an n-cell of (X, A), then enE}(V);éQ iff enG(V)#D iff
envV # &,

(vi) C;(V) contains V as a strong deformation retract,
Moreover, if (V) is a locally finite family of subsets of A (respectively, a
Sfamily of pairwise disjoint subsets of A), then

(vii) (C;(V,)) is a locally finite family of subsets of X (respectively, a family
of pairwise disjoint subsets of X). O

The next result requires a little work.

Lemma 1.1.8 Let (X, A) be an adjunction of n-cells and f be a characteristic
map for the adjunction. If V = A is open or closed in A, then

where f is the attaching map corresponding to fand g : f ~'(V) -V is the

map induced by f.

Proof Assume first that V is open in A. Then, because of Lemma 1.1.7
(i), C;(V) is open in X; the stated result now follows by application of
the restriction law (L4) of adjunction spaces, and parts (i) and (ii) of the
previous lemma. In particular, notice that

Cr(A)= AL (f1(4) x (3 1]).

Now if V is closed in A4, then C(V)is closed in C7(A), and so the statement
follows again by (L4). O
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Corollary 1.1.9 If V is an open or closed subspace of A, then the inclusion
V> C;(V) is a closed cofibration. d

The fact that the characteristic maps are not unique might be quite
advantageous; indeed, it permits the choice of the ‘right coordinates’ for a
variety of purposes, as proved by the next proposition.

Proposition 1.1.10 Let (X, A) be an adjunction of n-cells, V be a closed set
of A and U be an open subset of X containing V. Then there is a characteristic

map [ for the adjunction such that the closure C;(V) is still contained
in U.

Proof Choose arbitrarily a characteristic map f : LB, — X, where the
index e runs through all the n-cells of the adjunction. The mapfdetermines
an attaching map f : S,— A whose restriction to a sphere S, will be
denoted by f,. The objective is to construct cellwise a ‘transformation of
coordinates’, which keeps the attaching map f invariant. Notice that j~’
must be modified only for cells e, such that
(*) f({ts:seS,, f(s)eV,i<t<1}) £ U.
Let e be such a cell. Then V,=f,” (V) is non-empty and f(B,) is not
completely contained in U. Hence the set U, = B,\ / ~!(U) is a non-empty
closed subset of B, which does not meet the closed set V,. The distance
o, between the closed sets U, and V, is defined and different from 0,
because these two closed sets are both compact subsets of a metric space.
It is easy to conclude from () that J, < 3. Next, select a homeomorphism
h, : B,— B, which coincides with the identity map on the boundary of B,
and shrinks the ball {seB,:|s|<1—J,} radially into the ball
{seB, : |s| <3}; then define
J1B.=J|B.oh".

This completes the construction of the desired characteristic map f. [J

Exercises

1. Let (Y, D) be an adjunction of n-cells and let 4 be a contractible space.
Show that any map f : D— A4 can be extended over Y.

2. Let M(m,n) be a Moore space of type (m,n). Show that M(x,n) is
up to homotopy independent of the choice of the basis I" selected for
the kernel of the canonical homomorphism FA(n)— x; show also that
M(n,n) does not depend on the choice of the representatives
f,:8"— V8" (see Example 10).
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3. Show by a counterexample that, under the hypotheses of Pro-
position 1.1.10, without the assumption that V is closed, there might
be no collar of V contained in U.

1.2 CW-complexes

One of the main objectives of this book is the study of CW-complexes;
these can now be defined.

A filtration of a space X is a finite or infinite sequence {X" : n=0,1,...}
of closed subspaces of X which is a covering of X and such that X"~ ! is
a subspace of X" forn=1,2,....

A CW-structure for a space X is a filtration of X such that

(0) X° is a discrete space,
(1) for every n> 0 the pair (X", X"~ ') is an adjunction of n-cells, and
(2) X is determined by the family of subspaces {X" : neN}.

There are occasions when it is convenient to start the filtration with
X~ If X~!'= g, the introduction of this extra space does not change
matters; otherwise, one is led to the notion of relative CW-complex, whose
basic proporties are introduced at the end of this section.

If the filtration is finite, condition (2) above is superfluous. If the filtration
is infinite, condition (1) shows that {X":n=0,1,...} is an expanding
sequence; in this case, condition (2) makes sure that X is its union space
(see Section A.5).

A CW-complex is a space endowed with a CW-structure. If one wishes
to be perfectly clear, it is convenient to use the notation

{X;X":n=0,1,...}
or

{(X; X% X%,...,X™}
to describe the CW-complex consisting of the global space X and the
corresponding filtration; otherwise, if the filtration is clearly understood,
just write X instead of the previous lengthy expressions. By abuse of
language, a space X is said to be a CW-complex if a CW-structure is
implicitly given. Conversely, whenever referring to topological properties
of a CW-complex {X;X":n=0,1,...} eg., dimension, it is understood
that these are properties of the space X.

Proposition 1.2.1 Any CW-complex is a perfectly normal k-space.

Proof (1) A discrete space is perfectly normal; (2) adjunction preserves
perfect normality (Proposition A.4.8 (iv)); (3) the union space of an
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expanding sequence of perfectly normal spaces is perfectly normal
(Proposition A.5.1 (iv)). O

If {X;X":n=0,1,...} is a CW-complex, then the closed subspace
X",n=0,1,...,has dimension < n(see Proposition 1.1.2 (iii)) and is called
the n-skeleton of X; the space X" inherits, in the obvious manner, a
CW-structure, and thus it can be considered a CW-complex.

Attention: whenever a letter X represents a CW-complex, X" will denote
the n-skeleton of X and not its n-fold product.

Any (open) n-cell e of the adjunction (X", X"~ ?) is- called an n-cell of
X,n>0; the points of the discrete space X° are called O-cells. A CW-
complex (CW-structure) is regular if all its cells are regular cells.

If e is an n-cell of a CW-complex X, any map ¢, : B"— X inducing a
homeomorphism B"— e is called a characteristic map for e; the compact
image of ¢, in X, which, incidentally, is just the closure é of the open cell
e (see Lemma 1.1.4), is called a closed cell of X; in contrast to Example 5
of Section 1.1, the closed n-cells of a CW-complex have covering dimension
n as subspaces of the n-skeleton (see Corollary A.9.2). For n>0, any
characteristic map ¢, induces an attaching map c, : S"~*=6B"—>X""!
for the n-cell e. Clearly, there are characteristic maps for every cell; indeed,
any characteristic map for the adjunction (X", X"~ 1) gives rise to a family
of characteristic maps for all the n-cells of X.

Notice again that from the set-theoretical point of view, a CW-complex
is the disjoint union of its open cells. Observe that the open cells of a CW-
complex X, in general, are not open sets of X; for instance, the only open
n-cell of the (n + 1)-ball referred to in the beginning of Section 1.1 is not
open in B"*!. The unique cell e containing a given point xeX is called
the carrier of x.

The decomposition of a CW-complex into cells suggests the possibility
of defining another topology, which, however, is equivalent to the topology
determined by its skeleta.

Proposition 1.2.2 A CW-complex is determined by the family of its closed
cells.

Proof Let {X;X":n=0,1,...} be a CW-complex. If U < X is closed in
X then, clearly U ne is closed in ¢, for all cells e of X. Conversely, suppose
that U < X intersects every closed cell of X in a closed set. It is clear that
UnX? is closed in the discrete space X°. Assume, by induction, that
UnX" 'is closed in X" !; since the n-skeleton X" is determined by
X"~ and all the closed n-cells € (see Proposition 1.1.3 (ii)), the set Un X"
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is closed in X. It follows that U~ X" is closed for all neN, and since X
is determined by the family of its own skeleta, U is closed in X. O

Remark This proposition says that a CW-complex can also be viewed as
the codomain of an identification map from a coproduct of balls. Indeed,
take characteristic maps for all cells; then, form the coproduct of their
domains and the induced map to the CW-complex.

Example 1 The ball B"*! has a canonical CW-structure

{{eo},-..,{€0},S", B""1}
(see the beginning of Section 1.1).

As pointed out in that section, the resulting CW-complex B"*! is not
regular, if n>0. Since S" is here the n-skeleton of B"*!, it inherits a
non-regular CW-structure. There are, however, regular CW-structures for
balls and spheres, as we can see in the next example.

Example 2 In view of Example 3 of Section 1.1,
{s°s,...,8™,...,S", B"*1}

is a regular CW-structure for B"*'. This also proves that S", as the
n-skeleton of this CW-structure, can be viewed as a regular CW-complex.

Example 3 Example 4 of Section 1.1 gives another regular CW-structure
for the ball B"*!, namely

{B°US°,...,B"US", B"*1}.

Example 4 The sequence {S" : n=0,1,...} is an expanding sequence with
union space S®, and, again, in view of Example 3 of Section 1.1, it is a
CWh-structure for S*.

Example 5 Unfortunately the sequence {B":n=0,1,...} fails to be a
CW-structure for the infinite ball B®, because the pairs (B", B"~') are not
adjunctions of n-cells. Nevertheless, there is a CW-structure for B®, namely

{B°USO,...,B"US",.. }.
The union space of this expanding sequence and B clearly coincide as

sets. To prove that they have the same topology, consider the expanding
sequence

{B° B°US°B,...,B"B"uS" B"*,B"ttuS"t,. },

whose union space again concides, as a set, with the set B®. But now, if
f is a function with domain B® and values in a given space, all the
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restrictions f|B"US" are continuous iff all the restrictions f|B" are
continuous; this gives the desired result.

Example 6 Example 6 of Section 1.1 proves that
{RP°,...,RP™...,RP"}
is a CW-structure for the real projective space RP",neN.

Example 7 The previous example proves that the sequence {RP" : n=
0,1,...} is a CW-structure for the real infinite projective space RP*; this
CW-structure for RP® has exactly one cell in each dimension.

Example 8 For every neN, define

X2n — X2n+1 — CPn
Then {X°, X*,..., X?"} isa CW-structure for the complex projective space
CP", and the infinite sequence {X" : neN} is a CW-structure for the

infinite complex projective space CP*; this CW-structure for CP* has
exactly one cell in each even dimension.

Example 9 For every neN, define

X4n=X4n+1 ___X4n+2 =X4n+3 =HP".

Then {X° X',...,X**3} is a CW-structure for the quaternionic
projective space HP”, and the infinite sequence {X" : neN} is a CW-
structure for the infinite quaternionic projective space HP®; as in the
previous case, this latter structure has exactly one cell in the dimensions
4n,neN.

The next example is of a totally different nature.

Example 10 The 2-term sequence {Z,R} is a CW-structure for the real
line R.

Example 11 The sequence
{ZxZ,RxZUZ x R,R?},

can be taken as a CW-structure for R2.

Example 12 For an abelian group 7 and a natural number n> 0,

(oo (o), V 5% M)
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is a CW-structure for the Moore space M(mn,n) (see Section 1.1,
Example 10).

All the examples given up to now discuss the CW-structure of well-
behaved spaces; the example bearing the unlucky (or lucky, according to
one’s point of view) number 13 presents a space with a bad property.
Actually, part of the scope in describing the CW-complex of this example
is to show that a CW-complex is not necessarily a Fréchet space.

Example 13 Let X be the CW-complex having {0} and {1} as O-cells, the
open interval (0, 1) as the only 1-cell and for every natural number 4 #0,
a 2-cell e;, with €,\e, = {1/A}. Notice that 0e X\ X, but no sequence in
X\ X' coverges to 0: if (x;) is a sequence in X\ X! which converges to a
point in X!, then at least one 2-cell e,. has to contain a subsequence (y,),
otherwise the sequence would be closed in X and could not converge to
a point outside X\ X'. But then, I\A'=lim,_ _y, =lim,_ _x,; #0.

The concept of relative CW-complex is useful for several purposes. A
relative CW-structure for a space X is a filtration {X® : n= —1,0,1,...}
of X such that:

(1) for every n>0, (X™, X®~1) is an adjunction of n-cells;
(2) X is determined by the spaces X ™.

Notice that there are no conditions attached to the space X~ V. If
XV =g, then X is an honest CW-complex with X" = X™ for n>0;
moreover, if X is any relative CW-complex, then X/X"" is a CW-
complex.

Let X be a relative CW-complex; if X~ is a singleton space, say
XY ={x,}, one obtains a based CW-complex; in this case, X°=
X© and X" = X™, for every n> 0, define an ordinary CW-structure for
X. If X is a based CW-complex, it will be considered as a based space
with the only point in X~ as base point.

Given a CW-complex X, to choose a base point means to construct a
based CW-complex by defining X~V = {x,} for the x,eX° selected, and
also, X™ = X" for all n>0.

Example 14 An adjunction of n-cells (X, A) is a relative CW-complex, with
X® = A for every k<nand X% =X for k>n.

Proposition 1.2.3 Let X be a relative CW-complex. Then,
(i) if X= is a (perfectly) normal space, so is X,
(i) X isdetermined by the family consisting of its closed cells and of X' ™Y,
(ili) the inclusion of any X™ into X is a closed cofibration.
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Proof (i) Compare with the proof of Proposition 1.2.1.
(i) The proof is similar to that of Proposition 1.2.2.
(1ii) follows from Proposition A.5.1(iii) O

Exercises
1. Prove that every base {b,,b,,...,b,} of the vector space R" defines a
CW-structure for that space by taking the k-skeleton of R” to be the set

(R™M* ={ Y s:ib; : s;€R,s;€Z for at least n — k indices i}.

i=1

2. A space X is said to be a sequential space if a subset A of X is closed
iff together with any sequence it contains all its cluster points. Show
that any CW-complex is a sequential space. (Note: Any Fréchet space
is a sequential space but not vice versa — see Example 13.)

3. Let X be a CW-complex. Consider the identification map described in
the Remark following Proposition 1.2.2. Show that this map is closed
and that the inverse image of any point of X is compact iff X is
metrizable. (Hint: see Morita & Hanai, 1956, Theorem 1, or Stone,
1956, cf. Proposition 1.5.11.)

1.3 Some topological properties
It is not very easy to describe the open sets of a CW-complex. The notion
of collaring defined previously is used in this section to construct open
sets of a CW-complex.

Let {X;X":n=0,1,...} be a CW-complex, and let {f": neN} be a
sequence of characteristic maps for the adjunctions (X", X"~ !). If V,, is a
subset of a given m-skeleton X™, the infinite collar C(V,,) is defined as
follows. For every n = m, define

Vn+ 1 = Cf‘nH(Vn)
(the f™*!-collar defined in Section 1.1), and then take
ColVu)= U v,

as a subspace of X. Clearly, the space C_(V,,) depends on the sequence
{f" : neN} of characteristic maps.

The main properties of the infinite collaring are collected in the
following.

Proposition 1.3.1 Let {X; X" : neN} be a CW-complex, let { f* : neN} be
a sequence of characteristic maps for the adjunctions (X", X"~ 1) and let V
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be an open or closed subset of an m-skeleton X™. Then the infinite collar
Co(V)of V

(i) intersects X™ in V;

(ii) is open in X iff V is open in X™;

(iil) has as closure the unionin X of the closures of the intermediate collars;

(iv) is the union space of the expanding sequence of the intermediate
collars;

(v) contains V as a strong deformation retract.
Moreover, if (V,) is a locally finite family of subsets of X™ (respectively, a
family of pairwise disjoint subsets of X™), then

(vi) the family of their infinite collars is again locally finite (respectively,
is a family of pairwise disjoint subsets of X).

Proof Parts (i), (ii), and (vi) are trivial; the normality of X (see
Proposition 1.2.1) ensures that C_(V) has properties (iii) and (iv) (see
Proposition A.5.4). Statement (v) follows from the fact that each
intermediate collar V, is a strong deformation retract of its successor (see
Corollary A.5.8). O

The next result is a first application of the technique of infinite collaring;
it shows that CW-complexes are locally contractible in a strong sense. In
general, a space X is said to be locally contractible if for each point xe X
and each neighbourhood U of x there is a smaller neighbourhood V of
x such that the inclusion ¥V — U is homotopic to a constant map. For
CW-complexes the following result holds true.

Theorem 1.3.2 Let X be a CW-complex, let x, be a point of X, and let U
be an open neighbourhood of x, in X. Then there is a contractible open
neighbourhood V of x, whose closure V is still contained in U.

Proof Let the m-cell e be the carrier of x, in X and let ¢ : B"— X be a
characteristic map for e. Notice that the point y=¢~'(x,) lies in the
interior of B™, and ¢~ !(U) is an open neighbourhood of y in B™. Now
choose a small m-ball B in B™ such that yeB < ¢~ }(U). Since the interior
B= B\6B is a contractible neighbourhood of y in B™, the set V, =&(B)
is a contractible open neighbourhood of x, in X™, whose closure V,, is
contained in U. Selecting inductively the ‘right coordinates’ (see
Proposition 1.1.10), one obtains an infinite collar V= C_(V,) whose
closure is still contained in U. By statement (ii) of the previous proposition,
V is an open neighbourhood of x, in X; because of statement (v) there,
V contracts to V,,, and hence to x,. O
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Recall that a space X is said to be locally path connected at x if, for every
neighbourhood U of x, there is a path-connected neighbourhood V of x
contained in U. Since a contractible set is path connected, Theorem 1.3.2
has the following consequence.

Corollary 1.3.3 4 CW-complex is locally path connected, and hence locally
connected. dJ

Corollary 1.3.4 Let U be an open subset of a CW-complex X. Then U is
connected iff U is path connected. In particular, a CW-complex is connected
iff path connected.

Proof In a locally path-connected space, connected and path-connected
components coincide." O

Another application of collaring is the proof of the paracompactness of
CW-complexes.

Theorem 1.3.5 A CW-complex is paracompact.

Proof* Let X be a CW-complex and let {U,:ieA} be an open covering
of X. The objective is to construct inductively a graded index set
r=0r,
n=0
and subsets V, ,, for every yeI” and every neN, such that the family
{V, : yeI'} with

V= 0 ¥

is an open, locally finite refinement of the covering {U,}. Moreover, it
will be shown that for a fixed meN, the family {V, } is an open, locally
finite refinement of the covering {X"NU,} for the m-skeleton X™.

An index y is said to have degree n (notation: degy = n), whenever yerl,.
As soon as an index y is constructed, another index A = A(y) will be selected
and the constructions will be done in such a way that V, , is contained
in U,,). Furthermore, the set V, , will be taken as a non-empty subset of
X"\ X""1 for m=degy,V,, = for m<degy and V,, >V, for
m>degy.

t For another proof of the second part see Corollary 1.4.12.
* For an alternative proof see Section 1.5, Exercise 1.
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Start the construction of I" by taking I'y = X; then, for every yel,,
select an index A(y) such that ye X°nU Ay and, for these y, define

Vio= {r}.

Now assume that the sets I, are constructed up to and including the
index m— 1, together with the corresponding sets Vm,yef ., and the
corresponding indices A(y).

In order to take the induction step, first define Voms Y€ mn=0,1,...,
m—1. Choose an arbitrary characteristic map f for the adjunction
(X™ X™~1) of m-cells, and, for any y as before, define

Vv,m = Cf_(V)' )(\ Uﬂ-(y)'
Because of the induction hypothesis, the family (V,, , _,)is open and locally
finite, and so is the family (V, ,,) (see Lemma 1.1.7(iii) & (vii)). Note that V,, =
UYVy,m (where y runs over the sets I,,n=0,1,...,m— 1) is an open set
in X™ which contains X™~!. With a suitable choice of the ‘right coordi-
nates’ (see Proposition 1.1.10), one can arrange matters so that the closure
of the collar of X™~! is still contained in V,,.

Let e be an m-cell and let f,:B™— X be its corresponding character-
istic map. The family {U’, = f~}(U,)} covers the m-ball B' = {se B":|s| <
21, since B’ is compact, finitely many members of this family, say U/, ,...,
U’ suffice to cover B'. With this in mind, define

Lo={4y,..., 4}
moreover, for every yel,, define

Ay)=y

ym=—1

and
Vom=Ff(B'nU)).
Finally, define

Fm = I—J re’

where e runs over the set of all m-cells of X.

One must prove now that the indices y and the sets V., actually perform
the tasks they are supposed to. First, prove that the family {V, , : degy <
m} is locally finite. Let x be a point of X whose carrier is an m-cell e. On
the one hand, it is already known that x has a neighbourhood U which
meets only finitely many sets V., with degy <m, and, on the other hand,
e meets only finitely many sets V,, with degy=m, namely those with
yel,; then U ne is a neighbourhood of x in X™ which meets only finitely
many V,  with degy <m. Suppose now that xeX m~1 The idea now is
to prove that any open neighbourhood U of x in X™~' meeting only
finitely many V. with degy < m, can be enlarged to a neighbourhood

y,m—1°
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U" of x in X™, meeting only finitely many V, ,, with degy <m. This_will
be done by analysing carefully the various collaring processes. Let f be
one of the characteristic maps used in the construction of the set V,,; then,
according to Lemma 1.1.7 (vii), the collar Cf(U ) interesects only finitely
many V, . with degy <m. Notice that B= Ue fe(B’) is a closed subset of
X™ which does not meet X™ !, Therefore, U’ = C;(U )\B is a neighbour-
hood of x in X™ having the desired property.

At this point, one should notice a property which will be needed in the
sequel: U” intersects V,  iff U intersects V.

yym—1°
The final step of the proof can now be taken. For every index y,
vnXm=v, .,

and therefore V, is open in X. Moreover, the inclusions
V,eU )

show that the family (V,) is a refinement of the family (U ). For an arbitrary
point xe X, take a non-negative integer m such that xe X™ and choose a
neighbourhood U, of x in X™ which intersects only a finite number of
sets V,. As proved before, the neighbourhood U, of x can be enlarged,
inductively, to neighbourhoods U, of x in X", all of which intersect only
a finite number of sets V,, which already intersect U,,. Thus | J2, U, is
a neighbourhood of x in X intersecting only finitely many sets V,; this
proves that the family (V) is locally finite. O

Remark Theorem 1.3.5 actually follows from the fact that the formation
of adjunction spaces and union spaces of expanding sequences preserves
paracompactness (see Exercise 5 of the Appendix and Proposition A.5.1
(v)); the text, however, offers an independent direct proof; one reason for
selecting this procedure is to pinpoint the use of the axiom of choice. The
reader will have noted that several choices were made during the proof
of Theorem 1.3.5. Then, one may ask if the axiom of choice is really
necessary to prove the paracompactness of CW-complexes. Couldn’t one
have the same situation as in the Tychonoff theorem (the Cartesian product
of a collection of compact spaces is compact relative to the product
topology) which is known to be equivalent to the axiom of choice? A
systematic examination of the proof of Theorem 1.3.5 shows that the
following two weak forms of the axiom of choice would be enough to
yield the theorem.

(i) Axiom of countable choice: it is possible to select just one element
from any member of a countable family of sets. This is used to choose
the characteristic maps f needed to construct the sets V,,.

(i) Axiom of multiple choice: it is possible to select a finite set of elements
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from any member of an arbitrary family of sets. With this axiom, instead
of choosing one A(y) for each y, one chooses a finite set L, of indices 4,
so that the sets U, AL, contain the set V,  in question. Then one can
proceed by assuming that the subsequent sets V., are all contained in the
open set (.., Us.

The choice of a finite subfamily of the covering (U’) of the ball B’ is
not really necessary. One can get the Lebesgue number ¢ of this covering
without using any axiom of choice, and then it is possible to construct
explicitly open sets with diameter ¢. The selection of the ‘right coordinates’
does not require a choice.

The previous considerations show that one is not really faced with a
situation analogous to that of Tychonoff’s theorem. For compact
Hausdorff spaces, it is known that the theorem of Tychonoff is equivalent
to the ultrafilter theorem, a weaker form of the axiom of choice, but in
another direction. The ultrafilter theorem is not equivalent to the axiom
of multiple choice. This question leads to more sophisticated problems in
set theory.

Theorem 1.3.6 Every CW-complex is an LEC space.

Proof Let X be a CW-complex. Because coproducts of balls are LEC
spaces, Corollary A.4.14 shows, by induction, that all the skeleta X" are
LEC and so is their union space X (see Corollary A.5.6). O

Remark LEC spaces are locally contractible (see Proposition A.4.5); thus,
the previous theorem proves again that CW-complexes are locally con-
tractible. However, the previous proof of this fact (see Theorem 1.3.2) is
not wasted, since it indeed furnishes a stronger result.

Corollary 1.3.7 Let X be a CW-complex and x be an arbitrary point of X.
Then, the inclusion map {x} — X is a closed cofibration.

Proof Because X is LEC, there is a neighbourhood U of AX in X x X
which is deformable to AX in X x X rel. AX; moreover, there is a
mapo : X x X —»1 such that «a”}(0)=AX and «|(X x X\U)=1 (see
Proposition A.4.1 (iv)). Take

o, X1

to be a.(y)=a(y,x), for every yeX, and U,=a, !([0,1)). Then,
o, 1(0)={x}and o, |(X\U,)= 1. Now,if H : U x I - X x X is a suitable
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deformation, take H, : U, x I - X to be

rioH((y, x), 2t), 0<
Hx(y,t>={”‘ ( 1

P"2°H((y,x),2—2t), 5<

for every yeU,,tel. Notice that H, deforms the neighbourhood U, of x

into {x} rel. {x}. Thus, the inclusion of {x} into X is a closed cofibration

(see again Proposition A.4.1 (iv)). O

Exercises

1 A space is hereditarily paracompact if every subspace is paracompact.
Show that it suffices to require this condition for open subspaces and
that CW-complexes are hereditarily paracompact.

2 Prove that CW-complexes are stratifiable. (Borges, 1966)

3 Let X be a CW-complex and C be a compact Hausdorff space. Show
that the function space X¢ is stratifiable. (Cauty, 1976)

Later on, it is proved that X has the type of a CW-complex (see
Corollary 5.3.6).

4 Generalize the statement of Exercise 3 to spaces C for which there is a
sequence {C, : neN} of compact Hausdorff subspaces C, such that
every compact Hausdorff subspace of C is contained in some C,. (Thus,
C may be any locally compact CW-complex or any locally compact
metric space satisfying the second axiom of countability.)

1.4 Subcomplexes
Let X be a CW-compiex. A CW-complex A is a subcomplex of X, if
(1) A is a subspace of X and
(2) for all neN, the n-skeleton of A is the intersection of A with the
n-skeleton of X:

A"=X"NA.
Condition (2) implies that the CW-structure of A4 is determined by the
space A and the CW-structure of X; thus, by abuse of language, one also
says that a subspace 4 of the CW-complex X is a subcomplex of X, if
the filtration
X°nAcX'nAc---cX"nAc -

is a CW-structure for A.
Every skeleton X" of X is a subcomplex of X. Moreover, a subcomplex
of a subcomplex of X is again a subcomplex of X.

Lemma 1.4.1 If A is a subcomplex of the CW-complex X then every cell
of Ais acell of X.
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Proof Let e be an n-cell of A; as a subset of A"\ A" ™!, the set e is also a
subset of X™\ X"~ !, that is to say, e is contained in an open n-cell ¢’ of
X. By the theorem of invariance of domain, e is an open subset of ¢'. On
the other hand, é\ec A" ' = X"™!, and so éne =e. But ¢ is compact,
and hence is closed in X. This implies that e is also closed in ¢'. Being a
non-empty open and closed subset of the connected set ¢’, the set e must
coincide with ¢'. O

Corollary 1.4.2 Let A be a subcomplex of a CW-complex X and let e be a
cell of X. Then, e is a cell of A iff en A is not empty.

Proof Only the sufficiency will be proved, since the necessary condition
is trivial. Let x be a point in en 4 and let ¢’ be the carrier of x in A. The
lemma implies that ¢’ is also a cell of X, and, since ene’ is not empty, it
follows that the cells e and ¢’ must coincide. O

The skeleta of a CW-complex and those of a subcomplex are related as
follows.

Lemma 1.4.3 Let A be a subcomplex of a CW-complex X. Then,
(i) the pairs (X"~ YU A", X"~ ') are adjunctions of n-cells;
(i) the pairs (X", X"~ ' U A") are adjunctions of n-cells;
(iii) the inclusions of A" into X" are closed cofibrations.

Proof Let j : A— X denote the inclusion of A4 into X. If e is an n-cell of
A and ¢' : B"> A is a characteristic map for e, then the composition
joc¢' : B*— X is a characteristic map for e considered as an n-cell of X.
Conversely, if e is an n-cell of A and ¢ : B"— X is a characteristic map
for e considered as a cell of X, then ¢ factors through A, giving a chara-
cteristic map ¢’ : B"— A for the cell e. Consider simultaneously the
characteristic maps for all n-cells of X; then A" is closed in X" (by induction)
and (i) follows from Proposition 1.1.2(v) while (ii) is a consequence of the
addition law for adjunction spaces.

Finally, assume inductively that the inclusion of 4"~ ! into X" ' is a
closed cofibration. Then, by the horizontal composition law,

Xn—l UA"= Xn-l l_]An—lA",
and therefore the inclusion of A" into X" 1uU A" is a closed cofibration.

Composition of this inclusion with the closed cofibration X"~ ' U A" — X"
of (i) completes the induction. O

As seen before, a subcomplex of a CW-complex is a union of cells of the
CW-complex; one should then ask: which unions of cells of a CW-complex
form a subcomplex? This question is taken up by the following result.



Subcomplexes 35

Proposition 1.4.4 Let X be a CW-complex, let 2 be a set of cells of X and
let A be the union of all cells of Q. T he following conditions are equivalent:

(i) A is a subcomplex of X;

(ii) A is a closed subspace of X;

(iii) for every cell ec£, the closure & of e is contained in A.

Proof (1)=(ii): Since X has the final topology with respect to the X" and
since X"n A = A", it follows that A is closed in X.

(i1) = (iii): Trivial.

(iii)=>(i): Define A" = X" A; then A is determined by the subspaces A",
according to Proposition A.5.4 (ii). Thus, it remains to prove that every
pair (4", A"~ ') is an adjunction of n-cells, for every neN. This will be done
by induction on n, establishing at the same time the fact that 4" is closed
in X". Choose a characteristic map ¢, : B,— X for every n-cell e; of Q.
Condition (iii) implies that the corresponding attaching maps ¢, factor
through A"~ !. It is immediate that at the set theoretical level

A"= A" LI(B\S)).
A

To show that 4" has the correct topology, take a subset U of A" such
that UnA""! and ¢; }(U) are closed in A"~* and B,, respectively, for
every 4. Now, since A" ™! is closed in X" ! (use the inductive hypothesis),
it follows that U is closed in X™; for the special case U = A" this already
shows that A" is closed in X". But if U is closed in X" it is also closed in
the subspace A" of X" |

Corollary 1.4.5 Arbitrary unions and intersections of subcomplexes of a
CW-complex X are subcomplexes of X. O

Proposition 1.4.6 Let X be a CW-complex and A be a subcomplex. Then
the filtration

{(XM=X"UA:n=-10,...}

gives X the structure of a relative CW-complex.

Proof The space X™ is the union of the closed subspaces X"~ and X"
whose intersection is X"~ ! A" Since the inclusion X" 'UA"c X" is a
closed cofibration (see Lemma 1.4.3(ii)) X™ may be viewed as obtained
from X~V by attaching X" via the inclusion X"" U A4, < X"~ 1), But the
pair (X", X"~ U A" is an adjunction of n-cells (see again Lemma 1.4.3
(i1)), and so the pair (X", X"~ V) is also an adjunction of n-cells (see the
horizontal composition law (L1)).
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Since X is determined by the family {X" : neN}, it is also determined
by the family of the subspaces X™ (see Proposition A.2.1). O

In the previous proof one uses the fact that a subcomplex is always a
closed subspace; this is part of Proposition 1.4.4. Moreover, the following
finer result holds true.

Corollary 1.4.7 The inclusion of a subcomplex into a CW-complex is a
closed cofibration.

Proof See Proposition 1.2.3 (iii). O

Example 1 For any subset L of a CW-complex X, the intersection of all
subcomplexes of X containing L is a subcomplex X (L) of X. Moreover,
because any subcomplex is closed, it follows that

X(L)=X(L).

In general, the closed cells of a CW-complex are not subcomplexes (see
Example 13 in Section 1.2).

Example 2 For any subset L of a CW-complex X, the star of L is the
subcomplex
StLy= {J X(.
enL# &
A pair consisting of a CW-complex and one of its subcomplexes behaves
nicely with respect to Serre fibrations.

Proposition 1.4.8 Let D be a subcomplex of the CW-complex Y and let
p: Z— X be a Serre fibration. Moreover, let a homotopy H : Y x I - X
andamap H : Y x {0}uD x I »Z withpeH = H|Y x {0} UD x I be given.
Then, there exists a homotopy H : Y x I - Z such that H|Y x {0} uD x
I=H and p-H = H.

Proof The proof is done using the ‘method of the least criminal’. Using
Zorn’s lemma, find a subcomplex 4 of Y containing D and which is
maximal with respect to the property: there is a homotopy G : A x I > Z
such that G|A x {0}uD xI=H|Ax {0}uD xI and poG=H|Ax L
Assume A to be different from Y and take a cell ec Y\A of lowest
dimension, say dime=n. Let ¢ : B"—> Y be a characteristic map for the
cell ¢; its associated attaching map factors through a unique map
c: 8" !> A. The space A'= Aue, obtained by attaching B" to A4 via c,
is a subcomplex of Y strictly bigger than A. It will be shown that the
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homotopy G can be extended suitably over A’ x I, contradicting the
maximality of A.

To simplify the notation, assume that A = D and that A’ = Y. Note that
in this case, Y x I is obtained from Y x {0} uD x I by attaching B" x I via
the restriction f : B"x {0}uS" ! x I->Y x {0} uD x I of ¢ x 1;; more-
over,peHe f = Ho(¢ x 1;)|B" x {0} uS"~! x I. Next, take a homeomorphism

h:B"xI->B"x1
which induces a homeomorphism
h:B x{0}—>B"x{0}uS"'xI
(this can be obtained from the homeomorphism w" defined on page 9
by ‘turning top to bottom’). Now apply the defining property of Serre
fibrations in order to obtain a homotopy C : B" x I —» Z, such that C|B" x
{0} =Hefohand poC=Ho¢ x 1;°h. Since Coch™!|B" x {0} uS" ™' x I =
H o f, the universal property of attaching yields a homotopy C' : Y x - Z
with the desired properties. a

Corollary 1.49 Let D be a subcomplex of the CW-complex Y which is a
strong deformation retract of Y and let p: Z— X be a Serre fibration.
Moreover, letmapsf : Y— X andf : D— Z withpo f = f|D be given. Then,
there is a mapj7 : Y > Z such that f|D =f and pOf = f.

Proof Let H: Y x I - Y be a deformation of Y into D, ie., a homotopy
rel. D from a map which factors through a retraction r : Y—D to 1,. The
restriction of foH to Y x {0} UD x I can be decomposed in the form poH;
the proposition proves the existence of a homotopy H : Y x I - Z with
H|Y x {0}uD x I=H and poH = H. Now take f:Y = Z, yrs H(y, 1).

O

Theorem 1.4.10 If X is a regular CW-complex, the closure of any cell e of
X is a subcomplex, i.e., é= X(e).

Proof Clear,ifdim e = 0. Assume the theorem true for all cells of dimension
strictly less than n. Let e be an n-cell of X. It is enough to prove that é\e
(which is an (n — 1)-dimensional sphere, by the regularity assumption) is
a subcomplex. Let ¢ be an open (n — 1)-cell meeting &\ e. Clearly, e'n(é\e)
is closed in ¢ and open in &\e, and thus it is also open in ¢’ (see the
theorem of invariance of domain). It follows that e’ n(&\ e) is a non-empty
component of ¢, and, hence, ¢ = &\e. Now let £’ denote the set of all
(n— 1)-cells of X meeting &\e; by the induction hypothesis, the closures
of all these (n — 1)-cells ¢ are subcomplexes of X and so is 4 =), €.
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It is clear that A < &\e; however, the opposite inclusion also holds true,
as can be seen via the following decreasing induction:

é\ec AuXi=é\ec AUXT L

It is already known that é\e = Au X"~ 2, For the inductive step, take a
g-cell " with " n A = (; this implies that e” is open in AU X, and thus
e"n(e\e) is open in é\e. If "N (€\e) # &, then one would have an open
(n — 1)-ball contained in the open g-ball ¢” and this, because g <n—2, is
a contradiction to the theorem of invariance of domain. Therefore,
e"n(é\e) = &, implying that é\ec AU X1 O

Proposition 1.4.4 also has some consequences about the connectivity of
a CW-complex.

Proposition 1.4.11 A connected component (respectively, a path-component)
of a CW-complex X is a subcomplex of X.

Proof Let A be a connected component (respectively, a path-component)
of X. Any cell (respectively, any closed cell) meeting A is completely
contained in A. Thus, 4 is a union of cells and condition (iii) of
Proposition 1.4.4 holds true. O

The previous ideas permit one to re-prove one of the conclusions of
Corollary 1.3.4:

Corollary 1.4.12 Any connected CW-complex is path-connected.

Proof Let A be a path-component of a connected CW-complex X. Both
A and X \ A are subcomplexes of X, the latter as the union of the remaining
path-components of X. Thus, A4 is open and closed in X and therefore it
is equal to X. O

A similar argument proves the following fact.

Corollary 1.4.13 Any CW-complex is the topological sum of its (path-)
components. 0

In particular, this means that a path-component of a CW-complex is
open. This property is shared by all spaces which are dominated by
CW-complexes:
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Proposition 1.4.14 If a space Y is dominated by a CW-complex X, then the
path-components of Y are open.

Proof Let f: Y—> X and g : X - Y be maps such that go f is homotopic
to the identity of Y and let U be a path-component of Y. Let y be an
arbitrary point in U and let V be a path-connected neighbourhood of
f(y)yin X (see Corollary 1.3.3).

Any point ze f ~'(V) can be joined by a path to ge f(z) by means of a
homotopy 1y ~go f; since f(z)eV, there is a path from f(z) to f(y) which
is transformed into a path from go f(z) to go f(y) by the mapg. Using a
homotopy geof ~ 1y, there is a path from gof(y) to y. Altogether, this
gives a path from z to y, implying that f ~!(V) < U; thus, U is a neighbour-
hood of y, and, since this fact holds true for all ye U, the set U isopenin Y.

O

Remark The previous result is not as general as it seems, because, as will
be seen in Chapter 5, spaces dominated by CW-complexes already have
the type of CW-complexes (see Proposition 5.1.1). ]

A trivial consequence of Proposition 1.4.4 is that any collection of 0-cells
is a subcomplex. One should finally note that any non-empty CW-complex
contains 0-cells.

Proposition 1.4.15 If X is a CW-complex then, every path-component of X
(respectively, X™) contains at least one 0-cell.

Proof By its very definition, a path-component of a space is non-empty.
Thus, a given path-component of X must contain a cell e,. Clearly, the
result holds true if e, is a O-cell. Otherwise, é,\e, # &, and so there exists
a cell e; of lower dimension. If e, is not yet a 0-cell, the same argument
shows the existence of a cell e, of even lower dimension. A 0-cell must be
obtained after only finitely many steps. O

Exercises
1 If X is a contractible CW-complex and A is a contractible subcomplex,
prove that A is a strong deformation retract of X.
2 Let A and Y be subcomplexes of a CW-complex X with X = AuY and
A, Y, AnY contractible. Prove that X is contractible.
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1.5 Finiteness and countability

In the theory of CW-complexes, one uses several kinds of countability
assumptions: a CW-complex (CW-structure) X is

finite, if X has only finitely many cells;

locally finite, if every (open) cell of X meets only finitely many closed
cells of X;

of finite type, if every skeleton X" is a finite CW-complex;

countable, if X has countably many cells.

There is still another type of finiteness condition, satisfied by every
CW-complex.

Theorem 1.5.1 A CW-complex is closure finite, i.e., the closure of every cell
meets only finitely many (open) cells.

Warning: Be careful to distinguish between the notion of ‘closure
finiteness’ given in 1.5.1 and that of ‘local finiteness’ described before. The
latter is a very restrictive condition (see Propositions 1.5.10 and 1.5.17).
A way to view this distinction is perhaps to observe that for any given
cell e, closure finiteness deals with the lower dimensional cells which meet
the closures ¢ of e, while local finiteness has to do with the higher
dimensional cells whose closure meet the open cell e. d

The proof of Theorem 1.5.1 is an immediate consequence of the following.

Proposition 1.5.2 A compact subset of a CW-complex is contained in a finite
union of (open) cells of the CW-complex.

Proof Let X be a CW-complex and K be a compact subset of X. Let E
denote the set of all cells of X which intersect K. Choose a point x,eK
in every cell eeE. It will be shown inductively that the set Z = {x, : ecE}
intersects any skeleton in only finitely many points; thus, Z will be a
discrete closed subset of X, and also of K. Recalling that any discrete
closed subset of a compact space is finite, one obtains that Z is finite.
Clearly, ZnX°=KnX° is a discrete closed subset of the compact
space K, and so it is finite. Assume now that Zn X"~ is finite. Since Z
meets any closed n-cell in a finite number of points, and X" is determined
by the family consisting of X" ! and all closed n-cells of X (see
Proposition 1.1.3 (i1)), Zn X" is a discrete closed subset of X" contained
in the compact space K, and hence is finite. O

Proposition 1.5.2 has other interesting consequences.
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Corollary 1.5.3 If X is a CW-complex and e is any of its cells, then the
subcomplex X(e) is finite.

Proof The proof is by induction on the dimension of the cells. If e is a
0-cell, then X (e) coincides with e itself and therefore is finite. Suppose that
X(e) is finite for every cell e of dimension strictly less than n. Let e be an
n-cell of X. Because é\e is compact and contained in X"~ !, the proposition
implies that &\e is contained in the union of finitely many open cells

€1,€2,-..5€

of dimensions < n. By the induction hypothesis, the subcomplexes X (e;),
i=1,...,k are finite; moreover, the union

~

X=euX(e)u---uXe)

is a (finite) subcomplex of X (Proposition 1.4.4 (iii)). The proof is completed
by noticing that X(e) is contained in the finite subcomplex X. O

Corollary 1.5.4 If X is a CW-complex and L is a relatively compact subset
of X then the subcomplex X (L) is finite.

Proof Since X(L)= X(L), one may assume that L is compact. By
Proposition 1.5.2, L is contained in a union of finitely many cells, say
e;,e,,...,e but then

X(L) = X(e)u---uX(e)
the latter being a finite subcomplex of X. O

This corollary has a very general application (but read the remark after
Proposition 1.4.14).

Corollary 1.5.5 A compact space dominated by a CW-complex is dominated
by a finite CW-complex.

Proof Let X be a compact space and let Y be a CW-complex which
dominates X;let /' : X—Y and g : Y— X be maps such that go f ~ 1.
Since X is compact, f(X) is compact, and hence contained in a finite
subcomplex Y’ of Y, which also dominates X. O

Another application of Proposition 1.5.2 concerns the notion of
path-connectivity. A CW-complex X is said to be cell path connected fif,
for every two points x, ye X, there is a sequence {x = x,...,x, =y} of
points of X such that, forevery i=1,...,n, {x,_,,x;} is contained in some
closed cell of X.
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Proposition 1.5.6 A CW-complex is path connected iff it is cell path
connected.

Proof Clearly, a CW-complex which is cell path connected is also path
connected. Assume that one is given a path-connected CW-complex X,
two different points x,yeX and a path ¢ :I—X from x to y. The
compactness of the path implies that it meets only finitely many cells of
X (see Proposition 1.5.2). Perform an induction on the number of these
cells. If the path is contained entirely in one cell, there is nothing to prove.
Otherwise, from the set of cells under consideration whose closure contains
x, select one cell e, having maximal dimension and take x, = a(t,) to be
the last point of the path that belongs to the closure of e,. Notice that
x, is a point on the boundary of e, and that a([t,,1])ne, = &J. Now we
apply the inductive hypothesis to the path o|[t,,1]. O

Some subcomplexes of a CW-complex are always cell path connected,
independently of the fact that the CW-complex is path connected or not.
The following is an example.

Proposition 1.5.7 Let e be a cell of a CW-complex X. Then X (e)= X(e) is
cell path connected.

Proof By induction on the dimension of the cell e. The proposition is
obvious if e is 0-dimensional; suppose that dime = n and that the result
is true for all cells of dimension < n.

As seen in the proof of Corollary 1.5.3, the CW-complex X(e) can be
written in the form

X(e)=X(@e)=euX(e)u---UX(ep,),

where e,,...,e, are the finitely many cells of X that intersect &. Now take
x, yeX(e). The result is clearly true if x, yee. If xee and yeX(e;), let
zeeéne; # ; by the induction hypothesis, there is a sequence {xg,..., xq}
of points belonging to X(e;), and therefore to X, and cells e/,...,e; of
X(e;) such that x;, = z,x, = y and {x,_,,x;} = &,. Now take the sequence
{xo,...,x,,,}and thecellse,,...,e . ,50 that Xo = X,X; = Xg,..., X, | =
x;and e, =ee;=€,...,e,, =€ Finally, if xe X(e;) and yeX(e;), take
zeene;, weene; and reduce the argument to the previous case. O

A property P of a CW-complex X is said to be topologically invariant if
P depends only on the space X and not on the specific CW-structure
chosen for X. As a consequence of Proposition 1.5.2, the property of
‘finiteness’ is topologically invariant.
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Proposition 1.5.8 A CW-complex is finite iff it is compact. (]

Finite-dimensional balls, spheres and projective spaces with the CW-
structures described in Examples 1, 2, 3, 6, 8 and 9 of Section 1.2 are
examples of finite CW-complexes. Clearly, all finite CW-complexes are
locally finite; the CW-structures of the spaces R! and R? described in
Examples 10 and 11 of Section 1.2 respectively are locally finite but not
finite (the same will be true for the CW-structures of the higher-dimensional
Euclidean spaces given in Example 1 of Section 2.2). Local finiteness is
another topologically invariant property of CW-complexes.

Lemma 1.5.9 If X is a locally finite CW-complex and e is any of its cells,
then the star St(e) of e is a compact neighbourhood of e.

Proof Because X is locally finite, e meets only finitely many closed cells
of X, and thus
Stey= ) X()
éne+J
is a finite subcomplex of X, and so is a compact space.
Now one has to show that St(e) is a neighbourhood of e. Let Q be the
finite set of all closed cells of X which meet ¢; the union

w=|Je&
e"e)
is a subset of St(e). The idea is to prove that W is already a neighbourhood
of e. To this end, let £’ be the set of all closed sets of X which meet W
but not e. Closure finiteness (see Theorem 1.5.1) and the hypothesis
imply that €’ too is finite; thus the union

c= | ¢

e\
is a compact, in particular, a closed subset of X disjoint to e. Next, choose
an infinite collar ¥V = C(e) of e. Since V is open (see Proposition 1.3.1
(i), the difference set ¥\ C is an open neighbourhood of e. It will be shown
by induction that, for every n>=m=dime, the set V,=X"n(V\C) is
contained in W, implying that V\C < W as desired. Clearly, V,,=ec W.
For the induction step, consider a point yeV, . ,\V,, with carrier e,. Since
y belongs to a collar of V,, the closed cell &, meets V, (see Lemma 1.1.7
(v)), and thus W, by the induction hypothesis. Now, if &, would not belong
to the set £, it would be an element of ' and, consequently, a subset of
C, contradicting the assumption that yee, n(V\C). But &,e£2 implies that
yee, < W, as desired. d
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One may think that the assumption of local finiteness on X in Lemma 1.5.9
is only necessary to prove the compactness of St(e) and that St(e) is always
a neighbourhood of e, for any cell e of a CW-complex X. To see that this
is not the case, take the CW-complex X constructed in Example 13 of
Section 1.2 and observe that the St({0}) = X' is not a neighbourhood of

{0}.
Proposition 1.5.10 A CW-complex is locally finite iff it is locally compact.

Proof ‘=" See Lemma 1.5.9.

‘«=" Let X be a locally compact CW-complex and let e be a cell of X.
Every point of the closed cell & has a compact neighbourhood; since € is
compact, e is covered by finitely many of these compact neighbourhoods,
and therefore e has a compact neighbourhood V in X. Now observe that,
on the one hand, e does not intersect the closure of any cell of X contained
in X\V, because V is a neighbourhood of ¢, and, on the other, V intersects
only finitely many cells of X,V being compact (see Proposition 1.5.2).
These observations prove that the cell e intersects only finitely many closed
cells of X. O

Corollary 1.5.11 A CW-complex X is locally finite iff its closed cells form
a locally finite (closed) covering of X.

Proof ‘=" Let xeX be an arbitrary point of X and let K be a compact
neighbourhood of x. According to Proposition 1.5.2, K is contained in a
finite union of open cells of X. Now, local finiteness implies that each of
the open cells meeting K interesects only finitely many closed cells.

‘<=" Let e be an open cell of X. For each point xe¢, choose a neighbour-
hood U, of x with the property that U, meets only finitely many closed
cells of X. Since & is compact, finitely many neighbourhoods U_,...,U,,
are enough to cover the cell e. Then each closed cell of X which encounters
e must meet one such set U _, i=0,...,r. Since each U, intersects only
finitely many closed cells of X, the open cell e meets only finitely many
closed cells of X. O

Remark There are still some other topological characterizations of local
finiteness whose proofs depend on results not yet stated; for this reason,
they are postponed to Proposition 1.5.17. O

The discussion about locally finite CW-complexes is continued with the
following result.
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Proposition 1.5.12 A locally finite and connected CW-complex X is
countable.

Proof Let 2 be the set of all cells of X and let e, be a fixed cell of X;
for each neN, let

A,={(eg,€1,...,€,) 1 e,€Q8,_ ne;#F,i=1,...,n}.
Claim: the sets 4,,neN are all finite. In fact, every component e; of any
element (eq, e,,...,e,)€A, isacell of St(e,_,),i = 1,...,n; then, use the fact
that each St(e; _ ) is finite (this follows from the local and closure finiteness
properties of X).
Now take the countable set

a=) A4,

neN
and define the function

a: A-Q

whose restriction to A4, is the function taking (e,,...,e,) into e,. Because
of cell path-connectivity (see Proposition 1.5.6) « is an epimorphism and
therefore £ is also countable. O

Proposition 1.5.13 A locally finite and countable CW-complex is the union
space of an expanding sequence of finite subcomplexes X, such that, for
every n, X, is contained in the interior of X, (the interior taken with
respect to the topology of X).

Proof Leteg,e,,...,e;,... be an enumeration of the cells of X. Define X,
as the empty set and assume that X, has been constructed. Consider the
integer i defined by

i=min{j: e;¢ X,},
and also the finite set Q2 of all cells contained in X,; then define the
subcomplex X, , by

X, ., =St(e)u | St(e).
ee 2
Because of Lemma 1.5.9, X, , | is a finite subcomplex of X, and, moreover,
is a neighbourhood of X,,. By construction, each cell e; belongs to some
X,; thus,

X=X,
neN

(see Proposition A.5.3). gd
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Another topologically invariant property for CW-complexes is the dimens-
ion. The finite case can be described easily.

Proposition 1.5.14 A CW-complex X is finite-dimensional iff it coincides
with one of its skeleta, i.e., if the CW-structure can be described by a finite
filtration. If this is the case, the smallest number m such that X = X™ is the
dimension of X:

dim X =min{meN : X = X™}.

Proof 1f dim X = n then the space X cannot contain m-cells with m > n
(see Corollary A.9.2); thus X = X". Conversely, if X coincides with one of
its skeleta it has the finite dimension of that skeleton.

Clearly, X = X™ implies dim X < m; thus the dimension of X is smaller
than or equal to the minimum described. If this minimum is n, then
X # X"~ !implies that there must be m-cells withm > nie,dimX >n. O

The questions coming up now have to do with embeddings of CW-
complexes into Euclidean spaces.

Theorem 1.5.15 Every locally finite and countable CW-complex of
dimension m can be embedded in R*™* !,

Proof Let X be a locally finite, countable and m-dimensional CW-
complex. The bulk of the proof consists in the explicit construction of an
embedding f : X —»R*™, with k(m) = 3(m + 1)(m + 2). Once this is done,
it follows that X is metrizable and satisfies the second axiom of
countability; thus, as a space of dimension m, X can be embedded in R*"*!
(see Theorem A.9.7).

The construction of the map f will be done by induction on the skeleta
of X. Start by enumerating the 0-cells of X and defining f, : X°—>R! as
the function which sends the only point of the jth O-cell of X into 2jeR.
Suppose that f, : X"—R*" has been defined. Let

€05€1,--5€j,...
be an enumeration of the open (n + 1)-cells of X, and for each jeN let ¢;
(respectively, c;) denote a characteristic map (respectively, the induced

attaching map) for the cell e;. Then, define the injection

(fn(x)$ 0)’ xeX"
f,, + 1(x) = . -

2i(1 — Dexm+1 + [tfulc(9), (1 — 0)ts, 1 — 1], x=¢j(ts)ee;,
where e, ., €R*"*V is the unit vector with the (k(n) + 1)th coordinate
equal to 1. Finally, set f = f,,.
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One now proves, using an induction procedure, thateach f,,n=0,...,m,
is an embedding. This is visibly so for n =0. Assume that f, has been
proved to be an embedding and take f,,, : X"*!' >R"* D, Consider the
given enumeration of the (n+ 1)-cells and observe that f,, (e;)=
(X" YV, where

Vj = {z = (219"’>2k(n+ 1))€Rk(n+ D (2] - l)zk(n"-l)

<y <@+ Dz 1,}
for each jeN; therefore, f,  ,(e;) is open in f(X"*'). Finally, one has to
show that f, , | takes open sets of X"*! into open sets of f(X"*!). Let V
be an arbitrary open set in X"*! and take xeV. Claim: f,,,(x) is an
interior point of f,, (V) with respect to f,, (X"*1).

Case I Assume xeX"*'\X"and let the (n + 1)-cell ¢; be its carrier. Because
Ju+11€; is a homeomorphism, f,, (Vne;) is open in f, ,(¢;); thus,
f,+1(Vnej)is openin f,, (e;) and therefore in f,,,(X"*1).

Case 2 Now suppose that xeX". According to Corollary 1.5.11, assume
that V meets only finitely many closed (n + 1)-cells, say ¢, , ..., ¢, . It suffices
to prove that no sequence in f,,,(X"*')\f,.,(V) converges to
J+1(x) = fu(x). Assume the contrary i.e., suppose that there is sequence
{x; : ieN} in X"* "\ V such that

ilirgf"*l(xi) = fos1(X) = fu(x).

By the induction hypothesis, f,,,(VnX") is open in f,,,(X"), and
therefore the sequence {x;} cannot have a subsequence contained in X".
Hence, one may assume that {x; : ieN} < X"*'\ X", this means that each
x; is of the form

Xi= Ejll(i)(tisi)
for some p(i)eN, t;€[0, 1) and s;€S". Considering that the last coordinate
of f,,,(x;)is 1 —t; and that the last coordinate of f,(x)is 0, it follows that

lim (1 —¢)=0,
that is to say,
lim ti = 1.
i— o0

This implies that
fu¥)=hmf (c; ()= f..( lim (cj,,m(si)))

i~
From the induction hypothesis one obtains that
x = lim (c o (80)),

i— o
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so one can assume that

{¢;,(8:) : ieEN} = X"V,
hence, {j,;, : ieN} < {jq,...,j,}. This implies that the sequence {p(i)} must
contain a constant sequence, i.., there is a subsequence {y, : keN} of the
sequence {x;} which is contained in one open (n + 1)-cell e;, with 0 < s <.
Finally, this shows that x=Ilim,_ y,, contradicting the fact that
{nice i\ O

Disregarding the hypothesis on dimension in the previous theorem, one
still obtains an interesting embedding theorem.

Theorem 1.5.16 Every locally finite and countable CW-complex can be
embedded in the Hilbert cube.

Proof Let X be a locally finite and countable CW-complex. Take an
expanding sequence {X, : neN} as described in Proposition 1.5.13. Every
X, can be embedded into a Euclidean space (by the previous theorem).
Now one can construct a countable basis of X = U,°,°=o)f » using Cantor’s
diagonal procedure. Because X is normal, Urysohn’s metrization theorem
implies the metrizability of X. Thus, X is metrizable and satisfies the
second axiom of countability; consequently, it can be embedded in the
Hilbert cube (see Theorem A.9.8). |

Now the stage is ready for the presentation of the other topological
characterizations of local finiteness announced earlier (see the Remark
after Corollary 1.5.11).

Proposition 1.5.17 For a CW-complex X, the following conditions are
equivalent:

(1) X is locally finite;

(ii) X is metrizable;

(iii) X satisfies the First Axiom of Countability.

Proof (i)=>(ii): If X is locally finite, so is each one of its path-components.
Thus the path-components, being locally finite and countable (see
Proposition 1.5.12), are metrizable (see Theorem 1.5.16). Finally, X,
being the topological sum of its path-components (see Corollary 1.4.13),
is metrizable.

(ii) = (iii): Trivial.

(iii)=>(i): Assume X not to be locally finite. Then, there is a cell e in X
which meets the closure of infinitely many cells. Choose a sequence
{e; : jeN} of pairwise distinct cells such that ené; # &, and, for every
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JjeN, choose a point x;cené; Because ¢ is compact, the sequence
{x; : jeN} contains a convergent subsequence; thus, one may assume,
without loss of generality, that the sequence {x;} is itself convergent, say
to a point x.

Now let UyoU;>---o U, - be an open basis of the neighbourhood
system of x. Notice that each U; meets infinitely many open cells e;. Define
a sequence of natural numbers {j; : ieN} by taking

jo=min{j : Ugne, # &5},
Jisy=min{j :j>jand U, ne;# &}.
Next, for every ieN, choose a point z;eU;ne;.. On the one hand, the set
{z; : ieN} is closed, because any open cell of X contains at most one
element of this sequence, and thus, by closure finiteness, any closed cell
contains at most finitely many points z;. On the other hand, every
neighbourhood U of x contains one U,, and thus all the points z; with
i > n; this implies that x =lim,_, _z, contradicting the fact that {z; : ieN}
is a discrete subset of X. |

Remark For a better understanding of the proof of this theorem, the
reader should go back to Example 13 of Section 1.2; that is, to an example
of a CW-complex which is not locally finite. O

The embedding theorems given before (Theorems 1.5.15 and 1.5.16) have
a converse.

Theorem 1.5.18 Let X be a CW-complex.

(i) If X is embeddable in the Hilbert cube, then X is locally finite and
countable.

(i) If X is embeddable in the Euclidean space R™, then X is locally finite,
countable and has dimension <m.

Proof (i) As a subspace of the Hilbert cube, X satisfies both axioms of
countability. By the previous results, the first axiom implies that X is
locally finite. Moreover, its path-components are locally finite and
countable (see Proposition 1.5.12). If X is not countable, then it cannot
have a countable number of path-components and therefore it cannot
satisfy the second axiom.

(iiy By the theorem of invariance of domain, R™ cannot contain open
cells of dimension > m. O

The concluding results of this section are based on a simple consequence
of closure finiteness.
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Lemma 1.5.19 Let X be a CW-complex and let Z be a subset of X which
meets every open cell of X in at most one point. Then Z forms a discrete
closed subspace of X.

Proof Because of closure finiteness, every subset of Z meets a closed cell
of X in a finite and, therefore, closed subset. Since X is determined by its
closed cells this implies that every subset of Z is closed in X and so, in
Z, yielding the result. |

One application of this fact is the topological invariance of countability.

Proposition 1.520 A CW-complex is countable iff it does not contain an
uncountable discrete subset.

Proof ‘=" Assume X to be a countable CW-complex with an uncountable
discrete subset A. But X is a codomain of an identification map f : B— X,
where B is a coproduct of countably many balls. Since B satisfies the
second axiom of countability, it cannot contain an uncountable discrete
subset; on the other hand, by taking one point in the inverse image of
each point in A4, one obtains an uncountable discrete subset of B.

‘<=" See Lemma 1.5.19. O

Finally, there is an analogue to proposition 1.5.2 and Corollary 1.5.4 for
the Lindelof property. Recall that a Hausdorff space is called Lindeldf if
every open covering contains a countable subcovering.

Proposition 1.5.21 If K is a Lindelof subspace of a CW-complex X, then
X(K) is a countable subcomplex of X.

Proof Let E denote the set of all open cells of X which intersect K. The
choice of a point x,e K in each cell ec E produces a discrete closed subspace
Z of X (see Lemma 1.5.19), and therefore of K. By the Lindelof property,
Z must be countable. This, together with closure finiteness, implies the
result. O

Exercises

1 Prove that a CW-complex is topologically dominated by the family of
its finite subcomplexes (this gives another proof for the paracompactness
of CW-complexes — see Theorem A.2.5).

2 Give an example of a CW-complex which is not topologically dominated
by the family of its closed cells.
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3 A CW-complex X is locally countable if every (open) cell of X meets
only countably many closed cells of X. Show that a CW-complex X is
locally countable iff each point xe X has a neighbourhood meeting only
countably many cells. (Lundell & Weingram, 1969, Proposition 2.3.6;
compare also with Lemma 1.5.9 and Proposition 1.5.10 given before in
this section.)

1.6 Whitehead complexes

The objective of this section is to prove that the definition of CW-
complexes given in Section 1.2 coincides with that originally given by
J. H. C. Whitehead.

First recall the definitions introduced by Whitehead. A cell complex
is a Hausdorff space X, which is the union of disjoint open cells subject
to the following condition. The closure & of each n-cell e of X is the
image of a map f : B"— ¢ such that:

(1) f induces a homeomorphism B" —e;
(2) f(6B") =é\ec X" !, where X"~ ! — the (n — 1)-skeleton of X —is the
union of all m-cells of X with m<n (Note X !'=¢)
The definitions given in Sections 1.1 and 1.2 show that any CW-complex

is a cell complex; the converse is not true.

Example 1 Take X =1 and consider every point of X as a 0-cell.

A cell subcomplex A of X is a union of cells of X such that if e is a cell
of A then &< A. 1t is clear from this definition that the union and the
intersection of a set (finite or infinite) of cell subcomplexes of X are cell
subcomplexes of X. Moreover, from (2) above, for every non-negative
integer n, X" is a cell subcomplex of X. A cell subcomplex of X is finite
if it is the union of finitely many cells of X. Notice that a finite cell
subcomplex 4 of X is a closed subset of X, and, indeed, a compact subset
of X, for A is a finite union of finitely many compact spaces ¢, e in A.
However, an arbitrary cell subcomplex of X need not be closed: in
Example 1, every subset 4 of X is a subcomplex, even if 4 is not closed in X.

If L is a subset of X, analogously to the definition given in Section 1.4,
define X (L) to be the intersection of all cell subcomplexes of X which
contain L; clearly X (L) is a cell subcomplex of X. Note that X(L) is the
union of all X(e), for all cells e of X which intersect L:

xw= | X

enL#Q
In fact, the union on the right-hand side is a cell complex containing L,
and, conversely, if xeenL# &, X {x} = X(e) = X(L). Moreover, X(e) =
X (@), for every cell e of X.
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As in Section 1.5, a cell complex is said to be closure finite if the closure
of each one of its cells meets only finitely many cells.

Lemma 1.6.1 A cell complex X is closure finite iff X(e) is finite, for every
cell e of X.

Proof ‘=": The claim is analogous to the statement of Corollary 1.5.3 for
CW-complexes. The proof given there remains valid in this more general
situation.

‘<=’ Suppose that X(e) is finite for every cell e of X. Notice that for
any given cell e, of X,

X(eo) = X(éo) = U X(€).
€nég £ D
Since every cell ¢ of Ue,néo +zX (¢') appears also in X (&) and the latter
subcomplex is finite by hypothesis, there are only finitely many cells ¢’
meeting é,. O

The cell complex of Example 1 is closure finite.

Example 2 Let X be the space of the ball B? with a 0O-cell for each point
of S* and just one 2-cell, namely B2\S'. The cell complex obtained is not
closure finite. In contrast to the cell complex of Example 1, this new space
is determined by the family of the closures of all of its cells. OdJ

The necessary definitions to formulate Whitehead’s definition are now all
in place: a Whitehead complex is a cell complex X such that

(1) X is closure finite,
(2) X is determined by the family consisting of the closures of all cells ee X.

As stated by Whitehead in his paper, the name CW-complex is an
abbreviation for Closure finite complex with the Weak topology (i.e., the
topology determined by the family of the closure of all cells).

Condition (1) above implies that, for any cell e of a Whitehead complex
X, the cell subcomplex X(e)= X(e) is finite. Thus, every closed cell is
contained in a finite subcomplex; this, together with condition (2) shows
that:

(2) X is determined by the family of all finite cell subcomplexes (see
Proposition A.2.1).

In contrast with the situation in an ordinary cell complex, subcomplexes
of Whitehead complexes behave as expected.
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Lemma 1.6.2 Let A be a cell subcomplex of a Whitehead complex X. Then
A is a closed subset of X and is itself a Whitehead complex. In particular,
the skeleta X" are W hitehead complexes.

Proof The intersection of A with any finite cell subcomplex of X is a
finite cell subcomplex, and thus is closed.

In order to see that A4 is a Whitehead complex, it is enly necessary to
check that A is determined by the family consisting of the closures of its
cells, since its closure finiteness is evident. Let L be a subset of A such
that én L is closed in ¢, for all cells e of A. Take any closed cell &' of X.
Because of closure finiteness, &' N A4 is contained in a finite union of finitely
many cells e,,...,e, of 4; thus

y -

ene,

'Cx-
C=

e_lnA=e—Iﬁ e-,'=

1 i

It

1

t

and thus

k
énL=¢nlnA=|)&nenL
i=1
is a finite union of closed sets and therefore is itself closed. Because X is
determined by the family {€'}, it follows that L is closed in X, and hence
also in A. O

Theorem 1.6.3 The skeletal filtration of a cell complex X is a CW structure
iff X is a Whitehead complex.

Proof ‘=". Proposition 1.2.2 shows that X is determined by the family
of the closure of its cells. Theorem 1.5.1 shows closure finiteness.

‘«<=" (1) X°isdiscrete: Let L be a subset of X°. Since X is closure finite,
every closed cell € meets only finitely many O-cells, and hence contains
only a finite subset of L; therefore én L is closed. But X is determined by
the closures of its cells; so L is closed in X and thus in X°.

(2) For every n> 1, the pair (X", X"~ !) is an adjunction of n-cells: If e
is an arbitrary n-cell of X, condition (1) of the definition of cell complex
and Lemma 1.1.5 prove that (X"~ 'uUe, X"~ !) is an adjunction of just one
n-cell. Moreover, X" is determined by the family consisting of all closed
cells of dimension at most n (see Lemma 1.6.2), and therefore is determined
by the family {X" "'} u{é : een(X"\ X"~ 1)}, according to Proposition A.2.1.
The claim is now proved (see Proposition 1.1.3).

(3) The covering of X by the closed cells refines the covering by the
skeleta; thus X is determined by the subspaces X" (see again
Proposition A.2.1). O
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Remark In the construction of CW-complexes given in Section 1.2, it is not
necessary to worry about Hausdorffness; this is a trivial consequence of
Proposition 1.2.1. However, in the approach presented by Whitehead,
such a separation axiom is an intrinsic part of the definition. What follows
is an example of a cell complex which is closure finite and is determined
by the family of its closed cells, and yet fails to be Hausdorff. O

Example 3 Let X be the ‘interval with a double point’ i.e., the quotient
space

I x{0,1}/[(¢,0)~(,1) : 0<t < 1]
The cellular structure of X is given as follows. Let p : I x {0,1} > X be

the identification map and take p((0,0)) = p((0, 1)), p((1,0)), p((1,1)) as
O-cells and p((I\{0, 1}) x {0}) = p((I\{0,1}) x {1}) as the only I-cell.

Exercise

Given a (not necessarily Hausdorff) space X and a family {f; : ieA} of
maps
fi:B%"=X,
let X" denote the union of all e, = f,(B™) with n, <n. Prove that the
filtration {X": neN} of X is a CW-structure for X if the following
conditions are satisfied:
(i) each e; is an open n,-cell of X via the map f;
(i)) X is the disjoint union of the cells ¢;;
(iii) for every leA, f;(0B™) < X"
(iv) a subset of X" is closed whenever its inverse image in each B";,n, <n
is closed. (Milnor, 1956).

Notes to Chapter 1

Balls, spheres, projective spaces and most of the maps relating them are due to
John Folklore. The construction of suspension was introduced first in
Freundenthal (1938), with the German name Einhdngung.

The notion of ‘CW-complex’, the basic notion of the whole text, was introduced
in Whitehead (1949a), where also many of the results given in Chapters 1 and 2
are proved, including the famous realizability theorem (see Section 2.5). The
development of the theory of CW-complexes presented in the book, although
leading to the same geometric structures invented by J. H. C. Whitehead (see
Section 1.6), has a more categorical flavour; this allows us to streamline many of
the proofs and to obtain new results. This approach is not really new, but was
employed before, for instance, in Hu (1964), Brown (1968) and Piccinini (1973).
In contrast to the more or less widespread use of the term ‘weak topology’, we
elected to follow the advice of Ernest Michael and speak of ‘topologies determined
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by...”; one reason for this is the fact that the ‘weak’ topology on a simplicial
complex in general has more open sets than the ‘strong’ topology (see Section 3.3,
Example 3). The basic processes in our presentation are: (1)attachings, and
(2) formation of the union space of expanding sequences in which the attached
spaces are certain metric spaces; if one allows the attaching of arbitrary metric
spaces, one obtains the slightly larger category of M-spaces studied in Hyman
(1968).

As far as the Examples are concerned, the following texts can be used for the
relevant definitions:

Peano curve: Dugundji (1966).
Fréchet space: Engelking (1977).
Moore spaces: Moore (1955); Varadarajan (1966).

The technique of collaring is a basic tool for exhibiting topological properties
of CW-complexes; it is intrinsically already contained in Whitehead (1949a), where
the local contractibility of CW-complexes already appears. (The paracompactness
of CW-complexes could be expected after this property was proved for simplicial
complexes; it was shown for the first time in the case of CW-complexes in Miyazaki
(1952), where also the simplicial sources are mentioned.) Local equiconnectivity
of CW-complexes is due to Dyer & Eilenberg (1972).

Subcomplexes were extensively studied in Whitehead’s original paper. The fact
that a compact space dominated by a CW-complex is always dominated by a
finite CW-complex (see Corollary 1.5.5) suggests the following question: under
what conditions will a space, which is dominated by a finite CW-complex, have
the type of a finite CW-complex? A subtle answer to this question relying on
algebraic K-theory is given in Wall (1965). The proof of the fact that the closure
of any cell of a regular CW-complex is a subcomplex (see Theorem 1.4.10) is
inspired by the presentation in Lundell & Weingram (1969).
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Categories of CW-complexes

The objective of this chapter is to study four categories whose objects are
CW-complexes, namely:
(i) the category CW of CW-complexes and maps,
(ii) the category CW*® of CW-complexes and cellular maps,
(ii1) the category CW* of CW-complexes and regular maps and
(iv) the category RCW*® of relative CW-complexes and cellular maps.

2.1 Morphisms
Let Y, X be CW-complexes. A map f:Y — X is:

(i) cellular, if for all neN, f(Y") < X7
(ii) regular, if f is cellular and takes every open cell of Y onto an open
cell of X.7
Let Y, X be relative CW-complexes. Amap f : Y- X is:
(i) cellular, if for n= —1 and all neN, f(Y") < X".
Note that, in all cases, the dimension of the cells is not necessarily
maintained; indeed it may decrease.

Clearly, identity maps are cellular and regular with respect to the same
CWh-structure on domain and codomain, and composition of cellular
(respectively, regular) maps yields a cellular (respectively, regular) map;
indeed, cellular (respectively, regular) maps form subcategories of CW.
Because regular maps are cellular,

CWrcCWe

Proposition 2.1.1 Let Y, X be CW-complexes and let f:Y — X be a regular
map. Then,
(i) the image by [ of a closed cell of Y is a closed cell of X;
(i) f(Y) is a subcomplex of X;
(i) the induced map Y — f(Y) is an identification.

Proof (i) Let e be a cell of Y; then, by regularity, e = f (e") is a cell of X. Since
¢' is compact, f(e'}) is a closed subset of X containing e, and thus e < f(e’).

' A better and more intuitive terminology would be to use the words ‘skeletal’ instead of
‘cellular’ and ‘cellular’ instead of ‘regular’. However, we stick to the usual convention.
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On the other hand, if yee’ and U = X is a neighbourhood of f(y) then,
by the continuity of f, the inverse image of U by fis a neighbourhood of
y and meets e; therefore U meets e. Since this holds for every
neighbourhood of f(y), it follows that f(y)ee.

(i1) By the definition of regularity, f(Y) is a union of open cells of X. By
(i), the closure of any cell in f(Y) belongs also to f(Y); thus f(Y) is a
subcomplex of X (see Proposition 1.4.4).

(i11) one has to show that a subset C = f(Y) is closed if its inverse image
by fis closed in Y. Now, C is closed in f(Y) if Cneé is closed for every
cell e of f(Y). But this is true because of the compactness of f ~}(C)né,
where ¢’ is a cell of Y with f(¢') = e and the equation f(f ~'(C)né')=Cneé
which follows from (i). ]

Corollary 2.1.2 A surjective regular map between CW-complexes is an
identification. O

Example The covering projection

R—S!,  ti>(cos2nt,sin2nt)

is a regular map with respect to the CW-structures of R and S* described
in Example 10 in Section 1.2 and Example 2 in Section 1.1, respectively.

O

2.2 Coproducts and products

The categories CW, CW°,CW"™ and RCW*® have arbitrary coproducts;
more precisely:

Proposition 2.2.1 Let
({XsX"in=—1,01,2,.}: deA}
be a family of (relative) CW-complexes. Then,

{u XA;I_IX}.H ch= —1,071,2,"'}

e A Ae A
is a CW-complex, which, together with the canonical inclusion maps, satisfies
the properties of a coproduct of the CW-complexes X, in the categories
CW, CWS,CW* and RCWE (in particular, this means that the inclusions
X, > ;s X, are regular maps). Moreover, if all X, are regular
CW-complexes, | |;c 41X, is regular. Finally,

dim |_] X; =max {dim X, : leA}. a

AeA
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The categories CW, CW* and CW* have also finite products, but these
are harder to obtain.

Theorem 2.2.2 Let {X;X":n=0,1,2,...} and {Y;Y":n=0,1,2,...} be
CW-complexes. Then,

() {X xY; (JpsqenX?x Y9 :n=0,1,2,...} is a CW-complex, which,
together with the canonical projection maps, satisfies the properties of a
product of the CW-complexes X and Y in the categories CW, CW*® and
cwr,

(i1) the open (closed) cells of the CW-complex X x Y are the products of
the open (closed) cells of X and Y respectively;,

(iil) the projection maps X x Y > X and X x Y > Y are regular;

(iv) if X and Y are regular CW-complexes so is X x Y;

v) if dmX =120,dim Y =m >0 then,

dim(X x Y)=1+m.

Proof Define
XxYy= ) X°xY~
ptq=n
Clearly, (X x Y)° is discrete.

Next, note that, for every pair (p,q) of natural numbers, B” x B? is a
(p + g)-ball with boundary B? x S9~'uS?~! x B? (see Proposition 1.0.2).
Thus, the multiplication law (L5) for adjunction spaces shows that the pairs

(XPx YL XPx YI"luXP~! x Y9

are adjunctions of (p + g)-cells, whose attaching maps are denoted by f, .
Next, fix neN. Then, for (p,q) with p+g=n, the union X?” x Y?" 'y
XP~! x Y%is a subspace of (X x Y)"~! and the corresponding maps f, ,
together determine a map f, from the coproduct of their domains to
(X x Y)"~'. Now, (X x Y)"is obtained from (X x Y)"~! by adjunction of
n-cells via f,. This construction of the map f, shows implicitly statement
(i) of the theorem.

In order to prove that X xY is determined by the family
{(X x Y)": neN}, observe first that, for every peN, X? x Y is the union
space of the expanding sequence {X” x Y? : ¢=0,1,...} and that X x Y
is the union space of the expanding sequence {X” x Y : p=0,1,...}. Thus,
X x Y is determined by the family {X” x Y? : p,qeN} and hence also by
the family {(X x Y)" : neN}. This completes the proof of statement (i).

Statements (iii) and (iv) are immediate consequences of (ii).

Finally, if X = X'and Y = Y™, then X x Y =(X x Y)'*™ which proves
(v) (see Proposition 1.5.14). O
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Examples 10 and 11 of Section 1.2 exhibit CW-structures for R! and R?
respectively. Now one is able to extend this to higher-dimensional
Euclidean spaces.

Example 1 The Euclidean space R™, meN, is a locally finite CW-complex
of dimension m. In fact, because R is locally compact, every Euclidean
space R™ can be considered as an iterated product of R in the category
of k-spaces; thus, by the previous theorem it inherits a CW-structure which
is locally finite (see Proposition 1.5.10). Moreover, it follows from this
consideration that R™ actually has covering dimension m. O

In the proof of Theorem 2.2.2, it is crucial to use the product in the
category of k-spaces and not the usual Cartesian product, as one can see
from the following example.

Example 2 Let S be the set of all sequences of non-zero natural numbers.
Form a one-dimensional CW-complex X as follows. The 0-skeleton X°
isequal to S'U {0}. Next, for every se.S define the mapf, : 6B' ={— 1,1} >
X° by taking f,(—1)=0 and f,(1)=s. These maps f, together define
a map
f{—-1L1}xS—>Xx°

Then, a CW-complex X is obtained by the adjunction of 1-cells to X°
via f’; the characteristic map for the 1-cell corresponding to seS will also
be denoted by f..

A second one-dimensional CW-complex Y is defined as follows. Take
Y? to be the set N of natural numbers. For every ieN\{0}, define the
map g; : {— 1,1} > Y° by g(— 1) =0 and g¢,(1) =i. These define a map

g {— 1,1} x (N\{0}) - Y*,
then, Y is obtained by adjunction of 1-cells to Y° via g; the characteristic
map for the I-cell corresponding to ieN\{0} will also be denoted by g;.

Now, if the Cartesian product of X and Y - which will be denoted by
X x .Y in the sequel — were a CW-complex in the sense of Theorem 2.2.2,
it would have the topology determined by the products of the closed cells
of X and Y i.e, the cells of X x Y (see Proposition 1.2.2). It will be shown
that this is not the case. Take

K={(fs:" )95 1) : (5, )€ X x (YO\{0})}.
Since K intersects any closed cell of X x Y in at most one element, K is
a closed subset of X x Y. However, K is not closed in X x _Y! This will
be done by showing that the point (0,0), which does not belong to K, is
a cluster point of K.
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Any open neighbourhood of (0,0) in X x .Y contains an elementary
neighbourhood U x V where:

U={ft):seS,t<ay}

V = {g:(t):ieN\{0},t < b;}
with {a, : seS} a family of real numbers 0 <a,< 1 and {b; : ieN\{0}} a
sequence of real numbers 0 < b; < 1. Given an open neighbourhood of
(0,0) choose such an elementary neighbourhood and define a sequence
seS by taking s;=1+ [max(i,b;"')] (here, for any zeR, [z] means as
usual the greatest integer contained in z); moreover, define the integer
i=1+[a;,”']. Then

s;7Y<min(i™ 4, b)

for all ieN\{0} and

s; '<iTl<ayg

13

thus,
(fs(si™ ,9:(s:” ")e(U x V)nK.

This means that every neighbourhood of (0,0) contains a point of K.
Since X x Y is the k-ification of X x .Y, one also obtains that X x .Y

fails to be a k-space; thus, there does not exist any CW-structure for

X x .Y (see Proposition 1.2.1)! O

Remark Whenever forming a product X x Y of CW-complexes, if at least
one of X, Y is a locally finite CW-complex, then the k-topology on the
product set coincides with the topology of the Cartesian product, because
one factor is locally compact (see Proposition 1.5.10 and Section A.1). The
same is also true under some other circumstances.

Proposition 2.2.3 If X, Y are countable CW-complexes, then the Cartesian
product of X and Y is homeomorphic to the product X x Y in the category
CW.

Proof 1t is enough to show that the Cartesian product X x .Y has the
topology determined by the closed cells of the CW-complex X x Y (see
Proposition 1.2.2). Take U < X x _Y such that U (e x &’) is open, for all
cells ec X, ¢ < Y. Consider a point (x,, yo)eU and enumerate the cells
of X and Y so that e, is the carrier of x, and e, is the carrier of y,. Let
X; and Y; denote the closures of the unions of the first i cells of X and
Y respectively; the sets X; and Y;, being finite unions of closed cells, are
compact and the intersections U n(X; x Y;) are open in X; x Y;. Moreover,
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the spaces X, Y are determined by the families {X; : ieN}, {Y; : ieN} (see
Propositions 1.2.2 and A.2.1).

Because U (e, x ey) is open in e, x ey, one can find neighbourhoods
V, and W, of x4 and y, in X, and Y, respectively, such that the product
of their compact closures is still contained in U. Suppose by induction
that neighbourhoods V; and W, of x, and y, in X; and Y; respectively
have been constructed so that V,_, c V,, W,_, « W, and V; x W,c U. To
perform the induction, first construct an open set V., < X;,,; such
that ¥, V,,, and V,,, x W, U; the open set W,,, can then can be
constructed in a symmetric fashion. To begin with, for every point
(x,y)eV; x W, choose open neighbourhoods V,, . W,, , of x,yin X, . Y;
respectively, such that their product is contained in U. For a fixed y, it is
possible to find finitely many sets V|, ,, whose union V, contains V., in
view of the compactness of the latter set. Let W, denote the intersection
of the corresponding finitely many W, ’s. Now finitely many sets W,
cover W;; the intersection V' of the corresponding Vs is an open set
containing ¥; such that V' x W, c U. Normality permits one to find an
open set ¥, _, whose compact closure is still contained in V.

Finally, the sets | ), Vi, | ..xW: are open neighbourhoods of x,, y, in
X, Y respectively, whose product is contained in U, and hence (xq, yo) is
an interior point of U. ]

A interesting application of products in the category CW is obtained by
means of the telescope. To this end, consider an increasing sequence
{X, : neN} of subcomplexes of a CW-complex X whose union is X; note
that any such sequence is an expanding sequence (see Corollary 1.4.7) and
that X is actually its union space (see Propositions 1.2.2, A.2.1). Moreover,
endow the half line [0, c0) with the CW-structure {N, [0, c0) } (cf. Section
1.2, Example 10). The key to the desired result is given in the following
statement:

Lemma 2.2.4 Let X be a CW-complex and let {X, : neN} be an increasing
sequence of subcomplexes of X. Then, the telescope T of the expanding
sequence {X,} is—up to homeomorphism —the subcomplex of the
CW-complex X x [0, c0) formed by the cells e x {n}, e x (n,n+ 1) with e a
cell of X,,,m < n; T is a regular CW-complex iff X is regular. O

With this in mind one obtains:

Proposition 2.2.5 Any countable CW-complex has the type of a locally finite
and countable CW-complex.
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Proof Let eg,ey,...,e;... be an enumeration of the cells of a countable
CW-complex X. Then the subcomplexes X, = U;’= oX(e;) are finite (see
Corollary 1.5.3) and form an increasing sequence with union space X.'
Observe that each of the products X, x [n,n+ 1] is a finite subcomplex
of the corresponding telescope T and each open cell of T meets only
closed cells of at most two of these finite subcomplexes. Thus, T is locally
finite. O

Remark The previous statement is not devoid of sense: Example 13 of
Section 1.2 presents a countable, but not locally finite, CW-complex.

Exercise

Show that the cartesian product of two locally countable CW-complexes
is homeomorphic to the product in the category CW. (Lundell &
Weingram, 1969, Corollary 2.5.5)

2.3 Some special constructions in the category CW*
Let Y,A be CW-complexes. A partial map f : Y—-/— A is cellular if
D =dom f is a subcomplex of Y and f is cellular as a map D — A; in this
situation, the restrictions of f to maps D" — A" are denoted by f". The
basic result of this section is the following theorem.

Theorem 2.3.1 Let Y, A be CW-complexes andlet f : Y—/— A be a cellular
partial map. Then, taking X = A1, Y and X" = A" |,.Y", the following
are true:

(i) {X;X":n=0,1,...} is a CW-complex,

(ii) A is a subcomplex of X and

(iii) there exists a cellular characteristic map for the adjunction.

Proof (i) Clearly, X is a discrete space. To prove that the pair (X", X" ')
is an adjunction of n-cells, for every n > 0, show the existence of a space
X’ containing X"~ ! and contained in X" such that the pairs (X', X"~ 1)
and (X", X’) are adjunctions of n-cells, the latter with an attaching map
factoring through X"~ !; then the addition law (L3) for adjunction spaces
yields this claim.

* The reader should be aware of the difference in procedure between this proof and that of
Proposition 1.5.11.
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Set X' =A"|_|4u-1 X" ". Then,

X =A" (A" L - Y ) = AL (D" L - YY)
=A"L (D oY "),
using the law of horizontal composition (L1).

Since D"U Y™™ ! is a subcomplex of the CW-complex Y”, and D" is a
subcomplex of D"uU Y"™ !, the inclusions D"—»D"u Y"™ !, D"uY" ! 5 Y"
are closed cofibrations (see Corollary 1.4.7); thus the law of vertical
composition (L2) can be applied to give:

X" — All I_’fn Y" — (AH l_lj‘n(D"U Yll— 1)) Uin! — X/ I__JfY",
where f:D"UY" ' A"| | m(D"O Y"1y denotes a suitable character-
istic map.

Because the pairs (A", A"~ 1), (Y",D"u Y"~!) are adjunctions of n-cells
(the latter by Lemma 1.4.3 (ii)), so are the pairs (X', X"~ 1),(X", X’). An
attaching map for the latter pair has to factor through D"u Y"1, thus
through Y"~!; but the induced map Y" ! — X’ factors through X" !,
completing this part of the proof.

It remains to show that X has the final topology with respect to the
canonical mapsj" : X" — X. A function g from X to a topological space
Z, such that all compositions ge j" are continuous gives rise to compatible
sequences of maps A" —» Z, Y"— Z, thus to maps 4 - Z, Y — Z. These give
a map which as a function coincides with g (apply the universal property
of adjunction spaces).

(i1) follows immediately from the construction, which also implies that
the characteristic maps for the adjunction spaces X" together determine
a characteristic map for the adjunction space X, thereby proving (iii). [(J

The theorem gives rise to some interesting constructions in the category
CW¢, which will be described in the following examples.

Example 1 If A4 is a subcomplex of the CW-complex X, then X/A is a
CW-complex. O

Example 2 If f : Y > X is a cellular map, then the mapping cylinder M(f)
is a CW-complex, containing both Y and X as subcomplexes. O

Example 3 If f : Y - X is a cellular map, then the mapping cone C(f) is
a CW-complex, containing X as a subcomplex. O

Example 4 If X is a CW-complex, then its cone CX and its suspension
XX are CW-complexes. O
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Examples 2, 3 and 4 have reduced analogues defined for based
CW-complexes.

Example 5 The smash product of two based CW-complexes is a based
CW-complex. O

Recall that the wedge product of a family of based spaces {(Y,,z,) : yel'}
is the based space (V rY,,z) given by the set

VY,= {(y?)el—[ Y,.y, #z, for at most one yef},
r

velD
endowed with the final topology with respect to the canonical map
p:LlY,-> VY,
yell velr

and the point z taken to be the element (z,). If one takes (Y,,z,) = (Y, zy),
for all y in a given set I” and a given based space (Y, z,), then the wedge
product (V pY,z)=(V Y,,z) is called the I'-fold wedge of (Y,z,); in
particular, the I'-fold wedge of the based n-sphere (S”, e), neN, is referred
to as a bouquet of n-spheres (see Section 1.1, Examples 9, 10).

Any wedge product of a family of based CW-complexes carries a
CW-structure in the obvious manner. In particular, this appears in the
following.

Example 6 For any CW-complex X and any neN, the CW-complex
X"*1/X" is a bouquet of (n + 1)-spheres. O

If one wishes to construct a CW-complex out of a given CW-complex by
the adjunction of further n-cells, these have to be attached via attaching
maps into the (n — 1)-skeleton; more precisely:

Proposition 2.3.2 Let X be a CW-complex and let the pair (Y, X"~ ') be an
adjunction of n-cells, n fixed. Then, the union X*=X|]x.-:Y is a
CW-complex such that

@) X*"=X"yn-1 Y
and

(i) X/X"= X*/X*".

Proof From the hypotheses, it is clear that Y is a CW-complex containing
X"~! as a subcomplex, and it is trivial that the inclusion map X"~ ! > X
is cellular. Thus, X* is a CW-complex and X"| Jy.-: Y is its n-skeleton
(see Theorem 2.3.1).



Some special constructions in the category CW* 65

To prove (ii), denote by j the inclusion X" — X*" and by ¢ the constant
map from X*" to the singleton space {*}. Then:

Xx/xn =} L X = (X LX) = {+} L X = X/X" O

The next proposition shows that a modification of the n-skeleton of a
CW-complex does not alter its higher dimensional part.

Proposition 2.3.3 Let A be a subcomplex of a CW-complex X, let A’ be an
n-dimensional CW-complex and let f : A"— A’ be a cellular map. Then,
X' =A'l,X is a CW-complex such that

X'/ X"=X/X"
Proof The n-skeleton of X" is given by X" = A"|_| ;X" (see Theorem 2.3.1);

let f:X"— X" be a suitable characteristic map and let ¢: X" —{*} be
the constant map. Then:

XX ={} X' = {+} LLX" Ui X)= {+} Ll;X=X/X" O

The following is a technique to blow up a CW-complex within its type.
Let X be a CW-complex and let b : B"— X be a cellular map (with respect
to the CW-structure of B" described in Section 1.2, Example 1). Attach an
n-cell to X, using b|S"~! as attaching map; the resulting space X is a
CW-complex consisting of the subcomplex X (see Theorem 2.3.1) and an
extra n-cell. Let b denote a characteristic map for the new n-cell, such that
b|S"~ 1 =b|S"~'. Define c:5"— X by taking b on the lower hemisphere
of $" and b on the upper one; this is again a cellular map. Attaching an
(n+ 1)-cell to X via c, one obtains the elementary expansion of X along
b; this is again a CW-complex, denoted by X, and containing both X and
X as subcomplexes.

Proposition 2.3.4 Let X be a CW-complex and let b : B"— X be a cellular
map. Then, the elementary expansion X, of X along b contains X as a
strong deformation retract with a cellular retraction.

Proof Let ¢:B""'— X, denote a characteristic map for the new
(n+ 1)-cell of X,, and define H : B"*! x I - X, by taking
H(h"(s, t),u) = Coh"(s, tu),

where h" denotes the canonical homotopy deforming the lower hemisphere
of S$" into the upper one (see page 4). Consider the composition
H' =(H|S" x I)o(i, x 1;) : B"xI— X,; its restriction to S" !'xI is
nothing but the composition of the projection onto S$"~! with the map
b|S"™! and the inclusion X — X,. Thus, H' gives rise to a homotopy
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rel. X, which retracts X to X within X,, and which in turn extends to a
homotopy deforming the entire X, into X, via the homotopy H. O

A CW-complex X' (respectively, its CW-structure) is a subdivision of a
CW-complex X (respectively, its CW-structure) if X and X' coincide as
spaces and every cell of X' is contained in a cell of X. This definition has
the following immediate consequence.

Proposition 2.3.5 Let the CW-complex X' be a subdivision of the CW-
complex X; then:
(1) the identity map is cellular as a map X - X',
(i1) if X is finite, locally finite or countable the same holds true for X';
(i11) dim X' =dim X. O

Remark If the CW-complex X' is a subdivision of the CW-complex X,
then, as a consequence of the cellular approximation theorem (to be proved
in the next section), the identity map regarded as a map X' — X is
homotopic to a cellular map (but is itself cellular only if, also, the
CW-structures of X and X' agree). O

Example7 The CW-structure for the ball B**! described in Example 3
of Section 1.2 is a subdivision of the CW-structure given in Example 2
there, which in turn is a subdivision of the CW-structure in Example 1.

O

Proposition 2.3.6 Let the CW-complex X' be a subdivision of the
CW-complex X and let A be a subcomplex of X. Then, there is a subcomplex
A’ of X' which is a subdivision of A.

Proof Let Q denote the set of all cells ¢’ = X’ which meet A. Clearly, A4
is contained in the union of all the cells of £. If a cell ¢'e£2 is contained
in the cell e of X, then e is contained in A4 (see Corollary 1.4.2), and so
¢ < A. Thus, A is the union of all the cells of £, and because A is closed
in X, these cells form the desired subcomplex A" of X’ (see Proposition

1.4.4 (ii)). g

The requirement that the base point of a based CW-complex should be
the only point of a 0-cell is not an essential restriction. This will be
demonstrated by the following technical lemma which is a strengthening
of the fact that, for any point x, of a CW-complex X, the pair (X, x,) is
a well-pointed based space (see Corollary 1.3.7).
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Lemma 2.3.7 If x is a point of a CW-complex X, then there is a subdivision
X' of X containing {x} as a O-cell.

Proof Let X be a CW-complex, let x be a point of X and let the n-cell e be
the carrier of x. The construction will be by induction on n> 1, leaving
the skeleta X™ for m >n unchanged. Let c,: S" '— X"~! denote an
attaching map for ¢; by the induction hypothesis, one may assume it to
be cellular with respect to the CW-structure

{{eo},-- {eo}, 5"}

for S"~ 1. Now let ¢:5" '— X"\e be the composition of ¢, with the
inclusion X"~ ' — X™\e, which is again a cellular map. By Example 3, its
mapping cone is a CW-complex; this CW-complex is homeomorphic to
X" where the homeomorphism can be chosen as the identity on X"\e and
transforming the peak of the mapping cone into x. Then, the image of
the CW-structure of the mapping cone under this homeomorphism is the
desired subdivision of X". O

Another special construction relates to covering projections. Their
existence is no problem whenever one deals with CW-complexes.

Proposition 2.3.8 Let X be a path-connected based CW-complex and let ©
be a subgroup of its fundamental group. Then, there is a based covering
projection p : X > X such that 7 is the image of the fundamental group of
X under the homomorphism p,.

Proof See Proposition A.8.4 and Theorem 1.3.2. d

If the base of a covering projection is a CW-complex, its total space inherits
a canonical CW-structure.

Proposition 2.3.9 Let X be a CW-complex and let p : X — X be a covering
projection. Then, the sequence { X" =p~'(X") : neN} is a CW-structure for
the covering space X.

Proof (0) Take e X°. Then, x = p(%) belongs to X°, which by assumption
is discrete. Thus, there is an open neighbourhood U of x in X, which does
not meet any other O-cell of X and such that p~}(U)= U, with each
U, open in X and containing exactly one inverse image of x. One of these
U, contains X and cannot contain any other point of X°. Therefore, X°
is a discrete space.
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(1) The pairs (X", X"~ ') are adjunctions of n-cells, for every neN\{0}
(see Theorem 1.1.6(1)).

(2) It remains to prove that the covering space X is the union space of
the expanding sequence {X" : neN}. To this end, take U = X such that
UnX"is open in X, for every neN. To show that U is open in X, it
suffices to assume U sufficiently small, namely such that U is open in X
iff p(U)is open in X (cf last part of the proof of Theorem 1.1. 6( ))- Because
all the restrictions p|X" are open maps, p(U)n X" = p(UmX ) is open in
X", for all neN; thus, p(U) is open in X. O

In the context of covering projections, another fact deserves nientioning.

Corollary 2.3.10 Let X be a CW-complex and let p : X > X be a covering
projection. Then, p is a regular map in the strict sense that it maps open
cells homeomorphically into open cells; the same holds true for covering
transformations. O

2.4 The cellular approximation theorem and some related topics

The categories CW and CW*® have a deeper relationship than just that
given by the fact that CW*® is a subcategory of CW. This section is mostly
devoted to showing that any map between two CW-complexes is
homotopic to a cellular map.

Let X be a space, (Y,D) a pair of spaces and f: Y- X a map. An
approximation rel. D to fis a map g : Y — X, which is homotopic rel. D

to f.

Lemma 2.4.1 Let (Y, D) be an adjunction of n-cells, n >0, and let (X, A) be
a pair of spaces such that n,(X, A, x,} = 0, for every base point x,e A. Then
any map f : Y — X with f(D)< A has an approximation g : Y > X rel. D
with ¢(Y) < A.

Proof Suppose such a map f is given and let f : D— A denote the induced
map. Take an n-cell een(Y\D) and choose a characteristic map¢ : B, =
B"— Y for e with corresponding attaching mapc : $"~' - D. The pair
(f°¢, foc) represents an element of the relative homotopy group
(X, A, xo) with x, = foé(ey). By assumption, this group vanishes; thus,
there exists a homotopy H, rel. $"~! between fo¢ and a map with image
in A (see the description of the zero element of a relative homotopy group
given in Section A.8). Now, because
XxI=AxhHuy L (B,x1I),

een(Y\D)
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the homotopies H,een(Y\D) all together induce a homotopy
H : X x I - X’ connecting f to the desired mapyg. (]

From this, one obtains another characterization of n-connectivity for pairs
of spaces.

Lemma 2.4.2 A pair of spaces (X, A) is n-connected, n = 0, iff

(i) every path-component of X meets A and

(i) for every map f : Y —> X, where Y is a relative CW-complex and
(YD A, there is an approximation g : Y —X rel. YU to [ with
g(Y"™) c A.

Proof ‘<=>: For 1<k<n, consider B* provided with the usual
CW-structure {{eo},...,{eq}, S*7*, B*} and apply (i) toamap b : B*> X
with b(S¥™ ') < A.
‘=" (i) is clear (ii) : let f : Y — X be a map with the required properties.
One constructs inductively mapsg, : Y = X, — 1 <k <n, such that
1) g-1=1,
() grs1~gprel. YO —1<k<n,
() g(Y®) < 4,
as follows. Suppose g, is given. Take an approximation g’ : Y**V > X
to g, |Y**Y rel. Y® with g(Y**Y)c A (see Lemma 2.4.1); let
H: Y*®*Y x | » X denote the homotopy involved. Since the inclusion
Y&+, y is a closed cofibaticn (see Proposition 1.2.3 (iii)), there is an
extension of H to a homotopy from g, to a map g, as desired.
Finally, take g =g, O

Lemma 2.4.3 If the pair (X, A) is an adjunction of n-cells, n >0, any map
b (B5S* 1) - (X, 4)

with k < n is homotopic rel. S*"* to amap b’ : B*— A.
In other words, if the pair (X, A) is an adjunction of n-cells, n >0, then
it is (n — 1)-connected.

Before giving the proof of this lemma note the following:

Corollary 2.4.4 For every natural number k <n,
nk(Sns eO) = O

Proof Tt is enough to take an element Bem,(S",ey)=m(S" {€0},e0)
represented by b : (BY S*71)— (5", {eo}). O
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Proof of Lemma 2.4.3 The proof is done by induction on n. Since the
corollary is valid whenever the lemma holds true, one can use Corollary
2.4.4 for the inductive step on the lemma itself.

If n=1and k =0, both the lemma and the corollary are trivial; suppose
that the lemma is true for n. Without loss of generality, one can assume
k>0. Let f be a characteristic map for the adjunction of (n+ 1)-cells
(X, A), and, for every een(X\A4), let the induced characteristic map be
denoted by ¢,. Then take the open sets

U = C;(A)
(the collar of A in X; see Section 1.1) and
U.={c () : 0] <3},
for every een(X\A). Clearly,
Q={U}u{U, : een(X\A)}
is an open covering of X.

Let B* be the k-fold product of the ball B! with itself and let b* : B* - X
be the composition of the map b with the canonical homeomorphism from
B* onto B* (see Proposition 1.0.2). Let ¢ be the Lebesgue number of the
covering b* ~'(£2). Subdivide B! into finitely many closed intervals of finite
length smaller than 28/\/E, giving rise to a new finite regular CW-structure
on the product space B¥; in the sequel, it will be assumed that B* is always
endowed with this CW-structure. Its essential feature is that the covering
of B* by its closed cells refines the covering b* ~1(Q).

Let V be the union of all open cells of B* whose closures are contained
in b*~ ' (U). The closure of each of these open cells is also contained in
V, and thus, by Proposition 1.4.4, V is a subcomplex of B*. Extend V
dimensionwise to B* be defining inductively V_,=V and V,= V,_, U B*¥!,
for1=0,...,k.

This is done in order to construct a map b : B* — X which is homotopic
to b* rel. V and takes the sets b*~1(U,) into UnU,, for all een(X\A).
Assume b,_, =b|V,_, defined, and look at an I-cell ¢'en(V,\V,_,). Since
its closure is not contained in b* ~ *(U), there is a (unique) n-cell een(X\A)
such thate' < b* 1 (U,). Now b,_,('\e) = UnU,, thusb,_,|(¢'\¢') may be
thought of as representing an element of =, (UnU,, x,), where x, is a
suitable base point. But U U, is homotopically equivalent to S, and,
hence

- (UnU,, xo) = 1(S", €0)-
The induction hypothesis on Corollary 2.4.4 implies that the group on

the right-hand side of this isomorphism is trivial. So b,_,|(e"\¢’) extends
to a map & — X whose image is contained in UnU.,.
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This can be done for all the [-cells of B* which do not belong to V,
yielding the desired extension of b,_, over ¥, and ultimately the map b.
It is still necessary to show that b is homotopic rel. V to b*. The desired
homotopy K* : B¥ x I - X is defined to be trivial over V and linearly on
the cells. More precisely, take K*(v,t)=a*(w)=>b(), for veV, and
K*(v,t) = ¢,((1 — t)u + tw), where b*(v)eU,, b*(v) =C,(u) and b(v)= C,(w).
To show the continuity of this function K* : B* x I - X, it is enough to
show that its restriction to each & x I is continuous, for each cell ¢ of
B*. If ¢ is a cell of V, there is nothing to prove; otherwise for veeé’ the
assignments v—u, v—w are continuous and so is their linear combination
(v, )—(1 = u + tw.

Now switch back to B* from B*. Compose K* with the canonical
homeomorphism B¥ x I - B* x I to obtain a homotopy K : B* x I — X rel.
a subset of BY which contains S*"!'. Clearly, K(-,0)=b and
K(B* x {1}) = U. Finally, use the deformation from U to A to move
K(B* x {1}) into A. O

Remark The lemma would be trivial if one could be sure, whenever, k < n,
that every map b : B> X would miss at least one point in every n-cell
of the adjunction space X, since then the image of b would be contained
in a subspace of X having A4 as strong deformation retract. But the existence
of ‘Peano curves’, i.e., of maps from B' onto B", shows the impossiblity
of avoiding the deformation of the map & into a homotopic map which
misses points in each of the n + 1-cells. O

In case k = n, the proof just given leads also to an interesting result.

Lemma 2.4.5 Let (X, A) be an adjunction of n-cells with simply connected
A, n 2 2; for every cell een(X\A), let ¢, denote a characteristic map. Then,
the homomorphism

@D @)t D m(B,S" ! e0) =M, (X, 4, x,)
een(X\A) een(X\A)

is an epimorphism, for any choice of a base point x,€A.

Proof Start the considerations in the proof of Lemma 2.4.3 with a map,
b: (B"S" )= (X, A).

The construction of the map b can be carried out until by_,:V,_,»Uis

reached. This map b, _, is homotopic rel. V to b*|V, _,. By the homotopy

extension property, b,_, can be extended to a map b, taking values in X
rather than in U. Since A is assumed to be simply connected, this map b
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(up to composition with the canonical homeomorphism B"— B¥)
represents the same element of n,(X, A4, x,) (see Proposition A.8.15). By
the homotopy addition theorem (see Theorem A.8.16), this is the sum of
the elements represented by the restrictions Ee, of b to the n-cells ¢’ of B*.
Each ¢ either belongs to V, in which case b, represents 0, or its image
under b is contained in exactly one n-cell eemn(X\A); then, the
corresponding element of x,(X, A, x,) belongs to the image of (¢,),, O

Lemma 2.4.3 has several consequences for CW-complexes.

Proposition 2.4.6 If X is a relative CW-complex, then the pairs (X, X"™)
are n-connected, for every neN.

Proof Note, first, that any compact subset K = X is contained in some
X, Indeed, the image of K under the projection X — X/X ‘™! is contained
in some m-skeleton of the CW-complex X/X~ ! (see Proposition 1.5.2);
but the inverse image of this skeleton is just X™.

Let b : B> X be a map with b(S*"!)c X™, 0 < k < n. Because b(B¥)
is compact, it is contained in a finite skeleton of X, say X™. If m > n, the
lemma allows to deform b homotopically rel. $¥~! into a map B¥ —» X™~ 1),
The result is obtained by repeating this procedure finitely many times.

O

Corollary 2.4.7 If X is a relative CW-complex, then the pairs (X™, X™)
are n-connected, for every m=n = 0.

Proof Notice that X™ is a relative CW-complex with (X™)® = x®

Proposition 2.4.6 and Corollary 2.4.7 can be reformulated in terms of
homotopy groups.

Corollary 2.4.8 If X is a relative CW-complex and x,e X" "), then
(i) forn>k=0

7r’k(‘X(")a xo) = nk(Xa xo);
(1) for n =0, the canonical homomorphism
n” (X(n)’ xo) - T['l (X(n * 1)’ xO)

is an epimorphism,
(i) fornzm=k>0,

m(X, X, ) = (X, X, x) = O
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(iv) forn>k>m>= —1,k>0,
T(X®, XM x )= (X, X™, x,);
(v) for n>m>= — 1, n>0, the canonical homomorphism
T (X, XM x ) — (X, X™, x,)
is an epimorphism. O
In particular, choosing a base point and setting n=1, k=0 in (i), one
obtains:

Corollary 2.49 A CW-complex is path-connected iff its 1-skeleton is
path-connected. d

The previous two corollaries have an application to the study of covering
projections onto CW-complexes.

Corollary 2.4.10 Let p : X — X be a universal covering projection where X
is a CW-complex and X has the induced CW-structure (see Proposition 2.3.9).
Then, for n=2, the induced maps p" : X"— X" are universal covering
projections.

Proof A map induced by a covering projection is always a covering
projection (see Proposition A.4.17). Thus it suffices to show that the skeleta
X" are simply connected. Since X is path-connected, so are the X" (see
Corollary 2.4.9). Moreover, for any choise of a base point )Eoe)? "andn > 2,
(X" %) =7, (X, %,) =0 (see Corollary 2.4.8(i)). O

The main theorem of this section is proved next.

Theorem 2.4.11 (The cellular approximation theorem) Let f : Y - X be a
map between CW-complexes Y and X, whose restriction to a subcomplex
D of Y is cellular. Then there exists a cellular approximation g to f rel. D.
Moreover, it is possible to choose a homotopy H : f~ g, so that, for every
cellec Y, H(Y(e) x I) = X(f(Y(e))).

Proof Consider Y x I as the union space of the expanding sequence
{Y,=Y x{0}uY" ! xIuD x I : neN}. The proof is done by construct-
ing a compatible sequence {H,} of maps H,:Y,— X satisfying the
following properties (see Proposition A.5.7):

(1) Hy(-,0)=/;

(2) H,(-,1) is cellular;
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(3) H,|D x I is the composition of the projection onto D with f'|D;
(4) for every cell ¢ = Y"1, H(Y(¢') x I) = X(f(Y(e"))).

For n =0, take H, to be the map fon Y x {0} and the composition of the
projection map D x [ —» D with f|D on D x I. Assume that H, has been
suitably defined. Let e be an n-cell of Y\D and choose a characteristic map
¢, : B"—Y for it. The composition

¢, x L|(B" x {0}uS" ™! x I)er"|B" x {1}
(where r" denotes the map defined in Section 1.0) induces a map
b, : B"—Y,. Now observe that, according to property (4), the composition
b,=H,°b, : (B",S" H)>(X, X" 1)
takes values only in the subcomplex X = X(f(Y(e))); since Y(e) is finite
(see Corollary 1.5.3), and therefore compact (see Proposition 1.5.8), f(Y(e))
is compact and thus X is finite (Corollary 1.5.4). Because the pair (X, X")
is n-connected (see Proposition 2.4.6), the map b, is homotopic rel. "~ *
to a map B"— X". The homotopy involved factors through the restriction
of the homotopy R" : B" x I x [ > B" x I (see page 8) to B"x {1} x I =
B" x I, giving rise to an extension of
¢, x 1;|B"x {0}uS"" ' xI

over B" x I, which in turn factors through the characteristic map ¢, x 1,
for the (n+ 1)-cell e x I of Y x I, and therefore induces an extension
H,.|(Y,ue)of H, which takes values only on X. This procedure, applied
to all n-cells e = Y\D, yields H,, , ;. O

The statement of the cellular approximation theorem given here is sharper
than the usual one; its advantage lies in the following fact:

Corollary 2.4.12 Let f : Y - X be a map between CW-complexes Y and
X. Then, there is a homotopy from f to a cellular map which deforms f(D)
only within A, for all given subcomplexes D =Y and A = X with f(D) < A.

a

Remark Thus the cellular approximation theorem implies that for any
two homotopic cellular maps f,g: Y > X it is possible to choose a
homotopy which deforms the image of Y" entirely within X"*!. This
follows by considering Y x I as a CW-complex in the obvious manner
and taking a cellular approximation to an arbitrarily given homotopy
Y xI- X from fto g rel. Y x {0,1}. 0O

This section is closed by two useful technical lemmas.
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Lemma 2.4.13 Let (X, A) be a pair of spaces with A a CW-complex. Then
(X, A) is n-connected, n =0, iff every path-component of X meets A, and,
for 0 <k < n, every map b : B*— X with b(S*"') = A*~! is homotopic rel.
S¥~! to some map B*— A*, i.e., iff the canonical homomorphisms

nk(X’ Ak_ 19 xo) - nk(X’ Ak’ xo)

are zero, for any O-cell x, of A.

Proof ‘=" If (X, A) is n-connected then a map b, as described in the
statement, can be deformed rel. S*~! into a map with target 4. By
Proposition 2.4.6, the pair (4, A¥) is k-connected, and thus the new map
can further be deformed rel. S~ into a map of the desired kind.

‘«<=": Since, by Corollary 2.4.8(iii), m,_, (A% A* 1, x,) is equal to zero, it
follows from the hypothesis and the exact homotopy sequence of the triple
(X, A%, A*~ ' x) that the relative homotopy group m,(X, A% x,) vanishes.
Now use the exact homotopy sequence of the triple (X, 4, A%, x,) to show
that 7,(X, A, x,) is trivial. (]

Lemma 2.4.14 Let Y be a subcomplex of the finite CW-complex X such
that the pair (X, Y) is (n — 1)-connected, n > Q. Then, there exists a finite
CW-complex Z containing Y as a subcomplex and satisfying the following
conditions:

(]) Zn—l — Y"_l;

(i) Z has the same number of cells as X in each dimension >n + 1.

(ili) Z is homotopy equivalent rel. Y to X.

In particular, if X is a finite, n-dimensional CW-complex, Z is finite and,
at most, (n + 1)-dimensional.

Proof Consider a cell e in X\'Y of lowest dimension r < n. The following
is a procedure to get rid of this cell at the expense of introducing one new
(r + 2)-cell. Doing this finitely many times one obtains the desired
CW-complex Z.

Let ¢ be a characteristic map for the cell e; by the cellular approximation
theorem, one may assume ¢ to be cellular with respect to the canonical
CW-structure for B" (see Theorem 2.4.11 and Section 1.1, Example 1). Since
(X,Y) is (n— l)-connected, there is a cellular map ¢é: B"— Y whose
composition with the inclusion Y — X is homotopic rel. S"~! to ¢. Choose
a corresponding homotopy and let b : B"*! — X denote the map induced
by factoring out h" (see Section 1.0). Form the elementary expansions Y:
and X,. Recall that Y, is obtained from Y by attaching an r-cell and an
(r + 1)-cell; likewise, X, contains one (r + 1)-cell and one (r + 2)-cell more
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than X. Now, Y; can be considered as a subcomplex of X, by identifying
the new r-cell of Y; with the initial cell e, and the new (r + 1)-cell of Y:
with the new (r + 1)-cell of X,. Letd : Y;— Y denote a cellular deformation
retraction (see Proposition 2.3.4) and attach X, to Y viad. Letd : X, — X*
denote a corresponding characteristic map; d is a homotopy equivalence
(see Proposition A.4.11) and so is the composition d of d with the inclusion
X — X,. The cells of X* are those of Y and also those of X, which do
not belong to Y; (see Proposition 2.3.1); that shows the claim on the cells
of the constructed space. Because d|Y is just the inclusion of Y into X*,
dis a homotopy equivalence, rel. Y (use Lemma A.5.10 with f= Z,
f=g=1, and H the projection Y x I - Y). O

Exercises

1. Give an example of a universal covering projection onto a CW-complex
such that the induced map between the 1-skeleta fails to be universal.

2. Prove the following version of Corollary 2.4.8: If X is a CW-complex,
A is a subcomplex of X and x, is a chosen base point belonging to A4,
then
(i) for every n>k>0,

(X", A", x ) = m (X, A4, x,);
(ii) for every k > 0, the canonical homomorphism
(XX, A, x0) > m(X* T, 4K x,)

is an epimorphism. (Note that the difficulty lies at k = 1!)

-

2.5 Whitehead’s realizability theorem
Perhaps one of the best-known results of JH.C. Whitehead is the following.

Theorem 2.5.1 A weak homotopy equivalence between CW-complexes is a
homotopy equivalence.

The theorem states that, if X, Y are CW-complexesand themap /' : Y - X
induces isomorphisms between the corresponding homotopy groups at
all levels, then there is a map g: X —>Y -called a realization
of the isomorphisms 7,(X, f(y,))— 7,(Y, y,) — which is homotopy inverse

tof.

Proof First of all, a weak homotopy equivalence induces a bijection
between the sets of path-components. Therefore it suffices to
consider path-connected CW-complexes. Let Y, X be CW-complexes and
let f:Y—>X be a weak homotopy equivalence; by the cellular
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approximation theorem 2.4.11, one can assume f to be cellular and thus
the mapping cylinder M(f) to be a CW-complex (see Section 2.3, Example
2). The pair (M(f), Y) is n-connected for all neN (Proposition A.4.10(vi));
one must show that Y is a strong deformation retract of M(f) (Proposition
A.4.10(v)).

To this end, one has to deform the identity map of M(f) into a
deformation retraction M(f)— Y. This is done in exactly the same way
as the deformation of the map f into a cellular map in the proof of the
cellular approximation theorem (see Theorem 2.4.11), just replacing the
reference to the n-connectivity of the pair (X, X”) by the n-connectivity of
the pair (M(f), Y). O

Remark One might think that a sufficient condition for two
CW-complexes to have the same homotopy type is that their homotopy
groups are isomorphic. But it is essential that these isomorphisms are
realized — at least in one direction — by a map. To clarify this point, the
reader should look at the remark after Exercise 3, Section 4.4. O

There is a sharper version of Theorem 2.5.1 for finite-dimensional
CW-complexes.

Theorem 2.5.2 Let Y and X be finite-dimensional CW-complexes and let
[ Yo X be a map inducing isomorphisms f, : (Y, y,) = m.(X,f(y,)) for
every O-cell y, of Yand any k=0,1,...,n, where n=max {dim Y,dim X}.
Then fis a homotopy equivalence.

Proof Asin the proof of Theorem 2.5.1, assume X, Y to be path-connected,
S to be cellular and the mapping cylinder M(f) to be a CW-complex. The
assumptions imply that the pair (M(f), Y) is n-connected. Therefore, there
is an approximation g : M(f)— M( f) to the identity map of M(f)rel. Y
with g(M(f)y < Y (see Lemma 2.4.2). If dimM( f)=n, ie, if dimY <n,
the induced map M(f)— Y is the desired homotopy inverse to the inclusion
iy : Yo M(f).

Otherwise, dimM(f)=n+ 1. In this case, one first constructs a
retraction g’ : M(f)— Y as follows. On M(f)", one takes the map induced
by g. Any (n + 1)-cell ¢’ of M(f) is of the form ¢’ = e x (0, 1), where e is an
n-cell of Y. Let ¢,. be a characteristic map for ¢'. Its composition with the
map g represents an element of «,, ;(M(f), Y, y,), where y, is a suitable
base point. Since the induced homomorphism =, (Y, y)— n,(M(f), y,)
is an isomorphism, the boundary homomorphism =,,,(M(f),Y,y,) —
m,(Y,y,) vanishes. Hence, goc,.|S" is —as a map into Y — homotopically
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trivial, and thus it has an extension g, : B"*' — Y which factors through
¢' via the map ¢,.. This defines the desired map ¢'|é". Note that g'| Y =1,;
thus ¢’ is a retraction; but it still remains to show that iyog’ ~1,,, where
iy denotes the inclusion of Y into M(f). To this end, take an approximation
k : X - M(f) to the inclusion of X into the mapping cylinder M(f) rel.
& with k(X) < Y (see again Lemma 2.4.2). Now recall that f =r, iy, (see
Proposition A.4.10(iv)) and note that k=iyok’ for a certain map
k' : X —Y.Since kor; >~ 1y,
iyog’ >~ iyOg'°k°rf

~iyog'oiyokior,

= iyok'orf

=kor,

= Ly U
The following results are simple applications of the theorem.

Corollary 2.5.3 Let Y and X be finite-dimensional CW-complexes and let
f:Y—>X be a map such that f, : no(Y,y,) = no(X,f(y,)) is onto and
([, y,) =0, for every O-cell y, of Y and any k=1,2,...,n+ 1 where
n=max {dim Y,dim X}. Then fis a homotopy equivalence.

Proof See Proposition A.8.9. O

Corollary 2.5.4 A one-dimensional CW-complex is contractible iff it is
simply connected.

Proof The necessity of the condition is trivial; the sufficiency follows by
application of the theorem to the constant map. a

2.6 Computation of the fundamental group

As a consequence of the cellular approximation theorem, the fundamental
groups of CW-complexes depend only on their 2-skeleta (see
Corollary 2.4.7). Since the fundamental groups of 0-dimensional
CW-complexes are trivial, it is only necessary to inspect CW-complexes
of dimensions 1 and 2. The basic result of this section concerns the sphere
S! viewed as a CW-complex with one O-cell and one 1-cell (see Section 1.1,
Example 2).

Theorem 2.6.1 7,(S*,¢) = Z.

Proof The covering projection R—S! (see Section 2.1, Example) has a
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simply connected domain and the group of its covering transformations
is Z. Thus, the fundamental group of its codomain is isomorphic to Z
(see Theorem A.8.6). O

Corollary 2.6.2 For any set I', the fundamental group of the I' -fold wedge
of S! is (up to isomorphism) the free group generated by I.

Proof Let X denote the I'-fold wedge of S*. Take U as the collar of the
base point of X, and, for every yeI, take U, as the union of U and the
1-sphere corresponding to y. The family {U}u{U, : yeI"} is an open
covering of X (see Lemma 1.1.7(iii)), closed under intersections. The space
U is contractible (see Lemma 1.1.7(vi)), and so has trivial fundamental
group; the spaces U, contain a l-sphere as a strong deformation retract,
so have fundamental group isomorphic to Z. Thus, the fundamental group
of X is the free product of ‘I"* copies of Z (see Proposition A.8.20), i.e., a
free group with one generator for each element of I'". (]

The two CW-complexes whose fundamental groups were just computed
share the property that they have only one O-cell. This fact does not
represent a real restriction for computing the fundamental groups of
CW-complexes, as will be seen in the sequel. To this end, a further notion
is necessary. Given a CW-complex X, a tree of X is a non-empty, simply
connected subcomplex of X with dimension at most 1. The set of trees in
X is ordered by (set-theoretical) inclusion.

Lemma 2.6.3 Each tree of a CW-complex is contained in a maximal tree.

Proof Let T,cT,<---cT,<--- be an increasing chain of trees of a
CW-complex X containing a given tree T,. Then, its union T= U“:‘; o Tk
is a CW-complex (see Corollary 1.4.5), which evidently is 1-dimensional.
Since any pair of points of T is contained in some (path-connected) T,,
the space T is path-connected; thus, T is connected. A loop in T is a
compact subset of T therefore, it meets only finitely many cells of T, and,
consequently, it is contained in a tree T, for some keN. Since T, is simply
connected, the loop is trivial, and so T is simply connected; hence, T is
itself a tree. Zorn’s lemma now implies the existence of a maximal tree
containing Ty, O

There is a useful characterization of maximality for trees.

Lemma 2.6.4 A tree T in a connected CW-complex X is maximal iff it
contains all O-cells of X, i.e., iff T° = X°.
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Proof Since a connected CW-complex is path-connected (see Corollary
1.4.12), and since a CW-complex is path-connected iff its 1-skeleton is
path-connected (Corollary 2.4.9), one may assume dim X = 1.

‘=" Let T be any tree in X. If there are 0-cells in X not belonging to
T, there is one of them, say ey, that is in the boundary of a 1-cell ¢,
meeting T. Then, T'=Tue,ue, is a connected, 1-dimensional
subcomplex of X, which contracts to T, and therefore to a point. Thus,
T’ is a tree in X larger than T, and so T cannot be maximal.

‘«=": Assume the tree T with T°= X° is contained in a tree T'. The
quotient T'/T is a bouquet of 1-spheres whose fundamental group is a
free group (see Corollary 2.6.2). On the other hand, this quotient can be
thought out as obtained by attaching T’ to a point * via the constant
map T —=. Since T is contractible (see Corollary 2.5.4), this attaching
map is a homotopy equivalence, and then so is the projection T' - T'/T,
which can be viewed as a characteristic map for the adjunction (see
Proposition A.4.11). But T" is simply connected; thus, the free group above
is trivial, implying that the quotient T'/T can consist only of the base
point, ie, T=T" O

Now, if X is a connected CW-complex and if T is a maximal tree of X
then, X/T is a CW-complex with exactly one O-cell and the (homotopy)
type of X (for a more precise exposition see Corollary 2.6.10). This leads
to the following ‘omnibus’ theorem.

Theorem 2.6.5 Let X be a connected, 1-dimensional based CW-complex.
Then:
(i) The fundamental group m,(X,x,) is a free group generated by a set
of cardinality smaller than or equal to the cardinality of the set of 1-cells of X;;
(ii) if X has only finitely many 1-cells then 7t,(X, x,) is finitely generated,
(iii) if m,(X, x,) is finitely generated then X is homotopically equivalent
to a CW-complex with finitely many 1-cells. ]

The fundamental group of a connected CW-complex of arbitrary
dimension > 1 is an epimorphic image of the fundamental group of its

1-skeleton (see Corollary 2.4.7); this implies the following.

Corollary 2.6.6 Let X be a connected, based CW-complex with only finitely
many 1-cells. Then, n,(X, x,) is finitely generated. O

Now turn to 2-dimensional CW-complexes. To this end, recall that a pair
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of sets (I, R) is a presentation of the group G if I" is a subset of G,R is a
subset of the free group F(I") generated by I', and G = F(I")/N, where N
is the intersection of all normal subgroups of F(I") that contain the set
R; the elements of I" are said to be generators of G and the elements of
R are the relations. For later use, recall also that a group G is finitely
presented if it has a presentation (I, R), where both sets I and R are
finite.

Lemma 2.6.7 Let (X, A) be an adjunction of exactly one 2-cell with A a
path-connected space. Then, for any xq,€ A, the group n,(X,x,) is a factor
group of (A, xo) produced by just one relation.

Let ¢ : B> —/— A be a partial map generating the adjunction (X, 4). This
gives rise to the pushout

(B eq) = {1} = m,(X, cleo))

T T
mi(S',e0) = Z—m (4, c(e,))

(see Theorem A.8.19). So the claim is proved for x, = c(ey). The general
case is proved using the isomorphisms induced from paths connecting this
specific base point to arbitrary ones (see Section A.8, page 287).

Theorem 2.6.8 The fundamental group of a connected CW-complex X has
a presentation (X {,R), where X | is a set of 1-cells outside of a maximal
tree and R is in a bijective correspondence with the set of 2-cells of X.

Proof As mentioned in the beginning of this section, assume dim X = 2.
Let f be a characteristic map for the 2-cell adjunction (X, X') and let X,
denote the set of 2-cells of X. Take U to be the f-collar of X! that is
open in X, and, for each eeX,, take the open set U, =eu U. The family
{U}u{U, : eeX,} is an open covering of X, closed under intersections. U
contains X! as a strong deformation retract; thus, its fundamental group
is isomorphic to the free group F(X,). Each pair (U,, U) is an adjunction
of just one 2-cell and gives rise to a relation in F(X,) (by the previous
lemma). The fundamental group of X is now obtained by taking all these
relations together (see Proposition A.8.20). g

The following is the CW-version of the Seifert—-van Kampen Theorem.
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Theorem 2.6.9 Let (X, x,) be a connected, based CW-complex and let
{(X 1, x0) : A€A} be a family of connected based subcomplexes which covers
(X,xo) and is closed under intersections. Then, the group m,(X,xo) is
isomorphic to the colimit group of the diagram whose objects are all groups
(X 3, Xo) and whose morphisms are the homomorphisms induced by all
possible inclusions X ; < X .

Proof Take a sequence {f":neN} of characteristic maps for the
adjunctions (X", X"~ 1). For every neN and every 1eA, let f—','_ denote the
induced characteristic map for the n-cell adjunction (X, u X", X, U X" 1).
Then, define inductively open sets U, ,c X,uX" by taking U, ,=
X,uX®and U, as the /%" '-collar of U, . Then, for every 1eA, the
union U 2 oUanisanopensetin X containing X, as a strong deformation
retract (cf. the proof of Proposition 1.3.1). Moreover, the family
{U,: AeA} is a covering of X, satisfying the property U,nU,=U.,
whenever X;n X, = X,. Thus, the diagram described in the statement of
the theorem does not change (up to isomorphism) if, for its construction,
one uses the open sets U, instead of the subcomplexes X ;; this implies
the result (see Proposition A.8.20). O

Lemma 2.6.4 also has a nice consequence, which is independent of any
considerations on fundamental groups.

Corollary 2.6.10 Any non-empty, connected CW-complex X is homotopy
equivalent to a CW-complex Z with exactly one 0-cell and whose
higher-dimensional cells have based characteristic maps i.e. all pairs
(Z",Z""") are based adjunctions of n-cells.

Proof A non-empty, connected CW-complex X contains a O-cell (see
Proposition 1.4.15) which may be considered as a trivial tree. This is
contained in a maximal tree T (see Lemma 2.6.3) which covers the
0-skeleton of X. The quotient X/T is a CW-complex (see Section 2.3,
Example 1) which contains only one O-cell. As in the proof of the sufficiency
part of the Lemma 2.6.4, it can be viewed as obtained by attaching X to
a singleton space * via the constant map T — * and the same argument
shows that the projection X — X/T is a homotopy equivalence.

Now, assume X to be a CW-complex with exactly one 0-cell. Construct
inductively the n-skeleta Z" of the desired CW-complex Z (allowing based
characteristic maps) and homotopy equivalences A : X" — Z" which fit
into a commutative ladder in order to give a homotopy equivalence
h : X — Z (see Proposition A.5.11). The induction starts with Z' = X! and
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hM=1. Assume Z"~! and h"~ Y have been constructed and satisfy the
required conditions. Let f denote an attaching map for the adjunction of
n-cells (X", X" '); its domain is a coproduct of (n — 1)-spheres and can be
viewed as a CW-complex possessing only O-cells and (n — 1)-cells. Then,
form

Z/ — Zn—l u},(n- ”Xn;

the characteristic map A’ : X"—>Z' is a homotopy equivalence (see
Proposition A.4.11) and the pair (Z',Z"~!) is an adjunction of n-cells, for
which the composition h"~!e f may be chosen as attaching map (see the
horizontal composition law (L1) in Section A.4). Now, approximate
K"~ Yo f by a cellular map f* (see Theorem 2.4.11) and attach n-cells to
Z""! via f’ to obtain the CW-complex Z" and a homotopy equivalence
h" :Z'—Z"rel. Z"" ! (see Proposition A.4.15). Finally, take h™ = h"o}h'.

[l

2.7 Increasing the connectivity of maps
In this section a technique is developed to transform a map between

CW-complexes into a homotopy equivalence by attaching cells to its
domain. To begin with, one has to inspect the lower dimensions.

Lemma 2.7.1 Let f : Y—> X be any map. Then there is a 0-connected
map f' . Y' — X such that:

(i) Y' is obtained from Y by an adjunction of O-cells;

(i) f'|Y = f; and

(i) Y'\Y is finite if mo(X, f(¥)\So(mo(Y, y,)) is finite, for any choice of
a base point y,eY.

Proof Choose one point in each path component of X that does not meet
f(Y) and add it to Y as a O-cell. This gives Y’ and induces the desired

map f. O

Once a map is 0-connected, one can consider it as a sum (= coproduct)
of based maps with path-connected codomain. Therefore one may restrict
the attention to such maps in the sequel.

Lemma 2.7.2 Let X be a path-connected space and let f : Y —>X be a
0-connected map. Then there is a 1-connected map ' : Y'— X such that:
(i) Y' is obtained from Y by an adjunction of 1-cells;
(i) /'Y =f; and
(iii) Y'\Y has finitely many path components (i.e., Y'\Y consists of finitely
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many open l-cells only) if n,(f,y,) is finite, for any choice of a base
point y €Y.

Remark The assumption on the path-connectivity of X implies that the
requirement on f to be 0-connected excludes the case Y = .

Proof of Lemma 2.7.2 There are two types of elements in 7, (f, y,) : those
that are in the image of the function =, (X, f(y,))— 7,(f,y,) and those
that are not.

The latter correspond to the path-components of Y, and, if the condition
of (iii) holds true, Y consists of finitely many path-components only. Choose
a base point y, whose path-component will be denoted by 4, and a family
{ys: Aemo(Y,y,)\{4,} } of points such that y,el for every Aemy(Y, y,)\{4,}-
For each such A, attach a 1-cell with boundary {y,, y,} to the space Y
and extend the map f over these 1-cells by choosing a path in X from
So) to f(y5)-

Thus, one may assume Y to be path-connected. The function
(X, f(y,)) = 7, (f, y,) is surjective, and so the elements of 7,(f,y,) can
be represented by loops in X. For each such element y, choose a
representative f, : S} =S' —» X. Then, take Y’ as the wedge product of
(Y, y,) and the bouquet of the circles (S ;,eo), and define f” as the wedge
of all the maps f, f,. O

Lemma 2.7.3 Let X be a path-connected space and let f: Y —X be a
1-connected map. Then there is a map f' : Y'— X inducing an isomorphism
of fundamental groups such that:

(i) Y' is obtained from Y by an adjunction of 2-cells,

(i) f'1Y = f; and

(il)) Y'\Y has finitely many path components (i.e., Y'\ 'Y consists of finitely
many open 2-cells only) if ker (f,) is finitely generated.

Remark f, denotes the induced homomorphism =,(Y, y,)— 7,(X, f(),))
obtained after the choice of a base point y,e Y. Moreover, ‘ker (f;) finitely
generated’ means that there is a finite set I" <= n,(Y, y,) such that ker (f,)
is the smallest normal subgroup of =,(Y,y,) containing I"; it does not
mean that ker (f,) is finitely generated as a group.

Proof of Lemma 2.7.3 Choose a base point y,eY. Since the map [ is
assumed to be 1-connected, the homomorphism f, is an epimorphism.
Let {a,} be a family of based maps a; : S; =S'—Y whose homotopy
classes generate the kernel of f,. Because a composition foa, represents
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the neutral element of 7,(X, f(y,)) one can extend it toamap b, : B> > X.
Now use the maps a, to attach 2-cells to Y, thus obtaining a space Y,
and the maps b, to extend the map f over the new 2-cells, which yields a
mapf' : Y - X.

Let 7: Y- Y’ denote the inclusion. Turn to the induced homomor-
phisms between the corresponding fundamental groups. Firstly, f is an
epimorphism, since its composition with 7; yields the epimorphism f;.
Secondly, the homomorphism 7 itself is an epimorphism, since the pair
(Y’, Y)is 1-connected (Lemma 2.4.3); this implies ker (7;) = ker (f;). On the
other hand, the characteristic maps of the attached cells allow to deform
the compositions 7ea, into constant maps (within Y’); therefore, ker(7;)
contains a system of generators of ker(f;). Thus, ker(z;) = ker(f;), and
consequently f* is an isomorphism. O

Lemma 2.74 Let Y, X be path-connected spaces and let f : Y - X be a
map that induces an isomorphism of fundamental groups. Then, there is a
2-connected map f' . Y’ — X such that:

(i) Y’ is obtained from Y by an adjunction of 2-cells;

@) f'|Y=f; and

(iii) Y'\Y has finitely many path components (i.e., Y'\'Y consists of finitely
many open 2-cells only) if n,(f, y,) is a finitely generated A-module, for any
choice of a base point y,.
(A=Zn,(X, f(y,)) denotes the integral group ring of the fundamental
group of the based space (X, f(y.)).)

Proof Let {(b;,a;)} be a family of representatives for a system of
A-generators for 7,(f, y,). As in the preceding proof, use the mapsa, as
attaching maps to get the space Y’ and the mapsb, to extend the given
map f to a map f' : Y'— X. Again, let 7: Y > Y’ denote the inclusion.
The same argument as before shows that the induced homomorphism f
is an epimorphism; thus, the map f* is at least 1-connected.

Now look at the exact homotopy sequence of the pair (f”, 7). Its essential
part is

7'[2(1—, yo)-_’ ”z(f,yo)—’”2(f,,yo)—’“1(7,yo)‘

The construction of the space Y’ and the map f* shows that the image of
the homomorphism on the left contains a set of generators of its codomain;
thus, it is an epimorphism. On the other hand, the right end of the display
is trivial since it comes from an attaching of 2-cells (once more
Lemma 2.4.3). Now the exactness forces 7,(f”, y,) to be also trivial. Thus,
f'is 2-connected. O
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Lemma 2.7.5 Let Y, X be path-connected spaces and let f : Y —> X be an
(n — 1)-connected map, n = 3. Then there is an n-connected map f' : Y' - X
such that:

(i) Y' is obtained from Y by an adjunction of n-cells,

(i) /1Y =f; and

(i) Y'\Y has finitely many path components (i.e., Y'\'Y consists of finitely
many open n-cells only) if m,(f, y,) is a finitely generated A-module, for any
choice of a base point y,.
(The assumption here automatically implies that the map f induces an
isomorphism of fundamental groups.)

Proof Construct the space Y’ and the map f” as in the preceding proofs.
Once more, let 7: Y — Y’ denote the inclusion. Then, for k <n—1, the
induced homomorphisms 7y are isomorphisms, since the pair (Y’,Y) is
(n — 1)-connected (Lemma 2.4.3). By assumption, the same holds for the
homomorphisms f,. Thus, the equation f = f’o7 yields that also the
homomorphisms f} are isomorphisms. Again by assumption, the
homomorphism f,_; is an epimorphism, and so is the homomorphism
fw_,. Therefore, the map f’ is at least (n— 1)-connected. The same
considerations on the exact homotopy sequence of the pair (f',7) as before
show that the map f” is also n-connected, as desired. O

Addendum 2.7.6 If the space Y considered in the statements of the Lemmas
2.7.1 to 2.7.5 is provided with a CW-structure, then the spaces Y' may be
constructed in such a way to get CW-complexes containing the given ones
as subcomplexes.

Proof The maps used to attach the necessary cells can be taken as cellular
(use the cellular approximation theorem 2.4.11 and the homotopy
extension property of the pairs (B",S"~!)), thus giving CW-structures to
the spaces Y’ (see Theorem 2.3.1). O

These considerations are summed up in the following statement:

Theorem 2.7.7 Let Y be a CW-complex, X be a space and f : Y — X be
a map. Then, there are a CW-complex Y' containing Y as a subcomplex
andamap f’ : Y’ — X whichextends f and is a weak homotopy equivalence.

Proof As described in the previous results, construct CW-complexes Y
containing Y~ " as subcomplexes and n-connected extensions /™ : Y™ —
X of f (starting with Y"1 = Y). Define Y’ to be the union space of the
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expanding sequence { Y™ } and take f* : Y’ — X as the unique map induced
by the sequence {f}. O

Taking Y = & in the preceding theorem, one obtains:

Corollary 2.7.8 Any space is the codomain of a weak homotopy equivalence
whose domain is a CW-complex. O

The assumption that ¥ should be a CW-complex in Theorem 2.7.7 is
needed only in order to obtain Y’ as a CW-complex again. Dropping this
assumption and taking X as a singleton space yields:

Corollary 2.7.9 Any space can be enlarged by means of cell adjunctions to
a weakly contractible space, i.e. space with only trivial homotopy groups.

a

Exercises

1. Let = be a group. Construct a based CW-complex with fundamental
group 7 and vanishing higher homotopy groups (Eilenberg—MacLane
space of type (m, 1)).

2. Let © be an abelian group and n > 1. Construct a based CW-complex
X with n,(X) = and n(X) =0, for all k # n (Eilenberg—M acLane space
of type (rm,n)).

3. Let {=n, : neN} be a sequence of groups such that, for every n>2, =,
is abelian and provided with an action of =,. Construct a based
CW-complex whose homotopy groups are the given ones with the
prescribed action of the fundamental group. Observe that this
CW-complex may be taken as locally finite if all the groups are
countable. (Whitehead, 1949b)

Notes to Chapter 2

The example of two CW-complexes whose cartesian product fails to be a
CW-complex (see Section 2.2, Example 2) is due to Dowker (1952). The product
of two CW-complexes, one of them locally finite (see Remark before Proposition
2.2.3), was already handled by J. H. C. Whitehead; the case of two countable factors
can be found in Milnor (1956).

The technique of elementary expansions (see Propositions 2.3.5, 2.3.6 and
Lemma 2.4.14) is another of J. H. C. Whitehead’s masterful contributions to
combinatorial topology; it was actually started long before the CW-theory itself
(Whitehead, 1939, 1950). The cellular approximation theorem (see Theorem 2.4.11)
is already contained in Whitehead’s basic paper (Whitehead, 1949a); the proof
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given here relies on the expositions in Schubert (1964, 1968) — exploiting the idea
of ‘Freimachen eines Punktes’ (see Remark after the proof of Lemma 2.4.3) - and
Brown (1988), where it is credited to ideas of J. F. Adams. The classical approach
to the fundamental group of simplicial complexes by means of the ‘edge path
group’, due to Poincaré (1895), was, with time, carried over to CW-complexes;
for special CW-complexes, one could consult Schubert (1964, 1968), and, for the
general case, Massey (1984). The ideas about increasing the connectivity of maps
were first published in Wall (1965), where credit is given to unpublished work of
J. Milnor.
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Combinatorial complexes

3.1 Geometric simplices and cubes

While balls and spheres may be thought of as made out of rubber, and
therefore as easily deformable, simplices form the solid bricks of the spaces
under consideration. Recall, first, that a finite family {s,,...,s,} of ‘points’
in R"* ! is affinely independent iff the family {s, — so,..., s, — so} of ‘vectors’
is linearly independent. A (geometric) simplex in R"*! is simply the convex
hull

A=H({sq,---,8})
of an affinely independent family {s,,...,s,}, whose members are called
vertices of the simplex. A simplex A with k + 1 vertices will be given the
specific name of k-simplex.

Example 1 Define a binary, reflexive and antisymmetric relation R on
Zn+1 - Rn+1 by

SRs'<=>s5; <si<s;+ 1, i=0,1,...,n
Every subset of Z"*! that is totally ordered with respect to the relation

R is an affinely independent family of R"*! whose convex hull is a geo-
metric simplex in R"* 1. O

A O-simplex is a point, a 1-simplex is an interval or an edge, a 2-simplex

is a triangle and a 3-simplex is a tetrahedron; sometimes it is also convenient :

to consider the empty set as a (— 1)-simplex. Given a k-simplex 4, any
set L of vertices of A forms a face of the simplex by taking its convex
hull A, = H(L), which is again a simplex; if L does not contain all vertices,
one speaks of a proper face. Given a face A, of a simplex A, the vertices
of A outside A, form the complementary face A_ to A, ;if A is a k-simplex
and A, is an [-simplex, then A_ is a (k — I — 1)-simplex.

The union of all proper faces of a simplex A is its boundary éA4; note
that this combinatorial boundary is the topological boundary of A4 in its
affine hull and it is the topological boundary in R"*! only if k=n+ 1.
The difference A = A\S A is the interior of A, the open simplex; a point of
A is an interior point if it belongs to A.

S ———
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If so,...,s, are the vertices of a simplex, its points can be uniquely
described in the form

with t;e! for all i and

the real numbers ¢; are called barycentric coordinates of the point s.

A point of a simplex A4 is an interior point if all its barycentric coordi-
nates are different from zero. Every point seA determines a unique face
of A, for which s is an interior point; hence, A =|_J(4,)° where A, runs
through all faces of A. Given a point seA, the unique face containing s
as an interior point is called the carrier of s and is denoted by A;.

Let A, be a geometric simplex and let A, be a proper face of A;. A
simplicial retraction from A, to A, is a retraction A, —» A, that is induced
by the composition of a linear map and a translation mapping vertices
onto vertices. Simplicial retractions performed within a larger simplex do
not really alter the simplex.

Lemma 3.1.1 Let A be a simplex, let A, be a proper face of A, let A, be
a proper face of A, and let ¢ : A, > A, be a simplicial retraction. Let the
space X be obtained from A, by attaching A via ¢. Then there is a
homeomorphism h : X — A extending the inclusion A, < A.

Proof Take n+ 1 =dim 4 and m + | = dim A,; without loss of generality,
assume dim 4, = m. All of the following considerations are staged in the
one-point compactification R%' of

RV ={(tg,...,t,) : 1, =0}

Choose an n-dimensional face A, of A containing A, and make the
identifications:

Ao =H({0,e9,e,...,€,_,}),

A, =H({0,¢ep,ey,...,e,}),

A, =H({0,eq,ey,...,e,_,}),

A — Rr;: 1,

O(tgs - stm) =(tor - -stm_ 1)

for all (¢g,...,tn)EA;.
Define a map ¢ : R%*! — A, by assigning to each point reR"." ! the nearest
point of 4,. The existence of such a point follows from the compactness
of Ay, its uniqueness from convexity and Pythagoras’ theorem; the con-
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tinuity of ¢ is due to the fact that it is a contraction; i.e.,

W) —y@)<lt—1|,
for all pairs t,feR%*!. Note that ¢|A, =¢. Next define maps
f RIS R, by assigning to each point teR""! its distance from 4,
and g : R""\4,— I by taking
@)
gty = ——"—.
[t — (@)
Next, take h : R%"' > R”"! given by

W) = {ww + g (t— (), ifreR™1\4,

t, otherwise.

The continuity of 4 has to be checked only near 4, and at infinity. In the
first case, one has again a contraction; in the second, note that |¢| - oo
implies g(f) — 1, and consequently h(f) > t. Furthermore, one still retains
the equality h|A, =¢. It remains to show that h maps R%"'\4,
homeomorphically onto R"* '\ A4,. This is a consequence of the following
observations. Given a point teR"* '\ A, the half line L starting at y(z) in
the direction of ¢ is mapped surjectively onto itself by h. For the injectivity,
assume ¢’ to be another point on L outside 4,, and suppose h(t') = h(t); then
t' — (r) is a real multiple of  — y(¢) and, consequently, f(f) = f(¢), implying
=t 0

An dffine embedding is a map R"*! ->R™*! which is the composition of
an injective linear map and a translation. Such maps preserve affine
independence. Therefore the image of a simplex under an affine embedding
is again a simplex.

Recall that for any subset S of a metric space the diameter of S — notation:
diam (S) — is defined to be the supremum of the set of the distances between
any two points of S. The diameter of a geometric simplex can be easily
computed.

Lemma 3.1.2 The diameter of a geometric simplex is equal to the maximum
of the lengths of all its edges.

Proof The assertion ensues from a double application of the following
fact. Let § be a point of a simplex A. Then, for any point seA, s # $, there
exists a vertex of A which is not nearer to § then to s. To see this, let
So,---,8 denote the vertices of A and let ¢,,...,t, be the respective
barycentric coordinates of s. Without loss of generality, we may assume
§ #8g,...,8. Then it is enough to show that there is a vertex s; # § such
that the (possibly degenerate) triangle $ss; has a non-acute angle at the
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vertex s, i.e., such that the scalar product (§ —s) - (s; — s) is not positive.
But this follows from the equation

}E t(§—s) (s5;—8s)=FE—s) (s—s5)=0
i=0

since all ¢;’s are non-negative and some of them are positive. O

Every k-simplex has a distinguished interior point, its barycentre; that is,
the point with all barycentric coordinates equal to 1/(k + 1). In the next
section, the notion of ‘barycentric subdivision’ will be discussed; one of
its crucial properties comes out of the following fact.

Lemma 3.1.3 Let A, A, be non-empty faces of a k-simplex A with A, c A,
and let by, b, denote their respective barycentres. Then, the distance of b,
and b, is smaller than or equal to k/(k + 1) - diam(A).

Proof Let b_ denote the barycentre of the complementary face A_ to 4,
in 4,. Then, b, can be represented in the form

__1+dimA_b +1+dimA0

bl 0>

" 1+dim4,  1+dima4,
which leads to
1+dmA_
by —by=—"(b_ —by).
Lo 1+dimA1( o)

The result now follows from
1+dimA_S dim 4, < k
1+dimA; 1+4+dimA, k+1
(since A, # J implies dimA_ <dim A,) and
|b_ — bo| < dim A. O

In Euclidean spaces, there is a more specific concept of cone than that
introduced in Section A.4, after Corollary A.4.16. A (Euclidean) cone in
R"*! is a triple (C, B, p), consisting of subsets C,Bc R"*! and a point
peR"*! such that the map B x [ -R"*! (s,t)—(1 —t)s + tp, induces a
homeomorphism B x I/B x {0} — C. If the triple (C, B,p) is a cone then
the set C is its global set, the set B is its base and the point p is its peak.
By abuse of language, a subset C of R"*! is also called a cone if it is the
global set of a cone. Conversely, if a set B and a point p are such that
they may form the base and the peak of a cone respectively, then the cor-
responding global set is uniquely determined. In this case, the point p and
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the set B are said to form a cone whose global set is denoted by pB. Note
that the base of a cone might be empty, i.e., one-point sets are also
considered as cones: p=p(J for all points peR"* !,

Example 2 Let A be a geometric simplex, s, a vertex of A and 4, the
complementary face of A. Then the triple (4, A, so)isacone: A =s44,. [

Example 3 Let A be a geometric simplex and s an interior point of A.
Then the triple (4,54,s) is a cone: 4 = s(54). O

This is a special case of a more general situation.

Example 4 Let C be any compact convex set in R"*!, let B denote its
boundary (in its affine hull) and let p be an interior point of C. Then, the
triple (C, B, p) is a cone. O

Example 5 Let A be a k-simplex in R"*! and let the point peR"*! be
affinely independent of the vertices of A. Then, p and A form the cone pA
which is a (k + 1)-simplex. O

The standard-n-simplex in R"*! is the n-simplex

A”={(t0,...,t,,) ctelforalli, ) = 1},

i=0
whose vertices are the vectors e;,i =0, 1,...,n, which form the canonical
basis of R"*!. Every k-simplex A is homeomorphic to the standard-k-
simplex A% if {so,...,s,} is the set of vertices of 4, the linear map
Rk +1 - Rn +1

induces a homeomorphism 4% — A.

Simplices are balls; suitable homeomorphisms can be easily constructed
(Exercise). For the needs of homology a family of maps y": A"— B"
satisfying a certain coherence condition is presented here. The construction
of this maps is done inductively. The spaces A° and B are singleton spaces;
so there exists one and only one map A% — B® which is taken as y°. Now
assume " to be given and define a map ' : I x A"=>R"*! by taking

Y(t,s) = teg + (1 — )b"(Y"(s)).
This map factors through the identification
I x A" A" (4,8)—(, (1 —t)s)
and its image is contained in the ball B"*'. Thus, ¥’ induces a map

A"*' - B"*1 which is taken as y"*!. The properties of these map are
listed in the following statement.

s €S
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Lemma 3.1.4 For all neN

(i) Y" maps the interior of A" homeomorphically onto the interior of B",

(ii) Y"* ! maps the boundary of A"*' onto S%

(iii) Y"*! maps the interior of the face opposite to the vertex e, in A"**
homeomorphically onto S™\{e,};

(iv) Y"* ! maps the faces of A"* ! containing the vertex e, constantly onto
the base point e,

(v) the diagram

B" — s s B" +1

\0"] Iwnﬂ
A" S An+l

s — (059
commutes.

Proof by induction and direct computation. O

The following remark will be useful to the readers familiar with the basic
facts of singular homology. These are briefly reviewed in Section A.7.

Remark It follows from (ii) that the ‘singular simplex” y"*?! represents a
cycle and thus a homology class (indeed a generator) of the relative
homology group H,,(B"*!,S") while the composition b"oy" represents
a generator of H,(S"). The diagram shows that these generators are related
in a neat way, that is, they are ‘coherent’. O

The considerations on single simplices are closed with a theorem which,
although not related to other subjects in this book, has a certain
importance and deserves to be mentioned.

Theorem 3.1.5 Let Ag> A, >---D>A;>---be a decreasing sequence of
simplices in R"*'. Then,

0
A= () 4
j=0
is a simplex in R"*1,
Proof The sequence {dim A;} of natural numbers is decreasing; thus it

becomes stationary. Therefore, one may assume dim A;=n + 1 for all jeN.
Let Si 00> Sint1 denote the vertices of A;. The sequence

{{sj,O""’sj,n+1}}jeN

contains a convergent subsequence; thus, assume that this sequence is
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itself convergent. If one takes, for 0<i<n+1,
s;=lims; ,
jmeo
then A is the convex hull of the points s;. Clearly, all s; are contained in
the intersection A; the converse requires a preliminary consideration. Let
seA be given; then there is, for every jeN, a representation
n+1
s= ) iSii
i=0

with ¢; el for all i and

n+1
Y=L
i=0

Let (to,...,t,, ) be a cluster point of the sequence {(tj‘o, N 1)}; then,

"¥o1;8; is a convex combination of the s; representing s.

Now assume the elements of the family {s,,...,s,,,} to be labelled in
such a way that, for some keN with 0 <k <n+ 1, the family {so,..., s}
is a maximal convexly independent subfamily. It is necessary to show that
the family {s,...,s.} is affinely independent.

To this end, define maps ¢; : 4;— A**! by taking the restrictions of
the affine maps which send s;; to e, if s, =5, withO<h<k,and to ¢, ,
otherwise. The main step of the argument consists in proving that

!im Gjlsn) = e

j— o
for 0 < h < k. Fix h with 0 < h <k, and denote by 4;,, A;_ the face of 4;
spanned by vertices s;; with s;=s, and its complementary face, respecti-
vely. Then, for every jeN, there is a unique representation

with (¢, t;.’)eA‘,s}eAjJr and sjed;_. If j— co, the simplices A;, contract
to the point s,, which implies

sp=18+t

lim|s, — s}l =0.
On the other hand, the simplices A;_ converge to the convex hull of all
s; # s,,; since s, is no convex combination of these s;’s, one finds
liminf|s] —s;| > 0.

This implies

s, ,
0= lim ——— = lim ¢] = lim (1 —¢)),
jo oo |sj—sj jo o jo o
and so
1= Ilim t

Jj=r
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which gives finally
!im ¢j(se) = lim (£;0,(s7) + £]P,(s7)) = ( lim t3> ce,=e,.
Jj— Jj—o o Jj— o

Now assume that one of the s,,0 < h <k, say s,, is affinely dependent
of the remaining, i.e.,

k-1
5= Z Li8;,
i=0

with

Then, it follows that

k=1
di(s) = 'Z'o t;(s;)

and thus,
k—1 k-1
e,= lim ¢(s;) = z t;lim ¢(s;) = Z te;,
j— o i=0 j—ooo i=0
contradicting the affine independence of the family {e,,...,¢,}. O

There is another type of solid brick in these constructions which is needed
only in a very standardized form. Given a point s = (s,,...,s,)eR"*! and
a real number ¢ > 0, the set
W(s;e)={xeR"*' : |x;—s;|<e¢ forall i}

is called the (n + 1)-cube with centre s and edge length 2¢. A subset W of
R"*! is a cube if it is of the form W = W(s;¢) for a point seR"*! and a
real number ¢ > 0; in this case, one also says that the cube W is centred
at s. Given a cube W = W(s;¢), a subset of the form

W, ={xeW :t;=s;+¢}
or

W,._={xeW:t,=5—¢}
(i fixed) is called an (n-dimensional) face of W; note that it can be viewed
as the image of a cube in R” with respect to an affine embedding R" —» R"* !,
The union of all n-dimensional faces of a cube is its boundary (in the
topological sense, as a subspace of R"*1). A cube can be considered as a
cone with its boundary as base and its centre as peak. Cubes are balls:
the composition of the translation sending s to the origin and the multipli-
cation by the scalar 1/¢ induces a homeomorphism W(s;¢)— (B!)"*!; but
(BY)"*' is an (n+ 1)-ball (see Proposition 1.0.2). Consequently, the
boundary of a cube in R"*' is an n-sphere. Finally, observe that cubes
may be arbitrarily small, i.e., given a point s in an open set U = R"*! there
exists a cube centred at s and completely contained in U.



Euclidean complexes 97

Exercise

Describe homeomorphisms ¥" : A" — B" by means of coordinate functions
such that there is a based homotopy of pairs (4",64")—(B",S"™ 1)
connecting these homeomorphisms and the standard maps y" of
Lemma 3.1.4.

3.2 Euclidean complexes

The previous section was devoted to an analysis of single simplices.
Conglomerates of these bricks are now going to be studied. A Euclidean
complex is a set K of simplices in a fixed R"*!, such that / [

4 T o {-' =

(1) K contains all faces of all members of K;

(2) the intersection of two members of K is a face of both; and

(3) every member of K has a neighbourhood which intersects only finitely
many members of K.

A set of simplices satisfying only the second :nd the third condition
generates a Euclidean complex; it is obtained by adding to the given set
all faces of its elements.

The vertices of the simplices of a Euclidean complex K will be called
vertices of K. The third condition in the definition of Euclidean complexes
implies that the set A = Ay of vertices of K forms a discrete subspace of
R"*!, Since a simplex is uniquely determined by the set of its vertices,
there is an injective function from K to the set of finite subsets of A
associating to each simplex the set of its vertices. The image of K with
respect to this function is called the vertex scheme of K.

The union of all the simplices of a Euclidean complex K — taken in
R"*! —is the underlying polyhedron; it will be denoted by |K|. More
generally, a (Euclidean) polyhedron is a subspace of some R"*!, which is
the underlying polyhedron of some Euclidean complex. Given a
polyhedron P, a Euclidean complex K with |K|= P is called a simplicial
decomposition of P.

Example 1 The set of all faces of a simplex A = R"*! forms a Euclidean
complex whose underlying polyhedron is the simplex itself and which — by
abuse of notation — will also be denoted by A. Again, the set of all proper
faces of A is a Euclidean complex whose underlying polyhedron is the
boundary §A of A and which is also denoted by J 4. |

Example 2 In R"*!, take all the simplices described in Example 1 of
Section 3.1. They form a Euclidean complex whose underlying polyhedron
is the space R"*! itself. O

Clearly, a Euclidean complex is finite if it consists of finitely many simplices
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only; in this case, the third condition in the definition of Euclidean
complexes is meaningless. Examples are the Euclidean complexes A and
8 A, derived as in Example 1 from a geometric simplex A in R"*'. The
underlying polyhedron of a finite Euclidean complex is a finite union of
compact sets and therefore compact.

Lemma 3.2.1 Let K be a Euclidean complex. Then every point se|K| is
(i) contained in only finitely many simplices of K; and
(i) an interior point of exactly one simplex of K.

Proof Let a point se|K| be given. Among the simplices of K containing
s, let A be one with minimal dimension. To prove (i), take a neighbourhood
of A that meets only finitely many simplices of K. Clearly, any simplex
of K containing s meets this neighbourhood; so there can be only finitely
many of those.

If s would not be an interior point of A it would be contained in a
proper face of 4, i.e., in a lower-dimensional member of K, in contradiction
to the choice of A. To obtain uniqueness, it suffices to observe that two
simplices of a Euclidean complex having an interior point in common
must be equal. O

Given a Euclidean complex K and a point se| K|, the unique simplex of
K that contains s as an interior point is called the carrier of s in K and
is denoted by A4,.

A Euclidean complex L is a subcomplex of the Euclidean complex K if
Lc K, ie., if every simplex of L belongs to K. The k-skeleton K* of K is
the subcomplex consisting of all simplices AeK with dim A <k,0<k; if
n+ 1 is the dimension of the ambient Euclidean space, then one has
K*= K for every k >n+ 1. The boundary of every (k + 1)-simplex of K
can be considered as a subcomplex of K*. In contrast to the situation for
CW-complexes (see Corollary 1.4.5), the following result is evident.

Proposition 3.2.2 An arbitrary union or intersection of subcomplexes is a
subcomplex. O

Given a Euclidean complex K and a subset L = K, the intersection K(L)
of all subcomplexes of K containing L is the subcomplex generated by L,;
K (L) consists of all faces of all the members of L.

Since any simplex has only finitely many faces, this implies:

Lemma 3.2.3 A finite subset of a Euclidean complex generates a finite
subcomplex. O
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The image of a polyhedron under an affine embedding is again a poly-
hedron; more precisely:

Lemma 324 Let K be a Euclidean complex in R""' and let
f RIS R™! be an affine embedding. Then, {f(4): AeK} is a
Euclidean complex in R™*1,

Proof The set {f(4) : AeK} is a collection of simplices satisfying the
axioms of a Euclidean complex. O

Corollary 3.2.5 Given any simplex A cR"*!, there exists a Euclidear
complex K with AeK and underlying polyhedron R"*1.

Proof Let L denote the simplicial decomposition of R"*! described in
Example 2 and choose an affine homeomorphism R**! - R"*!, taking
one simplex of L onto A. O

Corollary 3.2.6 Cubes are polyhedra.

Proof The described simplicial decomposition of R"*! contains a sub-
complex whose underlying polyhedron is the cube (B!)"*!. Any other
cube can be obtained from this as the image under an affine homeo-
morphism R**! - R"*1, O

In order to make a connection between Euclidean complexes and CW-
complexes the following fact is needed.

Lemma 3.2.7 The underlying polyhedron of a Euclidean complex K is
determined by the family of all the simplices of K.

Proof Firstly, assume K to be finite and let V be a subset of | K|, which
intersects every simplex A of K in a closed set. Since a simplex is closed
in R"*! and only finitely many simplices are under consideration, V is a
closed subset of R"*! and thus of |K]|.

Secondly, let K be infinite. Let U be a subset of | K| which intersects
every simplex 4 of K in an open set. Choose for every A an open set U 4
in | K|, which meets only finitely many simplices of K. Let L 4 denote the
finite subcomplex of K which is generated by these simplices. Then, in
view of the part of the assertion already proved, Un|L 4| is open in |L 4.
Now, UnU ,=Un|L4nU, is open in U, and thus open in |K].
Therefore, U being the union of the open sets UNU,, it is open in |K|.

O
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Theorem 3.2.8 A simplicial decomposition provides a Euclidean polyhedron
with the structure of a finite-dimensional, countable, locally finite and regular
CW-complex.

Proof Let K be a Euclidean complex in R** . Its underlying polyhedron
|K| is Hausdorff as a subspace of R"*!. The interiors of the simplices of
K provide |K| with a cell decomposition (see Lemma 3.2.1 (ii)) whose
k-skeleton is just |K¥|. If A is any k-simplex in K, any homeomorphism
B*— A (for the existence of such homeomorphisms use an appropriate
modification of Lemma 3.1.4) maps the boundary sphere S*~! of B* into
the boundary 64 of A, contained in the (k — 1)-skeleton of this cell
decomposition. Now, the choice of such a homeomorphism for each AeK
completes the structure of a cell complex for | K|. This structure is closure
finite because a simplex has only finitely many faces and the space |K|
has the right topology (see Lemma 3.2.7). Thus, |K| is a Whitehead
complex, and, consequently, a CW-complex (see Theorem 1.6.3).

The CW-complex obtained, being embedded in the Euclidean space R"**,
is locally finite, countable and of dimension <n + 1 (see Theorem 1.5.18
(i1)). Moreover, its closed cells are simplices, i.e., balls, and thus the CW-
structure is regular. a

This is the theorem that brings into light the interplay between CW-
complexes and Euclidean complexes.

Corollary 3.2.9 Let K be a Euclidean complex. Then:

(i) a(CW-)subcomplex of |K| is the underlying polyhedron of a (Euclidean)
subcomplex of K;

(i) K is finite iff |K| is compact; and

(iii) dim|K|=min {keN : K*=K} =max {dimA : AeK}. 0

Statement (ii) appears here as a consequence of the corresponding fact for
CW-complexes (see Proposition 1.5.8); note that an easy direct proof also
is possible.

In view of (iii), the dimension of a Euclidean complex K is defined as
the dimension of its underlying polyhedron:

dim K =dim |K]|.

Corollary 3.2.10 All simplicial decompositions of a polyhedron have the same
dimension. (]

Cubes and simplices are ANRs (see Proposition A.6.3). More generally:

Proposition 3.2.11 A compact polyhedron is an ANR.
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Proof Given a compact polyhedron, choose for it a simplicial decomposi-
tion K which is a finite Euclidean complex (Corollary 3.2.9 (ii)). The

proposition is proved by induction on the number k of simplices in K.
If k=0, then |K|= and the statement holds true. Assume the
proposition to be correct for k <m. From a Euclidean complex with m
simplices, take a simplex AeK of maximal dimension. Then K = K\{A4}
and 04 have less than m simplices, and therefore, by the induction
hypothesis, | K | and 64 are ANRs. Since also 4 is an ANR, one concludes

finally that the union |K| =|K ||| ;4 Ais an ANR (see Proposition A.6.6).
O

Remark A certain converse statement is true: any compact ANR has the
homotopy type of a compact polyhedron. This fact is beyond the scope
of this book. O

Let p be a point in the underlying polyhedron |K| of a Euclidean complex
K. The finitely many simplices of K that contain the point p generate a
finite subcomplex of K, the star of p, denoted by stk p; the simplices of
sty p that do not contain p form a subcomplex of stk p, called the link of
p in K. The notions ‘star’ here and in Section 1.4 are related by

Istg p = St({p}),
where that star St is taken in the CW-complex | K|. It follows that |st p|
is a compact neighbourhood of p in |K|. Unlike the stars of points in
CW-complexes, the stars in Euclidean complexes are cones.

Proposition 3.2.12 Let p be a point in the underlying polyhedron |K| of a
Euclidean complex K, and let L denote the link of p in K. Then the triple
(Istgpl,|1 LI, p) is a cone.

Proof One has to show that the map
S L x I-R"™ 1 (s, )—ts + (1 — t)p

has |stg p| as image and is injective on |L| x (I\{0}).

‘image f < |stgp|: take (s,t)e|L| x I. The carrier A, of s in L is a face of
a simplex 4eK, which contains p (Lemma 3.2.1). Since A is convex, it
contains the whole interval {ts+ (1 —t)p : tel}, and, in particular, the
point f(s,t).

‘|stgp| = image f™: clearly peimage f; take se|stgp|\{p}. If its carrier A;
belongs to L, then one has s = f(s',1). Otherwise, the array
{p+1t(s'—p): t' >0} meets the boundary of A in a point s = p + t'(s' — p)
with ¢’ > 1, whose carrier belongs to L; then one has s’ = f(s, 1/t').
Injectivity: assume that f(so,t,) = f(s;,t,), and, without loss of generality,
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that 0 < t, <t,. Then compute s, = f(so,0/t,). The carrier of s, is a face
of a simplex A in K which contains p (Lemma 3.2.1). Choose 4 so that
it has minimal dimension. Then the points p and s, belong to A but no
proper face of A contains both of them. Therefore the open interval
{ts+(1 —t)p : 0 <t <1} is completely contained in the interior of 4 and
does not meet |L|. In view of s,€|L|, this implies ¢,/t, =1, i.e., to =1,
and, consequently, sq = s,. O

From the general theory of CW-complexes, one derives that a Euclidean
complex K' is a subdivision of a Euclidean complex K if K’ is a refinement
of K; ie., if every simplex of K’ is completely contained in a simplex of
K (see Section 2.3). If K’ is a subdivision of K, and L is a subcomplex of
K, then the simplices of K’ that are contained in |L| form a subcomplex
of K’ that is the induced subdivision of L.

For the explicit construction of subdivisions, the following combinatorial
analogue of the CW cone construction (see Section 2.3, Example 4) is very
helpful.

Proposition 3.2.13 Let (C,B,p) be a cone where B is the underlying
polyhedron of a finite Euclidean complex L. Then, the global set C is the
underlying polyhedron of the finite Euclidean complex

pL=Lu{pA: AeL}.

In other words, cones with a compact polyhedral base are polyhedra. [

Example 3 Let K be a Euclidean complex in R"*!. Define inductively the
barycentric subdivisions Sd K* of the skeleta K* by taking Sd K® = K° and
Sd K¥*'=Sd K¥U| )b ,(64), where the union ‘U’ runs through all the
(k + 1)-simplices AeK, b 4 is barycentre of A and (64)" denotes the induced
subdivision of 84 with respect to Sd K*. The Euclidean complex
Sd K = Sd K" obtained in this way is called the barycentric subdivision of
K. Its vertices are the barycentres of the simplices in K; its k-simplices
correspond to the strongly increasing sequences A, c A, < --- = 4, of
simplices of K: the corresponding barycentres span a simplex. Since the
distances between two barycentres forming an edge of Sd K are smaller
than the diameter of their carrier in K (see Lemma 3.1.3), and the
diameters of the simplices are determined by their edges (see Lemma 3.1.2),
it follows that the simplices of Sd K are ‘smaller’ than the simplices of K;
more precisely,

sup{diam 4 : AeSd K} s(%)-sup{diamA : AeK}. a
n
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This implies, for finite Euclidean complexes, that by repeated barycentric
subdivision one can obtain a Euclidean complex with sufficiently small
simplices, a fact that will be used mainly in the following form:

Proposition 3.2.14 Let K be a finite Euclidean complex and let {U, : e A}
be an open covering of |K|. Then, there is a subdivision K' of K such that
the covering {|sty.k| : k€K } refines {U, : LeA}.

Proof Take d=max{diamA : AeK}. Then, choose reN such that
2:((n+ 1)/(n + 2))-d becomes smaller than the Lebesgue number of the
covering. The r-fold subdivision Sd” K has the desired properties, since

the diameter of each |stgy-«, k| is less than or equal to 2-max {diam 4 : Ae
Sd"K}. |

There is a slightly different type of subdivision process based on an
analogue of Lemma 2.3.8:

Lemma 3.2.15 Given a Euclidean complex K and a point pe|K|, there is a
subdivision of K for which p is a vertex.

Proof Let L denote the link of p in K and take the subdivision of K given
by (K\stgp)upL. O

The construction of the subdivision in this proof will be referred to as the
starring of K at p. lterated used of it will be made in announced
subdivision process.

Example 4 Let K be a Euclidean complex and let Q be a finite subset of
| K|. Enumerate the elements of Q say, p,,...,p so that the corresponding
sequence of dimensions of the carriers is weakly decreasing. Then perform
the starring operation, first at p,, next at p,, and so on. This process is
the starring at a finite set of points in order of decreasing dimension. Note
that the barycentric subdivision of a finite Euclidean complex can be
viewed as a starring at the set of the barycentres of all simplices in order
of decreasing dimension. ]

Proposition 3.2.2 stated that arbitrary unions and intersections of
subcomplexes of a Euclidean complex are Euclidean complexes; the
situation is far different if one deals with arbitrary Euclidean complexes
not contained in a ‘supercomplex’, even if these are supposed to live in
the same Euclidean space.
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©. 1 L1

0,0 (1,0
Figure 8

Example 5 In R?, let K, denote the Euclidean complex formed by the
standard-simplex A' and its vertices, and let K, denote the Euclidean
complex formed by the triangle H({(0,0),(1,0),(1,1)}), and its faces (see
Figure 8). Then, K, K, consists of the 0-simplex (1,0) and is a Euclidean
complex; on the other hand, since A' and H({(0,0),(1,1)}) are 1-simplices
in KoUK, whose intersection is not a common face of both, the union
K,UK, fails to be a Euclidean complex. O

This example reflects the general situation. Given two Euclidean complexes
Ko, K, in the same space R"*!, their intersection K,n K, is again a
Euclidean complex with |[KonK,|<|Ky|n|K,|; in general, one has a
proper inclusion and no equality. By chance, the union K,uU K, could be
a Euclidean complex. A necessary condition for this to happen is the
following:

the intersection of a simplex belonging to K, and a simplex belonging
to K, is a face of both.

If the union is a Euclidean complex, then one has |[K,U K| =|Kq|U|K,],
as well as |[Kon K| =|Kq|n|K,].

Figure 8 suggests that although the union of the Euclidean complexes
in question is not a Euclidean complex, the union of their underlying
polyhedra is still a polyhedron. However, this is also not true in general,
as is seen in the next example.

Example 6 The subsets {0} and {1/n : neN\{0}} of R are 0-dimensional
polyhedra, but their union fails to be a polyhedron. O

Certain classes of polyhedra allow unions. To see this, one needs a
somewhat technical fact.

Proposition 3.2.16 Let K, K, be finite Euclidean complexes in R"*! and
let L be a subcomplex of K, such that |L|n|K,|= . Then there are
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subdivisions Ky, K| of Ko, K, respectively, such that K|, contains L as a
subcomplex and K, UK’ is again a Euclidean complex whose underlying
polyhedron is P =|Ky|U|K,].

Proof Let A, A,,..., A, be any enumeration of the simplices in KoUK}
Choose, for every index j, a Euclidean complex K ; with A;eK;and P < | K|
(Corollary 3.2.5). Now, P is covered by the intersections of the form
Ain-ndAin--n 4, with AjeK; for all j, and A= A; for at least one
j. These sets are convex, and any intersection of them is again of this form.
The boundary of any such set (in its affine hull) is a union of such sets of
lower dimension. Now assume, by an induction on dimension, that a
simplicial decomposition of such a boundary is given; choose an interior
point and get a simplicial decomposition of the whole set by means of
the cone construction (see Section 3.1, Example 4, and Proposition 3.2.13).
Collecting all the simplices obtained in this way, one obtains a simplicial
decomposition K of P containing subdivisions K7, K| of Ky, K;,
respectively, as subcomplexes. At this point, it is already clear that the
union of two compact polyhedra is again a polyhedron.

Let f : |Ko|—1 denote the map which sends every vertex of L to 0,
every other vertex to 1, and maps the higher-dimensional simplices linearly.
Choose a real number ¢ >0 such that f~![0,¢] does not contain any
vertex of K not belonging to the induced subdivision of L. Thus, every
simplex of K meeting f ~![0, ¢] meets also |L|; if such a simplex does not
belong to | L| then it has an interior point in common with the set f ~ el
Choose such a point p 4 in every corresponding simplex 4, and apply the
operation of starring at these points in order of decreasing dimension to
K; let K’ denote the resulting Euclidean complex. K’ contains a simplicial
decomposition K of f e, 1JU|K,| as a subcomplex, which in turn
contains the subdivision K| of K, (see Figure9). Clearly, LUK is a

[Ko |’

————— [KI"\I Kol

—— £ (e
(I v

E= r'le UK, |

Figure 9
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Euclidean complex; it remains to describe a suitable simplicial decomposi-
tion of the remaining part of |K,|U|K,|. This is the union of the
intersections A, = Ay f~'[0,¢], where A runs through the simplices of
K,\L that have at least one vertex in L. Each such set is convex; by
induction on the dimension, one may assume a simplicial decomposition
A ; of its boundary which does not subdivide the touched simplices of
LK respectively. Taking an interior point p, one gets the simplicial
decomposition pA s of A (see Proposition 3.2.13). Because of the inductive
procedure, these simplicial decompositions of all the sets A ; are compatible
with each other and yield, all together, a Euclidean complex of the desired
kind. O

The first part of this proof and the ideas expressed therein allow two
further conclusions.

Corollary 3.2.17 The union of finitely many compact polyhedra in the same
Euclidean space is a compact polyhedron. O

Corollary 3.2.18 Two Euclidean complexes with the same underlying
polyhedron have a common subdivision.

Proof Let K, and K, be Euclidean complexes, with | K| =|K|= P. The
intersections Ayn A4, with A,eK, and 4,€K, form a covering of P by
compact convex sets, which can inductively be refined to a simplicial
decomposition as in the previous proof. O

Remark This result is to be seen in contrast to the so-called ‘Hauptver-
mutung’, which will be explained in the Remark following Example 2 of
the next section. O

Compact polyhedra are not closed under infinite unions, not even under
infinite unions of expanding sequences.

Example 7 The subsets P, = {0} u{1/n : neN,0 <n <k}, keN, of R! form
an expanding sequence of compact polyhedra, but their union in R?, fails
to be a polyhedron. Note that this union is not the union space of the
expanding sequence in the sense of Section A.5. (]

However, under an additional hypothesis, expanding sequences of compact
polyhedra converge to a (not necessarily compact) polyhedron.

Proposition 3.2.19 Let P, c P, c---< P;c --- be an expanding sequence
of compact polyhedra in R, such that, for every jeN, P; is contained in the
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interior (P}, ) of P;,, with respect to the union P = U2 oPj- Then, P is
again a Euclidean polyhedron.

Proof Let K; be a simplicial decomposition of P;, jeN. The assumption
P;<=(P;.,)° implies that the pair {P;,,\P;,(P;,)°} is an open covering
of P, ,; therefore, one may assume the appearing simplices to be so small
that the carrier of any point in P, ,\P;,, with respect to K, , does not
meet P; (see Proposition 3.2.14). Then, define subcomplexes L; of K by
taking Lo =Ko, L; =K, Lj={AeK;: AnP;,_,=J} for j>1. This
implies immediately that P;, , = P;U|L;, |, forallj,and P,_,n|L;,,|=
o, for j> 0.

Take a subdivision K of L, = K, containing a subdivision K| of K,
as a subcomplex (using Proposition 3.2.16 with L= ¢¥). This starts an
inductive construction of subdivisions K7,K’_, of the Euclidean
complexes K, K;_, respectively, such that K’_, is a subcomplex of K
and contains (for j>1) K’;_, as a subcomplex as follows. Assume the
construction is done up to the natural number j>0. Then, apply
Proposition 3.2.16 to K, = K7,K; =L, and the subcomplex L=K/,_,
of K7 and take K/, , = K, UK,K=Kj. Now, K, =K, < - = K= -
is an expanding sequence of finite Euclidean complexes. For every simplex
in K the finitely many simplices of K, , form a neighbourhood; thus,
the union of the sequence is again a Euclidean complex: it is a simplicial
decomposition of P. O

Remark The previous proposition covers all polyhedra, ie., every
polyhedron may be viewed as the union space of an expanding sequence
of compact polyhedra, each of them contained in the interior of the
subsequent one. This follows from the fact that polyhedra are locally finite
and countable CW-complexes (see Theorem 3.2.8), that such CW-
complexes are unions of compact subcomplexes in the described manner
(see Proposition 1.5.13), and that (CW-)subcomplexes of the underlying
polyhedron of a Euclidean complex are polyhedra (see Corollary 3.2.9

(@) O
It is now possible to derive a local characterization of polyhedrain R"*!.

Theorem 3.2.20 A subspace P of R"*! is a polyhedron iff every point pe P
is the peak of a cone with compact base which is a neighbourhood of p in P.

Proof ‘=" If K is a Euclidean complex with |K|= P, then a point peP
is the peak of the cone |stxp| (see Proposition 3.2.12) whose base is
compact, as the underlying polyhedron of the link of p in K, which is a
finite Euclidean complex.
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‘<=" Some preliminary considerations are needed. Let P be a subspace of
R"*! and let (C, B, p) be a cone with its peak p in P, its base B compact
and its global set C a neighbourhood of p in P. Because of compactness,
the set B and the point p have a positive distance; thus there are small
(n + 1)-cubes centred at p, which do not meet B. If W is such a cube, and
oW denotes its boundary, then (WnC,0W N B, p) is a cone with the same
properties as the original one. Thus, in this context, one can always deal
with cones whose bases are contained in the boundaries of small cubes
centred at their peaks. (Given two cones with the same peak and the bases
in the boundary of the same cube centred at the common peak, their
intersection is again a cone with these properties. This shows that the
intersection of two subspaces satisfying the hypothesis has the same
property.)

What follows is the main part of the proof. First, assume P to be
compact. Perform an induction on the dimension of the affine hull A(P)
of P. In dimension 0, there is just a point and nothing to prove. Assume
that dim A(P) =k + 1. For every point peP, choose a cone as described
in the beginning and with the particular property that its base is contained
in the boundary of a small cube centred at p. By compactness, finitely
many of these cones cover P; thus, it suffices to show that each of them
is a polyhedron (Corollary 3.2.17). The intersection of P with any proper
face of these cubes has dimension at most k; thus, one can use the induction
hypothesis and obtain that this intersection is a polyhedron. The boundary
of a cube is the union of its finitely many proper faces. Thus, the inter-
sections of P with the boundaries of the cubes in question are polyhedra.
Since cones with compact polyhedral bases are polyhedra (see
Proposition 3.2.13), the desired result follows in this case. Note that this
already shows that an intersection of two compact polyhedra is a
polyhedron.

Now assume P to be non-compact. Since the Euclidean space R"*!
satisfies the second axiom of countability, there is a sequence {W;} of
(n + 1)-cubes such that every cube W < R"*! contains at least one cube
W;, which in turn contains the centre of W as an interior point. For a
given point pe P, take a cube W centred at p such that W~ P is a compact
neighbourhood of p in P; by the previous argument, W P is a polyhedron.
But then, there is a cube W, whose intersection W;n P with P is also a
compact neighbourhood of p, and, moreover, a polyhedron. Let {W;}
denote the subsequence of the sequence {W;} consisting of the cubes
appearing in this form. Then, clearly, all P;=W;nP are compact
polyhedra whose interiors (with respect to P) cover P. But — as explained
before — the fact that P is the union of the P{’s is not enough! In view of
the preceding proposition, one has to construct an expanding sequence
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PycP,c---cPjc - of compact polyhedra contained in P such that,
for every jeN, P; is contained in the interior of P;,, with respect to P
and such that P = U;‘;(,Pj. This will be done inductively, starting with
P, =P}, Assume P; already constructed. The boundary of P; is compact;
thus it is covered by the interiors of finitely many polyhedra P!. Adding
these and the P; having the smallest index which is not yet contained in
P;, one obtains P;, ;. O

This local description, together with the technique of using cones whose
base is contained in a cube, yields also the general intersection property.

Corollary 3.2.21 The intersection of finitely many polyhedra in the same
ambient space is again a polyhedron. O

Moreover, as a consequence of the theorem there is a whole mass of
further examples for polyhedra.

Corollary 3.2.22 Open subspaces of R"*! or a Euclidean polyhedron are
polyhedra.

Exercises

1. Prove that the carrier of a point s in the underlying polyhedron of a
Euclidean complex K is the intersection of all simplices of K which
contain the point.

2. Show that cones with a non-compact base can never be polyhedra.

3. Develop a technique for performing a starring at infinitely many points.

3.3 Simplicial complexes

The underlying polyhedra are, up to homeomorphism, determined by the
vertex schemes of the corresponding Euclidean complexes; more precisely:

Proposition 3.3.1 Let K and L be Euclidean complexes and let f : Ay —> A
be a bijection between the corresponding vertex sets such that a set x © Ag
spans a simplex of K iff its image f(x) = A, spans a simplex of L. Then f
extends to a homeomorphism |K|~|L|.

Proof Take a point se|K]|; let so,...,s, denote the vertices of its carrier
A, and let ¢,,...,t, denote its barycentric coordinates with respect to A,.
Then define

f6)= 3 tf(s). 0

i=0
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This fact leads to a more abstract notion. A simplicial complex is a set K
of finite sets closed under the formation of subsets, i.c., any subset of a
member of K is also a member of K; more formally:

xeK A ycx=yeK.

The vertex schemes of Euclidean complexes are examples of simplicial
complexes; one should keep them in the back of one’s mind for the
following considerations.

The members of a simplicial complex K are again called simplices of
K; more precisely, one has a simplex of dimension k, or a k-simplex for
short, if the simplex has exactly k + 1 elements. In this abstract setting,
denote simplices as above just by small italic letters as x, y, ..., and write

dimx=k
if x is a k-simplex. If x, y are simplices of K with y < x, then — in accordance
with intuition — y is called a face of x. The simplices of K are sets, and
so one may form their union; this is the set A = Ag of vertices of K or
the vertex set of K for short. Considering the vertices as singletons, i.e.,
as one-element sets, identify the set A with the set K, of 0-simplices of
K. More generally, denote by K, the set of all k-simplices of K:

K, ={xeK : dimx =k}
and by K* the k-skeleton of K:

K*={xeK : dimx <k};
the skeleta are subcomplexes of K, ie., subsets of K which are simplicial
complexes themselves.

Other classes of interesting examples for simplicial complexes are the
nerves of coverings and ordered simplicial complexes defined presently.

Example 1 Let {U, : AeA} be a family of arbitrary sets; then the set K(A)
of all finite subsets of A such that

NU,#J

Aex
is a simplicial complex. Note that in general the vertex set of this simplicial
complex K(A) is not the index set A itself, but only its subset consisting
of the indices A with U, # &J. Now, if Z is a space and {U; : leA}is a
covering of Z (see Section A.3), then the simplicial complex K(A) obtained
in this way is called the nerve of the covering {U, : ieA}. O

Example 2 This generalizes Example 1 of Section 3.1. Let I” be a set and
let R be a binary, reflexive and antisymmetric (in general non-transitive)
relation on I'. Then the set K = K(I', R) of all finite subsets x = I" such
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that Rnx x x is a total order on x forms a simplicial complex. The pair
(K,R) is called an ordered simplicial complex. 1f (K,R) is an ordered
simplicial complex, then the relation R is called a local vertex ordering on
K. Note that any simplicial complex K can be turned into an ordered
simplicial complex (in many ways) by means of the following procedure:
choose a total order R on the vertex set of K and take

R= U RAx X x. O
xeK
Given two simplicial complexes K and L, a simplicial map f : K— L is
defined as a function f : K,— L, which maps every simplex of K onto a
simplex of L, i.e. satisfying the condition

xeK = f(x)eL.

Simplicial complexes and simplicial maps form a category that will be
denoted by SiCo in the sequel. If local vertex orderings R and R are given
for K and L respectively, a simplicial map f : K — L such that

(2, 7)eR=(f(2), f(y)eR

is called order preserving. Again, ordered simplicial complexes and
order-preserving simplicial maps form a category, denoted by OSiCo.
Although the procedure of ordering an arbitrary simplicial complex
described in Example 2 is not at all functorial, there is an interesting
functor Sd : SiCo— 0SiCo, called barycentric subdivision. It associates to
a simplicial complex K the ordered simplicial complex (K’, R) having the
vertex set I' = K and local vertex ordering
R={(x,y)eK xK : xcy};
it associates to a simplicial map f : K — L the order preserving simplicial
map f' : K'—= L' given by
S x¥)=f(x)

where, on the left-hand side, x is an element of the domain of the function
/', which, on the right-hand side, is interpreted as a subset of the domain
on the function f. The notation Sd for this functor reflects its geometrical
meaning as a kind of barycentric subdivision, which will be exhibited later

in this section. (Note that instead of the relation R one could also have
taken the opposite relation

R®={(x,y)eK x K : ycx}.)

Remark Clearly, two simplicial complexes K and L are isomorphic if there
is a bijection f : K;— L, such that

xeK<f(x)eL
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for every subset x = K, i.e., such that f and /! can be considered as
simplicial maps. In this terminology, Proposition 3.3.1 says that the
underlying polyhedra of two Euclidean complexes having isomorphic
vertex schemes are homeomorphic. Evidently, the converse statement fails
to be true: the underlying polyhedra of two Euclidean complexes may be
homeomorphic without the corresponding vertex schemes being
isomorphic. In view of Corollary 3.2.18, one might expect two Euclidean
complexes with homeomorphic underlying polyhedra to have subdivisions
with isomorphic vertex schemes. That is the famous ‘Hauptvermutung’
(main conjecture) of algebraic topology. But this also turned out to be
wrong (cf. the notes at the end of this chapter)! O

Now let us turn from combinatorics to geometry. Let K be a simplicial
complex. To each (abstract) simplex xeK associate the (concrete,
geometric) simplex formed by the set

Ax={s=(s,1 PAex)el 1 Y s, = 1}
Aex

and the subspace topology with respect to I*; thus 4, is homeomorphic
to the standard-dim x-simplex. View A, as a subset of I Define the
geometric realization | K| of K to be the union U A, in I'4, with the topology
determined by the family {4, : xeK} of all simplices. By abuse of
language, one often refers to the geometric realization of a simplicial
complex simply as a simplicial complex and omits the bars in the notation.
In this sense, simplicial complexes are CW-complexes — like Euclidean
polyhedra.

Theorem 3.3.2 If K is any simplicial complex, the sequence {|K"| : neN}
provides | K| with the structure of a regular CW-complex.

Proof Clearly, the chosen topology on |K| is finer than the subspace
topology with respect to the inclusion of |K| into the product space 14,
and therefore it is Hausdorff. The remainder of the proof is the same as
in the corresponding part of Theorem 3.2.8. O

In the sequel, the geometric realization | K| of a simplicial complex K will
be tacitly assumed to be provided with the CW-structure described in the
preceding proposition. Its closed cells are just the sets A,; thus, they
correspond bijectively to the simplices of K. So, given a point s€|K|, the
simplex x = x; is said to be the carrier of s if the cell A, is the carrier of
s in the sense of Section 1.2.
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In the proof of Proposition 3.3.2, already another topology has been
considered on the underlying set of |K|, namely the trace of the product
topology. One may also think about a third topology, namely the metric
topology; i.e., the topology induced by the metric d : |K| x |K|—R,

d(s,§) = /;A(SA—SA)

Proposition 3.3.3 For a simplicial complex K, the metric topology and the
trace of the product topology on the underlying set of its geometric realization
| K| coincide.

But this is nothing new:

Proof First observe that the metric topology is finer than the trace of the
product topology, since, for every A€ A, the restriction of the corresponding
projection p, : I*—>1 to |K| provided with the metric topology is
continuous.

Conversely, it will be shown that, for any positive real number ¢, an
e-neighbourhood U of a point s€|K]| in the metric topology is also a
neighbourhood of s in the trace of the product topology. For s fixed,
k = dim x,, define the positive real

€
S+ Dk +2)

U= {§e|K| : Aex,=>|s, — 5| <r).

¥y =

and the set

Then U is evidently open in the trace of the product topology. Next,
consider a single point §eU. From Y ; 45, =>;c45, =1, it follows that

YoS5i= Y (530S Y s =8il<(k+r

Agxs dexs Aexs

and this allows us to estimate

d(s,57 =Y (5: =50+ Y. S2<(k+ )2+ (k+1)’r* =&,
rEXg g xg

which implies §e U. Since this holds for all §e€ U, one concludes that U = U.
O

The equivalent metric or product topologies on | K| are often referred to
as the strong topology of the simplicial complex K. The underlying set of
|K| endowed with the strong topology will be denoted by |K|,. The
following is an example in which the strong topology is really different
from the topology determined by all simplices.
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Example 3 Let AN be the simplicial complex consisting of all finite subsets
of the set N of natural numbers; its geometric realization Ay =|AN] is
often referred to as the infinite simplex. A basis for the set of open sets of
Ay is given by all sets

U=Ann X U,

A=0
where every set U, is of one of the following types
(a;,b,), 0<a;<b;<1,
[0,b,), O0<b,<1,
(ay, 17, 0<a, <],

[0, 1].
On the other hand, a basis for the open sets in the strong topology is
given by those sets U which satisfy the added condition that U, = [0, 1]
for almost all A. Thus,
Ann X [0,3)
A=0
is open in Ay, but not in |[AN],,. O

As will be proved in the sequel, the difference between these two topologies
is hardly important, as in fact they agree up to homotopy. What follows,
while included here as preparation for this, is also of more general interest.
Given a space X and a partition of unity {u; : AeA} on X, there is an
interesting function ¢ 4, : X —|K(A)|, where K(A) denotes the nerve of
the induced open covering of X. It is defined by

¥ A(X) = (12(x))

for all xeX. Moreover, if this partition of unity is subordinated to a
covering {U,} with nerve K(A), then K(A) is a subcomplex of K(A) and
Y 4 can also be considered as a function with values in |K(A)|.

Lemma 3.3.4 Let X be a space and let the family {u, : Ae A} be a partition
of unity on X subordinated to the covering {U,}. Then,

D) Y, : XK, IIZ(A)Im is continuous; and

(ii) Y 5 : X —|K(A)| <|K(A)| is continuous provided {u,} is locally
finite.

Proof (i) is trivial. As for (ii), take a point xeX and a neighbourhood U
of x in X that meets only finitely many U,. Then X = {i€A : y;|U #0}
is a simplex of K(A) and the function ¢ ,| U factors through the geometric
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simplex 4. The induced function U — A, < I has the continuous compo-
nents p,| U, for every AeX; thus, it is continuous. Clearly, the inclusion of
A, into |K(A)| is continuous and thus, the same holds for the function
Y alU.

This shows that the function y , is continuous at x, and, since this is true
for every point xe X, it is globally continuous. O

If K is a simplicial complex, the projections p, : |K|, I, AeAg form a
point-finite, but in general not locally finite, partition of unity for | K|,
as well as for | K| (see Section A.3). For every Ae Ay, the interior of the
star of the O-cell 4, namely

St(A)° = {s€|K|, : pa(s) #0}

is the open star of ; the family {St(1)° : AeAg} is an open covering of
both |K]|,, and | K|, called the star covering.

Proposition 3.3.5 The nerve of the star covering of a simplicial complex K
is the simplicial complex K itself. Moreover, the canonical function induced
by the partition of unity on |K|,, given by the projections p, : |K|,—1,
A€ Ay, is nothing but the identity function |K|,—|K]|.

Proof For the first statement, one has to show that a finite, but non-empty,
subset x = Ag is a simplex of K iff the open stars of its elements have a
non-empty intersection. Now, if x is a simplex then the intersection of the
stars of its vertices contains the non-empty interior of 4,. On the other
hand, take a point se|K|,, with p,(s) #0 for all Alex; then, x is a subset
of the carrier of s, and thus a simplex itself.

The second statement of the proposition is trivial. O

Corollary 3.3.6 For asimplicial complex K, the identity function | K|,,— | K|
is continuous if its star covering is a locally finite covering of | K|,,. O

Later on (see Proposition 3.3.14), it will be seen that the given condition
is not only sulfficient, but also necessary for the continuity of this identity
map.

One is now ready for the actual comparison between the topologies of
|K| and | K]|,.

Proposition 3.3.7 The geometric realization |K| of a simplicial complex K
is homotopy equivalent to |K|,,.

Proof There is a trick leading towards a locally finite partition of unity.
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To this end, define functions p: |K|,—7 and p, : |K|,—1 for all
AeA = K,, by taking

p(s)=max{s; : AleA},

Pa(s) =max {0,2s, — p(s)}.
The function p, will be continuous if the function p can be shown to be

continuous. This latter claim is proved by showing that p is continuous
at any fixed point se|K|,. Take the set

U= {§e|1<|m: Y 5>1 —ﬁ’p(s)},

ieXs
and, for every 1€ A, the set
U,={5elKlm : 5:>3p(s)}-

Now U and all U, are open in |K|,, s0 is

Ae A
Clearly, seU, and, for all §eU,
p(8) =max {§,€l : Aex,}.

Thus the restriction p|U can be viewed as the maximum of finitely many
continuous functions and therefore is also continuous.

Next, take s and U as just defined, and note that, for all AeA\x,,
p.|U =0. Thus, U is a neighbourhood of s with p,|U 0 for only finitely
many AeA. Then, the maps p, : |K|,— I given by

pa(9)=pi(s) (L5917,

where the summation runs over all Ae A, form a locally finite partition of
unity on |K|,,.
Now observe that the nerve of the covering that is induced by this
partition of unity is again the given simplicial complex K itself. Indeed,
the vertex set is A;
if a subset x = A is a simplex of K, take the barycentre b of A4, and
find p,(b) #0, for all Aex, showing that x belongs to the nerve;
if a subset x = A belongs to the nerve, then there is a point se| K|,
such that p,(s) #0, for all lex, which yields p,(s) #0, for all Lex, by
the construction of the maps p,, and thus xeK.

The canonical function p : | K|, —|K]| given by
p(s) = {pi(s) : AeA}
is not only continuous (see Lemma 3.3.4 (ii)), but also a homotopy inverse
for the identity map id : |K|—|K|,. The mapsH : |K| x I »|K| and
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H, :|K|,xI—-|K],, given by
H(s,t)=t - (peid(s))+(1—1t) - s
and
H,(s,t)=¢t"- (idep(s))+(1 —1t) - s
respectively, show that id and p are homotopy inverse to each other. [J

CW-complexes, in particular simplicial complexes, are LEC spaces (see
Theorem 1.3.6). Although the main thrust of this book is directed towards
cellular structures with the topology determined by the ‘closed cells’,
sometimes the strong topology has to be taken into account. This is why
the next result is included here.

Proposition 3.3.8 A simplicial complex K with the strong topology is an
LEC space.

Proof Let X denote |K|,. The proof consists in exhibiting a
neighbourhood U of AX = X x X, which is deformable to 4X in X x X
rel. AX. Since X x X is a metric space, and therefore perfectly normal,
there is also a mapa : X x X »I such that a 1(0)=A4X and «|(X x
X\U)=1, and therefore the diagonal mapA : X > X x X is a closed
cofibration (see Proposition A.4.1 (iv)).

Take U to be the union of the sets U, = St(4)° x St(1)°, for all leA.
Note that the nerve of the covering { U, } of U is just the simplicial complex
K itself. Indeed, if a finite intersection of U,’s is non-empty, then the
intersection of the corresponding open stars is non-empty, and therefore
the vertices involved form a simplex of K; on the other hand, given a
simplex x of K with barycentre b (in X), the point (b, ) belongs to all the
U, with 1eX, and so the intersection of these U,’s is non-empty.

Now construct a partition of unity {u,} on U, subordinated to the
covering {U,}, as follows. Take the function s : U—R given by

u(s,s') = min {s;,s,},
where the sum runs over all the vertices A of K. This function is nowhere
zero and continuous; the former statement follows because (s,s')eU;
implies min {s;,s,} >0. To prove continuity at the point (so,Sp),
decompose u in the form u =y’ + ", where u' takes care of the finitely
many summands corresponding to the vertices of the carriers of s, ', and
u” collects the other ones. Clearly, y' is continuous, as a sum of finitely
many continuous functions. The function y” takes the value 0 at the point
(S0, 55); to show its continuity at this point, let ¢ > 0 be a given real number
and observe that u” takes only values <& on the open set
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{(s,8) : X5;>1—¢,>s,>1—¢ A running through the finitely many
vertices of the carriers of s,s'}. Thus p is a map with strictly positive real
values and allows to define maps p; : U— I, for each 4, by taking

pals,s') =min {s;,s, }/u(s,s)
which form the announced partition of unity on U.

This partition of unity induces a map ¢ : U — X (see Lemma 3.3.4 (i)),
which in turn leads to the homotopy H : U x I - X x X given by

- ! ! S Sla
His.s'. 1) = {((1 2t)s + 2ty (s, s'), s'), 0<e<d
(1 —t)(s,s)+ (2t —1)s,8), F<t<l.
This homotopy yields the desired deformation of U into AX. O

In the preceding proof, another structure on a simplicial complex with
the strong topology became transparent; this is based on the convexity
of balls and simplices, used often and fruitfully. The essential property of
convex sets in linear spaces is that they are not only path-connected but
also allow a canonical choice for paths o y connecting two points X, y,
which depends continuously on these points and becomes constant if the
points coincide; this is done by taking o, (¢) =(1 —t)x + 1y, for all tel.
The applicability of this idea leads to the consideration of metric spaces
in which it can be imitated at least locally. More precisely, an equilocally
convex structure — or ELCX structure for short —on a metric space X
consists of an open covering {V,:yel'} of X and a homotopy
E : U x I - X such that

MHU=uV,xV,cXxX;

(2) E is a homotopy from the restriction of the first projection to U to
the restriction of the second projection to U rel. to the diagonal
AX cU,ie, E(x,y,0)=x, E(x, y,1) =y, for all (x, y)eU, E(x, x,t) = x,
for all xeX and all tel; and

(3) E(V,xV,xI)cV,, forall yerI.

An ELCX-space is defined to be a metric space provided with an ELCX-

structure. If one wishes to be perfectly clear, one should use the notation
{X;{V,},E}

to describe the ELCX-space consisting of the metric space X, the convex

covering {V,} and the equiconnecting homotopy E; otherwise, if the

ELCX-structure is clearly understood, just write X instead of the previous

lengthy expression. By abuse of language, a space X is said to be an

ELCX-space if it is metric and an ELCX-structure for it is implicitly
understood.
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A subspace 4 of an ELCX-space X is an ELCX-subspace of X if
(1) A is a closed subset of X; and
(2) E(A x A)nU x )< A4;

in this case, the family {4nV,} and the induced homotopy
(Ax A)nU x I - A form an ELCX-structure on A.

In light of these definitions the proof of Proposition 3.3.8 shows that:

Corollary 3.3.9 Any simplicial complex with the strong topology has an
ELCX-structure for which every subcomplex is an ELCX-subspace.

Proof Let K be a simplicial complex. Take the covering by the open stars
of the vertices of K as in the proof of Proposition 3.3.8 and define

ST 20 - ois )+ -1, E<i<l

Simplicial complexes with the strong topology possess another intersting
property.

Theorem 3.3.10 A simplicial complex with the metric topology is an absolute
neighbourhood retract.

Proof Let K be a simplicial complex, let A denote its vertex set, let A" be
the union of A and one extra element w and let AA’ denote the simplicial
complex formed by all finite subsets of A’. Furthermore, let R(A") denote
the vector space consisting of all functions s : A’ — R which vanish almost
everywhere, endowed with the Euclidean norm

Isl=_[ 3 s

AeA’

Then, |AA’|,, is a convex subspace of the normed linear space R(A’), and,
hence, an ANR (see Proposition A.5.3). Now consider the subspace
CK c|AA’|, consisting of all points s such that {1eA : s(1) #0} is a
simplex of K; geometrically, one can view CK as a cone with base |K]|,,
and peak w. Define a retraction r : |[AA’|,— CK as follows. Clearly, one
must set r(w) = w. Assume that se|4A’|,, with s# w is given. Take the
carrier x; of s and choose an ordering 4, < --- < 4, of x,\{w} such that
s(Ao) = s(4,) = --- = s(4,). Take the maximal index k such that r(s) = § by
the formulae
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§(3) = s(4), fa=21,0<i<k=n;
§(A)=s(1)—s(As,), fA=1,0<i<k<nm

(1) =0, if leA\{4; : 0<i<k};
Sw)=1->3(4), the sum taken over all AeA.

The definition is independent of the choice of the ordering for x,\{w};
however, a little effort is needed to show that all the coordinate functions
r; . |AA’],,— R, s+—§(4) are continuous.

This will be proved by showing the continuity of each r, at any fixed
point s,e| AA'|,,. Assume so(dg) = 5o(4,) = -+ = 50(4,) > 0 and s4(4) = 0, for
2eA\{Ag,...,4,}. To begin with, consider the open set

U = {selAA'| : [s(L) — so(A)] < so(A,)/[4(n + 1)],
for0<i<n, and |s(w)— so(w)| <so(4,)}
Let i(1) <--- <i(m) <n denote all the indices with so(4;)) > So(4ip)+1)s
for p=1,2,...,m and define ¢, as the arithmetic mean of so(4,,) and
So(4;p +1)- Take

Uo={seU : s(4)>t, fori<i(0)};
then, for every p=1,2,...,m—1, take
U,={seU :t,>s(k)>t,,,, fori(p)<i<i(p+1)},
and, finally, take
U,={seU :t,>s(L), fori(m)<i<n}.

For each p=0,1,...,m, the sets U, are open and so is their intersection

U= U,
p=0
If all s,(4;) are equal, i.e., if there are no indices i(p), then take U = U.

Now the restrictions r,| U are continuous at the point s,, thus completing
the proof of the continuity.

This establishes CK as a retract of |4A’|,, and, consequently, as an
ANR (see Proposition A.6.4). Next, CK\{w} is an open subspace of CK,
and so is ANR (see again Proposition A.6.4). Finally, the retraction
CK\{w}—=|Kl|,, s—[1/(1 —s,)](s — s, w)establishes | K |,, asan ANR (see
once more Proposition A.6.4). O

The idea of geometric realization extends to a functor. Let K and L be
simplicial complexes with vertex sets A and I respectively, and let
f : K— L be a simplicial map. One considers |K| and |L| as subsets of
the vector spaces R” and R respectively, and forms the linear function
f : R4S R7, taking the basis vector e;, A€ A, to the basis vector e;,ER".
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Then f maps every simplex A, continuously into the simplex A ey thus,
it induces a map |f| : |K|—|L|, called the geometric realization of f; with
respect to the CW-structures given in Proposition 3.3.2 the map|f] is
regular in the sense of Section 2.1. This altogether establishes geometric
realization as a functor from the category SiCo to the full subcategory of
the category CW* generated by the regular CW-complexes. As for
simplicial complexes, one often refers to the geometric realization of a
simplicial map simply as a simplicial map, and omits the bars in the
notation.

The finiteness notions for CW-complexes (Section 1.5) have trans-
lations in the context of simplicial complexes. A simplicial complex K is
said to be

finite, if it contains only finitely many simplices;

locally finite, if every simplex of K is a face of only finitely many
simplices of K, which is the same as requiring that every vertex
belongs to only finitely many simplices;

countable, if it contains only countably many simplices;

finite-dimensional, if K = K* for some natural number k (in this case
the natural number

dim K =dim [K|
is called the dimension of K).

~ The following fact is evident:

Proposition 3.3.11 The functor ‘geometric realization’ |-| : SiCo— CW"
preserves and reflects finiteness, countability, local finiteness and finite-
dimensionality. O

There is also a slightly more delicate statement:

Proposition 3.3.12 The nerve of a covering of a space is locally finite iff the
covering itself is star-finite. O

Local finiteness delivers a criterion for the coincidence of the two
topologies on a simplicial complex. First, note

Lemma 3.3.13 If the simplicial complex K is locally finite, the star covering
of K is a locally finite covering of |K|,,.

(As in Corollary 3.3.6, the sufficient condition given here turns out to be
necessary also; this is a consequence of the next proposition.)
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Proof Take a point se€|K| and consider the open neighbourhood
U = n{St(4,)° : Asex,}, where x, is the carrier of s. By the local finiteness
of K — being the nerve of its star covering (see Proposition 3.3.5) - each
of the finitely many open stars St(4,)°, A,€x, meets only finitely many
stars St (1)°, Ae A\ x,. Thus, U is a neighbourhood of s, meeting only finitely
many members of the star covering of | K|, gd

Proposition 3.3.14 The topology determined by all simplices agrees with the
strong topology on a simplicial complex iff the simplicial complex is locally
finite.

Proof ‘=": The assumption implies that the corresponding CW-complex
is metrizable. Thus the result follows from Proposition 1.5.17.
‘<=": This follows immediately from Lemma 3.3.13 and Corollary 3.3.6.

O

Moreover, the finiteness notions permit the comparison of simplicial
complexes to Euclidean complexes. A Euclidean complex K is called a
Euclidean realization of the simplicial complex K, if the vertex scheme of
K is isomorphic to K.

Theorem 3.3.15 A simplicial complex has a Euclidean realization iff it is
finite-dimensional, countable and locally finite; if the dimension of such a
simplicial complex is n, then its Euclidean realization can be taken in R*"* 1,

Proof Tt is a consequence of Theorem 3.2.9 that the given conditions on
K are necessary. Conversely, let K be a countable and locally finite
simplicial complex of dimension n. In order to construct a Euclidean
realization K of K, choose first a sequence {v; : jeN} of points in R*"*!
such that every 2n + 2 members of the sequence are affinely independent
and such that the sequence {(v),jeN} of the Oth coordinates is
monotonically increasing with (v;,,)o > (v;)o + 1, for all jeN. This can be
done by means of the following inductive process. Start with v, =0, and
take forj=1,2,...,2n,
v,=e;+jeq

where e, e, ..., e,, denotes the canonical basis of the vector space R*"*!,
Now assume that v, is chosen up to k = 2n. Every 2n+ 1 of the points
Vo.- ..,V span an (affine) hyperplane of R?"* !, But there are only finitely
many of those hyperplanes in R?"*!, thus their union does not cover the
total space R?"*!, and one may choose v, , , outside of this union, so that
the extra condition on the Oth coordinates is satisfied.
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Since K is assumed to be countable, its vertex set K, is countable.
Therefore, there is an injective function f : K,—R?*"*! taking values only
in the set {v;}. Then, for every simplex xeK, the convex hull % of the set
f(x) is a geometric simplex in R?"*!, with dim % = dim x. The following
claim is now made: the set K = {¥ « R?"*! : xeK} of geometric simplices
is an Euclidean complex. The first condition is clear: a face of a geometric
simplex X is spanned by the image of a subset of x under the function f;
this subset is a simplex of K, because K is a simplicial complex. Looking
at an intersection XN j, one notes that the total number of vertices
involved, ie., the cardinality of xuUy, is not greater than 2n + 2, since,
under the assumption dim K = n, every simplex of K has at most n+ 1
vertices. Thus, f(xuy) is an affinely independent set in R?"*! and spans
a simplex, of which both X and j are faces. But the intersection of two
faces of a geometric simplex is a common face of both.

It remains to verify the third condition of the definition of Euclidean
complexes; this says that every element of K has a neighbourhood meeting
only finitely many elements of K. Since geometric simplices are compact,
this is equivalent to the requirement that every point of seUIZ has a
neighbourhood meeting only finitely many elements of K. Take such a
point s = (sq, - - .,$,,) and consider the cube W(s; 1). It is a neighbourhood
of s and contains only points of those members of K which have at least
one vertex with the Oth coordinate less than s, + 1. But there are only
finitely many vertices of this kind in this game, and by the local finiteness
of K each of them belongs to only finitely many simplices of K.

Thus, K is a Euclidean complex, and, by construction, its vertex scheme
is isomorphic to K, thus proving the theorem. O

In general, a simplicial complex L is called a subdivision of the simplicial
complex K if there is a piecewise linear homeomorhism h : |L|—|K], i.e.,
a homeomorphism mapping each simplex (=closed cell) of |L| by a
restriction of an affine embedding into a 31mplex of |[K|. If K is the vertex
scheme of a Euclidean complex K, and L is a subdivision of K (see
Section 3.2), then the vertex scheme L of L is a subdivision of K; the
homeomorphism required by the definition can be taken as induced from
the identity on the underlying polyhedron |K|=|L|. In view of this
definition, the next statement is not a tautology.

Proposition 3.3.16 For any simplicial complex K, the barycentric subdivision
K’ is a subdivision of K.

Proof Define a function h : A’= K —|K]| by associating to each vertex
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x of K’, which is a simplex of K the barycentre of the simplex A,, which
is a closed cell in |K|. Let x = {xq, X,...,X;} be an arbitrary k-simplex
of K’; assume, without loss of generality
Xo & Xy & & Xy

and let Ay, 4,,..., 4, denote the simplices ( = cells) of | K| corresponding
to Xxg, Xy, - -, X, respectively. Then, all 4, 0 <i<k, are faces of 4,. Now
interpret h|x as a function defined on the vertices of A, = |K’'| (a basis of
the vector space R*) with values in 4, (in the vector space R** and extend
it to a map h,: A,— A, c|K|, which is the restriction of an affine
embedding. These maps h,, taken for all simplices xeK’, fit together to
define a maph : |K'| - | K|, which is continuous because its restriction to
each closed cell of |K'| is continuous.

In order to recognize h as a homeomorphism, one exhibits its inverse
map. Take a point se|K|. Let 14, 4,,...,4, denote the vertices of x,, the
carrier of s, numbered in such a way that so>s,>--- =5, for the
corresponding barycentric coordinates. Take x; = {4¢,4,,...,4;} and let b;
denote the barycentre of the cell of |K| corresponding to the simplex x;,
for 0 <j<k. Then s has a unique barycentric representation

k
— ’ .
s= Y s’ - b;.
j=o

Now x = (xq, Xy, .., %) is a simplex of K’ and gives rise to the closed cell
A, in|K’|. By assigning to s the point of A, whose coordinate at the place
x;is just s';, one obtains a well-defined and continuous function |K|—|K’|
which is an inverse map to h. O

Remark The homeomorphism h is canonical but not natural. Moreover,
the following example shows that there cannot be any natural equivalence
between the functors ‘geometric realization’ and ‘geometric realization
composed with barycentric subdivision’!

Example 4 Take K to be the power set of {0,1,2} and L the power set
of {0,1}. Clearly, |K|,|K’| can be identified with the standard-2-simplex
A? and |L|, |L| with the standard-1-simplex A’. Let f,g : K— L denote
the simplicial maps given by
f0)=g(0)=0, f(1)=0, g()=1, f2)=g@2)=1

A natural equivalence between the two functors described above would
require homeomorphisms (see Figure 10) h, : |K'|—|K| and h, : |L|—>
|L|, such that

[flehy=hyelf'],  Iglehy=hyelg|.
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2
[K’| ,
L]
I\N
0 0
hz hl
2 1
K| gl
1
0

Figure 10

IL]

Now consider the vertex v of K’ corresponding to the simplex {0, 1,2} of

|K|. In the geometric realization, it yields an interior point 7 of the

geometric simplex A2. Thus h,(#) also has to be an interior point of 42

But note that f’(v) = ¢'(v)! This implies h, °| f'|(?) = h,°|g'|(D) = w, forcing
hy (D)l £17 1 w)n gl = (w).

But this intersection contains only a single point, which belongs to the
boundary and is not at all an interior point. (]

As an application of barycentric subdivision, one can prove the following
classical theorem.

Theorem 3.3.17 (Simplical approximation theorem) Let K, L be simplicial
complexes with K finite and let g : |K|—|L| be a map. Then there is a
subdivision K' of K together with a piecewise linear homeomorphism
h:|K'|—=|K| and a simplicial map f : K'— L, such that

(i) geh~|f|; and

(i1) for every x€|K'|, | f|(x) belongs to the carrier of goh(x) in L (the
homotopy between these two points will be given by the line segment
connecting them in this carrier).

Proof Since |K| is compact, its image by g in |L| is contained in the
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geometric realization of a finite subcomplex of L (see Proposition 1.5.2);
thus, one may also assume L as finite, and, moreover, one may take K,
L as Euclidean complexes in some R” (see Theorem 3.3.15). For any vertex
AeLy, let V, denote its open star; the family {g~'(V;) : A€L,} is an open
covering of |[K | and thus there is subdivision K’ of K such that the covering
{Isty-x| : keK}} of |[K'| =|K]| refines the covering {g~'(V;) : A€L,} (see
Proposition 3.2.14); according to the discussion about the definition of
subdivision, one can take h to be the identity. Now choose, for any vertex
keKj, a vertex AeL, such that |stx.k| = g~ '(V;). The assignment k+— 4
gives a function f : K{y = L,. The objective is to prove that this function
fis a simplicial map with the desired properties. To this end, consider a
point xe|K'|; let k,..., k, denote the vertices of its carrier. Then,

g(®)e\gUster:l) = (VVrien
and so the intersection on the right-hand side is non-empty, implying that
the vertices f(ko),..., f(x,) form a simplex of L, and hence the function
fis a simplicial map. Moreover, the simplex { f(k,),...,f(x,)} is a face of
the carrier of g¢g(x) and contains |f|(x). Thus, the homotopy
H:|L| xI->R" (x,t)—~t - g(x)+ (1 —1t) - |f|(x) factors through |L|, thus
completing the proof. O

Exercises

1. Show that the forgetful functor SiCo — Sets, which assigns to every
simplicial complex its vertex set, has a left as well as a right adjoint.

2. Show that the operation of ‘taking the vertex scheme of a Euclidean
complex’ commutes with ‘barycentric subdivision’!

3. Show that the category SiCo has products, but that the geometric
realization does not commute with products!

4. Let X be a space and let the family {u; : ieA} be a locally finite
partition of unity on X. Let {U,: leA} denote the induced open
covering of X and form its nerve K(A). Let L be a subdivision of K(A)
with vertex set A and let h:|L|—|K(A)| be a homeomorphism
mapping each simplex of |L| linearly into a simplex of |K(A)|.

(a) Show that the family (pyoh~'ey 4 : leA) is a locally finite
partition of unity on X! (Here, as in the main text, p, denotes the
restriction of the coordinate function I4—1 to |L|.)

(b) Let {U, : yeI'} denote the covering of X which is induced by
the partition of unity in (a). Show that its nerve K(/”) can be considered
as a subcomplex of L, and that

hIK(T) oy r =y 4!
5. Let X be a space and let the families {u; : AeA}, {u, : yeI"} belocally
finite partitions of unity on X. Let {U, : AieA}and {U, : yel }denote
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8.

11

the respective induced open coverings and ¥ ,: X —|K(A)l,
Y X = |K(I')| the canonical maps (Exercise 4).

(a) Assume {U, : yelI'} to be a refinement of {U, : ieA}. Show
that there is a simplicial mapf : K(I")— K(A)suchthat| floy r >~ 4!

(b) Show that the nerve of the covering A X I', which is induced by
the product of the given partitions of unity, has a canonical embedding
Jj: K(A X I')> K(A) x K(A) x K(I') into the product K(A)x K(I)
(in the sense of Exercise 3), such that |p,cjley,5x =¥, and
lpr jlow 45 =¥ ! (Here p , and p - denote the projections from the
product K(A) x K(I') onto the respective factors.)

. For any space X, the proper diagram of nerves is the diagram containing

all nerves of locally finite partitions of unity on X as objects, and having
as maps either the embeddings k| | K(I")| of Exercise 4 or the ‘project-
ions’ |p A| K(A X I')|, |p r|K(A X I')| of Exercise 5(b). Show that any
paracompact space is the (inverse) limit of its proper diagram of nerves.
(Alder, 1974)

. A simplicial complex is said to be full if any finite set of vertices that

pairwise form 1-simplices is a simplex itself. Let K be any simplicial
complex and let L be a full simplicial complex. Show that a function
J : Ky— Lgisasimplicial map K — Liffitis a simplicial map K* — L.
Show for simplicial complexes K, L:

Kz LK =L!

Here the isomorphism on the right-hand side is not assumed to be
order preserving; but this property automatically holds if K (and
therefore also L) is not the vertex scheme of the boundary A of a
geometric simplex A. Prove that in this case every isomorphism g on
the right-hand side is of the form g =f" for some isomorphism on the
left-hand side. (Finney, 1965)
Show for simplicial complexes K, L :

K~ L+(K')' = (L)
(Segal, 1965)
In some textbooks, the proof of Theorem 3.3.15 is based on the
assumption that the sequence {v;jeN}, besides being of general
position, only satisfies the condition of not having a cluster point in
the ambient space R*"*!. Show by a counterexample that the given
construction does not then necessarily yield a Euclidean complex.
(Hint : Take K =Nu{{2n,2n+ 1} : neN} and choose the sequence
{v,jeN} in such a way that the sequence of barycentres of the
1-simplices obtained converges to one of them.)
Prove that any ELCX-space is an LEC-space.
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12. Prove the relative simplicial approximation theorem: let K, L be finite
simplicial complexes, and D a subcomplex of K. Let f : |[K|— L| be
a map such that f||D|=|g| for a simplicial map g : D— L. Then,
there exist a subdivision K’ of K containing D as a subcomplex and
a simplicial map k : K'—> L such that k|D =g and |k|~frel. |D|.
(Zeeman, 1964)

For the fatidic number 13, a bad property:

13. Show by an example that for relative simplicial approximation one
cannot require the homotopy to move every point only on the carrier
of its image. (Zeeman, 1964)

3.4 Triangulations

Simplicial complexes will also be used in connection with general spaces.
If X is a space, a pair (K, h) consisting of a simplicial complex K and a
homeomorphism 4 : |K|— X is called a triangulation of X. A space X is
said to be triangulable if it possesses a triangulation. Clearly, simplicial
complexes are triangulable, but this does not hold true for all
CW-complexes.

Example Intuitively, the CW-complex to be constructed is obtained by
taking a sheet of paper and folding it infinitely many times with one edge
pressed into one line segment. To render this precise, first define an
auxiliary map f : I—R by taking f(0) =0 and f(t) =t - sin(n/2t) for ¢ > 0.
This function has the absolute maximum 1, and, furthermore, has an
infinite sequence t'; >t', > ---t', > --- of relative maxima (1 >t';). Denote
by t” the absolute minimum of f.

Now take the space X to be the image of the square 72 under the map
g: I*-R3, (s,t)—(s,s - t, f(t)). The following filtration is evidently a
CW-structure for X:

XO = {o,eo,ez,eo + el + ez, t"ez},
X'={(s,s - t,0)|seLte{0,1}}u{te,|te[t", 11} U {(1,t,f (1) |tel},
X2=X.

The corresponding cell decomposition of X contains five O-cells, five 1-cells
and one 2-cell (see Figure 11).

The space X is compact. Thus, if (K, h) were a triangulation of X, |K]|
would be compact and therefore K would be a finite simplicial complex
(see Proposition 3.3.2 and Proposition 1.5.8). But it will be shown that
the infinitely many points t',e,,t'5e5,...,t',€,,... must correspond to
vertices of any triangulation of X!
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€,

Figure 11

Because dim X =2 (see Proposition 1.5.14), a triangulation of X could
contain only simplices of dimension < 2. An interior point of a 2-simplex
has neighbourhoods homeomorphic to the interior of the 2-ball. Thus,
none of the points te,, tel can correspond to an interior point of a
2-simplex. Now assume, for some n,t',e, corresponding to an interior
point of some 1-simplex. Take a point xeX, x #t',e,, belonging to the

same l-simplex as an interior point. Then, every sufficiently smalil
has to be homeomorphic to an open

neighbourhood of ¢,e,
neighbourhood of x. But this is impossible, as one can see from the shape

of the following typical neighbourhoods of ¢',e, and x.
There is a local base (base for the neighbourhood system) at ¢',e, in X

consisting of subspaces homeomorphic to the space V constructed below
via a homeomorphism mapping t',e, to the centre v of V. The basic bricks

of V are half discs
D2 ={(s,t): —1<s<1,0<t < /1 —5%}.

First, take 2n— 1 copies of D'/?> and patch them together along their
bounding diameters. Denote the resulting space by V,. Secondly, take a
further copy of D'/? and identify (s, 0) with (—s,0), thus obtaining a space
V'. Thirdly, take the canonical embeddings [0,1)—V,, [0,1)— V', both
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describable by s+—(s,0), and define V' to be the union space
V=V1Uo.Ve
On the other hand, considering x close to t',e,, one can find three
different types of local bases, consisting of spaces of the following forms:
(i) open 2-cells, (ii) V, as described before, (iii) V, ,, in the same sense. But
all these bases are incompatible with the local base at t',e, described.

d

However, regular CW-complexes are well behaved.
Theorem 3.4.1 A regular CW-complex is triangulable.

Proof Let X be a regular CW-complex. Construct inductively
triangulations (K(n), h,) of the skeleta X", such that every closed cell of
dimension < n corresponds to a subcomplex of K(n). Clearly, one can take
K(0)={{x} : xeX°} and hq : |K(0)| - X° induced by the identity.

Now, suppose (K(n— 1), h,_,) is already given. Take an n-cell e of X.
Its boundary é\e is a subcomplex of X (see Theorem 1.4.10), and thus
triangulated by the inductive hypothesis; let (K,.h,) denote this
triangulation of é\e. Moreover, let L, be a Euclidean realization of K,
(Theorem 3.3.15). Choose the dimension of the ambient Euclidean space
high enough to be able to form a cone (C, |L,|,p). C has a canonical
simplicial decomposition (Proposition 3.2.13) whose vertex scheme ke
may be viewed as containing K, as a subcomplex. Extend the
homeomorphism 4, : |K,|—é&\e to a homeomorphism h,: |K,|—e

The homeomorphisms h,_, and fze, for each n-cell of X, fit together
into a homeomorphism

h, o |IK()| =|K(n—1)ulJK, |- X"
This finishes the induction.

Now define the simplicial complex K = | ), K(n); since the covering
of |K] by its simplices refines the covering by the family {|K(n)| : neN},
the space | K| is the union space of the expanding sequence {|K(n)| : neN}
(see Proposition A.2.1). Thus the desired homeomorphism /h : |[K|— X is

obtained from the fact that X is the union space of the expanding sequence
{X": neN}. (]

Remark A careful analysis of the preceding proof shows that, for every
cell e of X, there is exactly one vertex p,eK° with h(p,)ee. Thus there is
a one-to-one correspondence between the vertices of K and the cells of
X. Moreover, the inclusion relation between the closed cells of X provides
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K with a distinguished local vertex ordering. In particular, if X is (the
geometric realization of) a simplicial complex L, then the simplicial
complex K is nothing but the barycentric subdivision of L, K =L. [

Notes to Chapter 3

Plane triangles have been the subject of mathematical research already at
prehistorical times; they naturally evolved to arbitrary dimensions in the form
of geometric simplices. The topological invariance of simplices under simplicial
retractions (see Lemma 3.1.1), which is crucial for the proof of the triangulability
of simplicial sets (see Corollary 4.6.12), is due to Barratt (1956); an alternative,
but not simpler, approach can be found in Lundell & Weingram (1969). The
intersection property (see Theorem 3.1.5) was conjectured by A.N. Kolmogorov
and proved in Borovikov (1952); our presentation follows Winkler (1985), where
one also can find applications to probability theory, in particular Markov chains.

The history of polyhedra, the objects which form the main theme of Section 3.2,
is nearly as old as that of the plane triangles. The outline given here is similar to
that in Rourke & Sanderson (1972), where the local characterization of polyhedra
in Theorem 3.2.20 was originally developped. The first counterexample to the
‘Hauptvermutung’ (see Remark following Example 2 in Section 3.3) was exhibited
in Milnor (1961).

The abstract notion of a simplicial complex (see Section 3.3) appeared for the
first time with full clarity in Alexandroff (1925). The nerve of a covering (see Section
3.3, Example 1) was also introduced by Alexandroff; this notion proved to be
essential for the development of certain cohomology theories — Eilenberg &
Steenrod (1952) and Dold (1972). Different topologies for a simplicial complex
were compared in Dowker (1952). In particular, it is there shown that the topology
determined by the simplices and the metric topology lead to spaces of the same
homotopy type (see Proposition 3.3.7); the proof given here is based on ideas in
Mather ((1964). The class of LEC-spaces was first studied in Fox (1943) and Serre
(1951); the subclass of ELCX-spaces and its relationship to simplicial complexes
(1959). In Hanner (1951), it is proved that those complexes are also ANRs. The
embedding theorem for finite-dimensional, countable and locally finite simplicial
complexes (see Theorem 3.3.15) can be found in Seifert & Threlfall (1934), but
might be much older. The absolute simplicial approximation theorem (see Theorem
3.3.17) is due to Alexander (1915).

The example of a non-triangulable CW-complex (see Section 3.4, Example)
presented here in a purely combinatorial fashion was first given by Metzler (1967)
who proved its crucial property by means of local homology; it was the first
example of that sort.
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Simplicial sets

4.1 The category A of finite ordinals

In the most general form of the theory of combinatorial complexes, the
interplay between the different simplices of a structure is ruled by an action
of the category A of finite ordinals, whose morphisms serve as operators.
Therefore it is necessary to describe this category in minute detail. The
main part of the abstract material in this section can be better understood
if one looks at the geometric interpretation of the objects and morphisms
of the category A. Hence the necessary geometric considerations are
included here.

For every natural number n, let [n] denote the corresponding ordinal,
ie., the set {0,1,...,n} of natural numbers equipped with its natural
ordering. Geometrically one should view [n] as the standard-n-simplex
A" of R**! defined in Section 3.1. In this context, it is often convenient
to label the vertices e; of A" just by the natural number i; ¢; is said to be
the ith vertex of A”. The (small) category A of finite ordinals has as objects
the ordered sets [n], for all neN, and, as morphisms — which already now
will be called operators—all order-preserving, i.e., weakly increasing,
functions between such ordered sets. Geometrically, an operator
o : [m]—[n] describes the map A* : 4™ — A" induced by the linear map
R™* 1 5 R"™* 1, e—e,;; the natural number m is called the dimension of a,
notation:

m=dima;
thus, in accordance with the intuition,
dim « = dim (dom A4%).

Note that all the maps A* are closed maps because the geometric simplices
are compact spaces.

In abstract language the assignments [n]+> A", o+ A® form a covariant
functor A™:4 - Top. But one may also think of a left action of the category
A on the (disjoint) union of the spaces A"; according to this, it is customary
to use the short notation

at = A%(1),
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for all teA*™= The coordinates of at can be computed by
(O(t), = Z tj‘
aj)=i
There is a tricky, but useful, application of the geometric interpretation
of the category A.

Lemma 4.1.1 For fixed m,neN, an operator o : [m]—[n] is uniquely
determined by the value at for one fixed interior point te(A™)°.

Proof Let o,f : [m]—[n] be different operators. Then there is a
smallest ie[m] such that a(i) # f(i); assume a(i) < (). Take te(4™)° and
look at the a(i)th (barycentric) coordinates of at and ft. The first is the
sum of all coordinates t; of ¢, with a(j) = a(i); the second is the sum of the
t;’s, with B(j) = a(i). Thus

(a8)uqiy = (BOuiiy + i > (Bt)ngs)- |

A more formal feature of the category A — without a convenient geometric
interpretation — is the order structure on the sets A([m], [n]) of operators
from [m] to [n]. It is a partial order, inherited from the fact that operators
are number-valued functions. Define for operators «, § : [m] — [n]:

a< fea(i) <P for all ie[m].
Clearly, this order is compatible with composition; thus A has the structure
of a 2-category.

The subcategory of A formed by its monomorphisms will be denoted
by M. A monomorphism - in general, denoted by u or v —is an injective
operator, i.e., a strictly increasing function. If u : [k]— [n] is an injective
operator, then k< n; geometrically, there is an embedding of the
standard-k-simplex A* as a k-dimensional face, the uth face, into
the standard-n-simplex A". Therefore the morphisms of M, ie., the
monomorphisms in A, are called face operators. Every point seA"
determines a unique face operator s* and a unique interior point s’e A%,
with k = dim s# such that

s = s*sP.
Special face operators are:
(1) the identity operators
i": [n]—[n]
mapping every element onto itself;
(2) the elementary face operators

of i [n—1]-[n],
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which are injective and omit the index i in the image; geometrically,
they represent the embedding of A"~ ! into A" as the ith face, which
is the (n — 1)-dimensional face opposite to the vertex i;

(3) the vertex operators

e [0]—-[n]
mapping the unique element 0 in the domain onto the element i of
the codomain; geometrically, these operators exhibit the vertex i, with
0<i<gn
if no confusion arises, the (upper) index n will be suppressed from the
notation.
The composition of the elementary face operators is subject to the rule
0;00;=10;00;_,, j<i.
The category M is generated by the elementary face operators; every
proper, ie., non-identity, face operator u:[k]—[n] has a unique
decomposition of the form
p=0i0m00y,
with 0 <i, < ---i, <n; the indices i; are those elements of [n] that are not
in the image of o, i.e., those vertices of A" that do not belong to the uth face.
The assignment p+—im p induces a bijection between the set of the face
operators with the same fixed codomain [n] and the set of non-empty
subsets of [n], and thus the set of the face operators with codomain [n]
inherits another order, the structure of a (partially) ordered set with
suprema. This leads to the following notations:
(1) pcv, if image u < image v, i.e. if the uth face of 4" is contained in
its vth face, and
(2) wuvfor the unique face operator whose image is image p\Uimage v,
i.e., which corresponds to the convex hull of the union of the uth face
and the vth face,

whenever p and v are face operators with the same codomain [n].

Viewing the face operators as sets, one can easily describe a functor
A :M—M useful in the context of simplicial subdivisions (see
Lemma 4.6.14). It associates to every face operator u : [k] — [n] the unique
face operator f : [k + 1]—[n + 1], satisfying

image /i = imageuu {n + 1}.
The function 4 is given explicitly by
- {#(l), ie[k]
n+1l, i=k+1,

showing the functoriality of the assignment ~. Notice that, up to the
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dimensia indices, the face operators g and 4 have the same
decompeition into elementary face operators; more precisely, if

— k+1
‘u_élf‘ro...oéh s
then
A sntl, o Sk+2
fp=0]"te by TE

Duallito the category M, one considers the subcategory E of A formed
by the egmorphisms in A. An epimorphism — in general denoted by p or
7 —is jus a surjective operator. If p : [m]—[k] is a surjective operator,
then m:k; if it is proper, ie., if m>k, then geometrically the
standardm-simplex A™ ‘degenerates’ to the standard-k-simplex A
Therefor, the morphisms of E, i.e., the epimorphisms in A, are called
degeneray operators. Special degeneracy operators, besides the identity
operator, are

(1) the lementary degeneracy operators
a! : [n+1]—-[n],
0 < < n, which are surjective and map the index i, as well as its
succssor i + 1, to i, i.e., which degenerate the line segments parallel

to tk edge connecting the vertices i and i+ 1 in A"*! to a point;
(2) the reterminal operators

wi : [m]—[1],
0<<m—1, characterized by w?'(i)=0 and o?'(i+1)=1, ie., the
mag which degenerate the i-dimensional face of A™ spanned by the
vertes 0,...,i to the vertex 0 of A and the opposite face of A™ to
the ertex 1 of AY;

(3) the >rminal operators
o™ : [m]—[0],
"maping all elements of the domain onto the unique element 0 in
the odomain, i.e., the constant functions
A™— A°,

Agay, if no confusion arises, the (upper) indices n, m will be suppressed
fron the notation.

The canposition of the elementary degeneracy operators is subject to

the folloting rule:
Gj°0;=0;_1°0}, J<l.

This impes that every proper degeneracy operator p : [m]— [k] has an
unique dcomposition of the form

p:o'jlo‘..oo'js’
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with 0 <j, < ---j, <m, where the indices j are the element of [m] that have
the same image as their successor under a. The following geometric
preservation property of degeneracy operators holds true.

Lemma 4.1.2 Degeneracy operators preserve interiors; i.e., if p : [m]— [k]
is a degeneracy operator and t is an interior point of A™ then pt is an interior
point of A*.

Proof 1t is to be shown that all the barycentric coordinates
(p)i= Y
pU)=i
of pt are positive. Because p is surjective there is, for every ie[k], at least
one summand ¢; on the right-hand side of the above equation and because
t is an interior point, each of the ¢;’s is positive. O

The categories E and M are related to each other in several ways. To
begin with, observe that the assignment 67+ 67" ' induces a contravariant
functor
~L E-M, ppt
which is an embedding and can be explicitly described by
p*(j)=maxp~'(j)
for all jecod p; hence,

ppt =1

This implies, for every degeneracy operator p,
pt =max(ueM : pu=1),

ie., p* is the maximum of the set of the sections of p with respect to the
order ‘<’. Similarly, one obtains a contravariant functor -, : E—~M,
p—p,, which assigns to each degeneracy operator its minimal section
and is also an embedding. Conversely, one has the functors -+, ~, :M — E,
p—ut, 1y, which assign to each face operator its maximal and minimal
retraction respectively. These are not embeddings: two face operators
u,v : [k]— [n] have the same maximal retraction if they differ only at the
kth place, ie., if p()=v(i) for 0<i<k; they have the same minimal
retraction if they only differ at the Oth place.

The composition of elementary face and elementary degeneracy
operators is subject to the rules

0’;°5j=5j°o‘i_l, ]<l,
Ui°5j=l, ls_]sl’i‘l,
o’i°5j=5j_1°0i, ]>l+1,
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a useful crib for these and the former interchanging laws is that the smaller
index is maintained, with only one exception. Noteworthy also are the
following composition laws involving vertex operators:

00 & = Eqqiy» iedoma,
w;oe; =01, i<j,
wjog =0y,  I>].
There are some technical characterizations of face and degeneracy
operators that will prove useful in the sequel.

Lemma 4.1.3 (i) Any degeneracy operator is uniquely determined by the set
of its sections;

(1) any face operator of dimension > 0 is uniquely determined by the set
of its retractions;

(iil) all vertex operators with a fixed codomain have the same set of
retractions.

Proof (i) Let p,7 be degeneracy operators with the same set of sections.
Then, the maxima of these sets coincide, i.c. p* = t*, implying that p = 7.

(i) Let p,v : [k]—[n], k>0, be face operators with the same set of
retractions. Then, u* = v*; this implies that u(i) = v(i) for 0 <i<k. But
also u, = v ; because k > 0, one finally obtains u(k) = v(k).

(ii1) The set of retractions of a vertex operator contains just one element,
namely the corresponding terminal operator. ]

Thus, to distinguish between vertex operators, another criterion is needed.

Lemma 4.1.4 Let ¢, ¢; be vertex operators with the same codomain. Then
i> j iff there is a degeneracy operator T such that te; =0, and 1e;=9,.

Proof ‘=’: Take 1= w;.
‘=" Since t is non-decreasing, the equations 7¢;(0)=J,(0)=1 and
7¢;(0) = 6,(0) = O together imply i = ¢,(0) > &0) = j. d

An arbitrary operator a : [m]— [n] has a unique decomposition into a
degeneracy operator o', followed by a face operator o*:
a=atoa’.
With respect to composition, one has the evident rules
@pff = oat@ B, (@B) =" BYP"
The images under a map 4% of two faces of A™, one of which is contained
in the other, are two faces of A", one of which is again contained in the
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other; this consideration proves that
u < v=(ap)* < (v
for face operators p, v and any operator a such that dom a = cod p = cod v.
For some purposes, it is convenient to use another coordinate
description for the points of the standard-simplex A". The sum coordinates
of the point t = (to,4,...,,t,) are the n + 2 numbers s_, sy, ..., s, given by

J
Sj = Z ti
i=0
for — 1 <j<n; note
s_;=0<sy<-- <5, , <5, =1L
A point is an interior point of A" iff it has n + 2 different sum coordinates.

The effect of an operator to the sum coordinates consists in omitting some
of them and repeating some others. More precisely,

CilS—tse e s Sim oSt Sy ) =SS S o s Sut 1 )s
OiS— 1o s Sic 1y SipeeesSpye )= (Scpsee s Sim 1S 15 SiseeesSpot)

for 0 < i< n. The following rather technical fact will be needed.

Lemma 4.1.5 Let t' €A™ be an interior point and let te A" be a point whose
sum coordinates are among those of t. Then there is a unique operator
o : [m]—[n] with at' =1t.

Proof Compose an operator o of the degeneracy operators that are
necessary to kill the superfluous sum coordinates of ¢ and the face
operators that force the desired repetitions. Because ¢ is assumed to be
an interior point of A™, the result is uniquely determined (see Lemma 4.1.1).

O

The abstract framework for the development of the next sections is given
by the notions of:

simplicial object in a category %; that is, a contravariant functor 4 — &;

cosimplicial object in a category ¥; that is, a covariant functor 4 — &;
and

presimplicial object in a category %; that is, a contravariant functor
M-E.

These objects, together with the corresponding natural transformations,
form functor categories, which will be denoted by Si%, CSi¥ and PSi¥
respectively. Moreover, the forgetful functor that assigns to a functor with
domain A its restriction on the subcategory M will be denoted by
P : Si¢ — PSi%.
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Exercise
If u,v : [k]—[n] are such that
/'l=5i,°"'°5i,> v=20;0:-:00

Js Ji

with r=s,i; <--- <i, j, <--- <J,, prove the equivalence

u<vsi =g, fork=1,...,r=s.

4.2 Simplicial and cosimplicial sets
A simplicial object in the category Sets of sets, i.e., an object of the category
SiSets, is called a simplicial set. In dealing with simplicial sets, it is more
convenient to think of a simplicial set X as an N-graded set X =X,
with the small category A operating on the right; more precisely, X is
considered to be the disjoint union of the sequence X, = X([0]),..., X, =
X([n]),... of sets together with given set maps

o =X(): X,—> X, XX
for each operator o : (m)— [n], such that
=1y
and
(op)* = B*a*
for every pair «, 8 of operators whose corresponding composition is
defined, i.e.,

x(af) = (xo)
for all x, &, B for which xa and of are defined. The elements of X are called
simplices of X and the elements of a single X, are called, more specifically,
n-simplices of X; a pair (x, «) consisting of a simplex xe X and an operator
aeA such that xo is defined will be called composable. If xe X,,, then, in
the terminology of NV-graded sets, the natural number n is the degree of x;
however, here one opts for the denomination dimension of x — notation:

n=dim x
~in view of the geometric intuition behind the concept of simplicial set:
one should think of every (abstract) simplex xeX, as a copy 4, of the
geometric standard-simplex A", and these are glued together by means of
the maps A*:4,,— A,; more precisely, the geometric realization | X| of
the simplicial set X is defined to be the quotient space of || X, x A" —all
X, endowed with the discrete topology — with respect to the relation

(xot,7) ~ (x, at)
for any simplex xeX,, any operator « : [m] —[n] and any point teA™

The class of a pair (x,f)e X, x A" with respect to the induced equivalence
relation, which is a point of | X|, will be denoted by [x,].
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Remark Since the codomain of an identification map whose domain is a
k-space is automatically a k-space, the geometric realization |X| of a
simplicial set X as defined here is always a k-space. The fact that | X| also
belongs to the class of weak Hausdorff k-spaces, the favourite spaces of
this book, remains unproved until it will be shown that | X | has an intrinsic
CW-structure (Theorem 4.3.5).

Example 1 The (simplicial) standard-p-simplex A[p] is the contravariant
hom-functor 4 — Sets represented by the ordinal [p]; its n-simplices are
all the operators y : [n] —[p]. Notice that an operator o : [m]— [n] acts
by composition:

a*(y) =ya=yoo.
There is a geometric justification for the terminology. The geometric
realization of a simplicial standard-simplex is a geometric standard-
simplex, up to the natural homeomorphisms which are induced by the
assignments

[y, t]—yt, t—[41] O

The morphisms of the category SiSets are called simplicial maps. Taking
the operational point of view, a simplicial map f : Y — X from a simplicial
set Y to a simplicial set X is considered to be a function Y — X, which
preserves the grading and is compatible with the operators, i.e., which
satisfies

Sy = (),

for all composable pairs (y,a). Clearly, the monomorphisms and
epimorphisms in the category SiSets of simplicial sets are just the simplicial
maps which are given by injective and surjective functions, respectively.
The geometric realization of the simplicial map f is the well-defined
map | f]:]Y|—=|X]| given by [y,f]—[f(»),t]. Thus, one has defined a
geometric realization functor |—|:SiSets — Top, which will be discussed in
great detail in the next section.

Example 1™ An operator ¢ : [p]J—[g] gives rise to a simplicial
map 4¢ : A[p]— A[q] by composition

Ap(y) = @°y.
Identifying |A[p]| and |A[gq]| with A? and A? respectively, via the
homeomorphisms described in Example 1, one obtains the geometric
realization of the simplicial map A¢ to be |4¢| = A°. O

Examples 1 and 1™ may be summed up by some categorical terms. The
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assignments [ p]—A[p], p+>Agp yield a functor 4 — : A — SiSets, which
satisfies the equation
[A—|=47,

and is a full embedding, a so-called Yoneda embedding in category theory (it
may also be viewed as a cosimplicial object in SiSets). To formulate the
corresponding Yoneda lemma, another rather abstract but quite useful
construction is helpful. To each simplicial set X, one associates a small
category Cy, the category of simplices of X:

the objects are the simplices of X;

the morphisms are the composable pairs (x, «);

the domain of (x, «) is xa, the codomain is x;

L= (x,1);

if the domain of (x, «) is equal to the codomain of (x', '), i.e., xa = x’,

then (x, a)o(x', o) = (x, oct’).

The category of simplices is connected to the category of finite ordinals
by the forgetful functor Dy:Cy— 4, x+—[dim x], (x,a)>a; its composi-
tion with the Yoneda embedding will be denoted by AX. Any simplicial
map f:Y — X gives rise to the functor C;:Cy — Cy, y— f(y), (v, )= (f(¥), ),
which satisfies the equation DyoC, = Dy; thus, one has the category of
simplices functor

C_ : SiSets— Cat,

where Cat denotes the category of small categories.

Lemma 4.2.1 (Yoneda lemma) Let X be a simplicial set.

(i) The assignment fs f(i"), where f:A[p]— X is a simplicial map,
describes a natural one-to-one correspondence between the set of all simplicial
maps A[p]— X and the set X .

(i) X =colimAX.

Instead of an explicit proof, done in general form in category theory,
only the inverse assignment needed for proving (i) is indicated: make the
simplicial map

o Alp]- X,  yexy
correspond to each p-simplex x. Moreover, note that in the language of

category theory, statement (ii) expresses the fact that every set-valued
functor is a colimit of representable functors. O

As a set-valued functor category, the category SiSets has all kinds of limits
and colimits. They are computed pointwise; i.e., the set of n-simplices of
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a desired (co)limit is taken as the (co)limit of the involved sets of n-simplices
in the category Sets. Thus, a simplicial map is a monomorphism iff it is
injective and an epimorphism iff it is surjective.

Some kinds of limits have to be discussed in detail. A simplicial set Y
is a simplicial subset of a simplicial set X if Y is a subset of X such that
the inclusion Y — X is a simplicial map. A subset Y of a simplicial set X
forms or is a simplicial subset of X if it is closed under the operations. For
example, the image of a simplicial map (in the set theoretical sense) is a
simplicial subset of its codomain; conversely, given a simplicial subset of
the codomain of a simplicial map, its inverse image (again in the set
theoretical sense) is a simplicial subset of its codomain. Clearly, arbitrary
intersections and unions of simplicial subsets of a fixed simplicial set X
again form a simplicial subset of X. Thus, every subset Y of a simplicial
set X generates a simplicial subset Y, the intersection of all simplicial
subsets of X that contain the set Y; Y consists of all simplices xeX that
have a representation of the form x = ya for some simplex yeY and some
operator aeA. A special application of this generation process yields the
skeletal decomposition of a simplicial set X; its n-skeleton X" is the
simplicial subset of X that is generated by the set of all simplices of
dimension at most n. (Another specific type of simplicial subset is the
following. Let a simplicial map p : X — Z be given,; then, a simplicial subset
Y of X is a retract of X over Z if there is a simplicial map r: X — Y such
thatr|Y =1yand p|Yeor = p)Asimplicialmap f : Y — X is called constant
(with value X) if its image is generated by a 0-simplex (by the simplex %€ X ).

Example 2 The proper face operators with codomain [p] generate a
simplicial subset of A[p], namely, its boundary 6A[p]; it is the
(p — 1)-skeleton of A[p]. The geometric realization of dA[p] is clearly
homeomorphic to the boundary of the geometric standard-p-simplex (in
the sense of Section 3.1). O

The product of the simplicial sets Y and X is the simplicial set Y x X
given by (Y x X), =Y, x X,, for all neN, and (y, x)a = (yo, xo) whenever
cod o = [dim y] = [dim x]. The simplicial maps pry:Yx X > Y, (y,x)—y
and pry:Yx X - X, (y,x)>x are the projections of Y x X onto Y and
X respectively. It will be shown in the next section that geometric
realization commutes with (finite) products.

Now, pullbacks in SiSets can be explicitly described. Given simplicial
mapsp:Z— X, f:Y — X, one takes the simplicial subset

W ={(y,2):/(y) = p(2)}
of the product Y x Z. Then, the map p:W Y, (y,z)y is induced from
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p by fand the map f : W - Z, (y,z)~z is induced from f by p. A specific
form of pullback is hidden in the following notion. Given any simplicial
map p : Z— X and a simplex X€X, the inverse image of the simplicial
subset generated by X is called the fibre of p over x; it is (up to isomorphism)
the domain of the map induced from p by the simplicial map A[0] — X,
—X.

Forming the product with the standard-simplex A[1], one can transfer
the basic notions of homotopy to the combinatorial theory. Letf,g : Y- X
be simplicial maps. A simplicial homotopy from f to g is a simplicial map
H : Y x A[1] - X such that H(y,d,w)=f(y) and H(y,d,w) = ¢(y), for all
yeY. If D is a simplicial subset of Y, such that the restriction of H
to D x A[1] factors through the projection of D x A[1] onto D, one
has a simplicial homotopy rel. D; if p:X —Z is a simplicial map such
that the composition of H with p factors through the projection of
Y x A[1] onto Y one has a simplicial homotopy over Z. Clearly, these
definitions induce relations called simplicial homotopies (rel. D, over Z) on
the set of simplicial maps from Y to X; in general, these relations are
reflexive, but neither symmetric nor transitive. Nevertheless, they allow
to define simplicial homotopy equivalences, simplicial deformation retracts
and simplicial contractibility; all these notions are based on the induced
symmetric relation. This will be explained for contractibility: a simplicial
set X is simplicially contractible to the 0-simplex x,eX if there is either a
simplicial homotopy from 1y to the constant simplicial map with value
X, or a simplicial homotopy from the constant map to 1.

Example 3 The standard-simplex A[p] is simplicially contractible to ¢,
as well as to ¢,. A simplicial homotopy H from the constant map with
value ¢ to 1, is given by taking, for a:[n]—-[p]l, je[n—1],
H(x,w;) = o, with «’(k) =0, for 0 <k <j, and o'(k) = (k) otherwise (note
that the simplicial set A[p] x A[1] is generated by the pairs (a, @;)). O

There is another geometric notion whose simplicial analogue can be
defined by means of products. A simplicial map p : Z — X is locally trivial,
if, for every simplicial map f : A[n]— X, there is an isomorphism
h: W— A[n] x F with pr,°ch=p, where p: W—A[n] denotes the
simplicial map which is induced from p by f, and F denotes the fibre of p
over f(gg). A locally trivial simplicial map does not have many really
different fibres.

Proposition 4.2.2 If p: Y = X is a locally trivial simplicial map and x, X
are simplices in X with X = xa, for some operator a, then the fibres over
xeq and X¢o are isomorphic.
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Proof Assume xeX,, X€X,, and define ' : A[n]— X by taking f(s) = x.
By assumption, the simplicial map p, which is induced from p by f, can
be chosen as the projection of the product A[n] x F onto A[n], where F
denotes the fibre of p over f(ey) = xé,. Then, the simplicial map p, which
is induced from p by A(xey) can be chosen as the unique simplicial map
F— A[0]. Since foA(aeo)(2) =f(ateo) = xae, = X&o the domain F of p is
isomorphic to the fibre of p over Xe,. O

The existence of colimits in the category SiSets implies that simplicial sets
have an intrinsically algebraic nature. One consequence of this fact is that
simplicial sets may be described in terms of generators and relations. A
subset Y of a simplicial set X is said to be a set of generators for X if it
generates the whole simplicial set X itself. Any N-graded set Y generates
the free simplicial set FY, consisting of all formal expressions ya with
yeY, aeA and coda=[dimy] (here, ‘dim )’ clearly means the degree
of y) and the evident operations; for convenience, one shortens the notation
to ‘y’ instead of writing ‘yr’. A relation in a free simplicial set is an equation
of the form

yo=zp,
with y,a and z, f as above, and doma =dom . Any set of relations R
induces an equivalence relation on the set FY which is compatible with
the grading. Thus, the resulting set of equivalence classes has a canonical
grading and allows an induced operation of the category A. This is the
simplicial set generated by the set Y, subject to the relations R.

A special colimit construction is the simplicial analogue of attachings.
Given a simplicial subset D of a simplicial set Y, a simplicial set 4 and
a simplicial map f : D— A, one has a partial simplicial map f : Y-/—> A
with domain D and forms the simplicial set X by taking

X,=A,u(Y,\D,)
with suitably defined operations. This simplicial set X is said to be obtained
from A by (simplicially) attaching Y via f; the canonical simplicial map
f: Y- X is called — as in the continuous case —a characteristic map of
the simplicial attaching,.

A simplex x of a simplicial set X is called degenerate if x splits off a
degeneracy operator, i.e., if it can be represented in the form x = yo; with
some y€ X g;mx-1 and some ie[dim y]; otherwise, one has a non-degenerate
simplex. Clearly, all O-simplices are non-degenerate. The non-degenerate
simplices in the standard-simplex A[p] are the face operators with
codomain [p]. If X is a simplicial set, denote by X#¥ the set of its
non-degenerate simplices, and by X’ the set of its degenerate simplices;
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specifying dimension n, one also writes X*# and X ? respectively. With this
terminology, one proves a basic fact in the simplicial theory, namely, the
‘Eilenberg—Zilber lemma’.

Theorem 4.2.3 Any simplex x of a simplicial set X has a unique
decomposition in the form

x = x#x?,

with a non-degenerate simplex x*e X and a degeneracy operator x".

Proof Splitting off a degeneracy operator decreases the dimension. Since
the dimension numbers are bounded below, this cannot be done infinitely
many times (after starting with a certain simplex x). Taking the remaining
non-degenerate simplex, and composing the split degeneracy operators,
one obtains a representation of the desired form.

To prove uniqueness, assume that

Xp =yt

with x,y non-degenerate simplices and p,7 degeneracy operators.
Application of a section u of p to this equation yields x = ytu. Since x is
non-degenerate, the operator tu cannot contain a proper degeneracy
operator; thus it is a face operator, and therefore dimx <dimy. The
opposite inequality is obtained by symmetry, and thus dim x = dim y. But
then, Ty is a face operator, whose domain and codomain coincide, and,
consequently, an identity operator. This implies that ytu =y, and so x = y.
Moreover, Ty =1 shows that every section of p is also a section of 7, and
vice versa. But degeneracy operators with the same set of sections are
equal (see Lemma 4.1.3(i)). O

As an application, one can describe the n-skeleton X" of a simplicial set
X in terms of a simplicial attaching.

Corollary 4.2.4 (i) A simplicial set is generated by the set of its
non-degenerate simplices.

(i) The n-skeleton X" of a simplicial set X is obtained from its
(n — 1)-skeleton X"~ by attaching the non-degenerate n-simplices; more
precisely: if A, denotes a copy of the standard-simplex A[n] and
8¢, : 6A,— X"~ ! is the simplicial map given by 5¢ () = xa, for each xe X ¥,
then X is obtained from X"~ by attaching A, via {d¢,}. O

Example 4 Take peN and let f denote the unique simplicial map
0A[p]— A[0]. The simplicial p-sphere S[p] is obtained from A[0] by
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attaching A[p] via f; S[p] contains exactly two non-degenerate simplices,
one in dimension 0 and a further one in dimension p (thus two 0-simplices
in case p = 0). Moreover, S[ p] can easily be described in terms of generators
and relations; indeed, it can be obtained by taking one generator x in
dimension p subject to the relations

n—1

n __ ., = n __ n
X0p =+ = x0) = XE{W

In the next section, it will be explained that the geometric realization of
S(p) is actually a sphere (see the Example in Section 4.3). (]

Given a simplicial set X and simplices x, ye X such that x = ya, for some
operator o, then x is a (proper) face or degeneracy of y if « is a (proper)
face operator or degeneracy operator respectively. The simplicial subset
of X which is generated by the proper faces of a simplex x is the boundary
ox of x.

The following facts are evident.

Lemma 4.2.5 (i) A proper degeneracy of a simplex is degenerate.

(ii) If two degenerate simplices have the same faces they are equal.

(iil) The non-degenerate part of a simplex is a face of this simplex.

(iv) If Y is a simplicial subset of the simplicial set X then a simplex of
X belongs to Y iff its non-degenerate part belongs to Y.

(v) An injective simplicial map transforms non-degenerate simplices into
non-degenerate simplices. |

A non-empty simplicial set X always has simplices of arbitrary high
dimensions, which can be exhibited by applying suitable degeneracy
operators; however, the dimensions of the non-degenerate simplices of X
may be bounded. In this case, the simplicial set X is said to have finite
dimension and its dimension — notation: dim X — is defined by taking

dim X = max {dim x : xe X*}.

Now turn to cosimplicial sets, i.e. cosimplicial objects over the category
Sets. Again, it is convenient to view cosimplicial sets as N-graded sets
with the category A operating on them, but now by a left action. In this
sense, a cosimplicial map between cosimplicial sets is clearly a function
between the corresponding sets which respects the grading and is
compatible with the left action. The functor A™:4— Top described
in Section 4.1 composed with the forgetful functor ¥V : Top — Sets provides
an illuminating example for a cosimplicial set and explains the following
terminology. If Y is a cosimplicial set then the elements of Y = 1Y, are
called points of Y. Dually to the notion of a non-degenerate simplex, one
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has interior points: these are the points yeY which cannot be written in
the form y = 4,z for some suitable point z and some suitable operator J;,
i.e., which do not allow the extraction of a face operator. Now one may
be interested in dualizing the Eilenberg—Zilber lemma. Because of the
formal differences between face and degeneracy operators (see
Lemma 4.1.3), this is not possible in general.

Proposition 4.2.6 For a cosimplicial set Y, the following conditions are
equivalent:
(1) every point yeY has a unique decomposition of the form
y=yty’
with y* a face operator and y® an interior point;
(i1) for all points yeY,,

0oy #641.

Proof (ii) is a special case of (i), so it suffices to show that (ii) also implies
(i). This is done by dualizing the proof of the Eilenberg—Zilber lemma (see
Theorem 4.2.3). The only problem lies in the fact that vertex operators
are not determined by their set of retractions (see lemma 4.1.3(ii) and (iii)).
Thus an extra argument is necessary for an equation of the form

&Y =¢;).

Assume i > j; then applying w; to the previous equation would yield the
equation 8,y = d, y contradicting condition (ii). O

A cosimplicial set is said to have the Eilenberg—Zilber property if it satisfies
the equivalent conditions of Proposition 4.2.6. Similarly, a cosimplicial
space, i.e., a cosimplicial object in Top, has the Eilenberg—Zilber property
if its composition with the underlying set functor has the Eilenberg—Zilber
property. As pointed out in Section 4.1, the cosimplicial space 4~ is an
example of a cosimplicial space with the Eilenberg—Zilber property. Also,
a cosimplicial object in a set-valued functor category has the
Eilenberg—Zilber property if it has this property pointwise. More down
to earth: a covariant functor @ : A — SiSets has the Eilenberg-Zilber
property if, for all neN, the functors

@, : A—Sets, [pl—(P[p]),
have the Eilenberg—Zilber property.

Example 5 Normal subdivision of standard-simplices is a cosimplicial
object in SiSets with the Eilenberg—Zilber property (see Lemma 4.6.2). [
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If, within an algebraic context, there are given a set of operators acting
on one object on the right and on another object on the left, then the
familiar procedure is to form a tensor product. Similarly, a tensor product
X ®Y of a simplicial set X and a cosimplicial set Y can be defined. One
takes the disjoint union | | X, x Y, and generates on this set an equivalence
relation ~ by

(xa, y) ~ (x, ay);

then X ® Y is just the set of the corresponding equivalence classes. Clearly,
with respect to this definition, the underlying set of the geometric
realization of a simplicial set X is nothing but the tensor product of X
and VA~ where V : Top— Sets again denotes the underlying set functor.
This also justifies the notation [x, y] for the equivalence class of the pair
(x,y)eX, x Y,, in the general case. Evidently this concept is bifunctorial,
ie, a simplicial map f : X’ and a cosimplicial mapg : Y- Y’ yield a
well-defined function f®g : X® Y- X'® Y’ by taking f ®g([x, y]) =
[fx,gy]); the interchanging law f®1,.°1,®g=14®g°f ®1y holds
true. :

As in algebra, the tensor product of a right action and a left action is
just a set. But if the object with the left action has also a right action,
then the tensor product inherits also a right action. More precisely, if X
is a simplicial set and @ : A — SiSets is a covariant functor, then the tensor
product X ® @ is the simplicial set given by (X ® @),=X® @,,[x, yJoa =
[x,ya]. Again, this construction is bifunctorial, ie, a simplicial
map f : X —> X’ and a natural transformation g : @®— @' yield a well-
defined simplicial map f ®g : X ® ® - X' ® @' by taking f @ g([x, y]) =
[fx,gy] and the corresponding interchanging law holds.

Example 6 For any simplicial set X,X® A — ~ X holds true. Isomor-
phisms are provided by the assignments [x, yJ—xy and x+—[x,1]. Using
functoriality in the first variable, one obtains that the functor
~® A- : SiSets— SiSets, i.e., the tensor product with the Yoneda
embedding, is naturally equivalent to the identity functor Id on the
category SiSets. O

Example 7 For any simplicial set X, the tensor product with the normal
subdivision of simplices

SdX=X®A4
yields the normal subdivision of X (see Section 4.6). O

An agreeable feature of the algebraic part of this theory is that in many
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cases there are canonical representatives for the elements of a tensor
product. To describe them, a further notion should be introduced. If X
is a simplicial set and Y is a cosimplicial set, a pair (x, y)e X, x Y, is called
minimal if x is a non-degenerate simplex and y is an interior point.
Moreover, given an arbitrary pair (x, y)e X, x Y,, it is convenient to say
that one has a pair of dimension n — notation:
dim(x, y) = n. _
(x, ) A
Proposition 4.2.7 Let X be a simplicial set and let Y be a cosimplicial set
with the Eilenberg—Zilber property. Then, any element of the tensor product
X ® Y can be represented by a unique minimal pair.

Proof TakeZ =X, x Y, and define functions ¢,,t,,t : Z— Z by setting
t(x, ) = (%, x°y), t.(x, ) = (%, )
and
t=tot,.
Then the following facts are evident:

(l) (X, }’) ~ tl(xa ,V) ~ tr(xa ,V) ~ [(X, Y),

(i) t(x, y) # (x, y)=>dim t(x, y) < dim (x, y),

(i) t,(x, y) = (x, y)<>x is a non-degenerate simplex,

(1) t.(x, y)=(x, y)<=>y is an interior point and

(v) t(x, y) = (x, y)<>(x, y) is 2 minimal pair.
From (iii) and (iv), it follows that the functions ¢, and ¢, are idempotent,
ie,t? =1, and tf =t,, respectively. Moreover, since the set of dimensions
is bounded below, it follows from (ii) that, for any pair (x, y), the sequence
(t"(x, y)) becomes stationary. Thus, by (v), it contains a minimal pair which,
by (i), is equivalent to the initial pair (x, y). This proves the existence of
a minimal pair in every class. This part of the assertion does not depend
on the Eilenberg Zilber property for Y.

Now assume simplices x, x'e X, points y, y’e Y and an operator o to be
given such that x = x’a and ay = y’. Then, the pairs (x, y) and (x', y') are
equivalent and one says that the pair (x, y) is directly equivalent to the
pair (x', ) (via «). In this situation, it follows that the pair ¢,(x’, y') is directly
equivalent to the pair t(x, y) via

o = (X (@) (y*) )y
Observe that the idempotency of the function ¢, implies ¢t, = t. Thus, by
iteration, it follows that, for all neN, the pair ¢,t"(x, y) is directly equivalent
to the pair t"(x', y'). For sufficiently large n, these pairs are the minimal
pairs associated to the original pairs (x, y) and (x', y') respectively, given
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in the first part of the proof; but minimal directly equivalent pairs are
equal. Since the equivalence relation under consideration is generated by
the (non-symmetric) direct equivalence, this finishes the proof. O

A technical detail of the given proof deserves special attention.

Addendum 4.2.8 Let X be a simplicial set and let 'Y be a cosimplicial set
with the Eilenberg—Zilber property. Then, if (x, y)e X, X Y, is an arbitrary
pair and (X, Y,u)EX y X Y, is the minimal pair representing the same element
of the tensor product X ® Y as (x, y), there are a (not necessarily unique)
face operator u :[m]—[n] and a (not necessarily unique) degeneracy
operator p : [n] —[m] such that x,,= xu and y,, = py.

Proof Inspect the functions t,t.,t : Z—Z of the proof just given, and
observe that x* can be obtained from x by applying the face operator
(x")* and that y” can be obtained from y by applying the degeneracy
operator (y*)*. O

Remark In many applications of the proposition, the cosimplicial sets
under consideration have the property that interior points are mapped
onto interior points by degeneracy operators (see Lemma 4.1.2 and
Exercise 2). In this case, the pair t(x, y) is already minimal, for any pair
(x, y). But that this is a special property becomes quite clear if one looks
at the dual situation. It would say that any face of a non-degenerate
simplex should be non-degenerate, giving a presimplicial set (to be
discussed in Section 4.4). The geometric appeal of simplicial sets is derived
from the fact that non-degenerate simplices may have degenerate
faces. O

Corollary 4.2.9 IfY is a cosimplicial set with the Eilenberg—Zilber property,
then the tensor product —® Y : SiSets— Sets preserves and reflects
monomorphisms.

Proof Let f : Z—Y be an injective simplicial map. Assume (z, y),(z’, y')
to be minimal pairs such that

SOULE D) =®ULE, y)]):
ie.,
/(2 y1=L1f(2), ]

Since f is injective, the pairs (f(z), y) and (f(z), ') are still minimal (see
Lemma 4.2.5 (v)). Thus, the uniqueness of the representation by minimal
pairs implies f(z) = f(z') and y = y'. Again using the injectivity of f, one
obtains z =z’ and, finally, [(z, y)] =[(z, y)].

Let a simplicial map f : Z — X be given such that f ® 1 is injective and
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take z,,z,eZ with f(z,)= f(z,); without loss of generality, one may
assume z, to be non-degenerate. Define n = dimz, =dimz, and choose
an interior point y in Y,. The injectivity of f ® 1 implies [z, y] =[z,,y].
Since the pair (zy, y) is minimal, the simplex z, is a face of the simplex z,
(see Addendum 4.2.8) and since dimz, = dim z, it follows that z;, = z,.

d

Another property of these tensor products follows from the adjoint functor
generating principle (see Section A.10).

Proposition 4.2.10 If Y is a cosimplicial set, then the tensor product
~®Y : SiSets — Sets is left adjoint to the functor Sy : Sets — SiSets given by

(SyT), = set of all functions Y,—» T
for all sets T, all neN.
xo = xo Y(a)
for all elements xe(SyT),, all operators a with cod a =[n],
Syf(x)=fox
for any function f with domain T and any xeSyT. O

This fact has an essential consequence.

Corollary 4.2.11 If Y is a cosimplicial set, then the tensor product
~® Y : SiSets — Sets preserves all colimits. d

Taking a cosimplicial object in the category SiSets, one obtains similarly.

Proposition 4.2.12 If @ : A — SiSets is a covariant functor, then the tensor

if @ has the Eilenberg—Zilber property, then —® @ transforms simplicial
attachings into simplicial attachings.

Proof See the adjoint functor generating principle (Section A.10) and
Corollary 4.2.9. O

Finally, note a very general statement which nevertheless is sometimes
useful.

Proposition 4.2.13 Let € either be Sets or SiSets and let @ : A—% be a
cosimplicial object in €. Then, for any simplicial set X,

X ® @ =colim @°Dy
where Dy : Cyx— A denotes the forgetful functor. O
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In view of this fact, one extends the terminology ‘tensor product’ to a
more general situation. A cosimplicial object @ in an arbitrary cocomplete
category % induces, by the adjoint functor generating principle (see
Section A.10), a cocontinuous functor SiSets—% which is given on the
objects by the right-hand side of the equation in Proposition 4.2.13. Thus,
this functor will be called again tensor product with ®.

Exercises

1. Show that the standard-simplex A[p] is not contractible to any ¢, with
O<k<p.

2. Give explicit descriptions of the simplicial dunce hat, i.e., the simplicial
set generated by one 2-simplex x subject to the relations
X0y =x0; = x0,, and the simplicial projective plane, i.e., the simplicial
set generated by one 2-simplex y subject to the relations yd, = yd,,
yo1 = yeo0o-

3. Construct examples for cosimplicial sets

which do not have the Eilenberg—Zilber property, and/or
such that interiors are not preserved by degeneracy operators.

4. Let (K, R) be an ordered simplicial complex. Its associated simplicial

set (K, R), is generated by the set K and subject to the relations

x0; = X;

with xeK,ie[dim x] and x; the ith face of x, i.e., the face obtained by
omitting the ith vertex. Extend this definition to an embedding of the
category OSiCo into the category SiSets as a coreflective subcategory.
(Coreflective means that the embedding is a right adjoint functor, i.e.,
the embedding has a coadjoint, a so-called coreflector, and that the
restriction of the coreflector to the subcategory obtained is equivalent
to the identity.)

5. Construct simplicial mapping sets; i.e., show that, for any simplicial set
Z, the product functor — x Z has a right adjoint (-)%. (Hint: According
to the Yoneda lemma (Lemma 4.2.1), the n-simplices of a simplicial
mapping set X2 have to be in one-to-one correspondence with the
simplicial maps A[n]— X%, which in turn - by adjointness — should
correspond to the simplicial maps 4[n] x Z— X; take the set of these
maps as (X?),, define suitable operations and show functoriality.)

4.3 Properties of the geometric realization functor

In the preceding section, the geometric realization | X | of a simplicial set
X was defined as the quotient space of |1 X, x A" - all X, endowed with
the discrete topology — with respect to the relation

(xa, 2) ~ (x,at)
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for any simplex x€X,, any operator « : [m] —[n] and any point teA™,
recall that the class of a pair (x,f)eX, x A" with respect to the induced
equivalence relation, which is a point of | X|, is denoted by [x, ¢].

Moreover, the geometric realization of a simplicial map f:Y — X has
been defined as the map|f|:|Y|—|X|, taking [y, f]J—[f(»),t]. This
completed the definition of the geometric realization functor |-|:SiSets —
Top.

There is another description of the geometric realization |X| of a
simplicial set X which is useful for some purposes. First — as exhibited in
the previous section — the underlying set of the space | X | can be considered
as the tensor product of the simplicial set X and the cosimplicial set VA ~;
second, the topology of | X| is the final topology with respect to the family
of maps

¢, AYmE LX), t—[x, 1],
for all xeX; note that ¢, can be considered as the geometric realization
of the simplicial map A[n] — X, ar—>xa, up to the natural homeomorphism
|A[dim x]| - A%™*, Because

Crq = Cxo A*

whenever xa is defined, this point of view immediately yields the following
fact.

Proposition 4.3.1 If the set Y generates the simplicial set X, then the
geometric realization |X| of X is a quotient space of the subspace
wYnX,) x A" of UX, x A". |

Corollary 4.3.2 The geometric realization |X| of a simplicial set X is a
quotient space of the subspace LI X* x A" of U X, x A",

(Recall that X* denotes the set of non-degenerate n-simplices of X.)

Proof A simplicial set is generated by its non-degenerate simplices (see
Corollary 4.2.4 (i)). O

Next, apply the Eilenberg—Zilber property of the cosimplicial space
A A->Top.

Propeosition 4.3.3 (i) If X is a simplicial set, then any point of its geometric
realization | X | has a unique representation by a pair (x,t), with x a non-
degenerate simplex of X and t an interior point of A%™*,

(ily The geometric realization of a simplicial map is injective iff the
simplicial map itself is injective.
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Proof (i) In the presence of the Eilenberg—Zilber property, the representa-
tion of the elements of a tensor product by minimal pairs is unique (see
Proposition 4.2.7).

(i) The tensor product with a cosimplicial set satisfying the Eilenberg—
Zilber property preserves and reflects monomorphisms (see
Corollary 4.2.9). O

Later on, it will be shown that the geometric realization of an injective
simplicial map is even a closed cofibration. A part of this fact is proved
immediately below.

Lemma 4.3.4 If the simplicial set Y is a simplicial subset of the simplicial
set X, then the geometric realization |Y| of Y is a closed subspace of the
geometric realization | X| of X.

Proof To begin with, observe that a point [x,#] of | X| belongs to | Y] iff
xt* is an element of Y (see Lemma 4.2.5 (iv)). Now, let C be
a closed subset of | Y| and take an n-simplex x of X. One has to show
that ¢;!(C), the inverse image of C in A" with respect to the
map¢, : A"—|X| given at the beginning of this section, is closed in A”".
The set ¢_ '(C) is the union of the sets A“(c‘;ul(C)) taken over the finitely
many face operators u with xueY. Since C is closed in | Y|, the sets ¢ ;“‘ ©
are closed in dom A*. The desired result now follows from the fact that

all the maps A* are closed. O

Now it is possible to establish the connection between simplicial sets and
CW-complexes.

Theorem 4.3.5 If X is a simplicial set then the sequence {|X"| : neN} is a
CW-structure for its geometric realization |X|. The corresponding cell
decomposition of | X | is given by the subsets

e.={[x.1] : te(A4™)},
of | X1, x running through X* the set of non-degenerate simplices of the
simplicial set X ; the closed cells are the subsets &, = ¢ (A%™%), for all xe X*.

Consequently, if X has a finite dimension, then | X | is finite-dimensional and
it holds true

dim|X| = dim X.

Proof According to the previous result, all the | X"| are closed subspaces
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of |X|. Thus, the sequence {|X"|: neN} is a filtration of |X|. Since
|X° = X, x A° (see Corollary 4.3.2), | X°| is a discrete space.

Next, one has to show that every pair (| X"|,|X"~!]) is an adjunction
of n-cells. For every non-degenerate n-simplex x, the map ¢,|5(4") factors
through a unique mapec, : §(4")—| X"~ !|. All these mapsc, fit together
todefine a partialmapc : X* x A"-/—|X"~1|_ It follows from the unique
representation of the points of |X"| (see Proposition 4.3.3 (i)) that
| X" =]X"" U X* x A", at least at the set level. Now observe that the
identification map l_|;;=1Xf x A¥—>|X"| (induced by Corollary 4.3.2)
factors through a unique identification map | X"~ | X# x A" —|X"|. Thus,
|X"| is endowed with the final topology with respect to the induced
restrictions | X"~ !|—|X"|and X# x A" —|X"|. Because X* x A" ~ X* x B"
and X# x 64"~ X* x §"~1, the pair (|X"|,|X""'|) is an adjunction of
n-cells.

Finally, one must prove that the space | X | has the topology determined
by the family (| X"| : neN). For this, take a function f : |X|—>Z,Z any
space, whose restrictions to all |X"| are continuous. Since each of the
maps ¢, factors through some | X"|, for all xeX, the compositions f<¢,
are continuous, and thus f is continuous; this finishes the proof. O

Corollary 4.3.6 If X is a simplicial set,
dim X =dim | X|. O

Corollary 4.3.7 (i) The geometric realization of a simplicial map is a regular
map;
(i1) the geometric realization of a constant simplicial map is a constant map.

Proof (i) Since the degeneracy operators A’ preserve interiors (see
Lemma 4.1.2), the image of an open cell under the geometric realization
of a simplicial map is always an open cell.

(i) A constant simplicial map factors through A[0]; thus its geometric
realization factors through A°, which is a one-point space. d

Thus geometric realization can be viewed as a functor SiSets—» CW". The
fact mentioned before Lemma 4.3.4 is now also evident:

Corollary 4.3.8 (i) If Y is a simplicial subset of the simplicial set X, then
| Y] is a CW-subcomplex of | X|;

@) if Yisa (CW-) subcomplex of the geometric realization of a simplicial
set X, then Yis the geometric realization of a simplicial subset Y of X;
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(i) if f : Y— X is an injective simplicial map, then || is an embedding
of a CW-subcomplex, and thus a closed cofibration. d

Remark The statement of Theorem 4.3.5 also implies that there are
canonical characteristic maps for the cells of the geometric realization of
a simplicial set, at least after fixing a sequence of homeomorphisms
B,— A,. Just combine those homeomorphisms with the corresponding
mapsé,:A4,—|X|. In this sense, the mapsc, themselves will be called
characteristic maps, for all non-degenerate simplices xe X. O

Some crucial properties of geometric realization follow from the fact that
it has a right adjoint S : Top — SiSets, called the singular functor. Again
(see Propositions 4.2.10 and 4.2.12), its existence is a consequence of the
adjoint functor generating principle (see Section A.10), which gives still
another interpretation of the geometric realization of a simplicial set.

Lemma 4.3.9 If X is a simplicial set, then

| X| = colim Ay,
where Ay =A"°DX is the composition of A~ with the forgetful functor
Dy. O

Historically, the singular functor gives the first simplicial sets that were
considered and can be explicitly described as follows. The singular set of
a space T is the simplicial set ST obtained by taking
(ST),=set of all mapsA"—>T
for all neN and
xa = xoA*

for all elements xe(ST),, all operators aeA[n]. The elements of (ST), are
the singular n-simplices of the space T. A continuous map f : T— U gives
rise to a simplicial map Sf : ST— SU by taking

S = fox;

this formula really yields a simplicial map as a consequence of the
associativity law for compositions of maps. It is worthwhile to exhibit in
detail the tools that are provided by this adjointness: for a simplicial set
X, one has the unit 55 : X - S| X|, which is the simplicial embedding
associating to a simplex xe X, the singular simplex

nx(x):4"=>|X|,  t—[x1].
For a space T, the co-unit j; : [ST|— T is given by

Jr([x,1]) = x(2),
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for every singular simplex x: 4" — T and every point teA". (Later on - see
Theorem 4.5.30 — it will be shown that the mapj; is a weak homotopy
equivalence, for every space T.) The main point of the adjointness is that
it gives a bijective correspondence between maps g : | X |— T and simplicial
maps f: X — ST. The adjoint of the map g is the simplicial map g’ = Sgony;
the adjoint of the simplicial map f is the map j;°| f|. That these processes
of forming adjoints are inverse to each other is due to the fundamental
equations between unit and co-unit:

Jixielnxl =1x Sjrensr = st
As a left adjoint functor, geometric realization preserves all colimits.
More specifically, geometric realization preserves pushouts and also has
a somewhat stronger property.

Proposition 4.3.10 Geometric realization transforms simplicial attachings
into (topological) attachings.

Proof Since geometric realization transforms injective simplicial maps
into closed cofibrations (see Corollary 4.3.8 (iii)), partial simplicial maps
go over into partial (continuous) maps; thus, the pushout obtained from
a simplicial attaching is indeed an adjunction square. (]

Example Take the simplicial p-sphere S[ p] (see Example 4 of Section 4.2).
The proposition tells us that its geometric realization is nothing but the
quotient space A?/6 AP. A homeomorphism A” — B? induces a homeomor-
phism A?/6A? — B?/SP~! whose codomain is a p-sphere via the standard
map b? (see Section 1.0). |

The adjointness also implies that geometric realization preserves
epimorphisms. More precisely:

Proposition 4.3.11 A simplicial map is surjective iff its geometric realization
is an identification.

Proof ‘=": Since epimorphisms are preserved under geometric realization,
a surjective simplicial map is transformed into a surjective regular map
(see Corollary 4.3.7 (i)) which is an identification (see Corollary 2.1.2).

‘<= Let f : Y— X be a simplicial map such that | f] is surjective. Since
X is generated by its non-degenerate simplices, it suffices to exhibit an
inverse image for each non-degenerate simplex of X. Take xeX* and an
interior point teA%™* The surjectivity of |f| implies the existence of a
simplex yeY and a point se A4™” such that

Dot =1/ [y, s1) = L) s1= LU (S)’sT;
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one may assume s to be an interior point (see Proposition 4.3.3 (i)). Then,
(f()’s is also an interior point (sec Lemma 4.1.2), and consequently the

pair ((f(»))¥, (f(»)’s) is minimal; therefore, x = (f(y))* (again by
Proposition 4.3.3 (i)). Thus, x is a face of f(y) (see Lemma 4.2.5 (iii)), and

so it is the image of the corresponding face of y under the simplicial
map f. O

There is still another type of colimit construction, which has yet to be
mentioned.

Proposition 4.3.12 Let Xo< X, < --- < X; < --- be an increasing sequence
of simplicial sets and X =uX,. Then, {|X,|:reN} is an expanding
sequence with union space | X |. O

Geometric realization also commutes with finite limits. To see this, one
has to show that it commutes with equalizers and finite products. Indeed,
geometric realization preserves and reflects equalizers:

Proposition 4.3.13 Let f,g9 : Y — X be a pair of simplicial maps and let Z
be a simplicial subset of Y. Then Z is the difference kernel of the pair (f, g)
iff |Z| is the difference kernel of the pair (|f1,] g ).

Proof The geometric realization |Z| of Z is a closed subspace of the
geometric realization | Y| of the simplicial set Y (see Lemma 4.3.4).

‘=’ Let Z be the difference kernel of the pair (f,g), ie,
Z={yeY: f(y)=g(y)}. Then its geometric realization |Z| is clearly
contained in the difference kernel of the pair (|f|,|g|). Now consider a
point [y,t] in the difference kernel of (| f1,]g]); assume ¢ to be an interior
point (see Proposition 4.3.3 (i)). Then,

LA =T/ D =1/1([y. 1D =1gl(Ly. 1)

= [g(), 11 = L) (9()°1].
Since (f(y))” and (g(y))” are degeneracy operators, (f(y))’t and (g(y))’t
are interior points (see Lemma 4.1.2). The uniqueness of the representation
by minimal pairs (see again Proposition 4.3.3 (i)) now gives
GON*F=N®  (fO)t=(gO) .

The second of these equations implies (f(y))” = (g(y))’ (see Lemma 4.1.1);
combining it with the first, we obtain

FO) =GOSO = o)) = 90y),
e, yeZ; thus, [y, t]e| Z|.
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‘«=": Take | Z| to be the difference kernel of the pair (| f|,|g|). Consider
a simplex yeY and choose an interior point teA*™. Now, if yeZ, the
same argument as above shows f(y)=g(y). On the other hand, if y is in
the difference kernel of the pair (f,g), then

/1Dy, e D=Lf(y),t1=Lg(y).t]1=1gl([y,2]),
ie., [y,t]e|Z|; this implies yeZ. O

Now turn to finite products. Consider the product Y x X of the simplicial
sets Y and X. The projections py : Y x X —» Y and py : Y x X - X induce
a natural map hy , = (|pyl, Ipx]) : |Y x X|=>]Y| x| X]|.

Lemma 4.3.14 For q,peN, the natural map

haq, am = 1409 x ALpYI—140q]] x |ALp]|
is a homeomorphism.

Proof Identify |A[q]| and |A[p]| with A? and AP respectively (via the
homeomorphisms described in Example 1 of Section 4.2). The aim is to
construct a function g : A? x A? —|4[q] x A[p]| which is inverse to the
map hAm_ Alp) To this end, consider (¢,#)e A9 x AP. Order all of the sum
coordinates of t and ¢ to form an (r + 2)-tuple (u_,,uo,...,u,) such that
O=u_, <up<--<u,_, <u =1,

thus obtaining the sum coordinates of an interior point veA". Now there
are unique operators « : [+]—-[q], f: [r]—[p] such that ov =1t and
fv =1t respectively (see Lemma 4.1.5). The pair («, f§) is an r-simplex of
A[q] x A[p]; thus, it is possible to define g(¢,t') = [(«, ), v]. But

hA[q]. A[p]og(t’ t)=h A[q],A[p]( [(«, B), v])
= ([o, ], [ B, v]) = (aw, fv) = (£, 1),

and so
h

For the other composition, take ([(x, f),v])e|A[q] x A[p]| and assume
(o, f) to be a non-degenerate r-simplex of A[q] x A[p] and ve(A4")°. One
again obtains

i aim°9 = Vagxap:

hA[q],A[p]([(O(, B), v]) = (o, Bo).
Now, if g(aw, fv) were to be different from ([(«, B), v]), there would be at
least one sum coordinate u; of v which would be neither a sum coordinate
of av nor of fv. But this would imply (a, f) = (¢'0;, f'0;) = (o', f')o; to be
degenerate, a contradiction!
Thus, the natural map h,,; 4, : |40q] x ALp]l—14[4q]l x |A[p]| is
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bijective. Now observe that every r-simplex («, f)ed[q] x A[p] with
r > q + pisdegenerated. Indeed, inspection of the unique decompositions

ab=o'j]o...oo'js’ ﬁb=aj,lo...oo-j;"
with 0<j, <---ji<r,0<j, <--j.<r,s>r—q and s'>r—p leads to
$+s >2r—q—p>r, which implies that the sets {j,,...,j;} and
{j%>---.Jj.} have at least one element in common. Thus, A[g] x A[p] has
only finitely many non-degenerate simplices; consequently, |A[q] x A[ p]|
is a finite CW-complex (see Theorem 4.3.5), and therefore compact
(Proposition 1.5.8). But a continuous bijection with a compact domain

and a Hausdorff codomain is a homeomorphism. O

Remark The argument just given shows that the product of a simplicial
set of dimension g and a simplicial set of dimension p is of dimension
g+ p. This fact is not rewarded with a special statement because it is
obtained from the similar theorem for CW-complexes (see Theorem 2.2.2)
via geometric realization. d

Proposition 4.3.15 The natural map hy x : |Y x X|—|Y| x | X|is a homeo-
morphism, for all simplicial sets Y, X.

Proof An inverse function g to hy , can be given as follows:

g([y, t], [xa t(]) = [(ya, Xﬁ), v)]
for yeY,, xe Y, and with o, §, v constructed from (¢,¢') as in the preceding
proof. The closed cells of the product | Y| x | X| are the sets ¢, x &, with
ye Yf,xeXf, g, peN (Theorem 4.3.5 and Theorem 2.2.2). Thus, for the
continuity of the function g, it suffices to show that all the restrictions
gle, x e, are continuous. Moreover, the maps ¢, x ¢, induce identification
maps A? x AP — ¢, x é,; thus, it remains to show that the compositions
go(¢, x ¢,) are continuous. These functions are—up to suitable
identifications — nothing but the compositions of the homeomorphisms
(h 5, A[p])'l with the geometric realizations |¢, x ¢,| of the simplicial
maps ¢, X @, : A[q] x A[p]— Y x X which are given by the assignment
1,7 )—(yy, xy") (cf. the sketch of the proof of Lemma 4.2.1). O

Propositions 4.3.13 and 4.3.15 together imply, as announced:
Theorem 4.3.16 Geometric realization preserves finite limits. O

The fact that geometric realization commutes with products shows that
from a geometric point of view the simplicial homotopy notions defined
in the previous section actually do what they are supposed to do. Observe
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that |Y x A[1]|=|Y| x |A[1]] =|Y| x I, according to Proposition 4.3.15
and the homeomorphism |A[1]| > A' - I,[1,t]+—t—t,. This proves

Proposition 4.3.17 The geometric realizations of a pair of simplicially
homotopic simplicial maps is a pair of homotopic maps. Consequently,
simplicial homotopy equivalences are transformed into (geometric) homotopy
equivalences by geometric realization. d

Conversely, it is easy to construct a pair of simplicial maps whose geometric
realizations are homotopic without the simplicial maps themselves being
simplicially homotopic. Nevertheless, a sort of reciprocal statement to
Proposition 4.3.17 is true.

Proposition 4.3.18 If f,g : T— U are homotopic maps, the corresponding
singular maps Sf, Sg : SY —» SX are simplicially homotopic. Consequently,
homotopy equivalences are transformed into simplicial homotopy equival-
ences by the singular functor.

Proof Let h be a homotopy from f to g. Assume the domain of h to be
T x |A[1]]|. As a right adjoint functor, the singular functor commutes with
products. Thus one can consider Sh as a simplicial map from ST x S|A[1]]
to SU. Now composition of Sh with the simplicial map 17 x 7 4, yields
the desired simplicial homotopy. O

Corollary 4.3.19 The composed functors |S—| and S|—| preserve homotopies,
homotopy equivalences, deformation retractions and contractibility. |

Moreover, note that the composed functor |S—| transforms subspaces into
(CW-)subcomplexes.

There is some further terminology in this context. A simplicial map f
is a weak homotopy equivalence if its geometric realization | f| is an honest
homotopy equivalence; a simplicial set is weakly contractible if its
geometric realization is contractible.

The following is an application of the Eilenberg-Zilber property for
convariant functors 4 — SiSets.

Theorem 4.3.20 (Comparison theorem) Let @, @' : A — SiSets be (covariant)
functors with the Eilenberg—Zilber property and let ¢ : @ — @' be a natural
transformation such that ¢, : ®[n]— @'[n] is a weak homotopy equival-
ence, for every neN. Then, the induced simplicial map

is a weak homotopy equivalence, for all simplicial sets X.
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Proof The claim is evident if X is a coproduct of standard-simplices. The
statement will be proved next for simplicial sets having finite dimension,
using induction on the dimension. If dim X =0 then, X is a coproduct of
0-simplices. Now assume dim X =n>0 and observe that X may be
obtained from X"~ ! by means of a simplicial attaching of n-simplices, i.e.,
X=X""'u,A[n]
for some simplicial map /' : UdA[n]— X"~! (see Corollary 4.2.4 (ii)).
Since the functors @ and @’ have the Eilenberg-Zilber property, the
tensor products —-® @ and -® @' preserve simplicial attachings (see
Proposition 4.2.12); thus,
XQP=X""'®@Pl,goliPn],
as well as
XV =X"®Uspe LIP[n]
Geometric realization preserves attachings (see Proposition 4.3.10);
consequently, one obtains | X ® @] and | X ® @’| by the induced attachings.
The map |<pUAm| L @[n]| - L] @’'[n]] is a homotopy equivalence as
stated in the beginning; by the induction hyptothesis, the same holds true
for the maps | ;4! : LI0A[M]® @[ | ]A[n]® @'| and |y, |. The
result now follows from the gluing theorem (see Theorem A.4.12).
If X does not have finite dimension, one has expanding sequences

{IX"® ®| : neN}, {|X"® @'| : neN}

and a commutative ladder of homotopy equivalences connecting them;
thus, the induced map between the union spaces (which can be considered
as @y) is also a homotopy equivalence (see Proposition A.5.11). O

This shows that replacing the simplices of a simplicial set by some more
complicated objects does not alter the weak homotopy type as long as
the new objects are weakly contractible.

Corollary 4.3.21 Let @ : A—SiSets be a (covariant) functor with the
Eilenberg—Zilber property and such that ®([n]) is weakly contractible, for
all neN. Furthermore, let a natural transformation ¢ : ®— A be given.
Then, the induced simplicial map px=1,®¢ : X® P> X is a weak
homotopy equivalence, for all simplicial sets X. d

Remark Clearly, the same statement is true if one is given a natural
transformation A— @ instead of that assumed in the statement of
Corollary 4.3.21. In some sense, it is not even necessary to require the
existence of any natural transformation (see Section 4.5, Exercise 1). [
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Recall that a (continuous) mapp : Y — X is locally trivial if every point
xe X has a neighbourhood U such that the map induced from p by the
inclusion U < X can be chosen as the projection of the product U x p~*(x)
onto U.

Proposition 4.3.22 The geometric realization of a locally trivial simplicial
map is a locally trivial (continuous) map.

Proof Let p: Y— X be a locally trivial simplicial map and consider a
point [X, t]e| X |; without loss generality, one may assume X to be a
non-degenerate n-simplex in X and f an interior point of A" (see
Proposition 4.3.3 (i)). The open cell of the CW-complex | X | corresponding
to the simplex X is an open neighbourhood U, of [X, f1in |X"|=|X]|"
Forming the infinite collar of this open cell with respect to the canonical
characteristic maps (see the Remark after Corollary 4.3.8), one obtains a
neighbourhood U of [%, ?] in | X | (see Proposition 1.3.1 (ii)); U is the union
space of the expanding sequence of the intermediate collars U,,,m > n (see
Proposition 1.3.1 (iv)). Let ¢ : V- U and g, : V,,— U,, denote the maps
which are induced from |p| by the inclusions U =|X| and U, < |X]|, for
m = n, respectively; note that the maps g,, can also be thought as induced
from ¢q by the inclusions U,, = U. The spaces V and V,, can be considered
as subspaces of |Z|, and V is determined by the family {V,, : m>n} (see
Corollary A.2.3, which will be used several times in the sequel without
explicit reference). For any non-degenerate simplex xe X, , ,, let e, denote
the corresponding open cell of |X|. Set U,=U,u(U,+;Ne,) and let
gy : Vy— U, denote the map induced from g¢,,,; by the inclusion
U,c U, . Then, U,,, , is determined by the family {U,} u{U, : xeX*_ }
(see Proposition 1.1.3 (ii)) and V,,, , is determined by the family {V,,} U
{Vx : xEXﬁ+1}.

Now, let F denote the fibre of p over Xg,. It will be shown that there
is a homeomorphism h : V- U x |F| whose composition with the pro-
jection onto U is just g. Since U x |F| is determined by the family
{U,, x |F| : m>=n}, this can be done by an inductive construction of
suitable homeomorphisms h,, : V,,—»U,, x |F|.

Start with m = n : Because the simplicial map p is assumed locally trivial,
there is an isomorphism h': W—A[n] x F, with pr,, oh=p, where
p : W— A[n] denotes the simplicial map which is induced from p by
f : A[n]- X,o—Z%a. Since geometric realization preserves finite limits
(see Theorem 4.3.16), the projection A" x |F|— A" is (up to the homeo-
morphism |4|) induced from |p| by the characteristic map |f§ =¢,. The
map g, can be thought as induced from this projection by the inclusion
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U,c A" [x,t]+t; this yields the homeomorphism h, : |p|~*(U,)—
U, x|F|.

Assume h,, is constructed. Again, U, , , x |F|is determined by the family
{U,x|F|}u{U, x|F|}, and it suffices to construct suitable homeo-
morphisms h, : V,— U, x |F|. Because different U, intersect exactly in U,,,
one can restrict the argument to a single non-degenerate (m + 1)-simplex x.

It follows from the definition of the collaring process that the starting
simplex X is a face of x; thus, the fibers of p over Xg, and x¢, can be
identified (see Proposition 4.2.2). Now, local triviality implies, as in the
case n = m, that the projection A™*! x |F|— A™*1 is induced from |p| by
the characteristic map é,; let ¢ : A™*! x |F|—|Z| denote the map which
is correspondingly induced from ¢, by |p|. Take U' =¢_'(U,),6U' =
¢-'(U,) and observe that there is a retraction r : U'—3U’. Moreover,
U, is obtained from U,, by attaching U’ via a map with domain U’ (see
Lemma 1.1.8); the characteristic map ¢’ and the attaching map déc’ of this
attaching can be taken as induced from ¢, by the inclusion of U, and U,
respectively, into | X |. Consequently, V, is obtained from V,, by attaching
U’ x |F| via a map with domain éU’ x |F| (see Proposition A.2.2); the
characteristic map ¢ and the attaching map ¢ of this attaching can be
taken as induced from ¢ by the inclusion of V, and V,, respectively, into
|Z|. Therefore, in order to obtain the homeomorphism h,, one needs a
suitable map U’ x |F|— U, x |F| whose components 4 : U’ x |F|->U,
and h”: U’ x |F|—|F| can be defined as follows. For A, take the
composition of the projection onto U’ with ¢'. For h”, compose the maps
r x 1), 0¢, h,, and the projection U,, x |F|—|F|. The resulting map h, is
bijective; it remains to show the continuity of the inverse function. Since
the functor — x |F| preserves attachings (see Section A.1) U, x |F| is
obtained from U,, x | F| by attaching U’ x | F|. Thus, it suffices to establish
the continuity of the functions h,~!|U,, x |F| and h, 'e(c’' x 1z The
first case is trivial: h,~'|U,, x |F|=h,,~!. For the second, note that the
map 6¢ is induced from ¢’ by g,,; thus, the universal property of pullbacks
can be used to obtain a map g: U x |F|-0U' x |F|, with déeg=
h, " to(bc'or x 1,z) and prs;.og =repry., where pry,. and pry. denote the
respective projections. Take g' : U’ x |F|— U’ x |F| whose components
are the projection pry. and the composition of g with the projection onto
|F|. This yields that the composition h,~'e(c’ x 1,)=C¢eg is also
continuous. 0O

Corollary 4.3.23 The geometric realization of a locally trivial simplicial map
is a (locally trivial) fibration.
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Proof Letp : Z— X be alocally trivial simplicial map. Since the codomain
of the map | f| is a CW-complex (see Theorem 4.3.5), and therefore para-
compact (see Theorem 1.3.5), the locally trivial map | f] is a fibration (see
Theorem A .4.22). O

Exercises

1. Show that the geometric realizations of an ordered simplicial complex
in the sense of Section 3.3 and its associated simplicial set (see
Section 4.2, Exercise 4) are naturally equivalent.

2. Show that the geometric realization functor 0SiCo— CW" preserves
products.

3. Construct two simplicial maps that are not simplicially homotopic, but
whose geometric realizations are homotopic.

4. Construct a simplicial map that is a weak, but not a simplicial,
homotopy equivalence.

4.4 Presimplicial sets

A presimplicial object in the category Sets of sets, i.e., an object of the
category PSiSets, is called a presimplicial set. In dealing with presimpli-
cial sets, it is again convenient to view a presimplicial set X as an N-graded
set X = X,, now with the small category M operating on the right; the
elements of a presimplicial set are also called simplices with the same
notion of dimension. The category PSiSets has similar formal properties
as the category SiSets; it has all limits and colimits as well as suitable
notions of generators and relations. The Yoneda embedding 4 : 4 —
SiSets is only replaced by the Yoneda embedding M : M — PSiSets. But
in a presimplicial set there is no difference between degenerate and
non-degenerate simplices. It might also happen that almost all X, are
empty; it is reasonable to define the dimension of a presimplicial set
X — notation: dim X — by taking
dim@=—1
and, for X # &,
dimX =max{n: X,# J}

If X is a simplicial set viewed as a functor 4 — Sets, one may form its
restriction X |M to the subcategory M of A to obtain a presimplicial
set; by evident reasons, this process will be referred to as forgetting
degeneracies. It extends to the forgetful functor P : SiSets — PSiSets which
is right adjoint to a (non-full) embedding E : PSiSets — SiSets, described
explicitly as follows. To a presimplicial set X assign the simplicial set EX,
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generated by all the elements of X (in the corresponding dimensions) and
subject to the relations xu =y for every triple (x, u, y) satisfying this
equation in the presimplicial set X. Thus, the n-simplices of EX can be
viewed as pairs (x, p) consisting of a simplex x of X and a degeneracy
operator p : [n] — [dim x]; the operation of A is given by the formula

(x, p)a = (x(p)*, (p)°),

for all such pairs (x, p) and all operators o with coda=[n]. If f : Yo X
is a presimplicial map, i.e., a morphism in the category PSiSets, then the
simplicial map Ef : EY —» EX is given by the assignment (y, p)—(f(y), p).
The unit for the adjunction is the family {uy : XeOb PSiSets} of the
presimplicial maps uy : X > PEX, x+—(x,1); the counit is the family
{px : XeO0b SiSets} of the simplicial maps py : EPX — X,(x, p)—xp. In
particular, the embedding E commutes with the Yoneda embeddings, i.e.,
AM=E-M.

The geometric realization of presimplicial sets is defined via simplicial
sets, just as the composed functor |—|cE =|E-|. The simplices of a
presimplicial set X correspond bijectively to the non-degenerate simplices
of the simplicial set EX, ie., X = (EX)* In particular, this implies that
the introduced notion of dimension for a presimplicial set X is compatible
with the geometric realization:

dim X =dim |[EX]|.
For a simplicial set X, the geometric realization X =|EPX| is also called
the fat realization of X, it is infinite-dimensional except for X = ¢¥.

The geometric realization functor |E—| : PSiSets— Top is left adjoint
to the composite functor PS : Top — PSiSets. The unit and the co-unit
of this adjunction are given by the families {#} : Xe€0b PSiSets}, {7 :
TeOb Top} with #y = Pngxouy, j.=jro|psr| respectively.

By abuse of language, one says that a simplicial set (map) is a
presimplicial set (map) if it is in the image of the embedding functor E;
this is the case

for a simplicial set iff the faces of non-degenerate simplices are again
always non-degenerate; and

for a simplicial map iff domain and codomain are presimplicial sets
and non-degenerate simplices are mapped onto non-degenerate
simplices.

On the other hand, pairs of presimplicial maps are simplicially homotopic
if they are such as simplicial maps. Similarly, one carries over the notions
simplicial or weak homotopy equivalence, simplicially or weakly contractible
into considerations of presimplicial maps and sets respectively.
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Remark It does not make sense to look for an analogue presimplicial
homotopy within the category PSiSets. The formal reason is that the
embedding E is left adjoint; thus, it does not commute with products in
general. For instance, the product M[1] x M[1] does not yield a square
(after geometric realization), but, rather, the disjoint union of an interval
and two single points. However, there is a nice sufficient condition for
simplicial contractibility within the category PSiSets. For this one needs
a special construction. O

The cone of the presimplicial set X is the presimplicial set CX given by
(CX)0=X0U{*}a

where # is just one extra element which does not belong to X,
(CX),=X,uX

for n>0-1if an (n — 1)-simplex x of X is considered as an n-simplex of
CX it will be denoted by ‘x.’ in the sequel —

CX(6)(x) = X(6:)(x),
for xeX, < (CX),,0<i<n,n>0,
CX(d0)(xc) = x,

n—1°

for xeX n>0,

n—1°

for xeX, < (CX),,
CX(0:)(x.) = X(6;_,)(x),
for xeX,_, =(CX),,0<i<nn>0.

If X = &, the cone CX consists of exactly one simplex (of dimension 0);
otherwise, CX is generated by the set {x, : xe X } subject to the relations

x:0; = (x0;).
for xe X, <(CX),,,,0<i<n+1,n>=0.

This construction extends in the evident manner to presimplicial maps
giving rise to the cone functor C . PSiSets— PSiSets. It is connected to
the identity functor via a natural transformation which is given by the
embeddings ¢y : X = CX, x+—Xx.0,.

Theorem 4.4.1 The cone functor C commutes with the geometric realization;
more precisely, there is a natural equivalence |EC-|- C|E-| : PSiSets—
Cwr.

Proof Let X be a non-empty presimplicial set. The geometric realization
|[ECX| of its cone CX is a quotient space of JX,x 4A"*' (see
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Proposition 4.3.1). Consider 4"*! as a cone with peak e,, i.., represent
any seA"*! in the form

s=(l - t) : 50S’ + teo,
with tel and s'e A" (see Section 3.1, Example 2). Then, define a natural
homeomorphism h : |[ECX|— CX by taking

h([xes1) = [[x,5],1]

for xeX, and seA"* L. d

Remark Notice that the homeomorphism just constructed is a regular
map between the corresponding CW-complexes; thus, it is cellular in both
directions. 0

The following is a technical lemma which is useful in dealing with the
formal apparatus.

Lemma 4.4.2 Let the simplicial set X be a presimplicial set. Then the
simplicial set X x A[1] is isomorphic to the simplicial set X; which has the
sets X, x [n] as generators in dimension n + 1 and is subject to the relations

(D)8, =(xdpi—1),  j<i
(x, 1)6, = (X,i_ l)5i, O < l < n,
(,)0;=(x8,_,i),  j>i+l.

Proof The assignment (x, i)—(x0;, ;) induces an isomorphism X; - X x

A[1]. 0

Now, the announced condition for simplicial contractibility can be
discussed.

Proposition 4.4.3 A presimplicial set X is simplicially contractible if there
is a simplicial retraction CX — X.

Proof Define a simplicial homotopy H : X;— ECX from the constant
map X — CX with value * to the inclusion cy by taking

H(X, l) = ((X(éo)i)w (GO)i)'
If there is a simplicial retraction r : ECX — EX, then the composition
ro H shows that EX is contractible to the O-simplex r(x). O

Now it can be shown that standard-simplices remain homotopically trivial
under forgetting degeneracies.
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Proposition 4.4.4 The presimplicial set PA[n] is simplicially contractible,
for every neN.

Proof For an operator « : [m]—[n] define ' : [m+ 1]— [n] by taking
«'(0)=0, o'(i + 1) = a(i), for ie[m].
The assignment a.—a induces a retraction CPA[n] — PA[n]. O

This was the last tool to prove the following:

Theorem 4.4.5 The simplicial mappy : EPX - X is a weak homotopy
equivalence, for every simplicial set X.

Proof The functor EP can be viewed as a tensor product
EP=-®EPA,

the simplicial sets EPA[n] are simplicially - and therefore, weakly -

contractible (see Proposition 4.4.4) and p, ;: EP|[A—A— is a natural

transformation; thus, the simplicial mappy is a weak homotopy

equivalence, for every simplicial set X (see Corollary 4.3.21). O

The formalism of presimplicial sets allows an easy simplicial description
of the 3-dimensional lens spaces:

Example Given peN\{0} and qeZ,=Z/pZ the lens space L(p,q) is the
geometric realization of the following simplicial set. Take generators
x;,i€Z,, in dimension 3 and require the relations

i+451' D

X;03=X;,,02,X;00 =X

Exercises
1. There is also a cone construction in the category SiSets which is given
as follows. Let X be an arbitrary simplicial set and let * be an extra
element which does not belong to X. Set
(CX),={(x,9)eX x N : g +dimx =n}u{(x,n)},
for all neN,
(x,g—1), 0<i<gq,
(x,9)0;,={ (*,q—1), gq=i,dimx=0,
(x0;_,q) q<i<g+dimx,dimx>0,
(x,q+1), 0<j<g,
(x0,_9), g<j<q+dimx,

(X, q)aj ={
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for all (x,q)eX x N, and

(*, n)a = (*,dim o),
for all neN and aeA[n]. Show that these facts define a simplicial set
CX and prove simplicial analogues to the presimplicial statements of
Theorem 4.4.1 and Proposition 4.4.3. Compare CEX and ECX for a
presimplicial set X.

2. Prove the following generalization of the Comparison Theorem (see
Theorem 4.3.20): let each of the categories ¥ and €’ be either SiSets
or PSiSets. Suppose F,G : €' - % are cocontinuous (i.e., compatible
with all colimits) functors which preserve injections. In addition, assume
¢ : F—>G is a natural transformation such that the (pre)simplicial
maps @ ,; OF @, are weak homotopy equivalences, for all neN. Then,
the (pre)simplicial maps ¢,, are weak homotopy equivalences, for all
(pre)simplicial sets X.

3. Show that the lens space L(p,q) has fundamental group Z/pZ and
universal covering S>. Derive from this that for a fixed p, but all possible
g, the Lens spaces L(p, q) have the same homotopy groups.

Remark Using cohomology rings — which are beyond the scope of this
book — one can moreover show that L(p,q) and L(p,q’) have the same
homotopy type iff g - ¢’ or —q - ¢’ is a quadratic residue mod p (Hilton &
Wylie 1960, Section 5.10). Thus, for example, L(5,1) and L(5,2) have
isomorphic homotopy groups, but different type.

4.5 Kan fibrations and Kan sets

The categories SiSets and PSiSets admit combinatorial analogues of the
geometric idea of fibration. The basic notions for these are the so-called
horns and anodyne extensions. For neN and ke[n], take A*[n] as the
simplicial subset of the simplicial standard-n-simplex A[n] which is
generated by all the elementary face operators 0 with i # k; in case n =0,
take A°[0] = J. The simplicial set A*[n] is called the k-th horn of A[n];
indeed, it is a presimplicial set (in the sense described in the previous
section). Using the natural homeomorphism |A[n]|— A" (described in
Section 4.2, Example 1), identify the geometric realization of the horn
A¥[n] with the subspace of the geometric standard-n-simplex A" which
consists of the points ¢ = (t,,...,t,) with t; =0, for at least one index i # k;
for n >0, the homotopy H : 4" x [ - A"

(t,s)—>(to—st',....t, +nst,....t,—st)

with ¢’ = min{t; : i # k} establishes | A*[n]| as a strong deformation retract
of A",
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2 2 2
0 1 0 1 0 1
A° 2] A [2] A (2]
Figure 12

Examples 1 A°[1]= A'[1]=A[0]; A[2],i=0,1,2, see Figure 12.
Let Z be a simplicial set and let f : A*[n] — Z be a simplicial map. The
image of f is called an (n —)horn in Z; it is a simplicial subset of Z which
is generated by a family {z; : ie[n],i #k} of (n — 1)-simplices, subject to
the relations z;6;=2z;0,_, for 0<j<i<n,j#k#i; the empty set is the
only O-horn in Z. Each such family {z;} generates an n-horn in Z; by
abuse of language, one says that the family itself is an n-horn in Z. An
n-simplex zeZ is a filling of the horn {z;} if 29, =z, for all i #k; each
O-simplex in Z is a filling of the 0-horn in Z. A horn can be filled if there
exists a filling; this is the same as saying that the corresponding simplicial
map A*[n] — Z can be extended over the whole standard-n-simplex A[n].
Let p: Z— X be a simplicial map. If the family {z;} is a horn in Z,
then the family {p(z;)} is a horn in X. The simplicial mapp is called a
(Kan) fibration with base X and total set Z, if, for every horn {z;} in Z
and every filling x of the horn {p(z;)}. there is a filling zeZ of the horn
{z;} over x, ie., such that p(z) = x. The following facts result immediately
from the definition.

Proposition 4.5.1 (i) The Kan fibrations form a subcategory of SiSets
containing all isomorphisms, i.e., all identities and all other simplicial
isomorphisms are Kan fibrations, and any composition of Kan fibrations is
a Kan fibration.

(i) If Z—> X is a Kan fibration and D is a retract of Z over X, the
restriction D — X is a Kan fibration.

(i) If Z— X and Y —» W are Kan fibrations, their product Z x Y - X x W
is a Kan fibration.

(iv) If Z— X is induced from a Kan fibration (by means of a pullback
construction), then Z — X is a Kan fibration.

(v) A Kan fibration with a non-empty base is surjective. In particular,
every horn in the base is the image of a horn in the total set. O
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In contrast to the geometric situation (see Proposition A.4.7 (1)), it is not
true in general that a terminal map in SiSets is a Kan fibration. Therefore,
the simplicial set Z is called a Kan set if the unique simplicial map Z — A[0]
is a Kan fibration. Because every horn in A[0] has a unique filling, Kan
sets can be characterized by the fact that all horns can be filled.

Corollary 4.5.2 (i) A Kan set is non-empty.
(i) The fibres of a Kan fibration are Kan sets.
(iii) Thetotal set of a Kan fibration is a Kan set iff the base is a Kan set.

Proof (i) If Z is a Kan set, then the unique simplicial map Z — A[0]
is surjective (see Proposition 4.5.1(v); thus, its domain cannot be
empty.

(i) A fibre of a Kan fibration may be thought out as the domain of a
simplicial map with codomain 4[0] induced from the Kan fibration.

(i) ‘=": Assume the total set is a Kan set and consider a horn in the
base. Take an inverse image in the total set (see Proposition 4.5.1 (v)). It
has a filling whose image in the base is a filling of the given horn.

‘<=" If the base is a Kan set, then the image of every horn in the total
set has a filling which, by the defining property of Kan fibrations, can be
lifted to a filling in the total set. Od

Example 2 Since | A*[n]]| is a retract of |A[n]| = A", for all neN and all
ke[n], the singular set ST of any topological space T is a Kan set. []

It is often tedious to reduce statements on Kan fibrations to fillings of
horns. Therefore, it is worthwhile showing that Kan fibrations can be
characterized by a more general extension property. To this end, one
forms the subcategory A < SiSets of anodyne extensions whose objects are
defined inductively as follows:

(0) all simplicial isomorphisms are anodyne extensions;

(1) all inclusions A*[n] = A[n] are anodyne extensions;

(2) if the inclusion A< D is an anodyne extension and D’ is obtained
from A’ by attaching D via a partial simplicial map with domain A,
the inclusion A’ = D’ is an anodyne extension;

(3) ifthe inclusion A = D is an anodyne extension and the inclusion A" < D’
is a retract, i.e., there are simplicial mapsg : D’— D, f : D— D’ with
feg=1p and g(A’) = A = f ~}(A') the inclusion A’ = D’ is an anodyne
extension;

(4) if the inclusions A(n) = A(n + 1) are anodyne extensions, for all neN,
and D= uUA(n) the inclusion A(0)= D is an anodyne extension;
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(5) if the inclusions A(j) = D(j) are anodyne extensions, for all j in some
index set, the inclusion JA(j)< LUD(j) is an anodyne extension.

As a consequence of (0), one can assume, in most cases, that the anodyne
extensions under consideration are inclusions of simplicial subsets.

Example 3 Let A be an n-horn with r holes; i.e., a simplicial subset of the
standard simplex A[n] which is generated by n+ | —r elementary face
operators, 0 < r < n; in this sense, the horn A*[n] is a horn with just one
hole. Then, the inclusion A = A[n] is an anodyne extension. This follows
by a double induction, first increasing on n, second on r. The key step
lies in the fact that an n-horn with r holes, r > 1, can be completed to an
n-horn with r — 1 holes by means of an attaching of an (n — 1) simplex
where the attaching is defined on an (n— 1)-horn with r — 1 holes (see
Condition (2) in the previous list). In particular, this shows that any
embedding Ad; : A[n— 1]— A[n] is an anodyne extension. O

The description of anodyne extensions given before immediately implies
the following:

Proposition 4.5.3 A simplicial mapp : Z— X is a Kan fibration iff for each
anodyne extension i : A— D and each commutative square

ALz

D —X
S

there is a simplicial mapg : D — Z such that goi= f and pog = f. d

Corollary 4.5.4 A simplicial set Z is a Kan set iff for each anodyne extension
A < D each simplicial map [ : A—Z can be extended over D. (]

Geometrically, anodyne extensions are more than just closed cofibrations.

Proposition4.5.5 The geometric realization of an anodyne extension
i : A— D embeds |A| as a strong deformation retract into |D|.

Proof By induction. (0) The statement clearly holds true for simplicial
isomorphisms.

(1) |A*[n]| is a strong deformation retract of |A[n]| = A", for all neN
and all ke[n] (see the beginning of this section).

(2) Geometric realization transforms simplicial attachings into
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attachings (see Proposition 4.3.10) and strong deformation retracts are
preserved under attachings (see Proposition A.4.8(vi)).

(3) If there are simplicial mapsg : D'—>D, f : D— D’ with fog=1,
and g(A)c Ac f~}(A) and a deformation retraction H : |D| x I —»|D|,
rel. | A, then H= | fle Heo(g x 1,)is a deformation retraction |D’| x [ —»|D’|
rel. |[A'].

(4) Given inclusions A(n) = A(n+ 1), for all neN, and D = U A(n), the
sequence {|A(n)| : neN} is an expanding sequence with union space |D|
(see Proposition 4.3.12). If, moreover, each | A(n)| is a strong deformation
retract of |A(n + 1)|, then |A(0)| is also a strong deformation retract of
|D| (see Corollary A.5.8).

(5) If each |A(j)| is a strong deformation retract of |D(j)|, for all j in
some index set, |LIA() =|A()| is a strong deformation retract of
LD = uIDG)I. O

The analogy to geometry is more comprehensive. The following statement
reflects the fact that any map can be decomposed into an injective
homotopy equivalence followed by a fibration (see Proposition A.4.18).

Proposition 4.5.6 Any simplicial map f : Y — X can be decomposed in the
formf =poi,wherep : Z— X is a Kan fibrationand i : Y — Z is an anodyne
extension.

Proof Define anodyne extensions Y(n)< Y(n+ 1) and simplicial maps
S Y= X with £, )| Y(n) = f,, for all neN, inductively as follows.
First, take Y(0) = Y and f, = f. Next, assume Y(n) and f,, are given. To
obtain Y(n + 1), attach to Y(n) fillings for all horns which do not have
fillings but whose images under f, can be filled. Then, define f,,,,, on
an attached filling by assigning to it some filling of the image of the
generating horn under f,).

Since each inclusion Y(n) = Y(n + 1) is an anodyne extension, so is the
inclusion Y=Y(0)cuY(n)=Z The maps f, together define a
mapp : Z— X. Since a horn is finitely generated, any horn in Z lives in
some Y(n). If the image of such a horn has a filling in Z, the horn itself
has a suitable filling, at least in Y(n + 1), and therefore in Z. O

Corollary 4.5.7 Any simplicial set can be embedded in a Kan set, by means
of an anodyne extension.

Proof Apply the proposition to the unique simplicial map from a given
simplicial set to A[0]. O



Kan fibrations and Kan sets 175

The main technical advantage of anodyne extensions comes from the
following fact.

Proposition 4.5.8 If A is a simplicial subset of the simplicial set X, and if
the inclusion A < D is an anodyne extension, then the inclusion

XxAUuAxDcXxD

is also an anodyne extension.

Proof Again by induction. (1) The inclusions
A[n] x A[1]udA[n] x A[1] < A[n] x A[1]
are anodyne extensions, for all neN. First, consider the case k =0. Then,
A[n] x A[1] can be obtained from A[n] x A*[1]uéA[n] x A[1] by suc-
cessive attachings of the (n + 1)-simplices (w,,, 6,,), (@,_,,0,_ ), --,(@g,T0)-
Each single attaching is obtained via a partial simplicial map from
A[n + 1], with domain A"[n+ 1],m=n,n—1,...,0, and, therefore, an
anodyne extension. Then, the same holds true for the composition of these
attachings. Second, in case k=1, one has to attach the described
(n + 1)-simplices in the inverse order.
The inclusions

X x AH[1JUuA x A[1] < X x A[1]
are anodyne extensions, for all simplicial sets X and all simplicial subsets
A = X. Define a sequence of simplicial subsets of X by taking X(— 1) = A4,
X(n)=X"U A, for neN, and observe that X x A*[1Ju X(n) x A[1] is
obtained from X x A*[1]JuX(n—1) x A[1] by attaching a coproduct
LIA[n] x A[1] via a partial simplicial map with domain |A[n] x A*[1]uU
0A[n] x A[1]; since a coproduct of anodyne extensions is an anodyne
extension, the inclusion
UA[n] x A¥[1]uéA[n] x A[1] = uA[n] x A[1]
is, according to the introductory step, an anodyne extension, and therefore
the inclusion
X x A[1JuX(n—1) x A[1]c X x A[1]uX(n) x A[1]
is also an anodyne extension. Composing these anodyne extensions, for
all n, one obtains that the inclusion of
X x A[1JuX(—1)x A[1]= X x AF[1]JU A4 x A[1]

into

U) X x A[1TUX(n) x A[1] = X x A[1]

n=0

is an anodyne extension.
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The inclusions
X x A[n]Ju A x A[n] < X x A[n]
are anodyne extensions, for all simplicial sets X, all simplicial subsets A c X,
all neN and all ke[n]. First, assume k < n. According to the previous step,
the inclusion
X x A[n] x A°[1]U(X x A[n]u A x A[n]) x A[1]< X x A[n] x A[1]
is an anodyne extension. It contains the simplicial map under consideration
as a retract via the embedding
X x A[n] - X x A[n] x A[1], (x, 0)—>(x, &, ow)
and the retraction
X x A[n] x A[1] - X x A[n],(x, o, B)—(x, &),
where the operator & is given by &(i) =k, for f(i)=0 and «(i) >k, and
G(i) = a(i) otherwise. For k = n — more generally, for k > 0 — replace A°[1]
by A'[1],5, by &, and & by the operator & given by &(i) = k, for f(i)=1
and o(i) < k, and (i) = a(i) otherwise.
(2) If D' is obtained from A’ by attaching D via a partial simplicial map
with domain A and the inclusion
XxAUAXxDcXxD
is an anodyne extension, then the inclusion
XxAUAXD cX xD
is also an anodyne extension, because X x D’ can be considered as obtained
from X x A’UA x D' by attaching X x D via a partial simplicial map with
domain X x Au4 x D.
(3) If the inclusion A’ < D' is a retract of the inclusion A' = D' and the
inclusion
XXAUAXDcX xD
is an anodyne extension, then the inclusion
XxAUAXxD cXxD
is also an anodyne extension because it is a retract of the given anodyne
extension.
(4) For every neN, let A(n) = A(n + 1) be such that the inclusions
X X AMUA X An+1)c X x A(n+1)

are anodyne extensions; if D = U A(n), then the inclusion

X x AQ)uAxDcX xD

is an anodyne extension. Since X x A(n+ 1)U A x D can be considered as
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obtained from X x A(n)u A x D, by attaching X x A(n+ 1) via a partial
simplicial map with domain X x A(n)u A x A(n + 1), the inclusions

X xAnuAxDc X x An+1)uAxD

are anodyne extensions, for all neN; but then, so is the inclusion

e

XxAOuAxDc |J XxAnuAdxD=XxD.

n=0

(5) The claim for the transition to coproducts is obvious. O
Some tiny consequences of this proposition should be noted.

Corollary 4.5.9 (i) If Z is a Kan set and some inclusion A[0]<Z is an
anodyne extension, then Z is simplicially contractible.
(i) Any Kan set is the base of a Kan fibration with a contractible total set.

Proof (i) According to the proposition, the inclusion

Z x 6A[1]uAd[0] x A[1] = Z x A[1]
is an anodyne extension; thus, there is a simplicial homotopy H : Z x
A[1]-Z with H(z,eqw) =z, H(z,¢,w) = w and H(w, ) = w, for zeZ and
pea[l].

(i) A Kan set is non-empty (see Corollary 4.5.2 (i)); thus, it appears as
codomain of simplicial maps with domain A[0]. Apply the proposition
to such a simplicial map. The total set Z of the resulting Kan fibration
is again a Kan set (see Corollary 4.5.2 (iii)); as the codomain of an anodyne
extension with domain A[0], Z is contractible by (i). O

Another application of anodyne extensions concerns homotopy over X.

Proposition 4.5.10 Let Y be a simplicial set, let D be a simplicial subset of
Y and let p : Z— X be a Kan fibration. Then, homotopy rel. D over X is
an equivalence relation on the set of all simplicial mapsY — Z.

Proof All kinds of simplicial homotopies are reflexive relations. Now let
H:YxA[1]»Zand H : Y x A[1]— Z be simplicial homotopies rel. D
over X from f to g, § respectively. Together, they define a simplicial map
G:YxA’[2JuD x A[2]-Z.
The inclusion
j: Y xA°[2]uD x A[2]- Y x A[2]

is an anodyne extension (see Proposition 4.5.8). Let G : Y x A[2] » X



178 Simplicial sets

denote the composition of pe f and the projection from Y x A[2] onio
Y. Then, Geoj=p°G and the extension property (see Proposition 4.5.3)
ensures the existence of a simplicial mapG : Y x A[2]—Z such that
p°G=G and Goj=G. The composition Go(l, x Ad,) is a homotopy
between g and § which proves the symmetry as well as the transitivity of
the considered homotopy notion. 0

Corollary 4.5.11 If Y is an simplicial set, D is a simplicial subset of Y and
Z is a Kan set, then homotopy rel. D is an equivalence relation on the set
of all simplicial maps from Y to Z. d

There are some specific types of simplicial fibrations to consider. A
simplicial map p : Z— X is an acyclic fibration iff, for each commutative
square

sA[m] L 5

Al — X,

where i:0A[n]— A[n] denotes the inclusion, there is a simplicial
mapg : A[n]— Z such that g|6A[n] = f and pog = f.

Proposition 4.5.12 An acyclic fibration is a Kan fibration.

Proof Let p : Z— X be an acyclic fibration and let a horn {z;} in Z as
well as a filling xeX of the horn {p(z;)} be given. Take the simplicial
maps [ : AX[p]—Z, 6;—z and f : A[p]— X, 1 x; then, po f =f|A*[p].
The inclusion A4d, : A[p — 1]— A[p]induces an inclusion é : d4[p—1]—
A¥[p] and by acyclicity there is a simplicial mapg : A[p — 1]—Z such
that g|6A[p — 1] = f<6 and peg = f o AS,. Now observe that §A[p] may
be obtained from A*[p] by attaching A[p — 1] via J; thus, the simplicial
maps f, g together define a simplicial mapf : 8A[p] — Z such that pof =
f164[ p]. Using acyclicity again, one finds a simplicial mapg : A[p]->Z
such that §|0A[p] = f and pog§ = f; moreover, it follows that §| A*[p] = f.
Therefore, the simplex §(z) is a filling of the horn {z;} over x. O

There is a characterization of acyclic fibrations similar to that of ordinary
Kan fibrations by means of anodyne extensions (see Proposition 4.5.3).

Proposition 4.5.13 A simplicial mapp : Z— X is an acyclic fibration iff for
each injective simplicial mapi : A— D and each commutative square
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A z
3 l lp
D X
!
there is a simplicial mapg : D — Z such that gei= f and peg = f.

Proof ‘=" Given a commutative square as described in the statement,
one may assume that the injective simplicial mapi is an inclusion. Define
a sequence of simplicial subsets of D by taking D(— 1) = A, D(n) = D"U A,
for neN. Observe that D = U D(n) and that D(n) is obtained from D(n — 1)
by attaching a coproduct (jA[n] via a partial simplicial mapd, with
domain LdA[n]; let d,: A[n]—D(n) denote the corresponding
characteristic map. Construct inductively simplicial mapsg, : D(n)—>Z
withg_, = f,g,|D(n— 1) = g,-,and peg, = f asfollows. Assume thatg, _,
is constructed; using acyclicity, one finds a simplicial map g, : uA[n] -2
with §ludA[n] =g,_,°d,and peg, = f|D(n)ed,. The simplicial maps g, _,
and §, together induce the desired simplicial map g(n).

Finally, define g : D — Z by taking g|D(n) = g,.

‘<=": Obvious. O

The ratio of Kan fibrations to acyclic fibrations can be described as follows.

Proposition 4.5.14 (i) Ifthe simplicial mapp : Z — X is an acyclic fibration,
there is a cross-section s : X = Z for p such that the composition sop is
homotopic rel. s(X) over X to 1.

(i) If the Kan fibration p : Z— X is a simplicial homotopy equivalence,
then it is an acyclic fibration.

Proof (i) Apply Proposition 4.5.13, with A = ¢ and f = 1. The result is
a simplicial maps : X —» Z with pes =1y4; i.e, a cross-section for p. Now,
apply Proposition 4.5.13 once more, with
f:Zx8A[1]us(X) x A[1]-Z,
defined by (z, &, w)— z,(z, ggw)—s°p(2), (s(x), B)— s(x), and
f:ZxA[l]-X,
defined by (z, 6, w)—p(z), which gives the desired homotopy.

(ii) First, from the assumption, one derives the existence of a cross-
section s : X — Z for p such that the composition scp is homotopic to 1,
over X. To reach this goal, assume that there are given a simplicial
map g : X > Z and simplicial homotopies H : Z x A[1]->Z,H : X x
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A[1]—- X from geop to 1; and from peg to 1y, respectively (for possibly
other directions of these simplicial homotopies, the following proof can
be suitably modified). Since p is a Kan fibration, there is a simplicial
homotopy H : X x A[1]—Z from g to a cross-section s for p with
pOﬁ =H. Furthezmore, there is a simplicial homotopy G : Z x A[2]->Z
with G(z,608) = H(p(2), B), G(z,0, B)=s°H(p(2), B) and p°G(z,y) = H(p(2),
go7)- Since the inclusion

ZxA[1] x A°[11UZ x5A[1] x A[1]< Z x A[1] x A[1]
is an anodyne extension, there is also a simplicial map

K:ZxA[1]x A[1]-2Z,

with K(z, B,e,0) = G(z,8,B), K(z,60w, ') =sopoH(z, ), K(z,&,0, f) =
H(z, p') and poK(z, B, f’) = po H(z, B'). The assignment (z, ) K(z, B, &, ®)
describes a homotopy from sop to 1, over X.

Now, let s : X - Z be a cross-section for p and let H : Z x A[1]>Z
be a simplicial homotopy over X from sop to 1,. Consider simplicial maps
f:6A4[n]—>Z, f : A[n]— X such that f|6A[n] = pef. Since p is a Kan
fibration, there is a simplicial homotopy G : A[n] x A[1]—Z with
Gla, eow) = s° f (@), G(3;, B) = H((6:), B) and peG(x, B) = f(x). Then, the
simplicial map g : A[n]— Z,a— G(o, ¢,) satisfies the necessary equations
for proving that p is an acyclic fibration. O

Corollary 4.5.15 A Kan set Z is simplicially contractible iff any simplicial
map 6 A[n]— X can be extended over A[n). g

It follows from Proposition 4.5.14 that the geometric realization of an
acyclic fibration not only is a homotopy equivalence but also has another
nice property:

Proposition 4.5.16 The geometric realization of an acyclic fibration is a
fibration.

Proof Let p: Z— X be a acyclic fibration. Consider the commutative
square

ZxX —X
f

where f denotes the projection onto the second factor and i has the
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components 1,, p. Since p is an acyclic fibration, there is a simplicial map
g :Zx X—Z such that gei=1, and peg= f. Geometric realization
preserves projections (see Proposition 4.3.15) and geometric projections
are fibrations (see Section A.4, Example 5); thus, |f] is a fibration.
Moreover, the space | Z] is a retract via |g| of |Z x X| over the space | X|,
and consequently the map |p| =| f||| Z] is a fibration (see Proposition A.4.7
(it)). O

There is also a certain dual to Proposition 4.5.6. It corresponds to the
geometric fact that any map can be decomposed into a cofibration followed
by a homotopy equivalence (see Proposition A.4.10 (iv)).

Proposition 4.5.17 Any simplicial map [ : Y — X can be decomposed in the
form [ =pei, where p : Z— X is an acyclic fibration and i : Y- Z is an
inclusion.

Proof Adapt the proof of Proposition 4.5.6. O

Let p: Z— X be a Kan fibration. Two simplices zy,z,€Z, are fibre
homotopic if the corresponding simplicial maps f; : A[n]— Z,1—z;, je[1]
(see Lemma 4.2.1 (i)), are homotopic rel. 64[n] over X. Clearly, fibre
homotopic simplices have the same boundary. The next property is also
evident (see Proposition 4.5.10).

Proposition 4.5.18 If p : Z— X is a Kan fibration, then fibre homotopy is
an equivalence relation on Z,, for all neN. O

The following are technical but useful criteria for recognizing fibre

Lemma 4.5.19 Let p : Z— X be a Kan fibration. Two simplices z,,z,€Z,
are fibre homotopic if
(i) there are homotopies Hy, H, : A[n] x A[1}— Z such that
(a) Hol0A[n] x A[1]=H,|64[n] x A[1],
(b) peHo=peH,,
(c) Hi(1,eqw) =z, ke[1],and Hy(1,&,0) = H,(1, &, 0)
(or
(©) Hilt,e,0) =z, and Ho(1,800) = H,(1,600));
or
(ii) there are simplices z,, 2\ €Z, , , with p(z) = p(2}) such that z,0;, 7' 0;
are fibre homotopic for some je[n+ 1] and z,6, = z4,2,0, =z, for some
re[n+1],r #j.
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Proof (i): First assume (c). Since p is a Kan fibration, there is a simplicial
map H : A[n] x A[2]— Z such that H(x, 8, ) = H, (o, B), H(J;,7) = H, (6.,
007) and poﬁ(a’ }’) =p°Hk(a, ‘70)’), for (XEA["], ﬂe(A[l])dimaa YG(A[z] )dima’
(A[2]),_,, respectively, ke[1] and ie[n] (see Proposition 4.5.8 with
A= A?[2],D = A[2]). The composition I:fo(lAm x Ad,) is a homotopy
needed to show that z, and z, are fibre homotopic.

Second, if the conditions (c¢') are satisfied the argument is similar. One
has only to replace the operators &,,0, by the operators 9,,,,0,
respectively, the horn A2[2] by the horn A°[2] and the simplicial map
Ad, by the simplicial map Ad,.

(i)): The inclusion A6; : A[n] = A[n+ 1] is an anodyne extension (see
Example 3) and so is the induced inclusion

Aln+ 1] xé4[1JuAd[n] x A[1] < A[n+ 1] x A[1]
(see Proposition 4.5.8). Now, since p is a Kan fibration, there is a simplicial
map H: A[n+ 1] x A[1]—Z such that ﬁ(l,akw)=z;,ﬁ(a$ﬂ)= H(a, )
and pOﬁ(a', BY=p(z, ), for ke[1],(a, B)eA[n] x A[1],(/, B)ed[n + 1] x
A[1], where H : A[n] x A[1] - Z denotes a homotopy over X connecting
z,0; and z,6;. Then, Ho(A&, x14,,) is a homotopy over X connecting
zy and z,. O

A simplicial map p : Z— X is a minimal fibration if it is a Kan fibration
and fibre homotopic simplices are always equal. The simplicial set Z is a
minimal Kan set if the unique simplicial map Z — A[0] is a minimal
fibration. Again, the following facts result immediately from the definitions.

Proposition 4.5.20 (i) The minimal fibrations form a subcategory of SiSets
containing all isomorphisms, i.e., all identities and all other simplicial
isomorphisms are minimal fibrations, any composition of minimal fibrations
is a minimal fibration.

(i) If Z— X is a minimal fibration, and A is a retract of Z over X, the
restriction A— X is a minimal fibration.

(i) If Z— X is induced from a minimal fibration (by means of a pullback
construction), it is a minimal fibration itself.

(iv) The fibres of a minimal fibration are minimal Kan sets. O

One essential property of minimal fibrations is the following.

Proposition 4.5.21 A minimal fibration is locally trivial.

Proof Let p : Z— X be a minimal fibration and consider a simplicial map
f 1 Alm] - X. The simplicial map p : Y — A[m] induced from p by f is
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a minimal fibration (see Proposition 4.5.20 (iii)). It is to be shown that
the simplicial set Y is isomorphic to the product of A[m] and the fibre
F of p over g,. To simplify the notation, assume that p=p, and,
consequently, Y =2 and X = A[m].

Let C : A[m] x A[1]— A[m] denote the (unique) homotopy from the
constant map with value &, to 1 4, (see Section 4.2, Example 3). Since p
is a Kan fibration, there is a simplicial deformation C : Z x A[1]~Z
rel. F from a retraction q : Z—F to 1, with poC =Co o(p x 1,,,) (see
Propositions 4.5.8 and 4.5.3). The simplicial maps p and q together define
the map r : Z—- A[m] x F,z—(p(2), q(2)). The existence of this simplicial
map r depends only on the fact that p is a Kan fibration; minimality now
will be used to show inductively that r is an isomorphism.

Injectivity Take two simplices zy,z, €Z, with r(zo) = r(z,), i.e., p(z¢) =
p(z;) and 6(20,8060): q(zg)=q(z;) = 5(21,800)). By the inductive
hypothesis, they have the same boundary; thus, the homotopies

H;: Alnl x A[11-Z, (o B)—Cl(z;0, ),
je[1], satisfy the necessary properties which assure that these simplices
are fibre homotopic (see Lemma 4.5.19 (i)). By minimality, this implies
Zog=12,.

Surjectivity Take (k,z)e(A[m] x F),. By the inductive hypothesis and
the already proven injectivity of the simplicial map r, there is a simplicial
maph : 6A4[n]—Z such that roh(d;)=(x,z)d;, ie, poh(d;)=kd; and
C(h(é,.),eow)=qoh(5,~)=zé,., for all ie[n]. Since p is a Kan fibration,
there is a simplicial homotopy G : A[n] x A[1]—Z with G(a,gow) = za,
G0, B)=C(h(3,),f) and poG(a, f) = Clxa, p) (see Propositions 4.5.8
and 4.5.3). Take Hy=G : A[n] x A[1]->Z and H, : A[n] x A[1]->Z,
(e, B)}—»(~Z(G(a le), B); these homotopies show that the simplices z and

m1n1ma11ty, one obtams z= q(z), and, fmally, (x, z) = r(z). dJ

Corollary 4.5.22 The geometric realization of a minimal fibration is a (locally
trivial) fibration.

Proof The geometric realization of a locally trivial simplicial map is a
(locally trivial) fibration (see Corollary 4.3.23). Od

Proposition 4.5.23 Any Kan fibration contains a minimal fibration as a
strong deformation retract.

Proof Let p : Z— X be a Kan fibration. Choose a system Z’ of represent-
atives for the fibre homotopy classes of simplices of Z such that Z" = Z';
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this is possible because each fibre homotopy class contains at most one
degenerate simplex (see Corollary 4.2.4 (ii)). Using Zorn’s lemma, find a
simplicial subset Z of Z which is maximal with respect to the property
Z<Z'. The maximality of Z implies that any simplex in Z' whose faces
all belong to Z also belongs to Z.

It will be shown that Z is a strong deformation retract of Z, over X;
i.e., that there is a simplicial homotopy rel. Z over X from a simplicial
map whose image is contained in Z to 1,, by the method of the least
criminal. Again, using Zorn’s lemma, one finds a simplicial subset 4 of Z
which is maximal with respect to the property that there is a homotopy
G:AxA[1]-Z rel. Z over X from a simplicial map whose image is
contained in Z to the inclusion of A into Z. Assume A # Z and choose
a simplex zeZ\ A of lowest dimension, say dim z = n. The simplex z is non-
degenerate (see Lemma 4.2.5 (iv)) and its boundary belongs to 4. Let
G : Ax A[1]1-Z denote a simplicial homotopy rel. Z over X, with
G(z, sow)GZ and G(z,&,w) = z, for all ze A, which exists by the hypothesis
on A. The simplicial subset A’ of Z generated by 4 U {z} is strictly bigger
than A4. Since p is a Kan fibration, there is a simplicial homotopy
K : A[n] x A[1] - Z over X, with K(a, &, w) = zae and K(;, f) = G(z6;, B).
The n-simplex z” = K(1,¢,w) has its boundary in Z; the representative
z'eZ’ of the fibre homotopy class of z” has the same boundary and therefore
belongs also to Z.LetK' : A[n] x A[1] - Z denote a simplicial homotopy
rel. 0A[n] over X, with K'(1,eqw) =z’ and K'(1,6,w) = z". Again using the
fact that p is a Kan fibration, one obtains a simplicial map K : A[n] x
A[11x A[11-2Z with K(a, ,¢,0)=K(, B), K(o,eow, ) =K'(x, B),
R, e,0, )= z0, K(6;, B, )= G(z6;, B) and peK(x, B, ) = p(z0). Now,
the homotopy G can be extended to a homotopy G’ : A’ x A[1]— Z with
the desired properties by taking G'(z, B) = K (i, B, £,w), contradicting the
maximality of 4. Thus, A=Z, and so Z is a strong deformation retract
of Z over X.

It remains to show that the restriction p|Z is a minimal fibration. Since
Z is a retract of Z over X, it is a Kan fibration (see Proposition 4.5.1 (ii)).
Finally, observe that fibre homotopic simplices in Z are fibre homotopic
in Z. Since Z < Z’ contains at most one simplex of every fibre homotopy
class in Z, fibre homotopic simplices in Z must be equal. O

Corollary 4.5.24 Any Kan fibration may be factored into a composition of
an acyclic fibration followed by a minimal fibration.

Proof Let p : Z— X be a Kan fibration. Let Z be a simplicial subset of
Z such that p|Z is a minimal fibration; take a homotopy G : Z x A[1]—>Z
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rel. Z over X from a retraction p : Z—Z to 1,. It will be shown that p
is an acyclic fibration. To this end, let a commutative square of the form

SAM] ——z

|

Aln] —— Z
S

p

be given. Since p is a Kan fibration, there is a simplicial homotopy
H, : A[n] x A[1]—~Z with Ho(a, 8o0) = f (@), Ho(d:, B) = G(](3:), ) and
peH(o, B) = p(f (@), for ae A[n], Be(A[11), . (A[1])yp,, respectively, and
ie[n]. Take z=Hy(1,6;)and H, : A[n] x A[1]— Z, (o, ) G(za, B). Then,
the simplices f(:) and p(z) are fibre homotopic (see Lemma 4.5.19 (i));
since both belong to Z, they are equal, by minimality. Thus, the simplicial
map g : A[p] = Z, 1z, has the required properties. O

Now it is possible to prove the essential fact that fibrations are preserved
under geometric realization.

Theorem 4.5.25 The geometric realization of a Kan fibration is a fibration.

Proof The geometric realization of an acyclic fibration is a fibration (see
Proposition 4.5.16), the geometric realization of a minimal fibration is a
fibration (see Corollary 4.5.22) and a composition of fibrations is a fibration
(see Proposition A.4.7(i)). O

Remark This result states that the geometric realization of a Kan fibration
has the homotopy lifting property for homotopies which are defined on
weak Hausdorff k-spaces. The problem of deciding whether geometric

" realization transforms Kan fibrations into Hurewicz fibrations is still open,

but is not a very interesting question. The difficulty arises from the fact
that the product in the category Top used here is the cartesian product
only in special cases. Thus, one surely obtains a Hurewicz fibration if the
total set of the Kan fibration is transformed into a countable or locally
finite CW-complex (see Proposition 2.2.3 and the remark preceding it).

O

Conversely, one may ask which (continuous) maps are transformed into
Kan fibrations by the singular functor.

Proposition 4.5.26 If p : Z— X is any map, then the simplicial map Sp is
a Kan fibration iff p is a Serre fibration.
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Proof ‘=":Letamapg : A"—Z and a homotopy H : A" x | - X starting
at peg be given; one has to look for a homotopy starting at g which is a
lifting of H. Identify A" with |A[n]| and 4" x I with |A[n] x A(1)]. Then,
one can use the adjointness between geometric realization and the singular
functor to obtain a simplicial map ¢’ : A[n]—>SZ and a simplicial
homotopy H' : A[n] x A[1]— SX starting at Speg’. Since the inclusion
A[n] = A[n] x A°[1] = A[n] x A[1]
is an anodyne extension, and Sp is assumed to be a Kan fibration, the
simplicial homotopy H' lifts to a simplicial homotopy G’ : A[n] x A[1] -
SZ starting at ¢'. The adjoint G : A" x [ - Z of G’ is a homotopy of the
desired kind.

‘<=" One has to fill n-horns in SZ whose images under Sp have fillings
in SX. Thus consider simplicial maps f: A*[n] >SZ and f: A[n]—>SX
such that f|A¥[n]| = Spef. The respective adjoints are maps [ : |A*[n]| -
Z and ' : A[n]— X such that f'||A¥[p]| = pef’. Since the subcomplex
|A*[n]| is a strong deformation retract of the CW-complex A", and p is
assumed to be a Serre fibration, there is a map g’ : A[n]— Z such that
d'||A¥[p]l =/ and pog’ =f" (see Corollary 1.4.9). Its adjoint is a simplicial
map g : A[n]—SZ such that g() is a filling of the horn given by f over
the filling f(:) of its image under p. O

Another nice property of Kan fibrations consists in the possibility of
approximating certain maps by simplicial maps.

Theorem 4.5.27 Let p : Z— X be a Kan fibration, let i : A —D be an
injective simplicial map and let

A5z

|

D—X
S

be a commutative square in the category SiSets. Then, for each map
g |D|=|Z| with g'o|i|=|f]| and |p|l°g =|f| there is a simplicial map
g : D> Z with goi=fand pog = f whose geometric realization is homotopic
to g rel. |A| over | X|.

Proof If D = A[n] and A = §A[n], the claim can be reformulated in terms
of fibre homotopic simplices: A singular simplex z' of |Z| with 6z’ = Z and
x = |p|ez'eX is fibre homotopic to a simplex ze Z. This will be proved, first
by an induction on n and then by a further induction on t = x%; the latter
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refers to the (partial) order given on the finite set of all degeneracy operators
with dimension n by

v < 1<>7'(i) < (i), for all ie[n]
which has @ as minimum and: as maximum. Note that any simplicial
set X can be considered as a simplicial subset of the singular set S|X]|,
via the injective simplicial map ny.

If n =0, one has a point z'(1) = [Z,t]€| Z| such that p([Z,£]) = [p(3),t] =
[x,1]. This implies p(f)=xw and thus, z=Zg, is a O-simplex over x;
furthermore, the homotopy I — | Z|, s+ [Z,(1 — s)e, + st] fulfils the required
conditions.

Now suppose that n>0 and ©=w. Then, x* is a O-simplex and the
fibre F over x* is a Kan set (see Corollary 4.5.2(ii)) containing the
(n — 1)-simplices z';, for all ie[n]. Since geometric realization commutes
with pullbacks (see Theorem 4.3.16) the CW-complex | F| can be identified
with |p|~*([x# 1)] and in this way, it contains the image of the map z'.
Choose a Kan fibration g : W—F with contractible total set W (see
Corollary 4.5.9(ii)), an n-horn {w; :ie[n—1]} in W over the n-horn
{z'6, : ie[n — 1]} (see Proposition 4.5.1(v)) and a singular simplex w'eS|W/|
which fills this n-horn over z’; the latter choice is possible since |g] is a
fibration (see Theorem 4.5.25) and consequently S|q| is a Kan fibration
(see Proposition 4.5.26). The singular simplex w'é, is fibre homotopic to a
simplex w,e W, _,, by the inductive hypothesis;let H : A[n—1] x A[1]—>
S|W| denote a simplicial homotopy rel. 6A[n—1] over S|F|, with
H(i,e0) = w, and H(s,&,) = w'd,. Since W is contractible, there is a simplex
we W, with wd; = w,, for all ie[n] (see Corollary 4.5.15). Next, consider the
simplicial map

H: A[n] x 64A[1]udA[n] x A[1]-S|W|

* given by (o g0w) = wo, (s, &,0) = w'a, H(S; f) = wo, for all ieln—13," "

and H(,,B)=H(, p). The adjoint H' of H is a map from the boundary
sphere S = A" x {0,1}LdA" x I of the ball |[A[n] x A[1]| = A" x [ to |[W].
Since the CW-complex | W| is contractible (see Proposition 4.3.17), H' can
be extended to a homotopy H : A" x [ >|W| whose adjomt H', in turn, is
a simplicial homotopy extending H. The composition geH' shows that
z=q(w)eZ is fibre homotopic to z'.

For the last step of the induction, assume that 7 # w; this implies
m = dim x* > 0. Let k denote the smallest element of [n] with (i) # t(i + 1).
Since p is a Kan fibration, there is a filling Z of the horn {z'9; : ie[n— 1]}
in Z, over x. As before, since p is a Kan fibration, the simplicial map S|p]|
also is a Kan fibration. Thus, there exists a singular simplex Z2eS|Z| with
26, = z,,,20; = 2'0,0;, for ie[n]\{k,k+1}, and |p|°Z=x0,. Compute
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(Ip1°2)d, 41 = x040, 4+, and (xa,J,+ )’ < 7. Thus, by induction, the singular
simplex 20,,, is fibre homotopic to a simplex z,,,eZ,; let
H : A[n] x A[1]—- S|Z| denote a simplicial homotopy rel. 64[n] over
S|X| with H(,e0) =z,,, and H(s,&,) = 20, . ,. Using once more that p is
a Kan fibration, one finds an (n+ 1)-simplex weZ with wé, =z,
WO, 4 = Z, 41, WO; = 26,0, for ie[n]\{k,k + 1}, and p(w) = xa,. Since S|p|
is a Kan fibration and the inclusion

Aln+ 1] x SA[1]JUA*  [n+ 1] x A[1] < A[n + 1] x A[1]

is an anodyne extension (see Proposition 4.5.8), there is a simplicial
homotopy H: A[n+ 1] x A[1]- S|Z]| with I:I(a,aoa))=wa, Fl(a,slw)=
to, H(0,PB)=26;=wd, for k+1%ie[n], H(S,+,,f)=H(p) and
|ploH (o, p)=xo,a. The composition ﬁo(A(SkH x1,,,) shows that
z=wd,,,€Z is fibre homotopic to z'. This finishes the induction for the
case in which one considers a single singular simplex.

The general case is dealt with using the method of the least criminal.
Choose a simplicial subset D = D containing A which is maximal with
respect to the property that there are a simplicial map § : D—Z and a
simplicial homotopy from #,°g to Sg'onD|5=(Sg’|S|5|)°115 rel. A over
S| X . Assume that such a simplicial map § and a corresponding homotopy
H arefixed. To simplify notation one may further assume that D is obtained
from D by attaching a simplicial standard-simplex A[n] via a simplicial
map with domain §A[n]; it is to be shown that § can be extended over
D such that the geometric realization of the extension is homotopic to ¢
rel. |A| over |X|. Since S|p| is a Kan fibration, one has a homotopy
H:Dx A[1]-S|Z|, over S|X]|, from a simplicial map ¢” : D— S|Z]| to
Sg'onp which extends H. Let a: 5A[n]—>5 and a: A[n]— D denote
the attaching and characteristic map respectively of the simplicial attaching
which generates D out of D;take d =da()and 2/ = H (d, eqw). Then, choose
a simplex zeZ which is fibre homotopic to z’' and a simplicial homotopy
G : A[n] x A[1]— S| Z| rel. 6A[n] over S|X|. Extend § to a simplicial
map g: D—Z by taking g(d)=z. To obtain a suitable simplicial
homotopy, first observe that D x A[1] is obtained from D x A[1] by
attaching A[n] x A[1] via a x 14, The universal property of this
attachmg implies the existence of a homotopy G:Dx A[1]- S| Z] rel.
D over S| X/, from nzeg to g”, with G(d, ) = G(1, B). A homotopy rel. Dis
also a homotopy rel. A; since S|p| is a Kan fibration, homotopy rel. A
over S|X| is an equivalence relation (see Proposition 4.5.10). Therefore,
the homotopies H and G show that the simplicial maps 5,°g and g'on,
are homotopic rel. A over S|X|; thus, by adjointness, the maps |g| and
¢’ are homotopic rel. |A| over | X| as desired. O
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Corollary 4.5.28 A Kan set is a strong deformation retract of the singular
set of its geometric realization.

Proof Let p:Z—A[0] be a Kan fibration. In the diagram of
Theorem 4.5.27, take

i=mn,: Z—S|Z|, the unit of the adjunction,

f=1,:2-2,

f : S|Z] - A[0], the unique possible simplicial map, and

g =Jjizi - IS|Z||—|Z], the co-unit of the adjunction.
Then there is a homotopy |S|Z|x A[1]|—|Z|, whose adjoint is a
deformation of S|Z| into Z (see Theorem 4.5.27). g

If the Kan set under consideration is the singular set of a space, then there
is a distinguished retraction among those whose existence is assured in
this statement; it arises from the co-unit of the adjointness between
geometric realization and singular functor. Recall the fundamental
equation

Sjrofist = lsr
and consider the converse composition of unit and co-unit. One cannot
expect equality, but the best possible statement holds true.

Proposition 4.5.29 If T is a space, the composition nsr°Sjr of unit and
co-unit is homotopic to 1y, rel. ST.

Proof The simplicial set ST is a Kan set (see Example 2); thus, one has
a simplicial homotopy H : S|ST| x A[1]—S|ST| rel. ST from lgsr) to
the composition ngrer of the unit ngr and some simplicial retraction
< r::S${ST| - ST. The composition ng0Sj;o H'is a simplicial‘homotopy rél. *
ST from ngpoSjy to nspoSjponsror =nspor. Since S|ST| is also a Kan set,
homotopy rel. ST is an equivalence relation on the set of all simplicial
maps S|ST|— S|ST| (see Corollary 4.5.11) yielding the desired result. (That
is, cum grano salis, the standard proof for showing that, given an invertible
elements, any left inverse is also a right inverse.) O

Now it is possible to prove a deep result which has been already announced
(see the discussion of the adjointness between geometric realization and
singular functor in Section 4.3).

Theorem 4.5.30 The co-unit j; : |ST|— T is a weak homotopy equivalence,
for any space T.
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Proof Let a space T be given; without loss of generality, one may assume
T to be non-empty and path-connected. Choose a base point x,eT and
let X, denote the unique point of the O-cell in |ST| which corresponds to
the singular simplex A° - T, 1+x,. One has to show that the functions

jT.n : T[,,(lSTl, io) - T("(T, xo)

are bijective, for all neN.

For n=0, the assertion means that |ST| should be path-connected,
since T is assumed to be path-connected. Recall that every path component
of the CW-complex |ST| contains a O-cell (see Proposition 1.4.15). It
suffices to check that for every O-cell X # X, in |ST| there is a 1-cell in
|ST| with boundary {X, X,}. To see this, take a path in T joining the points
Jr(X) and x; it gives rise to a singular 1-simplex, and thus to a 1-cell in
|ST| of the desired kind.

Now assume n > 0 and take a representative a : $"— T for an element
of m,(T, x,,). Identify S" with |dA[n + 1]|, such that e, corresponds to some
0-cell of the CW-complex |6A[n + 1]| and let @' : dA[n+ 1]— ST denote
the adjoint of a. Then, the geometric realization ja’'| of a' represents an
element of 7,(|ST|,X,) which is mapped into the class of a. This shows
the surjectivity of the function j ,.

To prove the injectivity, note that one deals with homomorphisms.
Therefore, it is sufficient to verify that the appearing kernels are trivial,
ie.,thatany mapa : |04[n + 1]|—|ST| whose composition with j, has an
extension a : [A[n+ 1]|— T can be extended over |4[n + 1]] itself. Let
such maps a,d be given and let @' : 64[n+ 1]-S|ST|,a" : A[n+1]->ST
denote their respective adjoints. Let H : S|ST| x A[1]— S|ST| denote a
simplicial homotopy rel. ST from 1g 44 to the composition #gy°Sj; (see
Proposition 4.5.29) and define a simplicial map a: A[n+ 1] x A'[1]
uod[n+ 1] x A[1]— S|ST| by taking d(a, &, w) = ngyoa’(e) and a(d;, f) =
H(d'(9;),p), for aeA[n+ 1], e(A[1]), and ie[n+ 1]. Its adjoint has a
domain which is homeomorphic to |A[n + 1]| and because it agrees with
the mapa on the boundary it can be considered as the desired extension
of a. 0

Corollary 4.5.31 (i) The co-unit jr : |ST|— T is a homotopy equivalence,
for any CW-complex T.

(i) Amap f : U—T is a weak homotopy equivalence iff |Sf| : |SU|—|ST)|
is a homotopy equivalence.

(iii) Let Y, X be Kan sets. Then, a simplicialmap f : Y — X is a simplicial
homotopy equivalence iff | f| : |Y|—|X| is a homotopy equivalence.

(iv) Amap f : U-T is a weak homotopy equivalence iff Sf : SU—ST
is a simplicial homotopy equivalence.
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(v) A simplicial set X is weakly contractible iff the singular set S|X| is
simplicially contractible.

(vi) For any simplicial set X, the unit ny : X —» S| X| can be decomposed
into an anodyne extension followed by an acyclic fibration.

Proof (i) follows from Whitehead’s realizability theorem (see Theorem 2.5.1).

For (i1), consider the equation

Seju=jrelSf]
which arises from the naturality of the co-unit. Since the maps jy, j; are
always weak homotopy equivalences, by the previous theorem it follows
that f is a weak homotopy equivalence iff |Sf| is a weak homotopy
equivalence. But the latter holds true iff |Sf| is a homotopy equivalence,
again by Whitehead’s realizability theorem.

(iii) ‘=" Geometric realization transforms simplicial homotopy
equivalences into homotopy equivalences (see Proposition 4.3.17).

‘=" Letg : | X|—|Y|be ahomotopyinversefor|f|andletr: S|Y|—>Y
be a simplicial homotopy inverse for #y. Then, the composition roSgony
is a simplicial homotopy inverse for f. In fact, the composition
roSgongef =roSgeS|flony is homotopic to renmy, which in turn is
homotopic to 1y; since homotopy between maps with a Kan set as
codomain is transitive (see Corollary 4.5.11), reSgenye f is homotopic to
1,. The composition feroSgony is homotopic to ronye foreSgeny =
r'eS|flenyoreSgony, where r' denotes a simplicial homotopy inverse for
1. The latter composition is homotopic to o S| f|°Sgeny and two further
homotopies lead to 1y; again, one has to use the transitivity of the homo-
topy relation which is assured by the hypothesis that X is a Kan set.

The statement (iv) is an immediate consequence of (ii) and (iii); (v) results

“from application of (iv) to theé unique simplicial map X - 4[0]." "~~~ " -

(vi) For any simplicial set X, the unit ny can be decomposed in the
form peoi where p is a Kan fibration and i is an anodyne extension (see
Proposition 4.5.6). Moreover, |1y | is a homotopy equivalence, since j, is
a homotopy equivalence, by (i), and jy°|nx| =14, by adjointness. But
Iplelil =|nx|, and |i| is a homotopy equivalence (see Proposition 4.5.5);
thus, |p| is a homotopy equivalence. The base of p is a Kan set, and thus
the total set of p is also a Kan set (see Corollary 4.5.2 (iii)), and, con-
sequently, p is a simplicial homotopy equivalence, by statement (iii).
Finally, a Kan fibration which is a homotopy equivalence is an acyclic
fibration (see Proposition 4.5.14 (ii)). dJ

A special sort of Kan fibrations is given by the simplicial resolutions of
groups defined as follows. Let G be a group with unit element denoted by



192 Simplicial sets

1. The classifying set of G is the simplicial set BG given by (BG), = G" for
all neN together with the face operations

go; = x

for j=0, 1, where * denotes the unique element of (BG), = G°,

915590005 =(92,---,Gn),
(91539007 =(g1s--2 ;" Gju1>--sGnk
(9155900, =(91,---.Gu— 1),
for n>1 and 0 < j <n, and the degeneracy operations
*08=1,
G15--90)07 =915, 96 L. Giv 15+, Gn)s

for n >0 and 0 < i < n. This will be the base of a Kan fibration, with total
set EG given by (EG), = G"* ! for all neN, together with the face operations

(g()’""gn)5?=(g0a~"agj ’ gj+l7”'vgn)’
(gl,"'ﬁgn)é:=(gl""’gn—l)’
for n>0 and 0 < j < n, and the degeneracy operations
(go,---,gn)0?=(go,--~’gb l’gi+l7""gn),
for n <0 and 0 < i< n Now, complete the construction of the simplicial
resolution of G by defining the simplicial map
PG - EG#BG? (gO"'"gn)H(gla""gn)'

Lemma 4.5.32 Let Y be a simplicial subset of the simplicial set X, let G be
a group and let [ : Y — EG be a simplicial map. Then there is a simplicial
map ' . X - EG extending f.

Proof The key to this fact lies in the observation that any simplex
2 =(go,---,¢g,) is uniquely determined by its ordered set of vertices
(geo, - - - »£¢,), since the following relations hold true:

8&i=4go " Yo
go=28%0, Gir1=0g8)"" - (g&is1);

moreover, the previous formulae show that every ordered set of n+ 1
0-simplices of EG is the ordered set of vertices of a unique n-simplex of EG.
Now, in order to prove the statement, extend f | Y° arbitrarily over X°.
Then take an xeX,, with n>0. The image of the vertices is already
determined, and one just assigns to x the corresponding simplex of EG.

a
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Proposition 4.5.33 Let G be a group. Then:

(i) the simplicial map p¢ is a Kan fibration with 0-dimensional fibre;

(i1) the total set EG is simplicially contractible,

(iii) the geometric realization | BG| of BG is an Eilenberg—M acLane space
of type K(G, 1).

Proof (i) The simplicial map pg is surjective; thus, any 0-horn in EG can
be suitably filled. Considering the O-simplex g =(g9)e EG as Oth 1-horn
(respectively, 1st 1-horn) and the 1-simplex g’ = (¢')e BG as the respective
filling of the corresponding 1-horns in BG, then (g,g’) (respectively,
(g - (g)"",g)) is a suitable filling of the horn in EG.

For any n > 1, observe first that any n-simplex in BG is determined by
any two different faces; thus, any n-horn in BG has at most one filling.
An n-horn in EG is uniquely determined by the ordered set of its vertices,
and therefore has a unique filling. This filling lies over a prescribed simplex
of BG because its image and the prescribed simplex have two different
faces in common.

Since BG has only one 0-simplex, there is a unique fibre for pg; it consists
of the elements of the form (g,1,...,1), and so it is 0-dimensional.

(i) Extend the simplicial map EG x 6A[1]— EG, (g, ¢,w)—g, (g, &, w)—
(1,...,1) over EG x A[1] (see Lemma 4.5.32).

(i) Since BG has only one O-simplex, its geometric realization is, in a
unique manner, a based CW-complex whose fundamental group is just
G (see Theorem 2.6.8). The map |pg| is a fibration (see Theorem 4.5.25)
with contractible total space (see (ii) and Proposition 4.3.17) and
0-dimensional fibre (see Theorems 4.3.5, 4.3.16). An inspection of the
homotopy sequence of this fibration (see Proposition A.8.17) shows that
the higher homotopy groups of | BG| vanish. O

Remark Within the proof of part (i), it has been stated that every n-horn
in BG (for n > 1) has at most one filling. In fact, such a filling always exists:
since EG is a Kan set (also implicitly noted in the previous proof), so is
BG as a consequence of statement (i) (see Corollary 4.5.2 (iii)). O

The previous proposition is particularly interesting for minimal Kan sets
because their sets of 1-simplices have an intrinsic group structure which
can be exploited to construct a useful Kan fibration.

Proposition 4.5.34 Let X be a minimal Kan set with just one O-simplex
Then, the following hold true:
(1) X, has a canonical group structure isomorphic to the fundamental

group of | X|;
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(ii) there is a simplicial map qx : X - BX ,, which is a Kan fibration and
induces an isomorphism between the fundamental groups of the respective
geometric realizations;

(iii) the geometric realization of the fibre of qy is simply connected.

Proof (1): Given x, ye X |, there is a z€ X , such that z9, = y and zJ, = x; by
minimality, the 1-simplex zd, is independent of the chosen z (see Lemma
4.5.19 (i1)), which allows one to define
X y=1z0,.

Clearly, the unique degenerate 1-simplex in X is the neutral element for
this multiplication; the inverses can be found by filling of the corresponding
horns. Since X has only one O-simplex, its geometric realization can be
viewed as a based CW-complex whose fundamental group is nothing but
X, (see Theorem 2.6.8).

(ii): Define the simplicial mapgy : X —» BX,; by the unique possible
function in dimension 0, the identity in dimension 1 and the assignment
X(X0,+0gy 3 X0y 0,4 05— 500y, X0 = 5 -+ Og)-

In order to show that this simplicial map is a Kan fibration, it suffices to
consider n-horns for n> 1 only. Since X is a Kan set, every such horn
has a filling; this lies over a prescribed simplex of BG, as in the proof of
Proposition 4.5.33 (i). The second part of the statement follows from (i)
(by means of Proposition 4.5.33 (iii)).

(iil): Since gy is a Kan fibration, its geometric realization is a fibration
(see Theorem 4.5.25), which moreover induces an isomorphism between
the fundamental groups, by (ii). Inspection of the lowest terms of the
homotopy sequence of |gy| (see Proposition A.8.17) shows that its fibre
is simply connected. d

The concept of simplicial resolution of a group generalizes to the
construction of simplicial universal coverings. To begin with, note that a
simplicial set is called connected if its geometric realization is connected.
Let X be a connected simplicial set and let 7= denote the fundamental
group of its geometric realization | X| with respect to a fixed base point
corresponding to a 0-simplex zoeX,. Choose a twisting function for X,
i.e., a function ¢ : X — 7 satisfying the following properties:

(1) ¢(x) depends only on the first edge of x, more precisely:
([)(X) = ¢(X5,, o 52),
for any simplex x with n=dimx > 1;
(2) for any degenerate l-simplex x,
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Y. 6’(0)-: 1
2 ¢ e(l)=1
e(2)=-1
2y yo
Figure 13

(3) for any 2-simplex x,
@(x61) = @(x63) = @(xdy);
(4) any wen has a representation of the form

@ =@(ye)"” - -+ - @y
where y;e X, e(j)e{ — 1,1}, for je[k],form a ‘closed edge path’ based
at z, (Figure 13) i.e., satisfy the relations

e(k)
b

Yobs = Vib1-4= 20
if e(0)=(— 1), e(k) = (— 1)°,

Yi€1-r=Vj+1§
if e(j)=(=1", e(j+ D =(-1y,
for f,ge[1].

The values of ¢ on X, are meaningless and are included only in order to
have a simple domain for ¢. A possible way to obtain such a function is
the following: choose a subset S « X, containing all degenerate simplices
and such that the 1-cells corresponding to the non-degenerate 1-simplices
in.S span a maximal tree.in | X.|.. To the elements cf S, one asscciates the
value 1em; to each other 1-simplex, assign the element of  that is generated
by the corresponding 1-cell (in the direction given by the simplex; see
Theorem 2.6.8). Condition (1) then forces the values on the higher-
dimensional simplices; condition (3) is trivially satisfied for degenerate
2-simplices, while each non-degenerate 2-simplex gives a 2-cell, inducing
the desired relation.

Now, the simplicial universal covering X of the simplicial set X (with
respect to the function @) is given by X, == x X, for all neN, together
with the face operations

(@,x)00 = (- p(x), xo),
(CIJ, x)éj = ((0, Xéj),

(@, x)0; = (w, x0),
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for all wen, xeX,0< j<dimx and 0 <i<dimx."

Proposition 4.5.35 Let X be a connected simplicial set and let ¢ be a twisting
function for X. Then, the simplicial map

p: X-X, (w, X)) x

is a minimal fibration whose geometric realization is a universal covering
projection.

Proof Let f : A*[n] — X be a simplicial map such that the composition
pof has an extension f : A[n]— X; one has to look for a simplicial map
g : Aln] — X such that g|A¥[n] = f and pog = f. Consider the case k # n;
take f(9,) = (w,%), f(2)= x and define g by ar>(w,x)o. If k=n and n> 1,
take f(5,_,) to find w; if k = n = 1, assume f(5,) = (w, X), (1) = x and define
g(o) = (w - o(x)~*, x)a. This shows that p is a Kan fibration. The fibres p
are O-dimensional; hence, at least fibre homotopic 0-simplices have to be
equal. Consequently, fibre homotopic simplices (w, x), (@', x) must have
the same Oth vertex:
(@, x€0) = (w, X)eo = (', X)eo = (@', XEq),

implying w = w'; therefore, p is a minimal fibration.

It follows that the geometric realization |p| of p is a locally trivial
fibration (see Corollary 4.5.22) with discrete fibre (see Theorem 4.3.16), and
thus a covering projection. It remains to prove that | X | is simply connected.
To see that | X| is path-connected, fix the base point Z,€| X | corresponding
to the O-simplex z,€ X, used in the definition of the twisting function ¢.
Now consider first a point £€|X | not belonging to the fibre over 2. Take
a path in | X| from |p|(X) to £ and lift it to a path in | X| starting at %
The lifted path ends in a point of the fibre over Z; thus, it suffices to check
that any point in this fibre can be connected to the point corresponding
to the 0-simplex (1, z,) by a path in |)? |. Take wen and represent it in the
form described in condition (4) of the definition of twisting functions.
Then, define elements ¢,en, for re[k], by the formulae:

—_ 1’ e(O) = 1,
R P TARS )= —1,
0= {‘p(y")e(o) gl e =1,

P(yo)*@ - -y, ), er)=—1.

Now, the 1-simplices (g, Yo), - - - » (Pk, ¥i) form a path connecting the points
corresponding to the O-simplices (1, z,) and (w, z,).

* The simplicial set obtained in this way is sometimes called the twisted cartesian product
of X and = with respect to the twisting function ¢.
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The given argument also shows that n acts fixed-point-free on the fibre,
implying thereby that | X| is simply connected (see Corollary A.8.18).

a

Exercises

1. Let @ : A— SiSets be a (covariant) functor satisfying the Eilenberg—
Zilber property and such that the simplicial sets @([n]) are weakly
contractible, for all neN. Then, the spaces | X| and | X ® @| have the
same homotopy type, for all simplicial sets X. (Fritsch & Latch, 1981,
Lemma 4.7)

2. A Kan fibration is minimal iff any two n-simplices of the total set with
the same image in the base have the same boundary whenever n of
their (n — 1)-dimensional faces coincide.

3. Show that a Kan set is connected iff each pair of 0-simplices generates
the boundary of a 1-simplex. Show that a minimal Kan set is connected
iff it contains exactly one O-simplex.

4. Let Z be a connected minimal Kan set, and, for n > 0, let 7,(Z) denote
the set of n-simplices of Z whose boundary is generated by the unique
0-simplex zoeZ. Define a binary operation on r,(Z) as follows. Given
z,7’en,(Z) take a simplicial map f : A[n+ 1]>Z with f(J,) =z,
f(6,) =2 and f(5;) = zow, for all i > 2. Then, set z - z’' = f(§,). Show
that this operation is a well-defined group structure on 7,(Z) which is
abelian for n> 1.

S. Let Z be a connected Kan set, choose a 0-simplex z,€Z, and, for n >0,
let n,(Z,z,) denote the set of fibre homotopy equivalence classes of
n-simplices of Z whose boundary is generated by 2z, Define
analogously to the previous exercise a binary operation on 7,(Z, z,),
and show that it has the same properties. Moreover, show that the
of z, only up to isomorphism. (Kan, 1958c)

6. Extend the definition of homotopy groups for Kan sets to functors
which are defined on the full subcategory of SiSets generated by the
Kan sets. Show that these functors composed with the singular functor
just yield the ordinary homotopy groups for based spaces.

7. Prove the simplicial analogue of Whitehead’s realizability theorem (see
Theorem 2.5.1): a simplicial map between Kan sets is a simplicial
homotopy equivalence iff it induces isomorphisms for all homotopy
groups. (Lamotke, 1968, VI1,7.2 Folgerung)

8. Let p; be the simplicial resolution of a group G. Show that the map
|pg| is a universal covering projection.

9. Show that the construction of the simplicial universal covering
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depends only up to simplicial isomorphism on the choice of the
twisting function.

10. Let X be a connected simplicial set and let = be a subgroup of
the fundamental group of | X|. Construct a Kan fibration p: Z— X
whose geometric realization |p| is a covering projection with image
Iply =T

11. Show that the categories of fractions (see Gabriel & Zisman, 1967)
Top/{jr} and SiSets/{ny} are equivalent to the homotopy category of
CW-complexes, i.e., the category whose objects are the CW-complexes
and whose morphism are the homotopy classes of maps between
CW-complexes. (Ringel, 1970)

12. Degeneracy operators were not used for the definition of horns. So
one can define presimplicial Kan sets by requiring that all horns can be
filled. Show that any presimplicial Kan set alows the operation of
degeneracy operators, i.e., belongs to the image of the forgetful functor
P : SiSets — PSiSets. (Kan, 1970; Fritsch, 1972)

4.6 Subdivision and triangulation of simplicial sets
For every peN, define the simplicial set A'[p], the normal subdivision of
A[p], as follows: take as n-simplices all weakly increasing (with respect to
<) sequences g = (Ko, . . ., 4,) of face operators with codomain [p] and set
10 = (Uy0)s - - - » Hoimy)» fOT 2all Operators a : [m] — [n].

Geometrically, one should view a single face operator y; of a sequ-
ence pu as the barycentre b; of the y;th face of A?; the whole sequence
p then corresponds to the simplex spanned by the vertices b;. The
assignment

(w,t]— i tib;
i=0

describes a homeomorphism 67 : |A'[p]|—> A" (cf. the proof of
Proposition 3.3.16). Thus, | A’[p]| can be viewed as barycentric subdivision
of the Euclidean complex AP (see Section 3.2, Example 3). Clearly, one
speaks of an interior point in |A'[p]| if it is a point which is mapped
onto an interior point of A” by 07; the inverse image of the interior of A?
with respect to 67 is the interior of | A'[ p]|. A nice combinatorial property of
these subdivided standard-simplices is the following.

Lemma 4.6.1 The simplicial set A'[p] is simplicially contractible to the
vertex (i).

Proof A homotopy H from 1, is given by taking for u=(uo,...,1,)
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and je[n—1],

0<k<y,
(H(,u,wj))k:{#k’ / d

1, otherwise.

An operator ¢ : [p]—[q] gives rise to a simplicial map 4'¢ : A'(p)—
A’'(q) by taking

Ao(p) = ((puol,....(ou)*);

thus, there is a covariant functor A’ : A — SiSets — the normal subdivision
of simplices — which is a cosimplicial object in SiSets. Because A operates
on the left of the A'[p], instead of writing A’¢(u), one uses the shorter
notation @u. An n-simplex g of A'[p] is an interior n-simplex iff p, = 1%,
i.e, if its highest vertex is an interior point of A”, namely its barycentre.

Lemma 4.6.2 The cosimplicial simplicial set A’ has the Eilenberg—Zilber
property.

Proof The condition that any g is a non-decreasing sequence implies, for
any pair of indices i,j with i <}, that there is a unique face operator y;
with p; = u;u; ;. This gives g the unique representation

” = Aun(,un,oa AR lun,ll = l)' I:l
The cosimplicial simplicial sets A— and A’ are related by a natural trans-
formation d' : A" A—; it consists of the simplicial mapsd’p : A'[p]—
A[p], which assign to each n-simplex peA'[p] the operator
d'y : [n]—[p] given by d'u(i) = u;(dim ), the ‘last element of u;.

Remark In contrast to the simplicial maps d’p, the homeomorphisms
0?7 : |A’[p]l— AP, although canonical, are not natural (see Section 3.3,
Example 4, interpreting the simplicial maps f,g there as A%, A%

........................
............

natural equivalence between the functors |A'-|and |4-] = A™ . In this sense,
the natural transformation d' is the best available connection between the
functors A4’ and A-. O

Reversing the order, i.e., replacing ‘non-decreasing’ by ‘non-increasing’ in
the definition of A’[p], one obtains the opnormal subdivision of simplices
(‘op’ derived from ‘opposite’), again as a covariant functor A” : A— SiSets
satisfying the Eilenberg—Zilber property. The interior simplices are now
those sequences g which start with p, = 1. The simplicial sets A”[p] are
also simplicially contractible to the vertex (z). The corresponding natural
transformation d” : A” = A- is given by d"u(i) = u/0), the first element
of u;.
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The cosimplicial sets discussed here suggest the formation of tensor
products (see Section 4.2). The simplicial set SdX = X ® A’ is called the
normal subdivision of the simplicial set X. Functoriality in the first
variable yields the functor normal subdivision Sd : SiSets — SiSets and
bifunctoriality with fixed second variable d' : A’ A-leads to a natural
transformation d’ : Sd > 1. In a similar way, the opnormal subdivision of
simplices induces a functor opnormal subdivision Sd°° : SiSets — SiSets and
a natural transformation d” : Sd°®*=1. The general theory of tensor
products (see Section 4.2) yields the following properties of the normal
subdivision.

Proposition 4.6.3 (i)Any simplex of the normal (resp. opnormal) subdivision
Sd X (resp. SA°? X) of a simplicial set X has a unique representation by a
pair (x, t), with x a non-degenerate simplex of X and p an interior simplex
of A'[dim x](A" [dim x]).
(i) Normal subdivision preserves monomorphisms and simplicial attachings.
(iii) The simplicial maps d'X are weak homotopy equivalences, for all
simplicial sets X.

Proof For (i), see Proposition 4.2.7 and Lemma4.6.2; for (ii),
Corollary 4.2.9 and Proposition 4.2.12; for (iii), Corollary 4.3.21 and
Lemma 4.6.1. O

A relative subdivision is necessary for some considerations. To describe
it, let X be a simplicial set and let A be a simplicial subset of X. The
normal subdivision Sd A of 4 can be viewed as a simplicial subset of the
normal subdivision Sd X of X (see Proposition 4.6.3(ii)). Thus the natural
simplicial map d'A : Sd A —» A can be considered as a partial simplicial
map Sd X-\ — 4; forming the corresponding simplicial attaching, one
obtains a simplicial set X’ which is called the normal subdivision of X rel.
A. Furthermore, one has a unique canonical simplicial map d: X' -X
whose composition with the characteristic map d : SdX — X' of this
simplicial attaching is just the natural simplicial mapd’X and whose
existence is ensured by the naturality of the simplicial maps d’'4, d’X. This
process really yields a subdivision in the geometric sense, as one can
deduce from the absolutely non-trivial content of the following statement.

Theorem 4.6.4 The geometric realization | X'| of the normal subdivision X'
of a simplicial set X rel. to a simplicial subset A of X is homeomorphic to
the geometric realization |X| of the simplicial set X itself, via a
homeomorphism which is homotopic rel. | A| to the geometric realization |d|
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of the canonical simplicial map d : X' — X, and which allows one to consider
the CWcomplex | X'| as a subdivision of the CW-complex | X| (in the sense
of Section 2.3).

Proof Since Sd X =colim A'°Dy (see Proposition 4.2.13) and geometric
realization preserves colimits, one has [Sd X | = colim (| A’—|° D). Thus, in
order to obtain a map h : |Sd X|—|X|, one needs a family {h, : xeX} of
maps h, : |A’[dim x]| - A%™~ such that

(1) A%ch,, = h,o|A’a|, for all composable pairs (x, o).

Searching for a map defined on [X’|, one has to look for a map h
decomposable in the form h'o|d|, where d:SdX — X' denotes the
characteristic map of the attaching which produces X'. Moreover, this
requires

(2) h,=|d'n|, for each n-simplex xeA.

The resulting map h’ should be a homeomorphism; this is ensured by the
condition:

(3) h, maps the interior of |A’'[dim x]| bijectively onto the interior of
A%™> for each non-degenerate simplex xe X\ A.

The bulk of the proof consists in the construction of a family {h,} satisfying
properties (1), (2) and (3). Once this is done, the remainder of the claim
is nearly evident. The map |d| may be thought of as obtained from a
family {d,} of maps d, : |A'[dim x]| —» A%™~ satisfying similar conditions
(1) and (2); in particular, observe that d, = h,, for all xe A. Since the maps
A* are induced by linear maps, the family {H,} consisting of the
homotopies

»»»»» H, : |A[dimx]] x [— A9™ . (g, s>l =5) - hat)y+sd ey

again satisfies such conditions; for xe 4, these homotopies factor through
the projection onto |4’[dim x]|. Since the product functor — x I preserves
colimits, all homotopies H, together define a homotopy H : | X'| x I =] X|
rel. | A| from the homeomorphism A’ to the canonical map d. Finally, each
cell e of |X'| is contained in the image of a map |d| x ), for some
non-degenerate simplex xe X where ¢, : |A'[dim x]| —|Sd X| denotes the
corresponding map from | A’ [dim x]| to the colimit; thus, /'(e) is contained
in the cell of | X|, corresponding to the simplex x (see Theorem 4.3.5). This
proves that | X’| can be considered as a (CW-)subdivision of | X|.

Now, fix xeX,. To define the map h,, consider a pair (u,u), with
u=to,...,u)eA'[n], u=(uo,...,u)eA’ Depending on p, one has
unique face operators p,;, and unique degeneracy operators py, py; for
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0<j<k<gq, such that
Hj = Hilhj» ‘
P = wimHe for xu,eA, and p, = (xy;)”, otherwise;
Prj= (Pk#kj)b~

Recall that the maximal section of any degeneracy operator p is denoted
by p* (see Section 4.1) and let b,; denote the barycentre of the ujp,}jth
face of A". Now take
h([p,ul)=Zu (1 —u, — - —wy b + ujuhy;,

where the first and the second sum run over all ke[q] and all pairs (j, k)
with 0 <j < k < q respectively; for k = ¢, the expression in parentheses is
taken to be 1. In order to verify that this formula yields a well-defined
function |A’[n]|— A", one has to check that the expression on the
right-hand side depends only on the class [u,#], but not on the specific
pair (u,u). This is like saying that the expression does not change if one
replaces the given arbitrary pair by the minimal pair in the same class
which can be obtained by an iteration of the following two steps:

skip u; and u; if u; =0,

skip p;4, and combine u;, u;,, to u;j+u;pq if i =p;

(see Proposition 4.2.7 and its proof). In both cases, this does not have
any effect on the expression under consideration (The coefficients in both
sums are all non-negative and their sum is equal to 1; thus, one has a
convex combination of points in A", which, by the convexity of A", also
belongs to A") Since addition and multiplication of real numbers are
continuous operations the function &, depends continuously on # as long
as p is fixed. But |A’[n]| is covered by the finitely many closed sets
{[pu] : ueA¥™*}, with non-degenerate u; thus, the functions h, are
continuous, i.., maps.

It remains to establish conditions (1), (2) and (3). For (1), take an operator
o:[m]—[n] and a pair (v,u), with v=(v,,...,v)e(4d'[m]),, ueA’.
Construct v,;, 74, 7,; and b, dependent on xa and v, just as iy, oy, px; and
bj, respectively were derived from x and g = av. By the linearity of the
map A% it is sufficient to verify ab’, = b, for all pairs (j, k) with 0 <j <
k < g. Notice that pu;= (O‘Vj)#a Myj = ((avk)bvkj)#a T = palavy)’, Tyj = ij(avj)b,
and, by the functoriality of -+, av;z5 = u;p;;. Therefore the operator av;t;5
is injective, and consequently A* maps the v jr,}jth face of A™ isometrically
onto the y; pkij th face of A”; in particular, the barycentre 4, is transformed
into the barycentre b

Now, assume xeA. In this case, all p,, p,; are terminal operators and
all b,; are vertices of A"; more precisely, b,; is the last ‘last’ vertex of the
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w;th face of A". Thus, the defining formula for h, is nothing but an explicit
description of the geometric realization of d'n, which confirms condition (2).

For (3), first show that h, transforms interior points into interior points
if x 1s non-degenerate. To this end, note that the pair (u,u) represents an
interior point of |A'[n]] iff y, =1 and u, > 0. If x is non-degenerate, one
has, moreover, p qlq = 1and the ith coordinate of h. ([ u, #]) can be estimated
by

(o (L, u])); 2 uy(byg)i = ug/(n + 1),

for all ie[n]. Thus, all coordinates of h, ([, #]) are strictly positive, which
characterizes an interior point of A",

Next, turn to injectivity. Every point in |A’[n]| can be represented by
a pair (pu,u), with p=(uo,...,u,)eA’[n], dimpy;=j, for all je[n], and
u=(ug,...,u,)eA" in particular, that means that u, =1 Moreover, one
obtains a permutation ¢ of the set {0,1,...,n}, such that image
w;=@({0,1,...,j}), for all je[n]. If x is non-degenerate, then p,; = p,,lj =1,
again for all je[n]. Now assume pairs (u,u) and (g', ') with the described
properties are given such that

hx([”*u]) = hx([”/’ ”/]) = (IO’ sees tn)'

All the following constructions will be done simultaneously for both pairs
and distinguished by attaching the prime ' to an object which comes from
(u',u'). It has to be shown that u; = u), for all je[n], and u; = u; if u;> 0.
This will be done by decreasing induction on j. Observe that (b;;); =0 if
i¢image ;. This implies, in particular, that u,/(n+ 1) =t,,, > u,/(n + 1),
ie., u,>u,; by symmetry, one obtains u, <u/, and, so, u, =u,, thereby
starting the induction. Assume the claim is proved for all j> 1 Then
consider the point

where the first and the second sum run over all ke[l] and all pairs (j, k)
with 0<j <, j<k<n respectively; this point is obtained from the
right-hand side of the defining equation for s, by cancelling all summands
depending only on indices j,k>1I By induction, 7 is equal to the
corresponding point #'. Now, if x, # y there is an element ieimage y, which
does not belong to image y;. For such an i, one computes

uiun/(l + 1) = uiun(bnl)i < ti = [:' = 05
since the ith component of all summands forming ¢ vanishes. Thus u, =0,
and, by symmetry, u; = 0. If 4, = yj, then, again by induction, the points
t=(lo,. st = (1 —thy— - — Uy )by + ZukbkjeR”+ !
the sum running over k with | <k<n and # coincide. Moreover, for
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i = ¢(I), one has

’

wly=L=1> uf; = uf,
Because f; > u,/(I + 1) > 0, this implies u, > u}, and, once more by symmetry,
u; < u. Thus, u, = u; completing the induction.

Finally, one has to check that h, maps the interior A" of |4’ [n]| onto
the interior A of A" if x is non-degenerate. By the theorem of the invariance
of domain (see Theorem A.9.6), h(4') is open in A. On the other hand,
hx(Ao) = Aonhx(lA’[n]I) is closed in A. Thus, being non-empty, hx(Ao’) must
be equal to A |

Taking A = ¢ in this theorem, one obtains as a special case:

Corollary 4.6.5 The geometric realization of the normal subdivision of a
simplicial set is homeomorphic to the geometric realization of the simplicial
set itself. The homeomorphism is not natural but homotopic to a natural
map. In particular, the natural map |d'X|:|Sd X|—|X| is a homotopy
equivalence, for every simplicial set X. O

The subdivision process must be iterated. Formally, this will be done as
follows. Define inductively functors Sd” : SiSets— SiSets, and natural
transformations d" : Sd" < igg,,, for all neN, by taking Sd° = g,
Sd"*! =S8d>Sd" and d°X = 1,,d"*! X = d"X -d’Sd"X, for all simplicial sets
X. The functor Sd” is called n-th normal subdivision and gives rise also to a
relative subdivision. For this, let X be a simplicial set, let A be a simplicial
subset of X and let n be a natural number greater than 0. The simplicial
set Sd"A can again be viewed as a simplicial subset of the simplicial set
Sd"X. Thus, the natural simplicial mapd”4 : Sd"4 — A can be considered
as a partial simplicial map Sd"X-/— 4; forming the corresponding
simplicial attaching, one obtains a simplicial set X which is called the
n-th normal subdivision of X rel. A. Again, one has a unique canonical
simplicial map d : X — X whose composition with the characteristic
map d : Sd"X - X™ of this simplicial attaching is just the natural
simplicial map d"X. Now, the obvious analogue of Theorem 4.6.4 also
holds true.

Proposition 4.6.6 The geometric realization |X™| of the n-th normal
subdivision X™ of a simplicial set X rel. to a simplicial subset A of X is
homeomorphic to the geometric realization | X | of the simplicial set X itself,
via a homeomorphism which is homotopic rel. | A| to the geometric realization
|d| of the canonical simplicial map d : X'— X and which allows one to
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consider the CW-complex | X'| as a subdivision of the CW-complex | X| (in
the sense of Section 2.3).

Proof By induction on n. For n =0, there is nothing to prove; assume
the statement is true for some n. Take X as the simplicial set which is
obtained from Sd"A by simplicially attaching Sd"*'X via d'(Sd"A); thus,
the geometric realization |X| of X is homeomorphic to the geometric
realization | Sd” X | of the simplicial set Sd" X via a homeomorphism which
is homotopic rel. |Sd" 4| to the geometric realization |d| of the canonical
simplicial map d : X —Sd"X and which allows one to consider the CW-
complex |X| as a subdivision of the CW-complex |Sd"X| (apply
Theorem 4.6.4). Let H : | X| x I —»|Sd" X| denote a homotopy from such
a homeomorphism h to d. By the law of horizontal composition (see
Section A.4) X"*' may be viewed as obtained from A4 by simplicially
attaching X via d%; let d"*': X—X®*1 denote a corresponding
characteristic map. The universal property of the simplicial attaching yields
a simplicial map g : X®*1 — X® such that g| A is the inclusion of 4 into
X™ and ged"*! is the composition of d with the characteristic map
d": Sd"X — X™. Now, | X"* V| x I is obtained from |A| x I by attaching
IX| x I via [d"| x 1, (see Proposition 4.3.10 and Proposition A.4.8(i)). The
universal property of this attaching yields a homotopy H : | X" V| x I -
| X™| such that H||A| x I is the composition of the projection onto |A4|
with the inclusion of | 4| into | X™] and Ho|d"*'| x 1, is the composition
of H with the geometric realization |d"| of d". Since ﬁ(—,0)=71 is a
homeomorphism the map h = H( —,0) is at least bijective. Because h™!|| 4|
is nothing but the inclusion of |A| into | X®* V| and h~to|d"| = |d"* |oh !
the inverse function h ™! is also continuous; thus, & is a homeomorphism,
which, moreover, is homotopic to the geometric realization |g| of the
- simpliciai map g and aliows one to consider the CW-complex [ X®* 1| as
a subdivision of the CW-complex | X™|. Thus, the result follows from the
application of the inductive hypothesis. O

Normal subdivision has some special properties when restricted to
presimplicial sets. The normal subdivision of a presimplicial set is again
a presimplicial set and the subdivision functor applied to a presimplicial
map yields a presimplicial map. Thus, one has an induced normal
subdivision functor on the category PSiSets, which also will be denoted
by Sd, yielding the compatibility relation
ESd X =SdEX,
for all X eOb PSiSets. The main feature of Sd X for a presimplicial set X
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is that in order to construct the homeomorphism A : |Sd X|—|X]| (see
Theorem 4.6.4), all the maps h, can be taken as 0™~ This implies that
one obtains a natural family of homeomorphisms, and, moreover, although
the natural simplicial maps d'gy fail to be presimplicial, the homotopies
connecting h to |d'gx| are also natural.

The next objective is to study a special natural transformation of the
composite functor |[EPS-|, i.e., the composition of the singular functor
with the fat realization into itself. For any space T, let

hr : |ESdPST|—|EPST|
denote the natural homeomorphism described before and take
gr : Sd PST — PST as the adjoint of j.ohy, ie., its composition with the
co-unit of the adjointness | E-|-{PS. Then, define the announced natural
map as
br=I|Egrloh;' : |[EPST|—|EPST]|.

Before proceeding, one should try to understand what this map is doing.
To this end, consider a singular simplex x : A" — T, which is an element
of ST as well as of PST. It corresponds to a cell e, of |[EPST| giving rise
to a canonical map ¢, : A"— |EPST]|, which, up to homeomorphism, may
be viewed as a characteristic map. On the other hand, x induces a
presimplicial map A[n]— PST whose normal subdivision x' : A'[n] -
Sd PST can be composed with the presimplicial map g, to yield a
presimplicial map b, : A’'[n] — PST.

Lemma 4.6.7 For all xe(PST),
|Eb.|=broc,o0"

Proof The map ¢, may be viewed as the geometric realization of a
presimplicial map, and then the naturality of the homeomorphisms h, 0"
yields ¢, 08" = hpox'. Consequently,

|Eb,| =|Egr|o|x'| =|Egrle(hy) ™ oc o8 = broc,o0". O

The importance of this result lies in the following fact: the cell e, is mapped
by b into the union of the cells corresponding to the singular simplices
xo0"c, where c,oA™—|A'[n]| denotes the map associated to the
non-degenerate m-simplex geA’[n]. Thus, the image of the cell e, by the
kth iteration of by is contained in the union of the cells corresponding to
the singular simplices x°6"°c,, where p runs through the non-degenerate
simplices of the k-fold normal subdivision of A[n]. This also explains the
choice of the letter ‘b’ for these maps: it refers to ‘barycentric’ (subdivision).
Another interesting property of the map b, is the following:
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Lemma 4.6.8 The map b, is naturally homotopic to the identity of the fat
realization of ST.

Proof Since the co-unit pgr : EPST—-ST is a weak homotopy
equivalence (see Theorem 4.4.5) and therefore |pgr| is a homotopy
equivalence, it suffices to show that |pgr|ebr ~|psr|. This will be done by
simple but lengthy computations using units and co-units of the adjoitness
relations involved. In order not to overload the formulae, the subscripts
indicating the respective spaces or (pre)simplicial sets will be dropped
from the notation. Start with

peEg=poEPS(j'oh)cEny’ =S(j'ch)opoEPnoEu
= S(j'eh)enopo Eu= Sj °Shen.
Now use the fact that h is naturally homotopic to the geometric realization
of a simplicial map d, implying (see Proposition 4.3.18):
pokg~S§joSldlon=Sjoned=SjoS|ploncd =Sjonoped = pod.
Consequently,
Ipleb=|ple|Egloh™! =|poEg|oh™" =|ple|d|-h™" ~|p|. O

All these considerations prepare the way for the Simplicial Excision
Theorem:

Theorem 4.6.9 Let T be a space and let U={U, : yeI'} be a family of
subsets of T whose interiors form a covering of T. Then, the geometric
realization of

S(T,U)= ) SU,

velh

is a strong deformation retract of |ST).

Proof Tt is enough to show that the inclusion |S(T,U)|—|ST| is a
homotopy equivalence (see Proposition A.4.2(v)). Since the co-unit
p . EP—1is a weak homotopy equivalence (see Theorem 4.4.5), it suffices
to prove that the inclusion of the corresponding fat realizations is
n-connected, for all neN (see Theorem A.8.9 and Whitehead’s realizability
theorem, Theorem 2.5.1).

To begin with, consider a singular simplex x : A" — T. The inverse image
of the family U under the map x forms a covering of A" for which there
is a k-fold barycentric subdivision of A" whose open simplices form a finer
covering (see Proposition 3.2.14). The means that the cell e, = |EPST]|
corresponding to x is mapped under the kth iterate of b into the subspace
|EPS(T, U)|.
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Now consider an arbitrary map b : B"—|EPST| such that b(S"™!) <
|EPS(T, U)|. By compactness, the image of b is contained in a finite union
of cells of |[EPST| (see Proposition 1.5.2). Thus there is a number keN
such that (b;)*ob factors through | EPS(T, U)|. By naturality, the map by
transforms each |EPSU,| (and consequently | EPS(T, U)|) into itself; the
same holds true for the homotopy deforming by to 1gpsr|. Thus, there is
a homotopy

H : (|[EPST| x LIEPS(T, U)| x I)>(|EPST|,|EPS(T, U)|)
from (b7)* to 1 gpsry; now, the composition Heb x 100" h", where v" and
h" denote the standard maps (defined in Section 1.0), shows that b is

homotopic rel. $"~ ! to a map factoring through | EPS(T, U)|, proving the
desired n-connectivity. ]

CW-complexes are not triangulable, in general; a sufficient condition
assuring this property is regularity (see Theorem 3.4.1). Here is its simplicial
analogue. A non-degenerate n-simplex x in a simplicial set X is regular if
the simplicial subset X of X which is generated by x may be obtained
from the simplicial subset X, which is generated by~x(5,, by simplicially
attaching A[n] via the simplicial mapf, : A[n— 1] - X, ar—x3,a; clearly,
A[n—1] is considered as a simplicial subset of A[n] via the simplicial
injection 46,. A simplicial set is regular if all its non-degenerate simplices
are regular. There is an easy way to obtain a regular simplicial set out of
an arbitrary one.

Proposition 4.6.10 The normal subdivision of any simplicial set is a regular
simplicial set.

Proof Let X be a simplicial set. A non-degenerate n-simplex of the normal
subdivision Sd X of X may be represented by a pair (x,u), with x a
non-degenerate simplex in X and g a non-degenerate interior n-simplex
in A'[dim x] (see Proposition 4.6.3). For aeA[n]\A[n — 1], the simplex
pa is still an interior simplex of A'[dim x], which implies the claim (again
by Proposition 4.6.3). O

The more crucial property of regularity is that it commutes with geometric
realization.

Proposition 4.6.11 The geometric realization of a regular simplicial set is
a regular CW-complex.

Proof Let X be a regular simplicial set. Take a non-degenerate n-simplex
x; without loss of generality, assume X to be generated by x. If no face
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of x is degenerate, then the corresponding simplicial map A[n] — X is
injective and there is nothing to show. Otherwise, regularity implies the
existence of a maximal degenerate face x; = xu,, with g, =08,0,-," 0y
for a ke[n]. Take y, = (x,) = x,v,, with v, =(x,)"*; recall that (x;)"*
denotes the maximal right inverse face operator to the degeneracy operator
(x,)" (see Section 4.1). The same construction applied to y, instead of
X =y, yields x, = y, u, and y, = x,v,; the process continues to end up at
X,=Yp-1M, and y, = x,v, where y, has only non-degenerate faces. Take
m;=dim x;, n; = dim y;. Define inductively pairs of spaces (Z; A4") inl the
following fashion. Firstly, take Z, = A". Secondly, given (Z;, A™), regard
A"+ as a subspace of A" via A**' and so as a subspace of Zj; then,
attach Z; to A"+ via A%+ V" to obtain Z;,,. Observe that Z, can be
identified with | X|. Now, by induction, it follows that every pair (Z;, A™)
can be identified with the pair (4", A™), where in the latter case the inclusion
is induced by the face operator u, v, u,---u;v; (see Lemma 3.1.1). d

Corollary 4.6.12 The geometric realization of any simplicial set can be
triangulated.

Proof See Theorem 3.4.1, Theorem 4.6.4 and Proposition 4.6.10. O

Remark This shows that simplicial sets do not cover all CW-complexes,
because not every CW-complex can be triangulated (see the Example in
Section 3.4). O

This section is continued with two technical lemmas needed in the
preparatory work for the proof of the relative simplicial approximation
theorem (see Lemma 4.6.15 and Proposition 4.6.19).

Lemma 4.6.13 For any neN and any ke[n], there is a simplicial map
Xnx : SA? A[n] > Sd A*[n]
such that x, ,|Sd* A*[n] = Sd (d'A*[n]).

Proof The objective is to construct a simplicial map
x : Sd? A[n] - Sd A[n]
which factors through Sd A*[n] and such that the induced map y,,
satisfies the required property.
In order to obtain a simplicial map with the desired domain and
codomain, it is sufficient to define a function

Yo : (Sd* A[n])o—(Sd A[n]),
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such that the images of two vertices in Sd? A[n] spanning a 1-simplex
either coincide or span a 1-simplex in Sd A[#n] (in the same order). The
vertices of Sd? A[n] correspond to the non-degenerate simplices of Sd A[n];
thus, they may be represented by strongly increasing (with respect to <)
sequences g = (Ko,---,Hi,) Of face operators with codomain [n]. On the
other hand, the vertices of Sd A[n] correspond to the face operators with
codomain [n], and so they may be considered as subsets of [n]. In this
sense, define

Xo(#) = {s(io), .., s(u,)}

where, for any face operator u with codomain [n],

wdim ), @ #1,6,
s(p) = .
k, otherwise.

The resulting simplicial map y extends the simplicial map Sd (d’ A*[n]); it
remains to show that its image is contained in SdA*[n], i.., that [n] and
[n]\{k} are not in the image of y,.

Firstly, assume [n] = yo(p) for some pe(Sd? A[n]),. Since [n] contains
n+ 1 elements, one must have r =dim g = n, u, =1 and since s() = k,

s(p) = i, 0<i<k,
IV 41, k<i<n.

Now, let j denote the smallest index such that keimage u;. The definition
of the numbers s(y;) implies j > k and s(u;) = s(u; - ;) if j<nors(u,_,)=k
otherwise; one has a contradiction in either case.

Secondly, assume [n]\{k} = xo(u) for some ue(Sd*A[n]), Since
[n]\{k} contains n elements and u, must be different from iz, one must
have r=n—1 and p,_, =9, for some je[n]\{k}, implying jé¢yo(u); this
is a contradiction. O

Lemma 4.6.14 The inclusion Sd A*[n] = Sd A[n] = A'[n] is an anodyne
extension, for every neN and ke[n].

Proof Since Sd A*[n] = Sd A"[n], for every ke[n], one may assume k = n.
The first step consists in defining simplicial inclusions
J A1) A'[n]
and
g:A[n—1]x A[1]- A'[n].

To obtain f, identify the vertex operators ¢; with the numbers i, which
may be 0 or 1, and consequently the vertices of A[1]" with the n-tuples
(igs--->iy—y)- Then, require the vertex (ig,...,i,~,) to be mapped into the



Subdivision and triangulation of simplicial sets 211

Figure 14

vertex of A'[n] that corresponds to the face operator y, satisfying
image u = [n]\{j : i;=0}.
This assignment extends in a unique manner to the desired simplicial map
(the case n =2 is illustrated by Figure 14). It also suffices to describe the
simplicial map g on the vertices. The vertices of A'[n — 1] x A[1] can be
considered as pairs (u, ¢;) consisting of a face operator yu with codomain
[n— 1] and a vertex operator ¢; = ¢, with ie[1]. In this sense, take
9((1,80)) = (3,1)
g((161)) = (4)
(see Figure 15). Since the simplicial maps f and g are injective, one may
consider A[1]" and A'[n — 1] x A[1] as simplicial subsets of A’'[n]. Then,
A =Sd A"[n]n A[1]" consists of those simplices of A[1]" which do not
contain the vertex (1,...,1).
To continue the proof, one needs to know that the inclusion A = A[1]"
is an anodyne extension. For this, observe that the simplices of A[1]" can
be considered as matrices with entries 0 and 1, non-decreasing columns

.......
..................

corresponds to an (r + 1) x n-matrix with pairwise distinct rows; it belongs
to A if its matrix contains at least one column whose entries are all 0 and

Figure 15

Mathornateches insHtug
der Universisat Mincheq
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it is an interior simplex if the first row of its matrix is constantly 0 and
the last row is constantly 1. Now, A[1]" can be obtained from A by
successive attachings of the interior (non-degenerate) simplices in order
of increasing dimension. The procedure starts with the attaching of the
‘diagonal’, i.e., the only interior 1-simplex. Notice that before attaching
an interior (r + 1)-simplex x the faces xd,,...,xd, are interior simplices
which already have been attached and the face x4, , belongs to A, while
the face xd is still outside the reached object; thus, one has a horn whose
filling gives rise to an anodyne extension (see condition (2) in the definition
of anodyne extensions, Section 4.5); but anodyne extensions form a
category and so the composition of all these attachings yields again an
anodyne extension.

Since I'=Sd A"[n]uA[1]" may be considered as obtained from
Sd A"[n] by attaching A[1]" via a simplicial map with domain A, it follows
that the inclusion Sd A"[n] < I" is an anodyne extension (see again
condition (2) in the definition of anodyne extensions, Section 4.5). Consider

K=InAn—1]xA[1]=A[n—1] x A'[1]uSdéA[n— 1] x A[1];
then, the inclusion
KcAn—1] x A[1]
is an anodyne extension (see Proposition 4.5.8) and moreover, A’'[n] may
be thought of as obtained from I" by attaching A'[n— 1] x A[1] via a
simplicial map with domain K. Thus, the inclusion I = A'[n] is also an
anodyne extension. O

As in the case of simplicial complexes, subdivision of simplicial sets can be
used in order to approximate (continuous) maps by simplicial ones. There
is no difficulty to extend the classical simplicial approximation theorem
(see Theorem 3.3.17) to presimplicial sets. More refined techniques are
necessary for the treatment of simplicial approximation in its most general
form, namely the relative approximation of maps between geometric
realizations of simplicial sets. To this end, it is necessary to consider the
right adjoint functor Ex : SiSets— SiSets to normal subdivision, called
extension (for the existence of the right adjoint to normal subdivision, see
Proposition 4.2.10). The following notation will be enforced throughout
this section: the adjoint Y - Ex Y of a simplicial map f : Sd Y —» X will
be denoted by f* while the adjoint SdY—X of a simplicial
mapg : Y —»Ex X will be denoted by g% hence the following rules hold
true:

U*=f, @)r=g

The natural transformation d’ : A’ ->A — induces a natural transformation
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e : lgs,..— EX given by

ex=(d'X)*: X >ExX,
for any simplicial set X. The simplicial maps e, are explicitly given by
the formula

ex(x)=¢@,°d'n

for any xe X ,; here ¢, denotes the simplicial map A[n] — X corresponding

to the simplex x via the Yoneda embedding (see Lemma 4.2.1). Since all

the simplicial maps d'n are surjective, the simplicial maps ey are injective.
First of all, one must list some preservation properties of the functor Ex.

Lemma 4.6.15 The functor Ex preserves
(i) the simplicial set A[0];
(i) simplicial homotopies;
(iti) simplicial homotopy equivalences, in particular, simplicial contracti-
bility;
(iv) Kan fibrations; and
(v) Kan sets.

Proof (i) is trivial. For (ii), let H : Y x A[1] — X be a simplicial homotopy
from a simplicial map f to a simplicial map g. Since the functor Ex is right
adjoint, it commutes with products, and so Ex H may be considered as a
simplicial mapExY x ExA[1]—-Ex X whose composition with the
simplicial map 1g, , X € 4, is the desired homotopy from Ex f to Exg.
Statement (iii) is an immediate consequence of (i) and (ii).

(iv): Let p : Z— X be a Kan fibration and let [ : A¥[n]>ExZ be a
simplicial map such that the composition Expof has an extension
f: A[n]—>Ex X; in view of the definition of Kan ﬁbravtlons_ one vhasv to
look for a simplicial mapg : A[n]—Ex Z, such that g|A*[n]=f and
Ex peg = f. By the naturality of the adjointness, one obtains

S41Sd A n] = pef*.

Since the inclusion Sd A¥[n] =Sd A[n] is an anodyne extension (see
Lemma 4.6.14), there is a simplicial mapk : SdA[n]—Z such that
k|Sd A¥[n] = ¢ and pok = f (see Proposition 4.5.3); the adjoint k* of k
has the desired properties. Now (v) is an immediate consequence of (i)
and (iii). O

Proposition 4.6.16 For any simplicial set X, the geometric realization |ey|
of the natural simplicial map ey induces an isomorphism between the
fundamental groups.
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Proof By construction, the natural simplicial map
dX=e%:SdX->X
factors through
Sd(ey) : Sd X —»Sd(Ex X);
since |d’'X| is a homotopy equivalence (see Corollary 4.6.5), this implies
that |Sd(ey)| induces monomorphisms between the corresponding
homotopy groups (see Corollary A.8.2); in particular, a monomorphism

between the fundamental groups. Because |d'(Ex X)| is also a homotopy
equivalence and

eyod’X =d'(Ex X)oSd (ex),
by the naturality of d’, it follows that

lexly @ my(1X 1) -7, (|Ex X1)
is a monomorphism, for every selection of a base point of | X| (omitted
in the notation).

To prove that |ey|, is an epimorphism, note first that the 1-cells of
|Ex X| which correspond bijectively to the non-degenerate 1-simplices of
Ex X can be taken as generators for 7,(|Ex X |) (see Theorem 2.6.8). Thus,
it suffices to check that every 1l-cell of |Ex X| considered as a path is
homotopic rel. end points to a path in the image of the map |ey|. Given
a l-simplex in Ex X, i.e., a simplicial mapx : AT1]—- X set x; = x((&; 1)),
for ie[1] and form the 2-simplex y : A'[2] — X by taking

Y((€0,01, 1)) = (€05 62, 1)) = X0
Y((e1560, 1)) = y((€1,05,1)) = x, 0,
Y((€2,00,1)) = Y((£2,61,1)) = X0000601 = X10¢00 ;.
Then, the path corresponding to x = yd, is homotopic rel. end points to

the path formed by the 1-simplices yd, = ex(x,) and yd, = ex(x,) (the latter
taken in the inverse direction). O

This result suggests that one should ask how the functor Ex behaves with
respect to simplicial universal coverings.

Proposition 4.6.17 Let X be a simplicial set and let ¢ be a twisting function
for X. Then, there are a twisting function ¥ for Ex X and an isomorphism
h:ExX—(ExX) over ExX, where X, (ExX) denote the simplicial
universal coverings of X, Ex X with respect to the twisting functions @, .

Proof By the previous proposition, the fundamental groups of | X| and
|Ex X| can be identified to the same group n. Now it suffices to define
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Y on the 1-simplices of Ex X, i.e., the simplicial maps A'[1] - X. Given
such a simplicial map x, set

Y(x) = @ox((eo, 1) - @ox((er, )"
Next consider any simplex of Ex X, i.., a simplicial map x : A'[n] - X.
Its Oth vertex xe, corresponds to a pair (w,z)en X X, Taking this w,
define h(x) = (w, pox) where p : X — X denotes the simplicial covering
projection. ]

The process of applying the functor Ex can be iterated, giving rise to an
infinite sequence of functors and natural transformations

l_)e EX&EXZCL’J-)...;
its colimit is a functor Ex® : SiSets — SiSets, which is connected to the
identity functor by the induced natural transformation e® : 1 - Ex®. The

functor Ex*® has similar preservation properties as the functor Ex:

Lemma 4.6.18 The functor Ex*® preserves
(i) the simplicial set A[0];
(ii) simplicial homotopies,
(iii) simplicial homotopy equivalences, in particular, simplicial contracti-
bility; and
(iv) Kan fibrations.

Proof (i)is trivial. For (i), note first that Ex* also preserves finite products;
then, use a similar argument as for (i) of Lemma 4.6.15. Again, (ii) implies
immediately (iii). Finally, (iv) is a simple consequence of the corresponding
property of the functor Ex. O
The attentive reader will ask for the preservation of Kan sets by the
functor Ex®; this, clearly, is also trivial but is part of a much stronger result.

Proposition 4.6.19 The simplicial set Ex® X is a Kan set, for any simplicial
set X.

Proof Let X be a simplicial set and let

[ AMn]-Ex* X
be a given simplicial map, for some neN and ke[n]. Since A*[n] contains
only finitely many non-degenerate simplices, there is an reN such that f

factors through Ex" X and also through Ex"*! X. To simplify the notation,
set A¥[n]=A, EX*X =Y and let g: A—>ExY denote the induced
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simplicial map; observe that Ex® X =~ Ex® Y. Define
h=g%y:Sd*(A[n])- Y,
where y : Sd?(A[n])— Sd A is an extension of Sd(d'A) (for the existence
of x, see Lemma 4.6.13). Then, the computation
(h**| A)*“ = h|Sd®> A  (by the naturality of the adjointness)
=g“sSd(d'A) (by the defining property of )
=(god’'A)* (by the naturality of the adjointness)
=(d'(Ex Y)oSd g)* (by the naturality of d')
=((eg, Y)“)OSd 9)° (by the definition 6f €ecy)
= (eEx,,og)W (by the naturality of the adjointness)
shows that
h**|A =eg, y°9.
Therefore, the composition
enayoh* 1 Aln] >Ex® Y = Ex* X
is the desired extension of the given map
[ A[n] - Ex® X. O
The next lemma, needed to establish the simplicial approximation theorem
for simplicial sets, relies on homology theory; it is a pity that — up to the

writing of this book — there has been no purely combinatorial argument
for it.

Lemma 4.6.20 For any simplicial set X, the natural map |ey| : | X|—|Ex X|
is a homotopy equivalence; thus, | X | can be considered as a strong deform-
ation retract of |Ex X| via |ey]|.

Proof Without loss of generality, one may consider X as a connected
simplicial set. The map |ey| induces an isomorphism between the funda-
mental groups (see Proposition 4.6.16), and, since the functors Ex and
|—] commute with the formation of simplicial universal coverings (see
Propositions 4.6.17, 4.5.35), |ex| also induces an isomorphism on the
homology of the universal coverings (see Proposition A.7.3). Thus, |ey] is
a homotopy equivalence (see Proposition A.8.8).

Moreover, |ey| is a closed cofibration (see Corollary 4.3.8 (iii)), and
so |X| is embedded in |Ex X| as a strong deformation retract (see
Proposition A.4.2 (v)). 0O

Corollary 4.6.21 For any Kan set X, the natural simplicial map
ex : X > Ex X is a simplicial homotopy equivalence.
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Proof 1If X is a Kan set, so is Ex X (see Lemma 4.6.15 (v)). But a simplicial
map between Kan sets is a simplicial homotopy equivalence iff its
geometric realization is a homotopy equivalence (see Corollary 4.5.31 (iii)).

a

Corollary 4.6.22 For any simplicial set X, the natural map |e3| : | X|—
|Ex® X | is a homotopy equivalence. If X is a Kan set, the natural simplicial
map ey : X = Ex* X is a simplicial homotopy equivalence.

Proof EBach |Ex" X| is embedded in |Ex"*! X| as a strong deformation
retract (see Lemma 4.6.20); moreover, |Ex® X| is the union space of the
resulting expanding sequence (see Proposition 4.3.12). Thus, | X | is a strong
deformation retract of |Ex® X| (see Corollary A.5.8) via the embedding
leg |, which therefore is a homotopy equivalence.

The second statement now follows as in the previous corollary. O

Corollary 4.6.23 For every simplicial set X,
lexol€ | ~|d'(Ex X)| rel.|SdX|
via the embedding |Sd (ey)| : |Sd X|—|Sd (Ex X)|.

Proof The naturality of the transformation d'— gives the equation
d'(Ex X)oSd (ey) = exod'X,

where the maps d'(Ex X),d’X and ey are weak homotopy equivalences (see
Proposition 4.6.3 (iii) and Lemma 4.6.20); thus, |Sd(ex)| is a homotopy
equivalence. Moreover, |Sd(ey)| is a closed cofibration (see Proposition
4.6.3 (ii) and Corollary 4.3.8 (iii)), and therefore |Sd X | is embedded as a
strong deformation retract into |Sd(Ex X)|. Then, two maps with domain
|Sd (Ex X)| are homotopic rel. |Sd X | if their restrictions to |Sd X | coincide.

that the simplicial map 1€, is the co-unit of the adjunction, and therefore

d'X =(ex)* =18 ,Sd(ey);

substituting lgx x°Sd(ey) for d’'X in the equation displayed before gives
the desired result. O

The following technical result is more than just a simple consequence of
the preceding theory.

Lemma 4.6.24 Let Y,X be simplicial sets, D a simplicial subset of Y,
f:|Y|=>|X| amap and f : Y >Ex X a simplicial map such that

|f1=lex|ef rel.|D|.
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Then
|f“| ~ fo|d'Y| rel. |SdD].

Proof The naturality of the transformation d'- implies:
|d'(Ex X)|o|Sd f|=|f]e|d'Y| =|ex|ofo|d'Y| rel. |SdD].
From the previous corollary, one now obtains that
lexlol 74l = lex 1€ xoSd J| =~ |d'(Ex X)|»|Sd ]|
~|ey|ofo|d'Y| rel. |SdD|.
But the map |ey| has a left inverse r (see Lemma 4.6.20); composing (on

the left) the first and last terms of the previous homotopy with r, one
obtains the wanted homotopy. ]

Now one has all the technology necessary to prove the relative simplicial
approximation theorem for simplicial sets.

Theorem 4.6.25 Let Y be a simplicial set with only finitely many
non-degenerate simplices, D a simplicial subset of Y, X an arbitrary simplicial
set, [ : |Y|—|X|amapand g : D— X asimplicial map such thatf||D|=|g|.
Then there are a simplicial set Y' containing D as simplicial subset, a homeo-
morphism h : |Y'|—|Y| which is the identity on |D| and identifies the
CW-complex | Y'| with a subdivision of the CW-complex | Y|, and a simplicial
map k : Y'— X, such that
k|D=g

and

|k| ~ foh rel. |D]|.
Moreover, the homeomorphism h can be chosen homotopic to the geometric
realization of a simplicial map inducing the identity on D.

Proof Choose a simplicial map f : Y —»Ex® X, with

JID=¢5eg
and
|f1=leglef rel.|D|
(see Theorem 4.5.27).
Since Y has only finitely many non-degenerate simplices |Y| x I is

compact, and, consequently, there are an reN and a simplicial map
f: Y- EX"X, such that

fID=¢"g

|fl=le"|of rel. |D,

and
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where e" : X - Ex" X denotes the canon~ical inclusion. Taking r times the
adjoints, one obtains a simplicial map k : Sd” Y — X such that
|k| = fo|d" Y| rel. |Sd"D|
(see Lemma 4.6.24);let H : |Sd" Y| x I —»| X | denote a suitable homotopy.
Take the simplicial set Y’ to be the rth normal subdivision of Y rel. D.

Let d : Sd” Y — Y’ denote the corresponding characteristic simplicial map
and h : |Y'|—]|Y]| a homeomorphism with the following properties:

(1) h is homotopic rel. |D| to the geometric realization of the induced
simplicial map d : Y’ - Y; and
(2) h identifies the CW-complex |Y’| with a subdivision of the
CW-complex | Y|
(see Proposition 4.6.6). The universal property of Y’ yields a simplicial
map k : Y'— X such that k|D =g and ked =K.

Since the functors |—| and — x I preserve attachings (see Propositions
4.3.10 and A.4.8 (i)), one obtains |Y’| x I as an adjunction space, and,
consequently, a homotopy H : |Y'| x I —|X| such that H||D| x I is the
composition of the projection | D| x I —|D| with |g| and He(|d| x 1;) = H.
This is a homotopy rel. | D] between |k| and f°|Z|, which, in view of (1),
implies the desired poperties. O

Exercises

1. Show that the two-fold normal subdivision of a presimplicial set is the
associated simplicial set of an ordered simplicial complex.
2. Show that SdoSd°P = Sd~Sd.

Preface to Exercises 3—8: Corollary 4.6.12 has a refinement. The proof
of Theorem 3.4.1 was based on an idea that has a purely combinatorial
analogue described by the so-called star functor. Given a simplicial set

© X, the binary relation ‘contains as ‘a'face’ on the set’ X# of the' non- o

degenerate simplices of X is reflexive and antisymmetric; thus, it gives
rise to an ordered simplicial complex X * (see Section 3.3, Example 2).

3. Extend the construction of X* to a functor * : SiSets — 0SiCo.

4. In general, the star functor has very bad geometric properties. Verify
that, for every p>0, |S[p]*|~ 4.

5. However, if X is a regular simplicial set, prove that X* is isomorphic
to the simplicial complex triangulating | X| in the sense of 4.6.12.

6. For a simplicial set X let X* also denote the simplicial set associated
to the ordered simplicial complex X* (see Section 4.2, Exercise 4).
Show that for a regular simplicial set X the natural simplicial
map d} : Sd°®*X — X factors through a natural simplicial map
ty : X*- X.
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7. Moreover, show that (Sd X)* is a subdivision of X, for any simplicial
set X, in the following general sense: A simplicial set X’ is called a
subdivision of the simplicial set X if there are a simplicial mapd : X'—» X
and a homeomorphism & : | X'| —|X| such that the CW-complex | X’|
becomes a subdivision of the CW-complex | X | and |d| ~ h.

8. Show that the simplicial map of Exercise 7 may be constructed in such
a way that it depends naturally on X; however, naturality is impossible
for the homeomorphism.

9. Let G be a group and let BG denote its classifying set. Show that the
simplicial map

epg : BG-ExBG
is a weak homotopy equivalence.

Notes to Chapter 4

The simplicial sets studied in this chapter are precisely the ‘complete semi-simplicial
complexes’ introduced in Eilenberg & Zilber (1950). Since the inception of the
theory of complete semi-simplicial complexes (c.s.s. complexes as abbreviated in
Kan (1957)), there has been a great deal of confusion about the correct terminology.
At Klaus Lamotke’s talk given during the Moscow 1976 International Congress
of Mathematicians, the audience exhorted the mathematical community to call
the objects of our categories SiSets and PSiSets (see definitions in Sections 4.2
and 4.4) by the names ‘semi-simplicial sets’ and ‘simplicial sets’, respectively; the
argument was that PSiSets could be viewed as a subcategory of SiSets (via the
embedding functor E), and thus the passage from presimplicial to simplicial sets
weakens the defining conditions. This suggestion was not followed up, probably
because at a first glance simplicial sets (with their degeneracy operators) have a
richer structure than presimplicial sets. The objects of PSiSets have also been
called A-sets in Rourke & Sanderson (1971). Today, the expression ‘simplicial set’ is
almost universally used to indicate the objects of SiSets; we follow this trend in
the present book.

The theory of simplicial sets was, in large part, developed by Daniel M. Kan
(see Kan 1955, 1957, 1958a, 1958b, 1958c, 1970). The first comprehensive textbooks
about it were written by John Peter May (May, 1967), Peter Gabriel and Michel
Zisman (Gabriel & Zisman, 1967) — who emphasized a strict categorical treatment
of the theory — and Klaus Lamotke (Lamotke, 1968); the latter text contains a
fairly complete list of references up to the time of its printing. Survey articles
broadening the scope of our exposition are Schubert (1958), Gugenheim (1968)
and Curtis (1971).

Owing to their strong geometric flavour, face and degeneracy operators have
made their presence felt since the start of the theory of simplicial sets. A short
but systematic treatment of the category of finite ordinals can be found in MacLane
(1971) under the name ‘the simplicial category’. Our category of finite ordinals is
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not exactly the same as MacLane’s; however, it is isomorphic to the subcategory
obtained from MacLane’s category by removing its initial object. The idea of
taking the maximal section for a degeneracy operator proved itself fruitful in
Fritsch & Puppe (1967) and Fritsch (1969); in an embryonal form the 2-category
structure of A was first given in Fritsch (1972).

Section 4.2 gives an extract from Lamotke (1968). The development of category
theory — in particular, the famous Yoneda Lemma (attributed to Nobuo Yoneda
by Peter Freyd, 1964) -strongly influenced the way in which this section
was developed. The condition for the Eilenberg—Zilber property for cosimplicial
sets (Proposition 4.2.6) can be found in Ruiz Salguero & Ruiz Salguero (1978); it
was also obtained by Dieter Puppe (unpublished). The unique representation of
elements in a tensor product (Proposition 4.2.7) was proved in full generality in
Fritsch (1983), along the lines of the special case dealt with earlier (Fritsch, 1969/1).

At the outset, it was not clear how one should have interpreted the ‘geometric
realization’ of a simplicial set; indeed, this doubt was clearly revealed, for instance,
in the title of Kodama’s paper (Kodama, 1957). However, after that time, the
interpretations given in Milnor (1957) and Puppe (1958) were generally accepted.
The comparison theorem (Theorem 4.3.20) was first stated in its full strength in
Fritsch & Latch (1981); the compatibility of geometric realization and local

The notion of cone functor in the category of presimplicial sets came to our
attention via a letter from Dieter Puppe to Tammo tom Dieck; the purely
combinatorial proof of Theorem 4.4.5 presented in this book was sketched in the
aforementioned letter; the theorem itself was first stated in Kodama (1957).

The defining condition for Kan sets, ie., the requirement that horns can be
filled, is often referred to as the ‘Kan condition’; it is also called the ‘extension
condition’, mostly by Daniel M. Kan himself, who originally formulated it for
‘cubical sets’ (see Kan, 1955) and showed that it leads to a combinatorial homotopy
theory. The passage to simplicial sets was done in Kan (1956, 1958c); the latter
paper also contains the definition of ‘Kan fibration’. In a certain sense, anodyne
. extensions - invented by Gabriel and Zisman (sece Gabriel & Zisman (1967)—are
the combinatorial ‘strong deformation retracts’. The question of deciding if the
geometric realization of a Kan fibration is a fibration was open for a long time;
the affirmative answer to this problem (see Theorem 4.5.25) was given in Quillen
(1968); in that paper, Daniel Quillen also introduced the notion of ‘acyclic fibration’.
The concept of minimality and the local triviality of minimal fibrations can be
found on the road leading to the proof of Theorem 4.5.25. Minimal strong
deformation retracts of singular sets (in the simplicial sense; cf. Proposition 4.5.23)
were constructed in Eilenberg & Zilber (1950); in Gabriel & Zisman (1967), one
already finds a proof for Proposition 4.5.21. The approximation property of Kan
fibrations (see Theorem 4.5.27) was proved in its full generality in (Fritsch, 1976);
it leads to the simple proof, given in this book, of the fact that the counits j; are
weak homotopy equivalences (Theorem 4.5.30). The latter result was stated in
Milnor (1957), where it is credited to Giever (1950); it was completely proved for
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the first time in Lamotke (1963). Alternative proofs for the fact that j is a homotopy
equivalence for CW-complexes may be found in Gabriel & Zisman (1967) and
Puppe (1983). Twisting functions appeared in Moore (1958).

The normal subdivision of simplicial sets was introduced in Kan (1956, 1957);
it was also discussed in Barratt (1956). The compatibility between geometric
realization and normal subdivision (see Corollary 4.6.5) was first proved, within
a more general context, in Fritsch (1969/II). The explicit formula in the proof of
Theorem 4.6.4 is due to Dieter Puppe (Fritsch & Puppe, 1967); the relative version
is contained in Fritsch (1974). The simplicial excision theorem (Theorem 4.6.9)
was developed in Puppe (1983) in order to get the mentioned alternative proof of
Theorem 4.5.30. The proof of the triangulability of the geometric realizations of
simplicial sets given in this book follows the lines of Barratt (1956). The extension
functor Ex and its properties were first announced in Kan (1956b); they were
studied in detail in Kan (1957), where one also finds the proof of the (absolute)
approximation theorem for finite domain. The relative version of that theorem
was studied in Fritsch (1974).



5

Spaces of the type of CW-complexes

5.1 Preliminaries

This chapter’s work takes place mostly within the category TCW of spaces
with the type of CW-complexes and maps.

Proposition 5.1.1 A space X has the type of a CW-complex iff X is dominated
by a CW-complex.

Proof The necessity of the condition is obvious. To prove the sufficiency,
let Y be a CW-complex which dominates X, with mapsj: X —Y and
r . Y- X such that roj ~1,. Form the commutative diagram

X L, v ,Xx
Tix  iv? ixt
|SX| —|SY| —|SX]|
15jl 1Sr|

with |Sr|e|Sj| = 1,54,. Because Y is a CW-complex, jy is a homotopy
equivalence (see Corollary 4.5.31 (i)). Let uy be a homotopy inverse for j,
and define

sy = |Srlopyej : X —[SX].

Then, one can check that pyojy > 1igx, and jyouy >~y O

Proposition 5.1.2 Let X be a space with the type of a CW-complex. Then,
X has a covering {U, : Ae A} which admits a subordinated locally finite
partition of unity and such that the inclusion maps U, — X are homotopic
to constant maps.

Proof Let f : X — Y be a homotopy equivalence, with Y a CW-complex;
let g : Y— X denote a homotopy inverse for f. Because Y is locally
contractible (see Theorem 1.3.2),it has an open covering {V, : Ae A}, where
all the Vs are contractible. Define the covering {U,} of X by taking, for
every AeA, U, = f~}(V,). Now, if H is a contracting homotopy for V,,
then the composition of g|V;°H with the induced map U, x -V, x I is
a homotopy between geo f|U; and the constant map; because g is a
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homotopy inverse to f, it follows that go f| U is homotopic to the inclusion
of U, into X. Observe that the open sets U ; are not necessarily contractible.

Finally, let {u;} be a locally finite partition of unity subordinated to
the covering {V,} (see Theorem A.3.3). Then, {u;°f} is a locally finite
partition of unity on X subordinated to the covering {U,}. |

Proposition 5.1.3 Let X be a space with the type of a CW-complex. Then,
the following implications hold true:

(1) X totally disconnected=>X discrete;

(1)) X connected=>X path-connected,

(iii) X weakly contractible=> X contractible.

Proof (i): Since X has the type of a CW-complex, its path-components
are open (see Proposition 1.4.14). But X being totally disconnected, each
point of X is a path-component, and thus open.

(ii): If X has the type of a CW-complex Y, the hypothesis implies that
Y also is connected, since connectivity is a homotopy invariant. Then, Y
is path-connected (see Corollary 1.4.12); but path-connectivity is also a
homotopy invariant, and thus X is path-connected.

(iii): If X has the type of a CW-complex Y, the hypothesis implies that
Y also is weakly contractible (see Corollary A.8.2), and therefore
contractible (see Theorem 2.5.1). Since contractibility is again a homotopy
invariant, X is contractible. O

The remainder of this section is used for some examples.

Example 1 Let X be the subspace of R consisting of the points 0 and 1/n,
for all integers n > 1. This space is totally disconnected but not discrete,
and thus not of the type of a CW-complex (see Proposition 5.1.3 (i)). [J

Example 2 The Cantor set (or middle third set) does not have the type
of a CW-complex because it is also totally disconnected and non-discrete.

a

Example 3 Let S be the graph of the function f(x)=sin(1/x),0<x <1
in R? and A= {(0, y)eR? : — 1< y<1}. Take the set B= AuUS and give
it the subspace topology in R the space B is clearly connected, but
not path-connected, and thus not of the type of a CW-complex (see
Proposition 5.1.3 (ii)). O

The next is an example of a space with the homotopy type of a CW-
complex but which is not a CW-complex.
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Example 4 For each neN\{0}, let A, be the segment of R? with vertices
(—1,0) and (0, 1/n); let D be the segment with vertices (— 1,0) and (0, 0).
Now define X to be the set

X= ) 4,uD
neN\{0}

with the subspace topology. Since X is contractible, it has the homotopy
type of a CW-complex. Suppose there is a CW-structure for X. The points
(0,0) and (0, 1/n), for all neN\{0}, cannot be interior points of open cells
of dimension > 0, in view of the theorem of invariance of domain (see
Theorem A.9.6). Thus, they must belong to the 0-skeleton, contradicting
its discreteness (cf. Example 1).

Moreover, note that although X is contractible the singleton space
{(0,0)} is not a strong deformation retract of X. In other words, there
is no based homotopy equivalence between (X,(0,0)) and the singleton

space. ]

This example gives rise to another space not having the type of a
CW-complex:

Example 5 For each neN\{0}, consider, besides the segments A, defined
in Example 4, the segments B, having vertices (0, —1/n) and (1,0). Let C
be the segment with vertices (— 1,0)and (1, 0); define the space X as the set

X =< U A,,)uCu( U B,,)
neN\{0} neN\{0}

with the subspace topology. This space is weakly contractible but not
contractible (see Section A.8, Example 3); if it were of the type of a CW-
complex, it would be contractible (see Proposition 5.1.3 (iii)). |
Example 6 For any based space (X, x,), the based path-space (PX,w,)
(see Section A.4, Example 6) has the type of a CW-complex. In fact, PX
is contractible, and thus it has the type of a CW-complex. (]

Exercises

1. A space X is semilocally contractible if each point of X has a neighbour-
hood V, such that the inclusion ¥ — X is homotopic to a constant map.
Show that any space in the category TCW is semilocally contractible
(indeed, any space having the type of a locally contractible space is
semilocally contractible). (Dydak & Geoghegan, 1986).

2. Let {U;: AeA} be a numerable covering of a space X such that
U,eTCW, for each AeA. Show that XeTCW.
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5.2 CW-complexes and absolute neighbourhood retracts

As seen in Chapter 3, simplicial complexes with the strong topology are
ANRs; this result has an inverse, up to type.

Theorem 5.2.1 The following conditions are equivalent for a space X:
(i) X is dominated by a CW-complex;
(i1) X has the type of a CW-complex;
(iil) X has the type of a simplicial complex;
(iv) X has the type of a simplicial complex with the strong topology;
(v) X has the type of an ANR.

Proof (i)=-(ii): Proposition 5.1.1.

(i))=(iii): Corollary 4.6.12.

(iii)=>(iv): Proposition 3.3.7.

(iv)=(v): Theorem 3.3.10.

(v)=(i): Without loss of generality, assume X to be an ANR; as a metric
space, it can be viewed as a subspace of the normed linear space L=
C(X,R), closed in its convex hull Z = H(X) (see Proposition A.6.1); then,
because X is an ANR, there is a retraction r : U— X, where U is a
neighbourhood of X in Z. For each ueU, let n = n(u) > 0 be a real number
such that the convex set B(u,n)={zeZ : d(z,u) <7} is contained in U.
Take U = {ueU : Bu,n(u)/2)nX # &} and note that {V, : ueU}, with
V, = B(u,n(u)/2)n X is an open covering of X. Let P be the nerve of this
covering; it will be proved that the simplicial complex P dominates X.

Choose a locally finite partition of unity {u, : uel } subordinated to
the covering {V,} (see Theorem A.3.3, noting that, as a metric space, X
is paracompact) and let f : X —>P be the canonical map given by
f(x) = {pa(x) : ueU} (see Lemma 3.3.4 (ii)). Define a mapg: P— U by
g(V,)=u and the linear extension over all simplices of P. To see that §
indeed takes values only in U, proceed as follows. Let {V,,...,V, } be a
simplex of P and take xe ﬂ;‘z o V., Relabelling the indices, if necessary,
assume that n(u;) <n(uy),j=0,...,n. It follows that d(x,u;) <n(u;)/2 <
n(uo)/2, and thus, d(ug,u;) <nlue); i€., u;€B(uy,n(uy)). This shows that
G({V,y---> V.. }) © Blug, n(ug)) = U. Now define the map g : P— X as the
composition g =reog.

Take the affine connection between o f and 1y, ie., the homotopy
H: XxI->Z given by

H(x,t) = tx + (1 — t)go f(x)

for every (x,t)eX x I; H also takes its values in U. For a given xeX, let
U, ...,u, denote the points in U with yuj(x);éO,j:O,...,n; as before,
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assume 7(u;) < n(uo). Then, the line segment connecting x to ge f(x) is
totally contained in B(uq,#(ug)) = U. The composition of the homotopy
H : X x I > U with the retraction r : U — X gives the desired homotopy
from go f to 1. O

Corollary 5.2.2 A compact ANR is dominated by a finite CW-complex.
Proof See Corollary 1.5.5. Od

Remark In contrast to Theorem 5.2.1 and Corollary 5.2.2, it is not true,
in general, that a space dominated by a finite CW-complex has the type
of a compact ANR. However, in the presence of countability, one can
refine Theorem 5.2.1.

Theorem 5.2.3 For a space X the following conditions are equivalent:
(i) X is dominated by a countable CW-complex;
(ii) X has the type of a countable CW-complex;
(i) X has the type of a countable simplicial complex;
(iv) X has the type of a countable locally finite simplicial complex;
(V) X has the type of an ANR satisfying the second axiom of countability.

Proof (i)=(iii): Let X <>Y->X be given with roj~1y, and Y a
countable CW-complex. It is known that X ~|SX|eCW (see Proposition
5.1.1).

Let (K, h) be a triangulation of |SX| (see Corollary 4.6.12). Using the
same notation as in 5.1.1, let uy : Y—|SY| denote a homotopy inverse
for the natural mapjy : |S Yl—» Y. Form the map

and observe that peoj= h 10|Sr| uyej is a homotopy equivalence with
inverse jyoh. Because Y is countable, its image by u is contained in a
countable subcomplex LY of K. In fact, for any cell e of Y, u(€) is compact,
and thus is contained in a finite subcomplex (see Corollary 1.5.4); clearly,
a countable union of finite subcomplexes is countable.
Let
H:KxI-K

be a homotopy from pojojyoh to the identity map of K. Because L'” x I
is countable, there is a countable subcomplex LY < K such that
H(L® x I L™M. By iteration, one obtains a sequence of countable
subcomplexes of K, say

0 1 2
Lt ),L( ),L( )’___,
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such that H(L™ x I) = L"* !, The subspace

* (n)
L ,.gl L
of K is a subcomplex of K (see Corollary 1.4.5); furthermore, L* is
countable,
(pe)(X)c= LO < L*,

and

H(L* x I) < L*.
Set j* = jyoh|L* and take u* as the map from X to L* induced by ucj;
then the homotopy

H:L*xI->L*
shows that u*oj* ~1. On the other hand, j*ou* =jyohoucj~1,, and
therefore X has the type of the countable simplicial complex L*.

(1i1) = (i1) and (ii)=(i): Obvious.

(iii)=>(iv): A countable simplicial complex Y, viewed as a countable
regular CW-complex (see Theorem 3.3.2), has the type of a regular,
countable and locally finite CW-complex T (see Proposition 2.2.5).
Moreover, T is triangulable (see Theorem 3.4.1), and, because of the
topological invariance of local finiteness (see Proposition 1.5.10) and
countability (see Proposition 1.5.20), the simplicial complex obtained has
the desired properties.

(iv)=(v): Suppose that X has the type of a countable locally finite
simplicial complex Y. This complex is metrizable and satisfies the second
axiom of countability (see Theorem 1.5.15); moreover, it is an ANR (see
Theorem 3.3.10).

(v)=>(i): The proof for this is similar to that for the corresponding part
of Theorem 5.2.1. One has only to use the fact that the open covering
{B(u,n(u)/2)nX : ueU} of X has a countable star-finite refinement
{V, : neN} (see Theorem A.3.2). Its nerve is a countable, locally finite
simplicial complex (see Proposition 3.3.12), which, like its counterpart in
the previous theorem, dominates X. O

Some consequences of Theorem 5.2.3 will be proved next.

Corollary 5.2.4 Every n-manifold satisfying the second axiom of countability
has the type of a countable CW-complex.

Proof Let X be an n-manifold, i.e., a Hausdorff space such that each point
xeX has an open neighbourhood V, homeomorphic to R"; assuming that
X also satisfies the second axiom of countability, then X is a Lindelof
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space, and hence the open covering X ={J 4V, has a countable
subcovering. The open sets V, are all ANRs and so is X (see
Proposition A.6.9). The implication (v)=>(ii) of Theorem 5.2.3 completes

the proof. d

Corollary 5.2.5 If X has the type of a countable CW-complex and C is a
compact metric space, the function space

X={f:C>X : fcontinuous}
with the compact-open topology has the type of a countable CW-complex.

Proof Let K be an ANR satisfying the second axiom of countability which
has the type of X (see Theorem 5.2.3). Then, K¢ is an ANR (see
Proposition A.6.10 with C, = ), has the type of X and satisfies the
second axiom of countability as a subspace of (I®°)C (see Theorem A.9.8
and Proposition A.9.9). O

Remark The condition of compactness on C in Corollary 5.2.5 is essential,
as can be seen by the following example: (S°)N is homeomorphic to the
Cantor set, and thus is not of the type of a CW-complex (see Section 5.1,
Example 2).

Corollary 5.2.6 If a Lindeldf space X has the type of a CW-complex, then
X has the type of a countable CW-complex.

Proof Let f: X—>Y be a homotopy equivalence, where Y is a
CW-complex. The subcomplex L= Y(f(X)) of Y (see Section 1.4,
Example 1) clearly dominates X. Moreover, as the continuous image of

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5.3 n-ads and function spaces

An n-ad is a space together with a sequence of n subspaces. If one wishes
to be perfectly clear, the notation

{X;X0,X1,..,X,_}
should be used to describe the n-ad consisting of the global space X and
the corresponding sequence; otherwise, if the sequence is clearly
understood, just write X instead of the previous lengthy expression. By
abuse of language, a space X is said to be an n-ad if a sequence of n
subspaces is implicitly given.
An n-ad {X; X, X,,...,X,_,}isa
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CW-n-ad if X isa CW-complex and all the X’s are subcomplexes of X;

simplicial-n-ad if X is a simplicial complex and all the X’s are sub-
complexes of X; '

simplicial-n-ad with the strong topology if X is a simplicial complex
with the strong topology and all the X s are subcomplexes of X
(with the strong topology);

ELCX-n-ad if X is an ELCX-space and every X;is an ELCX-subspace.

The product of an n-ad {X;X,,...,X,_,} and a space Z is the n-ad
{(XxZ;Xo%xZ,...,X,_, xZ}.If X and Y are n-ads, then an n-ad map
f: Y- Xisamapsuch that,forevery0<i<n—1, f(Y;) = X;;its mapping
cylinder {M;M,,...,M,_,} is obtained by taking the mapping cylinder
M = M(f) of f, and, for each 0 <i<n—1, the mapping cylinder M; of
the induced map Y,— X,. If Y, X are CW-n-ads and f is a cellular map,
its mapping cylinder is also a CW-n-ad (see Section 2.3, Example 2). The
set of all n-ad maps Y — X forms the n-ad function space X" as a subspace
of the function space XY. An n-ad homotopy is a homotopy which is
also an n-ad map. The concepts of retraction, deformation retraction,
deformation and homotopy equivalence are appropriately defined and
suggested by the usual definitions. In particular, an n-ad homotopy
equivalence is an n-ad map f : Y— X for which there is an n-ad map
g : X — Y such that:

(1) g is a homotopy inverse of f in the ordinary sense, and
(2) the homotopies connecting go f and feog to the respective identity
maps move all the X;’s and the Y;’s respectively, within themselves.

The category whose objects are n-ads of the type of CW-n-ads, ie.,
homotopy equivalent to CW-n-ads, and whose morphisms are n-ad maps,
will be denoted by TCW". Conditions for an n-ad to belong to TCW*"
will be examined next; in particular, it will be shown that certain function
space constructions, like the construction of loop spaces, do not lead
outside the category TCW° = TCW.

A sufficient criterion for an n-ad to belong to the category TCW" is
given in the following result.

Lemma 5.3.1 Let {X;X,,...,X,_,} be an n-ad such that:
(i) X,,, =X, for every ie[n—2],'
(ii) the inclusions X; = X are closed cofibrations, for everyie[n— 1], and
(i) XeTCW, X;eTCW, for every ie[n— 1].
Then, {X;X,,...,X,_,}eTCW".

* As in Section 4.1, the symbol [n — 2] denotes the set of integers from 0 to n— 2.
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Proof The proof is done by induction on n. It is trivial for n = 0. Assume
the statement of the lemma holds true for n. Let {X;X,,...,X,} be a
given (n + 1)-ad satisfying the hypothesis of the lemma. Then, the n-ad
{Xo;Xy,...,X,} also satisfies the hypothesis of the lemma (for (ii) use
Proposition A.4.2 (vi)). Thus, by the induction hypothesis, {X,; X ,...,
X,}eTCW™" Let {Y,;Y,,...,Y,} be a CW-n-ad which is n-ad homotopy
equivalent to {X; X,,...,X,} via maps f: Xo— Y,,g9: Yo— X, and
homotopies H from feg to 1y, and H* from go f to 1y . By assumption,
the homotopy H moves any subcomplex Y; within itself; without loss of
generality, one may further assume that H(y,t) =y, for all yeY, and all
te[4, 1]. Similar assumptions can be made with respect to H*.

Let f : X—>Y be a homotopy equivalence whose codomain Y is a
CW-complex. Choose a cellular approximation j to fIX 0°¢g and construct
the mapping cylinder Y = M(jj); this is a CW-complex containing Y, as
a CW-complex (see Section 2.3, Example 2). Let i,7 denote the inclusions
of Y,,Y into Y, respectively. Since the inclusion iy : X,— X is a closed
cofibration, there is a map f : X > Y which is homotopic to io/ and
whose restriction to X, coincides with io f; notice that f is also a homotopy
equivalence. Moreover, f is indeed an (n 4+ 1)-ad homotopy equivalence
of pairs (see Lemma A.5.10). O

Condition (i) in the statement of this lemma is necessary. In fact, Example 4
in Section 5.1 exhibits a 1-ad {X, (0,0)} whose components have the type
of a CW-complex but which does not belong to TCW!.
Consider an n-ad {X;X,,...,X,_,} and for each non-empty set
S < [n— 1], define the space
Xs=) X

ie§

‘1f S='¢¥, define’ X = X; an n‘ad ‘map 'f*:'Y > X 'i$ a ‘complete’ weak ' '

homotopy equivalence if the 2" induced maps fs: Ys— X are weak
homotopy equivalences.

Lemma 53.2 A complete weak homotopy equivalence in TCW" is a
homotopy equivalence.

Proof Let f : Y — X be acomplete weak homotopy equivalence in TCW",
Without loss of generality, assume that X and Y are CW-n-ads; further-
more, it is possible to suppose that f is cellular (see Corollary 2.4.12).
In order to show that f is a honest homotopy equivalence in TCW",
one constructs, as in the proof of Whitehead’s realizability theorem (see
Theorem 2.5.1), a deformation retraction M(f)—Y in TCW". The
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hypothesis of complete weak homotopy equivalence on f assures that the
deformation of a cell e belonging to several M;’s can be chosen to take
place within the corresponding Mg. Therefore, the procedure yields an
n-ad deformation retraction as desired. O

The next result gives a characterization of the category TCW?™". First, recall
that the metric topology on a simplicial complex Y coincides with the
trace of the product topology on Y, namely, the initial topology with
respect to all projections p; : Y—1I, e A =Y, (see Proposition 3.3.3).

Theorem 5.3.3 Let X be a given n-ad. Then, the following statements are
equivalent:

(i) X is dominated by a CW-n-ad,

(i) X is an object of TCW™;

(ii)) X has the type of a simplicial n-ad,

(iv) X has the type of a simplicial n-ad with the strong topology;,

(v) X has the type of an ELCX-n-ad.

Proof (ii)=>(i): This is an obvious consequence of the definitions.

(i)=>(ii): Suppose X is dominated by a CW-n-ad Y; let f : X —> Y and
g : Y — X be n-ad maps such that go f ~ 1,. Observe that the functor |S—|
can be viewed as a functor from the category of n-ads into TCW" which
preserves the n-ad homotopy relation (see Corollary 4.3.19). The naturality
of the co-unit j : |S—| 5 Id assures that the maps jy and j; are n-ad maps;
moreover, all the maps jy,jys, for all Sc[n—1], are homotopy
equivalences (see Corollary 4.5.31 (i)). Thus, j, is a complete weak
homotopy equivalence and the proof can be completed along the lines of
the proof for Proposition 5.1.1.

(ii) = (iii): From the preceding argument, it follows that X has the type
of a CW-n-ad whose global CW-complex is the geometric realization of
a simplicial set; this CW-complex has a subdivision which is a simplicial
complex (see Corollary 4.6.12) and contains the subspaces involved as
subcomplexes (see Proposition 2.3.6).

(iil) = (ii): Trivial.

(iil)<>(iv): see Proposition 3.3.7 and its proof.

(iv)=>(v): see Corollary 3.3.9.

(v)=(): Let {X;X,,...,X,_,} be an ELCX-n-ad. Let the ELCX-
structure on X be given by the convex covering {V, : yeI"} of X and the
equiconnecting homotopy E : U x I - X. The space X is paracompact as
a metric space; hence, it is possible to choose a locally finite refinement
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for X, which in turn gives rise to a barycentric refinement {U, : AeA} of
{V,} (see Proposition A.3.1).

One may assume that the covering {U,} consists only of non-empty
sets, and, moreover, has the following property: given a pair (4,S) such
that leA and Sc[n—1], then, U;nX;# &, for all ieS, implies that
U,n X5 # . (Otherwise, replace U, by the sets U, ;= U,\U{X; : j¢S}
defined for all the subsets S = [n — 1] which are maximal with respect to
the property U, X5 # (&.) Notice that these conditions mean that for
every 4 there is a unique maximal set S; < [n — 1] such that U, n X5, = .

Let Y denote the nerve of the covering {U; : 1eA}. Notice that because
{U,} is a barycentric refinement of {V,}, for any simplex {4,,..., 4} of
Y, there is a convex set V, such that Ujf:oU 3, < V,. Now, for each
ie[n—1], let Y; be the subcomplex of Y consisting of the simplices
{Ao,...,4,} satisfying the condition

Xm( h U,-) #J.
j=0

It will be shown that the CW-n-ad {Y; Y,,..., Y,_, } dominates the given
n-ad X.

Using the paracompactness of the space X, once more choose a locally
finite partition of unity {u; : AeA} subordinated to the open covering
{U,}. This partition of unity determines the canonical map ¢y : XY
(see Lemma 3.3.4 (ii)), which, according to the choice of the subcomplexes
Y,, is indeed an n-ad map. The objective is to construct an n-ad map
q : Y- X such that goy ~1,.

Turn the simplicial Y into an ordered simplicial complex by choosing
a total order of the set A (see Section 3.3, Example 2). Define q| Y%= A
by selecting, for each AeA, a point g(A)eU,n X,. Given s =(sq,...,5)€

A e With 4 <Ay <o < Ay, define

Q(S) = E(E( o E(E(q(lo)a q(il), Sl)’ Q(/lz)a SZ) )7 q()'k)’ Sk)'

Since {4, ..., 4} is a simplex of Y, there is a convex set V, containing all
the points g(4,),...,q(4,); the successive evaluations of the map E in the
definition of g(s) do not lead outside of V,, and therefore are always
possible. Thus, g(s) is really defined for all points of Y. If some s; =0, then
the given formula reduces to the corresponding formula for g((so, ..., s;_
S;4+15-++>5)), showing thereby that g is well defined. The restriction of g
to a fixed simplex is a combination of continuous functions, and so is
itself continuous; hence, ¢ is continuous.

To see that, for each 1 <i<n—1,g maps Y;into X, consider a simplex
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{%0s---» A4} of Y; and a point sed,; , .; by definition,

o
X
Xiﬁ( N UA.;) #J,
j=0

and so, g(4;)eX;, for every j=0,...,k. Since X; is an ELCX-subspace of
X, the successive evaluations of E necessary to obtain g(s) do not lead
outside of X .

Finally, since {U,} is a barycentric refinement of {V,}, the map X x I —»
X x X x L (x,t)—(x,q°¥(x),t) takes values in U x I, and thus can be
composed with E : U x I - X, giving the desired homotopy. O

Function spaces will be focused next. Given the n-ads {X; X,,...,X,_,}
and {C;C,,...,C,_,}, the function n-ad associated to them is the n-ad

(XS (X, X o) S0, (X, X, _ ) EC-1},

where (X, X,)¢¢? is the subspace of all elements of X¢ which take C;
into X;.

Proposition 5.3.4 Let {X;X,,...,X,_,} be an ELCX-n-ad and let
{C;Cy,...,C,_,} be an n-ad. If C is compact Hausdorff, then the function
n-ad X€ is an ELCX-n-ad.

Proof Recall that the compact-open topology on X¢ coincides with the
metric topology induced by the metric of X (see Appendix A.1), and thus
X€ is a metric space.
Let the ELCX-structure on X be given by the convex covering
{V, : yeI'} of X and the equiconnecting homotopy E : U x [ - X.
Define

W={(f,9)eX x X : (f(x),g9(x))eU, for every xeC};

as usual, U denotes the union of all the products V, x V,. Under the
canonical homeomorphism X¢ x X¢— (X x X)<, the set W corresponds
to the sub-basic open set [C,U] in (X x X)¢ (in the compact-open
topology), and hence W is open in X€ x X€. Moreover, note that the
diagonal A(XC) is contained in W.

Now define the homotopy E' : W x I - X€ by

El(f, g, t)(.V) = E(f(Y), g(,V)’ t)
for every yeC and every tel. Its continuity follows from the exponential
law. In fact, observe that W~ [C, U] = US, and so, by evaluation, there
isamapev: Cx WxI-U xI;but E is just the adjoint of the compo-
sition Ecev. Clearly, E’ is a homotopy as required in condition (2) of the
definition of ELCX-spaces.
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For every xeX, choose a convex set V., containing x and an open
neighbourhood W, such that W < V,,. Now, if heXh(C)c X is
compact and is covered by finitely many open sets W, say, W, ,..., W, ;
then, the sets D;=h~}(W,,), i=0,...,k cover C, are compact and such

that h(D;) = V... In this way, one obtains an open neighbourhood

k
Z,= 'ﬂo [D;, Vy(xi)]

for every feXC€, and therefore an open covering {Z, : heX¢} of X©.
Consider a pair (f,g)eZ, x Z,. If y is an arbitrary element of D;,i =0,...,k,
then (f(»), 9(¥))€V iy X Vyixry © U; because the sets Dy,...,D, cover C,
it follows that ( f, g)e W. This conclusion holds true for all (f, g)eZ, x Z,,
and hence Z; x Z, < W. Also, for every pair (f,g)eZ, x Z, and every
yeD,,i=0,...,k,

E'(f,9,0() = E(f(»), g(¥) )EV s>
implying E'(Z, X Z, x I) = Z,,.

Hence, an ELCX-structure for X is obtained by taking the sets Z, as
convex sets and the evident restriction of E' as the equiconnecting
homotopy.

It remains to prove that, for every j=0,...,n— 1, the sets (X, X ;)<<
are ELCX-subspaces of XC. First, observe that if f,ge(X, X;)“ " with
(f,9)eZ, x Z,, then the definitions show that E'(f, g, t)e(X, X ;)¢ for all
tel. Second, show that (X, X ;)¢ is closed in X©. To this end, for each
xeX;, the set

H,={feX®: f(x)eX;}

is closed because its complement in X¢ is the sub-basic open set
[{x}, X\X]. Hence, (X, X)) =, H, is closed. O

....................................................

Corollary 5.3.5 If X is an ELCX-n-ad and C is an n-ad with compact global
space, then X e TCW™. O

Corollary 5.3.6 If XeTCW" and C is an n-ad with compact global space,
then X¢eTCW" and X "e TCW.

Proof If XeTCW?", then X has the type of an ELCX-n-ad Y. The
application of the functor —€ to n-ad maps and n-ad homotopies describ-
ing a homotopy equivalence between X and Y yields n-ad maps and n-ad
homotopies between X¢ and Y e TCW™"; these show that the function
n-ads in question have the same type.

Finally, notice that these maps also induce homotopy equivalences
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between
n-1
XC,n — ﬂ (X, Xj)(C,C,-)
j=0
and
n—1
YC,n — m (Y, Yj)(C,C,-);
ji=0
the latter space is an ELCX-space as the intersection of ELCX-subspaces
of Y¢, and therefore it has the type of a CW-complex. O

In particular, this applies to loop spaces.

Corollary 5.3.7 ‘If (X, x,) is a well-pointed based space and X e TCW, then
the loop space (2X,w,) is well pointed, and QXeTCW.

Proof Since (X, x,) is well pointed, its loop space (22X, w,) is well pointed
(see Corollary A.4.4). Moreover, if XeTCW, it follows that {X;{x,}}e
TCW?2. Now take the 2-ad {S',{e,}} and note that the corresponding
function 2-ad has the form

(X5 Qx};
this shows that QXeTCW. Od

Under special conditions on X, the preceding result has a converse, as
follows:

Proposition 5.3.8 Let X be a path-connected space with a covering which
admits a subordinated locally finite partition of unity such that the inclusions
of the members of the covering into X are homotopic to constant maps. Then,
if for some base point x,, the loop space QX has the type of a CW-complex,
so does X.

Proof Let f : Y — X be a weak homotopy equivalence whose domain Y
is a CW-complex (see Corollary 2.7.8) and choose a base point y,eY such
that f(y) = xo. The induced map 2f is also a weak homotopy equivalence.
But 2YeTCW (see Corollary 5.3.7) and 2X e TCW, by hypothesis; then,
Qf is a homotopy equivalence (see Theorem 2.5.1). This implies that f
itself is a homotopy equivalence (see Proposition A.4.24), and thus
XeTCW. O

5.4 Spaces of the type of CW-complexes and fibrations

Let p : Y- X be a fibration with X path-connected and let F be any fibre;
recall that all the fibres of p have the same type (see Corollary A.4.21). In
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this section, the following question is analysed: given that two of the three
spaces X, Y, F have the type of a CW-cornplex, does the third space have
the type of a CW-complex?

Proposition 5.4.1 Let p : Y — X be a fibration with X path-connected and
X,YeTCW. Then, any fibre FeTCW.

Proof Let x be a non-degenerate base point of X. If X has no
non-degenerate base points, it can be modified as follows. Select a point
xeX and construct the mapping cylinder M (i) of the inclusion i : {x} > X;
then, (x,1) is a non-degenerate base point for M(i) and the retraction
r; : M(i)— X is a homotopy equivalence, and so M(i)e TCW. The induced
fibration p: M(i)[ 1Y— M(i) has fibre F=p " '(x,1)=p *(x) and the
total space of the same type of Y, ie., the type of a CW-complex (see
Corollary A.4.20). Thus, one can always assume the existence of
non-degenerate base points.

Consider F to be the fibre of p over x. Since PX is contractible, the
map h, : {x} > PX which takes x into the constant path w at x is a
homotopy equivalence. Take the evaluation map v, : PX - X,0—0a(1)
and form the commutative diagram

—= X ——{x)

R

— X «——— PX
4 Uy
which shows that {x}[ ;Y =F and PX[ ], Y have the same type (see
the cogluing theorem, theorem A.4.19). ,
" Decompose the mapp : Y —»X via the mapping cylinder, to obtain
p=rpyeiy, where r, : M(p)— X can be considered as a based homotopy

equivalence (see Proposition A.4.10 (iv)). Form the commutative diagram

PM(p) —5> M(p)—— Y

o

PX —>X<—p—Y
vy

where r,’ is given by ¢,'(¢6) =r,°0 is a homotopy equivalence and v, is a
fibration (in both cases; see Section A.4, Example 6). It proves that
Y[],PX and Y[ |;, PM(p) have the same type (see again the Cogluing
Theorem A.4.19). Because Y[ |,PX=PX[],7Y, it follows that Fx
Y[, PM(p). But Y[], PM(p)eTCW:to see this, form the 2-ad
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{M(p); Y,{x}}, which belongs to TCW?; next, form the 2-ad {I;{1},{0}}
and identify Y[ ];,PM(p) with the 2-ad function space M(p)"*eTC W
(see Corollary 5.3.6).

Theorem 5.4.2 Let p : Y — X be a fibration with X path-connected and such
that X and F = p~(x) have the type of CW-complexes, for any xe X. Then,
Y has the type of a CW-complex.

Proof Let f:Z—-Y be a weak homotopy equivalence with Z a
CW-complex (see Corollary 2.7.8). Consider a factorization f =p’ou,
where p': T(f)— Y is a fibration and u: Z—T(f) is a homotopy
equivalence (see Proposition A.4.18). Notice that T(f)e TCW. Because
pep' : T(f)—» X is a fibration with X,T(/)eTCW, the fibre F'=
(pep)~'(x)eTCW (see Proposition 5.4.1). Since u is a homotopy
equivalence and f is a weak homotopy equivalence, it follows that p’ is
a weak homotopy equivalence. Construct the diagram formed by the
homotopy sequences of the fibrations p: Y- X,pep : T(f)—>X (see
Proposition A.8.17) and the morphisms induced by the mapsp’|F’, p’ and
1,; then, it follows from the five lemma that p’| F' is also a weak homotopy
equivalence, and therefore is a homotopy equivalence (see Theorem 2.5.1).
Finally, p’ is a homotopy equivalence (apply Proposition 5.1.2 to X and
Theorem A.4.23 to the fibrations p and pep’). ]

If the total space and the fibres of a fibration have the type of a
CW-complex, the base space does not necessarily belong to TCW (see
Exercise 2). However:

Proposition 5.4.3 Let p : (Y,y,)— (X, xo) be a based fibration such that X
is path-connected, (X, x,) and (Y, y,) are well pointed and both Y, F = p~ *(x,)
have the type of CW-complexes. Then, the loop space 2X has the type of
a CW-complex.

In particular, if X has a covering which admits a subordinated locally
finite partition of unity and such that the inclusion maps of the members of
the covering into X are homotopic to constant maps, then X itself has the
type of a CW-complex.

Proof Let oy : Z—PY =(Y;{yo})**°) be the fibration induced from
vy : PX - X by pouvy (see Section A.4 for the definition of these maps).
The map pouvy is itself a fibration; its fibre is the 2-ad function space Y2
of all 2-ad maps {I; {1}, {0} } = {Y; F,{yo} }. Because (X, x,) is well pointed,
the inclusion of F into Y is a closed cofibration (see Proposition A.4.17);
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moreover, using the fact that (Y,y,) is well pointed, it follows that
{Y;F,{yo} }eTCW? (see Lemma 5.3.1). Consequently, Y"? has the type
of a CW-complex (see Corollary 5.3.6). But Y"? is also the fibre of the
induced fibration Z — PX; therefore, Ze TCW (see Corollary A.4.21 and
Theorem 5.4.2). On the other hand, the fibre of vy is just 2X, from which
one concludes that 2XeTCW (see Proposition 5.4.1).

If X satisfies the extra hypothesis described in the statement of the
proposition, then Xe TCW (see Proposition 5.3.8). d

Exercises
1. Show that the Polish circle
P={(xy):x=0,-2<y<1}u{(xy): 0<x<ly=—2}

. 2n
U{(x,y) : x=1,—2<y<0}u{(x,y) : 0<X<1,y=311’1;}CR2

does not have the type of a CW-complex. (Hint: Show that all homotopy
groups of the polish circle vanish, but a map into a singleton space is
not a homotopy equivalence.)

2. Show that there are continuous bijections [0, 1)— P — where P is the
Polish circle — and that all these maps are fibrations (this proves the
existence of fibrations whose total space and fibre are CW-complexes
and whose base does not even have the type of a CW-complex).

3. Let X, 4—/1— X, e ---be a sequence of fibrations where X,e TCW for

all neN, and for any meN, all but finitely many fibrations f, have
m-connected fibres. Let X be the inverse limit of the sequence. Show
that XeTCW iff all but finitely many of the f, are homotopy
equivalences. (Dydak & Geoghegan 1986).

..... . ... ... . Notes.to Chapter5 . . . . . . ... .. ... ..

Since the introduction of CW-complexes almost forty years ago, various questions
have been raised concerning their relation to homotopy theory; in a sense,
CW-complexes are easily manipulated and their simplicity is often reflected in
topological invariants that can be described algebraically. Thus, the question
immediately arose of what kinds of spaces could be represented, up to homotopy
type, by CW-complexes; this led to Milnor’s well-known paper (Milnor, 1959).

The first three sections of Chapter 5 examine closely most of the results contained
in Milnor’s paper. However, some of these theorems precede Milnor’s work:
Proposition 5.1.1 is Theorem 23 of Whitehead (1950); in Theorem 5.2.3, the
equivalence of (i), (i) and (iv) are also due to J.H.C. Whitehead (in particular, the
implication (i)=>(iv) is Theorem 24 of Whitehead (1950)), while the implications
(iv)=>(v)=>(i) are in Hanner (1951). The notation of ECLX-space and its general-
ization to ECLX-n-ad are due to John Minor.
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The development of Section 5.4 is influenced by the paper of Rolf Schon (Schon,
1977). The first attempt to prove Theorem 5.4.2 was made by James Stasheff (see
Stasheff, 1963, Proposition (0)). For the case in which p: Y—> X is a covering
projection, the result was already known to J.H.C. Whitehead (see Whitehead,
1949a); in this text, the corresponding result is Proposition 2.3.9.



Appendix

This appendix is intended to give the reader an easy access to all the
definitions and results which are needed but are not an intrinsic part of
the theory in the main body of the book. The definitions are sometimes
presented in a systematic way, within a specific context; as a result, it is
possible that some concept is used before it has been fully described. The
reader is invited to make full use of the index while perusing the results
presented here. Precise references or proofs for the results stated are given.

A.1 Weak Hausdorff k-spaces

Because of its simplicity, the concept of topological space is an appropriate
basis for a number of mathematical disciplines. Nevertheless, topological
spaces have some disadvantages when presented in their full generality;
in fact, some important constructions have certain useful properties only
for restricted classes of topological spaces. For the sake of exposition, Top
will denote — exceptionally in this section — the category of all topological
spaces and maps.

The main problem arises from the fact that for an arbitrary space Z
the Cartesian product functor — x .Z : Top— Top, which associates to a
space X the Cartesian product X x .Z (endowed with the product topo-
logy), and to amap f : Y - X the productmap f x1:Y x.Z—->X x.Z,
does not preserve pushouts. Even worse, the product functors — x.Z do
"not preserve identification maps, i.e., if f: ¥ — X is an identification map
then f x 1 may fail to be an identification map.

Another disadvantage concerns mapping spaces. Given spaces Y and
X, in general it is not possible to endow the set C(Y, X) of all maps Y — X
with a topology such that the evaluation map

e CY,X)x. Y-X, e(f,y)=/())
is continuous. The best approximation to such a topology is the compact-
open topology, which has as sub-basis for the set of open sets, all sets
[K,U]={feC(Y,X): f(K)c U}

with K a compact subspace of Y and U an open subset of X. The space
of continuous functions Y — X with the compact-open topology is denoted
by C,(Y, X). If Y is compact Hausdorff and X is metric, the compact-open
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topology for C(Y, X) coincides with the metric topology determined by
the metric

d(f,9)= max d(f (), g),

for every f,geC(Y, X) and where d is the metric for X (see Dugundji,
1966, Chapter XII, Section 8, Theorem 8.2 (3)).

Several attempts have been made to single out a ‘convenient’ class of
topological spaces, for which these difficulties do not arise. For the
purposes of this book, the so-called ‘weak Hausdorff k-spaces’ seem to be
the most appropriate.

k-spaces

Let X be a space. A subset A < X is said to be compactly closed if, for
every compact Hausdorffl space K and every map f : K— X, f~'(4) is
closed in K, the space X is said to be a k-space whenever all its compactly
closed subsets are closed. For Hausdorff spaces, this concept was probably
first described in writing in Gale (1950) under the name compactly generated
Hausdorff space and for the development of the general case see Brown
(1988, Notes to Chapter 5).

The property of being a k-space is preserved by closed subspaces and
identifcations; more precisely, if X is a k-space and

(1) if A = X is a closed subspace of X, then 4 is also a k-space;
(2) if p : X - X’ is an identification map, then X’ is also a k-space.

The locally compact Hausdorff spaces and the spaces satisfying the
first axiom of countability are k-spaces (see Brown, 1988, 5.9.2). Thus, in
particular, Euclidean spaces R”, balls B", spheres S”, and, more generally,
all metric spaces are k-spaces. As non-locally finite CW-complexes, B®,
S® and FP®, F =R, C or H are examples of k-spaces which are not locally
compact. Moreover, they do not satisfy the first axiom of countability.

For an arbitrary space X, let kX denote its k-ification, that is to say, the
k-space having the same underlying set as X, but with the topology given
by taking as closed sets the compactly closed sets with respect to the
topology of X. Note that k(kX) = k(X) for every space X; moreover, since
kX has a finer topology than X, the identity function is a map kX — X.

If Y is a k-space, a function f : Y — X is continuous iff f : Y > kX is
continuous. Therefore, if f : Y — X is a map, the same function is a map
kY — kX. This permits to extend the k-ification to a functor k : Top — Top
by taking kf =f on maps.

The image k(T op) of the functor k is a full subcategory of Top, satisfying
the following properties.
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(1) The inclusion functor k(Top)— Top is left-adjoint to the functor k.
(2) The category k(Top)is both complete and cocomplete. In particular, if
X and Y are k-spaces, then their product is given by
XX Y=k(X x_.Y).
At this point, note that if at least one of the spaces X orY is locally
compact Hausdorff, or if both spaces are metric, then X x Y = X x_Y.
(3) The category k(Top) has mapping spaces satisfying the exponential
law. More precisely, for any k-spaces X and Y, let X¥ =k(C,(X, Y));
then, if X, Y and Z are k-spaces, the following exponential law holds
true:
(X Y)Z — XY xZ .
The exponential law implies that the functors
Y.~ x Y : k(Top)— k(Top)

are adjoint to each other. Hence, Y preserves all limits and — x Y preserves
all colimits. In particular, the functor —¥ preserves embeddings and the
functor — x Y preserves identification maps; both functors preserve
homotopies and homotopy equivalences. Notice that the functor —x Y
does not normally preserve subspaces.

The category of k-spaces is larger than the category of compactly
generated Hausdorff spaces. The latter category has the advantage that
a subset 4 = X is already closed if AnC is closed in C for every compact
Hausdorff subspace C < X. This, on the one hand, avoids the nuisance of
taking maps a : K — X and studying a” ! (4) away from X. On the other
hand, although the category of compactly generated Hausdorff spaces has
quotients, since it is cocomplete, these are far from the usual quotients
because of the required separation axiom (see Example 3 below). In this
text, a middle course is elected, one which gives a subcategory of k(Top)

“larger ‘than 'the category of compactly generated Hausdorff spaces, and
shares with it the advantage mentioned before, but which also has the
usual quotients.

Weak Hausdorff k-spaces

A k-space X is said to be weak Hausdorff if the diagonal 4y is closed in
X x X. Recall that a topological space X is Hausdorff iff the diagonal A,
is closed in the Cartesian product X x .X; thus, a Hausdorff k-space is
weak Hausdorff. The weak Hausdorff k-spaces generate a full subcategory
of k(Top), denoted by wHk(Top) in this section (but simply by Top in
the remainder of this book).

The category wHk(Top) is closed under the formation of closed
subspaces and finite products, these taken in k(Top); furthermore, if Y is
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a weak Hausdorff k-space and f : Y — X is an identification map, then
the k-space X is weak Hausdorff iff (f x f)"! Ay is closed in Y x Y.
Moreover, the functor — x Y restricted to wHk(T op) preserves subspaces.

There is another useful characterization of the weak Hausdorff property
for k-spaces.

Lemma A.1.1 If X is a k-space, then X is weak Hausdorff iff for every
map a : K— X, with K compact Hausdorff, a(K) is closed and compact
Hausdorff. ‘

Proof See McCord (1969, Lemma 2.1 and Proposition 2.3). O

This implies, in particular, that weak Hausdorff k-spaces have the
separation property T,; it further implies the desired property that in a
weak Hausdorff k-space X, a subset A is closed if AnC is closed in C for
every compact Hausdorff space C = X.

The concept of relative homeomorphism is helpful in explaining why
the category wHk(Top) is closed under the formation of quotients. A map
of pairs f : (Y,D)—(X,A) is called a relative homeomorphism if D is
closed in Y, and the map f : Y — X is an identification and induces a
homeomorphism Y\D— X\A4. Note that, except for the fact that the
homotopy extension property is not required for the pair (Y, D), the space
X can be viewed as the adjunction space obtained by attaching Y to 4

via f.

Example 1 Let D be a closed subspace of a topological space Y. Form the
quotient Y/D and let * be the point of Y/D to which D is identified. Finally,
let f: Y—Y/D be the quotient map. Then, f: (Y, D)—(Y/D{#}) is a
relative homeomorphism. O

Example 2 Let f : Y-/— A be a partial map with domain D and take
X =ALl,Y; then, the projection A 1Y — X can be viewed as a relative
homeomorphism

(AuY, AuD) —(X, A). O

Proposition A.1.2 Let Y and A be weak Hausdorff k-spaces and let
f :(Y,D)>(X,A) be a relative homeomorphism. Then, X is a weak
Hausdorff k-space.

Proof See McCord (1969, Proposition 2.5). O
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This and Example 1 prove that the category wHk(Top) has the usual
quotients; more precisely:

Corollary A.1.3 Let X be a weak Hausdorff k-space and let A be a closed
subspace of X. Then X /A is a weak Hausdorff k-space. d

In view of Example 2, Proposition A.1.2 also has the following consequences:

Corollary A.14 Let f : Y-/— A be a partial map with Y and A weak
Hausdorff k-spaces. Then, the adjunction space A|_|, Y is a weak Hausdorff
k-space. O

The next example shows that the quotient of a Hausdorfl k-space by
a closed subspace is not necessarily Hausdorff. This should convince the
reader of the relevance of extending the notion of ‘Hausdorff k-space’ to
that of ‘weak Hausdorff k-space’.

Example 3 (The T ychonoff plank;see Kelley (1955), Problem F, Chapter 4.)
Let Q' be the set of all ordinal numbers not greater than the first
uncountable ordinal number 2, and let ' be the set of ordinals not
greater than the first infinite ordinal w. Endow both sets 2’ and o' with
the order topology; with this topology, both £’ and ' become compact
Hausdorff spaces. Hence, 2’ x o' is compact Hausdorff, and thus normal.
The space

X =0 xo'\(2, w)
is locally compact, regular, but not normal. In particular, X is a k-space,

because it is locally compact and Hausdorff. Now, let A and B be disjoint
closed subsets of X which do not have disjoint neighbourhoods. The

" reguldrity of X ‘implies that the quotient space X'= X/A is Hausdorff,

moreover, X' is a k-space, but it is no longer regular. Let B’ denote the
subspace of X’ which corresponds to B. Then, the quotient space X'/B’
is a k-space which is not Hausdorff. O

Finally, the category wHk(Top) is closed under the mapping space
construction which is essential to the development of Chapter 5.

Proposition A.1.5 Let X and Y be k-spaces; if X is a weak Hausdorff, then
XY is a weak Hausdorff k-space.

Proof Use the characterization of the weak Hausdorff property given in
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Lemma A.1.1. Let a : K - X" be a map, with K compact Hausdorff; let
d: K x Y > X denote the adjoint of a. One must show that X"\a(K) is
open. Let f be an arbitrary element of X"\a(K) and note that, for every
yeY, the set

K,={keK :a(k,y)# f(»)}

is open in K. Since f¢a(K), for each ke K, choose an element y(k)e Y such
that keK,. The normality of K implies that, for each keK, there is an
open set L, which contains k and whose closure L, is contained in K ,.
Clearly, the set L, form an open covering of K; since the latter space is
compact, it can be covered by finitely many sets L,, say by L, ,...,L,,.
Then, because X is weak Hausdorff, for every i=1,...,n, the set a
(Ly, {y(k;)}) is closed (see Lemma A.1.1) and hence,

U= n[{yk)}, X\a(Ly, {y(k)})]
is a neighbourhood of f in XY which does not meet a(K). [

A.2 Topologies determined by families of subspaces

The topology of a space X — or in short, a space X —is determined by a
Sfamily of subspaces U, if a set U is open (closed) in X iff Un U, is open
(closed) in U, for every A; this is equivalent to require that a function
[ X—>Z, where Z is any space, is continuous iff f|U; is continuous for
every A.

The following simple result is very useful in dealing with this concept.

Proposition A.2.1 Let {U, : AleA} and {V, : yeI} be coverings of a space
X such that {V,} is a refinement of {U,}. Then, if X is determined by the
Samily {V.}, it is also determined by the family {U ,}.

Proof Suppose that X is determined by {V,};let f : X — Z be a function
from X to a space Z such that f|U, is continuous, for every 1. Take
arbitrarily an element V, of the family {¥,}; since this family is a refinement
of {U,}, there is an index A such that V,,c U,. Then, f|V,=(f|U,)|V, is
continuous, and therefore f is continuous. O

A space X has the final topology with respect to a family of maps f : Y, —» X
if a function f : X—Z, where Z is any space, is continuous iff the
compositions fo f, : Y, — Z are continuous for all 4; again, an equivalent
formulation is to'say that U is open (closed) in X iff f;!(U) is open
(closed) in Y, for every A.

Proposition A.2.2 Let the space X have the final topology with respect to
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the family { f,: Y,—» X : ke A} of maps and let p : Z— X be a mup. Then,
the space Z has the final topology with respect to the family {f, : Y,—~Z :
LeA}, where f, is induced from f, by p.

Proof See Gabriel & Zisman (1967, Section I11.2). The functor Z x — is
compatible with colimits (see Section A.1); thus, the space Z x X has the
final topology with respect to the family {1, x f,}.

Notice that all spaces Y, can be considered as closed subspaces of
Z x Y,. Consider a subset C = Z such that f;!(C) is closed in Y,, for
each 4. Since the domain of any map is homeomorphic to its graph, the
space Z is embedded as a subspace in Z x X, via the assignment
z(z, p(z)); thus, C can be considered as a subset of Z x X. The sets
fiHC)= (1, x f,)"YC) are closed in the respective spaces Z x Y;

consequently, C itself is closed in Z x X and also in Z. O

Corollary A.2.3 Let X be a space determined by the family of closed
subspaces {U; : AeA} and let p : Z— X be a map. Then, Z is determined
by the family {p~"(U,) : leA}.

Proof Since each U, is closed in X, the inclusion p~*(U;) < Z is induced
from the inclusion U ; = X by p. O

Let a set X, a family of spaces {Y, : ieA} and a family of functions
{f,: Y,—> X} begiven and such that (f, x f;)”!(4y)isclosedin Y, x Y.,
for each pair 4, A’ of indices. Then, there is a unique topology t for X
such that all functions f; become continuous and (X, t) has the final
topology with respect to the family { f,}; the condition ensures the weak
Hausdorff property for (X, 1) (see McCord (1969, Proposition 2.4)). The

~ process of forming the space (X, t) from the given data is referred to as
providing or endowing X with the final topology with respect to the family
{f:}. Under some additional hypothesis, X is determined by a family of
subspaces:

Lemma A.2.4 Let the space X be endowed with the final topology with
respect to the family { f;}. Furthermore, assume that

(i) each f, is injective;

(1) 12 YY) is closed in Y,, for all pairs A, X' of indices, and

(ii) the subspaces ;™' (f(Y;)) and [~ (f1(Yy)) of Y; and Y,., respect-
ively, are homeomorphic, for each pair A, ' of indices.
Then, for all AeA, f, embeds Y, as a closed subspace into X, and
consequently, X is determined by the family {Y,} of subspaces.
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Proof See Dugundji (1966, Proposition V1.8.2). O

The concept of initial topology is dual to that of final topology; to
wit, a space Y has the initial topology with respect to a family of maps
fi: Y- X, if a function f : Z— Y, where Z is any space, is continuous
iff the compositions f,;° f : Z— X ; are continuous for all 4.

The following concept is stronger than that of determination of a space
by a family of subspaces. A space X is said to be topologically dominated
by a family {C, : AeA } of closed subspaces if a set C = X is closed in X
iff there is a subset A’ < A such that:

(1) {C,: AeA'} covers C and
(2) CnC; is closed in C,, for every leA .

Clearly, if a space X is topologically dominated by the family
{C, : 2eA} of closed subspaces then X is determined by such a family;
the converse does not hold true (see Section 1.5, Exercises).

Theorem A.2.5 A space topologically dominated by a family of paracompact
closed subspaces is paracompact.

Proof See Morita (1954) and Michael (1956). d

A.3 Coverings
A family {U; : AeA} of subsets of a space X is said to be

countable if A is countable;

locally finite, if each point xe X has a neighbourhood which meets only
finitely many U ;;

star-finite if. for each Ae A, U,nU, # & for only a finite number of
HEA;

a covering of a subset A « X if A = ;. 4U, (in this case, one also says
that {U,} covers A),

an open (closed) covering of X if it is a covering of X and all sets U, are
open (closed);

arefinement of the covering {V, : yeI'}if, forevery AeA, thereisayel”
with U, c V,;

a barycentric refinement of the covering {V, : yeI} ifitis a covering of
X and if the family {U, : xeX} is a refinement of {V,}, where

J.,= U U,

xeU;

Clearly, a star-finite covering is locally finite.
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Proposition A.3.1 Every locally finite open covering of a normal space has
a barycentric refinement.

Proof See Dugundji (1966, Chapter VIII, Theorem 3.2). O

The space X is paracompact if it is Hausdorff and if every open covering
of X has an open, locally finite refinement. Every paracompact space is
normal; every closed subspace of a paracompact space is paracompact.

Every metric space is paracompact. A sharper statement holds true for
metric spaces satisfying the second axiom of countability:

Theorem A.3.2 Every open covering of a metric space satisfying the second
axiom of countability has a countable, star-finite refinement.

Proof See Kaplan (1947, Theorem 1). |

A family {u,: ieA} of maps u;: X—1I is a (point finite) partition
of unity on X, if, for each point xe X, u ;(x) =0 for all but a finite number
of indices A, and, furthermore, if, for all xeX,

Zl‘z(x)= L

(The sum exists since it contains only finitely many nonvanishing
summands.)

The set of all partitions of unity for X has an interesting binary operation.
To wit, the product of the partitions of unity {x ,} and {v,} is the partition of
unity { ;- v,} defined by all possible multiplications {u,-v,}, and indexed by
the set of all pairs (4, y).

The partitions of unity have a strong connection to the open coverings
of the space X: if {u;}is a ‘partition of unity for ‘X, then the family
{u;71((0, 1])} is an open covering of X. A partition of unity {u,} is locally
finite if the covering {u,”'((0, 1])} is locally finite. A partition of unity
{u,} is said to be subordinated to ( or dominated by) a given open covering
{U,} of X, if, for every 4, the closure of {; ' ((0, 1])} is contained in U,.
A covering {U, : AeA } of a space X is said to be numerable if it admits
a subordinated locally finite partition of unity.

The following result is true (see Dugundji (1966, Chapter VIII,
Theorem 4.2)):

Theorem A.3.3 If X is a paracompact space, and if {U,} is an open covering
of X, then there exists a localy finite partition of unity for X which is
subordinated to the covering {U,}. O
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CW-complexes, as paracompact spaces, satisfy Theorem A.3.3.

There is an interesting property of spaces which implies paracompact-
ness. Let X be a space with a topology 7 (i.e., T is the set of all open sets
of X). A stratification of X is a function

1=t U—{U, : neN}
such that:
(1) {U, : neN} covers U; and,
for every neN,

(2) the closure U, of U, is contained in U; and
(3) UcV, U,Ver implies that U, c V,.

The space X is called stratifiable if there is a stratification for X.

Proposition A.3.4 A stratifiable space is paracompact and normal.

Proof See Ceder (1961). O

A4 Cofibrations and fibrations; pushouts and pullbacks;
adjunction spaces
This section reviews some important concepts and results of homotopy
theory. Recall that in this book the category of weak Hausdorff k-spaces is
denoted by Top (except in Section A.1, where it is denoted by wHk (Top)).

Cofibrations

A pair (X, A) of spaces, i.e., a 1-ad in the terminology of Section 5.3, has the
homotopy extension property if for any commutative diagram (full arrows)

X x {0}

/

Ax{0} /i ‘>A X[----»Z

NS

X x1

thereisamap X x I —» Z (dotted arrow) which makes the resulting triangles
commutative.

Proposition A4.1 Let A be a closed subset of a space X. The following
conditions are equivalent:
(i) the pair (X, A) has the homotopy extension property;
(i) the space X = X x {0} UA x I is a retract of X x I;
(ii) Xisa strong deformation retract of X x I,
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(iv) there are a neighbourhood U of A in X which is deformable rel. A to A
in X and a map o : X — I such that o= '(0) = A and o|(X\U) = 1

Proof The equivalence of (i), (ii) and (iii) follows from Brown (1968,
Propositions 7.2.2 and 7.2.3). The proof of the equivalence of (i) and (iv)
can be found in Strégm (1966, Theorem 2). O

Rather than just dealing with pairs (X, 4), one expands the scope of
Proposition A.4.1 by taking embeddings; more precisely, an embedding
i: Y- Xisa closed cofibration if i (Y) is closed in X and the pair (X,i(Y))
satisfies any of the equivalent conditions of Proposition A.4.1.

Example 1 The map r"*!': B"*! x I »B"*! x {0} US" x I introduced in
Section 1.0 (pages 7, 8) shows that the inclusion §"— B"* !, neN, is a closed
cofibration. d

The following is an example of an embedding of a closed subspace which
is not a closed cofibration.

Example 2 Take X to be the subspace of R consisting of the points 0 and
1/n, for all integers n>1, and take A to be the closed subspace of X
consisting of the single number 0. Clearly, A has no neighbourhood in
X which is deformable to A4 in X; thus, the inclusion 4 g X cannot be a
closed cofibration (see Proposition A.4.1 (iv)). O

The following facts about closed cofibrations are known.
Proposition A.4.2 (i) The closed cofibrations form a subcategory of Top

other homeomorphisms are closed cofibrations, any composition of closed
cofibrations is a closed cofibration, all maps whose domain is the empty space
are closed cofibrations.

(i) If {A,— X, : AeA} is a set of closed cofibrations, then 1A, > 11X,
is a closed cofibration; i.e., a topological sum of closed cofibrations is a closed
cofibration.

(i) If A— X is a closed cofibration and Z is any space, then, A x Z —
X x Zisa closed cofibration;, i.e., the product functor — x Z preserves closed
cofibrations.

(iv) Product theorem: If A4;— X ,, A=0,1 are both closed cofibrations
then,

XoxAjUAdgx X=Xy x X,
is a closed cofibration.
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(v) Leti: A— X be aclosed cofibration. Then iis a homotopy equivalence
iff A is a strong deformation retract of X.

i) If j: A>X and i : X >V are maps such that i and ij are closed
cofibrations, then j is a closed cofibration.

(vil) If Ag— X, A; > X and Agn A, — X are closed cofibrations, so is
AgUA, - X.

(viii) Let A;— X, i[n]" be closed cofibrations. Suppose that for every
subset S < [n] the inclusion of Ag= (s A; into X is a closed cofibration.
Then U!., A;— X is a closed cofibration.

(ix) Let A— X be a closed cofibration and let C be a compact Hausdorff
space. Then A — X is a closed cofibration.

Proof (i): Brown (1988, 7.3.2); (ii):easy; (iii):Brown (1988, 7.2.4 Corollary
2); (iv):Brown (1988, 7.3.8); (v):Brown (1988, 7.2.9 Corollary 1); (vi):Strém
(1972, Lemma S); (vii):Lillig (1973, Corollary 2); (viii):Lillig (1973, Corollary
3); (ix);Strgm (1972, Lemma 4).

|

A based space (X, x,) is said to be well-pointed whenever the inclusion
{xo} G X is a closed cofibration.

Example 3 The based spaces (B"*!, e,), neN are well-pointed, since the

inclusions, {e,} — B"*! are the compositions of the closed cofibrations
{eo} > S" and S"— B"*1. O

Indeed, any based CW-complex is well-pointed (see Corollary 1.3.7 and
Lemma 2.3.7).

The space X described in Example 2 together with the point Oe X, gives
an example of a based space, namely (X, 0), which is not well pointed. There
are spaces for which no choice of a base point yields a well-pointed based
space:

Example 4 The Cantor set is totally disconnected and every point is a limit
point (see Bourbaki, 1966, Chapter 1V, Section 2.5, Example); thus, no one
of its points has a neighbourhood which can be contracted to it (cf.

Proposition A.4.1 (iv)). O

There is a relative version of Proposition A.4.2 (ix), namely:

*As in Section 4.1, the symbol [n] denotes the set of integers from 0 to n.
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Proposition A.4.3 Let A— X be a closed cofibration and let (C, D) be a pair of
spaces with C compact Hausdorff. Then, the inclusion A —(X,A)"? isa
closed cofibration.

Proof Recall that (X, A)¢-?) is the subspace of X¢ formed by all functions
C — X whose restrictions to D take values in 4. Let U be a neighbourhood
of A4 in X which is deformable to A in X, rel. A and let ¢ : X =1 be a
map such that a”'(0)=A4 and «|(X\U)=1. Then, (U,A)“? is a
neighbourhood of A€ in (X, A)¢?, which is deformable to A€ rel. A€.
Furthermore, the composition
B = maxe(a°|(X, A)D)),

where max : I€— I denotes the map which assigns to every map f : C— 1
its maximal value, is such that 7 !(0)= A€ and its restriction to the
complement of (U, A)“? takes the constant value 1. O

A particular case of the previous proposition deserves to be mentioned and
applies to spaces of based maps into well-pointed spaces.

Corollary Ad4 If (X,x,) is a well-pointed based space and (C,c,) is a
compact based space, then the based space ((X, x,)¢ ), w,), where w, is the
constant map with value x,, is well pointed. d

For any space X, the diagonal map 4 : X - X x X is an embedding of a -
closed subspace. If, moreover, this embedding is a closed cofibration, the
space X is called locally equiconnected (LEC, in short). ‘Roughly speaking,
X is LEC if there are paths between sufficiently nearby points such that the
paths depend continuously on the end points’ (see Fox (1943)). An

Proposition A.4.5 LEC spaces are locally contractible.
Proof See Dugundji (1965, Lemma 2.3). d

Discrete spaces are clearly LEC. The deformation retraction
d":(B"x B"Yx 11— B"x B"
of B" x B" onto AB" introduced in pages 2,3 together with the map
a: B"xB"—1, (s,8)—|s — |
shows that the ball B", n>1 is an LEC space (see Proposition A.4.1 (iv)).
Moreover, arbitrary coproducts of balls are LEC: this follows from the
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equation
A(UB™)=(4AB")
(see Proposition A.4.2 (ii)).

Proposition A.4.6 Ifi : A— X isaclosed cofibration and X is an LEC space,
then A is LEC.

Proof The diagonal map 4 : 4A—>A4x A is a closed cofibration (see
Proposition A.4.2 (i), (iii) and (vi)). O

As a consequence of the previous result, the sphere $"~! = §B" is LEC, for
every n> 1.

Fibrations

The concept of fibration is dual to that of cofibration. "Amapp : Y » X isa
fibration if, for any commutative diagram (full arrows), in Top, where v,

/\

Ye--—Z
;N p'//
Xl

denotes the evaluation at 0, there is a map Z — Y’ (dotted arrow) which
makes the resulting triangles commutative. Using the adjointness between
the functors ~ x I and -’ one obtains the description of fibrations by means
of the homotopy lifting property: the map p : Y — X is a fibration if, for

Y

p

Z—X

h

every commutative diagram in Top, every homotopy H starting at h lifts
to a homotopy G starting at g, i.e., gives rise to a homotopy G starting at

*Closed cofibrations are essential for the attaching process which plays an important role
throughout the book from the very beginning; fibrations show up in Chapters 1, 4 and 5.
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¢ and such that p-G = H. Under these conditions, if X is path-connected
and Y # J, then p is a surjection. The space X is the base space or base
of the fibration; the space Y is the total space of the fibration. For any
point xe X, the inverse image p~ '(x) is the fibre over x; a subspace of Y
is a fibre of the fibration if it is the fibre over some point xe X.

If, in the definition of fibration, the lifting property is required only for
Z = B"(A"), neN, one obtains the weaker notion of Serre fibration (sece
Serre, 1951); on the other hand, if Z is any topological space (not necessarily
a weak Hausdorff k-space), one obtains the notion of Hurewicz fibration.

Given the fibrationsp: Y- X, p': Y'>X,amap f : Yo Y'isa fibre
map if p'<f = p; a homotopy H : Y x I - Y' is a fibre homotopy if p'>H is
nothing but the composition of the projection Y x I —Y with p (this
is the dual concept to that of homotopy rel. a subspace). Two maps
f,9: Y- Y are fibre homotopic if there is a bifre homotopy connecting
them; note that in this case the maps f, g are themselves fibre maps. A
fibre map f : Y — Y'is a fibre homotopy equivalence if there is a fibre map
g : Y=Y such that the two compositions are fibre homotopic to the
respective identities.

Proposition A.4.7 (i) The fibrations form a subcategory of Top containing
all isomorphisms and all terminal morphisms; i.e., all identities and all other
homeomorphisms are fibrations, any composition of fibrations is a fibration,
all maps whose codomain is a singleton space are fibrations.

(i) If Y = X is a fibration and D is a retract of Y over X, the restriction
D — X is a fibration.

(i) If Y > X and Z—> W are fibrations Y x Z— X x W is a fibration.

(iv) Let A— X be a closed cofibration and let Z be any space. Then,
ZX — Z" is a fibration.

Proof (i) and (iii) are trivial.

(i1): Recall that for a given map p : Y — X, a subspace D c Y is a retract
of Y over X if there is a map r : Y — D such that r|D =1, and p|Der =p.
The claim follows immediately from the definitions.

(iv): See Spanier (1966, Theorem 2.8.2). O

Example 5 If Y and Z are any spaces, the projections from Y x Z to Y and
Z respectively are fibrations. This follows from statements (i) and (iii) of
Proposition A.4.7. O

Example 6 Given any space X, the map v, : X! - X is a fibration (see
Proposition A.4.7 (iv)); for a fixed base-point x,eX, the fibre over x, is
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denoted by PX. The map vy : PX — X obtained by evaluation at 1 is again
a fibration whose fibre over x, is the loop space QX of the based space
(X, x,) (see Spanier, 1966, Corollary 2.8.8); the elements of QX are loops of
X (based at x,). The loop space QX has a canonical base point, namely, the
constant loop w, at the point x,. The based space (QX, w,) is well pointed if
(X, xo) is well pointed (see Corollary A.4.4).

The construction of the based pair of spaces (PX,QX, w,) extends to a
functor. It associates to a based map f : (Y, yo) = (X, Xo) the maps Pf : PY
—PX and Qf : QY ->QX, defined just by composition. OJ

Example 7 Amapp : X — X isa covering projectionif every point xe X has
an open neighbourhood U such that p~'(U)= U,, where each U, is
open and homeomorphic to U via p; in this situation, the space X is
called a covering space of X. Covering projections are fibrations (see
Spanier, 1966, Theorem 2.2.3). O

Pushouts and pullbacks

X
I
A

is said to be a pushout if it satisfies the following universal property (called
the pushout property): for any commutative diagram (full arrows)

A commutative diagram in Top

f

 —

O—~

e
f

there is a unique map X — Z (dotted arrow) making commutative the

triangles which arise; in other words, givenmapsg : A—»Z,h : Y —» Z such

that gf = hi, there is a unique map k : X — Z such that ki =g, kf = h.
This concept is also useful in other categories, like the categories of
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groups and groupoids. In such a square, the space (group, groupoid) X is
uniquely determined up to homeomorphism (isomorphism) by the diagram

Y

(*) T"

D——»A4

/
more precisely, if
i _
Y ——=X, y—Lwx,
iI Iz_o and iI EI
D—4 D——4

are pushouts then there are unique homeomorphisms (isomorphisms)
hy: X;—>X,_,, 2=0, 1, inverse to each other, such that

hx'fa=171-b hily=1 5
Conversely, any diagram (x) of spaces and maps (respectively, groups,

groupoids and homomorphisms) can be completed to a pushout.
Pushouts are dualized by pullbacks: a commutative diagram in Top,

is said to be a pullback if it satisfies the following universal property (called
the pullback property): for any commutative diagram (full arrows),

A—X
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there is a unique map Z — D (dotted arrow), making commutative the
triangles which arise. In this situation, the space D is uniquely determined
(up to homeomorphism) and denoted by A [ 1, Y. The map j is said to be
induced from p by f and the map f is induced from f by p. The space A ["] /Y
can be defined as the inverse image of the diagonal with respect to the map

AxY->XxX, (ay)—(f(a)py))
thus, because X is weak HausdorfT, the space A[ ], Y can be considered as a
closed subspace of 4 x Y. If f is the imbedding of a closed subspace of X,

then 4[], Y is homeomorphic to the closed subspace p~*(4) of Y; thus, the
map p can be identified with the map

p~H(A)> A apla),
and the map f can be identified with the inclusion p~'(4) c Y.

Adjunction spaces
A diagram of spaces and maps,

Y

|

D— A,

in which i is a closed cofibration, is called a partial map from Y to A with
domain D and is denoted by
f:Y-/>A

When no confusion arises, the letter /” represents either the mapf : D— A4
or the partial map f : Y-/ — A4; moreover, whenever the letter ‘D’ is not
specified, the notation dom f represents the domain of the partial map f.
Notice that because the product functor — x Z preserves closed cofibr-
ations (see Proposition A.4.2 (iii)), for any given partial map f : Y-/ —> A4
and any space Z, there is an induced partial map f x1: Y xZ—->A4 x Z.

A partial map f : Y- /— A can be completed to a pushout as follows.
For the underlying set X, take a disjoint union 4 Ly (Y \dom f)." Next,
endow X with the final topology with respect to the canonical functions
f:Y->Xandi: A— X.Thus, by construction, the space X contains 4 asa
closed subspace. Therefore, one says that X is obtained from A4 by attaching
or adjoining Y via f, or, also, that X is an attaching space or an adjunction

tAlternatively, one can take the set A| | Y/d ~f(d).
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space. Such an attaching space will be denoted systematically by
X=AL],Y,

moreover, the map f is called attaching map and the map f : Y —» X is

called characteristic map.

Adjunction spaces have been around for a long time; a reasonably
complete account on the general properties for adjunction spaces can be
found in Brown (1988). In particular, the gluing theorem (see
Theorem A.4.12) is presented there; for CW-complexes, that theorem had
been developed earlier in Spanier & Whitehead (1957).

Although the previous construction of the adjunction space X seems to
be unique, it is not. The ambiguity in the construction — only up to
homeomorphism, as already noted — is due first to the fact that A and Y\ D
may not be disjoint. In order to form the disjoint union, one has to make the
sets disjoint, a process which is not unique. Secondly, if X, f and 7 are given,
replacing f and i with the compositions ff and i respectively, where
7 :Y->Yandi: A— Aare homeomorphisms such thatf-i=iandi-f =f,
one obtains a new pushout square which is equivalent to the original one. In
other words, if the square

A slightly different terminology and notation is used if, in addition, f : D
— A happens to be an inclusion which is also a closed cofibration. Then one
may consider the set X to be

X=A\DUDyY\D=AvLY.
In this case, X is called a union (space) of A and Y over D and it is denoted by
X=A4],Y.

This situation arises whenever one is given a space X together with closed
subspaces A4, Y such that AU Y = X and the inclusions of AnY in 4 and
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Y, respectively, are closed cofibrations. Then the equation
X=AL4pY

holds true, in the sense that both sides agree up to a canonical
homeomorphism.

Example 8 Because the inclusion $""!— B" is a closed cofibration, the
sphere S" can be viewed as the union space

S" — B" L—JS" - Bn

with the maps i, ,i_ : B"—> S" considered as characteristic maps. O

Proposition A4.8 Let f : Y—/— A be a partial map and let X denote the
adjunction space A| | ;Y. Then, the following properties hold true:

(i) for every space Z, (A x Z)| |, (Y x Z)= (A, Y) x Z;

(1) the inclusion A X is a closed cofibration;

(iii) any characteristic map [ : Y —X induces a homeomorphism
Y\D - X\4;

(iv) if Y and A are (perfectly) normal spaces, then X is (perfectly) normal,

(v) if Y and A are normal spaces of dimension < n then, so is X;

(vi) if D is a strong deformation retract of Y then, A is a strong deformation
retract of X; if r: YD is a deformation retraction, the unique map
¥ : X — A satisfying the conditions ¥'| A = 1, and ¥’ > f = for is a deformation
retraction.

Proof (i): Follows from the exponential law described in Section A.1.
(ii): It is enough to construct a retraction

ry: XxI-X=Xx{0}uAdxI
(see Proposition A.4.1 (ii)). But
X xI=(AxI)], (Y xI)

(see property (i)); now take for ry the unique map such that ry|4 x I = 1and
ree(f x 1) is the composition of the retraction ry: U xI—Y =
Y x {0}uD x I with the canonical map from Y to X.

(ii1): Is clear from the construction of adjunction spaces.

(iv): In view of Tietze’s extension theorem, it is enough to prove
that any map k : C— I, where C is a closed subset of X, can be extended
to a map over all of X. Because A is normal, there is an extension g’ : A —1
of k|ANC; then, let h:f Y (C)uD-I be the map given by
h| f~Y(C)=ke f., where fi: f~YC)—C is the map induced by f, and
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h|D =g'c f. This map h can be extended to a map h : Y — I because Y is
normal. The pushout property now inducesamap k' : X — I extending k.

A space is perfectly normal if every closed subset is the zero set of a map
with non-negative real values. Thus, let C < X be a closed subset. If 4 is
perfectly normal, one can find a map g : A— [0, o0) with zero set AnC.
Then extend the composition ge f, firstly to a map over Du f ~}(C), taking
the value 0 outside D, and, secondly, by means of Tietze’s extension
theorem, to a map k' : Y —[0, c0); for this, Y has only to be normal.
Moreover, if Y is perfectly normal, there is a map 4" : Y — [0, oo) with zero
set DU f~}(C). Finally, the maps g and ' + h” induce amap k : X — [0, o0)
with zero set C.

(v): Let C = X be a closed subset and let k' : C-»S" be a map. Since
A has dimension < n, the map k'|AnC has a continuous extension
g : A— S" (see Theorem A.9.1). Next, define b’ : Du f~Y(C)— S" by taking
W|D=gof and K'|f~Y(C)=kf, where f:f ~}(C)— C denotes the map
induced by f. Since Y has dimension < n, the map k' extends to a map
h: Y— 8" (again by Theorem A.9.1). Finally, the maps g and 4 induce an
extension of k' to a map k : X — §", proving the desired result (once more
using A.9.1).

(vir Let H : Y x I - Y bearetracting homotopy of Y onto D. The maps
foH and icpr, coincide over D x I; thus, by (i) above, one obtains a
retracting homotopy X x I - X with the desired properties. (]

In the special situation of a union space, statement (ii) of the previous
proposition yields the following.

Corollary A4.9 If X = ALpY, then the inclusions of A,Y and D=ANY
into X =AY are closed cofibrations. |

Example 8 From Corollary A4.9 and Example 8, it follows that the
embeddings i.,i_ : B"—S" introduced on page 3, as well as the inclu-
sions S"~ ! — S", are closed cofibrations. More generally, it follows that the
inclusions S™ — S" are closed cofibrations, for all pairs of natural numbers
(m,n) with m < n. A similar result holds for projective spaces: for F =R, C
and H, the inclusions FP™ — FP" are closed cofibrations, for all pairs of
natural numbers (m,n) with m <n. O

Remark For every X, X,eTop, the inclusion X, — X X, is a closed
cofibration (see Proposition A.4.2 (i) and (ii)). Moreover,if 4, » X ;, A =0, 1
are both closed cofibrations, all the canonical inclusions in the following
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diagram are closed cofibrations:

/XOXA,\\
~

Xox AjUAgx X, > Xox X,

"

Ay x A,

Ay x X,

(see Proposition A.4.2 (iii), (iv) and Corollary A.4.9). O

Example 9 The based spaces (5", e,), neN are well pointed. This follows
from the fact that {e,} — S° is a closed cofibration (see Remark above), and
also because the inclusion S° — S" is a closed cofibration (see Example 8).

O

The following ‘algebraic laws’ are useful in dealing with adjunction spaces.

(L1) Horizontal composition Let f : Y-/— A be a partial map and let
g : A— A’ be a map considered as a partial map A|_|,;Y~/— A" Then,

AL AL Y)= AL, Y.

The following diagram is useful for a better understanding of this law:

Y->AL,Y A[_ij—>Aluy(AufY) Yo ALy, Y

. ]

D—— A A—— 4’ D——— 4’

I

There is a noteworthy relationship between the possible characteristic
maps for the adjunctions in this law. Assume A"|_J,(A1,Y)and A"|_|, Y
to be really the same space X', and assume that one is given fixed inclusions
itA>X=AlJ,Yandi : A'—> X', as well as a fixed characteristic map
f : Y- X. Then, on the one hand, for any characteristic map § : X - X',
the composition ge fis a characteristic map for the attaching of Y to A’ via
gf;on the other hand, if a characteristicmap gf : Y — X' is given, then the
unique map § : X — X’ with go f=gf and §oi = i °g is a characteristic map
for the attaching of X to A’ via g.

(L2) Vertical composition Let f : Y-/— A be a partial map, j : Y>-Y’

be a closed cofibration, and f : Y —A[ |, Y be a characteristic map.
If f is also viewed as a partial map Y'-/— A and f as a partial map
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Y'-/—-AL],Y, then

ALY, Y =ALL Y.
This situation may be depicted by the following diagrams:

Yy — (AL, V)L, Y’

R TR Y —— ALY

1

’I/——"Aufy D— 4

D——A4

(L3) Addition Let f,: Y,—-/— A be partial maps, A=0, 1. Denote by
(fo, f1) : You Y,—/— A the induced partial map from the topological sum
of Y, and Y, to A; its domain is the topological sum dom f, | dom f,, on
which the underlying map is defined in the obvious manner. Use the
inclusions A Al Y, to consider f, also as a partial map

Yi_/—)Al—Jfl—AYl*ft;
then,

A I—I(fo.fl)(Yol——' Y))=(4 L—Jfo Yo) LlA(4 Uj, 1))
;(Aufoyo)‘_]f. Yl ;(ALJj, Yl)l__lonQ.

(L4) Restriction Letf : Y —/— A be a partial map and let U be an open
or closed subset of X = A| |, Y; then

Ux(UnA)Lf ()

where [ is a characteristic map for the adjunction space X and [’ is the
induced partial map f~'(U)-/>UnA.

(LS) Multiplication Let f,: Y,—/— A, be partial maps, 1 =0, 1. Take
X,=A4,4,Y, 4A=0, 1, and define canonically a partial map

S =fox f)ulfo X f1): Yox Y,=/>Xox AjUAg x X,
with domain Y, x dom f, udom f, x Y,; then,

Xox Xy =(Xox A, Udg x X)L, (Yo x Yy).



264 Appendix

Mapping cylinders
Mapping cylinders constitute an important special case of adjunction
spaces. Let f : D— A be any map and let i : D— D x I be the embedding
x—(x,0); consider f as a partial map D x I —/— A. Then, the mapping
cylinder of f is defined by

M(f)=ALl,(D x I

Proposition A.4.10 Let f : D— A be any map. Then,
(i) the inclusion i : A— M(f) is a closed cofibration;
(i) A is a strong deformation retract of M(f);

(iil) the composite map

ip: DD x {1} 5D xI-M(f)

is a closed cofibration,

(iv) the map f factors through ip; more precisely, f =r,ci,, where
rp: M(f)—> A denotes the deformation retraction determined by
r f°f = fopry;

(v) f : D> Aisahomotopy equivalence iff the embedding iy, is a homotopy
equivalence iff D is a strong deformation retract of M(f) via the embedding i,

(vi) f : D— A is a weak homotopy equivalence iff the pair (M(f), D) is n-
connected, for every neN,;

(vii) if j : D' D is a closed cofibration, the mapping cyclinder M(f°j)
is a strong deformation retract of M(f).

Proof (i): Follows immediately from Proposition A.4.8 (ii).

(ii): Follows from Proposition A.4.8 (vi), because D x {0} is a strong
deformation retract of D x I.

(iii): Observe that A|_| (D x [)=ALD and by the law of vertical
composition, M(f)=(AuD)JHD x I), where 7:DxI->A_D is a
characteristic map. Then, ij, is the composition of the closed cofibrations
Dg AuD g M(f).

(iv): Given arbitrarily xeD,

rrip(x) =r (S, 1)) = f(pri(x, 1) = f(x).

(v): From the previous property, and the fact that r, is a homotopy
equivalence, one concludes that f is a homotopy equivalence iff ij, is a
homotopy equivalence. But i, : D — M(f)is a closed cofibration; then, i is
a homotopy equivalence iff D is a strong deformation retract of M(f) (see
Proposition A.4.2 (v)).
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(vi): The map r, is a homotopy equivalence, and therefore induces
isomorphisms of the homotopy groups; then, the equation f =r i,
implies that f induces isomorphisms of the homotopy groups iff i, induces
isomorphisms of the homotopy groups. But the latter condition is
equivalent to the n-connectivity of the pair (M(f), D), for every neN (see
Corollary A.8.12).

(vil): First note that the mapping cylinder M(@)=D| |;(D' x )=
D x{0}uD’ x I is considered to be a subspace of D xI containing
D x {0}, with all inclusions involved being closed cofibrations. Then

M(f)=ALJ,(D x1I) by definition of M(f)
=AL,M®@)LIFD xI) by vertical composition
=(AL (DD x D) L7(D x I) by definition of M(i)
=AU D xHL(D x I) by horizontal composition
=M(f)LUAD x I) by definition of M(f")

where dom f=D x {0} uD’ x I. Since i : D' D is a closed cofibration
dom f is a strong deformation retract of D x I. Now Proposition A.4.8 (vi)
implies that M(f") is a strong deformation retract of M(f). ]

Some important results for the development of this book will be discussed
next; their proofs are obtained using mapping cylinders.

Proposition A4.11 Let f : Y-/— A be a partial map. If f : D—>A isa
homotopy equivalence, so is any characteristic map [ : Y—>A| |, Y.

Proof First notice that D is a strong deformation retract of M(f) via iy
whenever f is a homotopy equivalence (see Proposition A.4.10 (v)); then,
observe that Y is a strong deformation retract of Y| |, M(f)= M(f)uipY

(see Proposition A.4.8 (vi)).
Next, compute A|_| (D xIUY x {1}):

AL D xTuY x {1})=M(f)LIF(D x IUY x {1}} by vertical composition
= M(f)LJ;, Y by horizontal composition.

Letf: DxIuY x {1} >M(f)LJ;, Y be a characteristic map. Then, by
vertical composition, it follows that

M(f)=ALl, Y xI
=MNUp Y)Y x L
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Since i : D—-Y is a closed cofibration, D x IuY x {1} is a strong
deformation retract of Y x I (see Proposition A.4.1(iii)); then, M(f) ;Y
is a strong deformation retract of M(f). Therefore, Y is a strong
deformation retract of M(f). Finally, / is a homotopy equivalence (see

Proposition A.4.10 (v)). O

The next result shows that for every partial map f : Y-/— A with
domain D, the type' of A|_|, Y depends on the types of A and (Y, D).

Theorem A.4.12 (The gluing theorem) Let

Y‘i—D—bA

h)’ hD hA

Y"T—D’_,> A

be a commutative diagram in which i, i’ are closed cofibrations, and hy, hp, h ,
are homotopy equivalences. Then A|_| ;Y and A'|_| ;. Y’ have the same type.

Proof See Brown (1988, 7.5.7). O

Take up again the diagram of the gluing theorem; changing some of its
assumptions, one obtains another interesting result.

Proposition A.4.13 Let

Y".,_DI——,_’AI

i A

be a commutative diagram in which i,i', hy, h, and h, are closed cofibrations
and D = D' " Y,where Y, D and D’ are considered as subspaces of Y'. Then, the
induced map h : A| |, Y- A'|_|,Y"is a closed cofibration.

¥ In this book, ‘type’ means ‘homotopy type’; more precisely, two spaces are said to have the
same type whenever they have the same homotopy type.
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Proof” Sce Lewis (1982, Proposition 2.5). O

The LEC-property for adjunction spaces given in the next corollary is
due to Dyer & Eilenberg (1972); the simplified proof presented here is
inspired by that of Lewis (1982).

Corollary A.4.14 Let f . Y-/ — A be a partial map such that the inclusion
i:D=domf—Y is a closed cofibration. If A and Y are LEC spaces, so
is the adjunction space A|_|,Y.

Proof Because of the multiplication law (L5), the product space (4] ,Y)

x (AL, Y) is homeomorphic to the adjunction space of the partial map
(fxNO(f x[): Y xY =/=(ALl;Y)x AvA x(AL],Y)

with domain Y x DuD x Y (the inclusion of the latter spacein Y x Yisa

closed cofibration; see Proposition A.4.2 (iv)). Consider the partial maps

Vpop:YxD| IDxY-/->DxD
and

Vi (AL Y)x AL JAX (AL Y)—/>AXx A

whose respective domains are D x DD xD and A x AuA x A and
whose restrictions to these domains are the appropriate folding maps. By
constructing their adjunction spaces, one obtains the closed cofibrations

ji:DxD->YxDuDxY
and
Ja i AxA—-(ALL Y)Y x AUA X (AL, Y).
Letd,: A Ax A, Ay: Y—>Y x Yand 4, : D— D x D be the diagonal
maps; the hypotheses of the Proposition imply that these three maps are

closed cofibrations (see Proposition A.4.6 for A,). The proof is concluded
by taking the closed cofibrations

Ay: Y->YxY,
Ji°Ap : D->Y xD|_ |DxY,
jaed i A-(ALL Y)Y x ALJA X (AL, Y),

the diagonal map of A |,Y into (A|J,Y)x(4ALl,Y) and applying
Proposition A.4.13. 0

The next result makes precise the effect of changing the attaching map
within its homotopy class.
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Proposition A.4.15 Let i : D—Y be a closed cofibration and f, : D— A,
4=0, 1, be homotopic maps. Then the adjunction spaces X o= A|_| 7o Y and
X, =AL],,Y are homotopically equivalent, via homotopies rel. A.

Proof Fix inclusions i, : Ac X, and characteristic maps [, : Yo X,.
Form the union space X =X,[1,X, and fix inclusions j; : X, 5 X.
Note that jyoi, =j, i, =j is an inclusion of 4 into X. Now take fi:Yx
{A}> X to be the map obtained by composition of the canonical
homeomorphism Y x {4} — Y with the maps f, and j,. Next,leth : D x [
— A be a homotopy connecting f, and f,. Define a map
g: Y=Y x{0juDxIuY x{l}>X
by
glY x {1} =f,, i=0,1,
gD xI=joh.

(Note that g can also be interpreted as a partial map Y x [-/— X.) For the
moment, note that g takes the subspace ¥ = Y x {0} UB x I of Y into the
space X o; thus, g induces a map g, : ¥ — X, which will be considered both
as a partial map Y-/— X, and as a partial map Y x I-/— X,. Let
k : D Y denote the inclusion which takes D into D x {1}; this implies
that Y= Y|_|, Y. The commutative diamond

Ly
\ /'

Xo

where i, denotes the inclusion, gives rise to the following sequence of
equations:

X=XolLJsX,=X,i,(ALI,, Y) bydefinition
= Xollios, Y by horizontal composition
=Xoldyt Y by commutativity of the diamond
=X, ngo(f’ L Y) =X, L, Y by horizontal composition.

Assuming that g : Y — X is a characteristic map for the attaching of Y
to X, via g,, the law of vertical composition guarantees that

X=X1,(Y x)=(Xo L V)L, Y x =XolLl, Y x1I.

Because Y =domg, is a strong deformation retract of Y x I, the
adjunction space X is a strong deformation retract of the large space X. By
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the symmetric argument, the same is true for the adjunction space X,.
Gluing together the appearing maps and homotopies, both X, and X, are
homotopy equivalent, via homotopies rel. A4.

Thus, it remains to show that g is a characteristic map for the attaching of
Y to X, via go. The map k : Y — ¥ given by k(y) = (y, 1) is a characteristic
map for the attaching of Y to ¥ via k. Sincej, f; : Y — X isa characteristic
map for the attaching of Y to X, via izo f, = gq°k, the equations g| Y
=jo,°go and gok =j,° f, imply that g has the desired property. O

The previous proposition is particularly interesting in the case of the
mapping cylinders.

Corollary A4.16 Let f,: D> A, A=0,1 be homotopic maps; then, the
mapping cylinders M(f,) and M(f,) are homotopy equivalent via a homo-
topies rel. AQQD.

Proof The mapping cylinder M(f) of any map f : D— A can also be
viewed as the adjunction space (AD)| (D x I), where f : D x {0, 1}
— A D is induced by f at the level 0 and by 1, at the level 1. O

Now for some variations of the construction of mapping cylinders. If
f : D> Ais any map, then the quotient space C(f)= M(f)/D, where D is
thought as embedded into M(f) via the map i, (see Proposition A.4.10), is
called the mapping cone of f. The unique point of C(f) corresponding to the
shrunken space D is the peak of the mapping cone. The composition of the
inclusion A — M(f) with the projection M(f)— C(f) is again a closed
cofibration. In the special case where f = 1,,, one has the cone CD = C(1,,)
over D which contains D as a subspace in the obvious way. The quotient
space XD = CD/D is the suspension of D.

If (D, dy), (4, a,) are well-pointed based spaces and f : (D,dy)— (A4, ay) is
a based map, then one might view the interval {d,} x I as a subspace of
M(f), embedded via the restriction of a characteristic map f and form the
quotient space M.(f)= M(f)/({do} x I) which has a distinguished point,
the class z, corresponding to the set {d,} x I; the well-pointed based space
(M.()), zo) is the reduced mapping cylinder of f. At last, analogously to the
unreduced case, one obtains the reduced mapping cone (C.(f),z,), the
reduced cone (C.D,zy) and the reduced suspension (X.D, z,). The reduced
cone (C.D,zy) for the case (D,dy)=(S",e,) was already discussed in
Section 1.0; in that context, the reduced suspension was also defined.

Finally, observe that the reduced cone construction can also be
considered as a special case of the smash product (D A A, z,) of two based
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spaces (D, d,), (A,a,) given by
DA A=(Dx A)D x {ap} u{dy} x A)
and the evident base point.

Induced fibrations, mapping tracks and some further results
in the theory of fibrations

Recall the definition of pullback and the related notion of ‘map induced
from a map by another map’.

Proposition A.4.17 If p : Y — X is a fibration (resp. a covering projection)
and f : A— X is any map, then the map induced from p by f is also a
fibration (resp. a covering projection). If, moreover, f is a closed cofibration,
then the map induced from f by p is also a closed cofibration.

Proof See Spanier (1966, Proposition 2.8.6) and Strgm (1968, Theorem 12).
O

The dual of the mapping cylinder is the mapping track: given a map
/ : Y> X form the pullback of the fibration v, : X’ > X and the map f
to obtain a fibration 75 : T(f) = Y[—IfX’ — Y; the space T(f)is a mapping
track of f; there are two other maps connected to this situation: the
cross-section u : Y — T(f) defined by u(y) = (y,w,)) (Where w,, is the
constant path at f(y)) for every yeY, and p': T(f)— X defined by
p'(y,A) = A1), for every (', )e T(f).
The following result holds true (compare with Proposition A.4.10).

Proposition A.4.18 Let f : Y — X be any map. Then,
(i) the map vy : T(f)— Y is a fibration;
(i) the composition u°v, is fibre homotopic to 1y in particular,
u: Y- T(f)is a homotopy equivalence;
(iii) the map p' . T(f)— X is a fibration;
(iv) f=p'ou

(v) f : Y > X isa homotopy equivalence iff p' is a homotopy equivalence.
Proof For the non trivial parts, see Spanier (1966, Theorem 2.8.9). 0O

The gluing theorem (Theorem A.4.12) has a dual for fibrations:

Theorem A.4.19 (The cogluing theorem) Let
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P f
Y—*Xe*+——D

hy hx hp

Y'_p,’X"'*D'

be a commutative diagram, in which p,p’ are fibrations and hy, hy, hp, are
homotopy equivalences. Then, the spaces D[1,Y and D'[],. Y’ have the
same type.

Proof See Brown & Heath (1970, Theorem 1.2). O
This theorem has several interesting consequences.

Corollary A4.20 Let p: Y—> X be a fibration and let f : A> X be a
homotopy equivalence. Then, f : ANY — Y is a homotopy equivalence.

Proof See Brown & Heath (1970, Corollary 1.4). For an alternative proof
see tom Dieck, Kamps & Puppe (1970, Satz 7.30). O

Corollary A.4.21 Let p: Y — X be a fibration with path-connected base
space X; then, the fibres of p have the same homotopy type.

Proof Let w : by ~b; be a path in X connecting the points b, and b,.
Then, the fibres over b, and b; are both homotopy equivalent to the total
space of the fibration induced by w : I - X. For an alternative proof, see
Spanier (1966, Corollary 2.8.13). O

A mapp : Y- X is locally trivial if every point xe X has a neighbourhood
U such that the map induced from p by the inclusion U < X can be chosen
as the projection of the product U x p~!(x) onto U; then, the following
statement holds true.

Theorem A.4.22 A locally trivial map with paracompact codomain is a
fibration.

Proof See tom Dieck, Kamps & Puppe (1970, Satz 5.14). (]

Remark Here a word of warning is necessary. The products which appear
in the definition of local triviality are taken in the category of weak
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Hausdorff k-spaces. Thus, one can only apply the lifting property to
homotopies whose domain also is a weak Hausdorff k-space. That means
that one does not obtain Hurewicz fibrations in their most general sense,
but still in a somewhat stronger sense than that of Serre fibration.  []

The following theorem is an important result in the theory of fibrations;
it is an inverse to the fact that a fibre homotopy equivalence induces
homotopy equivalences for all fibres and also, in a certain sense, is an
inverse of Corollary A.4.21.

Theorem A.4.23 Let X be a path-connected space with an open covering
{U, : eA} which admits a subordinated locally finite partition of unity and
such that the inclusion maps U;— X are homotopic to constant maps.
Moreover,letp: Y- X and p’' : Y — X be fibrationsand let f : Y > Y’ be
a map such that p'>f =p. Then, f is a fibre homotopy equivalence if the
restriction of f to some fibre is a homotopy equivalence.

Proof See Dold (1963, Theorem 6.3). O

The assumptions on X in the previous theorem are satisfied, e.g., by all
spaces having the type of a CW-complex (see Theorem 5.2.1). The theorem
also allows ‘delooping homotopy equivalences’.

Proposition A.4.24 Let Y, X be path-connected spaces with locally finite
open coverings which admit subordinated locally finite partitions of unity
and such that the inclusions of the members of the coverings into the respective
spaces are homotopic to constant maps. Then, a based map f : (Y,y,)—
(X, xo) is a homotopy equivalence iff the induced map Qf : QY ->QX isa
homotopy equivalence.

Proof ‘=’: By direct computation.

‘<= See Allaud (1972, Theorem 1). Let vy : Z — Y denote the fibration
induced from vy : PX — X by f whose fibre over y, is £2X. The unique
map g : PY — Z satisfying vy°g = v, and fog = Pfinduces the homotopy
equivalence 2 f when restricted to the fibres over y,; hence, g is a fibre
homotopy equivalence (see Theorem A.4.23). Because PY is contractible,
this shows that Z is contractible.

Next, note that the fibre PX over X, of the fibration v, : X' = X, w—
w(1), is contractible. The fibre over x, of the canonical fibration
p': T(f)— X is also contractible because it is homeomorphic to Z;
moreover, p’ factors through v, and the induced map T(f)— X' is a
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homotopy equivalence (see again Theorem A.4.23). But v, itself is
a homotopy equivalence and so is p’. Since f is the composition of a
homotopy equivalence and p', it is also a homotopy equivalence. O

A.S Union spaces of expanding sequences

An expanding sequence of spaces is a sequence {X, : neN} of spaces such
that, for every neN, X, is a subspace of X,.,, and every inclusion
X,—X,,, is a closed cofibration; the union space of the expanding
sequence is the space X = ( ), X, endowed with the final topology with
respect to the family of inclusions X, = X. Then, all X,, are closed subspaces
of X (see Lemma A.24) and X is determined by the family
{X, : neN}.

Given an expanding sequence {X, : neN} of spaces with union space
X, a sequence {f, : neN} of maps f, : X, —Z, where Z is any space, is
said to be compatible, if, for every neN, f, . | X, =f,; every such sequence
induces a unique map f : X - Z such that f| X, =,.

Proposition A.5.1 Let {X, : neN} be an expanding sequence and let X be
its union space. Then,

(i) for every space Z, the sequence {X,x Z : neN} is an expanding
sequence with union space X x Z,

(i) {X, x X,} is an expanding sequence with union space X x X;

(ii1) the inclusions X ,— X are closed cofibrations, for every neN;

(iv) X is (perfectly) normal iff all spaces X, are (perfectly) normal,

(v) X is a paracompact iff all spaces X, are paracompact.

Proof (i): Since all the inclusions X, — X, ., are closed cofibrations, so
are the inclusions X, x Z— X, x Z (see Proposition A.4.2(iii). In order
to show that X x Z is determined by the spaces X, x Z, take a function
f X xZ-Y such that f|X, x Z is continuous, for every neN. Then,
according to the exponential law, the adjoint functions f, : X,— YZ are
all continuous and so is the adjoint of f, since X is determined by the
family {X,}. Again, using the exponential law, it follows that f itself is
continuous thus, proving the assertion.

(ii): The inclusions X, x X,—» X, x X+, and X, X X,;; =X, X
X,+, are closed cofibrations (see Proposition A.4.2(iii)) and so is the
inclusion X, x X,—X,,+1 X X,.; (see Proposition A.4.2(i)); thus,
{X, x X,} is an expanding sequence. The space X x X is determined by
the subspaces X,, x X (see (i)) and each X, x X is determined by the
family of subspaces {X,, x X, : keN} (again, use (i)); therefore X x X is
determined by the family {X, x X, : m,keN}. Since every X,, x X, is
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contained in some X, x X,, the space X x X is determined by the family
of subspaces {X, x X,} (see Proposition A.2.1).

(iii): For every keN, take a retraction ri: Xy 4y X [ > X, 4 x {0} U X, x 1
(see Proposition A.4.1(ii)). According to (i), X x I is the union space of
the expanding sequence {X, x I}; thus, in order to construct a retraction
r: X xI-Xx{0}uX,xI,itis sufficient to exhibit a compatible family
of suitable maps f, : X, x [ - X x {0}u X, x I, for all keN. For k<n,
take f, to be the canonical inclusion; for larger k’s, define inductively

(X, 0)7 t= 0,
Jer 1060 =qrilx, 0), rx, )€ X, 41 x {0},
Silri(x, 1)), otherwise.

(iv)=: Closed subspaces of (perfectly) normal spaces are (perfectly)
normal.

(iv)<=: Let C be a closed subset of X and let f : C—1I be an arbitrary
map. Using the normality of the spaces X,, define inductively extensions
foi X,—Tofthemapsf, : X,_,u(CnX,)> I definedbyf |X,_,=f,-1,
f11CnX,=f|CnX,. The set of maps {f, : neN} now defines a map
f» @ X =1 which extends f, thereby proving the normality of X.

Now assume that all X, are perfectly normal and take a closed subset
Cc X. The sets C,=Cn X, are closed in the respective spaces X,.
Construct inductively a compatible sequence {f,:neN} of maps
fu © X, — [0, 00) with zero sets C,, in the following manner. To begin with,
take any suitable map f, whose existence is guaranteed by the perfect
normality of X,. If the map f,_, is constructed, first extend it over
C,u X,_, by assigning the value 0 to the points outside X,_,, and then
extend the latter to a map f* : X, — [0, co) via Tietze’s extension theorem.
Now use the perfect normality of X, to obtain a map f” : X, —[0, o)
with zero set C,u X, _,; the map h,=f'+f" has the required property.

(v)=: Trivial.

(v)<=: The union space of an expanding sequence is topologically
dominated by the sequence, and so it inherits paracompactness (see
Proposition A.2.5). O

The reader might question the fact that no mention has been made to the
restriction agreed upon at the beginning of this book, namely, that all
work be done in the category of weak-Hausdorff k-spaces; the previous
proposition is true in the category of topological spaces, but is it true in
the more restricted category used here? The next result proves that it is!

Proposition A.5.2 The union space of an expanding sequence of weak
Hausdorff k-spaces is a weak Hausdorff k-space.
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Proof Let {X,: neN} be an expanding sequence of weak Hausdorff
k-spaces and let X denote its union space in the category of topological
spaces. The space X can be viewed as a colimit in the category of
topological spaces of a diagram in the subcategory k(T op). Since k(T op)
has colimits, and the inclusion functor of k(Top) into the category of
topological spaces preserves colimits, the space X is a k-space.

To prove that X is weak Hausdorff, first note that the product X x X
is the union space of the expanding sequence {X,x X, : neN} (see
Proposition A.5.1(ii)). Then, observe that, because the spaces X, are weak
Hausdorff, AX n(X, x X,)=AX,isclosed in X, x X,; hence, the diagonal
AX is closed in X x X. O

A space may be the union-as a set—of an expanding sequence of
subspaces, and yet may fail to be determined by these subspaces; the
following result describes a case in which the topology of a space coincides
with the topology determined by a family of subspaces.

Proposition A.5.3 Let {X, : neN} be an expanding sequence of subspaces
of a space X such that X = ),en X, (as sets) and for every neN, X, = X1
(with respect to X). Then, X is the union space of the expanding sequence
{X, : neN}.

Proof The assumption X, < X «+1 implies that X is already the union of
the open sets X,. Now, take a set W < X such that Wn X, is open in X,
for every neN. Then, W X, is open in X,, and thus in X. Therefore,

W=WnX=wn|) X,= WnX,
neN neN

is open in X. O

In the presence of normality there are still stronger connections between
the topologies of the spaces forming the sequence and the topology of the
union space.

Proposition A.5.4 Let {X,: neN} be an expanding sequence of normal
spaces and let V be a subspace of its union space X. Then,

(1) the closure of V is the union of the closures of all intersections VnX,;
ie.,

V= O VX,
n=0

(ii) Vis determined by the family {V n X, : neN}.
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Proof (i) Let xeX be a point such that x¢ ¥ A X,, for all neN, and let
meN be such that xe X ,,. The normality of X,, implies the existence of a

Using the normality condition over and over again, one finds inductively
open sets U, in X,, for every n>m, such that U,>U,_,, and

U,nVnX,=. It follows that the set U = Uz, U, is a neighbourhood
of x in X such that UnV=¢; hence, x¢V. This implies state-
ment (i).

(ii): Because of its universal property, the topology determined by the
family {V' n X, : neN} is finer than the subspace topology. Conversely,

let U<V be closed in the topology determined by the family {V' nX,},
that is to say, such that UnX,nV= UnX,, for all neN. Hence,

X — @

UnV= ) UnX,nV= O UnX,=Un
n=0

(i) n=0

X,=U. O
n=0
Proposition A.5.5 Let {A, : neN} and {X,: neN} be given expanding
sequences of normal spaces; suppose that for every neN, A, is a subspace
of X, and the pair (X, A,) has the homotopy extension property. Then, the
union space A =\ J,enA, is a subspace of X = | ),en X, and the pair (X, A)
has the homotopy extension property.

Proof The space A is a subspace of X (see Proposition A.5.4(ii)). Now,
suppose one is given an arbitrary space Z and maps g : X x {0} - Z and
H : A x I > Z which agree on A x {0}. Because (X o, 4¢) has the homotopy
extension property, there is a homotopy K, : Xy x [—>Z such that
KolAg x I =H|Ay x I and Ko| X x {0} =g| X, x {0}. Assume by induc-
tion that there is a homotopy K, : X, x I »Z such that K,|4, x I =
H|A,x1, K, X,x{0}=g|X,x{0} and K, X,.,xI=K,_,. The
homotopies H| A4, ., x I and K, define a homotopy k,,ﬂ (A, X, X
[ - Z.But the pair (X, 1, 4,+ 1 U X,,) has the homotopy extension property
(see Proposition A.4.2(vii)) and therefore K, ., and g|X,., x {0} induce
a homotopy K, ., : X,+, x = Z. The homotopies K, obtained in this
way form a compatible sequence, and thus give rise to the desired extension
K : X x I —>Z of the given homotopy H. O

Corollary A5.6 Let {Y, : neN} be an expanding sequence of normal LEC
spaces; then, the union space Y =\ ),.n Y, is an LEC space.

Proof For every neN, take X, =Y, x Y, and A, = AY,. Because all Y,’s
are LEC spaces, the inclusions A4,-X,,4,,,—X,,, are closed
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cofibrations. Moreover, the inclusion X,— X, , is a closed cofibration
(see Proposition A.5.1 (ii)); thus, the inclusion A,— X, ., is a closed
cofibration (see again Proposition A.4.2 (i)) and factors through 4, ,.
This implies also that the inclusion 4,— A4, , is a closed cofibration (see
Proposition A.4.2 (vi)). Therefore, {A4,:neN} and {X,:neN} are
expanding sequences satisfying Proposition A.5.5. d

A very useful technical tool in dealing with union spaces of expanding
sequences consists in the possibility of ‘gluing’ homotopies; we borrowed
this technique from Schubert (1968, page 202).

Proposition A.5.7 Let {X, : neN} be an expanding sequence with union
space X. Let Z be a space and {g, : neN} be a sequence of mapsg, : X >Z
such that g,,,~g, rel. X,. Then, the map g: X —>Z defined by
g1 X, =9gul X, for every neN, is homotopic to g, rel. X,.

Proof Observe first that, for every m>=n, ¢,|X,=9.,/X,, and so g is
well-defined and continuous.
For every neN, take a homotopy H, : X x - Z rel. X,, from g, to
g, +1, and define the function H : X x [ - Z by
Hyx (4 )n+2—nin+2), —— <<t
H(x,t) = n+1 n+2
g(x), t=1.

To prove the continuity of H, one must show that, for every neN, H| X, x I
is continuous (see Proposition A.5.1 (i)). The continuity of H|X, x I
follows from the fact that, for every (x, t)e X, x (n/(n + 1), 1], H(x, t) = g(x).
The map H is a homotopy rel. X, between g and g,. O

Corollary A.5.8 Let {X, : neN} be an expanding sequence with union space
X and such that X, is a strong deformation retract of X, ,, for every neN.
Then, X is a strong deformation retract of X.

Proof Leti,: X,— X, ,j. : X,— X denote the respective inclusions and
choose retractions r, : X,.,; — X, so that

for,~1,, rel. X,

n+ 1

for every neN. Now, for all n,keN, define inductively the retractions
For @ Xosr— X, by taking r,o =14, and r, ;4 =r,,°r, ., For a fixed n,
these retractions together yield retractions s,: X — X, such that



278 Appendix

S, =rp°s,, ; take g, = j,°s, : X - X. Notice that
9n _.’n r, _Jn+l °ry Sn+l
> Jn+1°Sn+1 = Gn+ 1> TEL X,
Since g,| X, = j, = 14| X,, for all neN, it follows that 1y ~g, rel. X,. [

Given an expanding sequence of spaces, it is possible to derive from it
another one whose union space has the same type but nicer properties
than the original one; this is done by means of the telescope construction
(see Milnor, 1962). More precisely, let {X, : neN} be an expanding
sequence of spaces and let X be its union space. For every neN, define
T,= X, x[mn+1]and T, = Uk o Tk as subspaces of X x [0, c0). Because
the inclusion X, — X is a closed cofibration (see Proposition A.5.1 (iii))
and the same holds true for the inclusion [n,n + 1] - [0, 00), the inclusion
’T"n—oX x [0, 0) is a closed cofibration (see Proposition A4.2 (iv)). By
induction, this shows that every inclusion T, , = T,u T,l+ =X x [0, 00)
is a closed cofibration (see Proposition A.4.2 (vii)), and, consequently,
every inclusion T,— T, is a closed cofibration (see Proposition A.4.2
(vi)). Thus, the sequence {T,} is again an expanding sequence whose union
space T is called the telescope of the expanding sequence {X,}. From this
definition, it is immediately clear that the telescope T can be considered
as a subspace to the product X x [0, co0).

The notion of telescope of an expanding sequence was originally
introduced in (Milnor, 1962); we use the gluing of homotopies to derive a
simple proof of the fundamental property of telescopes:

Corollary A.5.9 The union space of an expanding sequence and its telescope
have the same type.

Proof Take an expanding sequence {Y, : neN} defined by Y,=T and
Y, = X, x [0,0)u T, for every neN\{0}; observe that each term is a strong
deformation retract of its successor. Then, T is a strong deformation retract
of X x [0, o) (see Coroliary A.5.8). O

The final results of this section need some preparatory considerations. A
map of pairs f : (Y,D)—(X, A) is a homotopy equivalence of pairs if there
is a map of pairs § : (X, A)— (Y, D) such that: -
(1) g is a homotopy inverse of f in the ordinary sense; and
(2) the homotopies connecting go f and feg to the respective identity
maps move A and D respectively, within themselves.

The second condition is neither trivial nor automatic; however, it holds
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true if the inclusion maps D — Y and A — X are closed cofibrations. More
precisely:

Lemma A.5.10 Let [ : (Y,D)— (X, A) be a map of pairs which is an ordinary
homotopy equivalence and assume that the induced map f : D— A is also
a homotopy equivalence. Furthermore, suppose that the inclusions i : D—>Y
and i : A— X are closed cofibrations. Then, f is a homotopy equivalence
of pairs. Moreover, given a homotopy inverse g for f and a homotopy
H: fog~1,, the needed homotopy inverse § of f and the homotopy
H : fog~1y can be chosen to extend g and H, respectively.

Remark The proof of this result is contained in Brown, 1988, Section 7.4;
the proof given here is more direct.

Proof of Lemma A.5.10 Let g be a homotopy inverse of f and let H be
a homotopy from fog to 1,. First, take an extension H : X x I » X of
ioH such that H(-, 1) = 14; then, h = H(-,0) extends fog. Next, choose a
homotopy inverse of f, say k, a homotopy K : ko f ~ 1, and an extension
K of Ko(icg x 1;) such that K(-,0)=keh; then §g=K(-,1) is again a
homotopy inverse of f, extends g, and therefore is a map of pairs
(X, A)— (Y, D). The bulk of the work consists in constructing a homotopy
from fok to 1, whose restriction to D x I is ioH. To this end, one uses
several times the homotopy extension property of the pair (X x I,
X x {0,1} UA x I) given by the product theorem (see Proposition A.4.2
(iv)).

Take Ly : X xIxI—Y as a homotopy satisfying the following
properties:

(x, t, - g(x), for xeX and tel,
(x,0,5)—K(g(x),s, forxeX andsel,
(x,1,5)— K(x, s), for xe X and sel,

(x,t,s)—K(iog(x),s), forxeAandt,sel.
Thus, Ly(-,—,0) is a homotopy from ko fog to koh, rel. A. Next, let H be
a homotopy from fok to 1, and take L, : X x I x I » X as a homotopy
satisfying the following properties:

(x,t,0)—=f(Ly(x,1,0)), forxeX andtel,

(x,0,5)— H(f°g(x),s), forxeX andsel,

(x,1,5)— H(h(x), s), for xe X and sel,

(x,t,s)—H(hei(x),s), forxeAAandt,sel.
Now, L,(-,—, 1) is a homotopy from fog to h, rel. D. ~

Let G : X x I - X be an extension of iH to a homotopy from fog to
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a map; then, take L, : X x I x I » X as a homotopy such that:
(x,t,0)—L,(x,t,1), forxeXandtel,
(x, 0, s)— G(x,s), for xe X and sel,
(x, l,s)n—»ﬁ(x, s), for xeX and sel,
(x,t,8)—io H(x, s), forxeAandt,sel.
Without loss of generality, one may assume that the homotopy H has the
following property: H(x,t)= x, for all xe4 and all te[3, 1]. This allows
to find a homotopy L; : X x I x I - X satisfying the conditions:
(x,t, )= Ly(x,t,1), forxeX andtel,

(%, 0, s)—G(x, s), for xe X and sel,
(x, 1,s)—>x, for xe X and sel,
(x,t,)—~ioH(x,t +s), forxeA,selandt+s<i,
(x,t, 8)—i(x), forxeA,t,selandandt +s>1
Then, Ly(—, —,0) is a homotopy connecting f °§ to 1, and extending the

given homotopy H on A.

Thus, § is a right homotopy inverse to f and is of the desired kind.
Similarly, one finds a right homotopy inverse ffor g, such that the homotopy
connecting go f to 1y induces a homotopy on D. In the string

gef =gofegef=gef~1y,
all homotopies deform A (respectively, D) into itself, showing finally that
g can be considered as a homotopy inverse for f in the category of pairs
of spaces. ' O

The compatibility of homotopy equivalences of expanding sequences and
union spaces (see proposition below) has been made explicit in tom Dieck
(1971).

Proposition A.5.11 Let

Yo—>Y,——>Y,—>

fo /i /2

be a commutative ladder between two expanding sequences where f, is a
homotopy equivalence, for every neN. Then,themap f : Y — X, where Y, X
are the union spaces and f is the induced map, is a homotopy equivalence.

Proof See tom Dieck (1971, Lemma 6). Construct inductively right
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homotopy inverses g, for the maps f,, neN such that g, , extends g, and
homotopies H, : X, x I - X, such that H,,, extends H, (see Lemma
A.5.10). This gives rise to a mapg : X —» Y and a homotopy H : fog ~1,.
Thus, g is a right homotopy inverse of f. As in the proof of the lemma,
one shows that this is also a left homotopy inverse for f. O

A.6 Absolute neighbourhood retracts in the category
of metric spaces

Proposition A.6.1 (Kuratowski—Wojdystawski embedding theorem) A metric
space X can be embedded in the normed vector space Z = C(X,R) of all
bounded maps X —R by an isometry i : X - Z such that i(X) is closed in
its convex hull H(i(X)).

Proof See Mardesic & Segal (1982, Chapter I, Theorem 3.2). O

The definition of absolute neighbourhood retract is based on the
next result.

Proposition A.6.2 The following two conditions on a metric space X
are equivalent:

(i) for every metric space Z, every closed subspace C =Z and every
map f : C— X, there are a neighbourhood U of C in Z and a
map f : U— X such that f|C = f;

() if X is a closed subspace of a metric space Z then there are a
neighbourhood U of X and a mapr : U — X such that r|X =14.

Proof See Mardesic & Segal (1982, Chapter I, Theorem 3.1 (ii)). d

A metric space X satisfying the equivalent conditions of Theorem A.6.2
is called an absolute neighbourhood retract (abbreviated to ANR). Note
specifically that the empty space is an ANR. A wide class of models of
ANRs is given by the following:

Proposition A.6.3 (Dugundji extension theorem) A convex subset of
a normed linear space is an ANR.

Proof See Mardesi¢ & Segal (1982, Chapter 1, Theorem 3.3). d

As a consequence of this result, Euclidean spaces, balls, geometric
simplices and cubes are ANRs. .
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Proposition A.6.4 A retract of an ANR is an ANR; an open subset
of an ANR is an ANR.

Proof Let X be an ANR, Yc X and r: X—Y be a retraction.
Given any closed subset C of a metric space Z and any
map f : C—- Y, the composition of f with the inclusion map of Y
into X can be extended to a mapf:U—X, where U is a
neighbourhood of C in Z. Then the map f= ro f extends f over U.

As for the second part, let W be an open subset of X andlet f : C—> W
be a map defined on a closed subspace C of a metric space Z. Extend the
composition of f with the inclusion W = X to a map f : V — X, where
V is a neighbourhood of C in Z. Then, f‘ (W) is a neighbourhood of C
in Z and f = f|f~Y(W) extends f over f~}(W). O

The class of ANRs has finite products.
Proposition A.6.5 If X, and X, are ANRs, so is X| x X,.

Proof Let C<Z be closed and let f=(f,f,): C—>X,; xX, be a
given map. The maps f; give rise to neighbourhoods U; of C in Z
and maps 17, U,— X, extending f;, i=1,2. Define U=U,nU, and
f=(filU,f,lU): U X, x X,. O

Proposition A.6.6 Let X be a metric space which is the union of two closed
subspaces X, and X,. If Xo=XnX,, X, and X, are ANRs, so is X.

Proof See Borsuk (1967, Chapter IV, Theorem 6.1). O

In contrast to open subspaces, closed subspaces of ANRs are not ANRs
in general. A condition for this to happen will be given next.

Proposition A.6.7 Let X be an ANR and let A be a closed subset of X. The
following are equivalent:

(i) the inclusion i : A— X is a closed cofibration;

(i1) A is an ANR.

Proof (i)=>(ii): Take a neighbourhood U of 4 in X which is deformable
to A in X, rel A (see Proposition A4.1 (iv)). Let H: UxI—->X be a
corresponding deformation. Notice that H(—, 1)] U is a retraction of U to
A. But U is an ANR, as an open subspace of the ANR X; thus, 4 is an
ANR as a retract of U (see Proposition A.6.4).
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(i)=>(i): If A4 is an ANR, then X=Xx0uUAxI is an ANR (see
Propositions A.6.5 and A.6. 6) Since X is a closed subset of X x I, there
are a neighbourhood V of X in X x I and a retraction r : V > X.

Observe that, for every ae 4 there is an open neighbourhood W, of a in
X such that W,xIcV. It follows that W=|]J,,W, is an open
neighbourhood of 4 in X and that W x I = V. Using Urysohn’s lemma,
construct a mapa : X —I with a(X\W)={0},a(4)={1} and define a
mape : X x I >V by

o(x, 1) = (x, A(x)t).

The composition re : X x - X is a retraction, and therefore the
inclusion of 4 into X is a closed cofibration (see Proposition A.4.1 (ii)).

O

Corollary A.6.8 Every ANR is an LEC space.

Proof If X is an ANR, AX is also an ANR, being homeomorphic to X
and closed in X x X. O

Theorem A.6.9 A metric space which is the union of countably many open
ANRs is an ANR.

Proof See Borsuk (1967, Chapter 4, Theorem 10.2). d

The last proposition in this section shows that spaces of functions from
compact spaces to ANRs are themselves ANRs; more precisely:

Proposition A.6.10 Let C, be a subset of a compact space C and let x, be
a point of an ANR space X; then, the function space (X, xo)““? isan ANR.

Proof See Borsuk (1967, Chapter IV, Theorem 5.1). O

A.7 Simplicial homology
The reader is assumed to be familiar with the basic concepts of homological
algebra as developed in Northcott (1960), MacLane (1963) or Hilton &
Stammbach (1971).
For any given simplicial set X =[] ,X, and any neN, let
C,X = FA(X,) be the free abelian group generated by all n-simplices xe X ,;;
define homomorphisms

d,: C,X->C,_ X
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by setting

dy(x) =} (= 1)"x6,

i=0

where xeX, and §;, i=0,1,...,n are the elementary face operators (see

Section 4.1). A simplicial map f:Y — X induces a chain homomorphism
Cf={C,f =(Cf), : neN} : CY->CX,

in this way, we obtain the chain complex functor C(-) from SiSets to the

category of chain complexes.’

The (integral) homology of a simplicial set X is defined as the homology
of the chain complex CX (see Northcott, 1960, Section 4.6) and is denoted
by

H(X)={H(X)=H,/(CX) : neN}.
This definition can be extended, giving rise to the homology functor from
the category SiSets to the category of graded abelian groups GAG. This
latter functor is obviously defined as the composition of the chain complex
functor C(-) with the homology functor H(-); the graded homomorphism
induced by a simplicial map f : Y — X will be denoted by

fo={fenineN}

Example 1 The simplicial set A[0] has one simplex in every dimension;
thus, for every neN, C,A4[0] = Z; moreover, d,=0if nis odd, and d, =1
if n is even. Consequently, Hy(A[0])=~Z, and, for every neN\{0},
H,(A[0]) =0. O

Proposition A.7.1 If f, : Y - X, =0,1are homotopic simplicial maps, then
(fols =(f1)4. Consequently, simplicial homotopy equivalences induce
isomorphisms on homology.

Proof See Gabriel & Zisman (1967, Appendix 11, Lemma 1.4), Northcott
(1960, Theorem 4.7) or Lamotke (1968, V.2.3). O

Example 2 The standard simplex A[p] contains the simplex A[0] as a
strong deformation retract (see Example 3, Section 4.2). Consequently,
H(A[p]) = H(A[0]), computed in the example above. Similar observations
can be made with respect to the normal subdivision A'[p] of A[p] (see
Lemma 4.6.1) and the simplicial sets Ex A'[p] (see Lemma 4.6.15 (iii)).

O

Do not confuse the chain complex functor C(-) with the cone functors C:Top — Top (see
Section A.4) or C : PSiSets— PSiSets (see Section 4.4).
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We now turn to geometry. The singular homology functor is the functor
Top — GAG obtained by composition of the singular set functor with the
homology functor from SiSets to GAG. The following notation will be
used in this context:

H(X)={H,(X)=H,(SX):neN}
for any space X and

f* = {f*n = (Sf)*n:nEN}
for a map f.
The next result is attributed to S. Eilenberg.

Theorem A.7.2 There is a natural isomorphism between the homologies of
a simplicial set and its geometric realization.

Proof See Gabriel & Zisman (1967, Appendix I1.1). O
In this book only the following fact is needed.

Proposition A.7.3 The geometric realization |ex| of the natural map
ex : X = Ex X induces an isomorphism on homology.

Proof As in the proof of the fact that |ey| induces an isomorphism
between the fundamental groups (see Proposition 4.6.16), one concludes,
from the existence of a left homotopy inverse for the map |ey|, that

lexly:H(IX])—~ H(|Ex X])

is a monomorphism. The remainder of the proof can be done at the
simplicial level (see Theorem A.7.2) and is given in the next lemma.

Lemma A.7.4 For every simplicial set X, the natural map ey:X -Ex X
induces an epimorphism on homology.

Proof The essence of this proof is to construct a natural right chain
homotopy inverse for the chain homomorphism C(ey). The chain
homomorphism f : C(Ex X)— CX needed to achieve that goal will be
defined inductively. First of all, note that

(€x)o : Xo—(Ex X)o

is a natural bijection, whose inverse is used to define f, on the generators.
Next, given a generator x : A[1]— X of C,(Ex X), define

J1(3) = x((e0, 1)) — x((€1,9)-
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Assume f,:C, (Ex X)— C,X constructed for n> 1 and all simplicial sets
X. Consider the generator 1:A'(n+ 1]->A'[n+ 1] of C,, (ExA'[n+ 1])
and choose, once and for all, a chain deC, . {(4'[n + 1]) which is mapped
onto f,°d,,,(1) by the boundary homomorphism; the choice of d is
possible since the simplicial sets A’'[n] have the same homology as A[0] (see
Example 2), and therefore the chain complexes C(4[n]) are exact at all
places with k>0. Now, if X is an arbitrary simplicial set and
X : A[n+1]- X is a generator of C,, ,(Ex X), define
Jor1(x)=C, 41 x(a).

This completes the definition of the chain homomorphisms f.

It remains to define a chain homotopy s={s, : neN} between the
composite chain homomorphism C(ey)of and the identity. By
construction, Cy(ex)e f, is equal to the identity, and therefore one can
take s, = 0. Again, assume that

S, : C{ExX)—>C,,,(Ex X)
has been suitably constructed. Observe that the simplicial sets Ex A'[n]
have the same homology as A[0] (see Example 2). As before, take the
generator 1:A'[n+1]->A[n+1] of C,,,(ExA’[n+1]) and obtain a
chain ceC,, ,(Ex A'[n + 1]) which is mapped onto

Corilex)e fur (1) =1 —=5,°d, (1)
by the boundary homomorphism. For an arbitrary simplicial set X, take
a generator xed'[n+ 1]—- X of C,,(Ex X) and define

Spv1(x) = C, 4 5(0).
This completes the definition of the chain homotopy s and the proof of
the lemma. ad

Remark The method of proof just given can be used under various
circumstances. The common features of these proofs are subsumed by
referring to a proof ‘using acyclic models’. This technique is due to S.
Eilenberg and S. Mac Lane (see Eilenberg & Mac Lane, 1953); the reader
can find a sophisticated treatment of the theory in Dold (1972).

A.8 Homotopy groups, n-connectivity, fundamental groupoid

Homotopy groups: absolute case

A map between based spaces is called a based map if it preserves the base
point; a homotopy between two based maps is called a based homotopy
whenever it is constant on the base point. Based spaces and based
homotopy classes of based maps form the category hTop,. If (Y, y,) and
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(X, x,) are based spaces, the set of all based homotopy classes of based maps
(Y, y0) = (X, x,) will be denoted by [Y, X],.

The case in which (Y, y,)=(S"¢,), neN is of special interest; in this
situation,

7I,,(X, xO) = [S"’ X]*

is the n-th homotopy group of the based space (X, x,).

Every homotopy group has a distinguished element, namely, the class of
the constant map. Thus, every 7,(X,x,) is a pointed set. Observe that
(X, xo) can be considered as the set of all path-components of X its
distinguished element is just the path-component containing the base point.
Write no(X) or simply n(X) for the set of all path-components of the space
X. The higher homotopy groups (for n > 0) live in the distinguished path-
component; they have a group structure — induced by the pinching of the
sphere (see page 7)- which is abelian for n>1 (see Spanier, 1966,
Theorem 1.6.8).

Example 1 7,(B", ¢,) is the trivial group, for all n> 0.

Example 2 The assignment 1+—[1g.] induces an isomorphism Z -,
(S ep), for all n>0 (see tom Dieck, Kamps & Puppe, 1970,
Section 16).

The group =,(X, x,) is called the fundamental (Poincaré) group of (X, x,).
The fundamental group of a space does not have to be abelian: the
fundamental group of the space X =S'V S! - figure eight —is the free
group in two generators.

A space X is said to be simply connected if X is path-connected and its
fundamental groups (with respect to any base point) are trivial.

For each n >0, every path ¢ : I - X gives a natural isomorphism

Oyt TC"(X,XI)—)T[,,(X, XO)’ Xo = 0.(0)1 X, = O'(]),

which depends only on the homotopy class of the path o, rel. end-points (see
Spanier, 1966, Theorem 7.3.8).

As an immediate consequence of this fact, one can deduce that the
fundamental group #,(X, x,) acts on n,(X, x,), n = 1. In particular, ifn = 1,
this is an action by inner automorphisms; if n > 1, it extends to an action of
the integral group ring A = Zn,(X, x,), thus making 7,(X, x,) a left A-
module (see Spanier, 1966, Theorem 7.3).

If (Y, o) is a second based space and f : (X, xq) — (Y, y,) is a based map,
composition with f induces a collection of functions

f#={fn : nn(XaXO)—’nn(Y’yO) : nZO}
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The functions f, are homomorphisms if n > 1; f, preserves the distingu-
ished element.

Based spaces and based maps form a category, denoted by Top,. The
constructions described before yield functors

7y : Top, — pointed sets
n, : Top, —groups
n, : Top, — Abelian groups, n>1.

Homotopic maps induce the same homomorphisms, in the following sense.

Proposition A.8.1 Let H : Y x I - X be a homotopy from f to g. Then, for
every y,€Y,

gn= O',,Of,,

where o denotes the path H|{y,} x I from f(yo) to g(y,). In particular,if H is
a based homotopy, g,= f,-

Proof See Spanier 1966, Theorem 7.3.14. O

Thus, any map f : X —>X homotopic to the identity map induces
isomorphisms of the homotopy groups. More generally, given maps
f:Y->X,g: X—>Y withgof ~1,, it follows that f induces monomor-
phisms and g induces epimorphisms of the homotopy groups. If the spaces
X and Y are related by maps f and g as above, one says that X dominates Y
(or that Y is dominated by X).

The following is a consequence of these observations:

Corollary A.8.2 If f : Y— X is a homotopy equivalence, then, for every
yo€Y and every neN, the homomorphisms

Ja : mlY, yo) = (X, f(vo))

are isomorphisms. O

This suggests a lessening of the notion of homotopy equivalence. A map
f:Y — X is said to be a weak homotopy equivalence if Y # ¢ and if for every
point y,eY the induced homomorphisms

fo: mlY, o) = (X, £(¥o))

are isomorphisms; notice that it would suffice to require the latter condition
for just one point in every path-component of Y. Clearly, any homotopy
equivalence with non-empty domain has this property. The following is an
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example (often quoted but seldom explained) of a weak homotopy
equivalence which is not a homotopy equivalence.

Example 3 In the plane R?, for every neN\{0}, consider the following
segments:

A,, the segment with vertices (— 1,0) and (0, 1/n);
B,, the segment with vertices (0, — 1/n) and (1, 0).

Moreover, let C be the segment with vertices (— 1,0) and (1, 0) and take

the subspace of R?
Z=< U A,,)uCu( U B,,>,
neN\{0} neN\{0}

based at the origin p = (0,0) (compare with Example 4, Section 5.1).
Consider the constant map k: Z—{p}. Then, the following two
statements hold true:

(1) k is a weak homotopy equivalence (because all homotopy groups
7.(Z, p) vanish);
(2) kis not a homotopy equivalence (because k has no homotopy inverse).

Proof of (1): Consider a based map a : (S",e,) > (Z, p) and let
A= {seS" sa(s)e ) A\ {(— 1,0)}};
n=1

notice that 4 is an open subset of §”. Let H : $" x I - Z be the function
defined by

a(s), s¢ A,

The function H is continuous. This follows from the fact that, for all
sequences {(s;, ti)eZ x I : ieN} that converge to a point, (s, t)e(S"\;{) x I,
a(s) =(—1,0). Assume that a(s) #(—1,0); then, U=2Z\{(—1,0)} is a
neighd>ourhood of a(s)eC. Since $" is locally path-connected, there exists a
path v : I - a~'(U) connecting s to some s; hence, acw is a path in U
connecting a(s) and a(s;), which is impossible.

Heace, H is a based homotopy from a to a map 4’ whose image is
contaned in Cu(U;‘f:lB,,). Similarly, deform the map &’ to a map a”
whose image is contained in C; but a” is clearly homotopic to the constant
map from S”" to p. Gluing all these homotopies together, one obtains that
[a] =0en,(Z, p).

Proof of (2): The existence of a homotopy inverse for k would require
the existence of a homotopy H :Z xI—Z such that Hy=1, and
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H(z) = p=(0,0), for every zeZ. Consider the sequences
{2,=(0,1/n) : neN\{0}}
and
{—2,=(0, ~ 1/n) : neN\{0}}.
Notice that both converge to the point p.

Since Hy(z,) =z, and H,(z,)=p, there must be a t,el such that
H(z,,t,) = (—1,0), for every neN\{0}. The sequence {¢,} has a cluster point
and hence, without loss of generality, one may assume that it converges,
say

lim ¢, =t,.

From the continuity of H it follows that
H(p,t,) = H( lim z,, lim t,,>
n—aw n—w

= lim H(z,,t,)=(—1,0).
n—oo
Thus, the set {tel : H(p,t)=(—1,0)} is non-empty and compact. Assume
to to be its minimum.
Observe that
lim H(—z,,t,) =(—1,0)

implies that, at least for a subsequence of the sequence {—z,}, the values
H( - z,,t,) must be contained in CuU A,. Again, assume that this is true for
all neN\{0}. Therefore one can find t, <t, such that H(—z,,t,)=(1,0),
for every neN\{0}. As above, one obtains a t; < t, with H(p, t5) =(1,0).
Finally, repeating this argument, one obtains a t;<t, such that
H(p,t3) = (—1,0), contradicting the minimality of ¢,. O

Covering projections
Based covering projections form another class of based maps which induce
interesting homomorphisms between homotopy groups.

Proposition A.8.3 If p: (X,%,)—(X,X,) is a based covering projection
then, for n=1, the induced homomorphism p, is a monomorphism and, for
n> 1, p, is an isomorphism.

Proof See Hilton & Wylie (1960, Theorem 6.5.10). ]

A partial converse to the previous result says that an inclusion of a
subgroup into the fundamental group of a space can be realized, under mild
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conditions on the space, as the induced homomorphism of a covering
projection:

Proposition A.8.4 Given a connected and locally contractible based space
(X, xo) and a subgroup n c m,(X, x,), there is a based covering projection
p 1 (X,%o) = (X, x) such that p,(n,(X,%,)) =

Proof See Hilton & Wylie (1960, Theorem 6.6.11). O
An important property of covering projections is the following:

Theorem A.8.5 (Lifting theorem) Let p: (X ,Xo) (X, xo) be a based
covering projection and let f : (Y,y,)— (X, x,) be a based map such that

Simy(Y, yo)) < Pl(ﬂl()?,io))-
Then, if Y is connected and locally path-connected, there is a unique based
map f:(Y, yo)—>()?,>20) which lifts f, that is to say, such that pof = f.

Proof See Hilton & Wylie (1960, Lemma 6.6.12). O

If p: X — X is a covering projection, a homeomorphism & : X — X such
that pe& = p is called a covering transformation. The covering transform-
ations of a covering projection form a group G(p) under composition.

Theorem A.8.6 Let p : X—>X be a covering projection, with X locally
path-connected. If X is simply connected, then G(p)= (X ,Xo), for any
choice of base point. Moreover, given any two points X,, X,€X such that

p(%o) = p(%,), there is a unique covering transformation & : X - X such
that G(Xy) = X,.

Proof See Hilton & Wylie (1960, Corollary 6.7.4 and Proposition 6.6.17).
O

A simply connected covering space of a space X is called a universal
covering of X; the corresponding covering projection is called universal
covering projection.

Propositon A.8.7 If p:)? — X is a universal covering projection and
f : Y- X induces an isomorphism of fundamental groups, then Y|, X =Y
is a universal covering projection.

Proof Follow from Propositions A.4.17 and A.8.3. ]
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Proposition A.88 Let p:X—X, q:Y—-Y be universal covering
projections. A based map f:Y — X is a weak homotopy equivalence iff it
induces an isomorphism of the fundamental groups and the lifting VE Yo X
induces isomorphisms of the integral homology groups.

Proof The mapf:f’—»)? is a lifting of foq:?—»X (see Theorem A.8.5);
now use Proposition A.8.3 and Spanier (1966, Theorem 7.6.25). O

Homotopy groups of maps; relative homotopy groups

Relative homotopy groups as developed by Eckmann & Hilton (1958)
play an important role in homotopy theory. The abstract framework for
their development is the category TopZ of based maps in Top,. The
objects of TopZ are the based maps f : (Y, o)~ (X, Xo); its morphisms,
say from f to f', are the admissible pairs (b,a) : f — f’, namely, pairs of
based maps a : dom f —dom f', b : cod f —cod [ with f'ea=bof A
homotopy between two admissible pairs, say from (b,a) to (b',a’), is an
admissible pair (H,G) : f x 1;— f'such that Hy=b, H, =}, G, = a and
G, =d'. Clearly, this homotopy is an equivalence relation. The homotopy
class of an admissible pair (b, a) is represented by [b, a]. Given a based map
f,i.e., an object of Top2, the set of all homotopy classes of admissible pairs
from the based map i" ! : (S"~ !, e,) — (B", e,) into f is denoted by m,(f, yo).!
In the special case where f is the inclusion of a subspace 4 into a space X,
one also writes m,(f, yo) = m(X, A; x,); moreover, in this situation the
admissible pair (b,a) : i""! — fisnothingbutamapb : (B", S" )= (X, A4),
and thus the homotopy class of (b, a) is denoted simply by [b]. On the other
hand, if f is a constant map Y —{y,}, then, n,(f, yo) = 7, - (Y, yo).

Then set 7,(f, y,) is defined for n> 0. It has a distinguished element,
namely, the class consisting of the admissible pairs (b, a) for which there
exists an extension b': B" — dom f of a such that fob’ is homotopic to b, rel.
S"~1(the proofis similar to that given in Theorem 7.2.1 of Spanier, 1966, for
inclusions). Thus, every 7,(f, yo) is at least a pointed set.

As in the absolute case, if n> 1, the units, inversions and pinchings
introduced on page 6 provide the set m,(f,y,) with the structure of a
group which is abelian if n> 3. The group =,(f, yo) is the nth-homotopy
group of (f, o).

An admissible pair (b,a):f — f* induces, by composition, a homomor-
phism (of pointed sets or groups)

(b, a)n : nn(f, yO) - nn(f/’ ylo)’
thus, 7, becomes a functor on Topﬁ.

*Warning: do not confuse =,(f, y,) with the induced homomorphism f,.
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Now consider a commutative triangle of based maps

g w (1o50)
(Z, 20) S
h\mm

and define the natural homomorphisms

6n+1 Ty l(fyyO)_'nn(ngO)
by taking a representative (b,a) : i"— f for each element of n,, , ,(f, y,) and
associating to it the class of the admissible pair (a°b”,¢c) : i"~! —g, where
b":B"—S" is the map introduced on page 6 and c:S""'—>Z is the
constant map. The fact that §,,, is a homomorphism comes out of the
equation
pnobn — (bn V bn)opn— 1'

The groups (pointed sets) together with the morphisms defined up to now

can be arranged into a long exact sequence; more precisely:

Theorem A.8.9 The sequence of groups (respectively pointed sets)

e =T, 1(f,y0) K’nn(gszo) s n n"(h’zo) (1,9)n

S ¥0) == (9, 20) = -+ > Tl f Vo) ——
n 2

741(9, Zo) (f—l)—: 7y (h, 2o) m 7,(f, yo)

is exact.

Proof The proof is done by the standard arguments in diagram chasing.
The only non-trivial step is to prove exactness at m,(g, zo)-

M (f,1),°0,+,=0: Take a representative (b,a) for an element of
7+ 1(f, Yo)- Its image is the pair (feacb",c). Let ¢’ : (B", o) = (Z, z,) be the
constant based map; then, ¢’|S"~! = ¢, and, moreover, the composite map
boc"o(b" x 1) is a homotopy from feaob" to hoc’ rel. S"~ 1.

(2) ker(f,1),cimd,,,: Suppose that (b,a) represents an element of
7,9, o) Which is mapped onto Oem,(h, z,) by (f, 1),. Then, there is a based
map b’ : B"—Z such that b'|S" ! =a and fobx~hob'rel. "~ '. Let

H:B'xI-X
denote the corresponding homotopy; the map H factors through B"*! via
the map h" defined on page 4, thus giving rise to a map b":B""' > X
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with b”ei, = hob = fogob’ and b"ci_ = f ob. Therefore, there is a unique
mapa” : S"— Y witha”ci, =gob',a"°i_=band fea" =b"|S". Hence, the
pair (b”, a”) represents an element of 7, ,(f, yo). It remains to show that its
image under 9,., is the class of (b,a). This is done by considering the
homotopy

H:S" 'x)xI->Y
given by

geboc" (s, t’' —2t), 0<t<t)2,

Hs, 1) = boc"’l<s,22t—__tir), <<l O

Some particular cases are of special interest:

Case 1 The maps f and g are inclusions of subspaces; then, the exact
sequence of the theorem above becomes the exact sequence of the based
triple (X, Y, Z, z,) (see Spanier, 1966, Theorem 7.2.15).

Case 2 Suppose that X is a singleton space; then, one gets the exact
homotopy sequence of the map g, namely:

---—>n,,(Y,yo)—>7t,,(g,zo)-*1t,,_1(Z,zo)—>7t,,_l(Y,yo)—Ht,,_l(g,zo)—»

= (Y, yo) = 11(g, 20) = mo(Z, 20) = o( ¥, yo)-

Case 3 Moreover, if in the previous case, the map g is an inclusion, one
obtains the usual homotopy sequence of the based pair (Y,Z,z,) (see
Spanier, 1966, Theorem 7.2.3). As an application, consider the case
Z ={y,}; then n,(Z,z,) =0, for every neN, and the homotopy sequence
shows

7tn(Y > yO) = 7tn(Ya {YO}, yO),
again for all neN.

The veracity of the following result stems from the exact sequence discussed
in Case 2 above.

Proposition A.8.10 A map f : Y > X is a weak homotopy equivalence iff

Jo : oY, y0) = mo(X,, f(o)) is onto and ,(f,yo) =0, for every y,eY and
every neN\{0}. O

The condition given in the preceding proposition is equivalent to saying
that every path-component of X meets f(Y), and, for any admissible pair
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(b,a):i""' > f(n>1) there is an extension b':B"— Y of a such that fob’
is homotopic to b rel. $""!. A map f:Y — X is said to be m-connected
(meN) - or, f is said to be an m-equivalence - if this condition holds true
for every n such that 1 <n<m; for m=0, this just means that every
path-component of X meets f(Y). In view of Proposition A.8.10, one can
give the following characterization of m-connectivity:

Proposition A.8.11 A map f : Y - X is m-connected (meN)

iff fo : molY, yo) > o(X, f(yo)) is onto and m,(f, yo) =0, for every yoe Y
and every 1 <n<m;

iff [ TmlYsy0) > (X, f(yo)) is an epimorphism and f, : m,(Y,y,)
- n(X, f(yo)) is an isomorphism, for every y,eY and n such that
oOsn<m. O

A pair (X, Y) is said to be m-connected (meN) if the inclusion Y — X is m-
connected; in this case one has the following version of the previous
proposition.

Corollary A.8.12 (i) The pair (X,Y) is O-connected iff the function
i : (Y, yo) = mo(X, yo) induced by the inclusion i : Y — X is onto, for any
choice of the base point y,eY.
(i) The pair (X, Y) is m-connected (m = 1)
iff iy : mo(Y, yo) = mo(X, yo) is onto and m,(X, Y, yo) = O, for every choice
of base point y,eY and every n such that 1 <n<m,
iff iy (Y, Vo) = (X, yo) is an epimorphism and i, : m,(Y,y,)
- n,(X, yo) is an isomorphism, for every y,eY and every n such that
0O<n<m ad

The following two properties are easily derived from the concept of n-
equivalence.
(1) If g is an m-equivalence, a composition f °g is an m-equivalence iff f is
an m-equivalence.
(2) Any map homotopic to an m-equivalence is an m-equivalence.

According to Proposition A.4.10 (iv), any map f : Y — X decomposes in
the form f =r°iy, where cod iy = domr, = M(f) is the mapping cylinder
of f,iy is an inclusion and r, is a homotopy equivalence. Selecting a point
yo€Y as a base point of both Y and M(f) and taking f(yo) = x, to be the
base point of X, one may regard the maps f,r, and iy as based. Then, using
the exact sequence of Theorem A.8.9 and applying Proposition A.8.10tor,
one can conclude that the following result holds true.
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Proposition A.8.13 For every n =1 and every choice of base point y,eY,

(rf, l)n : nn(M(f)a Ya yO) - ”n(f,}’o)
is an isomorphism. O

As in homology, homotopic maps of pairs induce the same homomorph-
isms of homotopy groups; more precisely, if f, : (Y,D)—(X,A4),A=0,1 are
homotopic maps of pairs via homotopies moving the image of D only
within A, then, for every n > 1, (f,), = (f1),- Consequently, a homotopy
equivalence of pairs induces an isomorphism of the corresponding
homotopy groups. This, together with Proposition A.8.13, allows one to
state the following generalization of Theorem A.8.9:

Proposition A.8.14 Given maps g : (Z,z5)—> (Y, yo), f : (Y,yo) = (X, x,) and
h:(Z,2z0)>(X,x) such that fog=~h, there is a long exact sequence
connecting the homotopy groups of (f,yo), (g, 2,) and (h, z,). dJ

The action of the fundamental group of a space on its homotopy groups can
be extended to an action of the fundamental group of the domain of a map
on the homotopy groups of the map. More precisely, let [ : (Y, yo) = (X, x,)
be a based map; then, for every (b,a):i"" ' — f and every o:(I,0) = (Y, y,)
make the following construction: firstly, the maps a and ¢ induce a map
$"~1 x {0} u{es} x I > Y which extends to a homotopy a' : S" ! x [ > Y;
secondly, foa’ and b induce a map B" x {0} US" ™! x I - X which extends
toamapb’ : B" x I - X; thirdly, notice that the homotopies b’ and a’ end at
an admissible pair (b',a’):i"" ' — f (with respect to the base points o(1)
and f°o(1)) whose homotopy class depends only on the homotopy classes
of (b,a) and o. Thus, ¢ induces a well-defined function

0y : (s Yo) = Tl f, 0(1)),

which is an isomorphism. If one now assumes that ¢ is a loop and n > 2 (so
that n,(f, yo) is abelian), one obtains the announced operation of 7,(Y, y,)
on 7,(f, yo), turning m,(f, yo), n > 2 into a left A-module, where A is the
integral group ring of n,(Y,y,). If n=2, one often considers only the
case in which f, : 7,(Y, yo) = n,(X, f(¥o)) is an isomorphism; then, 7,( f, y,)
is abelian, as a quotient of the abelian group 7,(X, f(y,)) and the above
argument applies. The case in which [ is the inclusion of a space A4 into a
space X is of particular interest:

Proposition A.8.15 Let (X, A) be a pair of spaces with A path-connected and
suppose that m,(A, x,) acts trivially on n,(X, A, x,) for some base-point x,,.
Then, there is a bijection between n(X, A, x,) and the set of free homotopy
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classes of maps (B",S"" ') — (X, A);, if m,(4,x,) =0, this happens for every
nzl.

Proof See Spanier, 1966, Section 7.3. O

Sometimes it is possible to decompose an element of a homotopy group
of a map into a sum of elements. Let (b,a) : i"~! — f be an admissible pair,
with f : Y- X;letc: B" !> Y be a map such that ¢|S" 2 =a|S""? and
fec=>5b|B""! (in particular, if f : Y = X this means that b restricted to
the equator factors through Y). Leta, : S" !> Y (resp. a_ : " ' > Y)
be defined by a,ci, =aci,, a,ci_=c (resp. a_°i_=aci_, a_°i, =c).
Then, under these assumptions:

Theorem A.8.16 (The homotopy addition theorem):
[b,a] =[beis,a,]+[bei_,a_].

Proof Observe that
i, Vi_ep,: (BB 'uS" Y)>(B"B""lus"}

is homotopic to 1., as maps of pairs. O

The homotopy sequence of a fibration

Another long, exact sequence of homotopy groups appears in connection
with the theory of fibrations.

Proposition A.8.17 Let p : Y — X be afibration with fibre F = p~!(x), xe X.
Then, for any yeF Y, the following sequence of groups (and sets) is exact:

—>7I,,(F,y)——>7t,,(Y,y) ——;—)nn(x’x)_)nn—l(F’y)_)

o (X, X) = mo(F, p) = (Y, y) = mo( X, x)
(here i, is the morphism induced by the inclusion i : F > Y).

Proof See Spanier (1966, Theorem 7.2.10). O

Corollary A.8.18 Let p: X - X be a covering projection with X path-
connected and let F = p~(x,). If n,(X,x,) acts fixed point free on F, then
p : X = X is a universal covering projection.

Proof The proposition implies that the sequence of groups and spaces
- 0-7,(X, %) > m,(X,x0) = F -0
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is exact; since 7, (X, x,) acts fixed point free on F, the map n,(X, x,)— F is
injective and so, n,(X, X,) =0. O

Fundamental groupoid

As seen before, among the functors =,, the fundamental group functor =,
plays an exceptionally important role. Sometimes it is necessary to study
the fundamental group of a space in connection to several different base
points at the same time. The abstract setting for this situation is given by the
so-called fundamental groupoid IT X of a space X. Recall that a groupoid is a
small category with all its morphisms invertible. The objects of the
groupoid [IX are the points of the space X; the set ITX(x,y) of its
morphisms from x into y is the set of all homotopy classes (rel. end points) of

paths from x into y, i.e., a morphism from x into y may be represented by a
map

wil-X

with w(0) = x, w(1) = y and two maps w,, w, represent the same morphism
iff w,~w, rel. [ = {0,1}. The identities in ITX can be represented by
constant maps; morphisms are composed in the obvious way. Moreover,
for every xy€X, there is a canonical isomorphism

ITX (xg,%0) = my(X, Xo)-

Clearly, every continuous map f: X —Y gives rise to a functor
ITf : I1 X — ITY, and hence there is a functor IT from Top to the category
of groupoids. Note the following useful properties of this functor.

(i) If f:X > Y is a homotopy equivalence, then ITf is an equivalence of
groupoids (as categories; see Brown, 1988, 6.5.10 Corollary.).
(i) If f : Y-/— A is a partial map, then the induced square

ny———=TI(AL],Y)

]

IMTdom f—=>1I1A

is a pushout of groupoids. (Because f is a partial map, dom f g Y is
a closed cofibration; see Brown, 1988, 8.4.2 Theorem.)
Next is a review of the statement of the celebrated Seifert-van Kampen
theorem, and an interesting generalization of that result.
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Theorem A.8.19 (Seifert—van Kampen) If f : Y~/ — A is a partial map such
that A,Y and D =dom f are path-connected, then, for every xeD, the
induced square of groups

(Y, x)——> (A, Y. f(x)

|

(D, x) — > 7,(4, f(x))
is a pushout in the category of groups.
Proof See Brown (1988, 8.4.2 Theorem).

Let (X, x,) be a based space, with X path-connected. Let {U,,AeA} be a
covering of X by path-connected open sets such that:
(i) for every AeA, x,eU;;
(i1) for any two indices 4,, 1,€A, there exists an index 1€A such that
U, nU,,=U,.
Let
¢z,u : 7‘1(U1,x0)_’n1(Uu>xo)

be the homomorphism induced by the inclusion U; < U,,. O
Under these conditions, the following result holds true.

Proposition A.8.20 The group n,(X, x,) is isomorphic to the colimit group of
the diagram (i.e., small category) whose objects are all groups n(U,, x) and
whose morphisms are the identity homomorphisms and the homomorphisms

¢A.p'

Proof See Massey (1984, Chapter 4). O

A.9 Dimension and embedding
In this book, the dimension of a space is always understood to be the
covering dimension (see Pears, 1975, and Engelking, 1978). For normal
spaces it is characterized by the following.

Theorem A.9.1 A normal space X has dimension <n iff for each closed
subset C = X, each map C— S" has a continuous extension over the entire
space X.



300 Appendix
Proof See Engelking (1978, Theorem 3.2.10). d

Corollary A.9.2 If Y is a closed subspace of a space X, then dim Y < dim X.
O

Example 1 The ball B! has dimension 1. By the intermediate value
theorem, the identity map of S° cannot be extended over B! (maintaining
the target S°), implying that dim B! > 0. On the other hand, consider a
map f : C— S’ defined on a closed subset C = B'. By continuity there are
open subsets U, V of B! such that e,¢ f(CNU), —ey ¢ f(CnV) and
B'=UuVuU(B!\C). Thus, {U, V,B'\C} is an open cover of B', and by
compactness one may find finitely many numbers, say daq,4a;,...,a; 4+, such
that —l=ay<a; <---<a=1,and, fori=0,1,...,k, f(Cn[a;,a;+,])
does not contain both ¢, and —e,. One may assume a;eC, for all i
otherwise, extend f by taking f(a;)=e,. Now, by Tietze’s extension
theorem, extend each restriction f|(Cn[a;,a;.,]) over the whole interval
[a;,a;, ] and glue these extensions together to an extension of f over
B!. The possibility of this extension shows dim B! < 1. O

In order to proceed to higher-dimensional balls, one needs two deeper
theorems.

Theorem A.9.3 (Product theorem) If X and Y are compact Hausdor{f spaces,
at least one of which is non-empty, then,

dim X x Y <dim X + dim Y.
Proof See Engelking (1978, Theorem 3.2.13). O

Example 2 For every neN, dimB"<n, since B"x(B!)" (see
Proposition 1.0.2). O

Example 3 Forevery neN, dim $" < n, since an n-sphere can be considered
as a union of two n-balls (see Example8 of Section A4 and
Proposition A.4.8 (v)). a

Theorem A.9.4 (Brouwer theorem) The sphere S" is not a retract of the ball
B"*1, for every neN.

Proof See Milnor (1965, 82.) For n =0, this is just the intermediate value
theorem. For n > 0, the following is a rough sketch of Milnor’s argument.
It is given in order to make clear that the proof can be done with analytical
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methods independent of the combinatorial ideas developed in the main
text, and that the reader is not being misled by the use of the Brouwer
theorem from the very beginning. Assume one is given a retraction
r:B"— §"~!. Then, the assignment s— — r(s) describes a fixed point free
map B"*! — B"*! which can be approximated by a fixed point free smooth
map f : B"*!' > B""!, by the Weierstrass approximation theorem. This
f in turn induces a smooth retraction 7 : B"*' - S". By Sard’s theorem, ¥
has at least one regular value, say §. The inverse image 7~ '(3) is a compact
smooth [-manifold, and therefore it has an even number of boundary
points. But 77!(5) has a unique boundary point namely, the point §
itself. O

Example 2’ For every neN, dim B" = n, since dim B" < n — 1 would imply
that the identity map of $" ™! could be extended over B" (see Theorem A.9.1),
contradicting the Brouwer theorem. O

Example 3’ For every neN, dimS" =n, since every n-sphere contains
n-balls as closed subsets (see Corollary A.9.2). d

Note: The question of the dimension of the Euclidean spaces is left open
here because it is discussed in the main body of the book (see Section 2.2,
Example 1).

To continue the development of this section, it is necessary to prove a
rather technical lemma, which characterizes boundary points of compact
sets in Euclidean spaces.

Lemma A9.5 Let X be a compact subset of R" and x a point of X. Then,
x is a boundary point of X iff x has arbitrarily small neighbourhoods U,
open in X, with the property that any map X\U — 8"~ ! can be extended
over the entire X.

Proof Cf. Hurewicz & Wallman (1948, Chapter VI, Section 6.)

=>: Let B, denote the closed e-neighbourhood of x in R”, for any positive
real ¢, and take U= X B, Given a map f: X\U—S""", choose a
continuous extension f* : B, — S$" ! of f| X N B, this is possible since 6 B,
is a sphere of dimension n — 1 (see Theorem A.9.1 and Example 3'). Since
x is assumed to be a boundary point of X, one can find a point ye B,\U
and a retraction r:B,\{y} — 6B,. The desired extension g:X ->S"~! of f
can now be defined by taking g|U = f'o(r|U).
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<: Assume x to be an interior point of X. Choose a positive real number
¢ such that the closed e-neighbourhood B, of x is completely contained
in X. Identify its boundary 6B, with $"~! and choose a retraction
r: R"\{x}—>S§"~'. Now, if B, would contain an open neighbourhood U
of x such that the map f =r|(X\U) : X\U—S""! could be extended to
amap g : X —»S""!, then ¢g|B, would be a retraction from B, to S"!,
which cannot exist according to the Brouwer Theorem (see Theorem A.9.4).

(]

Theorem A.9.6 (Theorem of the invariance of domain) if X = R" is open and
f + X > R" is an injective map, then f(X) is an open subset of R".

Proof Take a point xeX and a closed ¢-neighbourhood B, of x in R”
which is completely contained in X. The map f induces a homeomorphism
B, — f(B,); thus, the fact that x is an interior point of B, implies that f(x)
cannot be a boundary point of f(B,) (see Lemma A.9.5). Therefore, f(x)
is an interior point of f(B,) with respect to R", and, consequently, an
interior point of f(X). O

The question of embedability is settled by the next two theorems.

Theorem A.9.7 (Theorem of Menger—Nébeling) A metrizable space of
dimension n satisfying the second axiom of countability can be embedded into
R2n + 1.

Proof See Engelking (1978, Theorem 1.11.4). O

Recall that the Hilbert cube is defined as the metric space consisting of
the set

+1
and the metric d : I® + I° —[0, co) given by

dey)= | 3 .

As a topological space, the Hilbert cube is homeomorphic to the cartesian
product of countably many intervals I (see Dugundji, 1966, Chapter IX,
Proposition 8.4).

1
I* ={(xo,x1,...,) DXl <i—,i€N}

Theorem A.9.8 A metric space satisfies the second axiom of countability iff
it is homeomorphic to a subspace of the Hilbert cube.
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Proof” See Bourbaki (1966, Chapter IX, Section 2.8, Theorem 12). (]

In this context, another important property of the Hilbert cube should
be mentioned:

Proposition A.9.9 If C is a compact metric space, then the function space
(1*) satisfies the second axiom of countability.

Proof  Since C is compact metric, there is a sequence { f, : neN} of maps
f,;C—R that is separating, i.e., for every pair of points x,yeC,
with x # y, there is an neN, such that f,(x) # f,(y). Then, by the Weierstrass—
Stone theorem (see Bourbaki, 1966, Chapter X, Section 4, Proposi-
tion 6), every map f : C — R can be approximated, in the metric topology,
by polynomials in the functions f, with real coefficients. But, since the
rational numbers form a dense subset of the reals, it is enough to consider
only polynomials with rational coefficients. Thus, R has a countable
dense subset in the metric topology and therefore, satisfies the second
axiom of countability. Notice that the metric topology of R¢ coincides
with the compact-open topology (see Section A.1). The second axiom of
countability property carries over to the subspace I of R¢ and to the
countable product (IS)N = (I°)¢ (cf. the exponential law, Section A.1). []

A.10 The adjoint functor generating principle

The following basic construction (see Kan, 1958a, b) is used in several places
throughout the text. Let D be a small category and let DSets denote the
category of contravariant functors D — Sets. One might view the objects of
DSets as sets graded by the objects of D with the morphisms of D operating
on the right. (As a particular example of this situation, one can quote the
definition of simplicial sets given in Section 4.2.) Let @ : D — Sets be an
arbitrarily given covariant functor; associated to it, construct a pair of
adjoint functors

I, : DSets— Sets,
S o Sets— DSets,
as follows:

(1) The left adjoint functor I 4-called realization functor-associates to
each object X of DSets the set of equivalence classes of pairs
(x,t)e L X(d) x @(d) modulo the relation

(xa, 1) ~ (x, @) (1))
Given a morphism f : Y — X, i.e, a natural transformation, one has
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the function
Iof 1 ToY > ToX, [x,t]->[f(x), (]

where [x, t] denotes the equivalence class represented by the pair (x, t).

(2) The right adjoint functor S ,-called singular functor-associates to each
set Z the object of DSets given by

(SoZ)d)=Z°9,
for each object d of D, and
¥ ZPD L Z %) x s xo(D(a),
for each morphism a:d’' —d of D.
The unit and the co-unit of the adjunction I" ;,—|S , are given as follows:

(1) Let X be an object of DSets. To each element xe X (d) associate the
function

£:0@)-ToX, to[xl;
then, the unit consists of the morphisms
Nx : X > Sel X, X —X.
(2) The co-unit consists of the functions
Jz i TeSeZ - Z, [x, ] — x(¢).

The situation can easily be generalized to functors @ whose codomain is
an arbitrary cocomplete category C instead of just sets. In this book, C is
taken to be Top, SiSets or PSiSets. The construction of the singular functor
So : C— DSets remains almost unchanged: one takes

So2)(d) = {P(d)— Z}
and
a*  {DPd)>Z} > { D) > Z}, x > x° D(w).
As for the realization functor, observe that if C = Sets, one can consider I,
as a coequalizer of an abstractly defined pair of functions; the definitions of

these functions can be imitated in any cocomplete category C (see Gabriel
& Zisman, 1967).

Exercises (to the whole Appendix)

1. Leti: Y— X be a closed cofibration. Prove that the mapping cone C(i)
has the same homotopy type as X/Y.

2. Leti: A-X, i’ : A— X' be closed cofibrations and let f: X - X’
be a homotopy equivalence such that foi=1i. Prove that f is a
homotopy equivalence rel. 4, ie., there exists a homotopy inverse
g : X'— X such that gei’ =i and gof~1y rel. 4, fog~1y.rel. A.

3. Let p: Y— X be a Hurewicz fibration and [ : Z— X be a map; if X,
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Y and Z are LEC spaces then, Z{_If Y is LEC. (See Heath, 1986.)
4. Let f: Y—/— A be a partial map with Y and A paracompact. Prove
that the resulting adjunction space X is also paracompact. (See Michael,

1953, 1956.)
5. Let f: Y—/— A be a partial map with Y and A stratifiable. Prove that

AT71,Y is stratifiable. (See Borges 1966.)

6. Show that the union space of an expanding sequence of stratifiable
spaces is stratifiable. (See Borges, 1966.)

7. Let X be the union space of the expanding sequence {X, : neN}. Show
that any compact subset of X is contained in some X,,.



Bibliography

Alder, M.D. (1974) Inverse limits of simplicial complexes, Compositio Math. 29,
1-7.

Alexander, James Waddell (1915) A proof of the invariance of certain constants
of analysis situs, Trans. Amer. Math. Soc. 16, 148-154.

Alexandroff, Pavel Sergejewitsch (1925) Zur Begriindung der n-dimensionalen
Topologie, Math. Ann. 94, 296-308.

Allaud, Guy (1972) De-looping homotopy equivalences, Arch. Math. (Basel) 23,
167-169.

Barratt, Michael (1956) Simplicial and semisimplicial complexes, Mimeographed
lecture notes (Princeton University).

Borges, Carlos R. (1966) On stratifiable spaces, Pacific J. Math. 17- 1-16.

Borovikov, V. (1952) On the intersection of a sequence of simplexes, Uspehi
Mat. Nauk (N.S.) 7, 179-180.

Borsuk, Karol (1967) Theory of Retracts, Monografle Matematyczne 44,
Warszawa (Panstwowe wydawnictwo naukowe).

Bourbaki, Nicolas (1966) General Topology, Parts 1 and 2, Adiwes International
Series in Mathematics, Don Mills (Addison—-Wesley).

Brown, Ronald (1961) Some problems in algebraic topology: function spaces,
function complexes and FD-complexes, Thesis (University of Oxford).
(1968) Elements of Modern Topology, European Mathematics Series,
London-New York-Sydney-Toronto—Mexico—Johannesburg (McGraw-Hill).
Revised, updated and expanded version:
(1988) Topology, A geometric Account of General Topology, Homotopy Types
and the Fundamental Groupoid, Mathematics and its Applications, Chichester
(Ellis Horwood)

Brown, Ronald & Heath, Philip Richard (1970) Coglueing homotopy
equivalences, Math. Z. 113, 313-325.

Cauty, Robert (1976) Sur les espaces d’applications dans les CW-complexes,
Arch. Math. (Basel) 27, 306-311.

Ceder, Jack G. (1961) Some generalizations of metric spaces, Pacific J. Math.
11, 105-125.

Curtis, Edward Baldwin (1971) Simplicial homotopy theory, Advances in Math.
6, 107-209.

tom Dieck, Tammo (1971) Partitions of unity in homotopy theory, Compositio
Math. 23, 159-167.

tom Dieck, Tammo, Kamps, Klaus Heiner and Puppe, Dieter (1970)



Bibliography 307

Homotopietheorie, Lecture Notes in Mathematics 157, Berlin-Heidelberg-
New York (Springer).

Dold, Albrecht (1963) Parition of unity and the theory of fibrations, Ann. of

Math. 78, 223-25.

(1972) Lectures on Algebraic Topology, Die Grundlehren

der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer
Beriicksichtigung der Anwendungsgebiete 200, Berlin—Heidelberg-New York
(Springer).

Dowker, Clifford Hugh (1952) Topology of metric complexes, Amer. J. Math.
74, 555-577.

Dugundji, James (1965) Locally equiconnected spaces and absolute neighborhood
retracts, Fund. Math. 57, 187-193
(1966) Topology, Allyn and Bacon Series in Advanced Mathematics, Boston—
London-Sydney (Allyn and Bacon).

Dydak, Jerzy & Geoghegan, Ross (1986) The singular cohomology of the
inverse limit of a Postnikov tower is representable, Proc. Amer. Math. Soc.
98, 649—-654.

Dyer, Eldon & Eilenberg, Samuel (1972) An adjunction theorem for locally
equiconnected spaces, Pacific J. Math. 41, 669-685.

Eckmann, Beno & Hilton, Peter John (1958) Groupes d’homotopie et dualité,
C.R. Acad. Sci. Paris Sér. A-B 246, Groupes absolus: 2444—-2447; suites
exactes: 2555-2558; coefficients: 2991-2993.

Eilenberg, Samuel & MacLane, Saunders (1953) Acyclic models, Amer. J. Math.
75, 189-199.

Eilenberg, Samuel & Steenrod, Norman (1952) Foundations of Algebraic
Topology, Princeton (Princeton University Press).

Eilenberg, Samuel & Zilber, J.A. (1950) Semi-simplicial complexes and singular
homology, Ann. of Math. (2) 51, 499-513.

Engelking, Ryszard (1977) General Topology, Monografie Matematyczne 60,
Warszawa (Panstwowe wydawnictwo naukowe).

(1978) Dimension Theory, North Holland Mathematical Library 19,
Amsterdam—Oxford-New York (North Holland).

Finney, Ross L. (1965) The insufficiency of barycentric subdivision, Michigan
Math. J. 12, 263-272.

Fox. Ralph Hartzler (1943) On fibre spaces. I1, Bull. Amer. Math. Soc. 49,733-735.

Freudenthal, Hans (1938) Uber die Klassen der Sphirenabbildungen 1. Grofe
Dimensionen, Compositio Math. 5, 299-314.

Freyd, Peter (1964) Abelian Categories: An Introduction to the Theory of
Functors, Harper’s Series in Modern Mathematics, New York-Evanston—
London (Harper & Row).

Fritsch, Rudolf (1969) Zur Unterteilung semisimplizialer Mengen. 1, Math. Z.
108, 329-327; 11, Math. Z. 109, 131-152.

(1972) Simpliziale und semisimpliziale Mengen, Bull. Acad. Polon. Sci. Ser. Sci.
Math. Astronom. Phys. 20, 159-168.



308 Bibliography

(1974) Relative semisimpliziale Approximation, Arch. Math. (Basel) 25, 75-78.
(1976) An approximation theorem for maps into Kan fibrations, Pacific J.
Math. 65, 347-351.

(1983) Remark on the simplicial-cosimplicial tensor product, Proc. Amer.
Math. Soc. 87, 200-202.

Fritsch, Rudolf & Latch, Dana May (1981) Homotopy inverses for nerve, Math.
Z. 1717, 147-179.

Fritsch, Rudolf & Puppe, Dieter (1967) Die Homdomorphie der geometrischen
Realisierungen einer semisimplizialen Menge und ihrer Normalunterteilung,
Arch. Math. (Basel) 18, 508-512.

Gabriel, Peter & Zisman, Michel (1967) Calculus of Fractions and Homotopy
Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Berlin—
Heidelberg-New York (Springer).

Gale, David (1950) Compact sets of functions and function rings, Proc. Amer.
Math. Soc. 1, 303-308.

Giever, John B. (1950) On the equivalence of two singular homology theories,
Ann. of Math. (2)51, 178-190.

Gugenheim, Victor K.A.M. (1968) Semisimplicial homotopy theory, Studies in
Modern Topology, 99—133, Englewood Cliffs, New Jersey (Math. Assoc. Amer.,
distributed by Prentice—Hall).

Hanner, Olof (1951) Some theorems on absolute neighbourhood retracts, Arkiv
for Mathematik 1, 389-408.

Heath, Philip Richard (1986) A pullback theorem for locally equiconnected
spaces, Manuscripta Math. 55, 233-237.

Hilton, Peter John & Stammbach, Urs (1971) A Course in Homological Algebra,
Graduate Texts in Mathematics 4, New York—Heidelberg—Berlin (Springer).

Hilton, Peter John & Wylie, Samuel (1960) Homology Theory, Cambridge
(Cambridge University Press).

Hu, Sze-Tsen (1964) Elements of General Topology, Holden-Day Series in
Mathematics, San Francisco-London-Amsterdam (Holden—Day).

Hurewicz, Witold & Wallman, Henry (1948) Dimension Theory (revised
edition),Princeton Mathematical Series 4, Princeton (Princeton University
Press).

Hyman, Daniel M. (1968) A category slightly larger than the metric and CW-
categories, Michigan Math. J. 15, 193-214.

Kan, Daniel M. (1955) Abstract homotopy I, Proc. Nat. Acad. Sci. U.S.A. 41,
1092-1096.

(1956) Abstract homotopy II, Proc. Nat. Acad. Sci. U.S.A. 42, 255-258; 111,
ibid. 419-421; 1V, ibid. 542-544.

(1957) On c.s.s. complexes, Amer. J. Math. 97, 449-476.

(1958a) Adjoint functors, Trans. Amer. Math. Soc. 87, 294-329.

(1958b) Functors involving c.s.s. complexes, Trans. Amer. Math. Soc. 87, 330—
346.

(1958¢) A combinatorial definition of homotopy groups, Ann. of Math. (2) 67,
282-312.



Bibliography 309

(1970) Is an ss complex a css complex?, Advances in Math. 4, 170-171.

Kaplan, S. (1947) Homology properties of arbitrary subsets of Euclidean spaces,
Trans. Amer. Math. Soc. 62, 248-271.

Kelley, John L. (1955) General Topology, The University Series in Higher
Mathematics, Princeton—-New York-Toronto—London (Van Nostrand).

Kodama, Yukihiro (1957) A relation between two realizations of complete
semisimplicial complexes, Proc. Japan Acad. 33, 536-540.

Lamotke, Klaus (1963) Beitridge zur Homotopietheorie simplizialer Mengen,
Bonner Math. Schriften 17.

(1968) Semisimpliziale algebraische Topologie, Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen mit besonderer
Beriicksichtigung der Anwendungsgebiete 147, Berlin-Heidelberg—New York
(Springer).

Lefschetz, Solomon (1970) The early developments of algebraic topology, Bol.
Soc. Brasil. Mat. 1, 1-48.

Lewis, L. Gaunce, jr. (1982) When is the natural map X - QXX a cofibration?,
Trans. Amer. Math. Soc. 273, 147-155.

Lillig, Joachim (1973) A union theorem for cofibrations, Arch. Math. (Basel) 24,
410-415.

Lundell, Albert T. and Weingram, Stephen (1969) The Topology of CW-
Complexes, The University Series in Higher Mathematics, New York-
Cincinnati-Toronto-London—-Melbourne (Van Nostrand Reinhold).

MacLane, Saunders (1963) Homology, Die Grundlehren der mathematischen
Wissenschaften in Einzeldarstellungen, 114, Berlin—Heidelberg—New York
(Springer).

(1971) Categories for the working mathematician, New York—Heidelberg—
Berlin (Springer).

Mardesic, Sibe & Segal, Jack (1982) Shape Theory, North Holland
Mathematical Library 26, Amsterdam—New York—Oxford (North Holland).

Massey, William S. (1984) Algebraic Topology: An Introduction, 6th printing,
Graduate Texts in Mathematics 56, New York—Heidelberg—Berlin (Springer).

Mather, Michael R. (1964) Paracompactness and partitions of unity,
Mimeographed Notes (Cambridge University).

May, John Peter (1967) Simplicial Objects in Algebraic Topology, Van Nostrand
Mathematical Studies 11, Princeton-Toronto—London-Melbourne (D. Van
Nostrand Company).

McCord, Michael C. (1969) Classifying spaces and infinite symmetric products,
Trans. Amer. Math. Soc. 146, 273-298.

Metzler, Wolfgang (1967) Beispiele zu Unterteilungsfragen bei CW- und
Simplizialkomplexen, Arch. Math. (Basel) 18, 513-519.

Michael, Ernest (1953) Some extension theorems for continuous functions,
Pacific J. Math. 3, 789-806.

(1956) Continuous selections I, Ann. of Math. 63, 361-382.

Milnor, John W. (1956) Construction of universal bundles. I, Ann. of Math.

(2063, 272-284.



310 Bibliography

(1957) The geometric realization of a semi-simplicial complex, Ann. of Math.
(2) 65, 357-362.

(1959) On spaces having the homotopy type of a CW-complex, Trans. Amer.
Math. Soc. 90, 272-280.

(1961) Two complexes which are homeomorphic but combinatorially distinct,
Ann. of Math. (2)74, 575-590.

(1962) On axiomatic homology theory, Pacific J. Math. 12, 337-341.

(1965) Topology from the Differentiable Viewpoint, Charlottesville (The
University Press of Virginia).

Miyazaki, Hiroshi (1952) The paracompactness of CW-complexes, Tohoku
Math. J. (2)4, 309-313.

Moore, John C. (1955) Le théoréme de Freudenthal, la suite exacte de James et
Pinvariant de Hopf généralisé, Algébres d’Eilenberg—Maclane et homotopie,
Séminaire Henri Cartan de I'Ecole Normale Supérieure 1954/55, Paris
(Secrétariat mathématique, 11 rue Pierre Curie).

(1958) Semi-simplicial complexes and Postnikov systems, Symposium
Internacional de Topologia Algebraica 232-247, Mexico (Universidad
Nacional Autonoma de Mexico y UNESCO).

Morita, Kiiti (1954) On spaces having the weak topology with respect to closed
coverings I, Proc. Japan Acad. 30, 711-717.

Morita, Kiiti and Hanai, S. (1956) Closed mappings and mapping spaces, Proc.
Japan Acad. 32, 10-14.

Northcott, Douglas Geoffrey (1960) An Introduction to Homological Algebra,
(Cambridge University Press).

Pears, Alan R. (1975) Dimension Theory of General Spaces,

(Cambridge University Press).

Piccinini, Renzo Angelo (1973) CW-Complexes, Homology Theory, Queen’s
Papers in Pure and Applied Mathematics 34, Kingston Ontario (Queen’s
University).

Poincaré, Henri (1895) Analysis situs, J. de I'Ecole Polytech. (2)1, 1-121.

Puppe, Dieter (1958) Homotopie und Homologie in abelschen
Gruppen-und Monoidkomplexen. I, Math. Z. 68, 367-406.

(1983) Homotopy cocomplete classes of spaces, Topological Topics, London
Mathematical Society Lecture Notes Series 86, 55-69, Cambridge-London-
New York-New Rochelle--Melbourne-Sydney (Cambridge University Press).

Quillen, Daniel G. (1968) The geometric realisation of a Kan fibration is a
Serre fibration, Proc. Amer. Math. Soc. 19, 1499-1500.

Ringel, Claus Michael (1970) Eine Charakterisierung der Homotopiekategorie
der CW-Komplexe, Math. Z. 115, 359-365.

Rourke, Colin P. and Sanderson, Brian J. (1971) A-sets, Quart. J. Math. Oxford
(2)22, 1. Homotopy theory: 321-338; II. Block bundles and block fibrations:
465-485.

(1972) Introduction to Piecewise Linear Topology, Ergebnisse der Mathematik
und ihrer Grenzgebiete 69, Berlin-Heidelberg—New York (Springer).



Bibliography 311

Ruiz Salguero, Carlos & Ruiz Salguero, Roberto (1978) Remarks about the
Eilenberg-Zilber type decomposition in cosimplicial sets, Rev. Colombiana
Mat. 12, 61-82.

Schon, Rolf (1977) Fibrations over a CWh-base, Proc. Amer. Math. Soc. 62,
165-166.

Schubert, Horst (1958) Semisimpliziale Komplexe, Jahresber. Deutsch. Math.-
Verein. 61, 126—138.

(1964) Topologie, Mathematische Leitfdden, Stuttgart (B.G. Teubner). English
translation:
(1968) Topology, Boston—London—Sydney (Allyn & Bacon).

Segal, Jack (1965) Isomorphic complexes, Proc. Amer. Math. Soc. 71, 571-572.

Seifert, Herbert & Threlfall, William Richard Maximilian Hugo (1934) Lehrbuch
der Topologie, Leipzig—Berlin (B.G. Teubner).

Serre, Jean- Pierre (1951) Homologie singuliére des espaces fibres, Ann. of Math.
54, 425-505.

Spanier, Edwin (1966) Algebraic Topology, McGraw-Hill-Series in Higher
Mathematics, New York (McGraw-Hill).

Spanier, Edwin & Whitehead, John Henry Constantine (1957) Carriers and S-
theory, Algebraic Geometry and Topology (a symposium in honour of S.
Lefschetz) 330-360, Princeton (Princeton University Press).

Stasheff, James D. (1963) A classification theorem for fibre spaces, Topology 2,
239-246.

Stone, Arthur H. (1956). Metrizability of decomposition spaces, Proc. Amer.
Math. Soc. 7, 690-700.

Strégm, Arne (1966) Note on cofibrations, Math. Scand. 19, 11-14.

(1968) Note on cofibrations II, Math. Scand. 22, 130-142.
(1972) The homotopy category is a homotopy category, Arch. Math. (Basel)
23, 435-441.

Varadarajan, Kalathoor (1966) Groups for which Moore spaces M(x, 1) exist,
Ann. of Math. 84, 368-371.

Wall, C. Terence (1965) Finiteness conditions for CW-complexes, Ann. of Math.
(2)81, 56-69.

Whitehead, John Henry Constantine (1939) Simplicial spaces, nuclei, and m-
groups, Proc. London Math. Soc. (2) 45, 243-337.

(1949a) Cominatorial Homotopy 1, Bull. Amer. Soc. 55, 213-245.
(1949b) On the realizability of homotopy groups, Ann. of Math. 50, 261-263.
(1950) A certain exact sequence, Ann. of Math. 52, 51-110.

Winkler, Gerhard (1985) Choquet Order and Simplices with Applications in
Probabilistic Models, Lecture Notes in Mathematics 1145, Berlin—Heidelberg—
New York-Tokyo (Springer).

Zeeman, Eric Christopher (1964) Relative simplicial approximation, Proc.
Camb. Phil. Soc. 60, 39—43.







Symbols

Table 1. Abbreviations

Introduced or

Symbol Explanation Example first used on page
O indicates the end of a proof, 10
remark or the description of
an example
iff introduces a necessary and 15
sufficient condition
= shows implication; in a proof: 111,15
the given condition is
necessary
<= shows, in a proof, that the 15
given condition is sufficient
< indicates logical equivalence 111,133
or a definition
G denotes an embedding 94
—/- partial map f:Y—/>A 258
Table 2. Operations
Introduced or
Symbol Meaning Example first used on page
X product in the categorical B" x B" 2
sense
X e Cartesian product of S X x.Y 59
spaces
v binary wedge product B"v B" 10
Vr wedge product over V St 18
objects indexed by I'
A binary smash product DAA 270,4
] pullback AN,Y 258
L attaching ALY 259
LJ=Llza coproduct over objects LlenX, 57

>~
m
>

indexed by A
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Table 2. (Cont.)

Introduced or

Symbol Meaning Example first used on page
o formation of a countable % oXn 273
union, mostly of the
union space of an
expanding sequence
appears also in
slightly different forms
0
like {J or U,,eN>
n=0
® tensor product X®Y 148
° composition of maps bec 6
° interior B! 1
é boundary sBr+! 1
(=, =) induced homomorphism (b, a), 293
between the n-th
homotopy groups
I set of all based homotopy [Y,Xx], 287
_ classes of based maps
Ci(—) f-collar Cz(V) 20
Co(—) infinite collar CoVy) 27
colim colimit colim AX 141
deg degree deg y 29
dim dimension of a cell dim e 12
a CW-complex dim X 46
of a Euclidean complex dim K 100
of a simplicial complex dim K 121
of an operator dima 132
of a simplex in a dim x 139
simplicial set
of a simplicial set dim X 146
of a presimplicial set dim X 165
of a space dim X 300
dom domain, source dom [ 258,14
- n-th power F" 11
" n-skeleton X" 22,98
—m n-skeleton of a relative X 26
CW-complex
s = sts’ unique presentation of a 133

point seA” by a face
operator s* applied to
an interior point s’
x = x#x" Eilenberg-Zilber 145
decomposition of a
simplex into a
degeneracy operator
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Table 2. (Cont.)
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Introduced or

Symbol Meaning Example first used on page

x? applied to a

non-degenerate

simplex x*
y=yHy’ Eilenberg-Zilber 147

decomposition of a

point in a cosimplicial

set into a face operator

yb applied to an interior
point y*
Table 3. Objects
Introduced or

Symbol Explanation first used on page
B° 0-ball 2
B! (n + 1)-ball 1
B* infinite ball 2
B, indexed copy of a ball 12
BG classifying set of the group G 192
C field of complex numbers 11
(C,B,p) (Euclidean) cone with base B and peak p 92
C(f) mapping cone of the map f 269,63
CD cone over the space D 269, 63
C(f) reduced mapping cone of the based map f 269
C.D reduced cone over the pointed space D 269
(Y, X) set of maps Y —» X 241
Co(Y,X) space of maps Y — X, provided with the 241

compact-open topology
cpr complex projective n-space 11,25
e cell 15
e closed cell 15
F R,C,or H 11
H skewfield of quaternions 11
HP" projective n-space over the quaternions 11
K(A) simplicial complex obtained from a A- 110

indexed family of sets
L(p,q) lens space of type (p,q) 169
M(f) mapping cylinder of the map f 264,63
M(f) reduced mapping cylinder of the based 269

map f
M(mn,n) Moore space of type (n, n) 18
[n] ordered set of the numbers 0,1,...,n 132
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Table 3. (Cont.)

Symbols

Introduced or

Symbol Explanation first used on page
N set of natural numbers, including 0 11
pB global set of a Euclidean cone with base B 93
and peak p
pL Euclidean complex describing a cone with 102
base |L| and peak p

R field of real numbers 11
R+! Euclidean (n + 1)-space 1
RP" real projective n-space 11
S[r] simplicial p-sphere 145
S, indexed copy of a sphere 12
s n-sphere 1
S*® infinite sphere 2
stxp star of p in the Euclidean complex K 101
St(L) star of the subset L in a CW-complex 36
T(f) mapping track of the map f 270
X(L) subcomplex of a CW-complex, generated 36
- by the subset L

X covering space of X 256
Z additive group or ring of integers 78
Z,=17/pL residue class group of Z mod p 169
Zn integral group ring over the group n 287
(I',R) group presentation 80
A4 geometric simplex 89
A" standard-n-simplex 93
A¥[n] k-th horn of A[n] 170
Q' set of all ordinals not greater than the first 245

uncountable ordinal
Table 4. Functions (maps, homomorphisms)
Introduced or

Symbol Explanation first used on page
b 6
c" 4
d" 2
S 284
Su 287
h 4
i 1
iy,i_ 3
7 2
Jsd- eggs of Columbus 2
k" S
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Introduced or

Symbol Explanation first used on page
k" 5
r 6
P 6
P 7
p 7
q" 10

" 10
qR", ¢C", K" 11
" +1 7
Rn+ 1 8
" 9
" 9
o =19, elementary face operator 133
g =g vertex operator 134
7Y face operators 134
D051 degeneracy operators 136
o} =o0; elementary degeneracy operator 135
o' = w; preterminal operator 135
o) 10
¥, X - |K(A)] 114

Table 5. Categories of ...
Introduced or
Symbol Meaning first used on page
CSiC simplicial objects in C 138
cw CW-complexes and maps 56
Cwe CW-complexes and cellular maps 56
cwr CW-complexes and regular maps 56
DSets contravariant functors D — Sets 303
hTop, based spaces and based homotopy 286
classes of maps
k(Top) k-spaces 242
0SiCo ordered simplicial complexes 111
PSiC presimplicial objects over C 138
PSiSets presimplicial sets 165
RCWe relative CW-complexes and cellular 56
maps

Sets Sets 139
SiC simplicial objects over C 138
SiCo simplicial complexes 111
SiSets simplicial sets 140
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Table 5. (Cont.)

Symbols

Symbol

Meaning

Introduced or
first used on page

Top =wHk(Top) weak Hausdorff k-spaces (except 11
Section A.1)
Top, based spaces and based maps 288
A finite ordinals 132
Table 6. Functors
Introduced or

Symbol Explanations first used on page
| —] underlying polyhedron of a Euclidean 97

complex
|-} geometric realization of simplicial complexes 112

of simplicial sets 139
A M-M, up—fi 134
-+ maximal section, retraction 136
-1 minimal section, retraction 136
C presimplicial cone functor 167
C chain complex functor 284
C, n-chain functor 283, 284
C_ category of simplices functor 140
D, C.—A 141
E PSiSets — SiSets 165
Ex SiSets — SiSets 212
Ex® SiSets — SiSets 215
F formation of the free group 80
FA formation of the free abelian group 18
H(—) homology functor 284
H(-) n-th homology 284
k k-ification 242
p based path space functor 256
S singular functor Top — SiSets 156
Se (general) singular functor 303
Sd barycentric subdivision of Euclidean 102

complexes

SdX normal subdivision of simplicial sets 200, 148
Sder opnormal subdivision of simplicial sets 200
Sd” n times iterated normal subdivision 204
Iy, realization functor 303
A standard simplices functor 141
A— Yoneda embedding 141
axX A" oDy 141
=T, set of path components 14,287
y fundamental group 80
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Table 6. (Cont.)

Introduced or

Symbol Explanations first used on page
,(—, —) n-th homotopy group of a based space 287,69
n-th homotopy group of a based map 292
=, —,—) relative n-th homotopy group 292, 68
I fundamental groupoid functor 298
X suspension 269,63
z reduced suspension 269.4
0 loop space functor 256

Table 7. Natural transformations

Introduced or

Symbol Explanation first used on page
d Sd-1 200
d” Sd?”? 51 200
¢ Lgisos = EX 213
I |S_|—-’llop 156
i connecting homomorphism 293

58— 156

n Lgisers
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affine embedding 91

affinely independent 89
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CW-n-ad 230
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