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Introduction

Model categories and their homotopy categories

A model category is Quillen’s axiomatization of a place in which you can “do
homotopy theory” [52]. Homotopy theory often involves treating homotopic maps
as though they were the same map, but a homotopy relation on maps is not the
starting point for abstract homotopy theory. Instead, homotopy theory comes from
choosing a class of maps, called weak eguivalences, and studying the passage to
the homotopy category, which is the category obtained by localizing with respect
to the weak equivalences, i.e., by making the weak equivalences into isomorphisms
(see Definition 8.3.2). A model category is a category together with a class of
maps called weak equivalences plus two other classes of maps (called cofibrations
and fibrations) satisfying five axioms (see Definition 7.1.3). The cofibrations and
fibrations of a model category allow for lifting and extending maps as needed to
study the passage to the homotopy category.

The homotopy category of a model category. Homotopy theory origi-
nated in the category of topological spaces, which has unusually good technical
properties. In this category, the homotopy relation on the set of maps between two
objects is always an equivalence relation, and composition of homotopy classes is
well defined. In the classical homotopy theory of topological spaces, the passage
to the homotopy category was often described as “replacing maps with homotopy
classes of maps”. Most work was with CW-complexes, though, and whenever a
construction led to a space that was not a CW-complex the space was replaced by
a weakly equivalent one that was. Thus, weakly equivalent spaces were recognized
as somehow “equivalent”, even if that equivalence was never made explicit. If in-
stead of starting with a homotopy relation we explicitly cause weak equivalences
to become isomorphisms, then homotopic maps do become the same map (see
Lemma 8.3.4) and in addition a cell complex weakly equivalent to a space becomes
isomorphic to that space, which would not be true if we were simply replacing maps
with homotopy classes of maps.

In most model categories, the homotopy relation does not have the good prop-
erties that it has in the category of topological spaces unless you restrict yourself
to the subcategory of cofibrant-fibrant objects (see Definition 7.1.5). There are ac-
tually two different homotopy relations on the set of maps between two objects X
and Y: Left homotopy, defined using cylinder objects for X, and right homotopy,
defined using path objects for ¥ (see Definition 7.3.2). For arbitrary objects X
and Y these are different relations, and neither of them is an equivalence relation.
However, for cofibrant-fibrant objects, the two homotopy relations are the same,
they are equivalence relations, and composition of homotopy classes is well defined
(see Theorem 7.4.9 and Theorem 7.5.5). Every object of a model category is weakly
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equivalent to a cofibrant-fibrant object, and we could thus define a “homotopy cat-
egory of cofibrant-fibrant objects” by taking the cofibrant-fibrant objects of the
model category as our objects and homotopy classes of maps as our morphisms.
Since a map between cofibrant-fibrant objects is a weak equivalence if and only if it
is a homotopy equivalence (see Theorem 7.5.10 and Theorem 7.8.5), this would send
weak equivalences to isomorphisms, and we define the classical homotopy category
of a model category in exactly this way (see Definition 7.5.8).

The classical homotopy category is inadequate, though, because most work
in homotopy theory requires constructions that create objects that may not be
cofibrant-fibrant, even if we start out with only cofibrant-fibrant objects. Thus, we
need a “homotopy category” containing all of the objects of the model category.
We define the Quillen homotopy category of a model category to be the localization
of the category with respect to the class of weak equivalences (see Definition 8.3.2).
For the class of weak equivalences of a model category, this always exists (see
Remark 8.3.3 and Theorem 8.3.5). Thus, the Quillen homotopy category of a model
category contains all of the objects of the model category. The classical homotopy
category is a subcategory of the Quillen homotopy category, and the inclusion of
the classical homotopy category in the Quillen homotopy category is an equivalence
of categories (see Theorem 8.3.3). We refer to the Quillen homotopy category as
simply the homotopy category.

Homotopy function complexes. Homotopy theory involves the construc-
tion of more than just a homotopy category. Dwyer and Kan [31, 32, 33] construct
the simplicial localization of a category with respect to a class of weak equivalences
as the derived functor of the functor that constructs the homotopy category. This
is a simplicial category, i.e., a category enriched over simplicial sets, and so for each
pair of objects there is a simplicial set that is the “function complex” of maps be-
tween the objects. These function complexes capture the “higher order structure”
of the homotopy theory, and taking the set of components of the function com-
plex of maps between two objects yields the set of maps in the homotopy category
between those objects.

Dwyer and Kan show that if you start with a model category, then simplicial sets
weakly equivalent to those function complexes can be constructed using cosimplicial
or simplicial resolutions (see Definition 16.1.2) in the model category. We present a
self-contained development of these homotopy function complezes (see Chapter 17).
Constructing homotopy function complexes requires making an arbitrary choice of
resolutions, but we show that the category of possible choices has a contractible
classifying space (see Theorem 17.5.28), and so there is a distinguished homotopy
class of homotopy equivalences between the homotopy function complexes resulting
from different choices (see Theorem 17.5.29 and Theorem 17.5.30).

Homotopy theory in model categories. Part 2 of this book studies model
categories and techniques of homotopy theory in model categories. Part 2 is in-
tended as a reference, and it logically precedes Part 1. We cover quite a bit of
ground, but the topics discussed in Part 2 are only those that are needed for the
discussion of localization in Part 1, fleshed out to give a reasonably complete de-
velopment. We begin Part 2 with the definition of a model category and with the
basic results that are by now standard (see, e.g., [52, 54, 14, 35]), but we give
complete arguments in an attempt to make this accessible to the novice. For a



LOCALIZING MODEL CATEGORY STRUCTURES xi

more complete description of the contents of Part 2, see the summary on page 103
and the introductions to the individual chapters. For a description of Part 1, which
discusses localizing model category structures, see below, as well as the summary
on page 3.

Prerequisites. The category of simplicial sets plays a central role in the homo-
topy theory of a model category, even for model categories unrelated to simplicial
sets. This is because a homotopy function complex between objects in a model
category is a simplicial set (see Chapter 17). Thus, we assume that the reader has
some familiarity with the homotopy theory of simplicial sets. For readers without
the necessary background, we recommend the works by Curtis [18], Goerss and
Jardine {39], and May [49)].

Localizing model category structures

Localizing a model category with respect to a class of maps does not mean
making the maps into isomorphisms; instead, it means making the images of those
maps in the homotopy category into isomorphisms (see Definition 3.1.1). Since the
image of a map in the homotopy category is an isomorphism if and only if the
map is a weak equivalence (see Theorem 8.3.10), localizing a model category with
respect to a class of maps means making maps into weak equivalences.

Localized model category structures originated in Bousfield's work on local-
ization with respect to homology ([8]). Given a homology theory h,, Bousfield
established a model category structure on the category of simplicial sets in which
the weak equivalences were the maps that induced isomorphisms of all homology
groups. A space (i.e., a simplicial set) W was defined to be local with respect
to h, if it was a Kan complex such that every map f: X — Y that induced
isomorphisms f,: h.X = h.Y of homology groups also induced an isomorphism
(Y, W) = (X, W) of the sets of homotopy classes of maps to W. In Bous-
field’s model category structure, a space was fibrant if and only if it was local with
respect to h..

The problem that led to Bousfield’s model category structure was that of con-
structing a localization functor for a homology theory. That is, given a homology
theory h,, the problem was to define for each space X a local space L, X and a
natural homology equivalence X — Lj, X. There had been a number of partial
solutions to this problem (perhaps the most complete being that of Bousfield and
Kan [14]), but each of these was valid only for some special class of spaces, and
only for certain homology theories. In [8], Bousfield constructed a functorial A,-
localization for an arbitrary homology theory h. and for every simplicial set. In
Bousfield’s model category structure, a fibrant approximation to a space (i.e., a
weak equivalence from a space to a fibrant space) was exactly a localization of that
space with respect to h,.

Some years later, Bousfield [9, 10, 11, 12] and Dror Farjoun [20, 22, 24]
independently considered the notion of localizing spaces with respect to an arbitrary
map, with a definition of “local” slightly different from that used in [8]: Given a
map of spaces f: A — B, a space W was defined to be f-local if f induced a weak
equivalence of mapping spaces f*: Map(B, W) & Map(A, W) (rather than just a
bijection on components, i.e., an isomorphism of the sets of homotopy classes of
maps), and a map g: X — Y was defined to be an f-local equivalence if for every f-
local space W the induced map of mapping spaces g*: Map(Y, W) — Map(X, W)
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was a weak equivalence. An f-localization of a space X was then an f-local space
Ly X together with an f-local equivalence X — Ly X. Bousfield and Dror Farjoun
constructed f-localization functors for an arbitrary map f of spaces.

Given a map f: A — B of spaces, we construct in Chapters 1 and 2 an f-
local model category structure on the category of spaces. That is, we construct a
model category structure on the category of spaces in which the weak equivalences
are the f-local equivalences, and in which an f-localization functor is a fibrant
approximation functor for the f-local model category. In Chapter 4 we extend
this to establish S-local model category structures for an arbitrary set S of maps
in a left proper (see Definition 13.1.1) cellular model category (see page xiii and
Chapter 12).

Constructing the localized model category structure. Once we've es-
tablished the localized model category structure, a localization of an object in the
category will be exactly a fibrant approximation to that object in the localized
model category, but it turns out that we must first define a natural localization of
every object in order to establish the localized model category structure. The rea-
son for this is that we use the localization functor to identify the local equivalences:
A map is a local equivalence if and only if its localization is a weak equivalence (see
Theorem 3.2.18).

The model categories with which we work are all cofibrantly generated model
categories (see Definition 11.1.2). That is, there is a set I of cofibrations and a set
J of trivial cofibrations such that

e a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I,

e a map is a fibration if and only if it has the right lifting property with
respect to every element of J, and

e both of the sets I and J permit the small object argument (see Defini-
tion 10.5.15).

For example, in the category Top of (unpointed) topological spaces (see Nota-
tion 1.1.4), we can take for I the set of inclusions S*~! — D™ for » > 0 and for J
the set of inclusions |A[n, k]| — |A[n]| for n > 0 and 0 < k < n. The left Bousfield
localization Ly Top of Top with respect to a map f in Top (see Definition 3.3.1)
will have the same class of cofibrations as the standard mode] category structure
on Top, and so the set I of generating cofibrations for Top can serve as a set of gen-
erating cofibrations for L;Top. The difficulty lies in finding a set J; of generating
trivial cofibrations for L ;Top.

A first thought might be to let Jy be the collection of all cofibrations that are
f-local equivalences, since the fibrations of Ly Top are defined to be the maps with
the right lifting property with respect to all such maps, but then J; would not be
a set. The problem is to find a subcollection J; of the class of all cofibrations that
are f-local equivalences such that

¢ a map has the right lifting property with respect to every element of J; if
and only if it has the right lifting property with respect to every cofibration
that is an f-local equivalence, and

e the collection J; forms a set.

That is the problem that is solved by the Bousfield-Smith cardinality argument.
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The Bousfield-Smith cardinality argument. Every map in Top has a cofi-
brant approximation (see Definition 8.1.22) that is moreover an inclusion of cell
complexes (see Definition 10.7.1 and Proposition 11.2.8). Since Top is left proper
(see Definition 13.1.1), this implies that for a map to have the right lifting property
with respect to all cofibrations that are f-local equivalences, it is sufficient that it
have the right lifting property with respect to all inclusions of cell complexes that
are f-local equivalences (see Proposition 13.2.1).

If we choose a fixed cardinal -y, then the collection of homeomorphism classes
of cell complexes of size no larger than ~y forms a set. The cardinality argument
shows that there exists a cardinal -y such that a map has the right lifting property
with respect to all inclusions of cell complexes that are f-local equivalences if and
only if it has the right lifting property with respect to all such inclusions between
cell complexes of size no larger than . Thus, we can take as our set Jy a set of
representatives of the isomorphism classes of such “small enough” inclusions of cell
complexes.

Our localization functor Ly is defined by choosing a set of inclusions of cell
complexes m and then attaching the codomains of the elements of m to a
space by all possible maps from the domains of the elements of A{f}, and then
repeating this an infinite number of times (see Section 1.3). In order to make the
cardinality argument, we need to find a cardinal vy such that

(1) if X is a cell complex, then every subcomplex of its localization Ly X of
size at most -y is contained in the localization of a subcomplex of X of size
at most <, and

(2) if X is a cell complex of size at most +y, then Ly X is also of size at most
-

We are able to do this because

(1) every map from a closed cell to a cell complex factors through a finite
subcomplex of the cell complex (see Corollary 10.7.7), and

(2) given two cell complexes, there is an upper bound on the cardinal of the
set of continuous maps between them, and this upper bound depends only
on the size of the cell complexes

(see Section 2.3).

Cellular model categories. Suppose now that M is a cofibrantly generated
model category and that we wish to localize M with respect to a set S of maps in
M (see Definition 3.3.1). If [ is a set of generating cofibrations for M, then

o we define a relative cell complezr to be a map built by repeatedly attach-
ing codomains of elements of I along maps of their domains (see Defini-
tion 10.5.8),
o we define a cell complez to be the codomain of a relative cell complex
whose domain is the initial object of M, and
o we define an inclusion of cell complezes to be arelative cell complex whose
domain is a cell complex.
(If M = Top, the category of topological spaces, our set I of generating cofibrations
is the set of inclusions S*~! — D™ for n > 0, and so a cell complex is a space built by
repeatedly attaching disks along maps of their boundary spheres.) In such a model
category, every map has a cofibrant approximation (see Definition 8.1.22) that is an
inclusion of cell complexes (see Proposition 11.2.8). Thus, if we assume that M is
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left proper (see Definition 13.1.1), then for a map to have the right lifting property
with respect to all cofibrations that are S-local equivalences, it is sufficient that it
have the right lifting property with respect to all inclusions of cell complexes that
are S-local equivalences (see Proposition 13.2.1). In order to make the cardinality
argument, though, we need to assume that maps between cell complexes in M are
sufficiently well behaved; this leads us to the definition of a cellular model category
(see Definition 12.1.1).

A cellular model category is a cofibrantly generated model category with addi-
tional properties that ensure that

e the intersection of a pair of subcomplexes (see Definition 12.2.5) of a cell
complex exists (see Theorem 12.2.6),

e there is a cardinal o (called the size of the cells of M, see Definition 12.3.3)
such that if X is a cell complex of size 7, then any map from X to a
cell complex factors through a subcomplex of size at most o7 (see Theo-
rem 12.3.1), and

e if X is a cell complex, then there is a cardinal 7 such that if Y is a cell
complex of size v (v > 2), then the set M(X,Y") has cardinal at most v”
(see Proposition 12.5.1).

Fortunately, these properties follow from a rather minimal set of conditions on the
model category M (see Definition 12.1.1), satisfied by almost all model categories
that come up in practice.

Left localization and right localization. There are two types of morphisms
of model categories: Left Quillen functors and right Quillen functors (see Defini-
tion 8.5.2). The localizations that we have been discussing are all left localizations,
because the functor from the original model category to the localized model cate-
gory is a left Quillen functor that is initial among left Quillen functors whose total
left derived functor takes the images of the designated maps into isomorphisms in
the homotopy category (see Definition 3.1.1). There is an analogous notion of right
localization.

Given a CW-complex A, Dror Farjoun [20, 21, 23, 24| defines a map of
topological spaces f: X — Y to be an A-cellular equivalence if the induced map
of function spaces f.: Map(4,X) — Map(A4,Y) is a weak equivalence. He also
defines the class of A-cellular spaces to be the smallest class of cofibrant spaces that
contains A and is closed under weak equivalences and homotopy colimits. We show
in Theorem 5.1.1 and Theorem 5.1.6 that this is an example of a right localization,
i.e., that there is a model category structure in which the weak equivalences are
the A-cellular equivalences and in which the cofibrant objects are the A-cellular
spaces. In fact, we do this for an arbitrary right proper cellular model category
(see Theorem 5.1.1 and Theorem 5.1.6).

The situation here is not as satisfying as it is for left localizations, though.
The left localizations that we construct for left proper cellular model categories
are again left proper cellular model categories (see Theorem 4.1.1), but the right
localizations that we construct for right proper cellular model categories need not
even be cofibrantly generated if not every object of the model category is fibrant.
However, if every object is fibrant, then a right localization will again be right
proper cellular with every object fibrant; see Theorem 5.1.1.
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Part 1

Localization of Model Category
Structures






Summary of Part 1

Part 1 contains our discussion of localization of model categories. Throughout
Part 1 we freely use the results of Part 2, which is our reference for techniques of
homotopy theory in model categories, and which logically precedes Part 1.

In Chapters 1 and 2 we discuss localization in a category of spaces. We work
in parallel in four different categories:

o The category of (unpointed) topological spaces.
e The category of pointed topological spaces.

o The category of (unpointed) simplicial sets.

e The category of pointed simplicial sets.

Given a map f, in Chapter 1 we discuss f-local spaces, f-local equivalences, and
f-localizations of spaces. We construct an f-localization functor, as well as a con-
tinuous version of the f-localization functor. We discuss commuting localizations
with the total singular complex and geometric realization functors, and compare
localizations in a category of pointed spaces with localizations in a category of
unpointed spaces.

In Chapter 2 we establish a mode] category structure on the category of spaces
in which the weak equivalences are the f-local equivalences and the fibrant ob-
jects are the f-local spaces. This requires a careful analysis of the cell complexes
constructed by the f-localization functor defined in Chapter 1, and the main argu-
ment involves studying the cardinality of the set of cells in the localization of a cell
complex.

In Chapter 3 we define left and right localizations of a model category M with
respect to a class € of maps in M. A left localization of M with respect to € is a
left Quillen functor defined on M that is initial among those that take the images
in the homotopy category of the elements of C into isomorphisms. A right locali-
zation is the analogous notion for right Quillen functors. We also define Bousfield
localizations, which are localizations obtained by constructing a new model cate-
gory structure on the original underlying category. (The localization of Chapter 2
is a left Bousfield localization.) We discuss local objects, local equivalences, and
localization functors in this more general context.

Chapter 4 contains our main existence results for left localizations. We show
that if M is a left proper cellular mode] category, then the left Bousfield localization
of M with respect to an arbitrary set S of maps in M exists. The proof requires
that we first define an S-localization functor for objects of M, and then carefully
analyze the cardinality of the set of cells in the localization of a cell complex.

Chapter 5 contains our main existence results for right localizations. If M is
a model category and K is a set of objects of M, then a map f: X —» Y in M is
defined to be a K-colocal equivalence if for every object A in K the induced map of

3



4 SUMMARY OF PART 1

homotopy function complexes f.: map(A4, X) — map(4,Y) is a weak equivalence
(see Definition 3.1.8). We show that if M is a right proper cellular model category
and K is an arbitrary set of objects of M, then the right Bousfield localization of
M with respect to the class of K-colocal equivalences exists.

In Chapter 6 we study fiberwise localizations in a category of spaces. If M is
a category of unpointed spaces and S is a set of maps in M, then for every map
p: X — Z in M we construct a “fiberwise S-localization” p: X = Zof p, which is
a map X — X over Z such that the induced map from the homotopy fiber of p to
that of p is an S-localization. We do this by constructing an appropriate localized
model category structure on the model category of spaces over Z.



CHAPTER 1

Local Spaces and Localization

We describe our categories of spaces in Section 1.1. In Section 1.2 we define
local spaces and local equivalences, and in Sections 1.3 and 1.4 we define a func-
torial localization and establish some of its properties. In Section 1.5 we show that
Postnikov approximations to a space are examples of localizations of the space. In
Section 1.6 we investigate localizations in the categories of simplicial sets and of
topological spaces, and the relationship between them. In Section 1.7 we construct
a continuous variant of our localization functor, and in Section 1.8 we describe the
relationship between localizations of pointed spaces and of unpointed spaces.

1.1. Definitions of spaces and mapping spaces

In Chapters 1 and 2 we will be discussing categories of spéces, where by a space
we mean either a topological space or a simplicial set. We will be working simul-
taneously in several different categories of spaces (topological spaces or simplicial
sets, pointed or unpointed), and a central question will be whether a map of spaces
induces a weak equivalence of mapping spaces. In order to discuss all of these
categories simultaneously, we will refer uniformly to the simplicial mapping space
(i-e., the simplicial set of maps) between two spaces no matter what the category
of spaces. Section 1.1.1 describes exactly what we will mean by a topological space,
Section 1.1.3 describes the various categories of topological spaces or of simplicial
sets that we will consider, and Definition 1.1.6 describes the simplicial mapping
space for each of these categories.

1.1.1. Definition of a topological space. There are several different cate-
gories of topological spaces in common use, and any of these is acceptable for our
purposes.

NOTATION 1.1.2. We will use Top to denote some category of topological spaces
with the following properties:
(1) Top is closed under small colimits and small limits.
(2) Top contains among its objects the geometric realizations of all simplicial
sets.
(3) If X and Y are objects of Top and K is a simplicial set, then there is a
natural isomorphism of sets

Top(X x |K|,Y) ~ Top(X,Y'¥!) .
Thus, the reader is invited to assume that Top denotes, e.g.,

e the category of compactly generated Hausdorff spaces (see, e.g., [62]), or

o the category of compactly generated weak Hausdorff spaces (see, e.g., [37,
Appendix A1l]), or

e some other category of spaces with our three properties (see, e.g., [63])
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(see also Section 7.10.1).

1.1.3. Our categories of spaces. We will be working with both topological
spaces (see Section 1.1.1) and simplicial sets, and for each of these we will consider
both the category of pointed spaces and the category of unpointed spaces. In order
to keep the terminology concise, the word space will be used to mean either a
topological space or a simplicial set, and we will use the following notation for our
categories of spaces.

NoTaTION 1.1.4. We will use the following notation for our categories of spaces:

SS : The category of simplicial sets.

SS. : The category of pointed simplicial sets.

Top : The category of topological spaces (see Section 1.1.1).
Top,.: The category of pointed topological spaces.

Since much of our discussion will apply to more than one of these categories, we
will use the following notation:

SS(.) ;. Either SS or SS,.

Top(,): Either Top or Top,.

Spc : A category of unpointed spaces, i.e., either Top or SS.
Spc, : A category of pointed spaces, i.e., either Top, or SS,.
Spe(,): Any of the categories SS, SS.., Top, or Top,.

1.1.5. Simplicial mapping spaces. Each of our categories of spaces is a
simplicial model category (see Definition 9.1.6), and our localization results will
make use of the simplicial mapping space between objects in these categories. We
will sometimes refer to the simplicial mapping space between two objects as the
function complex between those objects.

DEFINITION 1.1.6 (Simplicial mapping spaces).

e If X and Y are objects of SS, then Map(X,Y') is the simplicial set with n-
simplices the simplicial maps X X A[n] — Y and face and degeneracy maps
induced by the standard maps between the A[n] (see Example 9.1.13).

e If X and Y are objects of SS,, then Map(X,Y) is the simplicial set with
n-simplices the basepoint preserving simplicial maps X A A[n]t — ¥ and
face and degeneracy maps induced by the standard maps between the
Aln] (see Example 9.1.14).

e If X and Y are objects of Top, then Map(X,Y) is the simplicial set
with n-simplices the continuous functions X x |A[n]| — ¥ and face and
degeneracy maps induced by the standard maps between the A[n] (see
Example 9.1.15).

e If X and Y are objects of Top,, then Map(X,Y) is the simplicial set
with n-simplices the continuous functions X A |A['n]|+ — Y and face and
degeneracy maps induced by the standard maps between the A[n] (see
Example 9.1.16).

Note that, in all cases, Map(X,Y') is an unpointed simplicial set.
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1.1.7. Total singular complex and geometric realization.

DEFINITION 1.1.8. If X and Y are objects of Spcy,) (see Notation 1.1.4) and
K is a simplicial set, then X ® K and Y* will denote the objects of Specy,) defined
by the simplicial model category structure on Spc,; (see Example 9.1.13, Exam-

ple 9.1.14, Example 9.1.15, and Example 9.1.16), which are characterized by the
natural isomorphisms of sets

Spc(.) (X ® K,Y) ~ SS(K,Map(X,Y)) = Spe(.y (X, Y)

(see Definition 9.1.6). Thus,

If Spe(,) =55, then X®@K=XxK and XX =Map(K, X).

If Spc,y=S5S., then X®K=XAK* and XK = Map_(K , X).

If Spci,y=Top, then X®K=Xx|K| and X¥=map(|K| X).

If Spc(,y =Top,, then X ®K =XA|K|* and XX =map,(|K|*, X)
(See Definition 18.2.1.)

LemMMa 1.1.9. Let K be an unpointed simplicial set.

(1) If X is a topological space (either pointed or unpointed), then there is a
natural isomorph.ism of (pointed or unpointed) simplicial sets Sing(XX) ~
(Sing X)X.
(2) IfL is a simplicial set (either pointed or unpointed), then there is a natural
homeomorphism of (pointed or unpointed) topological spaces |L ®K |
|L|® K.
ProoF. If X is a pointed topological space, then there are natural isomor-
phisms
(Sing(X¥)), = Top,(|AR)|*, X¥)
= Top, (|Al][*, mep, (|K|*, X))
~ Top, (|AlR]|* A K|, X)
= Top, (|A[n]* A K|, X)
~ 8S.(A[n]* A K™, Sing X)
~ SS.(A[n]*, (Sing X)¥)
=~ ((Sing X)¥)
The proof for the unpointed case is similar.
If L is a pointed simplicial set, then there are natural homeomorphisms

L& K|=|LAKY|
~ |L| A |K|*
=|L|®K .
The proof for the unpointed case is similar. O

LemMa 1.1.10. If L is a simplicial set and W is a topological space (either
both pointed or both unpointed), then the standard adjunction of the geometric
realization and total singular complex functors extends to a natural isomorphism
of simplicial mapping spaces

Map(|L|, W) ~ Map(L, Sing W) .
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PROOF. This follows from the natural homeomorphism | L®A[n]| = |L|®|A[n||
(see Lemma 1.1.9).

ProprosiTiON 1.1.11. If A and X are objects of 88(,) and X is fibrant, then
there is a natural weak equivalence of simplicial sets
Map(4, X) 2 Map(|4[,|X|)
PROOF. Since all simplicial sets are cofibrant, the natural map X — Sing|X|

induces a weak equivalence Map(A4, X) = Ma,p(A,SingiXD (see Corollary 9.3.3).
The proposition now follows from Lemma 1.1.10. 0

ProposITION 1.1.12. If A and X are objects of Top,) and A is cofibrant, then
there is a natural weak equivalence of simplicial sets
Map(A,; X) = Map(Sing A4, Sing X) .
PROOF. Since all topological spaces are fibrant, the natural map |Sing A| — A

induces a weak equivalence Map(4, X) = Ma.p(]Sing A|,X) (see Corollary 9.3.3).
The proposition now follows from Lemma 1.1.10. 0

DEFINITION 1.1.13. Each of our categories of spaces has a functor to SS, and
each of these functors has a left adjoint SS — Spc,, i.e., for an unpointed simplicial
set K and an object X of Spc(,), we have natural isomorphisms

SS(K, X) ~ SS(K, X)
SS. (K*+, X) ~ SS(K, X~)
Top(|K|, X) ~ SS(X, Sing X)
Top, (|K|*, X) ~ SS(K, Sing X~)

where “X~” means “forget the basepoint of X”. If K is an (unpointed) simplicial
set, then we will use Spc(,)(K) to denote the image of K in Spc(,) under this left
adjoint. Thus,

If Speq,y =S5, then Spc(,)(K) = K.

If SPC(,) = SS., then SPC(,)(K) =K*.
If Spery=Top, then Spc (K)=|K|.
If Spc(,) =Top,, then Spe(,(K)=|K|*.

ExampLE 1.1.14. In the standard model category structure on Spc(,y, a map
is a fibration if it has the right lifting property (see Definition 7.2.1) with respect
to the maps Spc,y(A[n,k]) — Spc(,)(Aln]) for alln > 0 and 0 < k < n (see
Theorem 7.10.10, Theorem 7.10.11, Theorem 7.10.12, and Theorem 7.10.13).

1.2. Local spaces and localization
1.2.1. f-local spaces and f-local equivalences.

DEFINITION 1.2.2. Let Spec(,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map between cofibrant spaces in Spcy,).
(1) A space W is f-local if W is fibrant and the induced map of simplicial sets
f*: Map(B, W) — Map(A4, W) is a weak equivalence. If f is a map * —
A, then an f-local space will also be called A-local or A-null. Bousfield
([11]) has used the term A-periodic for what we here call A-local.
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(2) A map g: X — Y is an f-local equivalence if there is a cofibrant ap-
proximation §: X — Y to g (see Definition 8.1.22) such that for every
f-local space W the induced map of simplicial sets g*: Map(f’,W) —
Map()? , W) is a weak equivalence. (Proposition 9.7.2 implies that if this
is true for any one cofibrant approximation to g then it is true for every
cofibrant approximation to g.)

If Spe(,y = SSy,) then every space is cofibrant, and so a map g: X — Y isan f-
local equivalence if and only if for every f-local space W the map ¢g*: Map(Y,W) —
Map(X,W) is a weak equivalence. If Spc(,y = Top, then all CW-complexes are
cofibrant, and so a CW-replacement for a space serves as a cofibrant approximation
to that space.

A paraphrase of Definition 1.2.2 is that a fibrant space is f-local if it makes f
look like a weak equivalence (see Corollary 9.3.3) and a map is an f-local equivalence
if all f-local spaces make it look like a weak equivalence. In Theorem 2.1.3 we show
that there is a model category structure on Spc(,‘) in which the fibrant objects are
the local spaces (see Proposition 2.1.4) and the weak equivalences are the f-local
equivalences. For a discussion of the relation of our definition of f-local equivalence
to earlier definitions, see Remark 1.2.14.

1.2.3. Local spaces.

PrOPOSITION 1.2.4. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map of cofibrant spaces. If X and Y are fibrant
spaces and g: X — Y is a weak equivalence, then X is f-local if and only ifY is
f-local.

PRrooF. We have a commutative diagram

Map(B, X) —— Map(A4, X)

,{ F

Map(B,Y) —— Map(A4,Y)

in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.
m|

PROPOSITION 1.2.5. Let Spc(,y be one of our categories of spaces and let
f: A — B be a map between cofibrant spaces. If X is an f-local space and Y
is a retract of X, then Y is f-local.

ProoF. Axiom M3 (see Definition 7.1.3) implies that Y is fibrant and the map
f*: Map(B,Y) — Map(A4,Y) is aretract of the weak equivalence f*: Map(B, X) —
Map(A, X) and is thus a weak equivalence. O

Lemma 1.2.6. Let Spcy,) be one of our categories of spaces and let f:A— Bbe
a map between cofibrant spaces. If X is an f-local space, then any space consisting
of a nonempty union of path components of X is an f-local space.

PROOF. A nonempty union of path components of a cofibrant space is a retract
of that space, and so the result follows from Proposition 1.2.5. |
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1.2.7. Changing the map f.

PrOPOSITION 1.2.8. Let Spcy,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let both f and f' be maps between cofibrant spaces. If the class of
f-local spaces equals the class of f’-local spaces, then the class of f-local equiva-
lences equals the class of f'-local equivalences.

Proor. This follows directly from the definitions. O

ExamPLE 1.2.9. Let A be a simplicial set if Spc,y = SS(,) or a cell complex if
Spcsy = Topy.y (see Notation 1.1.4), and let CA be the coneon A. If f: x — A s
the inclusion of a vertex and f’: A — CA is the standard inclusion, then a space
is f-local (i.e., A-local; see Definition 1.2.2) if and only if it is f’-local, and so the
class of f-local equivalences equals the class of f’-local equivalences.

ProrosiTiON 1.2.10. Let Spc(,‘) be one of our categories of spaces (see Nota-
tion 1.1.4) and let both f: A — B and f': A’ — B’ be maps between cofibrant
spaces. If there are weak equivalences A — A’ and B — B’ such that the square

A—L.pB

EJ l““

AI f/ 3 Bl

commutes, then

(1) the class of f-local spaces equals the class of f'-local spaces and
(2) the class of f-local equivalences equals the class of f’-local equivalences.

PROOF. Proposition 1.2.8 implies that part 1 implies part 2, and so it is suffi-
cient to prove part 1.
If W is a fibrant space, then we have the commutative square

Map(B', W) 25 Map(4’, W)

EJ JE

Map(B, W) —5 Map(A, W)

in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, f* is
a weak equivalence if and only if (f')* is a weak equivalence, and so W is f-local if
and only if it is f’-local. O

REMARK 1.2.11. Proposition 1.2.10 (see also Proposition 11.2.8) implies that
we can always replace our map f: A — B with an inclusion of simplicial sets
(if Spe,y = SS(.)) or an inclusion of cell complexes (if Spc(,, = Top,;) without
changing the class of f-local spaces or the class of f-local equivalences. We will often
assume that we have done this, and we will summarize this assumption by saying
that f is an inclusion of cell complezes. (This usage is consistent with the definition
of cell complex in a cofibrantly generated model category (see Definition 11.1.4).)
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1.2.12. f-localization.

DEeFINITION 1.2.13. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4), and let f: A — B be a map between cofibrant spaces.

(1) An f-localization of a space X is an f-local space X (see Definition 1.2.2)
together with an f-local equivalence jx: X — X. We will sometimes
use the phrase f-localization to refer to the space X without explicitly
mentioning the f-local equivalence j. A cofibrant f-localization of X is
an f-localization in which the f-local equivalence is also a cofibration.

(2) An f-localization of a map g: X — Y is an f-locahzatlon (X,ix) of X,
an f-localization (Y jy)of Y, and a map §: X — ¥ such that the square

X —>y

Jd )

)’f—gﬁ;

commutes. We will sometimes use the term f-localization to refer to the
map § without explicitly mentioning the f-localizations (X, jx) of X and
(Y,jy) of Y.

We will show in Corollary 1.4.13 that all spaces and maps have f-localizations.

The reader should note the similarity between the definitions of f-localization
and fibrant approximation (see Definition 8.1.2 and Definition 8.1.22). In Theo-
rem 2.1.3, we prove that there is an f-local model category structure on Speg,y in
which the fibrant objects are the local spaces and the weak equivalences are the
f-local equivalences. In the f-local model category, an f-localization of a space or
map is exactly a fibrant approximation to that space or map.

REMARK 1.2.14. In most earlier work on localization [22, 20, 25, 24, 11, 16}
an f-local equivalence was defined to be a map ¢g: X — Y such that for every f-
local space W the map of function spaces g* : Map(Y, W) — Map(X, W) is a weak
equivalence. In fact, this earlier work considered only the subcategory of cofibrant
spaces. Since a cofibrant space is a cofibrant approximation to itself, this earlier
definition coincides with ours.

1.2.15. f-local equivalences.

PROPOSITION 1.2.16. Let Spc,y be one of our categories of spaces (see No-
tation 1.14). If f: A — B is a map between cofibrant spaces, then every weak
equivalence is an f-local equivalence.

PROOF. Since a cofibrant approximation to a weak equivalence must also be a
weak equivalence, this follows from Corollary 9.3.3. O

PROPOSITION 1.2.17. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is a map between cofibrant spaces, then the class of f-local
equivalences satisfies the “two out of three” axiom, i.e., if g and h are composable
maps and if two of g, h, and hg are f-local equivalences, then so is the third.
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PROOF. Given maps g: X — Y and h: Y — Z, we can apply a functorial
cofibrant approximation (see Proposition 8.1.17) to g and h to obtain the diagram

X
X—Y ——

§ 13
)

e
N— N

in which g, R, and }-zg are cofibrant approximations to g, h, and hg, respectively.
If W is a fibrant space, then two of the maps §*: Map(Y, W) — Map()?,W),
h*: Map(Z, W) — Map(Y, W), and (hg)*: Map(Z, W) — Map(X, W) are weak
equivalences, and so the third is as well. a

PROPOSITION 1.2.18. Let Spc.y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is a map between cofibrant spaces, then a retract (see
Definition 7.1.1) of an f-local equivalence is an f-local equivalence.

ProoF. If g: X — Y is an f-local equivalence and h: V — W is a retract of
g, then we apply a functorial cofibrant approximation (see Proposition 8.1. 17) to
obtain cofibrant approximations §: X Y to g and h: V — W such that his a
retract of §. If Z is an f-local space, then h*: Map(W, Z) — Map(V,Z) is then a
retract of the weak equivalence §*: Map(Y,Z ) = Map(X, Z), and so h* is a weak
equivalence. O

PROPOSITION 1.2.19. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map of cofibrant spaces. If g: X — Y is a cofi-
bration of cofibrant spaces, then g is an f-local equivalence if and only if it has the
left lifting property (see Definition 7.2.1) with respect to the map W2Irl — WoAln]
for all m > 0 and all f-local spaces W.

ProoOF. This follows from Proposition 9.4.5 and Lemma 9.4.7. O

PROPOSITION 1.2.20. Let Spc(,) be one of.our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map of cofibrant spaces. If T is a totally ordered
set and X: T — Spc(,) is a functor such that if s,t € T and s <t then X; — X,
is a cofibration of cofibrant spaces that is an f-local equivalence, then for every
s € T the map X, — colim>; X is an f-local equivalence.

ProoF. This follows from Proposition 1.2.19, Lemma 10.3.5, and Proposi-
tion 10.3.6. 0O

PropOsITION 1.2.21. Let Spc,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map of cofibrant spaces. If g: C — D is a
cofibration between cofibrant spaces that is also an f-local equivalence and if the
square

C— X
{ lh
D—Y

is a pushout, then h is an f-local equivalence.
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PROOF. Factor the map C — X as C = P 5 X, where u is a cofibration
and v is a trivial fibration. If we let Q be the pushout D Il P, then we have the
commutative diagram

cC——P—sXx

ng k Jvh
D'S_’Q—t—>Y

in which u and s are cofibrations, and so P and @ are cofibrant. Since k is a cofibra-
tion, we are in a proper model category (see Theorem 13.1.11 and Theorem 13.1.13),
and Proposition 7.2.14 implies that Y is the pushout @ IIp X, the map ¢ is a weak
equivalence. Thus, k is a cofibrant approximation to h (see Definition 8.1.22), and
so it is sufficient to show that k induces a weak equivalence of mapping spaces to
every f-local space. Since g is a cofibration and an f-local equivalence and k is a
cofibration, this follows from Proposition 1.2.19 and Lemma 7.2.11. a

PROPOSITION 1.2.22. Let Spc,, be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
If I is a set of f-local equivalences that are cofibrations between cofibrant spaces,
then a transfinite composition of pushouts of elements of I is also an f-local equiv-
alence.

PROOF. Proposition 1.2.21 implies that every pushout of an element of [ is an
f-local equivalence. If A is an ordinal and

Xo—=Xyj—=Xe> - Xg— - B<X)

is a A-sequence of pushouts of elements of I, then Proposition 17.9.4 implies that
we can find a A-sequence of cofibrations together with a map of A-sequences

X, » X, » X, » Xg
Xo ,Xl IX2 > ,Xﬁ >

such that
(1) each vertical map . X g — Xp is a cofibrant approximation to Xg,
(2) each map Xg - Xg.H is a cofibration, and
(3) the map colimg«x Xg — colimgey X is a cofibrant approximation to
colimg<,\ Xg.
If W is an f-local space then the simplicial set Map(colimg« » )?g, W) is isomorphic
to limg«a Map(Xg, W). Since each map X3 — Xp41 is an f-local equivalence and

each map Xg - Xg.H is a cofibration, each map Map(Xg.H, W) — Map()?g, w)
is a trivial fibration. Thus,

Map(Xo, W) «— Map(Xy, W) — Map(Xz, W) — -+ — Map(Xg, W) —
is a tower of trivial fibrations of simplicial sets, and so the composition

M lim X, W) — lim Map(Xs, W) — Map(Xo, W
ap(cgg\n 8 )—»ﬁlg}\ ap(Xp, W) — Map(Xo, W)
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is a weak equivalence, and so the composition Xo — colimg<y Xp is an f-local
equivalence. O

1.2.23. f-local Whitehead theorems.

LEmMa 1.2.24. Let Spc,y be one of our categories of spaces (see Notation1.1.4)
and let f: A — B be a map between cofibrant spaces. If W is an f-local space
and g: X — Y is an f-local equivalence of cofibrant spaces, then g induces an
isomorphism of the sets of simplicial homotopy classes of maps g*: [Y, W] = (X, W].

Proor. This follows from Proposition 9.5.10. O

THEOREM 1.2.25 (Strong f-local Whitehead theorem). Let Spey,y be one of
our categories of spaces {see Notation.1.1.4).and let f: A — B be a map between
cofibrant spaces. If X and Y are cofibrant f-local spaces and g: X — Y is an
f-local equivalence, then g is a simplicial homotopy equivalence.

ProOOF. This follows from Lemma 1.2.24 and Proposition 9.6.9. O

THEOREM 1.2.26 (Weak f-local Whitehead theorem). Let Spc(.) be one of our
categories of spaces (see Notation 1.1.4) and let f: A — B be a map between
cofibrant spaces. If X and Y are f-local spaces and g: X — Y is an f-local
equivalence, then g is a weak equivalence.

PRroOF._Choose a cofibrant approximation §: X — Y to g such that jx: X —
X and jy:Y — Y are trivial fibrations (see Proposition 8.1.23). Proposition 1.2.4
implies that X and Y are f-local spaces, and Proposition 1.2.16 and Proposi-
tion 1.2.17 imply that § is an f-local equivalence. Theorem 1.2.25 and Theo-
rem 7.8.5 now imply that § is a weak equivalence, which implies that ¢ is a weak
equivalence. a

1.2.27. Characterizing f-local spaces and f-local equivalences.

THEOREM 1.2.28. Let Spcy,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be a map between cofibrant spaces. If X is a fibrant
space and j: X — X is an f-localization of X (see Definition 1.2.13), then j is a
weak equivalence if and only if X is f-local.

ProOOF. If X is f-local, then Theorem 1.2.26 implies that j is a weak equiva-
lence. Conversely, if j is a weak equivalence, then Proposition 1.2.4 implies that X
is f-local. ]

THEOREM 1.2.29. Let Spc(‘) be one of our categories of spaces (see Nota-
tion1.1.4) and let f: A — B be a map between cofibrant spaces. If §: X > Visan
f-localization of g: X — Y (see Definition 1.2.13), then g is an f-local equivalence
if and only if § is a weak equivalence.

ProOOF. Proposition 1.2.17 implies that g is an f-local equivalence if and only
if § is an f-local equivalence, and Theorem 1.2.26 and Proposition 1.2.16 imply
that § is an f-local equivalence if and only if it is a weak equivalence. a

If Spey,, is one of our categories of spaces (see Notation 1.1.4) and f: A — B
is a map between cofibrant spaces, then in Definition 1.4.11 we define a functorial
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f-localization (Lyg,7). Theorem 1.2.28 then implies that a fibrant space X is f-
local if and only if the localization map j(X): X — LsX is a weak equivalence
(see Theorem 1.4.14), and Theorem 1.2.29 implies that a map ¢g: X — Y is an
f-local equivalence if and only if Ly(g): Ly X — LsY is a weak equivalence (see
Theorem 1.4.15).

1.2.30. Topological spaces and simplicial sets.

ProrosiTionN 1.2.31. Let f: A — B be a map between cofibrant spaces in
Topy.) (see Notation 1.1.4).

(1) A space is f-local if and only if it is |Sing f|-local.
(2) Amap g: X =Y is an f-local equivalence if and only if it is a ISing f|-
local equivalence.

Proor. This follows from Proposition 1.2.10 and Proposition 1.2.8. 0

PROPOSITION 1.2.32. Let f: A — B be a map in 88(,y (see Notation 1.1.4).

(1) A space is f-local if and only if it is (Sing|f|)-local.
(2) Amapg: X — Y is an f-local equivalence if and only if it is a (Sing|f|)-
local equivalence.

Proor. Since every simplicial set is cofibrant, the result follows from Propo-
sition 1.2.10 and Proposition 1.2.8. 0

PROPOSITION 1.2.33. If f: A — B is a map in 88,y (see Notation 1.1.4), then
a topological space W in Topy,y is |f|-local if and only if Sing W is f-local.
Proor. Lemma 1.1.10 gives us the commutative square

Map(|B|,W) ——— Map(|4|, W)

~ =

Map(B, Sing W) —— Map(A, Sing W)

in which the vertical maps are isomorphisms, from which the proposition follows.
a

PROPOSITION 1.2.34. If f: A — B is a map in 88,y (see Notation 1.1.4) and

K is a fibrant simplicial set in SS(.,, then K is f-local if and only if |K| is | f|-local.

PROOF. Since K is fibrant the natural map K — Sing| K| is a weak equivalence
of fibrant spaces, and so we have the commutative square

Map(B, K) —— Map(A4, K)

= R

Map(B, Sing| K |) — Map(4, Sing|K|)

in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, K
is f-local if and only if Sing|K | is f-local, and so the proposition follows from
Proposition 1.2.33. O
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PrROPOSITION 1.2.35. If f: A — B is a map in SS(,) (see Notation 1.1.4),
then the map g: C — D in 8S,) is an f-local equivalence if and only if the map
l9]: |C| = | D| in Top., is a |f|-local equivalence.

Proor. Since every simplicial set is cofibrant, g is an f-local equivalence if and
only if for every f-local simplicial set K the map of simplicial sets g* : Map(D, K) —
Map(C, K) is a weak equivalence. If K is an f-local simplicial set then K is fibrant,
and so Corollary 9.3.3 implies that ¢ is an f-local equivalence if and only if, for
every f-local simplicial set K, the map of simplicial sets ¢*: Map(D, Sing|K|) —
Map(C, Sing|K|) is a weak equivalence. Lemma 1.1.10 implies that this is true
if and only if Map(|D|, |K|) — Map(|C|,|K]) is a weak equivalence. Proposi-
tion 1.2.33 and Proposition 1.2.34 imply that this is true if and only if for every Ifl-
local topological space W the map Map(|D|, W) — Map(|C|, W) is a weak equiv-
alence. Since |C| and | D| are cofibrant, this is true if and only if |g|: |C| — | D| is
a | f|-local equivalence. O

PROPOSITION 1.2.36. If f: A — B is a map in S8,y (see Notation 1.1.4), then
the map g: X — Y in Top, is a |f|-IocaI equivalence if and only if the map
(Singg): Sing X — SingY in S8, is an f-local equivalence.

PrOOF. The map |Sing g|: |Sing X| — |Sing Y| is a cofibrant approximation
to g (see Definition 8.1.22), and so g is a | I ]-local equivalence if and only if, for
every | f|-local topological space W, the map of simplicial sets Map(|Sing Y |, W) —
Map(|Sing X |, W) is a weak equivalence. Lemma 1.1.10 implies that this is true if
and only if, for every | f |-local topological space W, the map Map(Sing Y, Sing W) —
Map(Sing X, Sing W) is a weak equivalence. If X is an f-local simplicial set, then
K is fibrant, and so the natural map K — Sing|K | is a weak equivalence of fi-
brant objects. Thus, Corollary 9.3.3 and Proposition 1.2.34 imply that ¢ is a
| f ]—local equivalence if and only if, for every f-local simplicial set K, the map
Map (Sing ¥, Sing|K'|) — Map(Sing X, Sing| K |) is a weak equivalence. Since every
simplicial set is cofibrant, this completes the proof. 0

1.3. Constructing an f-localization functor

If Spey,, is one of our categories of spaces (see Notation 1.1.4) and f: 4 — B
is a map between cofibrant spaces, we describe in this section how to construct a
functorial f-localization on Spc(,) (see Definition 1.2.13). The construction that
we present is essentially the one used by Bousfield in [9).

1.3.1. Horns on f. If Spe, is one of our categories of spaces (see Nota-
tion 1.1.4) and f: A — B is a map between cofibrant spaces, we want to construct
a functorial f-localization (see Definition 1.2.13) on Spc(,). That is, for every space
X we want to construct a natural f-local space X together with a natural f-local
equivalence X — X. Remark 1.2.11 implies that we can assume that f is an
inclusion of cell complexes, and we will assume that f is such an inclusion.

If X is to be an f-local space, then it must first of all be fibrant. Thus, the
map X — * must have the right lifting property with respect to the inclusions
Spc(.y(Aln, k) — Spe(,y (A[n]) (see Definition 1.1.13) for alln > 0 and n > k > 0.
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If X is a fibrant space, then f*: Map(B, )?) — Map(4, )?) isalready a fibration
of simplicial sets (see Proposition 9.3.1). Thus, if X is fibrant, then the assertion
that X is f-local is equivalent to the assertion that f* is a trivial fibration of
simplicial sets. Since a map of simplicial sets is a trivial fibration if and only if
it has the right lifting property with respect to the inclusions 8A[n] — Aln] for
n > 0, this implies that a fibrant space Xis f-local if and only if the dotted arrow
exists in every solid arrow diagram of the form

dA[n] —— Map(B, X)
hi

L

Aln] —— Map(4, X) ,

and the isomorphisms of Definition 1.1.8 imply that this is true if and only if the
dotted arrow exists in every solid arrow diagram of the form

A® Aln] Hagoapm) B® AN — X

| |

B®AR ————— % .

Thus, a space X is f-local if and only if the map X — « has the right lifting
property with respect to the maps Spc(,y(A[n, k]) — Spc(,)(A[n]) for all n > 0 and
n 2> k > 0 and the maps A ® A[n] l4g9am) B ® 8A[n] — B ® Aln] for all n > 0.
This is the motivation for the following definition of A{f}, the augmented set of
f-horns.
DEFINITION 1.3.2. Let Spcq,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
o The set A{f} of horns on f is the set of maps
AL} = {A® Aln] Wagoap B ® Al — Be Al |n> 0} .
If Spe(,y = Spc, and f is the map f: * — A, then A{f} is the set of maps
A{A} ={A®8A[n] 5 AR An] |n >0},
and it will also be called the set of horns on A.
e The augmented set of f-horns A{f} is the set of maps
(see Definition 1.1.13).

PROPOSITION 1.3.3. If Spcy,) s one of our categories of spaces (see Nota-
tion 1.1.4) and f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then a space X is f-local if and only if the map X — * has the right lifting property
with respect to every element of the augmented set of f-horns (see Definition 1.3.2).

ProoF. This follows from the discussion preceding Definition 1.3.2. O

We will construct the map X — X as a transfinite composition (see Defini-
tion 10.2.2) of inclusions of cell complexes X = E® — E! - E? = ... —» Ff —
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(B < A), where X = colimgey E?. To ensure that X is Sf-local, we will
construct the E? so that if the map C — D is an element of A{f} then

(1) for every map h: C' — X there is an ordinal @ < A such that k factors
through the map E* — X, and

(2) for every ordinal @ < A the dotted arrow exists in every solid arrow
diagram of the form

¢ ——E* — E*H!
D

Thus, if the map C — D is an element of A{f}, then the dotted arrow will exist in
every solid arrow diagram of the form

C— X
J’ hat
D

and so the map X — % will have the right lifting property with respect to every
element of A{f} (see Proposition 1.3.3).

1.3.4. Choice of the ordinal A. If A and B are finite complexes, then we
let A be the first infinite cardinal. Otherwise, we let A be the first cardinal greater
than that of the set of simplices (or cells) of AII B (in which case A is a successor
cardinal). In either case, A is a regular cardinal (see Proposition 10.1.14).

Suppose we now construct a A-sequence (see Definition 10.2.1) of inclusions of
cell complexes

X=E'SB' B2 ... 0B o ... (B<))

and let X = colimge EP. IfA® Aln] T sgaapm B ® 0A[n] — Xis any map, then
for each simplex (or cell) of A ® A[n]Ill4gsa[m) B ® OA[n] there is an ordinal 8 < A
such that that simplex (or cell) lands in E°. (If Spc(,) = Topy,), then this follows
from Corollary 10.7.5.) If we let & be the union of the ordinals £ obtained in this
way for each simplex (or cell) in A ® A[n] Haganin) B ® OA[n], then the regularity
of A ensures that o < A. Thus, our map factors through E®. The same argument
applies to maps Spc(,)(A[n, k]) — X.

1.3.5. Constructing the sequence. We begin the sequence by letting EC =
X. If B < X and we have constructed the sequence through E? , we let

¢s= JI ¢ ad Ds= [ D.
(C—D)eA{f} (C—D)eAlF}
Spc(.y (C,EP) Spc(.)(C,EP)
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We then have a natural map C — E?, and we define E°*! by letting the square

Cs — EP

J

Dﬂ ) Eﬁ-H

be a pushout. If v is a limit ordinal, we let E” = colimg., E. Welet X =
co]imﬁ<,\ Eﬂ.

It remains only to show that the map X — X that we have constructed is an
f-local equivalence. This will follow from Theorem 1.3.11.

1.3.6. Horns on f and f-local equivalences.

ProposITION 1.8.7. If Spey,) is one of our categories of spaces (see Nota-
tion 1.1.4) and f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then every horn on f (see Definition 1.3.2) is an f-local equivalence.

PRroOF. Since every horn on f is a cofibration between cofibrant spaces, this
follows from Proposition 9.4.5 and Proposition 9.4.8. O

DeFINITION 1.3.8. Let Spc,y be one of our categories of spaces (see Nota~
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then
a relative m—cell complez is defined to be a map that can be constructed as a
transfinite composition (see Definition 10.2.2) of pushouts (see Definition 7.2.10)
of elements of A{f} (see Definition 1.3.2). If the map from the initial object to a
space X is a relative A{f}-cell complex, then X will be called a A{f}-cell complez.

THEOREM 1.3.9. Let Spc(,y be one of our categories of spaces (see Notation1.1.4).
If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then every rel-
ative A{f}-cell complex is both a cofibration and an f-local equivalence.

PROOF. Since every element of A{f} is a cofibration and cofibrations are closed
under both pushouts and transfinite compositions (see Proposition 10.3.4), every
relative A{f}-cell complex is a cofibration, and Proposition 1.2.22 implies that a
relative m-cell complex is an f-local equivalence. ]

PROPOSITION 1.3.10. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then for every space X the map X — X constructed in Section 1.3.5 is a relative
A{f}-cell complex.

ProoF. Themap X — X is constructed as a transfinite composition of pushouts
of coproducts of elements of A{ f}, and so the result follows from Proposition 10.2.14.
O

THEOREM 1.3.11. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then for every space X the map X — X constructed in Section 1.3.5 is a natural
f-localization of X.
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ProoF. This follows from Proposition 1.3.10, Theorem 1.3.9, Proposition 1.3.3,
and the discussion following Proposition 1.3.3. 0

1.4. Concise description of the f-localization
1.4.1. f-cofibrations and f-injectives.

DEFINITION 1.4.2. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
(1) A A{f}-injective is defined to be a map that has the right lifting property
(see Definition 7.2.1) with respect to every element of A{f} (see Defini-
tion 1.3.2). A space X will be called a A{f}-injective if the map X — *
is a A{f}-injective. If f is a cofibration f: * — A, then a A{f}-injective

will also be called a A{A}-injective.
(2) A A{f}-cofibration is defined to be a map that has the left lifting property
with respect to all A{f}-injectives. If the map from the initial object to
a space X is a A{f}-cofibration, then X will be called A{f}-cofibrant. If
f is a cofibration f: * — A, then a A{f}-cofibration will also be called a
A{A}-cofibration, and a A{f}-cofibrant space will also be called a A{A}-

coftbrant space.

REMARK 1.4.3. The term A{f}-injective comes from the theory of injective
classes ([36]). A space X is a A{f}-injective if and only if it is injective in the sense
of [36] relative to the elements of A{f}, and we will show in Proposition 1.4.5 that
amap p: X — Y is a A{f}-injective if and only if, in the category (Spc(,y 1Y) of
spaces over Y (see Definition 11.8.1), the object p is injective relative to the class
of maps whose image under the forgetful functor (Spc(,) 1Y) — Spcy,, is a relative

A{f}-cell complex (see Definition 1.3.8).

PROPOSITION 1.4.4. Let Spc,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then amapp: X - Y isa —A{—f}—injective if and only if it is a fibration with the
homotopy right lifting property with respect to f.

Proor. This follows from Lemma, 9.4.7. ]

PROPOSITION 1.4.5. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then
every relative A{f}-cell complex (see Definition 1.3.8) is a A{f}-cofibration.

Proor. This follows from Proposition 1.4.4. a

ProposiTioN 1.4.6. Let Spc(,y be one of our categories of spaces (see Nota-
tion1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then
every trivial cofibration is a A{f}-cofibration.

ProoF. This follows from Proposition 7.2.3. 0

ProposiTion 1.4.7. Let Spc(,y be one of our categories of spaces (see Nota-
tion 1.14). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then
a space X is a A{f}-injective if and only if it is f-local (see Definition 1.2.2).
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ProoF. This follows from Proposition 9.4.5 and Proposition 1.4.4. O
1.4.8. The functorial localization.

PropPosITION 1.4.9. Let Spc,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
Ifj: X — X is a relative A{f}-cell complex and X is a A{f}-injective, then the
pair ()?,j) is a cofibrant f-localization of X.

Proor. This follows from Proposition 1.4.7 and Theorem 1.3.9. ]

THEOREM 1.4.10. Let Spc,y be one of our categories of spaces (see Nota-
tion 1.14). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then there is a natural factorization of every map X — Y as

XLE By

in which j is a relative A{f}-cell complex (see Definition 1.3.8) and p is a A{f}-
injective (see Definition 1.4.2).

ProoF. This follows from Proposition 10.5.16. O

DerFmiTioN 1.4.11. Let Spe,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
The f-localization of a space X is the space LsX obtained by applying the fac-
torization of Theorem 1.4.10 to the map X — * from X to the terminal object of
Spc(.). This factorization defines a natural transformation j: 1 — Ly such that

Jx: X = LsX is a relative A{f}-cell complex.

THEOREM 1.4.12. Let Spc,y be one of our categories of spaces (see Nota-
tion 1.14). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then for every space X the f-localization jx: X — LyX (see Definition 1.4.11) is
a cofibrant f-localization of X.

PRroOOF. This follows from Proposition 1.4.9. ]

CorOLLARY 1.4.13. Let Spc(,y be one of our categories of spaces (see Nota-
tion1.1.4). If f A — B is an inclusion of cell complexes (see Remark 1.2.11), then
every space has an f-localization.

Proor. This follows from Theorem 1.4.12. |

THEOREM 1.4.14. Let Spc,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
If X is a fibrant space, then X is f-local if and only if the f-localization map
Jx: X — LyX is a weak equivalence.

Proor. This follows from Theorem 1.2.28. ]
THEOREM 1.4.15. Let Spc,, be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),

then a map g: X — Y is an f-local equivalence if and only if its f-localization
Ls(g): LyX — LsY is a weak equivalence.

Proor. This follows from Theorem 1.2.29. 0
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ProposITION 1.4.16. Let Spc,) be one of our categories of spaces (see No-
tation 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11),
then every A{f}-cofibration (see Definition 1.4.2) is a retract of a relative A{f}-cell
complex.

ProoF. This follows form Theorem 1.4.10 and the retract argument (see Prop-
osition 7.2.2). 0

CoroLLARY 1.4.17. Let Spc,, be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes (see Remark 1.2.11), then
every A{f}-cofibration is an f-local equivalence.

Proor. This follows from Proposition 1.4.16, Theorem 1.3.9, and Proposi-
tion 1.2.18. O

1.4.18. The localization of a cofibration.

LemMa 1.4.19. Let Spcy., be one of our categories of spaces (see Notation 1.1.4)
and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11). Let
X — X' and Y — Y’ be cofibrations and let the square

X—Y

XI _ YI
be commutative. If we apply the factorization of Theorem 1.4.10 to each of the
horizontal maps to obtain the commutative diagram

X—sEf——vYy

| | ]

XI — Eff ) YI ;
then the map Ej — E} is a cofibration.

PRrRoOF. Using Lemma 7.2.15, one can check inductively that at each stage in
the construction of the factorization we have a cofibration E? — (E°)'. 0

PROPOSITION 1.4.20. Let Spcy,) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11).
Ifg: X — Y is a cofibration, then so is Ly(g): Ly X — L;Y (see Definition 1.4.11).

Proor. This follows from Lemma 1.4.19. O

1.5. Postnikov approximations

In this section we show that the Postnikov approximations to a space can be
obtained as localizations of that space.

PRropPosITION 1.5.1. If n > 0 and fn: S™*! — D™¥2 is the standard inclusion
in Top, then a space X is fn-local if and only if m,X ~ 0 for i > n and every choice
of basepoint in X .
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PRrOOF. If k > 0 then the inclusion S™*! @ A[k] Ugn+1gaafr) D™ @ OA[K] —
D™t? @ Alk] is a relative CW-complex that attaches a single cell of dimension
n+k + 2. Thus, any map $™! @ Alk} Ugnt1gsafx) D™ @ 8A[k] — X can be
extended over D"*2 @ A[k] if and only if 7,4 x+1.X = 0 for every choice of basepoint
in X. The result now follows from Proposition 1.3.3. O

PROPOSITION 1.5.2. Let n > 0 and let fn: S™!' — D™? be the standard
inclusion in Top. If a map g: X — Y induces isomorphisms g.: m;X ~ mY for
1 £ n and every choice of basepoint in X, then it is an fp-local equivalence.

PROOF. If g: X — Y induces isomorphisms g, : ;X &~ m;Y for i < n and every
choice of basepoint in X, then we can choose a cofibrant approximation §: X - Y
to g such that

(1) Y is a CW-complex, _

(2) g is the inclusion of a subcomplex that contains the n-skeleton of Y, and

(3) every (n+1)-cell of Y — X is attached via a constant map of S™.
If k = 0 then the map X ® Alk] Uzgonpy ¥ ® OAK] — Y ® A[H] is just the map
X - }7, and if k > 0 it is the inclusion of a subcomplex that contains the (n + k)-
skeleton. Thus, if Z is an_ f-local space, then Proposition 1.5.1 _implies that every
map X @ A[k] Usgonp Y ® OAk] — Z can be extended over Y ® Alk], and so g
is an fn-local equivalence (see Proposition 9.3.10). a

THEOREM 1.53. If n > 0 and f,: S®*! — D"*2 is the standard inclusion in
Top, then the projection of a space onto its n-th Postnikov approximation is an
fn-localization map.

ProOF. This follows from Proposition 1.5.1 and Proposition 1.5.2. 0

PROPOSITION 1.5.4. Let n > 0 and let f,: S**1 — D"*2 be the standard in-
clusion in Top. If g: X — Y is an f,-local equivalence, then g induces isomorphisms
g« m X = mY for i < n and every choice of basepoint in X.

PROOF. Theorem 1.5.3 and Theorem 1.2.29 imply that the induced map of
n-th Postnikov approximations P,g: P,X — P,Y is a weak equivalence. Thus, for
every 1 < n and every choice of basepoint in X we have a commutative diagram

T X — Y
TP X —— mPLY

in which every map except the top one is an isomorphism, and so g.: ;X — mY
is also an isomorphism. 0

1.5.5. The Postnikov tower.

LEMMA 1.5.6. Let f: A > B and f: A — B be maps between cofibrant spaces.
If f is an f local equivalence, then every f-local equivalence is an f -local equiva-
lence.

PROOF. Since f is an f-local equivalence, every f-local space is f-local. O
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Lemma 1.5.7. Let f: A— Band f: A Bbe maps between cofibrant spaces.
If f is an f-local equivalence, then for every object X the f-localization map X —
L¢X is an f-local equivalence.

ProoF. This follows from Lemma 1.5.6. O

PROPOSITION 1.5.8. For all n > 0 let fp: S™*! — D™? be the standard
inclusion in Top. If ¢ > j > 0 then for every space X an f;-localization map is an
fj-local equivalence.

ProOOF. This follows from Lemma 1.5.7 and Theorem 1.5.3. [

ProrPoOSITION 1.5.9. If for all n > 0 we let P, X denote the n-th Postnikov

approximation of the space X, then for all i > j > 0 there is a map P,X — P, X,
unique up to simplicial homotopy, that makes the triangle

X —P.X

N

P; X
commute up to simplicial homotopy.

ProoOr. This follows from Proposition 1.5.8 and Lemma 1.2.24. W

1.6. Topological spaces and simplicial sets

The main results of this section (Corollary 1.6.5 and Corollary 1.6.7) imply,
roughly speaking, that when using the localization functor of Definition 1.4.11,
one can pass freely through the geometric realization and total singular complex
functors at the cost of only a natural weak equivalence.

LemMMA 1.6.1. Let K and C be simplicial sets and let X be Is a topological
space.

(1) A map of topological spaces |K | — X defines a map of simplicial sets
Map(C, K) — Map(|C|,X) that is natural in C and in the map IKI — X.

(2) A map of simplicial sets K — Sing X defines a map of simplicial sets
Map(C, K) — Map(|C|, X) that is natural in C and in the map K —
Sing X .

ProoOF. The map of part 1 is defined as the composition
Map(C, K) — Map(|C|, |K|) — Map(|C|, X)
and the map of part 2 is defined as the composition

Map(C, K) — Map(C, Sing X) — Map(|C|, X) .
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PROPOSITION 1.6.2. Let C — D be a map of simplicial sets. If K — L is a
map of simplicial sets, X — Y is a map of topological spaces, and

|K| — X
|L| — Y

is a commutative square, then there is a natural map from the geometric realization
of the pushout P in the diagram

K ¥y P

Jr |

L

|C| x [Map(|C|, X) xmap(iciy) Map(|D|,Y)| — X 3@

C x (Map(C,K) xMap(C,L) Map(D,L)) —_—

D x (Map(C, K) xMa.p(C,L) Map(D, L)) _—

to the pushout @) in the diagram

i
|D| x [Map(|C|, X) xmap(ici¥) Map(|D|,Y)| — Y

that makes the diagram
|K| —— |P| — |L]
X—Q@Q—Y
commute.
PrOOF. Since the geometric realization functor commutes with pushouts, this

follows from Lemma 1.6.1. O

PROPOSITION 1.6.3. If K — L is a map of simplicial sets, X — Y is a map of
topological spaces, and

K ——Sing X
L——SingY

a commutative square, then there is a natural map from the pushout P in the
diagram

C x (Map(C, K) *map(c,z) Map(D, L)) —— K 3y P

J R

D x (Map(C, K) Xmap(c,z) Map(D, L)) — L
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to the total singular complex of the pushout Q in the diagram

|C| x [Map(|C|, X) xMap(iciy) Map(|D].Y)| — X 3 Q

|D| x [Map(|C|, X) xuap(cty) Map(|D],¥)| — ¥

that makes the diagram

K P —

|1

Sing X — Sing @ — Sing Y’

commute.

ProoOF. This follows from Lemma 1.6.1, using the natural map from the pushout
of the total singular complexes to the total singular complex of the pushout. O

THEOREM 1.64. Let f: A — B be a cofibration of simplicial sets and let
g9: X — Y be a map of topological spaces. If E¢(Sing g) is the simplicial set obtained
by applying the factorization of Theorem 1.4.10 to the map Singg: Sing X —
Sing Y and Ej|g is the topological space obtained by applying the factorization of
Theorem 1.4.10 (with respect to the map |f| |A| — IBI) to the map g, then there
is a natural map |E;(Sing g)] — Ejs| g that makes the diagram

ISing XI — IE;(Singg)] — ISingY‘

| L]

X » B9 %

commute.

PRrOOF. Using Proposition 1.6.2 we can construct the map inductively at each
stage in the construction of the factorization. a

COROLLARY 1.6.5. If f: A — B is a cofibration of simplicial sets, then for every
topological space X there is a natural weak equivalence iLf SingX| — Lis X that
makes the square

|Sing X| ——— X

|

|Ly Sing X | —— Lis X
commute.

PROOF. The existence of the natural map follows from Theorem 1.6.4. Propo-
sition 1.2.34 implies that Ly Sing X| is | f|-local, and so Proposition 1.2.35 implies
that our natural map is a |f|-localization of the weak equivalence |Sing X| — X
(see Definition 1.2.13). Proposition 1.2.16 and Theorem 1.2.29 now imply that our
natural map is a weak equivalence. a



1.6. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 27

TuEOREM 1.6.6. Let f: A — B be a cofibration of simplicial sets and let
g: K — L be a map of simplicial sets. If Ef g is the simplicial set obtained by
applying the factorization of Theorem 1.4.10 to the map g and Ef |g| is the topo-
logical space obtained by applying the factorization of Theorem 1.4.10 (with respect

to the map |f|: |A| — |B|) to the map |g|: | K| — |L|, then there is a natural map
Ef g — Ejy)|g| that makes the diagram
K yEfg — I
Sing|K| — SingEjy Ig] e Sing|Y|
commute.

ProOOF. Using Proposition 1.6.3 we can construct the map inductively at each
stage in the construction of the factorization. O

COROLLARY 1.6.7. If f: A — B is a cofibration of simplicial sets, then for
every simplicial set K there is a natural simplicial homotopy equivalence LK —
Sing L K that makes the square

K———)Sing|K|

L

LfK —_ SingL|f||K|

commute.

PRrROOF. The existence of the natural map follows from Theorem 1.6.6. Prop-
osition 1.2.33 implies that Sing L IKI is f-local, and Proposition 1.2.17, Proposi-
tion 1.2.16, and Proposition 1.2.36 imply that our natural map is an f-local equiv-
alence of cofibrant f-local spaces. The result now follows from Theorem 1.2.25. O

PROPOSITION 1.6.8. If f: A — B is a cofibration in SS(,y (see Notation 1.1.4),
(My,j: 1 — My) is a functorial cofibrant f-localization on 8S(,y, and (N)s,k: 1 —
Ny} is & functorial cofibrant | f I-localization on Top,y, then for every topological
space X there is a map |Mf SingX| — Nj¢ X, unique up to simplicial homotopy,
that makes the square

(1.6.9) |Sing X| —— X

.

iMf SingX| -——)N|f|X

commute, and any such map is & weak equivalence. (Since |M £ Sing }OI is cofibrant
and Ny X is fibrant, all notions of homotopy of maps |Mf SingXI — Njs X coin-
cide and are equivalence relations (see Proposition 9.5.24).) This map is natural
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up to homotopy, i.e., if g: X — Y is a map of topological spaces, then the square

|Mj Sing X | —— Njs X

|

|My Sing Y| —— NigY

commutes up to homotopy.

PROOF. Since Proposition 1.2.35 implies that the map |Sing X | — |M; Sing X |
is a | I |-loca.1 equivalence, the existence and uniqueness of the map follow from
Lemma, 1.2.24. Since Proposition 1.2.34 implies that |Mf Sing X| is |f|-loca.1, The-
orem 1.2.26 implies that the map is a weak equivalence.

For the naturality statement, we note that we have the cube

|Sing X | — X
J ISingY|—‘|L——>)}Y
|MfSingX|—l——)N|f|X ‘{/
~

~
|My Sing Y| ———— Nz Y

in which the top and side squares commute and the front and back squares commute
up to simplicial homotopy. This implies that the composition

|Sing X| — |Mj Sing X| — |M; Sing Y| — N ;Y
is simplicially homotopic to the composition
|Sing X| — [Mj Sing X| — Njsj X —= N5V,
and so the result follows from Lemma 1.2.24. O
PROPOSITION 1.6.10. If f: A — B is a cofibration in 88,y (see Notation 1.1.4),
(My,5: 1 — My) is a functorial cofibrant f-localization on SS,y, and (N5, k: 1 —

Njs) is & functorial cofibrant | I |-loca.1ization on Topy,,, then for every simplicial

set K there is a map MsK — SingNmIKl, unique up to homotopy, that makes
the square

(1.6.11) K —— Sing|K|

|

MsK —— Sing N4 | K|

commute, and any such map is a homotopy equivalence. (Since every simplicial set
is cofibrant and Sing Ny |K| is fibrant, all notions of homotopy of maps My K —
Sing N|4|| K| coincide and are equivalence relations (see Proposition 9.5.24).) This
map is natural up to homotopy, i.e., if g: K — L is a map of simplicial sets, then
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the square

MfK—;SingNmiK'

L]

MfL —_ SingleLi

commutes up to homotopy.

PROOF. Proposition 1.2.36 implies that the map Sing|K| — Sing Ny |K]| is
an f-local equivalence and Proposition 1.2.33 implies that Sing Ny IK | is f-local.
Since every simplicial set is cofibrant, the existence and uniqueness of the map
now follows from Lemma 1.2.24, and Theorem 1.2.25 implies that it is a homotopy
equivalence. The naturality statement follows as in the proof of Proposition 1.6.8.

O

1.7. A continuous localization functor

Let Spc(,y be one of our categories of spaces (see Notation 1.1.4), and let
f: A — B be an inclusion of cell complexes (see Remark 1.2.11). In this section,
we will define a variant L™ of the f-localization functor Ly (see Definition 1.4.11)
that is “continuous”. If we were using topological spaces of functions (instead
of simplicial sets of functions; see Section 1.1.5) then we would want to define a
function

(1.7.1) Map(X,Y) — Map(L;X,LsY)

that is a continuous function of topological spaces. Since we are considering Spey,)
as a simplicial model category (see Definition 9.1.6), we want to define L™ to be
a simplicial functor, i.e., we want a functor L?°“‘ that defines a map of simplicial
sets (1.7.1) (see [52, Chapter II, Section 1]). Note that not every functor can be
extended to a simplicial functor; for a counterexample, see Example 9.8.7.

1.7.2. Construction of the sequence. We follow the procedure described
in Section 1.3, using the same ordinal A, except that we use a new construction
to define the space E°*! in terms of the space E° (see Section 1.3.5). We first
define a localization functor L$® that is a variant of the functor Ly defined in
Definition 1.4.11 (see Theorem 1.7.4), and then we show that L™ can be extended
to be a simplicial functor (see Theorem 1.7.5).

As in Section 1.3.5, we begin the sequence by letting E® = X. If 8 < A and we
have constructed the sequence through E?, we let

cg= [ CeMap(CE)
(C—D)eA{F}
o= J] D®Map(CE’).

(C—D)eA{f}
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We then have a natural map C§™ — E?, and we define EP*! by letting the square

CEOD'. E ﬁ

|

chiom. 5 Eﬁ+l

be a pushout. If 7 is a limit ordinal, we let E¥ = colimg<, E?. We let LentX =
colimgey EP.

PROPOSITION 1.7.3. Let Spc,y be one of our categories of spaces (see Nota-
tion 1.1.4). If f: A — B is an inclusion of cell complexes and K is a simplicial set,
then the maps

(A® Aln] Uagsam BR®IAR) ® K — (BRAR]) @ K forn >0
and
Spc.y(Aln, k]) ® K — Spe,y(Aln]) @ K forn>0and0<k<n
are all both cofibrations and f-local equivalences.
PROOF. Proposition 9.3.9 implies that each of the maps Spc(,)(An, k]) @ K —

Spc(yy(Aln]) ® K is a trivial cofibration. The result now follows from Proposi-
tion 1.2.16, Corollary 10.2.21, and Proposition 1.3.7. ]

THEOREM 1.7.4. Let Spc,y be one of our categories of spaces (see Notation 1.1.4)
and let f: A — B be an inclusion of cell complexes (see Remark 1.2.11). If X is
a space, then the map X — L$™X constructed in Section 1.7.2 is a cofibrant
f-localization of X .

PROOF. Proposition 1.7.3 and Proposition 1.2.22 imply that the map X —
L$° X is both a cofibration and an f-local equivalence, and so it remains only to
show that L°°“‘X is f-local. The 0-skeleton of Map(C Ef ) is Spc(,,)(C Ef ), and so
C ® Map(C, Eﬁ) containg

C®Spey(CE )~ J[ ¢
Spc(.)(C.EF)
as a subcomplex. The discussion in Section 1.3.4 now explains why the space

L™ X is a A{f}-injective, and so the map X — L¥™X is a functorial cofibrant
f-localization of X. a

THEOREM 1.7.5. The functor L™ defined in Section 1.7.2 can be extended to
a simplicial functor.

ProoF. If C and X are spaces and K is a simplicial set, then there is a
natural map Map(C, X) ® K — Map(C, X ® K) that takes the n-simplex (a: C ®
Afn] — X,7) of Map(C, X) ® K to the n-simplex o(a,7): C® Aln] - X ® K of
Map(C, X ® K) that is the composition

C ®An] 2222, 0 ® (An) x Afn]) 2 (C ® Aln) ® Aln] <5 X @ K

where D: A[n] — A[n] x Aln] is the diagonal map and 1,: A[n] — K is the map
that takes the nondegenerate n-simplex of A[n] to 7. This natural map ¢ has the
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properties required by Theorem 9.8.5, and so we can use it to inductively define
o for all the spaces used in the construction of the localization (see Section 1.7.2).
The theorem now follows from Proposition 9.8.9 and Theorem 9.8.5. |

1.8. Pointed and unpointed localization

There is a functor from the category of pointed spaces to the category of un-
pointed spaces that forgets the basepoint, and so there are two different notions of
localization that we can define on a category of pointed spaces. If f: A — B is a
cofibration of cofibrant pointed spaces, then

(1) we can consider the notions of pointed f-local spaces and pointed f-local
equivalences in Spc, (see Notation 1.1.4), or

(2) we can still consider spaces with basepoint (i.e., spaces in Spc,) but con-
sider the notions of unpointed f-local spaces and unpointed f-local equiv-
alences in Spc by forgetting the basepoints.

DeriNITION 1.8.1. If f: A — B is a cofibration of cofibrant pointed spaces and
X is a pointed space, then we will say that
(1) X is pointed f-local if it is an f-local space in Spc,, and
(2) we will say that X is unpointed f-local if X is an f-local space in Spc
when we forget the basepoints of all the spaces involved.
Similarly, a map f: X — Y will be called
(1) a pointed f-local equivalence if it is an f-local equivalence in Spc,, and
(2) an unpointed f-local equivalence if it is an f-local equivalence in Spc after
forgetting all basepoints.

NoTATION 1.8.2. In this section, if X and Y are objects of Spc, (see Nota-
tion 1.1.4), then
(1) Map(X,Y) will continue to denote the unpointed simplicial set of maps
between the pointed spaces X and Y, and
(2) UMap(X,Y) will denote the unpointed simplicial set of maps between the
unpointed spaces obtained from X and Y by forgetting the basepoints.
Thus, Definition 1.8.1 implies that if f: A — B is a cofibration of cofibrant pointed
spaces then a fibrant pointed space X is
(1) pointed f-local if f*: Map(B,X) — Map(A, X) is a weak equivalence of
(unpointed) simplicial sets and it is
(2) unpointed f-local if f*: UMap(B, X) — UMap(4, X) is a weak equiva-
lence of (unpointed) simplicial sets.
Similarly, a map ¢g: Y — Z of pointed spaces is
(1) a pointed f-local equivalence if there is a cofibrant approximation §: Y -
Z to g such that for every pointed f-local space W the induced map of
simplicial sets §*: Map(Z, W) — Map(Y,W) is a weak equivalence and
it is
(2) an unpointed f-local equivalence if there is a cofibrant approximation
G:Y — Z to g such that for every unpointed f-local space W the in-
duced map of simplicial sets §*: UMap(Z, W) — UMap(Y, W) is a weak
equivalence
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ProrosiTiON 1.8.3. Let A be a cofibrant object of Spc, and let X be a fibrant
object of Spc, .

(1) If Spc, = SS., then there is a natural fibration of unpointed simplicial

sets

Map(A, X) - UMap(4,X) — X .

(2) If Spc, = Top,, then there is a natural fibration of unpointed simplicial

sets

Map(4, X) — UMap(4, X) — Sing X .

PROOF. Since * — A is a cofibration of pointed spaces and X is a fibrant
pointed space, ¥ — A is also a cofibration of unpointed spaces (after forgetting the
basepoints) and X is also a fibrant pointed space (after forgetting the basepoint).
Thus, Proposition 9.3.1 implies that we have a natural fibration of simplicial sets
UMap(4, X) — UMap(*, X). The fiber of this fibration is Map(4, X). If Spc, =
SS., then UMap(*, X) is naturally isomorphic to the unpointed simplicial set X. If
Spc, = Top,, then UMap(*, X) is naturally isomorphic to the unpointed simplicial
set Sing X. O

PROPOSITION 1.8.4. Let A — B be a map of cofibrant pointed spaces and let
W be a fibrant pointed space.
(1) If UMap(B,W) — UMap(A, W) (see Notation 1.8.2) is a weak equiva-
lence, then Map(B, W) — Map(A, W) is a weak equivalence.
(2) If W is path connected and Map(B, W) — Map(A, W) is a weak equiva-
lence, then UMap(B, W) — UMap(A, W) is a weak equivalence.

Proor. This follows from Proposition 1.8.3 and the long exact sequence of
homotopy groups of a fibration. 0

ProrosiTiON 1.8.5. Let f: A — B be a cofibration of cofibrant pointed spaces
and let X be a pointed space.
(1) If X is an unpointed f-local space, then it is also a pointed f-local space.
(2) IfX is a path connected pointed f-local space, then it is also an unpointed
f-local space.

Proor. This follows from Proposition 1.8.4. a
COROLLARY 1.8.6. Let f: A — B be a cofibration of cofibrant pointed spaces.

If X is a path connected pointed space, then X is pointed f-local if and only if it
is unpointed f-local.

Proor. This follows from Proposition 1.8.5. O
LEMMA 1.8.7. If A is a path connected pointed space, X is a pointed space,

and Xy, is the path component of X containing the basepoint, then the natural map
Map(A4, X)) — Map(A, X) is an isomorphism.

PROOF. Since the image of a path connected space is path connected, for every
n > 0 the image of a pointed map from A ® Aln] to X is contained in Xy. a

THEOREM 1.8.8. If f: A — B is a map of path connected cofibrant pointed
spaces and X is a pointed space, then the following are equivalent:

(1) X is pointed f-local.
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(2) Every path component of X is fibrant and the path component of X
containing the basepoint is pointed f-local.

(3) Every path component of X is fibrant and the path component of X
containing the basepoint is unpointed f-local.

Proor. This follows from Lemma 1.8.7 and Corollary 1.8.6. a

CoRrOLLARY 1.8.9. If f: A — B Is a map of path connected cofibrant pointed
spaces and X is a fibrant pointed space, then X is unpointed f-local if and only
if every path component of X is pointed f-local when you choose a basepoint for
each path component.

PRrOOF. If the path components of X are {X,},cs, then we have a commutative
square

UMap(B, X) «=— [ ] UMap(B, X.)

sES J

UMap(A, X) «—=— [ ] UMap(4, X.)
s€S

(see Notation 1.8.2) in which the horizontal maps are isomorphisms. The result
now follows from Corollary 1.8.6. ]

COROLLARY 1.8.10. If f: A — B is a map of path connected cofibrant pointed
spaces, X is a pointed space, and X}, is the path component of X containing the
basepoint, then the natural map

(X —Xp) OLeXy, - LeX
is a weak equivalence (where L denotes pointed f-localization).

ProoF. This follows from Theorem 1.8.8, Lemma 1.8.7, and Theorem 1.2.26.
O

ProrosiTiON 1.8.11. Let f: A — B be a map of cofibrant pointed spaces. If
X — Y is an unpointed f-local equivalence of path connected pointed spaces, then
it is also a pointed f-local equivalence.

PROOF. If X — ¥ is a pointed cofibrant approximation (see Definition 8.1.22)
to X — Y, then it is also an unpointed cofibrant approximation. If W is a
pointed f-local space, let Wy be the path component of W containing the base-
point. Lemma 1.2.6 and Proposition 1.8.5 imply that W}, is an unpointed f-local
space, and so the map UMap(Y Wy) — UMap(X W) is a weak equivalence.
Proposition 1.8.4 now implies that the map Map(Y W) — Map(X, Ws) is a weak
equivalence. Lemma 1.8.7 implies that the horizontal maps in the commutative
square

Map(¥, Wy) — Map(¥, W)

l l

Map(X, W) — Map(X, W)
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are isomorphisms, and so the map Map(?, W) — Map()? , W) is a weak equivalence.
|

THEOREM 1.8.12. If f: A — B is a cofibration of cofibrant pointed spaces and
X is a path connected pointed space, then a pointed f-localization of X is also an
unpointed f-localization of X.

PrOOF. Let X — Y be the unpointed f-localization of X. Proposition 1.8.5
implies that Y is pointed f-local and Proposition 1.8.11 implies that the map
X — Y is a pointed f-local equivalence. a

THEOREM 1.8.13. If f: A — B is a cofibration of path connected cofibrant
pointed spaces and X is a pointed space, then the unpointed f-localization of X
is weakly equivalent to the space obtained by choosing a basepoint for each path
component of X and taking the pointed f-localization of each path component.

PRrOOF. Let {X;}ses be the set of path components of X. If for every s € §
we choose a basepoint for X, and let X; — L;X, be the pointed f-localization
of X, then Corollary 1.8.9 implies that ][, .o LsX, is an unpointed f-local space.
Theorem 1.8.12 implies that for every s € § the map X; — Ly X, is an unpointed f-
local equivalence. Let X s — Ly X, be the geometric realization of the total singular
complex of X, — Ly X, if our “spaces” are topological spaces and let it be the map
X, — LsX, itself if our “spaces” are simplicial sets. In either case, [],.q Xs —
[1,esLsXs is a cofibrant approximation to [[,cg Xs — [l,csLsXs, and if W is
an unpointed f-local space the map Map([[,cq LsXs, W) — Map(]__[sesfs,W)
is isomorphic to the map J[,cg Map(Ls X, W) — [],cq Map()zs,W). This last
map is a product of weak equivalences of fibrant simplicial sets and is thus a weak

equivalence. Thus, the map [],c5 Xs — J[,cgLys X, is an unpointed f-local equiv-
alence. a



CHAPTER 2

The Localization Model Category for Spaces

2.1. The Bousfield localization model category structure

In this section, we show that for every map f: 4 —» B in Spc(,) (see Nota-
tion 1.1.4) there is a model category structure on Spc(,) in which the weak equiv-
alences are the f-local equivalences (see Definition 1.2.2) and the fibrant objects
are the f-local spaces (see Theorem 2.1.3 and Proposition 2.1.4). This is a general-
ization of the h.-local model category structure for a generalized homology theory
h. on the category of simplicial sets defined by A.K. Bousfield in [8]. It is also an
example of a left Bousfield localization (see Definition 3.1.1). This model category
structure has also been obtained by Bousfield in [12] for the category of simpli-
cial sets, where he deals as well with localizing certain proper classes of maps of
simplicial sets.

2.1.1. Statements of the theorems.

DerINITION 2.1.2. Let f: A — B be a map between cofibrant spaces in Spcy,)-

(1) An f-local weak equivalence is defined to be an f-local equivalence (see
Definition 1.2.2).

(2) An f-local cofibration is defined to be a cofibration.

(3) An f-local fibration is defined to be a map with the right lifting prop-
erty (see Definition 7.2.1) with respect to all maps that are both f-local
cofibrations and f-local weak equivalences. If the map from a space to
a point is an f-local fibration, then we will say that the space is f-local
fibrant.

THEOREM 2.1.3. If f: A — B is a map between cofibrant spaces in Spc,y,
then there is a simplicial model category structure on Spc(,y in which the weak
equivalences are the f-local weak equivalences, the cofibrations are the f-local cofi-
brations, the fibrations are the f-local fibrations, and the simplicial structure is the
usual simplicial structure on Spc(,)-

PROPOSITION 2.1.4. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.11), then a space is f-local if and only if it is fibrant in the f-local model
category structure of Theorem 2.1.3.

The main difficulty in the proof of Theorem 2.1.3 lies in finding a set J¢ of gen-
erating trivial cofibrations for the f-local model category structure. The augmented
set of f-horns A{f} (see Definition 1.3.2) is a set of cofibrations such that every
A{f}-cofibration is a trivial cofibration in the f-local model category structure (see
Corollary 1.4.17), and Proposition 1.4.7 implies that the set A{f} does suffice to
determine the f-local spaces, but it is not true that the class of f-local trivial cofi-
brations must equal the class of A{f}-cofibrations (see Example 2.1.6). Thus, the

35
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proof of Theorem 2.1.3 will use the following proposition, the proof of which we
will present in Section 2.3 after some necessary preparatory work in Section 2.2.

ProposiTiON 2.1.5. If f: A — B is a map of cofibrant spaces in Spc,,, then
there is a set Js of inclusions of cell complexes (see Remark 1.2.11) such that
(1) every map in Jy is an f-local equivalence, and
(2) the class of Js-cofibrations (see Definition 10.5.2) equals the class of cofi-
brations that are also f-local equivalences.

We will present the proof of Proposition 2.1.5 in Section 2.3, after some neces-
sary preparatory work in Section 2.2.

We present here an example (due to A. K. Bousfield) of a map f such that,
among the cofibrations that are f-local equivalences, there are maps that are not
A{f}-cofibrations.

ExampLE 2.1.6. Let Spc(,y = Top,, let n > 0, and let f: A — B be the
inclusion $™ — D™+1. The path space fibration p: PK(Z,n) — K(Z,n) is a A{f}-
injective (see Definition 1.4.2), and so every A{f}-cofibration has the left lifting
property with respect to p. The cofibration * — S™ does not have the left lifting
property with respect to p, and so it is not a A{f}-cofibration. However, since
both the composition * — S™ — D™+ and f itself are f-local equivalences (see
Proposition 1.2.16), the “two out of three” property of f-local equivalences (see
Proposition 1.2.17) implies that the inclusion * — S™ is an f-local equivalence.
Thus, * — S™ is both a cofibration and an f-local equivalence, but it is not a
A{f}-cofibration.

2.1.7. Proofs.

PRrROOF OF THEOREM 2.1.3. We begin by using Theorem 11.3.1 to show that
there is a cofibrantly generated model category structure on Spc,) with weak equiv-
alences, cofibrations, and fibrations as described in the statement of Theorem 2.1.3.

Proposition 1.2.17 implies that the class of f-local equivalences satisfies the
“two out of three” axiom, and Proposition 1.2.18 implies that it is closed under
retracts.

Let I be the set of maps

I = {Spc(,y(8A[n]) — Spc(.y(Aln]) | n >0}

(see Definition 1.1.13) and let J; be the set of maps provided by Proposition 2.1.5.
Since every map in either I or Jy is an inclusion of simplicial sets (if Spc(,y =
88(xy) or an inclusion of cell complexes (if Spc(,y = Top,,), Example 10.4.4 and
Example 10.4.5 imply that condition 1 of Theorem 11.3.1 is satisfied.

The subcategory of I-cofibrations is the subcategory of cofibrations in the usual
model category structure in Specg,y, and the I-injectives are the usual trivial fi-
brations. Thus, Proposition 2.1.5 implies that condition 2 of Theorem 11.3.1 is
satisfied.

Since the Jg-cofibrations are a subcategory of the I-cofibrations, every I-
injective must be a Js-injective. Proposition 1.2.16 implies that every J-injective
is an f-local equivalence, and so condition 3 is satisfied.

Proposition 2.1.5 implies that condition 4a of Theorem 11.3.1 is satisfied, and
50 Theorem 11.3.1 now implies that we have a model category.
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To show that our model category is a simplicial model category, we note that,
since the simplicial structure is the usual one, axiom M6 of Definition 9.1.6 holds
because it does so in the usual simplicial model category structure on Spe(,. For
axiom M7 of Definition 9.1.6, we note that the class of f-local cofibrations equals
the usual class of cofibrations and the class of f-local fibrations is contained in the
usual class of fibrations. Thus, the first requirement of axiom M7 is clear. In the
case that the map p is an f-local equivalence, the rest of axiom M7 follows from the
fact that, since the class of f-local cofibrations equals the usual class of cofibrations,
the class of f-local trivial fibrations equals the usual class of trivial fibrations (see
Proposition 7.2.3).

In the case that the map ¢ is an f-local equivalence, we choose a cofibrant
approximation 7: A — B to ¢ such that 7 is a cofibration (see Proposition 8.1.23).
Proposition 9.4.5 and Proposition 9.4.8 imply that, for every n > 0, the map
A® Aln) U igoaim) B ®08A[n] » B® Aln] is also an f-local equivalence, and so it
has the left lifting property with respect to the map p. Lemma 9.4.7 now implies
that the map 7 has the left lifting property with respect to the map X2" —
Y217 %y paim X921 for every n > 0. Since Spcy,) is 2 left proper model category
(see Theorem 13.1.11 and Theorem 13.1.13), Proposition 13.2.1 implies that the
map ¢ has the left lifting property with respect to the map X2 — YA xypatm)
X8 for every n > 0, and so the result follows from Lemma 9.4.7. 3

Proor oF PropoSITION 2.1.4. If W is fibrant in the f-local model category
structure, then the map W — x has the right lifting property with respect to every
cofibration that is an f-local equivalence. Proposition 1.3.7 implies that every horn
on f is both a cofibration and an f-local equivalence, and so Proposition 1.3.3
implies that W is f-local.

Conversely, assume that W is f-local. If i: A — B is both a cofibration and
an f-local equivalence, then Proposition 8.1.23 implies that there is a cofibrant
approximation 7: A — B to i such that 7 is a cofibration, and Proposition 13.2.1
and Proposition 7.2.3 imply that it is sufficient to show that 7 has the left lifting
property with respect to the map W — *. Proposition 1.2.16 and Proposition 1.2.17
imply that 7 is an f-local equivalence, and so Proposition 9.4.5 and Proposition 9.4.3
imply that 7 has the left lifting property with respect to the map W — x. ]

2.2. Subcomplexes of relative A{f}-cell complexes

The proof of Proposition 2.1.5 (in Section 2.3) will require a careful analysis
of the localization of a space. Since the localization map is a relative A{f}-cell
complex, we need to study subcomplexes of relative A{f}-cell complexes.

DEFINITION 2.2.1. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.11).

o If C — D is an element of A{f} (see Definition 1.3.2), then D will also
be called a A{f}-cell, C will be called the boundary of the A{f}-cell, and
D — C will be called the interior of the A{f}-cell. (The interior of a
A_{ﬁ-cell is not, in general, a subcomplex.)
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e If C — D is a map in A{f} and
C—X
D—Y
is a pushout, then we will refer to the image of D in Y as a A{f}-cell

2.2.2. Presentations of relative A{f}-cell complexes. A relative A{f}-
cell complex is a map that can be constructed as a transfinite composition of
pushouts of elements of A{f} (see Definition 1.3.8). To consider subcomplexes
of a relative X{f_}-cell complex, we need to choose a particular such construction.

DeFINITION 2.2.3. If g: X — Y is a relative A{f}-cell complex (see Defini-
tion 1.3.8), then a presentation of g is a pair consisting of a A-sequence

X=Xo—-X1—Xo— = Xg— - (B< A
(for some ordinal A) and a set of ordered triples
(1,10,

such that

(1) the composition of the A-sequence is the map g: X — Y,

(2) each TP is a set,

(3) each € is a function ?: T? — A{f} (see Definition 1.3.2),

(4) for every B < A, if i € T? and efi is the A{f}-cell C, — D,, then h'f is a
map hf: C; — Xp, and

(5) every Xp,1 is the pushout

Hci —_— HD1
T8 T8

S

Xp —— Xpy1 -

DEFINITION 2.2.4. Let g: X — Y be arelative A{f}-cell complex with presen-
tation (X = Xo d Xl d X2 — - = Xﬂ — .- (ﬂ < )\), {Tﬂ,eﬂ,hﬁ}ﬂ<,\).

(1) If e is a A{f}-cell of g (see Definition 1.3.2), the presentation ordinal of e
is defined to be the first ordinal 8 such that e is in Xg.

(2) If B < A, then the B-skeleton of g is defined to be Xg. We will sometimes
abuse language and refer to the image of X in Y as the 3-skeleton of g.

2.2.5. Constructing a subcomplex of a relative A{f}-cell complex.
DEFINITION 2.2.6. If g: X — Y is a relative A{f}-cell complex with presenta-
tion (X = XO — Xl — Xg — s — Xﬁ — (,3 < )\),{Tﬂ,eﬂ,hﬂ}ﬂ<,\), then a

subcomplex of g relative to that presentation consists of a family of sets {T'B}ﬁ< A
such that

(1) for every B < A, the set T? is a subset of T,
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(2) there is a A-sequence
X=X0—)X1—)Xz—)..._)iﬂ_),,_ (B <N

(called the XA-sequence associated with the subcomplex) and a map of
A-sequences

W:X )Xl )X2 3
X=X, » Xy » Xo e

such that, for every B < A and every i € T#, the map h?: C, — X;
factors through the map Xz — Xj, and
(3) for every B < A, the square

IJe.—]]D.
T8 T8
Xp— Xon
is a pushout.
REMARK 2.2.7. Although a subcomplex of a relative A{f}-cell complex can
only be defined relative to some particular presentation of that relative A{f}-cell
complex, we will often discuss subcomplexes of a relative A{f}-cell complex with-

out explicitly mentioning the presentation relative to which the subcomplexes are
defined.

REMARK 2.2.8. Although a subcomplex of a relative A{f}-cell complex with
some particular presentation is defined to be a family of sets {Tﬁ}g<,\ (see Defi-
nition 2.2.6), we will often abuse language and refer to the A-sequence associated
with the subcomplex, or the composition of that A-sequence, as a “subcomplex”.

_ REMARK 2.2.9. Note that the definition of a subcomplex implies that the maps
X5 — Xp are all relative A{f}-cell complexes. Since a relative A{f}-cell complex is
a monomorphism, the factorization of each hfa through Xz — Xg is unique. Thus,

a subcomplex of a relative A{f}-cell complex is itself a relative A{f}-cell complex
with a natural presentation.

PROPOSITION 2.2.10. Given a relative A{f}-cell complex X — Y with presen-
tation (X =Xo X1 =2 Xe— = Xg— - (f< )\),{Tﬁ,eﬁ,hﬁ}g<,\), an
arbitrary subcomplex can be constructed by the following inductive procedure.

(1) Choose an arbitrary subset T° of T°.

(2) If § < X and we have defined {T"}.,<5, then we have determined the
space Xg and the map Xg — Xg (where Xg is the space that appears in
the A-sequence associated to the subcomplex). Consider the set

{i€ TP | nl: C; — Xz factors through Xs — Xg}
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Choose an a.ertra.ry subset T# of this set. For every i € TP, there is a
unique map k?: C, — Xg that makes the diagram

C;
N\
Xﬁ S Xﬁ

commute. We let Xgﬂ be the pushout

H C.L S H .D,'
T8 T8

S

Xp — Xpnx
Proor. This follows directly from the definitions. 0

PROPOSITION 2.2.11. Let g: X — Y be a relative A{f}-cell complex with pre-
sentation (X =Xo— X1 > Xo— - = Xpg— - (B<AL{TP, e, hP}pcn). I

{{TE}EQ\}HEU is a set of subcomplexes of g, then the intersection {T#}g<» of the
set of subcomplexes (where TP = Nucu T# for every § < \) is a subcomplex of g.

Proor. It is sufficient to show that, if § < A and we have constructed the
[-skeleton of the associated A-sequence X = Xo — X1 — Xg — e — Xﬁ, then,
for every i € T#, the map h?: C; — X factors through X5 — Xp. If i € T8, then
i € TP for every u € U, and so h? factors uniquely through )?;3‘ — Xpg for every
u € U. Since )?[3 is the limit of the diagram that contains the map ffg — Xg for
every u € U, the map hf factors uniquely through X s — Xp- 0

COROLLARY 2.2.12. Let g: X — Y be a relative A{f}-cell complex with pre-
sentation (X = Xo — X1 — X9 — i = Xﬁ — - (,B < )\),{Tﬂ,eﬁ,hﬁ}ﬁ<,\). If
e is an f-cell of g, then there is a smallest subcomplex of g that contains e, i.e., a
subcomplex of g containing e that is a subcomplex of every subcomplex of g that
contains e.

PRrOOF. Proposition 2.2.11 implies that we can take the intersection of all
subcomplexes of g that contain e. O

DEFINITION 2.2.13. If e is a A{f}-cell of the relative A{f}-cell complex g: X —
Y with some particular presentation, then the smallest subcomplex of g that con-
tains e (whose existence is guaranteed by Corollary 2.2.12) will be called the sub-
complex generated by e.

2.2.14. Subcomplexes of the localization. If f: A — B is an inclusion
of cell complexes (see Remark 1.2.11}), then for every space X, the localization
Jjx: X — LsX has a natural presentation as a relative A{f}-cell complex. When
we discuss subcomplexes of jx, it will be with respect to that natural presentation.

LeMMA 2.2.15. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.11), and let X be a simplicial set (or a cell complex). If W is a subcomplex
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of X, then Ly W is naturally isomorphic (or homeomorphic) to a subcomplex of Ly X
(where by “naturally” we mean that this isomorphism is a functor on the category
of subcomplexes of X ).

ProoF. The construction of Ly X from X defines an obvious presentation of
the relative m-cell complex jx: X — LsX. Since an inclusion of a subcomplex
is a monomorphism, the construction of LW from W defines an obvious natural
isomorphism of the relative A{f}-cell complex W — L;W with a subcomplex of
3(X)- o

PROPOSITION 2.2.16. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.11). If X is a simplicial set (or a cell complex) and W is a subcomplex of
X, then Ly W is naturally isomorphic (or homeomorphic) to the subcomplex of Ly X
consisting of those A{f}-cells of L; X for which the zero skeleton of the subcomplex
of Ly X generated by that A{f}-cell (see Definition 2.2.13) is a subcomplex of W.

Proor. We identify LyW with a subcomplex of L;X as in Lemma 2.2.15,
and we will show by transfinite induction on the presentation ordinal (see Defini-
tion 2.2.4) of the A{f}-cell that a A{f}-cell of Ly X is in Ly W if and only if the
zero skeleton of the subcomplex of Ly X generated by that A{f}-cell (see Defini-
tion 2.2.13) is a subcomplex of W.

If e is a A{f}-cell of presentation ordinal 1, then the subcomplex of L;X
generated by e consists of the union of e and the subcomplexes of X generated by
those simplices (or cells) of X whose interiors intersect the image of the attaching
map of e. Thus, the zero skeleton of the subcomplex of Ly X generated by e is a
subcomplex of W if and only if the attaching map of e factors through the inclusion
W — X, which is true if and only if e is contained in Ly W.

Since there are no A{f}-cells whose presentation ordinal is a limit ordinal,
we assume that 4+ 1 < A and that the assertion is true for all A{f}-cells of
presentation ordinal less than or equal to 3. Let e be a A{f}-cell of presentation
ordinal # + 1. The subcomplex of L X generated by e consists of the union of
e and the subcomplexes of Ly X generated by those A{f}-cells and simplices (or
cells) of X whose interiors intersect the image of the attaching map of e. Each of
those A{f}-cells is of presentation ordinal at most 4, and so it is in L;W if and
only if the zero skeleton of the subcomplex of Ly X it generates is contained in W,
and the inductive hypothesis implies that this is true if and only if that A{f}-cell
is in LyW. Thus, the subcomplex of L;X generated by e is contained in LW if
and only if the attaching map for e factors through W — Xg, i.e., if and only if e
isin LyW. 0

PROPOSITION 2.2.17. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.11). If X is a simplicial set (or a cell complex) and {W}ses is a family
of subcomplexes of X, then Ly ((,cg Ws) = N,es Ly Ws-

PRrOOF. This follows from Proposition 2.2.186. a
ProOPOSITION 2.2.18. Let f: A — B be an inclusion of cell complexes (see

Remark 1.2.11). If X is a simplicial set (or a cell complex) and Wy C W), C
WoC---CcWgcC--- (B < M) is a A-sequence of subcomplexes of X (where
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A is the ordinal chosen in Section 1.3.4), then the natural map colimgy LyWg —
Ly colimg< s Wj is an isomorphism (or a homeomorphism).

PRrRoOF. Proposition 2.2.16 implies that the map is an isomorphism onto a
subcomplex; it remains only to show that every A{f}-cell of Ly colimgey W is
contained in some LsWpg. We will do this by a transfinite induction on the presen-
tation ordinal of the A{f}-cell (see Definition 2.2.4).

If e is a A{f}-cell of L colimp, Wj of presentation ordinal 1, then its attaching
map is a map to colimg«» Wp, and the discussion in Section 1.3.4 explains why there
is an ordinal 8 < A such that the image of the attaching map is contained in Wjp.
Thus, the A{f}-cell is in L Wj.

Since there are no A{f}-cells of presentation ordinal equal to a limit ordinal,
we now let v be an ordinal such that v+ 1 < A, and we assume that the assertion
is true for all A{f}-cells of presentation ordinal less than or equal to v. If e is a
A{f}-cell of presentation ordinal v+ 1, then e has fewer than A simplices (or cells).
Thus, the image of the attaching map of e is contained in the interiors of fewer
than A many A{f}-cells, each of presentation ordinal less than or equal to «y. (If
Spc(,) = Topy,y, then this follows from Corollary 10.7.5.) The induction hypothesis
implies that each of these is contained in some Ly Wp. Since A is a regular cardinal,
there must exist § < A such that the union of these A{f}-cells is contained in
LyWpg, and so e is also contained in L ;Wp. 0

2.3. The Bousfield-Smith cardinality argument

The proof of Proposition 2.1.5 is at the end of this section. The cardinality
argument that we use here was first used by A. K. Bousfield [8] to define a model
category structure on the category of simplicial sets in which a weak equivalence was
a map that induced a homology isomorphism (for some chosen homology theory).
This was extended to more general localizations of cofibrantly generated model
categories (see Definition 11.1.2) by J. H. Smith. We are indebted to D. M. Kan
for explaining this argument to us.

We will prove Proposition 2.1.5 by showing that there is a set Jy of cofibra-
tions that are f-local equivalences such that every cofibration that is an f-local
equivalence has the left lifting property (see Definition 7.2.1) with respect to every
J¢-injective. Proposition 2.1.5 will then follow from Corollary 10.5.22.

We will find the set J; by showing (in Proposition 2.3.8) that there is a cardinal
v such that if a map has the right lifting property with respect to all inclusions of
simplicial sets (or of cell complexes) that are f-local equivalences between complexes
of size no larger than «y, then it has the right lifting property with respect to
all cofibrations that are f-local equivalences. (By the “size” of a simplicial set
(or a cell complex) X we mean the cardinal of the set of simplices (or cells) of
X; see Definition 2.3.2.) We will then let J; be a set of representatives of the
isomorphism classes of of these “small enough” inclusions of complexes that are
f-local equivalences.

We must first deal with an inconvenient aspect of the categories Top and Top,:
Not all spaces are cell complexes. This requires Lemma 2.3.1, which shows that
for a fibration to have the right lifting property (see Definition 7.2.1) with respect
to all cofibrations that are f-local equivalences, it is sufficient for it to have the
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right lifting property with respect to all such cofibrations that are inclusions of cell
complexes.

LeEMMA 2.3.1. Let f: A — B be a map of cofibrant spaces in Top,). If p: E —
B is a fibration with the right lifting property with respect to all inclusions of cell
complexes that are f-local equivalences, then it has the right lifting property with
respect to all cofibrations that are f-local equivalences.

PrOOF. Let g: X — Y be a cofibration that is an f-local equivalence. Propo-
sition 11.2.8 implies that there is a cofibrant approximation (see Definition 8.1.22)
g to g such that § is an inclusion of cell complexes, and Proposition 1.2.16 and
Proposition 1.2.17 imply that g is an f-local equivalence. Since Topy,) is a left
proper model category (see Theorem 13.1.11), the lemma now follows from Propo-
sition 13.2.1. a

We can now restrict our attention to inclusions of simplicial sets (if Spe(,) =
88(4)) or inclusions of cell complexes (if Spe(,) = Topy,)). We need to find a cardinal
~ with two properties:

(1) The cardinal v is “large enough” in that for every complex X, every sub-
complex of Ly X of size no greater than «y is contained in the localization
of a subcomplex of X of size no greater than .
(2) The cardinal «y is “stable” in that if X is a complex of size no greater than
<y, then Ly X will also have size no greater than +.
Once we have such a cardinal +, Proposition 2.3.7 (which uses Lemma 2.3.5) will
show that any inclusion of complexes that is an f-local equivalence can be built out
of ones of size no greater than ~. This will be used in Proposition 2.3.8 to show
that if a map has the right lifting property with respect to all “small” inclusions of
complexes that are f-local equivalences then it has the right lifting property with
respect to all inclusions of complexes that are f-local equivalences. We define our
cardinal v in Definition 2.3.4.

DEFINITION 2.3.2. If the set of simplices (or cells) of the complex X has cardinal
&, then we will say that X is of size k.

LeMMA 2.3.3. Let the map f: A — B be an inclusion of cell complexes (see
Remark 1.2.11) and let A be the first infinite cardinal greater than that of the
simplices (or cells) of A1l B. For any complex X, we have Ly X =~ colimL;X,,
where X, varies over the subcomplexes of X of size less than M.

PRrOOF. Proposition 2.2.16 implies that each Ly X, is a subcomplex of L; X,
and so we need only show that every A{f}-cell of L;X is contained in L;X, for
some small subcomplex X, of X. We will do this by a transfinite induction on the
presentation ordinal of the A{f}-cell (see Definition 2.2.4). To ease the strain of
terminology, for the remainder of this proof, the word “small” will mean “of size
less than A”.

The induction is begun by noting that the zero skeleton of X — L;X equals
X. Since there are no Ff}-cells of presentation ordinal equal to a limit ordinal,
we need only consider the case of successor ordinals.

Now let 3+ 1 < ), and assume that each A{f}-cell of presentation ordinal
less than or equal to B is contained in L;X, for some small subcomplex X, of
X. Any A{f}-cell of presentation ordinal 3 + 1 must be attached by a map of its
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boundary to the g-skeleton of Ly X (see Definition 2.2.4). Since the boundary of
an A{f}-cell has size less than ), the image of the attaching map can intersect the
interiors of fewer than A other simplices (or cells), each of which is either in X or
in an A{f}-cell of sequential dimension less than or equal to 8. (If Spc(,y = Topy,),

then this uses Corollary 10.7.5.) Thus, our A{f}-cell is attached to the union of
X with some A{f}-cells, each of which is contained in the localization of a small
subcomplex of X. If we let Z be the union of those small subcomplexes of X and
the subcomplexes of X generated by the (fewer than A) simplices (or cells) of X in
the image of the attaching map of our A{f}-cell, then Z is the union a collection
of size less than ) of subcomplexes of X, each of which is of size less than . Since
) is a regular cardinal (see Proposition 10.1.14 and Example 10.1.12), this implies
that Z is of size less than A, and our A{f}-cell is contained in L;Z. a

DEFINITION 2.3.4. We let ¢ denote the cardinal of the continuum, i.e., ¢ is the
cardinal of the set of real numbers. We let A denote the ordinal (which is also a
cardinal) selected in Section 1.3.4, i.e., if f: A — B, then A is the first infinite
cardinal greater than that of the set of simplices (or cells) of AIIl B. We now define
v as

y= A'\ if SpC(,) = SS(,,)
(AC)/\C if SpC(*) = TOp(*) .

Thus, if Spe(,) = Top,y, then ¥ = (A)* = max(M, ¢?) = (A)(c°) (since the
maximum of two infinite cardinals equals their product (see, e.g., [29, Chapter 2]
or [17, page 70))).

LemMMA 2.3.5. Let the map f: A — B be an inclusion of cell complexes (see
Remark 1.2.11) and let X be a simplicial set (or a cell complex). If Z is a subcom-
plex of Ly X of size less than or equal to vy, then there exists a subcomplex W of
X, of size less than or equal to vy, such that Z C LyW.

PrROOF. Lemma 2.3.3 implies that each simplex (or cell) of Z is contained in the
localization of some subcomplex of X of size less than A, and so Proposition 2.2.16
implies that Z is contained in the localization of the union of those subcomplexes.
Since A < v (see Definition 2.3.4), A x v = v, and so that union of subcomplexes is
of size less than or equal to 7. d

LeMMA 2.3.6. Let the map f: A — B be an inclusion of cell complexes (see
Remark 1.2.11). If X is a simplicial set (or a cell complex) of size less than or equal
to v (see Definition 2.3.4), then Ly X has size less than or equal to «y.

PrROOF. Let X = Xg —» X; —» X9 —» - = Xg — --- (8 < )) be the
A-sequence that is part of the natural presentation of the relative A{f}-cell com-
plex X — LsX (see Definition 2.2.3). We will prove by transfinite induction
that, for every 8 < ), the complex X3 has size less than or equal to 7. Since
Ly X = colimg« Xp and Succ(y) (see Definition 10.1.10) is a regular cardinal (see
Definition 10.1.14), this will imply the lemma.

We begin the induction by noting that Xo = X. If we now assume that Xg
has size less than or equal to v, then (since the boundary of a m-cell is of
size less than A) there are fewer than v* = v (if Spe(,y = 8S(,)) or ¥ = v (if
Spe(.y = Topy,)) (see Proposition 10.1.15) many maps from the boundary of a
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A{f}-cell to Xp. Since there are only countably many A{f}-cells, there are fewer
than v many A{f}-cells attached to Xs to form Xp,1. Since each A{f}-cell has
fewer than A many simplices (or cells), X4 has size less than or equal to +.

If B8 is a limit ordinal, then X4 is a colimit of complexes, each of which is of
size less than or equal to 7. Since § < A < +, this implies that Xz has size less
than or equal to . A

The following proposition will be used in Proposition 2.3.8 to extend a map over
an arbitrary inclusion of a subcomplex that is an f-local equivalence by extending
it over a subcomplex of size no greater than +.

PRroPOSITION 2.3.7. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.11), and let D be a simplicial set (or a cell complex). Ifi: C — D is
the inclusion of a proper subcomplex and an f-local equivalence, then there is a
subcomplex K of D such that

(1) the subcomplex K is not contained in the subcomplex C,
(2) the size of K is less than or equal to v (see Definition 2.3.4), and
(3) the inclusions KNC — K and C — CUK are both f-local equivalences.

PRrROOF. Since i: C' — D is the inclusion of a subcomplex and an f-local equiv-
alence, Lemma 2.2.15 and Theorem 1.4.15 imply that L¢(i): LyC — LsD is a
trivial cofibration of fibrant spaces, and so it is the inclusion of a strong defor-
mation retract (see Corollary 9.6.5). We choose a strong deformation retraction
R:LyD®I — LsD (where I = A[1]), which will remain fixed throughout this
proof.

We will show that there exists a subcomplex K of D of size less than or equal
to v such that

(1) K is not contained in C,
(2) Rlv,xer is a deformation retraction of LK to Ly(K N C), and
(3) Rlv,(cuk)er is a deformation retraction of L;(CU K) to L;C.
We will do this by constructing a A-sequence
KeCKyCKyC---CKgC--- B<A)
(where ) is as in Definition 2.3.4) of subcomplexes of D such that, for every 8 < A,
(1) Kj has size less than or equal to 7,
(2) R(LyKp®I) C LiKpt,
and such that no K is contained in C. If we then let K = Jz., Kp, then Propo-
sition 2.2.18 will imply that K has the properties that we require.

We begin by choosing a simplex (or cell) of D that isn’t contained in C, and
letting K¢ equal the subcomplex generated by that simplex (or cell).

For successor ordinals, suppose that 8 + 1 < <y and that we’ve constructed
Kp. Lemma 2.3.6 implies that L;Ks has size less than or equal to v, and so
R(LyKs ® I) is contained in a subcomplex of LD of size less than or equal to
7. (If 8pey,y = Top,y, then this uses Corollary 10.7.7.) Lemma 2.3.5 now implies
that we can find a subcomplex Zg of D, of size less than or equal to -, such that
R(LyKs®I) C LyZs. Welet Kgi1 = KglU Zg. It is clear that Kgyq has the
properties required of it, and so the proof is complete. O

PROPOSITION 2.3.8. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.11). Ifp: X — Y has the right lifting property with respect to those
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inclusions of subcomplexes i: C — D that are f-local equivalences and such that
the size of D is less than or equal to v (see Definition 2.3.4), then p has the right
lifting property with respect to all inclusions of subcomplexes that are f-local equiv-
alences.

PROOF. Let i: C — D be an inclusion of a subcomplex that is an f-local
equivalence, and let the solid arrow diagram

c—Lsx

<
DT—)Y

be commutative; we muet show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined and use Zorn’s lemma to show that we can define it over
all of D.

Let S be the set of pairs (Ds,gs) such that

(1) Ds is a subcomplex of D containing C such that the inclusion i,: C — D
is an f-local equivalence, and
(2) gs is a function Dy — X such that g,i, = h and pgs = k|p, .
We define a preorder on S by defining (Ds, g5) < (Dt, g¢) if Dy C D; and g¢|p, = gs-

If 8’ C Sis achain (i.e., a totally ordered subset of S), let D, = colim(p, 4,jes' Ds
and define g,: D, — X by g. = colim(p, 4,jes’ gs- The universal mapping prop-
erty of the colimit implies that g,%, = h and pg, = k|p,, and Proposition 1.2.20
implies that the map C' — D, is an f-local equivalence. Thus, (D,,g,) is an el-
ement of S, and so it is an upper bound for §’. Zorn’s lemma now implies that
S has a maximal element (Dy,,gm). We will complete the proof by showing that
D,, = D.

If D,, # D, then Proposition 2.3.7 implies that there is a subcomplex K of D
such that K is not contained in D,,, the size of K is less than or equal to v, and the
inclusions K N D,, — K and D,, — D,, UK are both f-local equivalences. Thus,
there is a map gx: K — X such that pgx = k|x and gx |knp,, = gm|xnD,., and so
gm and gx combine to define a map gmy: KUD;, — X such that pgmg = k|xup,,
and gmgt = h. Thus, (K U Dy, 9mk) is an element of S strictly greater than
(Dy gm). This contradicts (Dy,, gm) being a maximal element of S, and so our
assumption that Dy, # D must have been false, and the proof is complete. O

PROOF OF PROPOSITION 2.1.5. Let J¢ be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are f-local equivalences of
complexes of size less than or equal to 7. Proposition 2.3.8, Corollary 10.5.22 and
Lemma 2.3.1 (if Speg,y = Top(,)) imply that the Jg-cofibrations are exactly the
cofibrations that are f-local equivalences. ]



CHAPTER 3

Localization of Model Categories

The purpose of a model category is to serve as a presentation of its homotopy
theory, and so a “localization” of a model category should be a construction that
adds inverses for maps in the homotopy category, rather than one that adds inverses
for maps in the underlying category. If M is a model category and € is a class of
maps in M, a localization of M with respect to € will be a map of model categories
F: M — N such that the images in HoM of the elements of € go to isomorphisms in
HoN and such that F is initial among such maps of model categories. Since there
are two different varieties of maps of model categories, left Quillen functors and
right Quillen functors (see Definition 8.5.2), we will define two different varieties
of localizations of model categories, left localizations and right localizations (see
Definition 3.1.1).

IfF: M — Nis aleft Quillen functor, g: X — YisamapinM,and[g]: X - Y
is the image of g in HoM, then the total left derived functor LF: HoM — HoN
of F (see Definition 8.4.7) takes [g] to the image in HoN of F(§) for some cofibrant
approximation § to g. Thus, if LF[g] is to be an isomorphism for every element
g of C, then Theorem 8.3.10 and Proposition 8.1.24 imply that F must take every
cofibrant approximation to an element of € into a weak equivalence. Thus, if €
is a class of maps in M, then a left localization of M with respect to € will be a
left Quillen functor that takes cofibrant approximations to elements of € into weak
equivalences and is initial among such left Quillen functors (see Theorem 3.1.6).
Similarly, a right localization of M with respect to € will be a right Quillen functor
that takes fibrant approximations to elements of C into weak equivalences and is
initial among such right Quillen functors.

In Section 3.1 we define left and right localizations of model categories, and
explain the connection between left localizations, local objects, and local equiv-
alences (and, dually, the connection between right localizations, colocal objects,
and colocal equivalences). In Section 3.2 we establish some properties of (co)local
objects and (co)local equivalences, and in Section 3.3 we discuss (left and right)
Bousfield localizations of categories, a special case of left and right localizations
(see Theorem 3.3.19). (The localizations that we construct in Chapters 4 and 5
are Bousfield localizations.) In Section 3.4 we discuss left Bousfield localizations
of left proper model categories (and right Bousfield localizations of right proper
model categories), and in Section 3.5 we establish a method for detecting (co)local
equivalences.

3.1. Left localization and right localization

DEeFINITION 3.1.1. Let M be a model category and let € be a class of maps in
M.

47
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(1) A left localization of M with respect to C is a model category LeM together
with a left Quillen functor (see Definition 8.5.2) j: M — LM such that
(a) the total left derived functor Lj: HoM — HoLeM (see Defini-
tion 8.4.7) of j takes the images in HoM of the elements of € into
isomorphisms in HoLeM, and
(b) if N is a model category and ¢: M — N is a left Quillen functor such
that Ly: HoM — HoN takes the images in HoM of the elements
of € into isomorphisms in Ho N, then there is a unique left Quillen
functor §: LeM — N such that §5 = ¢.
(2) A right localization of M with respect to C is a model category ReM
together with a right Quillen functor j: M — ReM such that
(a) the total right derived functor Rj: HoM — HoReM of j takes the
images in HoM of the elements of C into isomorphisms in HoReM,
and
(b) if N is a model category and ¢: M — N is a right Quillen functor such
that Ry: HoM — HoN takes the images in HoM of the elements
of € into isomorphisms in HoN, then there is a unique right Quillen
functor 6: LeM — N such that 65 = ¢.

PROPOSITION 3.1.2. Let M be a model category and let C be a class of maps
in M. If a (left or right) localization of M with respect to C exists, it is unique up
to a unique isomorphism.

PROOF. The standard argument applies. [

3.1.3. C-local objects and C-local equivalences. Given a left (respectively,
right) Quillen functor F, we need to be able to describe when the total left (respec-
tively, right) derived functor of F inverts a map in the homotopy category by exam-
ining F itself. We will do this in Theorem 3.1.6, using the notions of C-local object
and C-local equivalence (respectively, C-colocal object and C-colocal equivalence)
(see Definition 3.1.4).

DEFINITION 3.1.4. Let M be a model category and let € be a class of maps in
M.

(1) (a) An object W of M is C-local if W is fibrant and for every element
f: A — B of C the induced map of homotopy function complexes
f*: map(B, W) — map(A, W) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one ho-
motopy function complex then it is true for every homotopy function
complex.) If € consists of the single map f: A — B then a C-local
object will also be called f-local, and if C consists of the single map
from the initial object of M to an object A then a C-local object will
also be called A-local or A-null.

(b) Amap g: X — Y in M is a C-local equivalence if for every C-
local object W the induced map of homotopy function complexes
g*: map(Y,W) — map(X, W) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one
homotopy function complex then it is true for every homotopy func-
tion complex.) If € consists of the single map f: A — B then a
C-local equivalence will also be called an f-local equivalence, and if €
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consists of the single map from the initial object of M to an object A
then a C-local equivalence will also be called an A-local equivalence.
(2) (a) An object W of M is C-colocal if W is cofibrant and for every ele-
ment f: A — B of € the induced map of homotopy function com-
plexes f.: map(W, A) — map(W, B) (see Notation 17.4.2) is a weak
equivalence. (Theorem 17.5.31 implies that if this is true for any
one homotopy function complex then it is true for every homotopy
function complex.)
(b) Amap g: X — Y in M is a C-colocal equivalence if for every C-
colocal object W the induced map of homotopy function complexes
g-: map(W, X) — map(W,Y) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one ho-
motopy function complex then it is true for every homotopy function
complex.)

PROPOSITION 3.1.5. If M is a model category and C is a class of maps in M then
every weak equivalence is both a C-local equivalence and a C-colocal equivalence.

PRrooF. This follows from Theorem 17.6.3. O

THEOREM 3.1.6. Let M and N be model categories and let P: M 2 N :U be a
Quillen pair.
(1) If C is a class of maps in M, then the following are equivalent:

(a) The total left derived functor LF: HoM — HoN (see Definition 8.4.7)
of F takes the images in HoM of the elements of C into isomorphisms
in HoN.

(b) The functor F takes every cofibrant approximation to an element of
C into a weak equivalence in N.

(c) The functor U takes every fibrant object of N into a C-local object
of M.

(d) The functor F takes every C-local equivalence between cofibrant ob-
Jjects into a weak equivalence in N.

(2) IfC is a class of maps in N, then the following are equivalent:

(a) The total right derived functor RU: HoN — HoM (see Defini-
tion 8.4.7) of U takes the images in HoN of the elements of € into
isomorphisms in Ho M.

(b) The functor U takes every fibrant approximation to an element of €
into a weak equivalence in M.

(c) The functor F takes every cofibrant object of M into a C-colocal
object of N.

(d) The functor U takes every C-colocal equivalence between fibrant ob-
Jjects into a weak equivalence in M.

ProOoF. We will prove part 1; the proof of part 2 is dual.

(a) is equivalent to (b): If g: X — Y is a map in M, then the total left de-
rived functor of F takes the image of g in HoM to the image in HoN
of F(g) for some cofibrant approximation § to g (see the proof of Prop-
osition 8.4.4). Since a map in N is a weak equivalence if and only if its
image in HoN is an isomorphism (see Theorem 8.3.10), Proposition 8.1.24
implies that (a) is equivalent to (b).
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(b) is equivalent to (¢): If f: A — B is an element of C, then Proposi-

tion 8.1.24 implies that F takes every cofibrant approximation to f into a
weak equivalence if and only if F takes at least one cofibrant approx-
imation to f into a weak equivalence. If f: A->Bisa cosimpli-
cial resolution of f in M, then fo: Ay — Eo is a cofibrant approxima-
tion to f and F(f): F(A) — F(B) is a cosimplicial resolution in N of
F(fo): F(Ae) — F(Bo) (see Proposition 16.2.1). Theorem 17.7.7 implies
that the map of simplicial sets N(F(B), W) — N(F(A),W) is a weak
equivalence for every fibrant object W in N if and only if F(fo) is a weak
equivalence. The adjointness of F and U now implies that the map of
simplicial sets M(E,U(W)) — M(Z,U(W)) is a weak equivalence for
every fibrant object W of N if and only if F( fo) is a weak equivalence,
and so (b) is equivalent to (c). '

(c) is equivalent to (d): If W is a fibrant object of N and W is a simplicial

—

resolution of W in N, then U(W) is a simplicial resolution of U(W) in
M (see Proposition 16.2.1). Thus, U(W) is C-local if and only if the map
of simplicial sets g*: M(B,U(W)) — M(A4, U(W)) is a weak equivalence
for every C-local equivalence between cofibrant objects g: A — B. Theo-
rem 17.7.7 implies that F(g): F(4) —» F(B) is a weak equivalence if and
only if the map of simplicial sets F(g)*: N(F(B), W) — M(F(A), W) is
a weak equivalence for every fibrant object W, and so the result follows
from the adjointness of the pair (F,U).

0

3.1.7. Cellularization.

DEFINITION 3.1.8. Let M be a model category and let K be a set of objects in

M.
(1)

(2)

A map g: X — Y will be called a K-colocal equivalence or a K -cellular
equivalence if for every element A of K the induced map of homotopy
function complexes g.: map(4,X) — map(4,Y) (see Notation 17.4.2)
is a weak equivalence. (Theorem 17.5.31 implies that if this is true for
any one homotopy function complex, then it is true for every homotopy
function complex.) If K consists of the single object A, then a K-colocal
equivalence will also be called an A-colocal eguivalence or an A-cellular
equivalence.

If € is the class of K-colocal equivalences, then a C-colocal object (see
Definition 3.1.4) will also be called K-colocal.

REMARK 3.1.9. Earlier work on colocalization was exclusively in a category of
pointed spaces ([20, 21, 23, 24]) and was called cellularization. Given a pointed
space A, an A-cellular equivalence of pointed spaces was defined tobeamap g: X —
Y for which the induced map g.: Map(A,X) — Map(A4,Y) (see Definition 1.1.6)
is a weak equivalence, and the class of A-cellular spaces was defined to be the
smallest class of cofibrant spaces containing A and closed under homotopy colimits
and weak equivalences. Since this earlier work considered only the subcategory of
fibrant objects (or worked entirely in the category of pointed topological spaces,
in which every object is fibrant), this earlier definition of an A-cellular equivalence
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coincides with our definition of an A-colocal equivalence (see Example 17.1.4 and
Example 17.2.4). We will show in Theorem 5.1.5 that this earlier definition of an
A-cellular space also coincides with our definition of an A-colocal space.

ReMARK 3.1.10. If M = Spc (a category of unpointed spaces; see Nota-
tion 1.1.4) and A is a non-empty space, then a one point space is a retract of
A, and so every space X is a retract of the space of maps X#. This implies that
if K is a set of nonempty spaces, then a K-colocal equivalence of unpointed spaces
must actually be a weak equivalence. Thus, to consider the notion of K-colocal
equivalence of unpointed spaces would be pointless.!

3.1.11. Localization and Quillen functors. Let M and N be model cate-
gories and let F: M 2 N :U be a Quillen pair. If ¢ is 2 map in M with respect
to which we intend to localize M, then the corresponding localization of N would
not be with respect to Fg. This is because the image in HoN of Fg does not, in
general, equal the image in HoN under LF (see Definition 8.4.7) of the image in
HoM of g; that is, the square

M—— N

|

HoM—E—)HoN

does not, in general, commute. If g is a map in M and § is a cofibrant approximation
to g, then F§ is a map in N whose image in Ho N is isomorphic to the image under
LF of the image of g in HoM. Thus, if € is a class of maps in M with respect to
which we will left localize M, then the corresponding class of maps in N is LFC
(see Definition 8.5.11).

PropOSITION 3.1.12. Let M and N be model categories and let F: M =2 N :U
be a Quillen pair.
(1) If C is a class of maps in M and W is a fibrant object of N, then W is
LFC-local (see Definition 8.5.11) Iif and only if UW is C-local.
(2) IfC is a class of maps in N and W is a cofibrant object of M, then W is
RUC-colocal if and only if FW is C-colocal.

ProoOF. We will prove part 1; the proof of part 2 is dual. _ _

Ifi: A— B is a cofibrant approximation to an element of C and7: A — Bisa
cosimplicial resolution of 4, then Fi: FA — FB is a cosimplicial resolution of LF%.
The result now follows because the map of simplicial sets N(FB, W) — N(FA, W)
is isomorphic to the map of simplicial sets M(E‘, uw) — M(;i, Uw). O

3.2. C-local objects and C-local equivalences

Theorem 3.1.6 implies that to understand a left localization with respect to €
we must understand C-local objects and C-local equivalences, and to understand a
right localization with respect to € we must understand C-local objects and €-local
equivalences.

lAccording to E. Dror Farjoun, this joke is due to W. G. Dwyer.
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LEMMA 3.2.1. Let M be a model category and let C be a class of maps in M.

(1) If X and Y are fibrant objects of M and g: X — Y is a weak equivalence,
then X is C-local (see Definition 3.1.4) if and only if Y is C-local.

(2) IfX andY are cofibrant objects of M and g: X — Y is a weak equivalence,
then X is C-colocal if and only if Y is C-colocal.

Proor. We will prove part 1; the proof of part 2 is dual.
If f- A— B is an element of C, then we have the commutative diagram

map(B, X) —— map(4, X)

zl k

map(B,Y) —— map(A4,Y)

in which the vertical maps are weak equivalences (see Theorem 17.6.3). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.
o

ProprosITION 3.2.2. Let M be a model category and let C be a class of maps
in M.
(1) If X and Y are fibrant objects that are weakly equivalent (see Defini-
tion 7.9.2), then X is C-local if and only if Y is C-local.
(2) If X and Y are cofibrant objects that are weakly equivalent, then X is
C-colocal if and only if Y is C-colocal.

Proor. This follows from Lemma 3.2.1. O

PROPOSITION 3.2.3. Let M be a model category and let C be a class of maps
in M.
(1) The class of C-local equivalences (see Definition 3.1.4) satisfies the “two
out of three” axiom, i.e., if ¢ and h are composable maps and if two of g,
h, and hg are C-local equivalences, then so is the third.
(2) The class of C-colocal equivalences satisfies the “two out of three” axiom,
i.e., if g and h are composable maps and if two of g, h, and hg are C-colocal
equivalences, then so is the third.

ProOF. We will prove part 1; the proof of part 2 is dual.
Given maps ¢: X — Y and h: Y — Z, we can apply a functorial cofibrant
approximation (see Proposition 8.1.17) to ¢ and h to obtain the diagram

i

in which g, ~, and A§ are cofibrant approximations to g, h, and hg, respectively.
If W is a C-local object, W is a simplicial resolution of W, and two of the maps
g MY, W) > M(X, W), h*: M(Z, W) > (Y, W), and (h§)*: M(Z, W) >
M(X, ﬁ\’) are weak equivalences, then the third is as well. 8]

p i
LN R N

—0

L
N —— Nt

9
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PROPOSITION 3.2.4. Let M be a model category and let € be a class of maps
in M.
(1) The class of C-local equivalences is closed under retracts (see Defini-
tion 7.1.1).
(2) The class of C-colocal equivalences is closed under retracts.

Proor. We will prove part 1; the proof of part 2 is dual.

If g: X - Y is a C-local equivalence and h: V — W is a retract of g, then we
can apply a functorial factorization to the maps from the initial object to each of
X,Y,V,and W to obtain cofibrant approximations §: X oYto g\a.nd VoW
to h such that h is a retract of g. If Z is a C-local object and Z is a simplicial
resolution of Z, then A*: M(W, 2) —M(V, 2) is a retract of the weak equivalence
g*: M(?,?) — M(f(, 2), and so k" is a weak equivalence. a

LeMMaA 3.2.5. Let M be a model category, let C be a class of maps in M, let D
be a small category, and let g: X — Y is a map of D-diagrams in M.

(1) If the map go: Xo — Y, is a C-local equivalence between cofibrant
objects for every object a of D, then the induced map of homotopy colimits
hocolim g: hocolim X — hocolimY s a C-local equivalence.

(2) If the map g,: Xq — Y, is a C-colocal equivalence between fibrant
objects for every object a of D, then the induced map of homotopy limits
holim g: holim X — hocolim Y is a C-colocal equivalence.

ProOOF. We will prove part 1; the proof of part 2 is dual.

Let W be a C-local object. Since map(hocolim X, W) is naturally weakly
equivalent to holim map(X o, W) (see Theorem 19.4.4), our map is naturally weakly
equivalent to the map holimmap(Y ., W) — holim map(X,, W). Since for each a
the map X, — Y is a C-local equivalence, the result follows from Theorem 19.4.2.

O

LeMMA 3.2.6. Let M be a model category and let € be a class of maps in M.

(1) Ifi: A— B is a cofibration of cofibrant objects, then 1 is a C-local equiv-
alence if and only if it has the left lifting property (see Definition 7.2.1)
with respect to the map X A" — X981 for every simplicial resolution
X of every C-local object X and every n > 0.

(2) If p: X — Y Is a fibration of fibrant objects, then p is a C-colocal equiv-
alence if and only if it has the right lifting property with respect to the
map B ® 8A[n] — B ® Aln] for every cosimplicial resolution B of every
C-colocal object B and every n > 0.

Proor. This follows from Proposition 17.8.5 and Proposition 17.8.8. a

PRrROPOSITION 3.2.7. Let M be a model category, let C be a class of maps in M,
and let T be a totally ordered set.

(1) W : T — M is a functor such that, ifs,t € T and s < t, then W; — W,
is both a cofibration of cofibrant objects and a C-local equivalence, then
for every s € T the map W — colim>; W, is both a cofibration of
cofibrant objects and a C-local equivalence.

(2) fW:T°° — M is a functor such that, if s,t € T and s < t, then W, —
W, is both a fibration of fibrant objects and a €-colocal equivalence, then
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for every s € T the map lim;>; W — W is both a fibration of fibrant
objects and a C-colocal equivalence.

Proor. We will prove part 1; the proof of part 2 is dual.
Part 1 follows from Lemma 3.2.6, Lemma 10.3.5, and Proposition 10.3.6. [

LEMMA 3.2.8. Let M be a simplicial model category and let € be a class of
maps in M. If f: A — B Is a cofibration between cofibrant objects in M that is a
C-local equivalence and K is a simplicial set, then the map f®1g: AQK — BQK
is also a cofibration between cofibrant objects that is a C-local equivalence.

ProoF. If X is a C-local object then we have a commutative square

Map(B ® K, X) —=— Map(K, Map(B, X))

| |

Map(A® K, X) —(— Map (K, Map(4, X))

in which the horizontal maps are isomorphisms. Since X is C-local the map
Map(B, X) — Map(4, X) is a trivial fibration of simplicial sets, and so the map
on the right is also a trivial fibration of simplicial sets. 0

3.2.9. Left proper model categories.

PROPOSITION 3.2.10. Let M be a left proper model category, and let € be a set
of maps in M. If g: C — D is a cofibration that is also a C-local equivalence, then
any pushout of g is also a C-local equivalence.

Proor. This follows from Proposition 17.8.5 and Proposition 17.8.16. O
ProrosiTion 3.2.11. If M is a left proper model category and € is a class

of maps in M, then a transfinite composition of maps, each of which is both a
cofibration and a C-local equivalence, is both a cofibration and a C-local equivalence.

PRrROOF. Let A be an ordinal and let
Xo—’Xl—'Xg—'-“—bXﬁ—b-'- (ﬂ<)\)

be a A-sequence of maps that are both cofibrations and C-local equivalences. Propo-
sition 10.3.4 implies that the composition of that A-sequence is a cofibration, and so
it remains only to show that it is a C-local equivalence. Proposition 17.9.4 implies
that we can find a A-sequence of cofibrations together with a map of A-sequences

XO ;:Xv-l \22 [ >iﬁ $ .-
XO \Xl \X2 y e ;Xﬁ Y 0o

such that each vertical map )?ﬁ — Xpg is a cofibrant approximation to Xz and
colimg. )?5 — colim5<,\ X is a cofibrant approximation to colimgey Xg. If W is
a C-local object and Wisa 51mp11c1a.1 resolution of W, then, since each Xg — XgH
is a C-local equivalence and each X5 — Xp41 is a cofibration, each M(Xpt1, W) —
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M(X5, ﬁ\’) is a trivial fibration of simplicial sets (see Theorem 17.8.4). Thus, we
have a tower of trivial fibrations of simplicial sets

M()?o,ﬁ\’) — M()?l,ﬁ\’) — M()?g,ﬁ\’) — e M()‘Eﬁ,ﬁ\’) —

and so the projection limg M(,i:ﬁ, W) — M(Xo, W) is a weak equivalence. Since
M(colimg<x X, W) is isomorphic to limg«s M(Xp, W), this implies that the com-
position Xg — colimg«x X is a C-local equivalence. 0

3.2.12. C-(co)local Whitehead theorems.

THEOREM 3.2.13 (Weak C-(co)local Whitehead theorem). Let M is a model
category and let € be a class of maps in M.
(1) If X and Y are C-local objects and g: X — Y Is a C-local equivalence,
then g is a weak equivalence.
(2) If X and Y are C-colocal objects and g: X — Y is a C-colocal equivalence,
then g is a weak equivalence.

PROOF. This follows from Proposition 17.7.6. a

THEOREM 3.2.14 (Strong C-(co)local Whitehead theorem). Let M be a model
category and let C be a class of maps in M.
(1) If X and Y are cofibrant C-local objects and g: X — Y is a C-local
equivalence, then g is a homotopy equivalence.
(2) If X and Y are fibrant C-colocal objects and g: X — Y is a C-colocal
equivalence, then g is a homotopy equivalence.

ProoOF. This follows from Theorem 3.2.13 and Theorem 7.5.10. 0

3.2.15. C-localization of objects and maps.

DEFINITION 3.2.16. Let M be a model category and let € be a class of maps
in M.

(1) (a) A C-localization of an object X is a C-local object X (see Defini-
tion 3.1.4) together with an €-local equivalence j: X — X. We will
sometimes use the phrase C-localization to refer to the object X,
without explicitly mentioning the C-local equivalence j. A cofibrant
C-localization of X is a C-localization in which the C-local equivalence
7 is also a cofibration.

(b) A C-localization of a map g: X — Y is a C-localization ()?,jx) of
X, a C-localization (?,jy) of Y, and amap §: X — ¥ such that the
square

L}Y

|-

-~

X—§’Y

be

Jix

Y ——

commutes. We will sometimes use the term C-localization to refer to
the map §, without explicitly mentioning the €-localizations (X,jx)
of X and (Y,jy) of Y.
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(2) (a) A C-colocalization of an object X is a C-colocal object X (see Def-
inition 3.1.8) together with a C-colocal equivalence 7: X > X. We
will sometimes use the phrase C-colocalization to refer to the object
X, without explicitly mentioning the C-colocal equivalence i. A fi-
brant C-colocalization of X is a C-colocalization in which the €-colocal
equivalence is also a fibration.

(b) A C-colocalization of a map g: X — Y is a C-colocalization (X,ix)
of X, a C-colocalization (Y ty)of Y, and a map §: X — Y such that

the square
X

X—g—)y

—

At

iy

.

commutes. We will sometimes use the term C-colocalization to refer
to the map g, without explicitly mentioning the C-colocalizations
(X,ix) of X and (Y,4y) of Y.

THEOREM 3.2.17. Let M be a model category and let € be a class of maps in
M.

(1) If X is a fibrant object and j: X — X is a C-localization of X (see
Definition 3.2.16), then j is a weak equivalence if and only if X is C-local.
(2) If X is a cofibrant object and i: X — X is a C-colocalization of X (see
Definition 3.2.16), then i is a weak equivalence if and only if X is C-colocal.

Proor. We will prove part 1; the proof of part 2 is dual.
If X is C-local then Theorem 3.2.13 implies that j is a weak equivalence. Con-
versely, if j is a weak equivalence then Lemma 3.2.1 implies that X is C-local. O

THEOREM 3.2.18. Let M be a model category and let C be a class of maps in
M.
(1) If g: X - Y is a C-localization of g: X — Y, then g is a C-local equiva-
lence if and only if § is a weak equivalence.
(2) If g: X — Y is a C-colocalization of g: X — Y, then g is a C-colocal
equivalence if and only if § Is a weak equivalence.

PrOOF. We will prove part 1; the proof of part 2 is dual.

Proposition 3.1.5 and Proposition 3.2.3 imply that g is a C-local equivalence if
and only if § is an C-local equivalence. Since X and Y are C-local, Theorem 3.2.13
and Proposition 3.1.5 imply that § is a C-local equivalence if and only if it is a weak
equivalence. a

If M is a left proper cellular model category (see Definition 12.1.1) and S is
a set of maps in M, then in Definition 4.3.2 we define a functorial S-localization
(Ls,j). Theorem 3.2.17 then implies that a fibrant object X is S-local if and only if
the S-localization map j(X): X — LsX is a weak equivalence (see Theorem 4.3.5),
and Theorem 3.2.18 implies that a map ¢: X — Y is an S-local equivalence if and
only if Lg(g): LsX — LgY is a weak equivalence (see Theorem 4.3.6).
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PROPOSITION 3.2.19. Let M be a model category and let € be a class of maps
in M.
(1) (a) Ifboth X and X are cofibrant and j: X — X is a C-localization of X,
then for every C-local object W the map j induces an isomorphism
of the sets of homotopy classes of maps j*: n(X, W) = n(X,W).
(b) If X is cofibrant and j: X — X is a cofibrant C-localization of X,
then for every €-local object W and every map f: X — W there is
amapg: X -w, unique up to homotopy, such that gj = f.
(2) (a) Ifboth X and X are fibrant andi: X — X is a C-colocalization of X,
then for every C-colocal object B the map i induces an isomorphism
of the sets of homotopy classes of maps i,: 1(B,X) ~ (B, X).
(b) If X is fibrant and i: X — X is a fibrant C-colocalization of X, then
for every C-colocal object B and every map f: B — X there is a
map g: B — )‘Z, unique up to homotopy, such that ig = f.

Proor. We will prove part 1; the proof of part 2 is dual.
Part la follows from Proposition 17.7.4. Part 1b follows from part la and
Proposition 7.3.13. 0

3.3. Bousfield localization

The (left and right) localizations (see Definition 3.1.1) that we will construct
will actually be new model category structures on the underlying category of the
given model category. Since model category structures such as these were originally
constructed in the foundational work of Bousfield [8, 9, 10, 11, 12], we call these
(left and right) Bousfield localizations.

DEFINITION 3.3.1. Let M be a model category and let € be a class of maps in
M.

(1) The left Bousfield localization of M with respect to € (if it exists; see Re-
mark 3.3.2) is a model category structure LeM on the underlying category
of M such that

(a) the class of weak equivalences of LeM equals the class of C-local
equivalences of M,

(b) the class of cofibrations of LeM equals the class of cofibrations of M,
and

(c) the class of fibrations of LeM is the class of maps with the right lifting
property with respect to those maps that are both cofibrations and
C-local equivalences.

(2) The right Bousfield localization of M with respect to C (if it exists; see Re-
mark 3.3.2) is a model category structure ReM on the underlying category
of M such that

(a) the class of weak equivalences of ReM equals the class of C-colocal
equivalences of M,

(b) the class of fibrations of ReM equals the class of fibrations of M, and

(c) the class of cofibrations of ReM is the class of maps with the left
lifting property with respect to those maps that are both fibrations
and C-colocal equivalences.
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REMARK 3.3.2. We are not asserting that if M is a model category and Cis a
class of maps in M then the left (or right) Bousfield localization of M with respect
to € exists; that is, the three classes of maps described in Definition 3.3.1 part 1
(or part 2) might not constitute a model category structure on M. However, we
will show in Theorem 3.3.19 that if a Bousfield localization of M with respect to
C exists (i.e., if the three classes of maps do constitute a model category structure
on M), then it is a localization of M with respect to € (see Definition 3.1.1). Our
existence theorem for left Bousfield localizations is Theorem 4.1.1 and our existence
theorem for right Bousfield localizations is Theorem 5.1.1.

PROPOSITION 3.3.3. Let M be a model category, and let C be a class of maps
in M.
(1) IfLeM is the left Bousfield localization of M with respect to €, then
(a) every weak equivalence of M is a weak equivalence of LeM,
(b) the class of trivial fibrations of LeM equals the class of trivial fibra-
tions of M,
(c) every fibration of LeM is a fibration of M, and
(d) every trivial cofibration of M is a trivial cofibration of LgM.
(2) If ReM is the right Bousfield localization of M with respect to €, then
(a) every weak equivalence of M is a weak equivalence of ReM,
(b) the class of trivial cofibrations of ReM equals the class of trivial
cofibrations of M,
(c) every cofibration of ReM is a cofibration of M, and
(d) every trivial fibration of M is a trivial fibration of M.

Proor. This follows from Proposition 3.1.5 and Proposition 7.2.3. g

ProroSITION 3.3.4. Let M be a model category and let € be a class of maps
in M.

(1) If : M — LeM is the left Bousfield localization of M with respect to €,
then the identity functors lag: M = LeM :1a are a Quillen pair (see
Definition 8.5.2).

(2) If 5: M — ReM is the right Bousfield localization of M with respect to
C, then the identity functors ly: ReM &2 M :1y are a Quillen pair.

ProoF. This follows from Proposition 3.3.3. 0

PROPOSITION 3.3.5. Let M be a model category and let C be a class of maps
in M.
(1) IfLeM is the left Bousfield localization of M with respect toC, f: X — Z
and g: Y — Z are fibrations in LeM, and h: X — Y is a weak equivalence
in LeM that makes the triangle

XT/Y

commute, then h is a weak equivalence in M.
(2) If ReM is the right Bousfield localization of M with respect to €, f: A —
B and g: A — C are cofibrations in ReM, and h: B — C is a weak
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equivalence in ReM that makes the triangle

N

B———FC

commute, then h is a weak equivalence in M.

Proor. We w1ll prove part 1; the proof of part 2 is dual.
If we let h: X — Y be a fibrant cofibrant approximation to A in M (see
Proposition 9.1.9), then we have the diagram

~ h ~
X—Y
ij JJY

in which X and Y are cofibrant in M and jx and jy are trivial fibrations. Thus,
fix: X - Z and giy: Y — Z are fibrations in LeM (see Proposition 3.3.3), his
a weak equivalence in LeM (see Proposition 3.1.5), and it is sufficient to show that
h is a weak equivalence in M.

Since h is a weak equivalence of cofibrant-fibrant objects in (LeM ] Z) (see
Theorem 7.6.5), it is a homotopy equivalence in (LeM | Z) (see Proposition 8.3.26).
Thus, there is a map k: ¥ — X in (LeM ] Z) such that hk ~ 1y in (LeM | Z) and
kh ~ 1z in (LeM | 2). Since the trivial fibrations of LeM are the trivial fibrations
of M, Proposition 8.3.20 and Proposition 8.4.4 imply that Ak & 15 in M and kh &
1g in M. If y: M — HoM is the natural functor from M to its homotopy category
(see Definition 9.6.2), then Lemma 9.6.3 implies that fy(fc) ) 7(77.) = 17(‘7) and

y(h)ory(k) = 1,(%)» and so Theorem 9.6.9 implies that h is a weak equivalence. [

PROPOSITION 3.3.6. Let M be a model category and let C be a class of maps
in M.

(1) If X is a fibrant object of M, j: X — X is a cofibrant C-localization of
X (see Definition 3.2.16), and LeM is the left Bousfield localization of M
with respect to C, then the following are equivalent:

(a) The object X is C-local. R

{(b) The C-localization map j: X — X is a weak equivalence in M.

(¢) The C-localization map j: X — Xisa homotopy equivalence in
(X 1IM). R

(d) The C-localization map j: X — X is the inclusion of a strong defor-
mation retract (see Definition 7.6.10).

(2) If X is a cofibrant object of M, i: X — X is a fibrant €-colocalization of
X, and ReM is the right Bousfield localization of M with respect to C,
then the following are equivalent:
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(a) The object X is C-colocal.

(b) The C-colocalization map i: X — X is a weak equivalence in M.

(c) The C-colocalization map i: X — X is a homotopy equivalence in
(M| X). _ B

(d) The C-colocalization map i: X — X has a right inverse s: X — X
such that si is homotopic to 15 in (M | X) (that is, it is the dual of
a strong deformation retraction).

Proor. We will prove part 1; the proof of part 2 is dual.

A cofibrant C-localization of an object is a C-local trivial cofibration to an
C-local fibrant object (see Definition 3.3.1 and Proposition 3.4.1). Thus, Propo-
sition 7.6.11 implies that condition 1 implies condition 4. It follows immediately
from the definitions that condition 4 implies condition 3 and Theorem 7.8.5 implies
that condition 3 implies condition 2. Finally, Lemma 3.2.1 implies that condition 2
implies condition 1. O

3.3.7. G-local objects. For an explanation of the motivation of the definition
of a horn, see Section 1.3.

DeriNITION 3.3.8. Let M be a model category.

(1) If f: A— B is a map in M, then a horn on f is a map constructed by
(a) choosing a cosimplicial resolution f: A — B (see Definition 16.1.20)
of f such that f is a Reedy cofibration,
(b) choosing an integer n > 0, and then
(c) constructing the map A® Aln) 38640 B® AA[n] — Bw® Aln).
If € is a class of maps in M then a horn on € is a horn on some element
of €.
(2) If f: A — B is a map in M, then a cohorn on f is a map constructed by
() choosing a simplicial resolution f: A — B (see Definition 16.1.20)
of f such that f is a Reedy fibration,
(b) choosing an integer n > 0, and then
(c) constructing the map A8 — BAM xgz, . AAIM],
If C is a class of maps in M then a cohorn on € is a cohorn on some
element of €.

ProroOSITION 3.3.9. If M is a model category and € is a class of maps in M,
then
(1) every horn on € is a cofibration, and
(2) every cohorn on € is a fibration.

Proor. This follows from Proposition 16.3.10. 0

ProrOsSITION 3.3.10. Let M be a model category and let C be a class of maps
in M. If every element of € is a weak equivalence, then

(1) every horn on € is a trivial cofibration, and
(2) every cohorn on € is a trivial fibration.

Proor. This follows from Proposition 16.1.24 and Proposition 16.3.10. O

Lemma 3.3.11. Let M be a model category and let € be a class of maps in M.
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(1) Anobject W of M is C-local if and only if W is fibrant and themap W —
(where * is the terminal object of M) has the right lifting property with
respect to every horn on C (see Definition 3.3.8).

(2) An object W of M is €-colocal if and only if W is cofibrant and the map
0 — W (where § is the initial object of M) has the left lifting property
with respect to every cohorn on € (see Definition 3.3.8).

Proor. This follows from Proposition 17.8.5 and Proposition 17.8.8. ]

LEMMA 3.3.12. Let M and N be model categories and let F: M 2 N :U be a
Quillen pair.

(1) If g: A — B is a map of cofibrant objects in M and h: C — D is a horn
on g (see Definition 3.3.8), then F(h) is a horn on F(g).

(2) If p: X — Y is a map of fibrant objects in N and ¢: W — Z is a cohorn
on p (see Definition 3.3.8), then U(q) is a cohorn on U(p).

Proor. Since the left adjoint F commutes with colimits and the right adjoint
U commutes with limits, this follows from Corollary 16.2.2. 0

LEMMA 3.3.13. Let M be a model category and let € be a class of maps in M.

(1) IfLeM is the left Bousfield localization of M with respect to €, f: A— B
is a map in M, and f: A->Bisa cosimplicial resolution of f over M
such that f is a Reedy cofibration, then f is also a cosimplicial resolution
of f over LeM such that f is a Reedy cofibration.

(2) If ReM is the right Bousfield localization of M with respect to €, f: A —
BisamapinM, and f: A — B is a simplicial resolution of f over M
such that f is a Reedy fibration, then f is also a simplicial resolution of
f over ReM such that f is a Reedy fibration.

Proor. Part 1 follows because every cofibration of M is a cofibration of LeM
and every weak equivalence of M is a weak equivalence of LeM. Part 2 follows
because every fibration of M is a fibration of ReM and every weak equivalence of
M is a weak equivalence of ReM. a

ProOPOSITION 3.3.14. Let M be a model category and let C be a class of maps
in M.

(1) If LeM is the left Bousfield localization of M with respect to €, Y is C-
local, and there is a map g: X — Y that is a fibration in LeM, then X is
C-local.

(2) If ReM is the right Bousfield localization of M with respect to €, A is
C-colocal, and there is a map g: A — B that is a cofibration in ReM,
then B is C-colocal.

Proor. We will prove part 1; the proof of part 2 is dual.

Since fibrations in LeM are fibrations in M, the composition X - Y — * is
a fibration in M, and so Lemma 3.3.11 implies that it is sufficient to show that
the map X — #* has the right lifting property with respect to every horn on €. If
a: A — Bisahomon € and s: A — X is a map, then we have the solid arrow
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diagram

w4—>=-

-y

\

Since Y is €-local, Lemma 3.3.11 implies that there is a map t: B — Y such that
ta = ¢gs. Proposition 3.3.10 and Lemma 3.3.13 imply that « is a trivial cofibration
in LeM, and so there is 2 map u: B — X such that ua =s and gu = t. O

<—~<4—><

ProprosITION 3.3.15. Let M be a model category and let € be a class of maps
in M.
(1) IfLeM is the left Bousfield localization of M with respect to €, f: X — Z
is a fibration in M, g: Y — Z is a fibration in LeM, and h: X - Y isa
weak equivalence in M that makes the triangle

X —2L—y

N

commute, then f is also a fibration in LeM.

(2) IfReM is the right Bousfield localization of M with respect to €, f: A —
B is a cofibration in ReM, g: A — C is a cofibrationin M, and h: B — C
is a weak equivalence in M that makes the triangle

N

B——C

commute, then g is also a cofibration in ReM.

PrOOF. We will prove part 1; the proof of part 2 is dual.

Proposition 7.2.3 implies that it is sufficient to show that if i: A — B is both
a cofibration and a €-local equivalence then f has the right lifting property with
respect to 3. If we have the solid arrow diagram

IR A

B——( 27

then, since ¢ is a fibration in LeM, there is a map v: B — Y such that i = ht and
gv = u. Thus, in the category (A | M| Z) of objects of M under A and over Z (see
Theorem 7.6.5), there is a map from B to Y. Since B is cofibrant in (4 | M | Z) and
h: X —Y is a weak equivalence of fibrant objects in (4| M| Z), Corollary 7.7.5
implies that there is also a map w: B — X in (A} M} Z), ie,amapw: B - X
in M such that wi =t and fw = u. Thus, f is a fibration in LeM. (]
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PROPOSITION 3.3.16. Let M be a model category and let € be a class of maps
inM.
(1) IfLeM is the left Bousfield localization of M with respect to € and X and
Y are C-local objects in M then a map f: X — Y is a fibration in LeM
if and only if it is a fibration in M.
(2) If ReM is the right Bousfield localization of M with respect to € and X
and Y are C-colocal objects in M then a map f: X — Y is a cofibration
in ReM if and only if it is a cofibration in M.

Proor. We will prove part 1; the proof of part 2 is dual.

Since every fibration in LeM is a fibration in M, we assume that f is a fibration
in M and we will show that it is a fibration in LeM. If we factor fas X S W B Y
where 7 is a trivial cofibration in LeM and p is a fibration in LeM, then we have

the diagram
Y .

Proposition 3.3.14 implies that W is C-local, and so the weak C-local Whitehead
theorem (see Theorem 4.1.10) implies that 7 is a weak equivalence. The result now
follows from Proposition 3.3.15. ]

3.3.17. Bousfield localization is a localization.

PROPOSITION 3.3.18. Let M be a model category and let € be a class of maps
in M.

(1) If LeM is the left Bousfield localization of M with respect to €, N is a
model category, and F: M — N is a left Quillen functor that takes every
cofibrant approximation to an element of € into a weak equivalence in N,
then F is a left Quillen functor when considered as a functor LeM — N.

(2) If ReM is the right Bousfield localization of M with respect to €, N is a
model category, and U: M — N is a right Quillen functor that takes every
fibrant approximation to an element of € into a weak equivalence in N,
then U is a right Quillen functor when considered as a functor ReM — N.

Proor. We will prove part 1; the proof of part 2 is dual.

Since the underlying category of LeM equals that of M, F has a right adjoint
whether we consider it to be a functor F: M — N or a functor F: LeM — N. Let
U: N — LeM be a right adjoint to F. Proposition 8.5.4 implies that it is sufficient
to show that U preserves fibrations between fibrant objects and all trivial fibrations.
Since the class of trivial fibrations of LeM equals the class of trivial fibrations of M
and U is a right Quillen functor when viewed as a functor U: N — M, U preserves
all trivial fibrations when viewed as a functor U: N — LeM.

If X and Y are fibrant objects of N and p: X — Y is a fibration in N, then
Theorem 3.1.6 implies that UX and UY are C-local objects of M. Since Up: UX —
UY is a fibration in M, Proposition 3.3.16 implies that it is also a fibration in
LeM. O

THEOREM 3.3.19. Let M be a model category and let € be a class of maps in
M.
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(1) If LeM is the left Bousfield localization of M with respect to C then the
identity functor M — LeM is a left localization of M with respect to C
(see Definition 3.1.1).

(2) If ReM is the right Bousfield localization of M with respect to € then the
identity functor M — ReM is a right localization of M with respect to C.

PrOOF. We will prove part 1; the proof of part 2 is dual.

Let LeM be the left Bousfield localization of M with respect to C, let j: M —
LeM be the identity functor, and let F: M & N : U be a Quillen pair such that
the total left derived functor L¥F: HoM — HoN takes the images in HoM of the
elements of € into isomorphisms in HoN. Since j is the identity functor, the functor
F: LeM — N is the unique functor such that F o j = F, and Proposition 3.3.18
shows that F: LeM — N is a left Quillen functor. O

THEOREM 3.3.20. Let M and N be model categories and let F: M 2 N :U be
a Quillen pair.
(1) IfC is a class of maps in M, LeM is the left Bousfield localization of M
with respect to €, and LyreN is the left Bousfield localization of N with
respect to LF€ (see Definition 8.5.11), then
(a) (F,U) is also a Quillen pair when considered as functors F: LeM &
LrreN :U between the localizations of M and N, and

(b) if (F, U) is a pair of Quillen equivalences when considered as functors
F: M 2 N :U, then (F,U) is also a pair of Quillen equivalences
when considered as functors F: LeM & LyreN : U between the
localizations of M and N.
(2) IfC is a class of maps in N, ReXN is the right Bousfield localization of N
with respect to €, and RryeM is the right Bousfield localization of M
with respect to RUC (see Definition 8.5.11), then
(a) (F,U) is also a Quillen pair when considered as functors F : RgyeM &
ReN :U between the localizations of M and N, and

(b) if (F, U) is a pair of Quillen equivalences when considered as functors
F: M 2 N :U, then (F,U) is also a pair of Quillen equivalences
when considered as functors F: RryeM = ReN : U between the
localizations of M and N.

PrOOF. We will prove part 1; the proof of part 2 is dual.

Proposition 3.3.18 implies that the composition M RN VRN LrreN is a left
Quillen functor when considered as a functor LeM — LyreN, which proves part 1a.

For part 1b, we must show that if X is cofibrant in LeM and Y is fibrant in
LyreN then a map g: X — UY in LeM is a C-local equivalence if and only if the
corresponding map gf: FX — Y in LyreN is an LFC-local equivalence. Given such
a map g, we factor it in M as X LY E UY where A is a cofibration in M and
k is a trivial fibration in M. Both X and Y are cofibrant, and since k is a weak
equivalence in M, ¢ is a €-local equivalence if and only if h is a €-local equivalence.
The corresponding factorization of g¢ in N is FX A ry L Y, and since (F, U) is
a pair of Quillen equivalences between M and N, the map k! is a weak equivalence
in N. Thus, both FX and FY are cofibrant, and ¢* is an LF@-local equivalence
if and only if Fh is an LFC-local equivalence. It remains only to show that h is a
C-local equivalence if and only if Fh is an LFC-local equivalence.
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The map Fh is an LFC-local equivalence if and only if for every LFC-local
object W i in N N and every sunphma.l resolution W of W in N the map of simplicial
sets N(FY, W) — N(FX, W) is a weak equivalence. This map of simplicial sets is
isomorphic to the map M(Y, UW) — M(X, UW), and so Theorem 17.6.3 implies
that it is sufficient to show that every C-local object Z of M is weakly equivalent
in M to an object of the form UW for some LFC-local object W of N. Thus,
Proposition 3.1.12 and Lemma 3.2.1 imply that it is sufficient to show that every
C-local object Z of M is weakly equivalent to an object of the form UW for some
fibrant object W of N. Given such an object Z, we can choose a trivial fibration
Z — Z in M with Z cofibrant in M and then choose a trivial cofibration FX — W
in N with W fibrant in N. Since Z is cofibrant in M, Wisfibrantin N,and F: M =
N :U is a pair of Quillen equivalences, the map Z — UW is a weak equivalence in
M, and so we have the zig-zag of weak equivalences Z — Z — UW. a

3.4. Bousfield localization and properness

ProOPOSITION 3.4.1. Let M be a model category and let € be a class of maps
in M.

(1) If M is left proper and LeM is the left Bousfield localization of M with
respect to C, then an object W of M is C-local if and only if it is a fibrant
object in LeM.

(2) IfM is right proper and ReM is the right Bousfield localization of M with
respect to C, then an object W of M is C-colocal if and only if it is a
cofibrant object in ReM.

Proor. We will prove part 1; the proof of part 2 is dual.

If W is a fibrant object of LeM then Theorem 3.1.6 applied to the Quillen pair
1pg: M 2 LeM :1y,.3¢ implies that W is C-local.

Conversely, assume that W is C-local. Proposition 7.2.3 implies that it is suffi-
cient to show that if i: A — B is both a cofibration and an €-local equivalence then
the map W — = has the right lifting property with respect to ¢. Proposition 16.1.22
implies that we can choose a cosimplicial resolution 7: A — B of i such that i is
a Reedy cofibration, and Proposition 17.8.5 and Proposition 17.8.9 imply that the
map W — = has the right lifting property with respect to i%: A® — B9. Since M
is left proper, Proposition 13.2.1 and Proposition 16.1.5 now imply that the map
W — * has the right lifting property with respect to 4. a

LEMMA 3.4.2. Let M be a model category and let € be a class of maps in M.
(1) If M is left proper and LeM is the left Bousfield localization of M with
respect to €, g: A — B is a weak equivalence in LeM, h: A — X is a
map, at least one of g and h is a cofibration, and the square

(3.4.3) A—ox
9l lk
B—>Y

is a pushout, then k is a weak equivalence in LeM.

(2) If M is right proper and ReM is the right Bousfield localization of M with
respect to G, k: X — Y is a weak equivalence in ReM, j: B> Y isa
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map, at least one of j and k is a fibration, and the square (3.4.3) is a
pullback, then g is a weak equivalence in ReM.

ProoF. This follows from Proposition 17.8.5 and Proposition 17.8.16. 0

PROPOSITION 3.4.4. Let M be a model category and let C be a class of maps
in M.
(1) If M is left proper and LeM is the left Bousfield localization of M with
respect to C, then LeM is left proper.

(2) If M is right proper and ReM is the right Bousfield localization of M with
respect to C, then ReM is right proper.

Proor. This follows from Lemma 3.4.2. - |

3.4.5. Fibrations in LeM and cofibrations in ReM.

ProrosITION 3.4.6. Let M be a model category and let C be a class of maps
in M.

(1) IfM is left proper, LeM is the left Bousfield localization of M with respect
toC, f: X - Z and g: Y — Z are fibrationsin M, and h: X - Y isa
weak equivalence in M that makes the triangle

x—"r Ly
N
Z
commute, then f is a fibration in LeM if and only if ¢ is a fibration in
(2) ;ejjv%['js right proper, ReM is the right Bousfield localization of M with

respect to C, f: A — B and g: A — C are cofibrations in M, and h: B —
C is a weak equivalence in M that makes the triangle

A
SN
B———¢C

commute, then f is a cofibration in ReM if and only if ¢ is a cofibration
in ReM.

Proor. We will prove part 1; the proof of part 2 is dual.

If g is a fibration in LeM then Proposition 3.3.15 implies that f is also a
fibration in LeM.

Conversely, assume that f is a fibration in LeM. Proposition 7.2.3 and Proposi-
tion 13.2.1 imply that it is sufficient to show that if i: A — B is a trivial cofibration
in LeM and A is cofibrant, then ¢ has the right lifting property with respect to 1.
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Suppose that we have the solid arrow diagram

t

v >X——————}Y

- N A

B—m 2.

Since A is cofibrant in (M | Z) and h: X — Y is a weak equivalence of fibrant
objects in (M | Z), Corollary 8.5.4 implies that there is amapv: A — X in (M]Y)
such that hv ~ ¢t in (M | Z). Thus, fv = ui in M and, since f is a fibration in
LeM, there is a map w: B — X in M such that wi = v and fw = u. Since
hwi =hv~tin (M| Z), i: A — B is a cofibration in (M | Z), and Y is fibrant
in (M | Z}, Proposition 8.3.7 implies that we can find a map s: B— Y in (M | 2)
such that s ~ hw and si = t. Thus, si =t and gs = u, and so s is the map we
require, and so g is a fibration in LeM. a

ProprosiTioN 3.4.7. Let M be a model category and let C be a class of maps
in M.
(1) If M is right proper, LeM is the left Bousfield localization of M with
respect to C, f: X — Y is a fibration in M, and there is a homotopy fiber
square (see Definition 13.3.12) in M

in which X and Y are C-local and jx and jy are C-local equivalences,
then f is a fibration in LeM.

(2) If M is left proper, ReM is the right Bousfield localization of M with
respect to C, f: A — B is a cofibration in M, and there is a homotopy
cofiber square in M

I

B——+B

:::-r

f

[

in which A and B are C-colocal and i 4 and ig are C-colocal equivalences,
then f is a cofibration in ReM.

Proor. We will prove part 1; the proof of part 2 is dual.

If we factor f as X 5 W 2 ¥ where i is an trivial cofibration in LeM and p
is a fibration in LeM, then p is a fibration in M and so Proposition 13.3.7 implies
that the natural map X — Y xg W is a weak equivalence. The result now follows
from Proposition 3.3.15. a

PROPOSITION 3.4.8. Let M be a model category and let C be a class of maps
in M.
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(1) If LeM is the left Bousfield localization of M with respect to C, both M
and LeM are right proper, f: X — Y is a fibrationinM, and f: X - Y
is a C-localization of f (see Definition 3.2.16), then f is a fibration in LeM
if and only if the square
(3.4.9) x5 %
1)

Y.’iYY

is a homotopy fiber square (see Definition 11.2.12) in M.

(2) IfReM is the right Bousfield localization of M with respect to €, both M
and ReM are left proper, f: X — Y is a cofibration in M, and f X-Y
is a C-colocalization of f (see Definition 3.2.16), then f is a cofibration in
ReM if and only if the square

ix
— X

>

f

)
—

—Y

la v

is a homotopy cofiber square in M.

PROOF. We will prove part 1; the proof of part 2 is dual.
If Diagram 3.4.9 is a homotopy fiber square then Proposition 3.4.7 implies that
f is a fibration in LeM.

Conversely, assume that f is a fibration in LeM. If we factor fas XLwiy
where 4 is a trivial cofibration in LeM and p is a fibration in LeM, then we have

the diagram
X Ix
\ J’i
f w
AL
¢
Y - %
1Y

'Y

and we must show that the natural map u: X — Y xp W is a weak equivalence in
M. Since LeM is right proper, s is a weak equivalence in LeM, and so the “two
out of three” property of weak equivalences implies that u is a weak equivalence
in LeM. Since t is a pullback of a fibration in LeM, our result now follows from
Proposition 3.3.5. ]

3.5. Detecting equivalences
LEMMA 3.5.1. Let M be a model category and let € be a class of maps in M.
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(1) If LeM is the left Bousfield localization of M with respect to €, X is a
cofibrant object of M, and Y is a C-local object of M, then two maps from
X toY are homotopic in M if and only if they are homotopic in LeM.

(2) If ReM is the right Bousfield localization of M with respect to €, A is a
C-colocal object of M, and B is a fibrant object of M, then two maps from
A to B are homotopic in M if and only if they are homotopic in ReM.

ProoF. This follows from Proposition 8.5.16, Proposition 3.4.1, and Proposi-
tion 3.3.4. d

LEMMA 3.5.2. Let M be a model category and let C be a class of maps in M.

(1) If LeM is the left Bousfield localization of M with respect to €, X is a
cofibrant object of M, and Y is a C-local object of M, then the set m(X,Y)
of homotopy classes of maps from X to Y is independent of whether we
consider the homotopy relation in M or in LeM.

(2) If ReM is the right Bousfield localization of M with respect to €, A is a
C-colocal object of M, and B is a fibrant object of M, then the set n(A, B)
of homotopy classes of maps from A to B is independent of whether we
consider the homotopy relation in M or in ReM.

PRrROOF. This follows from Lemma 3.5.1. O

PrOPOSITION 3.5.3. Let M be a model category and let € be a class of maps
in M.

(1) IfM is left proper, LeM is the left Bousfield localization of M with respect
to €, and X and Y are cofibrant objects of M, then amap g: X — Y is a
C-local equivalence if and only if for every C-local object W the induced
map g*: mu(Y, W) — mw (X, W) of sets of homotopy classes of maps in
M is an isomorphism.

(2) If M is right proper, ReM is the right Bousfield localization of M with
respect to €, and X and Y are fibrant objects of M, then amapg: X - Y
is a G-colocal equivalence if and only if for every C-colocal object W the
induced map g,: mm(W, X} — mm(W,Y) of sets of homotopy classes of
maps in M is an isomorphism.

PROOF. We will prove part 1; the proof of part 2 is dual.

Theorem 7.8.6 and Proposition 3.4.1 imply that g is a C-local equivalence if and
only if for every C-local object W the induced map g*: 7. m(Y, W) — mL.m(X, W)
of sets of homotopy classes of maps in LeM is an isomorphism; the result now follows
from Lemma 3.5.2. O






CHAPTER 4

Existence of Left Bousfield Localizations

The main result of this chapter is Theorem 4.1.1, which is our existence theorem
for left Bousfield localizations (see Definition 3.3.1). The proof of Theorem 4.1.1 is
in Section 4.6.

The main difficulty in establishing the localized model category structure lies
in finding a set of generating trivial cofibrations (see Definition 11.1.2). That is, we
need to find a set Js of maps such that a map has the right lifting property with
respect to every element of Jg if and only if it has the right lifting property with
respect to all cofibrations that are S-local equivalences. Since M is left proper, it
is sufficient to find a set Jg of inclusions of cell complexes (see Definition 11.1.4)
such that a map with the right lifting property with respect to every element of Jg
will have the right lifting property with respect to every inclusion of cell complexes
that is an S-local equivalence (see Lemma 4.5.2). We will do this by showing that
there is a cardinal  such that if a map has the right lifting property with respect
to all S-local equivalences that are inclusions of cell complexes of size at most 7,
then it has the right lifting property with respect to all S-local equivalences that
are inclusions of cell complexes (see Proposition 4.5.6).

In order to make this cardinality argument, we must first define a localization
functor for objects in our model category M. Section 4.2 has some technical results
(motivated by the discussion of Section 1.3) needed for the construction of a func-
torial cofibrant localization in Section 4.3 (see Definition 4.3.2 and Theorem 4.3.3).
We will then use our localization functor to identify the S-local equivalences (see
Theorem 4.3.6). Section 4.4 contains some results about the localization functor
and subcomplexes of a cell complex needed for the cardinality argument in Sec-
tion 4.5, and the proof of Theorem 4.1.1 is in Section 4.6.

Theorem 4.2.9 might lead one to hope that the factorization of Theorem 4.3.1
would serve as the required factorization into an S-local trivial cofibration followed
by an S-local fibration (see Definition 7.1.3). Unfortunately, Example 2.1.6 shows
that not all S-local trivial cofibrations need be E-coﬁbrations, and so there may
be AS-injectives that are not S-local fibrations. Thus, we must establish Proposi-
tion 4.5.1, which shows that there is a set Jg of generating trivial cofibrations (see
Definition 11.1.2) for the S-local model category structure on M.

4.1. Existence of left Bousfield localizations

Although the axioms for a model category are self dual, the actual model
categories in which we work have properties (e.g., cofibrant generation (see Defi-
nition 11.1.2)) that are not self dual. Thus, it should not be surprising that our
existence theorems for left and right localizations differ.

71
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THEOREM 4.1.1. Let M be a left proper cellular model category (see Defini-
tion 13.1.1 and Definition 12.1.1) and let S be a set of maps in M.

(1) The left Bousfield localization of M with respect to S exists (see Defi-
nition 3.3.1). That is, there is a model category structure LgM on the
underlying category of M in which
(a) the class of weak equivalences of LeM equals the class of C-local
equivalences of M,

(b) the class of cofibrations of LeM equals the class of cofibrations of M,
and

(c) the class of fibrations of LeM is the class of maps with the right lifting
property with respect to those maps that are both cofibrations and
C-local equivalences.

(2) The fibrant objects of LgM are the S-local objects of M (see Defini-
tion 3.1.4).

(3) LsM is a left proper cellular model category.

(4) If M is a simplicial model category, then that simplicial structure gives
LsM the structure of a simplicial model category.

The proof of Theorem 4.1.1 is in Section 4.6.

DEFINITION 4.1.2. Let M be a model category and let S be a set of maps in
M.

(1) An S-local weak equivalence is defined to be an S-local equivalence (see
Definition 3.1.4).

(2) An S-local cofibration is defined to be a cofibration.

(3) An S-local fibration is defined to be a map with the right lifting property
(see Definition 7.2.1) with respect to all maps that are both S-local cofi-
brations and S-local weak equivalences. If the map X — * from an object
X to the terminal object of M is an S-local fibration, then we will say
that X is S-local fibrant.

Thus, Theorem 4.1.1 asserts that if M is a left proper cellular model category
and S is a set of maps in M, then the classes of S-local weak equivalences, S-local
cofibrations, and S-local fibrations form a model category structure on M.

4.1.3. Examples of left proper cellular model categories.

PROPOSITION 4.1.4. The categories SS, Top, SS,., and Top, are left proper
cellular model categories.

PRrROPOSITION 4.1.5. If M is a left proper cellular model category and € is
a small category, then the diagram category MC is a left proper cellular model
category.

ProrosITION 4.1.6. If M is a left proper cellular model category and Z is an
object of M, then the overcategory (M | Z) is a left proper cellular model category.

PROPOSITION 4.1.7. If M is a left proper cellular simplicial model category and
€ is a small simplicial category, then the category M€ of simplicial diagrams is a
left proper cellular model category.
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PROPOSITION 4.1.8. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then the category of spectra over M (as in
[13]) is a left proper cellular model category.

ProOPOSITION 4.1.9. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then J. H. Smith’s category of symmetric
spectra over M [61, 43] is a left proper cellular model category.

4.2. Horns on S and S-local equivalences

DEFINITION 4.2.1. If M is a model category and € is a class of maps in M,
then a full class of horns on € is a class A(C) of maps obtained by choosing, for
every element f: A — B of €, a cosimplicial resolution f: A — B of f (see
Definition 16.1.20) such that f is a Reedy cofibration (see Proposition 16.1.22) and
letting A(€) be the class of maps

A€) = {A® Al 4501y B®OA[R] - B® Aln] | (A— B) € S,n > 0}

(see Definition 3.3.8). We will use the symbol A(C) to denote some full class of
horns on € even though it depends on the choices of cosimplicial resolutions of the
elements of €.

DEFINITION 4.2.2. Let M be a cofibrantly generated model category with gen-
erating cofibrations I and generating trivial cofibrations J. If S is a set of maps of
M, then an augmented set of S-horns is a set A(S) of maps

A(S)=A(S)uJ
for some full set of horns A(S) on S (see Definition 4.2.1).

ProposiTION 4.2.3. If M is a left proper cellular model category and S is a
set of maps in M, then every element of an augmented set of horns on S (see
Definition 4.2.2) is an S-local equivalence.

Proor. This follows from Proposition 17.8.5 and Proposition 17.8.14. 3

PROPOSITION 4.2.4. Let M be a left proper cellular mode! category and let S
be a set of maps in M. An object X of M is S-local if and only if the map X — #
(where * is the terminal object of M) has the right lifting property with respect to
every element of an augmented set of S-horns (see Definition 4.2.2).

ProoF. This follows from Proposition 11.2.1 and Lemma 3.3.11. 0

PRrROPOSITION 4.2.5. If M is a left proper cellular model category with gener-
ating cofibrations I and S is a set of maps in M, then there is a set AS of relative
I-cell complexes with cofibrant domains such that

(1) every element of AS is an S-local equivalence, and
(2) an object X of M is S-local if and only if the map X — * (where = is the
terminal object of M) is a XE‘-injective.

PRrooOF. Choose a full set of horns on S (see Definition 4.2.1.) Factor each

element g: C — D of A(S) as C 5, B 2 D where g is a relative I-cell complexes
and p is a trivial fibration (see Corollary 11.2.6). The retract argument (see Prop-
osition 7.2.2) implies that g is a retract of g. Since p and g are S-local equivalences
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(see Proposition 3.1.5 and Proposition 4.2.3), Proposition 3.2.3 implies that § is an
S-local equivalence.

Proposition 11.2.9 implies that there is a set J of generating trivial cofibrations
for M such that every element of J is a relative I-cell complex with cofibrant
domain. We let o

AS =JU{g}eencs)-
It remains only to show that condition 2 is satisfied. If the map X — # is a
Eg-injective, then Proposition 4.2.4 and Lemma 7.2.8 imply that X is S-local.
Conversely, if X is S-local, then X is fibrant and every element of AS is a cofibra-
tion between cofibrant objects, and so Proposition 17.8.5, Theorem 16.6.9, Proposi-
tion 16.6.7, and Proposition 17.8.8 imply that the map X — *isa XTS’-injective. O

DeFINITION 4.2.6. If M is a left proper cellular model category and S is a set
of maps in M, then a relative AS-cell complez is a map that can be constructed as
a transfinite composition (see Definition 10.2.2) of pushouts (see Definition 7.2.10)
of elements of AS (see Proposition 4.2.5).

PROPOSITION 4.2.7. Let M be a left proper cellular model category, and let S
be a set of maps in M. An object X of M is S-local if and only if the map X — *
(where * is the terminal object of M) has the right lifting property with respect to
all relative AS-cell complexes.

ProOOF. This follows from Proposition 4.2.5, Lemma 7.2.11, and Lemma 10.3.1.
O

4.2.8. Regular AS-cofibrations and S-local equivalences. The main re-
sult of this section is Theorem 4.2.9, which asserts that if M is a left proper cellular
model category and S is a set of maps in M, then every relative AS-cell complex is
an S-local equivalence.

THEOREM 4.2.9. If M is a left proper cellular model category and S is a set
of maps in M, then every relative AS-cell complex (see Definition 4.2.6) is both a
cofibration and an S-local equivalence.

ProoF. This follows from Proposition 3.2.10 and Proposition 3.2.11. 0

ProOPOSITION 4.2.10. Let M be a Ieft proper cellular model category, and let
S be a set of maps in M. If j: X — X is a relative AS-cell complex and X is a
AS- -injective, then the pair (X,]) is a cofibrant S-localization of X.

ProoF. This follows from Theorem 4.2.9 and Proposition 4.2.5. 0

Theorem 4.2.9, Proposition 3.2.4, and Corollary 10.5.23 imply that every AS-
cofibration is an S-local equivalence. Example 2.1.6 shows that, among the cofibra-
tions that are S-local equivalences, there can be maps that are not AS-cofibrations.

4.3. A functorial localization

THEOREM 4.3.1. If M is a left proper cellular model category and S is a set of
maps in M, then there is & natural factorization of every map X — Y in M as

XLEs Ly
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in which j is a relative AS-cell complex (see Definition 4.2.6) andp is a AS-injective.

Proor. _Proposition 4.2.5 and Theorem 12.4.3 imply that the domains of the
elements of AS are small relative to the subcategory of relative AS-cell complexes,
and so Lemma 10.4.6 implies that there is a cardinal  such that the domain of every
element of AS is k-small relative to the subcategory of relative AS-cell complexes.
We let A = Succ(k) (see Definition 10.1.10), so that A is a regular cardinal (see
Proposition 10.1.14). The result now follows from Corollary 10.5.21. (]

DEFINITION 4.3.2. Let M be a left proper cellular model category, and let
S be a set of maps in M. The S-localization of an object X is the object LgX
obtained by applying the factorization of Theorem 4.3.1 to the map X — * (where
* is the terminal object of M). This factorization defines a natural transformation
j: 1 — Lg such that j(X): X — LgX is arelative AS-cell complex for every object
X of M.

THEOREM 4.3.3. If M is a left proper cellular model category and S is a set
of maps in M, then, for every object X, the S-localization j(X): X — LgX (see
Definition 4.3.2) is a cofibrant S-localization of X

Proor. This follows from Proposition 4.2.10. O

COROLLARY 4.3.4. If M is a left proper cellular model category and S is a set
of maps in M, then every object has an S-localization.

Proor. This follows from Theorem 4.3.3. O

THEOREM 4.3.5. Let M be a left proper cellular model category, and let S be
a set of maps in M. If X is a fibrant object, then X is S-local if and only if the
S-localization map j(X): X — LgX (see Definition 4.3.2) is a weak equivalence.

ProoF. This follows from Theorem 3.2.17. 0

THEOREM 4.3.6. Let M be a left proper cellular model category, and let S be
a set of maps in M. The map g: X — Y is an S-local equivalence if and only if its
S-localization Lg(g): LsX — LgY (see Definition 4.3.2) is a weak equivalence.

ProoF. This follows from Theorem 3.2.18. O

4.3.7. Simplicial localization functors. In this section we show that if M
is a left proper cellular model category that is a simplicial model category and if S
is a set of maps in M, then we can define a cofibrant S-localization on M that is a
simplicial functor (see Section 9.8). To do this, we will modify the construction of
our localization functor (see Definition 4.3.2) in a manner analogous to the way in
which the functor of Example 9.8.7 was modified to become the simplicial functor
of Example 9.8.8. Definition 4.3.2 uses the factorization of Proposition 10.5.16 in
the case in which Y is the terminal object of M, which constructs pushouts of
diagrams involving a coproduct indexed by the set of maps between objects 4; and
EP (see Diagram 10.5.17). We will construct our simplicial localization functor by
replacing the coproduct [Ty 4, psy 4i with 4; ® Map(4;, EB).

THEOREM 4.3.8. If M is a left proper simplicial cellular model category and S
is a set of maps in M, then there is a cofibrant S-localization functor on M that is
a simplicial functor.
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PROOF. Let AS be aset of relative I-cell complexes as in Proposition 4.2.5, and
let ) be a regular cardinal such that the domains of the elements of AS are A-small
with respect to the subcategory of cofibrations of M (see Theorem 12.4.3). For each
object X of M we will define a A-sequence X = E° - E! - E? ... - Ef ...
(8 < A) whose composition will be our simplicial localization functor X — L¥™X.

We begin by letting E° = X. If § < X and we have constructed the sequence
through E#, we let

cy= ] ¢ eMap(CEF)

(C—D)eAS
py= ] DeMap(C,E)
(C—D)eAs

and we define EA*! via the pushout square

Cﬁciom E B8

|l

DE""‘ > EFHL

in which the top map on each factor is the natural map that is adjoint to the
identity map of Map(C, E®). If 7 is a limit ordinal, we let E7 = colimg<, E®. We
let L™ X = colimge, EX.

Lermnma 3.2.8, Proposition 3.2.10, and Proposition 3.2.11 imply that the map
X — L¥™X is an S-local equivalence.

For every element C — D of AS and every § < A, the O-skeleton of Map(C, E¥)
is M(C, E®), and so for every map C — E* the composition C — Ef — EF*! can
be factored through € — D. Since C is A-small with respect to the subcategory
of cofibrations of M, this implies that L§™*X is a AS-injective, and so LP™ X is
S-local.

The proof that the functor LE™ can be extended to a simplicial functor is as
in the proof of Theorem 1.7.5: If C and X are objects in M and K is a simplicial
set, then there is a natural map Map(C, X) ® K — Map(C, X ® K) that takes the
n-simplex (a: C ® A[n] — X,7) of Map(C, X) ® K to the n-simplex o(a,7): C®
Aln] - X ® K of Map(C, X ® K) that is the composition

C®Aln] 2222, ¢ ® (A x AR]) = (C ® Aln)) ® Aln] 225 X @ K
(where D: A[n] — A[n] x A[n] is the diagonal map and i,: Afn] — K is the map
that takes the nondegenerate n-simplex of A[n] to 7). This natural map & has the
properties required by Theorem 9.8.5, and so we can use it to inductively define o
for all the objects in the construction of the localization functor. The theorem now
follows from Proposition 9.8.9 and Theorem 9.8.5. a

4.4. Localization of subcomplexes

This section contains some technical results on the S-localization functor (see
Definition 4.3.2) that are needed for the cardinality argument of Section 4.5.
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PROPOSITION 4.4.1. Let M be a left proper cellular model category, and let S
be a set of maps in M. If g: X — Y is the inclusion of a subcomplex, then so is
Lg(g): LsX — LgY (see Definition 4.3.2).

PrOOF. This follows from Proposition 12.4.7. O

REMARK 4.4.2. If we take S to be the empty set, then LgX is a functorial
fibrant approximation to X (see Definition 8.1.2). In this case, Proposition 4.4.1
asserts that if W is a subcomplex of X, then this fibrant approximation to W is a
subeomplex of this fibrant approximation to X.

PROPOSITION 4.4.3. Let M be a left proper cellular model category and let S
be a set of maps in M. If g: X — Y is the inclusion of a subcomplex, then it
is an S-local equivalence if and only if its localization Lg(g): LgX — LgY is the
inclusion of a strong deformation retract (see Definition 7.6.10).

ProoF. If Lg(g) is the inclusion of a strong deformation retract, then it is a
weak equivalence, and so Theorem 4.3.6 implies that g is an S-local equivalence.

Conversely, if g is an S-local equivalence, then Theorem 4.3.6 and Proposi-
tion 4.4.1 imply that Lg(g) is a trivial cofibration of fibrant objects, and so Corol-
lary 9.6.5 implies that it is the inclusion of a strong deformation retract. O

PROPOSITION 4.4.4. Let M be a left proper cellular model category and let
S be a set of maps in M. If X is a cell complex and Ko C K C K2 C --- C
Kg C --- (B < X)) is a A-sequence of subcomplexes (see Remark 10.6.8) of X
(where A is the ordinal chosen in the proof of Theorem 4.3.1), then the natural
map colimpg<y LgKy — Lg colimg<y Kg is an isomorphism.

PRrOOF. Proposition 4.4.1 implies that the map is  an isomorphism onto a sub-
complex, and so it remains only to show that every AS-cell of Lg colimgex Kp is
contained in some LgKp. We will do this by a transfinite induction on the presen-
tation ordinal of the AS-cell (see Definition 10.6.4).

Since there are no AS-cells of presentation ordinal equal to a limit ordinal,
we let v be an ordinal such that v + 1 < A and we assume that the assertion is
true for all AS-cells of presentation ordinal at most . This assumption implies
that the y-skeleton of Lg colimg Kp is isomorphic to colimgc((LsKp)?). Thus,
the ~v-skeleta of the LgKj form a A-sequence whose colimit is the y-skeleton of
Lg colimpx Kp. If e is a AS-cell of Lg colimg«s K of presentation ordinal v + 1,
then the attaching map of e must factor through (LgKpg)” for some 3 < A, and so
e is contained in LgKpg. O

PROPOSITION 4.4.5. Let M be a left proper cellular model category and let S
be a set of maps in M. If X is a cell complex and A and B are subcomplexes of
X, then the natural map Lg(AN B) — (LgA) N (LgB) (see Proposition 4.4.1 and
Theorem 12.2.6) is an isomorphism.

PROOF. Proposition 4.4.1 implies that the natural map Lg(ANB) — (LgA)N
(LgB) is an isomorphism onto a subcomplex, and so it remains only to show that
every AS-cell of (LsA)N(LsB) is contained in Lg(ANB). We will do this by a trans-
finite induction on the presentation ordinal of the AS-cell (see Definition 10.6.4).

Since there are no AS-cells of presentation ordinal equal to a limit ordinal,
we let 7 be an ordinal such that v+ 1 < A (where A is the ordinal chosen in the
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proof of Theorem 4.3.1) and we assume that the assertion is true for all AS-cells of
presentation ordinal at most ~y. This assumption implies that the y-skeleton (Lg(AN
B))” of Lg(AN B) equals the intersection of y-skeleta (LgA)? N (LsB)”. Thus, if e
is a AS-cell of (LgA)N(LgB) of presentation ordinal 7y + 1, then Proposition 12.2.3
implies that the attaching map of e factors through (Ls(A N B))", and so e is
contained in Lg(AN B). O

4.5. The Bousfield-Smith cardinality argument

The purpose of this section is to prove the following proposition, which will be
used in Section 4.6 to prove Theorem 4.1.1.

PROPOSITION 4.5.1. If M is a left proper cellular mode] category and S is a set
of maps in M, then there is a set Jg of inclusions of cell complexes such that the
class of Jg-cofibrations (see Definition 10.5.2) equals the class of cofibrations that
are also S-local equivalences.

The proof of Proposition 4.5.1 is at the end of this section (on page 81). The
set Jg will serve as our set of generating trivial cofibrations (see Definition 11.1.2)
for the S-local model category structure on M (see Theorem 4.1.1 and Section 4.6).

We will prove Proposition 4.5.1 by showing that there is a set Jg of cofibra-
tions that are S-local equivalences such that every cofibration that is an S-local
equivalence is a Jg-cofibration (see Definition 10.5.2). Proposition 4.5.1 will then
follow from Corollary 10.5.23.

We will find the set Js by showing (in Proposition 4.5.6) that there is a cardinal
~ (see Definition 4.5.3) such that if a map has the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences between complexes of
size at most v, then it has the right lifting property with respect to all cofibrations
that are S-local equivalences. Since the collection of isomorphism classes of cell
complexes of size at most +y is a set, we can then let Jg be a set of representatives
of the isomorphism classes of of these “small enough” inclusions of cell complexes
that are S-local equivalences.

We begin with the following lemma, which implies that it is sufficient to find
a set Jg such that the Js-injectives have the right lifting property with respect to
all inclusions of cell complexes that are S-local equivalences.

LEMMA 4.5.2. Let M be a left proper cellular model category and let S be a set
of maps in M. Ifp: E — B is a fibration with the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences, then it has the right
lifting property with respect to all cofibrations that are S-local equivalences.

PrOOF. Let g: X — Y be a cofibration that is an S-local equivalence. Propo-
sition 11.2.8 implies that there is a cofibrant approximation (see Definition 8.1.22)
g to g such that § is an inclusion of cell complexes. Proposition 3.1.5 and Propo-
sition 3.2.3 imply that § is an S-local equivalence, and so the lemma now follows
from Proposition 13.2.1. a

DEFINITION 4.5.3. If M is a left proper cellular model category and S is a set
of maps in M, we let £ is the smallest cardinal that is at least as large as each of
the following cardinals:

(1) the size of the cells of M (see Definition 12.3.3),
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(2) a cardinal 7 such that the domain of every element of I is n-compact (see
Proposition 11.4.6),

(3) the cardinal A selected in the proof of Theorem 4.3.1,

(4) the cardinal x described in Proposition 12.5.3 for the set AS, and

(5) the cardinal « described in Proposition 12.5.7,

and we let v denote the cardinal v = £¢.

LEMMA 4.5.4. Let M be a left proper cellular model category and let S be a
set of maps in M. If X is a cell complex of size at most « (see Definition 4.5.3),
then Lg X (see Definition 4.3.2) has size at most .

Proor. This follows from Proposition 12.5.3 and conditions 3 and 4 of Defi-
nition 4.5.3. ]

The following proposition will be used in Proposition 4.5.6 to show that a
fibration that has the right lifting property with respect to all “small enough”
inclusions of cell complexes that are S-local equivalences must actually have the
right lifting property with respect to all inclusions of cell complexes that are S-local
equivalences.

PROPOSITION 4.5.5. Let M be a left proper cellular model category, let S be a
set of maps in M, and let D be a cell complex. If i: C — D is the inclusion of a
proper subcomplex and an S-local equivalence, then there is a subcomplex K of D
such that

(1) the subcomplex K is not contained in the subcomplex C,

(2) the size of K is at most ~y (see Definition 4.5.3), and

(3) the inclusions KNC — K (see Theorem 12.2.6) and C — CUK are both
S-local equivalences.

PRrOOF. Since i: C — D is an inclusion of a subcomplex and an S-local equiv-
alence, Proposition 4.4.3 implies that Lg(1): LsC — LgD is the inclusion of a
deformation retract. Thus, there is a retraction r: LgD — LgC, and Proposi-
tion 7.4.7 implies that we can choose a homotopy R: Cyl™(LgD) — LgD (see
Definition 12.5.5) from the identity map of LgD to Lg(i} or.

We will show that there exists a subcomplex K of D, of size at most v, such
that

(1) K is not contained in C,
(2) the restriction R|cymLgx) of R to LgK (see Definition 12.5.6) is a de-
formation retraction of Lg K onto Lg(K N C), and
(3) the restriction R|cype(rg(cukyy of R to Ls(C U K) is a deformation re-
traction of Lg(C U K) onto LgC.
We will do this by constructing a A-sequence Ko C K1 C Ko C--- C Kg C ---
(8 < A) of subcomplexes of D (where A is the ordinal selected in the proof of
Theorem 4.3.1) such that, for every 8 < A,
(1) Kpg has size at most v,
(2) therestriction R|cym(y4x,) of R to LsKp factors through the subcomplex
LgKgy1 of LgD (see Proposition 4.4.1),

and such that no Kp is contained in C. If we then let K = |Jg.) Kpg, then Propo-
sition 4.4.4 will imply that LgK ~ colimg<) LgKg. Thus, R|cym sy will factor
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through Lg K, r|Lsx will factor through (LgK)N (LgC) =Lg(K NC) (see Propo-
sition 4.4.5), R|cy1m (1,5 x) Will be a deformation retraction of LK onto Lg(K NC),
and R|cym(cuk) will be a deformation retraction of Lg(C U K) onto LsC.

We begin by choosing a cell of D that isn’t contained in C. Since the domains
of the elements of I are y-compact (see condition 2 of Definition 4.5.3), we can
choose a subcomplex Ko of D, of size at most <y, through which the inclusion of
that cell factors.

For successor ordinals, suppose that 8+ 1 < v and that we’ve constructed
Kj. Lemma 4.5.4 implies that LsKp has size at most . Proposition 12.5.7 and
condition 5 of Definition 4.5.3 then imply that CylM(LsKﬂ) has size at most v,
and so Definition 12.3.3 implies that R|cym(psx,) factors through a subcomplex
of LgD of size at most gy = 7y where ¢ is the size of the cells of M (see condition 1
of Definition 4.5.3). The gero skeleton of this subcomplex is a subcomplex Zg
of D, of size at most 7, such that RlcylM(LsKﬂ) factors through LgZz. We let
Kpi1 = Kg U Zg. It is clear that Kg,; has the properties required of it, and so
the proof is complete. g

PROPOSITION 4.5.6. Let M be a left proper cellular model category and let S be
a set of maps in M. If p: X — Y has the right lifting property with respect to those
inclusions of subcomplexes i: C — D that are S-local equivalences and such that
the size of D is at most vy (see Definition 4.5.3), then p has the right lifting property
with respect to all inclusions of subcomplexes that are S-local equivalences.

PROOF. Let i: C — D be an inclusion of a subcomplex that is an S-local
equivalence, and let the solid arrow diagram

c—ux

Z
,l lp
D'—k—)Y

be commutative; we must show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined, and use Zorn’s lemma to show that it can be defined over
all of D.

Let T be the set of pairs (D, ¢:) such that

(1) D, is a subcomplex of D containing C such that the inclusion i;: C — D,
is an S-local equivalence and
(2) g is a function D; — X such that g;3; = h and pg, = k|p,.

We define a preorder on T by defining (Dy, g:) < (Dy, gu) if Dy C D, and g4|p, =
gt- If T C T is a chain (i.e., a totally ordered subset of T'), let D,, = colim(p, o,)e7" Dt
and define g,,: D, — X by g, = colim(p, g,)e7v gt The universal mapping property
of the colimit implies that g,i, = h and pg, = k|p,, and Proposition 3.2.7 implies
that the map C — D, is an S-local equivalence. Thus, (D,,¢,) is an element of
T, and so it is an upper bound for 77. Zorn’s lemma now iraplies that T has a
maximal element (Dy,, gm). We will complete the proof by showing that D,, = D.
If D,, # D, then Proposition 4.5.5 implies that there is a subcomplex K of D
such that K is not contained in Dy, the size of K is at most v, and the inclusions
KNDp — K and Dy, —» Dy, UK are both S-local equivalences. Thus, there is a
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map gk : K — X such that pgx = k|x and gx|knp,, = 9m|KnD,., and s0 g and
9x combine to define a map gmk : K U D — X such that pgmx = k|xup,, and
9mit = h. Thus, (K UD,,,gmk) is an element of T strictly greater than (D, gm)-
This contradicts (D,y, gm) being a maximal element of T', and so our assumption
that Dy, # D must have been false. g

ProoOF OF PROPOSITION 4.5.1. Let Jg be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are S-local equivalences of
complexes of size at most v (see Definition 4.5.3). Proposition 4.5.6, Lemma 4.5.2,
and Corollary 10.5.22 imply that the Js-cofibrations are exactly the cofibrations
that are S-local equivalences, and so the proof is complete. 3

4.6. Proof of the main theorem

This section contains the proof of Theorem 4.1.1.

4.6.1. Proof of part 1. We will use Theorem 11.3.1. Proposition 3.2.3 im-
plies that the class of S-local equivalences satisfies the “two out of three” axiom,
and Proposition 3.2.4 implies that it is closed under retracts.

Let Js be the set of maps provided by Proposition 4.5.1, and let I be the
set of generating cofibrations of the original cofibrantly generated model category
structure on M. Condition 1 of Theorem 11.3.1 is thus satisfied for I and, since
every element of Jg has a cofibrant domain, Theorem 12.4.3 implies that condition 1
of Theorem 11.3.1 is satisfied for J.

The subcategory of I-cofibrations is the subcategory of cofibrations in the given
mode] category structure in M, and the I-injectives are the trivial fibrations in that
model category. Thus, Proposition 4.5.1 implies that condition 2 of Theorem 11.3.1
is satisfied.

Since the Jg-cofibrations are a subcategory of the I-cofibrations, every I-
injective must be a Js-injective. Proposition 3.1.5 implies that every Js-injective
is an S-local equivalence, and so condition 3 is satisfied.

Proposition 4.5.1 implies that condition 4a of Theorem 11.3.1 is satisfied, and
so Theorem 11.3.1 now implies that we have a model category LgM, and the proof
of part 1 is complete.

4.6.2. Proof of part 2. This follows from Proposition 3.4.1.

4.6.3. Proof of part 3. Condition 1 of Definition 12.1.1 is satisfied because
the class of generating cofibrations of LgM equals that of M. Since the gener-
ating trivial cofibrations of LgM are inclusions of cell complexes, condition 2 of
Definition 12.1.1 follows from Lemma 12.4.1. Condition 3 is satisfied because the
class of cofibrations of LgM equals that of M, and so LgM is celiular. Finally,
Proposition 3.4.4 implies that the localization is left proper.

4.6.4. Proof of part 4. Axiom M6 of Definition 9.1.6 holds for LgM because
it holds for M.

For axiom M7, if i: A — B is a cofibration in LgM and p: X — Y is a
fibration in LgM then ¢ is a cofibration in M and p is a fibration in M, and so the
map Map(i, p): Map(B, X) — Map(A, X'} XMap(4,y) Map(B,Y) is a fibration of
simplicial sets. If p is also a weak equivalence in LgM, then p is a trivial fibration
in LgM, and thus also in M, and so Map(z,p) is a trivial fibration of simplicial
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sets. Thus, it remains only to deal with the case in which 7 is a trivial cofibration
in LgM and p is a fibration in LgM.

If ¢ is a trivial cofibration in LgM and p is a fibration in M, then Theo-
rem 17.8.10 implies that (¢,p) is a homotopy orthogonal pair. Let 2: A— Bbea
cofibrant approximation to ¢ in M such that % is a cofibration in M. Example 16.6.13
implies that if A and B are the cosimplicial objects in M such that A" = A®A[n]
and B" = B®A[ ] and A - B is the map induced by 7, then A-> Bisa
cosimplicial resolution of 7 in M such that A Bi is a Reedy cofibration in ML
Corollary 16.2.2 and Proposition 3.3.4 imply that A - Bis also a cosimplicial
resolution of 7 in LgM such that A-Bisa Reedy cofibration in (LsM)#, and so
Proposition 16.3.10 implies that the map A®A[n] U z90am) B®dA[n] — B®A[n]
is a trivial cofibration in LgM for every n > 0. Since p: X — Y is a fibration
in LgM, Lemma 9.4.7 now implies that the map i: A - B has the homotopy left
lifting property with respect to p, and so Corollary 13.2.2 implies that the map
i: A — B has the homotopy left lifting property with respect to p.



CHAPTER 5

Existence of Right Bousfield Localizations

This chapter contains the statement and proof of our existence theorem for
right Bousfield localization (see Definition 3.3.1). The statement is Theorem 5.1.1,
and it is proved in Section 5.4 after some preparatory work in Sections 5.2 and 5.3.
Theorem 5.1.5 shows that the class of K-colocal objects (which is the class of
cofibrant objects of the localization; see Theorem 5.1.1) equals the class of K-
cellular objects of Dror Farjoun ([20, 21, 23, 24]).

5.1. Right Bousfield localization: Cellularization

THEOREM 5.1.1. Let M be a right proper cellular model category, let K be a set
of objects in M, and let € be the class of K -local equivalences (see Definition 3.1.8).

(1) The right Bousfield localization of M with respect to € exists (see Defi-
nition 3.3.1). That is, there is a model category structure ReM on the
underlying category of M in which

(a) the class of weak equivalences of ReM equals the class of C-colocal
equivalences of M,

(b) the class of fibrations of ReM equals the class of fibrations of M, and

(c) the class of cofibrations of ReM is the class of maps with the left
lifting property with respect to those maps that are both fibrations
and C-colocal equivalences.

(2) The cofibrant objects of ReM are the C-local objects of M (see Defini-
tion 3.1.4).

(3) ReM is a right proper model category. If every object of M is fibrant,
then ReM is a right proper cellular model category in which every object
is fibrant.

(4) If M is a simplicial model category, then that simplicial structure gives
ReM the structure of a simplicial model category.

The proof of Theorem 5.1.1 is in Section 5.4. Theorem 5.1.1 for the case in which
M is the category of pointed topological spaces was first obtained by Nofech [51].

REMARK 5.1.2. The model category structure ReM of Theorem 5.1.1 exists
for a larger class of model categories M than just the right proper cellular ones.
Although the proof of Theorem 5.1.1 does use the right properness of M, the only
use made of the assumption that M is cellular is to deduce that

(1) there is a set J of generating trivial cofibrations, and

(2) the domains of the elements of A(K) (see Definition 5.2.1) are small rel-
ative to A(K), and so A(K) permits the small object argument (see Def-
inition 10.5.15).

83
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Thus, if M is a right proper model category with a set J of generating trivial
cofibrations such that, e.g., every object of M is small relative to the subcategory
of cofibrations, then the model category of Theorem 5.1.1 exists.

DEFINITION 5.1.3. Let M be a model category, and let K be a set of objects
in M.

(1) A K-colocal weak equivalence is defined to be a K-colocal equivalence (see
Definition 3.1.8).

(2) A K-colocal fibration is defined to be a fibration.

(3) A K-colocal cofibration is defined to be a map with the left lifting property
with respect to all maps that are both fibrations and K-colocal weak
equivalences.

Thus, Theorem 5.1.1 asserts that if M is a right proper cellular model category
and K is a set of objects in M, then the classes of K-colocal weak equivalences,
K-colocal cofibrations, and K-local fibrations form a model category structure on
M.

DEFINITION 5.1.4. Let M be a model category. If K is a set of cofibrant
objects of M, then the class of K-cellular objects is defined to be the smallest class
of cofibrant objects of M that contains K and is closed under homotopy colimits and
weak equivalences. If K consists of a single object A, then the class of K-cellular
objects will also be called the class of A-cellular objects.

THEOREM 5.1.5. Let M be a model category. If K is a set of cofibrant objects
of M, then the class of K-cellular objects (see Definition 5.1.4) equals the class of
K-colocal objects (see Definition 3.1.8).

The proof of Theorem 5.1.5 is in Section 5.5.

THEOREM 5.1.6. Let M be a right proper cellular model category and let K be
a set of cofibrant objects of M. If C is the class of K-cellular equivalences, then the
class of cofibrant objects of ReM (see Theorem 5.1.1) equals the class of K -cellular
objects (see Definition 5.1.4).

Proor. This follows from Theorem 5.1.5 and part 2 of Theorem 5.1.1. a

5.1.7. Examples of right proper cellular model categories.

PROPOSITION 5.1.8. The categories SS, Top, SS,, and Top, are right proper
cellular model categories.

ProrosiTiON 5.1.9. If M is a right proper cellular model category and C is
a small category, then the diagram category ME is a right proper cellular model
category.

ProrositioN 5.1.10. If M is a right proper cellular model category and Z is
an object of M, then the overcategory (M | Z) is a right proper cellular model
category.

ProrosiTiON 5.1.11. If M is a right proper cellular simplicial model category
and @ is a small simplicial category, then the category M® of simplicial diagrams
is a right proper cellular model category.
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5.2. Horns on K and K-colocal equivalences

DEFINITION 5.2.1. Let M be a right proper cellular model category with gen-
erating cofibrations I and generating trivial cofibrations J, and let K be a set of
objects of M.

o A full set of horns on K is a set A(K) of maps obtained by choosing a
cosimplicial resolution A of every element A of K and letting

AK) = {A®JA[n] - A® A | A€ S,n >0}
(This is exactly a full set of horns on the maps from the initial object of

M to the elements of K; see Definition 4.2.1.) If K consists of the single
object A, then A(K) is the set of maps

A{A} = {A®0An] —» A® An] [ n > 0}

for some cosimplicial resolution A of A, and it will also be called a full
set of horns on A.
e An augmented set of K-horns is a set A(K) of maps

A(K) = A(K)U J

for some full set of horns A(K) on K. If K consists of the single object
A, then A(K) will also be denoted A{ A}, and will be called an augmented
set of A-horns.

DEFINITION 5.2.2. Let M be a right proper cellular model category and let K
be a set of objects of M.

o A A(K)-injective (see Definition 5.2.1) is a map with the right lifting
property with respect to every element of A(K).

o A A(K)-cofibration (see Definition 10.5.2) is a map with the left lifting
property with respect to every A(K)-injective.

o A relative A(K)-cell complex (see Defmition 10.5.8) is a transfinite com-
position of pushouts of elements of A(K).

o An object of M is a A(K)-cell complex if the map to it from the initial

object of M is a relative A(K)-cell complex.

PROPOSITION 5.2.3. Let M be a right proper cellular model category. If K is
a set of objects of M, then there is a functorial factorization of every map X — Y
as X & W L Y where p is a relative A(K)-cell complex and q is a A(K)-injective.

Proor. This follows from Proposition 12.4.6. |

PROPOSITION 5.2.4. Let M be a right proper cellular model category and let
K be a set of objects of M. IfY is a fibrant object of M, then amap g: X — Y is
a A(K)-injective if and only if it is both a fibration and a K-colocal equivalence.

Proor. Definition 11.1.2 implies that g is a fibration if and only if it is a J-
injective. If this is the case, then X is also fibrant, and so Proposition 16.4.5 implies
that g is a K-colocal equivalence if and only if it is a A(K)-injective. O

The requirement in Proposition 5.2.4 that Y be fibrant is essential; see Exam-
ple 5.2.7.
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PROPOSITION 5.2.5. Let M be a right proper cellular model category. If K is
a set of objects of M, then a relative A(K)-cell complex is a K-colocal cofibration.

PROOF. Let f: A — B be a relative A(K)-cell complex; we must show that if
g: X — Y is both a K-colocal weak equivalence and a K-colocal fibration then f
has the left lifting property with respect to g. Proposition 8.1.23 implies that we
can choose a fibrant approximation ¢ to g such that ¢ is a fibration, and Proposi-
tion 13.2.1 implies that it is sufficient to show that f has the left lifting property
with respect to §. Since Proposition 5.2.4 implies that § is a A(K)-injective, the
result follows from Proposition 10.5.10. O

PROPOSITION 5.2.6. Let M be a right proper cellular model category and let K

be a set of objects of M. If every object of M is fibrant and A(K) is an augmented

set of K -horns, then every A(K)-injective is both a fibration and a K-colocal equiv-

alence and every relative A(K)-cell complex is a K-colocal cofibration.

Proor. This follows from Proposition 5.2.4 and Proposition 5.2.5. g

EXAMPLE 5.2.7. We present here an example of an A(K)-injective that is not a
K -colocal equivalence. Let M =SS, (the category of pointed simplicial sets), and
let K = {A}, where A is the quotient of A[1] obtained by identifying the two vertices
of A[1] (so that the geometric realization of A is homeomorphic to a circle). Let Y’
be 8A[2], i.e., let Y consist of three 1-simplices with vertices identified so that its
geometric realization is homeomorphic to a circle. Let X be the simplicial set built
from six 1-simplices by identifying vertices so that the geometric realization of X is
homeomorphic to a circle and there is a map g: X — Y whose geometric realization
is the double cover of the circle. The map g is a fibration, since it is a fiber bundle
with fiber two discrete points (see [4, Section IV.2] or [49, Lemma 11.9]).

Since no nondegenerate 1-simplex of X has its vertices equal, the only pointed
map from A to X is the constant map to the basepoint. One can now show by
induction on n that the only pointed map from A A A[r]* to X is the constant
map to the basepoint. Thus, Map(A, X) has only one simplex in each dimension.
Similarly, Map(4,Y) has only one simplex in each dimension, and so the map
g«: Map(4, X) — Map(A,Y) is an isomorphism. Thus, g is a A(K)-injective.

To see that g is not an A-colocal equivalence, we note that Sing|g|: Sing|X| —
Sing|Y| is a fibrant approximation to g, and the map Map(4,Sing|X|) —
Map(A, Sing|Y'|) is isomorphic to the map Map(|4|,|X|) — Map(|A|,|Y]) (see
Lemma 1.1.10). Since the map |g|: |X| — |Y] is homeomorphic to the double
covering map of the circle, the induced map Map(|4|, | X|) — Map(]A|,|Y]) is not
surjective on the set of components, and so g is not an A-colocal equivalence.

REMARK 5.2.8. Example 5.2.7 shows that, if M = SS,, then not every A(K)-

injective need be a K-colocal weak equivalence. Since the A(K)-cofibrations are
exactly the maps with the left lifting property with respect to all TKS—injectives,
this implies that the K-colocal cofibrations must consist of more than just the A(K)-
cofibrations (see Proposition 5.2.5). However, if M is a right proper cellular model
category in which every object is fibrant (e.g., if M = Top, ), then Proposition 5.2.4
implies that the K-colocal cofibrations are exactly the A(K)-cofibrations. This is
why the K-colocal model category structure on M is cellular if every object of M
is fibrant (see Theorem 5.1.1 part 3).




5.3. K-colocal cofibrations

The main results of this section are Proposition 5.3.3 and Proposition 5.3.5,
which together provide the factorizations needed for the proof of Theorem 5.1.1 in
Section 5.4.

LEMMA 5.3.1. Let M be a right proper cellular model category. If K is a set of
objects of M, then every K -colocal cofibration is a cofibration.

Proor. This follows from Proposition 7.2.3 and Proposition 3.1.5. O

LEMMA 5.3.2. Let M be a right proper cellular model category. If K is a set of
objects of M, then a map g: X — Y is both a K-colocal cofibration and a K -colocal
weak equivalence if and only if it is a trivial cofibration.

Proor. If g is a trivial cofibration then Proposition 3.1.5 implies that it is
a K-colocal weak equivalence and Proposition 7.2.3 implies that it is a K-colocal
cofibration.

Conversely, let g: X — Y be both a K-colocal cofibration and a K-colocal weak
equivalence. If we factor g as X & W 4 Y where p is a trivial cofibration and g is
a fibration, then Proposition 3.1.5 and the “two out of three” property of K-colocal
equivalences (see Proposition 3.2.3) imply that g is a K-colocal equivalence. Thus,
p has the left lifting property with respect to g, and so the retract argument (see
Proposition 7.2.2) implies that g is a retract of the trivial cofibration p and is thus
a trivial cofibration (see axiom M3 of Definition 7.1.3). O

PROPOSITION 5.3.3. Let M be a right proper cellular model category. If K is a
set of objects of M, then there is a functorial factorization of every mapg: X - Y
nMas X5 WY in which p is both a K-colocal cofibration and a K-colocal
weak equivalence and q is a K-colocal fibration.

Proor. This follows from Lemma 5.3.2 and the existence of the functorial
factorization into a trivial cofibration followed by a fibration. O

LEMMA 5.3.4. Let M be a right proper cellular mode! category and let K be a
set of objects of M. If g: A — B is a cofibration, h: B — C is a weak equivalence,
and the composition hg: A — C is a K-colocal cofibration, then g is a K-colocal
cofibration.

ProOF. If f: X — Y is both a K-colocal weak equivalence and a K-colocal fi-
bratgon, tllen Proposition 8.1.23 implies that we can choose a fibrant approximation
fiX->Yto f such that fis a fibration. Proposition 3.1.5 and Proposition 3.2.3
imply that f is a K-colocal weak equivalence, and (since M is a right proper model
category) Proposition 13.2.1 implies that it is sufficient to show that g has the left
lifting property with respect to f .
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Suppose that we have the commutative solid arrow diagram

In the category (A | M) of objects of M under A, the map b is a weak equivalence of
cofibrant objects (see Lemma 5.3.1) and Y is fibrant. Thus, Corollary 7.7.4 implies
that there is a map j: C — Y in (A | M) such that jh ~ ¢ in (A | M). Since hg is a
K-colocal cofibration and f is both a K-colocal weak equivalence and a K-colocal
fibration, there exists a map k: C — X such that khg = s and fk = j.

Since fkh = jh ~t in (A | M), if we let u = kh, then u: B — X, and fu=~t
n (A|M). Since B is cofibrant in (A | M) and f is a fibration, the homotopy
lifting property of fibrations (see Proposition 7.3.11) implies that there is a map
viB— Xin (A [ M) such that v =~ u and fu=t. The map v satisfies vg = s and
fv=1t, and so g has the left lifting property with respect to f. |

PROPOSITION 5.3.5. Let M be a right proper cellular model category. If K is a
set of objects of M, then there is a functorial factorization of every map g: X — Y
inMasX B W L Y in whichp is a K -colocal cofibration and g is both a K-colocal
weak equivalence and a K -colocal fibration.

ProoF. Choose a functorial cofibrant fibrant approximation j: Y — ¥ to Y.
Proposition 5.2.3 1mphes that there is a functorial factorization of the composition
jg: X—>Vaxl W % ¥ in which r is a relative A(K)-cell complex and s is a
A(K)-injective. If we let Z be the pullback Y xp W, then we can factor the natural
map X — ZinMas X & W % Z where p is a cofibration and u is a trivial
fibration. If we let ¢ = vu, then we have the diagram

Since j is a weak equivalence, s is a fibration, and M is a right proper model cat-
egory, t i8 a weak equivalence. Thus, the composition tu is a weak equivalence,
and so s is a fibrant approximation to g. Since Proposition 5.2.4 implies that s
is a K-colocal equivalence, g (which is the composition of two fibrations) is both
a K-colocal weak equivalence and a K-colocal fibration. Since r is a K-colocal
cofibration (see Proposition 5.2.5), Lemma 5.3.4 implies that p is a K-colocal cofi-
bration. |
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PROPOSITION 5.3.6. Let M be a right proper cellular model category with gen-
erating cofibrations I. If K is a set of objects of M, then a map is a K-colocal
cofibration if and only if it is a retract of a relative I-cell complex X — Y in M for
which there is a weak equivalence Y — Z in M such that the composition X — Z
is a relative A(K)-cell complex.

Proor. This follows from the factorization constructed in the proof of Propo-
sition 5.3.5 and the retract argument (see Proposition 7.2.2). a

COROLLARY 5.3.7. Let M be a right proper cellular model category. If K is a
set of objects of M, then an object is K-colocal if and only if it is a retract of an
object X such that

(1) X is a cell complex in M, and
(2) there is a A(K)-complex Y and a weak equivalence X — Y in M.

PRrooF¥. This follows from Proposition 3.4.1 and Proposition 5.3.6. a

5.4. Proof of the main theorem
This section contains the proof of Theorem 5.1.1.

5.4.1. Proof of part 1. We must show that axioms M1 through M5 of Defi-
nition 7.1.3 are satisfied.

Axiom M1 is satisfied because it is satisfied in M, axiom M2 follows from
Proposition 3.2.3, and axiom M3 follows from Proposition 3.2.4 and Lemma 7.2.8.
Axiom M4 part (1) follows from the definition of K-colocal cofibration, and ax-
iom M4 part (2) follows from Lemma 5.3.2. Axiom M5 part (1) follows from
Proposition 5.3.5, and axiom M5 part (2) follows from Proposition 5.3.3.

5.4.2. Proof of part 2. This follows from Proposition 3.4.1.

5.4.3. Proof of part 3. Proposition 3.4.4 implies that ReM is right proper.

Suppose now that every object of M is fibrant. Since the classes of fibrations
and trivial cofibrations of ReM equal those of M, a set J of generating trivial
cofibrations of M serves as a set of generating trivial cofibrations of ReM. Thus,
Proposition 5.2.6 implies that if A(K) is an augmented set of horns on K, then ReM
is a cofibrantly generated model category with generating cofibrations W and
generating trivial cofibrations J (see Definition 11.1.2). Since the class of fibrations
of ReM equals that of M, every object of ReM is fibrant, and so it remains only
to show that ReM is cellular. L

Since the domains and codomains of the elements of A(K) are cofibrant in M
and every cofibration of ReM is a cofibration of M, Corollary 12.3.4 implies that
condition 1 of Definition 12.1.1 is satisfied. Theorem 12.4.4 implies that condi-
tion 2 is satisfied, and condition 3 is satisfied because every cofibration of ReM is
a cofibration of M.

5.4.4. Proof of part 4. Axiom M6 of Definition 9.1.6 holds in ReM because
it holds in M.

For axiom M7, if i: A — B is a cofibration in ReM and p: X — Y is a
fibration in ReM then ¢ is a cofibration in M and p is a fibration in M and so the
map Map(i,p): Map(B, X) — Map(4, X) Xmap(4,y) Map(B,Y) is a fibration of
simplicial sets. If ¢ is also a weak equivalence in ReM then 4 is a trivial cofibration
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in ReM and thus also in M, and so Map(4,p) is a trivial fibration of simplicial sets.
Thus, it remains only to deal with the case in which 7 is a cofibration in ReM and
pisa trivial fibration in ReM.

If i is a cofibration in ReM and p is a trivial fibration in ReM then Theo-
rem 17.8.10 implies that (¢, p) is a homotopy orthogonal pair. Let p: X >Yhbea
fibrant approximation topin M such that p is a fibration in M. Example 16.6.13
implies that if X ‘and Y are the simplicial objects in M such that X, = X4 and
Y =P8 and X - ¥V is the map induced by p, then X-oVisa simplicial res-
olution of $ in M such that X - f’ is a Reedy fibration in M2, Corollary 16.2.2
and Proposition 3.3.4 imply that X »Yisalsoa simplicial resolution of p in ReM
such that X — ¥ is a Reedy fibration in (ReM) °F and so Proposition 16.3.10
implies that the map Xakl _, paR Xgoan] X08Inl ig g trivial fibration in ReM
for every n > 0. Since i: A — B is a cofibration in ReM, Lemma 9.4.7 now implies
that the map p: X 5 Y has the homotopy right lifting property with respect to 1,
and so Corollary 13.2.2 implies that the map p: X — Y has the homotopy right
lifting property with respect to <.

5.5. K-colocal objects and K-cellular objects
This section contains the proof of Theorem 5.1.5.

ProposiTiON 5.5.1. Let M be a right proper cellular model category. If K is
a set of objects in M, then the homotopy colimit of a diagram of K-colocal objects
is a K-colocal object.

PROOF. Let @ be a small category and let B: € —» M be a diagram of K-
colocal objects. Theorem 19.4.1 implies that hocolim B is cofibrant. If p: X - Y
is a K-colocal equivalence and 5: X — Y is a fibrant approximation to p, then
Theorem 19.4.4 implies that the map map(hocolim B X )y — map(hocolimB,f’)
is weakly equivalent to the map holim map(B, X) — holim map(B,¥). Theo-
rem 19.4.2 implies that this map is a weak equivalence, and so Theorem 17.6.3
implies that map(hocolim B, X) — map(hocolim B,Y’) is a weak equivalence. O

LEMMA 5.5.2. Let M be a right proper cellular model category and let K be
a set of objects in M. If X is an K-colocal object of M and L is a simplicial set,
then the object X ® L is K-colocal.

PROOF. The result follows from Proposition 5.5.1, Theorem 19.9.1, Proposi-
tion 15.10.4, and Lemma 3.2.1. 0O

PROPOSITION 5.5.3. Let M be a right proper cellular model category and let
K be a set of cofibrant objects of M. If C is a class of cofibrant objects of M that
contains K and is closed under homotopy colimits and weak equivalences, then €
contains all A(K)-cell complexes (see Definition 5.2.2).

PROOF. We will prove this by a transfinite induction on the ordinal indexing
the A-sequence whose colimit is the A(K)-cell complex. Lemma 5.5.2 implies that
€ contains A ® OA[n] for every n > 0 and every cosimplicial resolution A of
every element A of K, and so the inductive step for successor ordinals follows from
Proposition 5.5.1 and Proposition 19.9.4. The induction step for limit ordinals
follows from Proposition 5.5.1 and Theorem 19.9.1. ad
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PROOF OF THEOREM 5.1.5. Proposition 5.5.1 and Lemma 3.2.1 imply that the
class of K-colocal objects is closed under homotopy colimits and weak equivalences.
If C is a class of cofibrant objects of M that contains K and is closed under homo-
topy colimits and weak equivalences, then Proposition 5.5.3 implies that € contains
all A(K)-cell complexes, and Proposition 19.9.3 implies that € contains all retracts
of A(K)-cell complexes, and so the result follows from Proposition 3.4.1 and Prop-
osition 5.3.6. a







CHAPTER 6

Fiberwise Localization

If M is one of our categories of spaces (see Section 1.1.3), € is a class of maps
in M, and p: Y — Z is a fibration in M, then a fiberwise C-localization of p should
be a map from p to another fibration g over Z

that “localizes the fibers of p”, i.e., for every point z in Z the map p~1(z) — ¢~ ()
should be a C-localization of p~(z). The actual definition is a generalization of
this that deals with maps p that may not be fibrations (see Definition 6.1.1).

In this chapter, we show that if M is a category of unpointed spaces (see Sec-
tion 1.1.3) and S is a set of maps in M, then every map p: ¥ — Z in M has a
natural fiberwise S-localization ¥ — Y — Z. We also show that if p: ¥ — Z is
amapin Mand ¥ — Y’ — Z is some other fiberwise S-localization of p, then
there is a map Y — ¥’ under Y and over Z, unique up to simplicial homotopy
in (Y I M} Z) (see Definition 11.8.1 and Definition 11.8.3), and any such map is a
weak equivalence.

We construct our fiberwise localization for the categories of unpointed spaces
Top and SS (see Notation 1.1.4). Since the pointed localization of a connected
space is weakly equivalent to its unpointed localization (see Theorem 1.8.12), our
construction will also serve as a fiberwise pointed localization for fibrations with
connected fibers. This is the strongest possible result; in Proposition 6.1.4, we show
that it is not possible to construct a fiberwise pointed localization for fibrations with
fibers that are not connected.

6.1. Fiberwise localization
DeFmITION 6.1.1. Let Spc,y be one of our categories of spaces (see Nota-
tion 1.1.4) and let € be a class of maps in Spey,). If p: ¥ — Z is a map in Spcg,y,
then a fiberwise C-localization of p is a factorization ¥’ 5 ¥ 4 Z of p such that

(1) g is a fibration, and

(2) for every point 2 of Z the induced map of homotopy fibers (see Defi-
nition 13.4.3) HFib,(p) — HFib,(g) is a C-localization of HFib,(p) (see
Definition 3.2.16).

PROPOSITION 6.1.2. Let Spc,, be one of our categories of spaces (see Nota-
tion 1.1.4). If € is a class of maps in Spe,y, p:Y — Z Is a fibration in Spc(‘),

93
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andY 5 ¥ L Z is a factorization of p, then this factorization is a fiberwise
C-localization of p if and only if

(1) q is a fibration, and
(2) for every point z of Z the induced map of fibers p~!(2) — ¢”1(2) is a
C-localization of p~'(2).

Proor. This follows from Proposition 13.4.6. 0

The following theorem summarizes the main results of this chapter.

THEOREM 6.1.3. If Spc is a category of unpointed spaces (see Notation 1.1.4)
and S is a set of maps in Spc, then there is a natural factorization of every map

p: X —Zas X5 LgX S Z such that

(1) q is a fibration with S-local fibers,

(2) for every point z in Z the induced map of homotopy fibers HFib,(p) —
HFib,(q) (see Definition 13.4.3) is an S-localization of HFib,(p),

(3) i is both a cofibration and an S-local equivalence,

(4) if we have a solid arrow diagram

in which r is a fibration with S-local fibers, then there is a map k: isX N
W, unique up to simplicial homotopy in (X | Spc| Z), such that ki = j,
and

(5) if we have a diagram as in the previous part such that for every point z
in Z the map HFib,(p) — HFib,(r) of homotopy fibers over z induced by
j is an S-local equivalence (i.e., if j is another fiberwise S-localization of
p), then the map k is a weak equivalence.

PROPOSITION 6.1.4. Let f: A — B be the inclusion 82 — D3 in Top,, the
category of pointed topological spaces. If X = S? xR, Z =8, and p: X — 2
is the composition of the projection S x R — R with the universal covering map
R — S!, then there is no fiberwise f-localization of p in the category Top, of
pointed spaces.

ProoF. The fiber F of p is a countable disjoint union of copies of $2, and so
if there were a fiberwise pointed localization of p, its fiber would have countably
many path components: one contractible, and the others weakly equivalent to S2
(see Corollary 1.8.10).

To see that this is not possible, note that m;Z acts transitively on mpF, and
so m Z would act transitively on the path components of the fiber of any fiberwise
localization of p. Since m;Z acts on the fiber through (unpointed) weak equiva-
lences, this is impossible, and so there does not exist a fiberwise pointed localization
of p. 0
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6.2. The fiberwise local model category structure

DEFINITION 6.2.1. Let S be a set of maps in Spec. If Z is a space in Spc, then
we define Fibz(S) (which we call the set of elements of S fiberwise over Z) to be
the set of maps in (Spc | Z)

a—7L B

NS

Z
where f: A — B is an element of S and the images of the maps A —» Z and B — Z
are a single point of Z.

PROPOSITION 6.2.2. If Z is a space in Spc, then the category (Spc| Z) of
objects of Spc over Z is a left proper cellular model category.

Proor. This follows from Proposition 4.1.6. O
THEOREM 6.2.3. Let Z be a space in Spc, and let S be a set of maps in Spc.

If we define

(1) a fiberwise over Z S-local equivalence to be a Fibz(S)-local equivalence
in (Spc| Z) (see Definition 3.1.4),

(2) a fiberwise over Z S-local cofibration to be a Fibz(S)-local cofibration,
and

(3) a fiberwise over Z S-local fibration to be a Fibz(S)-local fibration,

then there is a simplicial model category structure on (Spc | Z) in which the weak
equivalences are the fiberwise over Z S-local equivalences, the cofibrations are the
fiberwise over Z S-local cofibrations, and the fibrations are the fiberwise over Z
S-local fibrations.

Proor. This follows from Theorem 4.1.1 and Proposition 6.2.2. (]

PROPOSITION 6.2.4. If S is a set of maps in Spc and Z is a space in Spc, then
an object of (Spcl Z) is fibrant in the fiberwise over Z S-local model category
structure if and only if it is a fibration and the fiber over every point of Z is an
S-local space.

ProOOF. This follows from Proposition 3.4.1. g

6.3. Localizing the fiber
The purpose of this section is to prove the following theorem.
THEOREM 6.3.1. If S is a set of maps in Spc, Z Is a space in Spc, and
X——Y

N

is a A(Fibz(8))-cofibration (see Definition 4.2.1), then for every point z of Z the
induced map of homotopy fibers HFib,(p) — HFib,(q) is an S-local equivalence.

The proof of Theorem 6.3.1 is at the end of this section, on page 98.



96 6. FIBERWISE LOCALIZATION

PROPOSITION 6.3.2. If ¢: X — Z is a map of simplicial sets and z is a point
in Z, then there is a contractible simplicial set C (which depends naturally on the
pair (Z,7)) and a natural (AC)-diagram (see Definition 15.1.16) of simplicial sets
F: (AC) — 8S such that

(1) for every simplex o of C there is a simplex T of Z such that F(c) = ¢(1)
(see Example 18.9.6), and

(2) tnere is a natural weak equivalence hocolim F = HFib,(q) (where HFib,(q)
is the homotopy fiber of q over z).

By “natural” we mean that the simplicial set C is a functor of the pair (Z,z) and,
for a fixed pair (Z,z), the diagram F is a functor of the object ¢: X — Z ol
(SS!2).

PROOF. If + — Z is the map to the point z in Z, let ¥ » C 2 Z be a natural
factorization of it into a trivial cofibration followed by a fibration. The homotopy
fiber of g over z is then naturally weakly equivalent to the pullback of the diagram
C & 2 & X (see Proposition 13.3.7). If we let F' be that pullback and 7: F — C
its projection onto C, then the construction of Example 18.9.6 applied to 7 yields
a diagram F: (AC) — 8S that satisfies condition 1. Proposition 18.9.7 implies
that F' is Reedy cofibrant, and so condition 2 follows from Theorem 19.9.1 and the
natural isomorphism colim F' = F. O

ProrosiTiON 6.3.3 (E. Dror Farjoun, [23]). Let S be a set of maps in SS, let
Z be a simplicial set, let p: X — Z and q: Y — Z be objects of (SS| Z), and let

X\_/y

be a map in (8S | Z). If for every simplex o of Z the induced map p(c) — G(o) (see
Example 18.9.6) is an S-local equivalence, then for every point z in Z the induced
map of homotopy fibers HFib,(p) — HFib,(g) is an S-local equivalence.

Proor. This follows from Proposition 6.3.2 and Lemma 3.2.5. a
LEMMA 6.34. If f: A — B is a cofibration in 5SS, Z is a space in Top,

X\iy

is & map in (Top | Z), and z is a point in Z, then the induced map of homo-
topy fibers HFib,(p) — HFib.(q) is a |f|-local equivalence if and only if the in-
duced map of the corresponding homotopy fibers of (Singp): Sing X — Sing Z and
(Sing ¢): SingY — Sing Z is an f-local equivalence.

PRrROOF. Proposition 13.4.10 implies that the “homotopy fiber” and “total sin-
gular complex” functors commute up to a natural weak equivalence, and so the
result follows from Proposition 1.2.36. a
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PROPOSITION 6.3.5. Let f: A — B be an inclusion of cell complexes in Spe,
and let Z be a space in Spc. If the map

x— iy

N

in (Spe | Z) Is a pushout of an element of A(Fibz{f}) (see Definition 4.2.1), then g
is both a cofibration and an f-local equivalence in Spc, and for every point z in Z
the induced map of homotopy fibers HFib,(p) — HFib.(q) is an f-local equivalence.

PROOF. There are two types of maps in the set A(Fibz{f}). The first type is
an element of A(Fibz{f}) (see Definition 4.2.1); a map of this type is an S-local
equivalence in Spe, and its domain and codomain lie over a single point z of Z.
The second type is a generating trivial cofibration of Spe. If Y is obtained from X
by pushing out a map of the second type, then the map ¢ is a weak equivalence,
and so the induced map of homotopy fibers is a weak equivalence. Thus, we need
only consider the case in which Y is obtained from X by pushing out an element
of A(Fibz{f}).

If Spe = SS, then for each simplex o of Z, the map p(c) — g(o) (see Exam-
ple 18.9.6) is obtained by pushing out one copy of our element of A(Fibz{f}) for
each vertex of o that equals z. Thus, p(c) — g(o) is an S-local equivalence, and
so the lemma follows from Proposition 6.3.3. Thus, we need only consider the case
Spc = Top.

If Spc = Top, then Proposition 1.2.36 and Proposition 1.2.10 imply that it
is sufficient to show that Sing(HFib,(p)} — Sing(HFib,(g)) is a (Sing f)-local
equivalence, and Proposition 13.4.10 implies that this is equivalent to showing that
HFib,(Singp) — HFib,(Singgq) is a (Sing f)-local equivalence (where we also use
the symbol 2z to denote the vertex of Sing Z corresponding to the point z of Z).

Let Ax|A[n]|Laxjpapm) B*|8A[n]| = Bx|A[n]| be the element of A(Fibz{f})
in the pushout that transforms X into Y. We have a pushout square

Ax iA[‘I’L” HAX|6A[n|| B x I@A[n]l — X

B x |A[n]| —Y
and Proposition 13.5.5 implies that SingY is weakly equivalent to the pushout

Sing(A X ]A[n” Haxjaam) B x |8A[n]|) — Sing X

Sing(B x |An]|) >y Y’

If we let ¢': Y/ — Z be the structure map of Y’ in (SS | (Sing Z)), then for every

simplex o € Sing Z the map (S:n\g/p)(a) — §'(0) (see Example 18.9.6) is obtained by
pushing out one copy of Sing(A4 x |A[n]| I axjaagmy B % |0A[R]]) — Sing(B x|Aln]|)
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for each vertex of o that equals the image of Sing(B x |Aln]|) in Sing Z. Proposi-
tion 1.2.36 implies that this is a (Sing f)-local equivalence, and so Proposition 6.3.3
implies that HFib,(Singp) — HFib,(¢’) is a (Sing f)-local equivalence. This im-
plies that HFib, (Singp) — HFib,(Sing ¢) is a (Sing f)-local equivalence, and the
proof is complete. a

PROOF OF THEOREM 6.3.1. Every Fibz(S)-cofibration is a retract of a trans-
finite composition of pushouts of elements of A(F in(S)) (see Corollary 10.5.22).
Since S-local equivalences are closed under retracts, Proposition 13.4.9 implies that
a retract of a map in (Spc | Z) inducing an S-local equivalence of homotopy fibers
over z must also induce an S-local equivalence of homotopy fibers over z. Thus, it
is sufficient to show that if

XO \Xl \X2 [N \Xﬂ 3o (IB<A)
n J'
P2
Po Ps
Z

is a transfinite composition of pushouts of elements of A(Fin(S)) , then the induced
map of homotopy fibers HFib, (pg) — HFib, (colimg«x pg) is an S-local equivalence.

If Spc = S8, then we choose a factorization * = C L, Z of the map * — 2
whose image is z such that s is a trivial cofibration and t is a fibration, and
Proposition 13.4.9 implies that each HFib,(Xg) is naturally weakly equivalent
to C xz X5, Each map C xz Xg — C xz Xp;1 is an inclusion (and, thus,
a cofibration), and Proposition 6.3.5 implies that it is an S-local equivalence.
Thus, it is a trivial cofibration in the S-local model category structure on SS (see
Theorem 4.1.1). Proposition 10.3.4 now implies that the transfinite composition
C xz Xo — colimger(C xz Xg) =~ C xz (colimgey Xg) is an S-local equiva-
lence, and Proposition 13.4.9 implies that this is weakly equivalent to the map
HFibz(po) — HFibz(colimﬁ<,\ pﬁ).

If Spc = Top, then Proposition 13.4.10 and Proposition 1.2.36 imply that it
is sufficient to show that the induced map of homotopy fibers of total singular
complexes HFib,(pg) — HFib,(colimg«y Singps) =~ HFib,(Sing colimg«xps) is a
(Sing S)-local equivalence (where (SingS) = {Singf | f € S} and we use the
symbol z to also denote the vertex of Sing Z corresponding to z). We choose a
factorization * = C 2 Sing Z in SS of the map * — Sing Z whose image is z such
that s is a trivial cofibration and ¢t is a fibration, and the argument proceeds as in
the case Spc = SS. d

6.4. Uniqueness of the fiberwise localization
PROPOSITION 6.4.1. If S is a set of maps in Spc,), p: X — Z is an object

of (SpclZ), ¢: Y — Z is a fibration with S-local fibers, g: X — Y is a map in
(Spcl Z) and X — LgX is the fiberwise S-localization of X over Z, then the dotted
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arrow exists in the diagram
g

TN

X —Tgx Y
S
zZ

and it is unique up to simplicial homotopy in (Spc | Z).

PrOOF. Since ¢: Y — Z is a (FibzS)-injective, this follows from Proposi-
tion 9.6.1. |

THEOREM 6.4.2 (Uniqueness of fiberwise localization). Let S be a set of maps
in Speyy. If : Y — Z is a fibration in Spc with S-local fibers and

X ——Y
VA

is a map in (Spc | Z) such that for every point z of Z the induced map of homotopy
fibers HFib,(p) — HFib,(g) is an S-local equivalence, then the map LgX — Y of
Proposition 6.4.1 is a weak equivalence.

_PROOF. Since for every point z € Z the induced map from the homotopy fiber
of LgX — Z over z to the homotopy fiber of g over z is an S-local equivalence
between S-local spaces, Theorem 3.2.13 implies that it is a weak equivalence. The
theorem now follows from the exact homotopy sequence of a fibration applied over
each path component of Z. |
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Part 2

Homotopy Theory in Model
Categories






Summary of Part 2

In Chapters 7 and 8 we present the basic definitions and ideas of model cate-
gories. We begin Chapter 7 with the definition of a model category, and then discuss
the lifting and extension properties of maps that follow from the axioms. We define
the left and right homotopy relations for maps, and show that for maps between
cofibrant-fibrant objects these are the same relation and are equivalence relations.
This enables us to define the classical homotopy category of a model category as
the category whose objects are the cofibrant-fibrant objects and whose maps are
homotopy classes of maps. We also show that a map between cofibrant-fibrant
objects is a weak equivalence if and only if it is a homotopy equivalence.

The classical homotopy category is often useful, but it is not sufficient for
many purposes since it does not contain all of the objects of the model category.
In Chapter 8 we discuss cofibrant and fibrant approximations, which we then use
to construct the Quillen homotopy category of a model category. (The Quillen
homotopy category is referred to simply as the homotopy category.)

A cofibrant approzimation to an object is a cofibrant object together with a
weak equivalence to the object. Dually, a fibrant approzimation to an object is a
fibrant object together with a weak equivalence from the object. The importance
of cofibrant and fibrant approximations to an object is that

e they are isomorphic in the homotopy category to the original objects, and
e maps that are “expected” to exist may exist only when the domain is
cofibrant and the codomain is fibrant.

In Chapter 8 we construct the homotopy category of a model category by taking
as objects the objects of the model category and as morphisms between objects
X and Y the homotopy classes of maps between cofibrant-fibrant objects weakly
equivalent to X and Y.

In Chapter 8 we also define Quillen functors, which are the interesting functors
between model categories. If M and N are mode] categories and F: M 2 N :U is
an adjoint pair of functors, then the left adjoint F is called a left Quillen functor
and the right adjoint U is called a right Quillen functor if

o the left adjoint F preserves cofibrations and trivial cofibrations and
o the right adjoint U preserves fibrations and trivial fibrations.

We define the total left derived functor LF: HoM — HoN of F and the total
right derived functor RU: N — M of U, and show that these form an adjoint pair
LF: HoM 2 HoN :RU. We also define what it means for Quillen functors to
be Quillen eguivalences, and we show that the total derived functors of Quillen
equivalences are equivalences of categories between the homotopy categories.
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In Chapter 9 we discuss simplicial model categories. A simplicial model cate-
gory is a model category together with an enrichment of the category over simpli-
cial sets, with a suitable interaction between the model structure and the simplicial
structure. Thus, for every pair of objects there is a simplicial set of morphisms,
the vertices of which are the maps in the underlying category.

In Chapter 10 we discuss several constructions needed for our discussions of
cofibrantly generated model categories in Chapter 11 and of cellular model cate-
gories in Chapter 12. The main idea is that of a transfinite composition of maps;
this is the “composition” of an infinitely long sequence of maps indexed by an ordi-
nal. It is used in the small object argument, which is a method of factoring a map
into factors with specified lifting properties.

If X\ is an ordinal, then a A-sequence consists of objects X, for @ < X and maps
Xa — Xaiq for all o for which o +1 < X such that if 4 is a limit ordinal and
B < A, then X3 = colimy<p X, (see Definition 10.2.1). The natural map Xo —
colimgey X is called the composition of the A-sequence. An object W is said to be
small with respect to a subcategory D if for every large enough regular cardinal A
(see Definition 10.1.11) and every A-sequence Xg — X; — X3 — -+ = X5 — -+
(B < A) in D (see Definition 10.2.2) the natural map of sets colimg<x M(W, X) —
M(W, colimpe s Xj) is an isomorphism (see Definition 10.5.12), that is, if every map
from W to the colimit of the A-sequence factors “essentially uniquely” through some
object Xg in the A-sequence.

If I is a set of maps, then we define a relative I-cell complez to be a map that
can be constructed by repeatedly attaching codomains of elements of I along maps
of their domains, and we define an I-cell complez to be an object for which the
map from the initial object is a relative I-cell complex (see Definition 10.5.8). For
example, in the category Top of topological spaces, if we let I be the set of inclusions
S"~1 ¢ D™ for n > 0, then the I-cell complexes include the CW-complexes, but they
also include cell complexes in which the attaching maps of the cells do not factor
through a subcomplex of lower dimensional cells. We say that a set I of maps
permits the small object argument if the domains of the elements of I are small
relative to the subcategory of relative I-cell complexes (see Definition 10.5.15),
in which case the small object argument (see Proposition 10.5.16) constructs a
factorization of every map into a relative I-cell complex followed by a map with the
right lifting property with respect to every element of I (see Proposition 10.5.16
and its proof).

In Chapter 11 we discuss cofibrantly generated model categories. A cofibrantly
generated model category (see Definition 11.1.2) is a model category in which

e there is a set I of maps (called a set of generating cofibrations) that permits
the small object argument and such that a map is a trivial fibration if and
only if it has the right lifting property with respect to every element of I
and

e there is a set J of maps (called a set of generating trivial cofibrations) that
permits the small object argument and such that a map is a fibration if
and only if it has the right lifting property with respect to every element
of J.

In a cofibrantly generated model category, both of the factorizations required by
the model category axioms can be constructed using the small object argument
(see Proposition 10.5.16). The small object argument and the retract argument
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(see Proposition 7.2.2) then imply that the cofibrations are the relative I-cell com-
plexes and their retracts and that the trivial cofibrations are the relative J-cell
complexes and their retracts. If M is a cofibrantly generated model category and
we have selected a set I of generating cofibrations, then we will refer to relative
I-cell complexes simply as relative cell complezes, and to I-cell complexes simply
as cell complexes. We also show in Chapter 11 that there is a cofibrantly gener-
ated model category structure on a category of diagrams in a cofibrantly generated
model category.

A notion related to smallness is compactness. If W is an object, I is a set of
maps, and < is a cardinal, then we will say that W is ~y-compact relative to I if
every map from W to the codomain of a relative I-cell complex factors through
a sub-relative I-cell complex of size at most 7y, and we will say that it is compact
relative to I if it is y-compact for some cardinal -y (see Definition 10.8.1). If I is
a set of generating cofibrations, then an object that is compact relative to I will
be called simply compact. If M is a cofibrantly generated model category in which
cofibrations are monomorphisms, then compact objects are also small relative to I
(see Proposition 10.8.7).

In Chapter 12 we discuss cellular model categories. These are cofibrantly gen-
erated model categories in which the cell complexes are well enough behaved to
allow the localization arguments of Part 1. In particular, we show that in a cellular
model category the intersection of a pair of subcomplexes of a cell complex exists,
and that there is a cardinal ¢ such that a cell complex of size 7 is o7-compact.

In Chapter 13 we discuss properness. A model category is left proper if the
pushout of a weak equivalence along a cofibration is a weak equivalence, and it
is right proper if the pullback of a weak equivalence along a fibration is a weak
equivalence. We discuss homotopy pullbacks and homotopy fibers in right proper
model categories and homotopy pushouts in left proper model categories.

In Chapter 14 we discuss the classifying space of a small category. Given a
small category C its classifying space BC is a simplicial set such that

o the vertices of BC are the objects of C,

e the 1-simplices of BC are the morphisms of €, and

e the n-simplices of BC for n > 2 are the strings of n composable morphisms
in C.

If the classifying space of a small category is contractible, then any two objects of
the category are connected by an essentially unique zig-zag of morphisms in the
category (see Definition 14.4.2 and Theorem 14.4.5). There is also an extension of
this that applies to categories that may not be small.

Our main use for this will be to prove the essential uniqueness of various con-
structions. For example, if X is an object of a model category then there is a
category whose objects are cofibrant approximations to X and whose morphisms
are weak equivalences of cofibrant approximations. We show that this category has
a contractible classifying space, which implies that any two cofibrant approxima-
tions to X are connected by an essentially unique zig-zag of weak equivalences.

In Chapter 15 we discuss the Reedy model category structure. This is a com-
mon generalization of the model categories of simplicial objects in a model category
and of cosimplicial objects in a model category. A Reedy category is a common gen-
eralization of the indexing category for simplicial objects and the indexing category
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for cosimplicial objects; the objects of a Reedy category have degrees, and the de-
grees define a filtration of the Reedy category. The Reedy model category structure
on a category of diagrams in a mode] category indexed by a Reedy category is based
on defining diagrams inductively over the filtrations of the Reedy category.

In Chapter 16 we discuss cosimplicial and simplicial resolutions. If M is a
simplicial model category and W — X is a cofibrant approximation to X, then the
cosimplicial object X in which X" = W ® A[n] is a cosimplicial resolution of X.
Dually, if M is a simplicial model category and Y — Z is a fibrant approximation
to Y, then the simplicial object Y in which ¥, = Z2I is a simplicial resolution of
Y. In this chapter, we define cosimplicial and simplicial resolutions in an arbitrary
model category (see Definition 16.1.2), and establish a number of their technical
properties. These will be used in Chapter 17 to define homotopy function complexes
and in Chapter 18 to define homotopy cotimits and -homotopy limits.

In Chapter 17 we define homotopy function complexes. A homotopy function
complex between two objects in a model category is a simplicial set whose set of
components is the set of maps in the homotopy category between those objects.
These serve as replacements in a general model category for the enrichment over
simplicial sets that is part of a simplicial model category. There are three types of
homotopy function complexes: left homotopy function complezes, defined by resolv-
ing the first argument (see Definition 17.1.1), right homotopy function complezes,
defined by resolving the second argument (see Definition 17.2.1), and two-sided
homotopy function complezes, defined by resolving both arguments (see Defini-
tion 17.3.1). Each of these requires making choices, but there is a distinguished
transitive homotopy class of homotopy equivalences connecting any two homotopy
function complexes (see Theorem 17.5.30).

Chapters 18 and 19 discuss homotopy colimits and homotopy limits. An object-
wise weak equivalence between diagrams does not generally induce a weak equiva-
lence of colimits; the homotopy colimit functor repairs this problem, at least for ob-
jectwise cofibrant diagrams. Similarly, the homotopy limit functor takes objectwise
weak equivalences between objectwise fibrant diagrams into weak equivalences. In
Chapter 18 we discuss homotopy colimits and homotopy limits in simplicial model
categories, which allows for simpler formulas. In Chapter 19 we generalize this to
arbitrary model categories.



CHAPTER 7

Model Categories

We define a model category in Section 7.1 (see Definition 7.1.3). We point out
in Proposition 7.1.9 that the axioms for a model category are self dual, ie., if M
is a model category, then there is a model category structure on M°? in which the
weak equivalences are the opposites of the weak equivalences of M, the cofibrations
are the opposites of the fibrations of M, and the fibrations are the opposites of
the cofibrations of M. Thus, any theorem about model categories implies a “dual
theorem” in which cofibrations are replaced by fibrations, fibrations are replaced
by cofibrations, colimits are replaced by limits, and limits are replaced by colimits.

In Section 7.2 we discuss lifting and extending maps, including a technique
called the retract argument (see Proposition 7.2.2). Together with axiom M3 of
Definition 7.1.3, this is often used to show that a map is a cofibration, trivial
cofibration, fibration, or trivial fibration based on its lifting properties (see Propo-
sition 7.2.3).

In Section 7.3 we discuss the left and right homotopy relations. Left homotopy
is defined using a cylinder object (see Definition 7.3.2) for the domain. Cylinder
objects exist for any object (see Lemma 7.3.3), but there is no distinguished one.
Dually, right homotopy is defined using a path object (see Definition 7.3.2) for
the codomain. Path objects exist for any object (see Lemma 7.3.3), but there
is no distinguished one. Two maps are called homotopic if they are both left
homotopic and right homotopic (see Definition 7.3.2). We establish the homotopy
extension property of cofibrations for right homotopies when the codomain is fibrant
(see Definition 7.1.5 and Proposition 7.3.10) and the homotopy lifting property of
fibrations for left homotopies when the domain is cofibrant (see Definition 7.1.5 and
Proposition 7.3.11).

If we make no assumptions about our objects being cofibrant or fibrant, then
left and right homotopy need not be the same relation, and neither of them need
be an equivalence relation. In Section 7.4 we show that:

e If X is cofibrant, then
— left homotopy is an equivalence relation on the set of maps from X
to Y (see Proposition 7.4.5) and
—if f,g: X — Y are left homotopic then they are also right homo-
topic, and there exists a right homotopy between them using any
path object for Y (see Proposition 7.4.7).
e If Y is fibrant, then
—~ right homotopy is an equivalence relation on the set of maps from X
to Y (see Proposition 7.4.5) and
— if f,g: X — Y are right homotopic then they are also left homotopic,
and there exists a left homotopy between them using any cylinder
object for X (see Proposition 7.4.7).
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This implies that if X is cofibrant and Y is fibrant, then the left and right homotopy
relations coincide and are equivalence relations on the set of maps from X to Y
(see Theorem 7.4.9), and that if f,g: X — Y are homotopic, then there is a left
homotopy between them using any cylinder object for X and a right homotopy
using any path object for Y (see Proposition 7.4.10).

In Section 7.5 we show that composition of homotopy classes of maps is well
defined for maps between cofibrant-fibrant objects (see Theorem 7.5.5). This al-
lows us to define the classical homotopy category of a model category M to be
the category with objects the cofibrant-fibrant objects of M and with morphisms
from X to Y the homotopy classes of maps from X to Y (see Definition 7.5.8).
(This is not the homotopy category of M; for that, see Definition 8.3.2). We also
prove a Whitehead theorem: If a map between cofibrant-fibrant objects is a weak
equivalence, then it is a homotopy equivalence (see Theorem 7.5.10).

In Section 7.6 we discuss the model category of objects under a fixed object of
a model category (and, dually, the model category of objects over a fixed object of
a mode] category). This enables us to prove the uniqueness up to homotopy of the
lifts guaranteed by axiom M4 of Definition 7.1.3 (see Proposition 7.6.13).

The main result of Section 7.7 is Kenny Brown’s lemma (see Lemma 7.7.1). This
is a key result that allows us to show that a weak equivalence between cofibrant
objects has many of the properties of a trivial cofibration between cofibrant objects
(with a dual statement about a weak equivalence between fibrant objects); see, e.g.,
Corollary 7.7.2, Corollary 7.7.4, Proposition 8.5.7, and Corollary 9.3.3.

In Section 7.8 we show that a homotopy equivalence between cofibrant-fibrant
objects is a weak equivalence (see Theorem 7.8.5), and in Section 7.9 we describe
the equivalence relation generated by “weak equivalence”. Since a weak equivalence
need not have an inverse unless its domain and codomain are cofibrant-fibrant, we
define a “zig-zag” of weak equivalences, and we use this to say what it means for two
functors to a model category to be naturally weakly equivalent (see Definition 7.9.2).

In Section 7.10 we describe the model category structures on the categories of
topological spaces and of simplicial sets.

7.1. Model categories

We adopt the definition of a model category used in [30]. This is a strengthening
of Quillen’s axioms for a closed model category (see [54, page 233]) in that it requires
the category to contain all small limits and colimits (rather than just the finite ones),
and it requires the factorizations described in the fifth axiom to be functorial.

DerFINITION 7.1.1. If there is a commutative diagram

1a

—C—

Q

9

e
(_
QHT:u

——D——

7

1B

o

then we will say that the map f is a retract of the map g.

DEFINITION 7.1.2. Let € be a category.
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(1) € is complete if it is closed under small limits, i.e., if limp F exists for
every small category D and every functor F: D — €.

(2) Cis cocomplete if it is closed under small colimits, i.e., if colimp F exists
for every small category D and every functor F: D — €.

DEerFINITION 7.1.3. A model category is a category M together with three classes
of maps (called the weak equivalences, the cofibrations, and the fibrations), satisfying
the following five axioms:

M1: (Limit axiom) The category M is complete and cocomplete (see Defini-
tion 7.1.2).

M2: (Two out of three axiom) If f and g are maps in M such that gf is defined
and two of f, g, and gf are weak equivalences, then so is the third.

M3: (Retract axiom) If f and g are maps in M such that f is a retract of
g (in the category of maps of M; see Definition 7.1.1) and ¢ is a weak
equivalence, a fibration, or a cofibration, then so is f.

M4: (Lifting axiom) Given the commutative solid arrow diagram in M

A—X

4
B—Y

the dotted arrow exists if either
(1) % is a cofibration and p is a trivial fibration (i.e., a fibration that is
also a weak equivalence) or
(2) 4 1is a trivial cofibration (i.e., a cofibration that is also a weak equiv-
alence) and p is a fibration.
MS5: (Factorization axiom) Every map g in M has two functorial factorizations:
(1) ¢ = gi, where 7 is a cofibration and g is a trivial fibration (i.e., a
fibration that is also a weak equivalence), and
(2) g = pj, where j is a trivial cofibration (i.e., a cofibration that is also
a weak equivalence) and p is a fibration.

REMARK 7.1.4. Once we have defined the homotopy relations (see Defini-
tion 7.3.2), the lifting axiom will imply both the homotopy extension property of
cofibrations (see Proposition 7.3.10) and the homotopy lifting property of fibrations
(see Proposition 7.3.11).

DEFINITION 7.1.5. Let M be a model category.

(1) A trivial fibration is a map that is both a fibration and a weak equivalence.

(2) A trivial cofibration is a map that is both a cofibration and a weak equiv-
alence.

(3) An object is cofibrant if the map to it from the initial object is a cofibra-
tion.

(4) An object is fibrant if the map from it to the terminal object is a fibration.

(5) An object is cofibrant-fibrant if it is both cofibrant and fibrant.

REMaRK 7.1.6. The axioms imply that any two of the three classes of maps
cofibrations, fibrations, and weak equivalences determine the third (see Proposi-
tion 7.2.7). This was the reason for the use of the name “closed model category”
for what we call simply a “model category”.



110 7. MODEL CATEGORIES

PRroPOSITION 7.1.7. If S is a set and for every element s of S we have & model
category My, then the category [[,cg M is a model category in which a map is a
cofibration, a fibration, or a weak equivalence if each of its components is, respec-
tively, a cofibration, a fibration, or a weak equivalence.

ProoF. This follows directly from the definitions. ]

7.1.8. Duality in model categories. The axioms for a model category are
self dual.

ProPOSITION 7.1.9. If M is a model category, then its opposite category MP°P
is a model category such that

o the weak equivalences in M°P are the opposites of the weak equivalences
inM,

e the cofibrations in M°P are the opposites of the fibrations in M, and

e the fibrations in M°P are the opposites of the cofibrations in M.

PROOF. This follows directly from the definitions. |

REMARK 7.1.10. Proposition 7.1.9 implies that any statement that is proved
true for all model categories implies a dual statement in which cofibrations are
replaced by fibrations, fibrations are replaced by cofibrations, colimits are replaced
by limits, and limits are replaced by colimits.

7.2. Lifting and the retract argument

DerFINITION 7.2.1. If i: A— B and p: X — Y are maps for which the dotted
arrow exists in every solid arrow diagram of the form

A— X

4
iJv lp
B——Y ,

then
(1) (3,p) is called a lifting-ectension pair,
(2) 1 1is said to have the left lifting property with respect to p, and
(3) pis said to have the right lifting property with respect to 1.

Thus, axiom M4 (see Definition 7.1.3) says that cofibrations have the left lifting
property with respect to trivial fibrations and that fibrations have the right lifting
property with respect to trivial cofibrations. The next proposition is known as the
retract argument. Together with axiom M3, it will be used in Proposition 7.2.3 to
show that these lifting properties characterize the cofibrations and the fibrations in
& model category.

PRrOPOSITION 7.2.2 (The retract argument). Let M be a model category and
let g: X — Y be a map in M. .
(1) If g can be factored as g = pi where p has the right lifting property with
respect to g, then g is a retract of 1.
(2) If g can be factored as g = pi where i has the left lifting property with
respect to g, then g Is a retract of p.
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PRrROOF. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

X—Z
[
g P
Yy=—Y .

Since p has the right lifting property with respect to g, the dotted arrow g exists.
This yields the commutative diagram
9

Y Y ,

;l___f

=X

Lx
]

and so g is a retract of 4. O

PROPOSITION 7.2.3. Let M be a model category.

(1) The map i: A — B is a cofibration if and only if it has the left lifting
property with respect to all trivial fibrations.

(2) The map i: A — B is a trivial cofibration if and only if it has the left
lifting property with respect to all fibrations.

(3) The map p: X — Y is a fibration if and only if it has the right Lifting
property with respect to all trivial cofibrations.

(4) The map p: X — Y is a trivial fibration if and only if it has the right
lifting property with respect to all cofibrations.

Proor. We will prove part 1; the proofs of the other parts are similar.

One direction is part of axiom M4 (see Definition 7.1.3). For the converse,
axiom M5 implies that we can factor 7 as i = pj where p is a trivial fibration and j
is a cofibration. Proposition 7.2.2 implies that ¢ is a retract of j, and so the result
follows from axiom M3 (see Definition 7.1.3). O

PROPOSITION 7.2.4. If M is a model category, then the classes of cofibrations
and of fibrations are closed under compositions.

ProOF. This follows from Proposition 7.2.3. 0

PROPOSITION 7.2.5. Let M be a model category.

(1) The class of cofibrations is closed under coproducts.

(2) The class of trivial cofibrations is closed under coproducts.
(3) The class of fibrations is closed under products.

(4) The class of trivial fibrations is closed under products.

Proor. This follows from Proposition 7.2.3. O
ProprOSITION 7.2.6. If M is a model category, then a map in M is a weak

equivalence if and only if it can be factored as a trivial cofibration followed by a
trivial fibration.
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PROOF. Any map that can be factored as a trivial cofibration followed by a
trivial fibration is a composition of weak equivalences, and is thus a weak equiva-
lence.

Conversely, if g: X — Y is a weak equivalence, then we can factor it as X LR
W £ Y with h a trivial cofibration and k a fibration. The “two out of three”
axiom then implies that k is actually a trivial fibration. a

PROPOSITION 7.2.7. If M is a model category, then any two of the classes of
cofibrations, fibrations, and weak equivalences determine the third.

Proor. Proposition 7.2.3 implies that
» the cofibrations and weak equivalences determine the fibrations, and that
» the fibrations and weak equivalences determine the cofibrations.
Proposition 7.2.4 implies that the trivial cofibrations and trivial fibrations deter-
mine the weak equivalences, and Proposition 7.2.3 implies that the cofibrations de-
termine the trivial fibrations and the fibrations determine the trivial cofibrations.
Thus,
e the cofibrations and fibrations determine the weak equivalences.
a

LEMMA 7.2.8. Let M be a model category, and let p: X — Y is a map in M.
(1) The class of maps with the left lifting property with respect to p is closed
under retracts.
(2) The class of maps with the right lifting property with respect to p is closed
under retracts.

Proor. We will prove part 1; the proof of part 2 is dual.

Suppose that f: A — B is aretract of g: C — D, and that g has the left lifting
property with respect to p; we must show that the dotted arrow ¢ exists in any
solid arrow diagram of the form

la
1
A TA 3
A C A 5‘X
fl 91 P fl s P
B——D—7>B—Y
1s

Since g has the left lifting property with respect to p, there exists a map ¥: D — X
such that ¥g = sr4 and py = trp; we define ¢: B — X by letting ¢ = ¢ip. We
then have ¢f = Yigf = Y¥gia = srais = s and pp = pyip = trgig =t. a

7.2.9. Pushouts and pullbacks.

DerINITION 7.2.10. If the square
A—2sc

1 IL

B—
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is a pushout, then the map g will be called the pushout of f along h. If the square
is a pullback, then the map f will be called the pullback of g along k.
LEMMA 7.2.11. Let M be a model category, and let p: X — Y be a map in M.

(1) The class of maps with the left lifting property with respect to p is closed
under pushouts.

(2) The class of maps with the right lifting property with respect to p is closed
under pullbacks.

Proor. We will prove part 1; the proof of part 2 is dual.
We must show that if i: 4 — B has the left lifting property with respect to p
and we have a solid arrow diagram

A——C—3X
A

| )

B——D—7Y
in which the square on the left is a pushout, then the dotted arrow ¢ exists. Since
i has the left lifting property with respect to p, there is a map ¥: B — X such
that ¢ = us and py = vt. Since D is the pushout B 114 C, this induces a map
¢: D — X such that ¢j = u and ¢t = . We then have pdt = pyp = vt and

ppj = pu = vj, and so the universal mapping property of the pushout implies that
P = v. O

PROPOSITION 7.2.12. Let M be a model category.

(1) The class of cofibrations is closed under pushouts.

(2) The class of trivial cofibrations is closed under pushouts.
(3) The class of fibrations is closed under pullbacks.

(4) The class of trivial fibrations is closed under pullbacks.

ProoF. This follows from Proposition 7.2.3 and Lemma 7.2.11. O

LEMMA 7.2.13. If h: E — F is a pushout (see Definition 7.2.10) of g: C — D
and k: G — H is a pushout of h, then k is a pushout of g.

PROOF. In the commutative diagram

C—E—G

PR,

if the two squares are pushouts, then the rectangle is a pushout. a
PROPOSITION 7.2.14. Consider the commutative diagram
¢ ——E——¢G
A
D——F——H

(1) If H is the pushout D1l¢ G and F is the pushout D1l¢ E, then H is the
pushout F g G.
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(2) If C is the pullback D xgy G and E is the pullback F xy G, then C is the
pullback D xp E.

PRrROOF. We will prove part 1; the proof of part 2 is dual.

If W is an object and j: F — W and k: G — W are maps such that jg = kt,
then kts = jgs = juf. Since H is the pushout D ¢ G, there exists a unique map
l: H — W such that lvu = ju and [h = k. Since F is the pushout D Iz E and
the maps j and lv satisfy both (lv)u = (j)u and (§)g = kt = lht = (lv)g, we have
J = lv. Thus, the map! satisfies [h = k and lv = j. To see that [ is the unique such
map, note that if [ were another map satisfying lh =k and iv= 3, then lvu = ju,
and so the universal property of D Il G implies that =1 O

LeMMA 7.2.15 (C. L. Reedy. [57]). Let M be a model category. If we have a
commutative diagram in M

A——B
J\ N

A —— B

o5 ]

Cl 1 DI

in which the front and back squares are pushouts and both fg and ClI4 A’ — C’
are cofibrations, then fp is a cofibration.

PRrROOF. It is sufficient to show that fp has the left lifting property with respect
to all trivial fibrations (see Proposition 7.2.3). If we have a commutative diagram

D—X

W]

D' ——Y

in which p is a trivial fibration, then we also have a similar diagram with fp in place
of fp. Since fp is a cofibration, there is a map hp: B’ — X making both triangles
commute. Composing hp with A’ — B’ yields a map ha: A’ — X that also makes
both triangles commute. This induces a map C 14 A’ — X. Since CII4 A’ — C’
is a cofibration, there is a map ¢’ — X making everything commute, and so there
is an induced map D' = C’ ll4- B’ — X making both triangles commute, and the
proof is complete. O

7.2.16. Adjointness.

PROPOSITION 7.2.17. Let M and N be categories and let F: M =2 N :U be
adjoint functors. If i: A — B isa map in M and p: X — Y is a map in N, then
(Fi,p) is a lifting-extension pair (see Definition 7.2.1) if and only if (i,Up) is a
lifting-extension pair.
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ProoF. The adjointness of F and U implies that there is a one to one corre-
spondence between solid arrow diagrams of the forms

FA— X and A—UX

q I
FtJv h JP 1Jv R JUP
FB—Y B——UY .

The adjointness also implies that, under this correspondence, the dotted arrow h
exists if and only if the dotted arrow h exists. ]

PROPOSITION 7.2.18. Let M and N be mode! categories and let F: M 2 N :U
be adjoint functors.

(1) The left adjoint F preserves cofibrations if and only if the right adjoint U
preserves trivial fibrations.

(2) The left adjoint F preserves trivial cofibrations if and only if the right
adjoint U preserves fibrations.

PRrOOF. This follows from Proposition 7.2.3 and Proposition 7.2.17. O

7.3. Homotopy
7.3.1. Left homotopy, right homotopy, and homotopy.

DEFINITION 7.3.2. Let M be a model category and let f,g: X — Y be maps
in M.
(1) A cylinder object for X is a factorization

XX 25, cyx) 2o X

of the fold map 1x 11x: X I X — X (so that the compositions pip and
pi, both equal the identity map of X) such that ig II ¢, is a cofibration
and p is a weak equivalence. Note that, although we will often use the
notation Cyl(X) for a cylinder object for X, we do not mean to suggest
that this is a functor of X, or that there is any distinguished choice of
cylinder object for X.

(2) A left homotopy from f to g consists of a cylinder object X II X Zotu,
Cyl(X) & X for X and a map H: Cyl(X) — Y such that Hip = f and
Hiy = g. If there exists a left homotopy from f to g, then we say that f
is left homotopic to g (written f 4 9)-

(3) A path object for Y is a factorization

Y —— Path(Y) 2XPL, y x ¥

of the diagonal map (so that the compositions pgs and p, s both equal the
identity map of Y) 1y xly: Y — Y x Y such that s is a weak equivalence
and py X p; is a fibration. Note that, although we will often use the
notation Path(Y") for a path object for Y, we do not mean to suggest that
this is a functor of Y, or that there is any distinguished choice of path
object for Y.
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(4) A right homotopy from f to g consists of a path object ¥ < Path(Y) ZoXP1,
Y xY forY and amap H: X — Path(Y) suchthat pgH = f and p1 H = g.
If there exists a right homotopy from f to g, then we say that f is right
homotopic to g (written f & 9).

(5) If f is both left homotopic and right homotopic to g, then we say that f
is homotopic to g (written f ~ g).

LeEMMA 7.3.3. Let M be a model category.
(1) Every object X of M has a cylinder object X 1 X lollhy, Cyl(X) 3 X in
which p is a trivial fibration.

(2) Every object X of M has a path object X -5 Path(X) 22224 X x X in
which s is a trivial cofibration.

PROOF. For part 1, factor the map 1x I 1x: X II X — X into a cofibration
followed by a trivial fibration. For part 2, factor the map 1x x1x: X — X x X
into a trivial cofibration followed by a fibration. a

PROPOSITION 7.3.4. Let M be a model category.

(1) If f,g: X — Y are left homotopic and Y Is fibrant, then there is a cylinder
object X I1 X — Cyl(X) 2 X in which p is a trivial fibration and a left
homotopy H: Cyl(X)— Y from f tog.

(2) If f,g: X — Y are right homotopic and X is cofibrant, then there is a
path object Y 5 Path(Y) — Y x Y in which s is a trivial cofibration and
a right homotopy H: X — Path(Y) from f to g.

PROOF. We will prove part 1; the proof of part 2 is dual.
If X1 X — Cyl(X) & X is a cylinder object for X such that there is a left

homotopy H': Cyl(X)' — Y from f to g, then we factor p as Cyl(X) & Cyl(X) 2
X where j is a cofibration and p is a trivial fibration. The “two out of three” axiom
for weak equivalences (see Definition 7.1.3) implies that j is a trivial cofibration,
and so the dotted arrow exists in the diagram

Cyl —) Y

*(———

Cyl ) ——
which constructs our left homotopy H. O

ProPOSITION 7.3.5. Let M be a model category and let f,g: X — Y be maps
in M.
(1) The maps f and g are left homotopic if and only if there is a factorization
XU X 225 ¢ 5 X of the fold map 1x U 1x: X 1X — X such that
p is a weak equivalence and a map H: C — Y such that Hig = f and
Hip=g.
(2) Thtle magps f and g are right homotopic if and only if there is a factorization
Y & P 2XPL vy« Y of the diagonal map ly X 1ly: Y — Y x Y such
that s is a weak equivalence and a map H: X — P such that poH = f
andp H = g.
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Proor. We will prove part 1; the proof of part 2 is dual.

The necessity of the condition follows directly from the definition. Conversely,
assume the condition is satisfied. If we factor 79117, as X 11 X 2%, ¢ 4 ¢ where
i 114, is a cofibration and ¢ is a trivial fibration, then X I1 X 22, ¢ 24, x is 5
cylinder object for X and Hq: C’ — Y is a left homotopy from f to g. O

LeMMA 7.3.6. Let M be a model category and let X be an object of M.

(1) If X is cofibrant, then the injections ig,1,: X — X II X are cofibrations.
(2) If X is fibrant, then the projections pg,p1: X X X — X are fibrations.

PrOOF. We will prove part 1; the proof of part 2 is dual.
Since the diagram
g—X

| b

X—io—)XHX

(where 0 is the initial object of M) is a pushout, the lemma follows from Proposi-
tion 7.2.12. O

LeMMA 7.3.7. Let M be a model category and let X be an object of M.

(V) fXux 2o, Cyl(X) 2, X is a cylinder object for X, then the injections
9,911 X — Cyl(X) are weak equivalences. If X is cofibrant, then they
are trivial cofibrations.

(2) If X 5 Path(X) 22XPY, X x X is a path object for X, then the projections
Po,p1: Path(X) — X are weak equivalences. If X is fibrant, then they
are trivial fibrations.

ProoF. This follows from the “two out of three” axiom for weak equivalences
(see Definition 7.1.3) and Lemma 7.3.6. O

LEMMA 7.3.8. Let M and N be model categories and let ¢: M — N be a
functor.

(1) If ¢ takes trivial cofibrations between cofibrant objects in M to weak
equivalences in N, f,g: X — Y are left homotopic maps in M, and X is
cofibrant, then ¢(f) is left homotopic to ¢(g).

(2) If o takes trivial fibrations between fibrant objects in M to weak equiva-
lences in'N, f,g: X — Y are right homotopic maps in M, and Y is fibrant,
then ¢(f) is right homotopic to ¢(g).

ProOOF. We will prove part 1; the proof of part 2 is dual.

Since f and g are left homotopic, there is a cylinder object X I X loln,
Cyl(X) & X for X and a map H: Cyl(X) — Y such that Hio = f and Hi, = g.
Since pip = 1x, we have @(p)p(io) = l,(x), and, since ip is a trivial cofibration
(see Lemma 7.3.7), the “two out of three” property of weak equivalences (see Defi-
nition 7.1.3) implies that ¢(p) is a weak equivalence. The result now follows from
Proposition 7.3.5. a

LEMMA 7.3.9. Let M be a model category, let € be a category, and let p: M — €
be a functor.
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(1) If ¢ takes trivial cofibrations between cofibrant objects in M to isomor-
phisms in C, f,g: X — Y are left homotopic maps in M, and X is cofi-
brant, then o{(f) = p(g).

(2) If  takes trivial fibrations between fibrant objects in M to isomorphisms
in€, f,g: X — Y are right homotopic maps in M, and Y is fibrant, then
©(f) = »(g)-

PROOF. We will prove part 1; the proof of part 2 is dual.

Smce f and g are left homotopic, there is a cylinder object X II X ——
Cyl(X) & X for X and a map H: Cyl(X) — Y such that Hip = f and Hi; = g.
Since pig = 1x, we have (p)p(io) = 1,(x), and, since 4y is a trivial cofibration (see
Lemma 7.3.7), ¢(%0) is an isomorphism, and so ¢(p) is an isomorphism. Since pip =
1)(( )= pir, @lio) = {p(®)) " = otir). Thus, o(f) = o(H)p(io) = w(H)p(i) =
w(g)-

PROPOSITION 7.3.10 (Homotopy extension property of cofibrations). Let M be
a model category, let X be fibrant, and let k: A — B be a cofibration. If f: A - X
is a map, f: B — X is an extension of f, X % Path(X) 22224, PoXPr, XTI X is a path
object for X, and H: A — Path(X) is a right homotopy of f (ie., a map H such
that poH = f), then there is a map H:B — Path(X) such that poH = f and
Hk=H.

o1y

PROOF. We have the solid arrow diagram

A—2 Path(X)

kl Al Jpo

B —f—) X
and Lemma 7.3.7 implies that pg is a trivial fibration. ]

PropPOSITION 7.3.11 (Homotopy lifting property of fibrations). Let M be a
model category, let A be cofibrant, and let k: X — Y be a fibration. If f: A—-Y

isamap, f: A— X isalift of f, Al A 225, Cyl(A) & A is a cylinder object for
A, and H: Cyl(A) — Y is a left homotopy of f (i.e., a map H such that Hig = f),
then there is & map H: Cyl(A) — X such that Hio = f and kH = H.

PROOF. We have the solid arrow diagram
a—ox
i0 k
Cyl(A) — Y
and Lemma 7.3.7 implies that i is a trivial cofibration. 3
COROLLARY 7.3.12. Let M be a model category.
(1) Let X be fibrant and let k: A — B be a cofibration. If f: A — X and

g: B — X are maps such that gk < f, then thereis amap ¢': B — X
such that ¢’ ~ g and ¢’k = f.
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(2) Let A be cofibrant and let k: X — Y be a fibration. If f: A — X and
g: A — Y are maps such that kf é g, then thereis amap f': A — X
such that f’ 'ivf and kf' =g.

PROOF. Part 1 follows from Proposition 7.3.10 and part 2 follows from Prop-
osition 7.3.11. O

PROPOSITION 7.3.13. Let M be a model category.

(1) Ifi: A — B is a cofibration, X is fibrant, and i induces an isomorphism
i*: w7 (B,X) =~ 7" (A, X), then for every map f: A — X there is 2 map
g: B — X, unique up to right homotopy, such that gi = f.

(2) If A is cofibrant, p: X — Y is a fibration, and p induces an isomorphism
pa: T{A, X) = 7(A,Y), then for every map f: A — Y there is a map
g: A— X, unique up to left homotopy, such that pg = f.

Proor. We will prove part 1; the proof of part 2 is dual.

Since i*: #7(B, X) — (A, X) is surjective there is a map h: B — X such that
hi & f. Corollary 7.3.12 now implies that there exists a map g: B — X such that
gt = f, and the uniqueness up to right homotopy follows because i*: »" (B, X) —
7" (A, X) is injective. 0

7.4. Homotopy as an equivalence relation

The main results of this section are

e Proposition 7.4.5, which asserts that if X is cofibrant, then left homotopy
is an equivalence relation on the set of maps from X to Y, and, dually,
that if Y is fibrant, then right homotopy is an equivalence relation on the
set of maps from X to Y, and

e Theorem 7.4.9, which asserts that if X is cofibrant and Y is fibrant, then
the left and right homotopy relations coincide on the set of maps from X
toY.

7.4.1. Left and right homotopy as equivalence relations. We begin with
Lemma 7.4.2, which shows that if X is cofibrant, then two cylinder objects for X
can be “composed” to produce a cylinder object that we will use in Proposition 7.4.5
to show that left homotopy is an equivalence relation when the domain is cofibrant.
Dually, Lemma 7.4.2 also shows that if Y is fibrant, then two path objects for Y can
be “composed” to produce a path object that we will use in Proposition 7.4.5 to
show that right homotopy is an equivalence relation when the codomain is fibrant.

LeMMA 7.4.2. Let M be a model category and let X and Y be objects in M.
(1) If X is cofibrant and X I X Jouth, Cyl(X) & X and XU X fondi,
Cyl(x)’ 7, X are cylinder objects for X, then there is a third cylinder
object X I X 2%, cy)(xy” 2 X for X in which
(a) Cyl(X)" is the pushout of the diagram Cyl(X) &y B, Cyl(X)/,
(b) ig: X — Cyl(X)" is the composition X * Cyl(X) — Cyl{X)", and

(c) i+ X — Cyl(X)" is the composition X % Cyl(X)' — Cyl(X)".
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(2) IfY is fibrant and Y % Path(Y) 22224, ¥ xY and Y %> Path(Y)’ 2L
Y x Y are path objects for Y, then there is a third path object Y LN
Path(Y)” 2P, ¥ x ¥ for Y in which

(a) Path(Y)" is the pullback of the diagram Path(Y) £ v & i Path(Y)
(b) pl: Path(Y)"” — Y is the composition Path(Y)"” — Path(Y) 2% Y,
and ,

(c) p!: Path(Y)” — Y is the composition Path(Y)” — Path(Y) 2% Y.

Proor. We will prove part 1; the proof of part 2 is dual.
We have the commutative diagram

Lemma 7.3.7 and Proposition 7.2.12 imply that ij and i are trivial cofibrations.
Together with the “two out of three” property of weak equ1valences (see Defini-
tion 7.1.3), this implies that p” is a weak equivalence

iguiy

It remains only to show that the map X II X ——
This map equals the composition

— Cyl(X)" is a cofibration.

X I X 08, qoyx) 11 x 280N, oyi(x)”.

The first of these is the pushout of %5: X — Cyl(X) along the first inclusion
X — X 11 X, and so Lemma 7.3.7 and Proposition 7.2.12 imply that it is a trivial
cofibration. The second is the pushout of {311} along ¢; 111 x : X1IX — Cyl(X)ILX,
and so Proposition 7.2.12 implies that it is a cofibration. Proposition 7.2.4 now im-
plies that iy 114 is a cofibration. O

DerFINITION 7.4.3. Let M be a model category and let X and Y be objects in
M.

(1) If X is cofibrant, XI1X 2%, Cyl(X) & X and XIIX 28, Cyl(X) 2
X are cylinder objects for X, H: Cyl(X) — Y is a left homotopy from
fiX—-Ytog: XY, a.nd H': Cyl(X) — Y is a left homotopy from
gto h: X — Y, then the composition of the left homotopies H and H' is
the left homotopy H - H': Cyl(X)" — Y from f to h (where Cyl(X)" is
as in Lemma 7.4.2) defined by H and H'.

(2) If Y is fibrant, ¥ -5 Path(Y) 2224 ¥ x ¥ and ¥ <5 Path(Y) 222,
Y x Y are path objects for Y, H: X — Path(Y') is a right homotopy from
fi X >Ytog: X -Y,and H': X — Path(Y)' is a right homotopy
from g to h: X — Y, then the composition of the right homotopies H
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and H' is the right homotopy H - H': X — Path(Y)" from f to h (where
Path(Y)” is as in Lemma 7.4.2) defined by H and H’.

DEFINITION 7.4.4. Let M be a model category and let X and Y be objects in
M.

(1) If XX 28, ¢yl(X) 2 X is a cylinder object for X and H: Cyl(X) —
Y is a left homotopy from f: X — Y to g: X — Y, then the nverse
of H is the left homotopy H™!: Cyl(X)™! — Y from g to f where X II

R -
X 225, cplx)~! 22 X is the cylinder object for X defined by
Cyl(X)™ = Cyl(X), ig' =1, i7" =19, and p~! = p, and the map H™!
equals the map H.

(2) Y 5 Path(Y) 2222, ¥ Y is a path object for Y and H: X — Path(Y)
is a right homotopy from f: X — Y to g: X — Y, then the inverse
of H is the right homotopy H~!: X — Path(Y)™! from g to f where

_ 0
y 2L Path(Y)™! Zo *Pi , ¥ x Y is the path object for ¥ defined by
Path(Y)~™! = Path(Y), p;* = p1, p;' = po, and s~} = s, and the map
H™! equals the map H.

PROPOSITION 7.4.5. Let M be a model category, and let X and Y be objects
in M.
(1) IfX is cofibrant, then left homotopy (see Definition 7.3.2) is an equivalence
relation on the set of maps from X to Y.
(2) IfY isfibrant, then right homotopy (see Definition 7.3.2) is an equivalence
relation on the set of maps from X to Y.
(3) If X is cofibrant and Y is fibrant, then homotopy (see Definition 7.3.2) is
an equivalence relation on the set of maps from X to Y.

PrOOF. We will prove part 1; the proof of part 2 is dual, and part 3 follows
from parts 1 and 2.

Since there is a cylinder object for X in which Cyl(X) = X, left homotopy
is reflexive. The inverse of a left homotopy (see Definition 7.4.4) implies that left
homotopy is symmetric. Finally, the composition of left homotopies (see Defini-
tion 7.4.3) implies that left homotopy is transitive. a

7.4.6. Relations between left homotopy and right homotopy.

PROPOSITION 7.4.7. Let M be a model category and let f,g: X — Y be maps
in M.

(1) If X is cofibrant, f is left homotopic to g, and Y <> Path(Y) 22225 ¥ x Y
is a path object for Y, then there is a right homotopy H: X — Path(Y)
from f to g. _

(2) IfY is fibrant, § is right homotopic to g, and X 11 X 2%, Cyl(X) & X
is a cylinder object for X, then there is a left homotopy H: Cyl(X) - Y
from f tog.

Proor. We will prove part 1; the proof of part 2 is dual.

Since f is left homotopic to g, there is a cylinder object X IIX louhy, cyl(x) &
X for X and a left homotopy G: Cyl(X)} — Y from f to g. Thus, we have the solid
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arrow diagram

x —L _ Path(y)

B
iOJ, J(Po,m)

in which (pg,p1) is a fibration. Since X is cofibrant, Lemma 7.3.7 implies that 4o
is a trivial cofibration, and so the dotted arrow h exists. If we let H = hi), then H
is the right homotopy we require. 0O

PROPOSITION 7.4.8. Let M be a model category and let f,g: X — Y be maps
in M.

(1) If X is cofibrant and f = g (see Definition 7.3.2), then f < g:
(2) IfY is fibrant and f £ g, then f % g.
ProoOF. This follows from Lemma 7.3.3 and Proposition 7.4.7. A

THEOREM 7.4.9. Let M be a model category. If X is cofibrant and Y is fibrant,
then the left homotopy, right homotopy, and homotopy relations coincide and are
equivalence relations on the set of maps from X toY .

Proor. This follows from Proposition 7.4.8 and Proposition 7.4.5. 0

PROPOSITION 7.4.10. Let M be a model category. If X is cofibrant, Y is fibrant,
and f,9: X — Y are homotopic maps, then
(1) if XIO X — Cyl(X) — X is a cylinder object for X, then there is a left
homotopy H: Cyl(X) — Y from f to g, and
(2) if Y — Path(Y) — Y x Y is a path object for Y, then there is a right
homotopy H: X — Path(Y) from f to g.

ProOF. This follows from Proposition 7.4.7. ]

7.5. The classical homotopy category

Theorem 7.4.9 implies that for cofibrant-fibrant objects, all notions of homo-
topy coincide and are equivalence relations. The main result of this section is
Theorem 7.5.5, which implies that composition of homotopy classes of maps is well
defined for cofibrant-fibrant objects. We also prove a Whitehead theorem, which
asserts that a weak equivalence between cofibrant-fibrant objects is a homotopy
equivalence (see Theorem 7.5.10).

7.5.1. Composing homotopy classes of maps.

NoTaTION 7.5.2. Let M be a model category and let X and Y be objects of
M.
(1) If X is cofibrant, we let n'(X,Y) denote the set of left homotopy classes
of maps from X to Y (see Proposition 7.4.5).
(2) 'Y is fibrant, we let #7(X,Y) denote the set of right homotopy classes
of maps from X to Y (see Proposition 7.4.5).
(3) If X is cofibrant and Y is fibrant, we let m(X,Y) denote the set of homo-
topy classes of maps from X to Y (see Proposition 7.4.5).
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PROPOSITION 7.5.3. Let M be a model category and let f,g: X — Y be maps
in M.
V) Iff 4 g (see Definition 7.3.2) and h: Y — Z is a map, then hf 4 hg.
(2) If f % g (see Definition 7.3.2) and k: W — X, then fk ~ gk.

PrOOF. We will prove part 1; the proof of part 2 is dual.
IFXIIX — Cyl(X) — X is a cylinder object for X and F: Cyl(X) - Y is a
left homotopy from f to g, then hF is a left homotopy from hf to hg. O

COROLLARY 7.5.4. Let M be a model category and let f,g: X — Y be maps
in M.
WV Iff 4 g (see Definition 7.3.2) and h: Y — Z is a map, then composition
with h induces a well defined function k,: 7(X,Y) — ©*(X, 2).
(2) If f = g (see Definition 7.3.2) and k: W — X, then composition with k
induces a well defined function k*: n"(X,Y) — #"(W,Y).

Proor. This follows from Proposition 7.5.3. O

THEOREM 7.5.5. Let M be a model category, let X, Y, and Z be cofibrant-
fibrant objects of M, and let f,g: X - Y and h,k: Y — Z be maps. If f ~ g and
h ~ k, then hf ~ kg, and so composition is well defined on homotopy classes of
maps between cofibrant-fibrant objects.

Proor. This follows from Corollary 7.5.4 and Theorem 7.4.9. O

7.5.6. The classical homotopy category.

PROPOSITION 7.5.7. If M is & model category, then there is a category whose
objects are the cofibrant-fibrant objects in M, whose maps are homotopy classes of
maps in M, and whose composition of maps is induced by composition of maps in
M.

Proor. This follows from Theorem 7.5.5. 0O

DEFINITION 7.5.8. If M is a model category, then (following D. M. Kan) we
define the classical homotopy category mMcs of M to be the category with objects
the cofibrant-fibrant objects of M, and with morphisms from X to Y the homotopy
classes of maps from X to Y (see Proposition 7.5.7).

Note that the classical homotopy category of a model category does not contain
all of the objects of the model category, and it is not what is known as the homotopy
category of the model category. For the homotopy category of a model category,
see Definition 8.3.2.

PROPOSITION 7.5.9. Let M be a model category.

(1) If A is cofibrant and p: X — Y is a trivial fibration, then p induces an
isomorphism of the sets of left homotopy classes of maps p,: 7'(4, X) —
7 (A,Y) (see Corollary 7.5.4).

(2) If X is fibrant and i: A — B is a trivial cofibration, then i induces an
isomorphism of the sets of right homotopy classes of maps<*: " (B, X) —
w7(A, X) (see Corollary 7.5.4).



124 7. MODEL CATEGORIES

Proor. We will prove part 1; the proof of part 2 is dual.
If g: A > Y is a map and 0 is the initial object of M, then axiom M4 (see
Definition 7.1.3) implies that the dotted arrow exists in the diagram

p— X

<
"l
A_9>Y7

and so p, is surjective. To see that p. is injective, let f,g: A — X be maps such
that pf & pg. There is then a cylinder object AIA — Cyl(A) — A for A and a left
homotopy F': Cyl(A) — Y from pf to pg, and so we have the solid arrow diagram

AHAf—u“qle

| c )
Cyl(A)TY.

Axiom M4 implies that the dotted arrow G exists, and G is a left homotopy from
ftog A

THEOREM 7.5.10 (Whitehead theorem). Let M be a model category. If f: X —
Y is a weak equivalence between cofibrant-fibrant objects, then it is a homotopy
equivalence.

PRrOOF. If we factor f into a cofibration followed by a trivial fibration to ob-
tain X & W 4 Y, then W is also cofibrant-fibrant, and the “two out of three”
axiom (see Definition 7.1.3) implies that p is also a weak equivalence. Since a com-
position of homotopy equivalences between cofibrant-fibrant objects is a homotopy
equivalence (see Theorem 7.5.5), it is sufficient to show that a trivial cofibration or
trivial fibration between cofibrant-fibrant objects is a homotopy equivalence. We
will show this for the trivial cofibration p; the proof for the trivial fibration ¢ is
dual.

We have the solid arrow diagram

X X
_“\
W ——x*

(in which * denotes the terminal object), and so there exists a dotted arrow r
such that rp = 1x. Proposition 7.5.9 implies that p induces an isomorphism
p*: T (W, W) =~ n"(X, W), and, since p*[pr] = [prp] = [p|[rp] = [p|{1x] = [p] =
p*[1w], this implies that pr < 1y . Thus, 7 is a homotopy inverse for p (see Theo-
rem 7.4.9), and so p is a homotopy equivalence. ]

PROPOSITION 7.5.11. Let M be a model category, let W, X, Y, and Z be
cofibrant-fibrant objects, and let f,g: X — Y be a pair of maps.
(1) If there is a weak equivalence h: Y — Z such that hf ~ hg, then f ~g.
(2) If there is a weak equivalence k: W — X such that fk ~ gk, then f ~ g.
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PROOF. We will prove part 1; the proof of part 2 is similar.
Theorem 7.5.10 implies that there is a map h: Z — Y such that hh =~ 1y.
Thus, f =~ 1y f ~ hhf ~ hhg ~ 1yg =~ g. a

PROPOSITION 7.5.12. Let M be a model category. If X and Y are cofibrant-
fibrant objects in M, then a map g: X — Y is a homotopy equivalence if either of
the following two conditions is satisfied:

(1) The map g induces isomorphisms of the sets of homotopy classes of maps
g (X, X) = n(X,Y) and g.: (Y, X) = n(Y,Y).

(2) The map g induces isomorphisms of the sets of homotopy classes of maps
(Y, X) = n(X, X) and g*: (YY) = n(X,Y).

PRrROOF. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g..: (Y, X) = #(Y,Y) implies that thereisamap h: ¥ — X
such that gh ~ 1y. Theorem 7.5.5 and the isomorphism g.: n(X, X) = n(X,Y)
now imply that h induces an isomorphism h,: 7(X,Y) = 7(X, X), and so there is
amap k: X — Y such that hk ~ 1x. Thus, h is a homotopy equivalence and g is
its inverse, and so g is a homotopy equivalence as well. a

7.6. Relative homotopy and fiberwise homotopy

If M is a model category and A is an object of M, then the category (A | M) of
objects of M under A has objects the maps A — X and morphisms commutative
triangles (see Definition 7.6.1). If A — X is the inclusion of a subobject, then
homotopy of maps from A — X to A — Y corresponds to homotopy of maps from
X toY relative to A. Dually, the category (M | A) of objects of M over A has objects
the maps X — A and morphisms commutative triangles (see Definition 7.6.2). If
X — A and Y — A are fibrations, then homotopy of maps from X — AtoY — A
corresponds to fiberwise homotopy over A.

DEFINITION 7.6.1. If M is a category and A is an object of M, then the category
(Al M) of objects of M under A is the category in which

e an object is a map A — X in M,
e amap from A - X to A — Y isamap X — Y in M such that the

triangle
A
X—Y
commutes, and
e composition of maps is defined by composition of maps in M.

DEFINITION 7.6.2. If M is a category and A is an object of M, then the category
(M | A) of objects of M over A is the category in which

e an object is amap X — A in M,
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e amap from X — AtoY — Aisamap X — Y in M such that the
triangle
X——Y

A
commutes, and

e composition of maps is defined by composition of maps in M.

DEFINITION 7.6.3. If M is a category and A and B are objects of M, then the

category (A | M | B) of objects of M under A and over B is the category in which
e an object is a diagram A - X — B in M,

eamap from A —+ X - Bto A—>Y - Bisamap X — Y in M such

that the diagram
commutes, and

e composition of maps is defined by composition of maps in M.

Definition 7.6.1 is a special case of Definition 11.8.3, and Definition 7.6.2 is a
special case of Definition 11.8.1.

7.6.4. Homotopy in undercategories and overcategories.

THEOREM 7.6.5. Let M be a model category.

(1) If A is an object of M, then the category (A | M) of objects of M under
A (see Definition 7.6.1) is a model category in which a map is a weak
equivalence, fibration, or cofibration if it is one in M.

(2) If X is an object of M, then the category (M ] X) of objects of M over
X (see Definition 7.6.2) is a model category in which & map is a weak
equivalence, fibration, or cofibration if it is one in M.

(3) If A and B are objects in M, then the category (A | M | B) of objects of
M under A and over B (see Definition 7.6.3) is a model category in which
a map is a weak equivalence, fibration, or cofibration if it is one in M.

ProoF. This follows directly from the definitions. O

LEMMA 7.6.6. Let C be a category and let g: X — Y be a map in C.
(1) The functor (X | C) — (Y | C) that takes the object X — Z of (X ]C)
to its pushout along g is left adjoint to the functor g*: (Y | €) — (X | C)
that takes the object Y — W of (Y | C) to its composition with g.
(2) The functor (C1Y) — (€| X) that takes the object W — Y of (E|Y) to
its pullback along g is right adjoint to the functor g.: (G| X) — (ClY)
that takes the object Z — X of (€| X) to its composition with g.
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Proor. This follows directly from the universal mapping properties that define
the pushout and the pullback. O

DEFINITION 7.6.7. Let M be a model category, and let A be an object of M.

(1) If A— X and A — Y are objects of the category (A | M) of objects of M
under A, then maps f,g: X — Y in (A | M) will be called left homotopic
under A, right homotopic under A, or homotopic under A if they are,
respectively, left homotopie, right homotopic, or homotopic as maps in
(A |M). A map will be called a homotopy equivalence under A if it is a
homotopy equivalence in the category (A4 | M).

(2) If X - Aand Y — A are objects of the category (M | A) of objects of
M over A, then maps f,g: X — Y will be called left homotopic over A,
right homotopic over A, or homotopic over A if they are, respectively, left
homotopic, right homotopic, or homotopic as maps in (M | A). A map will
be called a homotopy equivalence over A if it is a homotopy equivalence
in the category (M | A).

PrROPOSITION 7.6.8. Let M be a model category, and let A be an object of M.

(1) If maps are left homotopic, right homotopic, or homotopic under A, then
they are, respectively, left homotopic, right homotopic, or homotopic.

(2) If maps are left homotopic, right homotopic, or homotopic over A, then
they are, respectively, left homotopic, right homotopic, or homotopic.

Proor. This follows from Proposition 7.3.5. 3

COROLLARY 7.6.9. Let M be a model category, and let A be an object of M. If
a map Is a homotopy equivalence under A or a homotopy equivalence over A, then
it Is a homotopy equivalence in M.

Proor. This follows from Proposition 7.6.8. a

DEeFINITION 7.6.10. If M is a model category, then a map i: A — B will be
called the inclusion of a deformation retract (and A will be called a deformation
retract of B) if there is a map r: B — A such that 74 = 14 and ir ~ 1. A
deformation retract will be called a strong deformation retract if ir ~ 1p under A.

PRrROPOSITION 7.6.11. Let M be a model category.
(1) Ifi: A — B is a trivial cofibration of fibrant objects, then A is a strong
deformation retract of B (see Definition 7.6.10), i.e., thereisamapr: B —
A such that ri = 14 and ir ~ 1 under A.
(2) If p: X > Y is a trivial fibration of cofibrant objects, then there is a map
s:Y — X such that ps =1y and sp~ 1x over Y.

Proor. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

A A
l r “l
B——*

in (A | M) (see Theorem 7.6.5) in which i is a trivial cofibration and the map on
the right is a fibration. Thus, there exists a map r: B — A in (4 | M) such that
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73 = 14. Since ¢*(1p) = ¢ = iri = i*(ir), Proposition 7.5.9 implies that 1p Zirin
(Al M). Since both A and B are both cofibrant-fibrant in (A | M), Theorem 7.4.9
implies that 1g ~ ér in (A | M). a

7.6.12. Homotopy uniqueness of lifts.

PRrOPOSITION 7.6.13. Let M be a model category, and let the solid arrow dia-

gram
)J;
be such that either
(1) i is a cofibration and p is a trivial fibration, or
(2) 1 is a trivial cofibration and p is a fibration.
If by and hy are maps each of which makes both triangles commute, then hy ~ hy
as maps in (Al M |Y), the category of objects of M under A and over Y.

—X

e

—

ProoF. We will assume that condition 1 holds; the proof in the case that
condition 2 holds is similar. ]

Factor the map BII4, B — Bas Bll4 B L, ¢ L B where j is a cofibration
and 7 is a trivial fibration. We now have the solid arrow diagram

in which j is a cofibration and p is a trivial fibration, and so there exists a dotted
arrow H making both triangles commute. In the category (Al M|Y) of objects
of M under A and over Y (see Theorem 7.6.5), Bll4 B — C — B is a cylinder
object for B (see Definition 7.3.2) and H is a left homotopy from h; to k. Since
B is cofibrant and X is fibrant in (A | M |Y), Proposition 7.4.8 implies that h, is
also right homotopic to hs, and so h1 is homotopic to kg in (A M| Y). a

PROPOSITION 7.6.14. Let M be a model category. If the solid arrow diagram

A—j>X

8
X h

1J' J'P
B—q)Y

is such that either

(1) 4 and j are cofibrations and p and q are trivial fibrations, or

(2) 4 and j are trivial cofibrations and p and q are fibrations,
then there exists a map h: B — X making both triangles commute, unique up to ho-
motopy in (A M |Y), and any such map is & homotopy equivalence in (A | M | Y).

Proor. This follows from Proposition 7.6.13. 0



7.7. WEAK EQUIVALENCES 129

7.7. Weak equivalences

The main result of this section is Kenny Brown’s lemma (see Lemma 7.7.1).
This asserts that a weak equivalence between cofibrant objects can be factored into
a trivial cofibration followed by a map that has a trivial cofibration as a one sided
inverse (with a dual statement for weak equivalences between fibrant objects). This
implies that a functor between model categories that takes trivial cofibrations into
weak equivalences must also take weak equivalences between cofibrant objects into
weak equivalences (see Corollary 7.7.2), which will be important for our discussion
of Quillen functors (see Definition 8.5.2).

LEMMaA 7.7.1 (K. S. Brown, [15]). Let M be a model category.

(1) If g: X — Y is a weak equivalence between cofibrant objects in M then
there is a functorial factorization of g as g = ji where i is a trivial cofi-
bration and j is a trivial fibration that has a right inverse that is a trivial
cofibration.

(2) Ifg: X — Y is a weak equivalence between fibrant objects in M then there
is a functorial factorization of g as ¢ = ji where i is a trivial cofibration
that has a left inverse that is a trivial fibration and j is a trivial fibration.

Proor. We will prove part 1; the proof of part 2 is dual.
Since X and Y are cofibrant, both of the injections X — X1IY and Y — X1IY
are cofibrations. If we factor the map gl 1ly: XY - Y as

xuy&ziy
where k is a cofibration and j is a trivial fibration, then both compositions X —
XY » ZandY - X1IY — Z are cofibrations. Since g and j are weak
equivalences, axiom M2 (see Definition 7.1.3) implies that the cofibration X — Z

is a weak equivalence, and the composition of cofibrations ¥ - X II1Y — Z is a
right inverse to the trivial fibration j. a

COROLLARY 7.7.2. Let M and N be model categories, and let F: M — N be a
functor.

(1) If F takes trivial cofibrations between cofibrant objects in M to weak
equivalences in N, then F takes all weak equivalences between cofibrant
objects to weak equivalences in N.

(2) IfF takes trivial fibrations between fibrant objects in M to weak equiva-
lences in N, then F takes all weak equivalences between fibrant objects to
weak equivalences in N.

Proor. This follows from Lemma 7.7.1 and the “two out of three” property
of weak equivalences. a

COROLLARY 7.7.3. Let M be a model category, let C be a category, and let
F: M — € be a functor.

(1) If F takes trivial cofibrations between cofibrant objects in M to isomor-
phisms in C, then F takes all weak equivalences between cofibrant objects
to isomorphisms.

(2) IfF takes trivial fibrations between fibrant objects in M to isomorphisms
in C, then F takes all weak equivalences between fibrant objects to iso-
morphisms.
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ProoF. This follows from Lemma 7.7.1. ]

COROLLARY 7.7.4. Let M be a model category.

(1) If g: C — D is a weak equivalence between cofibrant objects in M and
X is a fibrant object of M, then g induces an isomorphism of the sets of
homotopy classes of maps g*: n(D, X) = n(C, X).

(2) Ifg: X — Y is a weak equivalence between fibrant objects in M and C
is a cofibrant object of M, then g induces an isomorphism of the sets of
homotopy classes of maps g.: n(C,X) = =(C,Y).

Proor. This follows from Lemma 7.7.1, Proposition 7.5.9, and Theorem 7.4.9.
a

COROLLARY 7.7.5. Let M be a model category.

(1) Ifg: C — D is a weak equivalence between cofibrant objects in M and X
is a fibrant object of M, then there is a map C — X in M if and only if
there is a map D — X in M.

(2) Ifg: X — Y is a weak equivalence between fibrant objects in M and C' is
a cofibrant object of M, then there is a map C — X in M if and only if
there is a map C — Y in M.

Proo¥r. This follows from Corollary 7.7.4. a

PROPOSITION 7.7.6. Let M be a model category, and let f,g: X — Y be maps.

Iff é gorf < g, then f is a weak equivalence if and only if g is a weak equivalence.

ProoF. We will consider the case f & g; the case f = g is dual.
Since f 4 g, there is a cylinder object X II X 224 Cyl(X) & X for X and a

map H: Cyl(X) — Y such that hig = f and hi; = g. Lemma 7.3.7 and the “two
out of three” property of weak equivalences imply that f is a weak equivalence if
and only if H is a weak equivalence, and that this is true if and only if g is a weak
equivalence. d

LEMMA 7.7.7. Let M and N be model categories, let go,g1: X — Y be maps

in M, and let F: M — N be a functor.

(1) If F takes trivial cofibrations between cofibrant objects in M into weak
equivalences in N, the object X is cofibrant, and g is left homotopic to g1,
then F(go) is a weak equivalence if and only if F(¢:) is a weak equivalence.

(2) IfF takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N, the object Y is fibrant, and go is right homotopic to g1 (see
Definition 7.3.2), then F(go) is a weak equivalence if and only if F(g1) is
a weak equivalence.

Proo¥r. This follows from Lemma 7.3.8 and Proposition 7.7.6. a

7.8. Homotopy equivalences

The main result of this section is Theorem 7.8.5, which asserts that a homo-

topy equivalence between cofibrant-fibrant objects is a weak equivalence. We also
prove that a map between cofibrant-fibrant objects that is both a cofibration and
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a homotopy equivalence is the inclusion of a strong deformation retraction (see
Proposition 7.8.2).

LeEMMA 7.8.1. Let M be a model category and let X and Y be cofibrant-fibrant
objects in M.

(1) Let X 11 X 4 Cyl(X) & X be a cylinder object for X and let
H: Cyl(X) — Y be a left homotopy from the map f: X — Y to the
map g: X = Y. If H" is the composition (see Definition 7.4.3) of H and
H~! (see Definition 7.4.4), then H" is homotopic in ((X U X) { M} to the

constant left homotopy (i.e., the composition Cyl(X)" x4, Y).

(2) Let Y 5 Path(Y) 22225 ¥ x Y be a path object for Y and let H: X —
Path(Y') be a right homotopy from themap f: X — Y tothemapg: X —
Y. If H" is the composition (see Definition 7.4.3) of H and H™' (see
Definition 7.4.4), then H" is homotopic in (M| (Y II'Y)) to the constant

right homotopy (i.e., the composition X Ly, Cyl(Y)").

Proor. We will prove part 1; the proof of part 2 is dual.
Let Y 3 Path(Y) 22225 ¥ x Y be a path object for ¥ (see Lemma 7.3.3). We

have the solid arrow diagram

L Path(Y)
b

X
iol K l(l’o,m)

Cyl(X) ————

A —Gom Y Y

in which ¢ is a trivial cofibration (see Lemma 7.3.7) and (po, p1) is a fibration, and
so the dotted arrow K exists. If we let the map K': Cyl(X) — Path(Y) equal the
map K, then K and K’ combine to define a map K”: Cyl(X)” — Path(Y') that
makes the diagram

x1x —12  path(y)

T K’
’g'-“’xl l(?o,m)

Cyl(X) ——— Y xY

(fp",H")
commutes. Thus, K” is a right homotopy (see Definition 7.3.2) from the map
fp": Cyl(X)" =Y to the map H": Cyl(X)" — Y in the category ((X II X)| M)
of objects of M under X II X. Since Cyl(X)" is cofibrant in (M | (X II X)) and Y
is fibrant in (M | (X I X)), Theorem 7.4.9 implies that fp” is also left homotopic
to H” in (M} (X 1 X)), and so fp” is bomotopic to H” in (M { (X1 X)). 0O

PrOpPOSITION 7.8.2. Let M be a model category and let f: X — Y be a map
between cofibrant-fibrant objects.

(1) If f is both a cofibration and a homotopy equivalence, then f is the
inclusion of a strong deformation retract, i.e., thereisamap g: Y — X
such that gf = 1x and fg ~ ly in (X | M).
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(2) If f is both a fibration and a homotopy equivalence, then f is the dual
of a strong deformation retract, i.e., there is a map g: Y — X such that
fg=1y andgf ~1x in (M |Y).

PrOOF. We will prove part 1; the proof of part 2 is dual.

Since f is a homotopy equivalence, there isa map h: Y — X such that fh ~ 1y
and Af ~ 1x. The homotopy extension property of cofibrations (see Proposi-
tion 7.3.10) implies that h is homotopic to a map g: Y — X such that gf = 1x

and fg ~ ly (see Proposition 7.5.3). Let Y < Path(Y) 2L ¥ x Y be a path
object for Y and let H:Y — Path(Y) be a right homotopy from fg to 1y. The
composition H f: X — Path(Y) is then a right homotopy from fgf = ftoly f = f.
The composite homotopy (H fg)- H™': Y — Path(Y)” (see Definition 7.4.3) com-
posed with f is the composite homotopy (Hf) - (Hf)"': X — Path(Y)"”, and
Lemma 7.8.1 implies that (Hf) - (Hf)™* is homotopic in (M| (Y x Y)) to the
constant homotopy s”f: X — Path(Y)”. The homotopy extension property of
cofibrations now implies that (H fk)- H~! is homotopic in (M | (Y x Y)) to a right
homotopy K:Y — Path(Y)” such that Kf: X — Path(Y)” equals s f, i.e., K is
a homotopy from gf to ly in (X | M). a

PROPOSITION 7.8.3. Let M be a model category and let X and Y be cofibrant-
fibrant objects in M.
(1) If g: X = Y is both a cofibration and a homotopy equivalence, then g is
a weak equivalence.
(2) If g: X — Y is both a fibration and a homotopy equivalence, then g is a
weak equivalence.

Proor. We will prove part 1; the proof of part 2 is dual.

If we factor g as X = W L Y where i is a trivial cofibration and p is a
fibration, then the retract axiom (see Definition 7.1.3) implies that it is sufficient
to show that ¢ is a retract of i. If we can show that the dotted arrow ¢ exists in
the diagram

(7.8.4) X —> w
L)
g
Y=—==Y
then we would have the diagram

X=—=X=
N
Y —— W ——

LT/A

which would show that g is a retract of 1. Thus, it is sufficient to find the dotted
arrow ¢ in Diagram 7.8.4. Proposition 7.8.2 implies that there is a map h: Y — X
such that hg = 1x and gh ~ 1y in (X | M). If we let k: Y — W be defined by
k = ih, then kg = i, and pk = pih = gh ~ 1y in (X | M). The homotopy lifting
property (see Proposition 7.3.11) of the fibration p in the category (X | M) now
implies that k is homotopic in (X | M) to a map q: ¥ — W such that pg =1y. O

><

L.<
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THEOREM 7.8.5. Let M be a model category. If X and Y are cofibrant-fibrant
objectsin M and g: X — Y is a homotopy equivalence, then g is a weak equivalence.

Proor. If we factor g as X 2, W % Y where h is a cofibration and k is a
trivial fibration, then the “two out of three” property of weak equivalences iraplies
that it is sufficient to show that h is a weak equivalence. Since W is also cofibrant-
fibrant, Proposition 7.8.3 implies that it is sufficient to show that h is a homotopy
equivalence.

If g7': Y — X is a homotopy inverse for g, then let 7: W — X be defined by
r = g7 'k. Since rh = g7 'kh = ¢"'g ~ 1x, it is sufficient to show that hr ~ ly.
Proposition 7.5.9 and Theorem 7.4.9 imply that k induces an isomorphism of sets
k.: 7(X,W) = n(X,Y). Since khr = gr = gg~k =~ k, this implies that hr ~
lw. a

THEOREM 7.8.6. Let M be a model category and let f: X — Y be a map in
M.

(1) If X and Y are cofibrant, then f is a weak equivalence if and only if for
every fibrant object Z of M the induced map of homotopy classes of maps
f*:w(Y,Z) - n(X,Z) (see Notation 7.5.2) is an isomorphism.

(2) If X and Y are fibrant, then f is a weak equivalence if and only if for
every cofibrant object W of M the induced map of homotopy classes of
maps f.: 7(W, X) — n(W,Y) is an isomorphism.

PRrOOF. We will prove part 1; the proof of part 2 is dual.

_One direction of part 1 follows from Corollary 7.7.4. For the converse, let
f: X = ¥ be a cofibrant fibrant a.pprommatlon to f (see Definition 8.1.22). Prop-
osition 7.5.9 implies that f: X — ¥ also induces an isomorphism of homotopy
classes of maps f*: (Y, Z) — 7r(X, Z) for every fibrant object Z of M, and the
“two out of three” axiom for weak equivalences (see Definition 7.1.3) implies that
it is sufficient to show that f is a weak equivalence. This follows from Proposi-
tion 7.5.12 and Theorem 7.8.5. a

7.9. The equivalence relation generated by “weak equivalence”

The equivalence relation on objects of a model category generated by the re-
lation “there is a weak equivalence from the first object to the second object” is
made concrete by the notion of a zig-zag of weak equivalences (see Definition 7.9.1
and Definition 7.9.2). Zig-zags can also used to describe the maps in the localized
category (see [5, Appendix]).

DEFINITION 7.9.1. Let X be a category and let 'W be a class of maps in X.

(1) If X and Y are objects in X and n > 0, then a zig-zag of elements of W
of length n from X to Y is a diagram of the form

fnl

XL,WI(.fiWZQ,...4_‘_p1/'7l 1_,y

where
(a) each f; is an element of W,
(b) each f; can point either to the left or to the right, and
(c) consecutive f;’s can point in either the same direction or in opposite
directions.
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(2) If X, Y, and Z are objects in X and

xtow L Ity Py and v SV 2L Sy g

are, respectively, a zig-zag in W from X to Y and a zig-zag in W from ¥
to Z, then the composition of those zig-zags is the zig-zag in W of length
n+k from X to Z

fn-1
Pl

f f2 fn 91 92 k-1 ¢
X——l—) 16— " Wn—l"—’ ———>V14—---<—Vk_1-g-k—»Z

DEFINITION 7.9.2. Let M be a model category.

(1) If X and Y are objects in M, then X and Y are weakly equivalent if there
is a zig-zag of weak equivalences from X to ¥ (see Definition 7.9.1).

(2) If € is a category and F and G are functors from € to M, then F and G
are naturelly weakly equivalent if there is an integer n > 0 and functors
Wi, Wa, ..., W, from € to M such that for every object A in € there is
a natural zig-zag of weak equivalences

F(A) 5 W, (4) & Wy(4) S Wi(a) < - S w,(4) & G4)
from F(A) to G(4).

7.10. Topological spaces and simplicial sets

7.10.1. Categories of topological spaces. There are several different cat-
egories of topological spaces in common use, and any of these is acceptable for our
purposes.

NoTaTiON 7.10.2. We will use Top to denote some category of topological
spaces with the following properties:

(1) Top is closed under small colimits and small limits.

(2) Top contains among its objects the geometric realizations of all simplicial
sets.

(3) If X and Y are objects of Top and K is a simplicial set, then there is a
natural isomorphism of sets

Top(X x |K|,Y) ~ Top(X,Y!¥1) .

Thus, the reader is invited to assume that Top denotes, e.g.,

e the category of compactly generated Hausdorff spaces (see, e.g., [62]), or

o the category of compactly generated weak Hausdorff spaces (see, e.g., [37,
Appendix Al]), or

» some other category of spaces with our three properties (see, e.g., [63]).

The category of all topological spaces has Properties 1 and 2 of Notation 7.10.2,
but not Property 3. Property 3 is needed only when we want to assume that Top
is a simplicial model category (see Definition 9.1.6), though, and so if we want to
consider Top as only a model category, then the reader can also choose to let Top
denote the category of all topological spaces. Chapters 1 and 2 assume that Top
is a simplicial model category, and so, technically, the category of all topological
spaces is not acceptable there. In fact, though, the work in Chapters 1 and 2 only
requires that the adjointness isomorphism in Property 3 exists for finite simplicial
sets K. Since the realization of a finite simplicial set is locally compact, this makes
the category of all topological spaces an acceptable definition of Top for Chapters



7.10. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 135

1 and 2 (see, e.g., [29, page 265] or [50, page 287]), although many arguments
would have to be rephrased so as not to claim that the adjointness isomorphism in
Property 3 exists for an arbitrary simplicial set K.

REMARK 7.10.3. Our definition of a simplicial model category (see Defini-
tion 9.1.6) differs from that of Quillen ([52]) in that we require that we have the
adjointness isomorphism in Property 3 of Notation 7.10.2 for all simplicial sets K,
while Quillen requires it only for finite simplicial sets K. Quillen proves that with
his definition the category of all topological spaces is a simplicial model category
(62, Chapter II, Section 3].

7.10.4. The model category structures. We will be working both with
topological spaces and with simplicial sets, and for each of these we will consider
both the category of pointed spaces and the category of unpointed spaces.

NOTATION 7.10.5. We will use the following notation for our categories of
spaces:
SS : The category of (unpointed) simplicial sets.
SS. : The category of pointed simplicial sets.
Top : The category of (unpointed) topological spaces.
Top,: The category of pointed topological spaces.

There is a model category structure on each of these categories of spaces:

DEFINITION 7.10.6. If f: X — Y is a map of topological spaces, then

e f is a weak equivalence if f induces an isomorphism of path components
and an isomorphism of homotopy groups fu: mn (X, zo) = ma (Y, f(xo)) for
all n > 1 and every choice of basepoint xg in X,

e f is a fibration if it is a Serre fibration, and

e fisa cofibration if it has the left lifting property with respect to all maps
that are both fibrations and weak equivalences.

DeriNiTION 7.10.7. If f: X — Y is a map of pointed topological spaces, then

o fis a weak equivalence if it is a weak equivalence of unpointed topological
spaces when you forget about the basepoints,

e f is a fibration if it is a fibration of unpointed topological spaces when
you forget about the basepoints, and

e fis a cofibration if it has the left lifting property with respect to all maps
that are both fibrations and weak equivalences.

DerFiNITION 7.10.8. If f: X — Y is a map of simplicial sets, then
o f is a weak equivalence if its geometric realization |f|: |X| — |Y] is a
weak equivalence of topological spaces,
e fisa fibration if it is a Kan fibration, i.e., if it has the right lifting property
with respect to the map A[n, k] — A[n] for alln > 0 and 0 < k < n, and
e fis a cofibration if it has the left lifting property with respect to all maps
that are both fibrations and weak equivalences.

DEeFINITION 7.10.9. If f: X — Y is a map of pointed simplicial sets, then

e fis a weak equivalence if it is a weak equivalence of unpointed simplicial
sets when you forget about the basepoints,
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e f is a fibration if it is a fibration of any simplicial set when you forget
about the basepoints, and

e fis a cofibration if it has the left lifting property with respect to all maps
that are both fibrations and weak equivalences.

The following four theorems assert the existence of the standard model category
structures for the categories of topological spaces and simplicial sets (both pointed
and unpointed). The proofs are surprisingly long, and we will not present them
here. The original proofs are due to Quillen [52, Chapter II, Section 3], but more
detailed and readable versions can be found in the works by Hovey [42, Section 2.4
and Chapter 3], Dwyer and Spalinski {35, Section 8|, and Goerss and Jardine [39,
Chapter I].

THEOREM 7.10.10. The category Top (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.6 is a model category. In
this model category,

e a map Is a fibration if and only if it has the right lifting property with
respect to the maps |An, k]| — |A[n]| for all n > 0 and 0 < k < n, and

e a map Is a trivial fibration if and only if it has the right lifting property
with respect to the maps |0A[n]| — |A[n]| for alln > 0.

THEOREM 7.10.11. The category Top, (see Notation 7.10.5) with weak equiv-
alences, fibrations, and cofibrations as in Definition 7.10.7 is a model category. In
this model category,

e a map is a fibration if and only if it has the right lifting property with
respect to the maps |Aln, k||t — |Aln]|* foralln > 0and 0 < k < n,
and

e a map is a trivial fibration if and only if it has the right lifting property
with respect to the maps |0A[n]|* — |A[n]|* for all n > 0.

THEOREM 7.10.12. The category SS (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.8 is a model category. In
this model category,

e a map is a fibration if and only if it has the right lifting property with
respect to the maps An,k] — Aln] foralln >0 and 0 < k < n, and

e a map is a trivial fibration if and only if it has the right lifting property
with respect to the maps 8A[n] — Aln] for all n > 0.

THEOREM 7.10.13. The category SS. (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.9 is a model category. In
this model category,

e a map Is a fibration if and only if it has the right lifting property with
respect to the maps A[n, k|t — A[n]|* for alln >0 and 0 < k < n, and

e a map is a trivial fibration if and only if it has the right lifting property
with respect to the maps 8A[n|t — Aln|t for alln > 0.



CHAPTER 8
Fibrant and Cofibrant Approximations

A cofibrant approzimation to an object X is a cofibrant object X weakly equiv-
alent to X; dually, a fibrant approzimation to an object Y is a fibrant object 12
weakly equivalent to Y (see Definition 8.1.2). Cofibrant and fibrant approximations
are among the most fundamental tools in homotopy theory because

e maps that are “expected” to exist often exist only when the domain is
cofibrant and the codomain is fibrant and,

e since weak equivalences become isomorphisms in the homotopy category,
a cofibrant or fibrant approximation to an object is isomorphic to that
object in the homotopy category.

For example, (left or right) homotopy is an equivalence relation on the set of maps
from X to Y when X is cofibrant and Y is fibrant (see Theorem 7.4.9), and we use
this in Section 8.3 to construct the homotopy category HoM of a model category
M by defining Ho M(X,Y) to be the set of homotopy classes of maps in M from X’
to Y/, where X’ and Y’ are cofibrant-fibrant objects weakly equivalent to X and
Y respectively (see the proof of Theorem 8.3.5).

In the category of topological spaces every object is fibrant, and a CW-approx-
imation to a space X (i.e., a CW-complex weakly equivalent to X) is a cofibrant
approximation to X. In the category of simplicial sets every object is cofibrant, and
a Kan complex weakly equivalent to X (e.g., the total singular complex of the geo-
metric realization of X) is a fibrant approximation to X. When doing homological
algebra, a resolution of an object is a cofibrant or fibrant approximation in a model
category of simplicial or cosimplicial objects (see, e.g., [55] or [52, Chapter II,
Section 4]). When constructing function complexes in a model category (see Chap-
ter 17), a resolution of an object is a cofibrant or fibrant approximation in yet a
different model category of cosimplicial or simplicial objects (see Definition 16.1.2).

In Section 8.1 we define cofibrant and fibrant approximations and show that
they are unique up to a weak equivalence (see Proposition 8.1.9 and Proposi-
tion 8.1.19); stronger uniqueness theorems will follow in Chapter 14 (see Prop-
osition 14.6.3 and Theorem 14.6.9). We discuss approximations and homotopy
relations in Section 8.2, and in Section 8.3 we construct the homotopy category of
a model category.

In Section 8.4 we discuss (left and right) derived functors, which are func-
tors induced on the homotopy category of a model category by a functor on the
model category. In Section 8.5 we discuss Quillen functors, which are the use-
ful functors between model categories. Quillen functors arise in adjoint pairs (see
Definition 8.5.2); the left Quillen functor induces a total left derived functor (see
Definition 8.4.7) between the homotopy categories and the right Quillen functor
induces a total right derived functor in the opposite direction. We show that the

137
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total left derived functor of the left Quillen functor and the total right derived
functor of the right Quillen functor are an adjoint pair of functors between the
homotopy categories (see Theorem 8.5.18). We also define Quillen equivalences,
which are Quillen functors satisfying an additional condition (see Definition 8.5.20)
that implies that their total derived functors are equivalences of categories between
the homotopy categories.

8.1. Fibrant and cofibrant approximations
8.1.1. Approximations to objects.

DerFINITION 8.1.2. Let M be a model category.
(1) (a) A cofibrant approzimation to an object X is a pair ()?, 1) where X is
a eofibrant object and ¢: X — X is a weak equivalence.
(b) A fibrant cofibrant approzimation to X is a cofibrant approximation
(X, 1) such that the weak equivalence i is a trivial fibration.
We will sometimes use the term cofibrant approzimation to refer to
the object X without explicitly mentioning the weak equivalence 1.
(2) (a) A fibrant approzimation to an object X is a pair ()? ,j) where X is
a fibrant object and j: X — X is a weak equivalence.
(b) A cofibrant fibrant approzimation to X is a fibrant approximation
()? ,7) such that the weak equivalence j is a trivial cofibration.
We will sometimes use the term fibrant approzimation to refer to the
object X without explicitly mentioning the weak equivalence 7.

ProposITION 8.1.3. If M is a m~odel category, then every object X has both a
fibrant cofibrant approximation i: X — X and a cofibrant fibrant approximation
X=X

Proor. Factor the map § — X (where 0 is the initial object of M) into a

cofibration followed by a trivial fibration and factor the map X — x (where * is
the terminal object of M) into a trivial cofibration followed by a fibration. O

DEFINITION 8.1.4. Let M be a model category and let X be an object of M.

(1) If (X,1) and (X', ') are cofibrant approximations to X, a map of cofibrant
appm:czmatwns from (X i) to (X’ i') is a map g: X — X’ such that
i'g =1.

(2) ¥ (X,7) and (X', j') are fibrant approximations to X, a map of fibrant
app'rozzmatw'n.s from (X j) to (X’,j) is a map g¢: X — X' such that
9i=17"

LEMMA 8.1.5. Let M be a model category and let X be an object of M.

(1) If (X,3) and (X',i') are cofibrant approximations to X and g: X — X'
is a map of cofibrant approximations, then g is a weak equivalence.

(2) If (X,j) and (X', j’) are fibrant approximations to X and g: X — X' is
a map of fibrant approximations, then g is a weak equivalence.

PrOOF. This follows from the “two out of three” axiom for weak equivalences
(see Definition 7.1.3). m]

LeEMMA 8.1.6. Let M be a model category and let X be an object of M.
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(1) If (X,4) is a fibrant cofibrant approximation to X (see Definition 8.1.2)
and g: W — X is a map from a cofibrant object W, then there is a map
¢: W — )A(:, unique up to homotopy over X (see Definition 7.6.7), such
that i¢ = g.

(2) If ()’f,j) is a cofibrant fibrant approximation to X and g: X — Y is a
map to a fibrant object Y, then there is a map ¢: X - Y, unique up to
homotopy under X, such that ¢j = g.

ProoF. This follows from Proposition 7.6.13. 3

PROPOSITION 8.1.7. Let M be a model category and let X be an object of M.
(1) If(X,3) is a cofibrant approximation to X and (X', i) is a fibrant cofibrant
approximation to X, then there is a map of cofibrant approximations
g: X — X', unique up to homotopy over X (see Definition 7.6.7), and
any such map ¢ is a weak equivalence.
(2) If (X,5) is a cofibrant fibrant approximation to X and (X’,j') is a f-
brant approximation to X, then there is a map of fibrant approximations
g: X - )’f’, unique up to homotopy under X, and any such map g is a
weak equivalence.

PRrOOF. This follows from Proposition 8.1.6 and Lemma 8.1.5. ]

COROLLARY 8.1.8. Let M be a model category and let X be an object of M.

(1) If()?, 1) and ()A(", 1') are fibrant cofibrant approximations to X, then there
is a map of cofibrant approximations g: X — X', unique up to homotopy
over X (see Definition 7.6.7), and any such map g is a homotopy equiva-
lence over X.

(2) If(X ) and (X', j') are cofibrant fibrant t approximations to X, then there
is a map of fibrant approximations g: X - X’ unique up to homotopy
under X, and any such map g is a homotopy equivalence under X.

Proor. This follows from Proposition 8.1.7. ]

PROPOSITION 8.1.9. Let M be a model category and let X be an object of M.
(1) If (X,4) and (X',') are cofibrant approximations to X, then X and e
are weakly equivalent (see Definition 7.9.2) over X.
(2) If (X, 7) and (X', j') are fibrant approximations to X, then X and X' are
weakly equivalent under X.

Proor. This follows from Proposition 8.1.3 and Proposition 8.1.7. ]

REMARK 8.1.10. We will show in Proposition 14.6.3 that there is an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences between any two
cofibrant approximations to the same object (or between any two fibrant approxi-
mations to the same object).

8.1.11. Augmented and coaugmented functors.

DEFINITION 8.1.12. Let M be & model category.

(1) An augmented functor on M is a pair (F,1) where F is a functor F: M - M
and 7 is a natural transformation i: F — 1.
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(2) A coaugmented functor on M is a pair (G, j) where G is a functor G: M —
M and j is a natural transformation j: 1 — G.

DEFINITION 8.1.13. Let M be a model category.

(1) An augmented functor (F, %) on M will be called homotopy idempotent if
for every object X in M the natural maps ipx,F(ix): FFX — FX are
homotopic over X (see Definition 7.6.7) and are homotopy equivalences
over X.

(2) A coaugmented functor (G, j) on M will be called homotopy idempotent if
for every object X in M the natural maps jgx,G(jx): GX — GGX are
homotopic under X (see Definition 7.6.7) and are homotopy equivalences
under X.

REMARK 8.1.14. Definition 8.1.13 is the lifting to M of J. F. Adams’ notion of
an idempotent functor on the homotopy category of M (see [2]).

DEFINITION 8.1.15. Let M be a model category.

(1) (a) A functorial cofibrant approzimation on M is an augmented functor
(F,?) on M such that ix: FX — X is a cofibrant approximation to
X for every object X of M.

(b) A functorial fibrant cofibrant approzimation on M is a functorial cofi-
brant approximation such that ix is a trivial fibration for every object
X of M.

(c) If X is a subcategory of M, then a functorial cofibrant approzimation
on X is a pair (F,1) in which F: X — M is a functor and i is a natural
transformation such that ix: FX — X is a cofibrant approximation
to X for every object X of X.

(2) (a) A functorial fibrant approzimation on M is a coaugmented functor
(G, j) on M such that jx: X — GX is a fibrant approximation to X
for every object X of M.

(b) A functorial cofibrant fibrant approzimation on M is a functorial fi-
brant approximation such that jx is a trivial cofibration for every
object X of M.

(c) If X is a subcategory of M, then a functorial fibrant approzimation on
X is a pair (G, j) in which G: X — M is a functor and j is a natural
transformation such that jx: X — GX is a fibrant approximation
to X for every object X of X.

PROPOSITION 8.1.16. Let M be a model category.

(1) A functorial fibrant cofibrant approximation (F,i) on M is homotopy
idempotent.

(2) A functorial cofibrant fibrant approximation (G,j) on M is homotopy
idempotent.

PrOOF. We will prove part 1; the proof of part 2 is dual.
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Since ¢ is a natural transformation, for every object X of M we have a commu-
tative square

FFX —X L FXx

F(ix)J sz

Since i1x is a trivial fibration and FFX is cofibrant, Proposition 7.5.9 implies that

1FX 4 F(ix) m (M} X). Since both of FX and FFX are both cofibrant and
fibrant in (M | X), Theorem 7.4.9 implies that ipx ~ F(ix) in (M ] X), and so
Theorem 7.5.10 implies that ipx and F(ix) are homotopy equivalences in (M | X).

a

PROPOSITION 8.1.17. If M is a model category and X is a subcategory of
M, then there is a functorial fibrant cofibrant approximation on X (see Defini-
tion 8.1.15) and a functorial cofibrant fibrant approximation on X.

PROOF. This follows from applying part 1 of the factorization axiom (see Defi-
nition 7.1.3) to the map from the initial object and part 2 of the factorization axiom
to the map to the terminal object. ]

DEeFINITION 8.1.18. Let M be a model category and let X be a subcategory of
M.

(1) If (F,%) and (F',%') are functorial cofibrant approximations on X (see
Definition 8.1.15), a map of functorial cofibrant approzimations from (F, )
to (F',') is a natural transformation ¢: F — F’ such that i'¢ = 1.

(2) If (G, 7) and (G, 5’) are functorial fibrant approximations on X (see Def-
inition 8.1.15), a map of functorial fibrant approzimations from (G, j) to
(G’,7") is a natural transformation ¢: G — G’ such that ¢j = 7.

PropoSITION 8.1.19. Let M be a model category and let X be a subcategory
of catM.

(1) If iy (X): C1(X) — X and ip(X): Co(X) — X are natural cofibrant ap-
proximations defined on X, then 61(—) and Co(-) are naturally weakly
equivalent (see Definition 7.9.2).

(2) ¥ 51(X): X — Fy(X) and jo(X): X — Fy(X) are natural fibrant ap-
proximations defined on X, then f‘l(—-) and f‘g(—) are naturally weakly
equivalent.

PROOF. We will prove part 1; the proof of part 2 is dual.

If we choose a natural fibrant cofibrant approximation i(X): C(X) — X for
every object X in X (see Proposition 8.1.17), then it is sufficient to show that each
of Cy(—) and Ca(~) is naturally weakly equivalent to C(=). We will do this for
61(—); the proof for Cy(—) is the same.
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For every object X in X, we construct the pullback square

X) ~
P, (x) 22 & (x)
—

J1(X) JVH(X)

C(X) X
and then we choose a functorial cofibrant approximation k(X): P;(X) — P1(X) to
P1(X). Since i(X) is a trivial fibration, so is j(X), and so the “two out of three”

axiom (see Definition 7.1.3) implies that j;(X) is also a weak equivalence. Thus,

C1(X) HXORX) Py(X) B (XOk(X) é(X) is a natural zig-zag of weak equivalences
of cofibrant approximations to X. O

REMARK 8.1.20. We will show in Theorem 14.6.9 that any two functorial cofi-
brant approximations are connected by an essentially unique zig-zag (see Defini-
tion 14.4.2) of weak equivalences.

8.1.21. Approximations to maps.

DEFINITION 8.1.22. Let M be a model category.

(1) (a) A cofibrant approzimation to a map g: X — Y consists of a cofibrant
approximation (X,ix) to X (see Definition 8.1.2), a cofibrant approx-
imation (f’,iy) to Y, and a map §: X — Y such that iy =gix.

(b) A fibrant cofibrant approzimation to a map g: X — Y is a cofibrant
approximation to g in which the cofibrant approximations (X ,ix)
and (?,iy) are fibrant cofibrant approximations.

We will sometimes use the term cofibrant approzimation to refer to the

map § without explicitly mentioning the cofibrant approximations ()? ix)

and (}7, iy).

(2) (a) A fibrant approzimation to a map g: X — Y consists of a fibrant
approximation (X, jx) to X (see Definition 8.1.2), a fibrant approx-
imation (?,jy) to Y, and a map §: X — ¥ such that dix = jyg-

(b) A cofibrant fibrant approzimation to a map g: X — Y is a fibrant
approximation to g in which the fibrant approximations ()’(\ ,jx) and
(¥, jy) are cofibrant fibrant approximations.

We will sometimes use the term fibrant approzimation to refer to the

map § without explicitly mentioning the fibrant approximations ()? 2 ix)

and (¥, jy).

PRrOPOSITION 8.1.23. Let M be a model category.

(1) Every map g: X — Y has a natural fibrant cofibrant approximation
g: X — Y such that g is a cofibration.

(2) Every map ¢g: X — Y has a natural cofibrant fibrant approximation
g: X — Y such that g is a fibration.

PRrOoF. We will prove part 1; the proof of part 2 is similar.
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Choose a natural fibrant cofibrant approximation (X, ix) to X, and then choose

a natural factorization of the composition giy : XoYasXL7 XY where g
is a cofibration and iy is a trivial fibration. 0

ProposiTiON 8.1.24. Let M and N be model categories, let g: X — Y be a
map in M, and let F: M — N be a functor.

(1) If ¥ takes trivial cofibrations between cofibrant objects in M into weak
equivalences in N and there is a cofibrant approximation §: X Y to g
(see Definition 8.1.22) such that F(g) is a weak equivalence, then F takes
every cofibrant approximation to g into a weak equivalence.

(2) IfF takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N and there is a fibrant approximation §: XYt g (see
Definition 8.1.22) such that F(§) is a weak equivalence, then F takes ev-
ery fibrant approximation to g into a weak equivalence.

Proor. We will prove part 1; the proof of part 2 is dual.

Proposition 8.1.23 implies that we can choose a cofibrant apprommatlon g X -
Y’ to g such that the weak equivalences 7 : X’ — X and i} : ¥/ — Y are trivial
fibrations. It is sufficient to show that if j: X — Y is some other cofibrant ap-
proximation to g, then F(g) is a weak equivalence if and only if F(§') is a weak
equivalence.

If g: X — Y is some other cofibrant approximation to g, then we have the solid
arrow diagram

-;

I3

~

> Pl

}'7/
in which i’y and 1}, are trivial fibrations and ix and iy are weak equivalences. Prop-
osition 8.1.7 implies that there are weak equivalences hy : X — X' and hy: 1 7
such that ilxhx = ix a.nd ilyhy = iy. Thus, i/y?]’hX = gilxhx = gix = iy_(} =
iy hy . Since i3, is a trivial fibration and X is cofibrant, Proposition 7.5.9 implies
that §’hx is left homotopic to hy §, and so Lemma 7.7.7 implies that F(§'hx) is a
weak equivalence if and only if F(hy §) is a weak equivalence. Since Corollary 7.7.2
implies that F(hx) and F(hy) are weak equivalences, the “two out of three” axiom

for weak equivalences (see Definition 7.1.3) implies that F(§’) is a weak equivalence
if and only if F(§) is a weak equivalence. O

PROPOSITION 8.1.25. Let M be a mode] category.

(1) Ifg: X > Y isamap in M, X — X is a cofibrant approximation to X,
and Y — Y is a fibrant cofibrant approximation to Y, then there exists a
cofibrant approximation §: XY to g, and g is unique up to homotopy
over Y.

(2) If g: X - Y isamap inM, X — X is a cofibrant fibrant approximation
to X, and Y — Y is a fibrant approximation to Y, then there exists a
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fibrant approximation §: XY to g, and § Is unique up to homotopy
under X.

Proor. This follows from Proposition 7.6.13. ]

DEerINITION 8.1.26. Let M be a model category and let g: X — Y be a map
in M.

1) If ((X,ix), (Y,iy),§: X — ¥) and ((X’,é%), (Y, %),5': X' — ¥') are
cofibrant_approximations to g, then a map of coﬁbmnt approzzmatwns
from ((X ix), (Y, iy), Yk X - Y) to ((X’ ), (Y, 1,),5: X' — ¥
consists of maps hy: X - X" and hy: Y — ¥/ such that the diagram

commutes. N N N N N N

@) If ((X,4x),(Y,5v),5: X = ¥) and (X',5%), (Y, 5%),8": X' = V") are
fibrant approximations to g, then a map ofAﬁbmnt approzimations from
((X,5x), (¥, 3v),3: X = ¥) to (X, 5%), (¥, 3%),§': X' — ¥') consists
of maps hx: X — X' and hy: ¥ — ¥’ such that the diagram

\ /[

)
>

UL
)
N
.
s

commutes.

REMARK 8.1.27. We will show in Proposition 14.6.6 that any two cofibrant ap-
proximations (or fibrant approximations) to a map are connected by an essentially
unique zig-zag of weak equivalences.

8.2. Approximations and homotopic maps

LEMMA 8.2.1. Let M be a model category, let X I X — Cyl(X) — X be a
cylinder object for X, and let X — Path(X) — X x X be a path object for X.

(1) Ifs: X — X is a fibrant cofibrant approximation to X, then
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(a) there is a cylinder object XI1X — Cyl(X) — X for X and a diagram

XuX—C(X)— X

IUIJV J’Cyl(i) lz

Xax —GCGil(X)— X

such that Cyl(i): Cyl(X) — Cyl(X) is a fibrant cofibrant approxi-
mation to Cyl(X), and_ _ o N
(b) there is a path object X — Path(X) — X x X for X and a diagram

(8.2.2) X —Path(X) — ¥ x X

zJV J’Path(i) Jvixi

X — Path(X) — X x X

such that Path(i): Path(X) — Path(X) is a fibrant cofibrant ap-
proximation to Path(X) and the right hand square of Diagram 8.2.2
isa pullback.
(2) If : X — X Is a cofibrant fibrant approximation to X, then
(a) there is a cylinder object X11X — Cyl()?) — X for X and a diagram

(8.2.3) XUX —Cyl(X) — X

jujj, J’Cyl(j) J.’i

fux—cyX)— X

such that Cyl(j): Cyl(X) — Cyl(X) is a cofibrant fibrant approx-
imation to Cyl(X) and the left hand square of Diagram 8.2.3 is a
pushout, and R R

(b) there is & path object X — Path(X) — X x X for X and a diagram

X —Path(X) — X x X

jJ, J’Path(j) J,jxj

X —Path(X)— X x X

such that Path(j): Path(X) — Path(X) is a cofibrant fibrant ap-
proximation to Path(X).
ProoF. We will prove part 1; the proof of part 2 is dual.

Factor the composition X 1X — XTI X — Cyl(X) as XII.X LA Cyl(f)
Cyl(X) where k is a cofibration and Cyl(i) is a trivial fibration. Since 1 is a trivial
fibration, the dotted arrow ¢ exists in the solid arrow diagram

Cyl(z)
—_—

lzulsy

Xux 3 X
L
Cyl(X) —X

—— Cyl(X)
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and the “two out of three” axiom for weak equivalences (see Definition 7.1.3) implies
that ¢ is a weak equivalence. o

If we let Path(X) be the pullback Path(X) X(xxx) (X X X), then we have the
solid arrow diagram

Igxlx

r Y
X " oPath(X)— X x X

‘zl JvPath(z) ij‘i

X ——Path(X) — X x X

and the universal mapping property of the pullback implies that the dotted arrow
7 exists. Since i is a trivial fibration, so is i X 1, and so Path(i) (which is a pullback
of i x 1) is a trivial fibration. The “two out of three” axiom for weak equivalences
(see Definition 7.1.3) now implies that 7 is a weak equivalence. a

PROPOSITION 8.2.4. Let M be a model category, and let f,g: X — Y be maps.

(1) Iff,5: X — Y are fibrant cofibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then
fandg g are, respectively, left homotopic, right homotopic, or homotopic.

(2) If f.a: X — Y are cofibrant fibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then
f and § are, respectively, left homotopic, right homotopic, or homotopic.

ProoOF. We will prove part 1; the proof of part 2 is dual.

If f and g are left homotopic, let X I X — Cyl(X) — X be a cylinder
object for X such that there is a left homotopy H: Cyl(X) — Y from f to g. If
XX - Cyl()?) — X is the cylinder object of Lemma 8.2.1, then we have the
solid arrow diagram

fug

>

ux 3y
Lo
Cyl( X ) — Cyl(X) = Y
Since }_7 — Y is a trivial fibration, the dotted arrow H exists, and is a left homotopy
from f to g.

If f and g are right homotopic, let Y — Path(Y) — Y x Y be a path object
for Y such that there is a right homotopy K: X ~ Path(Y) from f to g. If

Y — Path(Y) — Y x Y is the path object of Lemma 8.2.1, then we have the solid
arrow diagram

fxg
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Since the right hand square is a pullback, the dotted arrow K exists and is a right
homotopy from f to §. 0

8.3. The homotopy category of a model category

DerINITION 8.3.1. If M is a category and W is a class of maps in M, then a
localization of M with respect to W is a category LywM and a functor v: M — LywM
such that

(1) if w € W, then y(w) is an isomorphism, and

(2) if N is a category and ¢: M — N is a functor such that ¢(w) is an
isomorphism for every w in ‘W, then there is a unique functor é: LywyM —
N such that vy = ¢.

The usual argument shows that if a localization of M with respect to W exists,
then it is unique up to a unique isomorphism. Thus, we will speak of the localization
of M with respect to W. We will often refer to the category LwM as the localization
of M with respect to W, without explicitly mentioning the functor ~.

DEFINITION 8.3.2. If M is a model category, then the Quillen homotopy cate-
gory of M (which we will also call the homotopy category of M) is the localization of
M with respect to the class of weak equivalences, which we denote by v: M — HoM.

REMARK 8.3.3. If M is a small category, then the localization of M with respect
to any class W of maps in M exists. This is because we can construct the maps of
the localization using generators and relations to add inverses for the elements of
‘W, and we can be sure that there will only be a set of maps between two objects of
M because there is only a set of maps in all of M to begin with. If M is not small,
though, then using generators and relations might lead to a proper class of maps
between some pair of objects, in which case we would not have a category.

Restating this in terms of universes (see, e.g., [60, page 17]): If we start in a
fixed universe U, then we can attempt to construct the localization of a U-category
M with respect to a class of maps W using generators and relations. If M is not
small, though, then we could only be sure of constructing a category in some higher
universe U’. The statement that “the localization of M with respect to W exists”
is the statement that there is a category in our original universe U that is the
localization of M with respect to W.

We will show that the Quillen homotopy category of a model category M exists
(see Theorem 8.3.5) and that it is equivalent to the classical homotopy category of
M (see Definition 7.5.8 and Theorem 8.3.9). To do this, we will not use the method
of generators and relations. Instead, we will construct the set of maps between two
objects in the localization by starting with the set of maps between two objects in
the original category, and dividing that set by an equivalence relation. Thus, we
will be sure of having only a set of maps between any pair of objects.

LEMMA 8.3.4. Let M be a model category, let N be a category, and let ¢: M —
N be a functor that takes weak equivalences in M to isomorphisms in N. If

fr9: X — Y are maps in M such that either f 4 gorfZyg (see Definition 7.3.2),
then o(f) = p(g).

. ! .
PROOF. We will consider the case f ~ g; the case f < g is stmilar.
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If f ~ g, then there is a cylinder object (see Definition 7.3.2) X IT X -2,
Cyl(X) & X for X and a map H: Cyl(X) — Y such that Hip = f and Hi; = g.
Since p is a weak equivalence, ¢(p) is an isomorphism. Since pig = pi;, this implies
that ¢(io) = @(@1). Thus, p(f) = p(H)e(io) = w(H)p(i1) = ¢(g)- O

Lemma 8.3.4 implies that a functor ¢: M — N that takes weak equivalences
to isomorphisms must identify homotopic maps. Thus, when searching for the
Quillen homotopy category of M (see Definition 8.3.2), a natural object to consider
is the classical homotopy category of M (see Definition 7.5.8). Theorem 7.5.10
implies that if we restrict ourselves to the full subcategory of M spanned by the
cofibrant-fibrant objects, then identifying homotopic maps turns weak equivalences
into isomorphisms, and so the classical homotopy category has the required univer-
sal property restricted to this subcategory. _

To deal with objects that are not cofibrant-fibrant, we note that if X is weakly
equivalent to X and Y is weakly equivalent to Y, then in any category in which
weak equivalences have become isomorphisms the set of maps from X to ¥ will be
isomorphic to the set of maps from X to Y. This suggests that we should choose
X and Y to be cofibrant-fibrant objects weakly equivalent to X and ¥ respectively
and define HoM{X,Y) to be the set of homotopy classes of maps from Xto¥in
M. This is what we shall do to define HoM.

THEOREM 8.3.5. If M is a model category, then the Quillen homotopy category
of M (see Definition 8.3.2) exists.

Proor. Choose a functorial fibrant cofibrant approximation zx : CX — X and
a functorial cofibrant fibrant approximation jx: X — FX for every object X in M
(see Proposition 8.1.17). We define the category HoM as follows:
(1) The objects of HoM are the objects of M.
(2) If X and Y are objects in M, then HoM(X,Y) = n(FCX,FCY) (see
Notation 7.5.2).
(3) If X, Y, and Z are objects in M, then the composition

HoM(Y, Z) x HoM(X,Y) — HoM(X, Z)

is the composition of homotopy classes of maps between cofibrant-fibrant
objects in M

n(FCY,FCZ) x n(FCX,FCY) — n(FCX,FCZ)
(see Theorem 7.5.5).

We define the functor v: M — HoM to be the identity on the class of objects and to
take the map f: X — Y to the homotopy class of the map f‘é(f): FCx — FCY.

If f: X =Y is a weak equivalence in M, then the “two out of three” property
of weak equivalences (see Definition 7.1.3) implies that ﬁé(f) is a weak equivalence,
and so Theorem 7.5.10 implies that ?é(f) is a homotopy equivalence, i.e., ¥(f) is
an isomorphism.

It remains only to show that if ¢: M — N is a functor that takes weak equiv-
alences in M to isomorphisms in N, then there is a unique functor §: HoM — N

such that §y = ¢. Let ¢: M — N be such a functor. For every object X of HoM,
we let §(X) = p(X). If g: X — Y is a map in HoM, then g is 2 homotopy class of
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maps FCXx — FCY in M. Lemma 8.3.4 implies that ¢ takes all elements of that
homotopy class to the same map of N, and so we can let

8(g) = pliv) (elizy)) " e(@)eliax ) (plix)) ™

(where by ¢(g) we mean ¢ applied to some map in the homotopy class g). To see
that § is a functor, we note that an identity map in HoM is a homotopy class of
maps in M containing an identity map, and composition of maps between cofibrant-
fibrant objects of M is well defined on homotopy classes (see Theorem 7.5.5). Thus,
¢ is a functor.

To see that 6y = , we note that v is the identity on objects, and § was
defined to agree with ¢ on objects. If f: X — Y is 2 map in M, then we have the
commutative diagram

Since ¢ takes weak equivalences to isomorphisms in N, we have
() = wliv) (p(isy) e (FCU)elisx) (w(ix)) ™

Since v(f) is the homotopy class of ﬁé(f), this implies that dv(f) = ¢(f).
Finally, to see that § is the unique functor satisfying &y = ¢, we note that

every map of HoM is a composition of maps in the image of v and inverses of the

image under y of weak equivalences of M. 0

THEOREM 8.3.6. If M is a model category, then there is a construction of the
Quillen homotopy category of M (see Definition 8.3.2) v: M — HoM such that if
X and Y are cofibrant-fibrant objects in M, then HoM(v(X),y(Y)) is the set of
homotopy classes of maps in M from X to Y.

ProOF. For every cofibrant object X, let CX = X and let ix: CX — X
be the identity map. For every non-cofibrant object X, factor the map from the
initial object to X into a cofibration followed by a trivial fibration to obtain a
cofibrant. object CX and a trivial fibration ix: CX — X. (In the terminolagy of
Definition 8.1.2, we have chosen a fibrant cofibrant approximation to X.)

For every fibrant object X, let FX = X and let ix: X — FX be the identity
reap. For every non-fibrant abject X, factor the map from X to the terminal object
into a trivial cofibration followed by a fibration to obtain a fibrant object FX and
a trivial cofibration jx : X — FX. (In the terminology of Definition 8.1.2, we have
chosen a cofibrant fibrant approximation to X.)

We define the category HoM as follows:

(1) The objects of HoM are the objects of M.

(2) If X and Y are objects in M, then HoM(X,Y) = n(FCX,FCY) (see
Notation 7.5.2).
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(3) If X, Y, and Z are objects in M, then the composition
HoM(Y, Z) x HoM(X,Y) - HoM(X, Z)

is the composition of homotopy classes of maps between cofibrant-fibrant
objects in M

m(FCY,FCZ) x n(FCX,FCY) — »(FCX,FC2Z)
(see Theorem 7.5.5).
We now define the functor v: M — HoM. We let v be the identity on the class
of objects. For every map f: X — Y in M, we have the solid arrow diagram

g——— oy

J 0] J
1y

CX 2 X —2Y
(where 0 denotes the initial object of M), and we can choose a dotted arrow C( )
that makes the diagram commute. (In the terminology of Definition 8.1.22, 6( fNis
a cofibrant approximation to f.) Proposition 7.5.9 implies that 6( f) is well defined
up to left homotopy, and so Proposition 7.4.8 implies that it is well defined up to
right homotopy. We now have the solid arrow diagram

ey -~

~ G - ~
Cx —Cy —FCy

. l FC() l
Jex .
FCX———*
(vY‘here * denotes the terminal object of M), and we can choose a dotted~a.rrow
FC(f) that makes the diagram commute. Proposition 7.5.9 implies that FC(f) is
well defined up to homotopy, and we define ~v(f) to the the element of n(FCX,FCY)
represented by FC(f) (see Theorem 7.4.9).

To see that v is a functor, we note that for every object X in M Proposition 7.5.9
implies that C(1x) & 1zx, and so C(1x)'= 1y, and so FC(1x) = lazy. Simi-
larly, if f: X — Y and ¢g: Y — Z are maps in M, then Proposition 7.5.9 implies
that C(g)C(f) 4 C(gf), and so FC(g)FC(g) ~ FC(gf). Thus, we have defined the
category HoM and the functor v: M — HoM. The proof that v has the required
universal property is identical to the proof in the case of Theorem 8.3.5. O

PROPOSITION 8.3.7. If M is a model category, then there is a unique isomor-
phism from the category HoM constructed in Theorem 8.3.5 to the category HoM
constructed in Theorem 8.3.6 that commutes with the functors from M.

PROOF. This follows from the universal property of the functors from M. O

THEOREM 8.3.8. If M is a model category, then the classical homotopy category
of M (see Definition 7.5.8) is naturally isomorphic to the full subcategory of the
Quillen homotopy category of M spanned by the cofibrant-fibrant objects.

Proor. This follows from Theorem 8.3.6. a
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THEOREM 8.3.9. If M is a model category, then the classical homotopy category
of M is equivalent to the Quillen homotopy category of M.

PROOF. Let v denote the embedding 7M. — HoM described in Theorem 8.3.6.
To define n: HoM — 7Mcs, let C and F be as in the proof of Theorem 8.3.6. If
X is an object of HoM, let 7(X) = FCX. If X and Y are objects of HoM, then
HoM(X,Y) = W(I?'GX, FCY), and we let 1 be the “identity map” from HoM(X,Y)
to ™M (FCX,FCY).

Since nv is the identity functor of mM, it remains only to define a natu-
ral equivalence § from the identity functor of HoM to vn. If X is an object
of HoM, then vy(X) = FCX, and so HoM(X,vn(X)) = HoM(X,FCX) =
m(FCX,FCFCX) = n(FCX,FCX); we let 6(X): X — vnX be the homotopy
class of the identity map of FCX in M. O

THEOREM 8.3.10. Let M be a model category and let v: M — HoM be the
canonical functor to it's homotopy category. If g: X — Y is a map in M, then g is
a weak equivalence if and only if y(g) is an isomorphism in HoM.

Proor. If g is a weak equivalence, then the definition of HoM implies that
v(g) is an isomorphism. Conversely, if v(g) is an isomorphism, then ﬁC(g) (see
the proof of Theorem 8.3.5) is a homotopy equivalence, and so Theorem 7.8.5 and
the “two out of three” property of weak equivalences implies that g is a weak
equivalence. O

8.4. Derived functors

DEFINITION 8.4.1. Let M be a model category, let € be a category, and let
¢: M — C be a functor.

(1) A left derived functor of ¢ is a functor Lyp: HoM — € together with
a natural transformation ¢: Lp oy — ¢ such that the pair (Ly,€) is
“closest to ¢ from the left”, i.e., such that if G: HoM — € is a functor
and {: Goy — ¢ is a natural transformation, then there is a unique
natural transformation §: G — L such that { = (6o ~).

(2) A right derived functor of ¢ is a functor Re: HoM — C together with
a natural transformation €: ¢ — Ry o+ such that the pair (Ry,€) is
“closest to ¢ from the right”, i.e., such that if G: HoM — € is a functor
and {: y — G o+ is a natural transformation, then there is a unique
natural transformation 8: Ry — G such that { = (6 o y)e.

REMARK 8.4.2. The usual argument shows that if a left derived functor of ¢
exists, then it is unique up to a unigue natural equivalence. Thus, we will speak of
the left derived functor of ¢. A similar remark applies to right derived functors.

REMARK 8.4.3. The left derived functor of ¢: M — C is also known as the
right Kan extension of ¢ along v: M — HoM (see {47, page 232-236]). (Note the
reversal of left and right.) Similarly, the right derived functor of ¢: M — C is also
known as the left Kan extension of ¢ along v: M — HoM.

PROPOSITION 8.4.4. Let M be a model category, let C be a category, and let
w: M — C be a functor.
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(1) If ¢ takes trivial cofibrations between cofibrant objects to isomorphisms
in C, then the left derived functor of ¢ exists.

(2) If p takes trivial fibrations between fibrant objects to isomorphisms in C,
then the right derived functor of ¢ exists.

ProoOF. We will prove part 1; the proof of part 2 is dual.

Let C be as in the proof of Theorem 8.3.5. We define a functor D: M — €
as follows: If X is an object of M we let D(X) = ¢(CX), and if f: X — Y is
a map in M we let D(f) = w(é(f)) To see that D is a functor, we note that
C(lx) = lcx and s0 D(lx) =lpx,andif f: X - Y and g: Y — Z are maps in
M, then C(g)C(f) = C(gf), and so D(g)D(f) = D(gf).

If f: X — Y is a weak equivalence in M, then C(f) is a weak equivalence
between cofibrant objects, and so Corollary 7.7.3 implies that D(f) is an iso-
morphism. Thus, the universal property of HoM (see Definition 8.3.2 and Def-
inition 8.3.1) implies that there is a unique functor Ly: HoM — C such that
Lp oy = D. We define a natural transformation e: Lpoy — ¢ by letting
e(X) = p(ix): Lp o y(X) = D(X) = ¢(CX) — (X). We will show that the
pair (L, €) is the left derived functor of ¢.

If G: HoM — € is a functor and ¢: G oy — ¢ is a natural transformation,
then we have the solid arrow diagram

(8.4.5) Goy(CX) —— ¢(CX) = (Lpo)(X)
6(X) i
(GM)(W{ qua(ix)=e(x)
G ———) X
ov(X) o0 p(X)

and so we define a natural transformation 8: G — Ly by letting 8(X) = (((EZX)) o
{(Go 'y)(ix))_l. If X is cofibrant, then w(ix) is an isomorphism, and so 6(X)

is the only possible map that makes Diagram 8.4.5 commute. Since CX =~ X for
every object X in HoM, this implies the uniqueness of 8 in general. O

8.4.6. Total derived functors.

DEFINITION 8.4.7. Let M and N be model categories and let p: M — N be a
functor.

(1) A total left derived functor of v is a left derived functor (see Defini-
tion 8.4.1) of the composition M £ N “% HoN. Thus, a total left
derived functor of ¢ is a functor Ly: HoM — HoN together with a nat-
ural transformation e: Ly o v — v o @ such that the pair (Ly,¢) is
“closest to v o ¢ from the left” (see Definition 8.4.1). We will often re-
fer to Ly: HoM — HoN as the total left derived functor of v, without
explicitly mentioning the natural transformation e.

A total -right derived functor of v is a right derived functor of the com-
position M 2 N *Z HoN. Thus, a total right derived functor of ¢
is a functor Ry: HoM — HoN together with a natural transformation
€: vy oyp — Ryowvy such that the pair (Ry,¢) is “closest to vy o from
the right” (see Definition 8.4.1). We will often refer to Ry: HoM — HoN

—
™o
~—
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as the total right derived functor of ¢, without explicitly mentioning the
natural transformation €.

PROPOSITION 8.4.8. Let M and N be model categories and let o: M — N be
a functor.

(1) If o takes trivial cofibrations between cofibrant objects in M into weak
equivalences in N, then the total left derived functor Ly: HoM — HoN
exists.

(2) If o takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N, then the total right derived functor Ry: HoM — HoN
exists.

PROOF. This follows from Proposition 8.4.4 and Theorem 8.3.10. 0

8.5. Quillen functors and total derived functors

8.5.1. Quillen functors.

DeFINITION 8.5.2. Let M and N be model categories and let F: M =2 N :U be
a pair of adjoint functors. We will say that

(1) F is o left Quillen functor,
(2) U is a right Quillen functor, and
(3) (F,U) is a Quillen pair,

(1) the left adjoint F preserves both cofibrations and trivial cofibrations, and
(2) the right adjoint U preserves both fibrations and trivial fibrations.

ProprosITION 8.5.3. If M and N are model categories and F: M @ N :U is a
pair of adjoint functors, then the following are equivalent:
1) The pair (F,U) is a Quillen pair.
2) The left adjoint F preserves both cofibrations and trivial cofibrations.
3) The right adjoint U preserves both fibrations and trivial fibrations.
4) The left adjoint F preserves cofibrations and the right adjoint U preserves
fibrations.
(5) The left adjoint F preserves trivial cofibrations and the right adjoint U
preserves trivial fibrations.

P

PROOF. This follows from Proposition 7.2.18. n|

The following strengthening of Proposition 8.5.3, due to D. Dugger [26], is
useful when dealing with localizations of model category structures (see, e.g., Prop-
osition 3.3.18).

PROPOSITION 8.5.4 (D. Dugger). If M and N are model categories and F: M &
N :U is a pair of adjoint functors, then the following are equivalent:
(1) The pair (F,U) is a Quillen pair.
(2) The left adjoint F preserves cofibrations between cofibrant objects and all
trivial cofibrations.
(3) The right adjoint U preserves fibrations between fibrant objects and all
trivial fibrations.
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Proor. It follows directly from the definition that condition 1 implies both
condition 2 and condition 3. We will show that condition 2 implies condition 1; the
proof that condition 3 implies condition 1 is dual.

Assume that F preserves cofibrations between cofibrant objects and all trivial
cofibrations; Proposition 8.5.3 implies that it is sufficient to show that U preserves
all trivial fibrations. Let p: X — Y be a trivial fibration in N; Proposition 7.2.18
implies that Up: UX — UY is a fibration, and so we need only show that it is a
weak equivalence.

Proposition 8.1.23 implies that we can choose a fibrant cofibrant approximation
p’: X’ = Y’ to Up such that p’ is a cofibration, and so we have the diagram

(8.5.5) X' 15 UX

Y'TUY

in which X’ and Y’ are cofibrant, j and k are trivial fibrations, and p’ is a cofibra-
tion. We will complete the proof by showing that the image of p’ in HoM is an
isomorphism. This will imply that p’ is a weak equivalence (see Theorem 8.3.10),
and the “two out of three” axiom (see Definition 7.1.3) will then imply that Up is
a weak equivalence.

The adjoint of Diagram 8.5.5 is the solid arrow diagram

X' -1 X
F,,i s l”
FY’ —a Y
in which Fp’ is a cofibration and p is a trivial fibration. Thus, there is a map

g: FY' — X such that g(Fp’) = j* and pg = k¥. If ¢*: Y’ — UX is the adjoint of
g, then we have the solid arrow diagram

XI X/
hl
Ao )
Y — UX
g

in which p’ is a cofibration and j is a trivial fibration, and so there is a map
s: Y’ — X’ such that sp’ = 1x- and js = ¢°. We also have

kp's = (Up)js = (Up)g" = k = kly: .
Since k is a trivial fibration and Y’ is cofibrant, Proposition 7.5.9 implies that

p's < lys, and so Lemma 8.3.4 implies that the image of p’s in HoM is the identity
map of Y’. Since we also have sp’ = 1x+, the image of p’ in HoM is thus an
isomorphism, and so p’ is a weak equivalence. 0

8.5.6. Total derived functors of Quillen functors.

ProprosITION 8.5.7. If M and N are model categories and F: M 2 N :Uis a
Quillen pair, then
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(1) F takes weak equivalences between cofibrant objects of M into weak equiv-
alences in N and

(2) U takes weak equivalences between fibrant object of N into weak equiva-
lences in M.

Proor. This follows from Corollary 7.7.2. a

THEOREM 8.5.8. If M and N are model categories and F: M @ N :U is a
Quillen pair, then
(1) the total left derived functor (see Definition 8.4.7) LF: HoM — HoN of
F exists and

(2) the total right derived functor (see Definition 8.4.7) RF: HoM — HoN
of U exists.

Proor. This follows from Proposition 8.4.8 and Proposition 8.5.7. ]

LEMMA 8.5.9. Let M and N be model categories.

(1) If¥: M — N is a left Quillen functor and g: X — Y is a map in M, then
the total left derived functor LF: HoM — HoN of F (see Definition 8.4.7)
takes the image in HoM of g to the image in HoN of F(g) for some
cofibrant approximation §: X oY to g.

(2) f F: M — N is a right Quillen functor and g: X — Y is a map in
M, then the total right derived functor RF: HoM — HoN of F (see
Definition 8.4.7) takes the image in HoM of g to the image in HoN of
¥(g) for some fibrant approximation §: X-Yto g-

Proor. This follows from the proof of Proposition 8.4.4. Q

PrOPOSITION 8.5.10. Let M and N be model categories.
(1) IfF: M — N is a left Quillen functor and g: X — Y is a map in M, then
the following are equivalent:
(a) The total left derived functor LF: HoM — HoN of ¥ (see Theo-
rem 8.5.18) of I takes the image in HoM of g to an isomorphism in
HoN.
(b) The functor F takes some cofibrant approximation to g to a weak
equivalence in N.
(c) The functor ¥ takes every cofibrant approximation to g to a weak
equivalence in N.
(2) If ¥: M — N is a right Quillen functor and g: X — Y is a map in M,
then the following are equivalent:
(a) The total right derived functor RF: HoM — HoN of F (see Theo-
rem 8.5.18) of ¥ takes the image in HoM of g to an isomorphism in
HoN.
(b) The functor ¥ takes some fibrant approximation to g to a weak equiv-
alence in 'N.

(c) The functor F takes every fibrant approximation to g to a weak equiv-
alence in N.

Proor. This follows from Lemma 8.5.9, Theorem 8.3.10, and Proposition 8.1.24.
|
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DEFINITION 8.5.11. Let M and N be model categories, let ¥: M — N be a
functor, and let g: X — Y be a map in M.

H 1 C is the fibrant cofibrant approximation on M used to construct HoM
(see the proof of Theorem 8.3.5 and the proof of Theorem 8.3.6), then
we will abuse language and let LF(g) denote F(C(g)), and we will call it
the left derived functor of F on g. Note that LF(g) is actually a map in
N whose image in HoN is isomorphic to the image under the total left
derived functor LF: HoM — HoN of ¥ of the image in HoM of ¢, and
that LF(g) depends on the choice of cofibrant approximation C.

(2) 1f F is the cofibrant fibrant approximation on M used to construct HoM,
then we will abuse language and let RF(g) denote F(?(g)), and we will
call it the right derived functor of ¥ on g. Note that RF(g) is actually a
map in N whose image in HoN is isomorphic to the image under the total
right derived functor RF: HoM — HoN of F of the image in HoM of g,
and that RF(g) depends on the choice of fibrant approximation F.

8.5.12. Quillen functors and homotopy classes of maps.

LeEMMA 8.5.13. Let M be a model category and let ix : CX — X and ix: X —
F X be the constructions used in the proof of Theorem 8.3.5.

(1) If W is cofibrant and X is fibrant, then ix induces an isomorphism of
the sets of homotopy classes of maps (ix)«: w(W, (NJX) — (W, X) that is
natural in both W and X.

(2) If X is cofibrant and Z is fibrant, then jx induces an isomorphism of
the set of homotopy classes of maps (jx)*: (¥X,Z) — n(X,Z) that is
natural in both X and Z.

Proor. This follows from Proposition 7.5.9. 0

LEMMA 8.5.14. Let M and N be model categories, and let F: M 2 N :U be a
Quillen pair (see Definition 8.5.2).

(1) If B is a cofibrant object of M and B1l B — Cyl(B) — B is a cylinder
object for B, then FBII¥FB — F(Cyl(B)) — FB is a cylinder object for
FB.

(2) If X is a fibrant object of N and X — Path(X) — X X X is a path object
for X, then UX — U(Path(X)) — UX x UX is a path object for UX.

PrOOF. We will prove part 1; the proof of part 2 is dual.

Since B is cofibrant, Lemmma 7.3.7 and the “two out of three” property of
weak equivalences (see Definition 7.1.3) imply that the map F(Cyl(B)) — FB
is a weak equivalence. Since F is a left adjoint, F(B 1 B) =~ FB Il FB, and so
FBIIFB — F(Cyl(B)) — FB is a cylinder object for FB. O

LeEMMA 8.5.15. Let M and N be model categories and let F: M =2 N :U be a
Quillen pair (see Definition 8.5.2).
(1) If f,g: A — B are left homotopic maps in M and A is cofibrant, then
F(f) is left homotopic to F(g).
(2) If f,g: X — Y are right homotopic maps inN and Y is fibrant, then U(f)
is right homotopic to U(g).
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Proor. This follows from Lemma 8.5.14. 0O

PROPOSITION 8.5.16. Let M and N be model categories, and let F: M 2N :U
be a Quillen pair (see Definition 8.5.2). If X is a cofibrant object of M and Y is a
fibrant object of N, then the adjointness isomorphism between F and U induces a
natural isomorphism of the sets of homotopy classes of maps m(FX,Y) = n(X,UY).

PROOF. The adjointness of F and U gives us a natural isomorphism of sets of
maps N(FX,Y) = M(X, UY); we must show that this passes to homotopy classes.
Theorem 7.4.9 implies that the left and right homotopy relations coincide for these
sets of maps, and Lemma 8.5.14 implies that if two maps X — UY in M are left
homotopic then the corresponding maps FX — Y are left homotopic and that if two
maps FX — Y in N are right homotopic then the corresponding maps X — UY
are right homotopic. 0

8.5.17. Adjunction of total derived functors.

THEOREM 8.5.18. Let M and N be model categories. IfF: M2 N :U is a
Quillen pair (see Definition 8.5.2), then
(1) the total left derived functor LF: HoM — HoN of F exists,
(2) the total right derived functor RU: HoN — HoM of U exists, and
(3) the functors LF and RU are an adjoint pair.

ProOF. The existence of the functors LF and RU follows from Theorem 8.5.8.
To see that LF and RU are adjoint, let X be an object of M, let ¥ be an object
of N, let C and F be the constructions in M as in the proof of Theorem 8.3.5,
and let C' and B be the corresponding constructions in N; then we have natural
isomorphisms

Q

HoN(LFX,Y) = HoN(F(CX),Y)
— R (FEFEX), FEY)
7(F(CX),F'CY) (see Corollary 7.7.4)
a2 W(F(E)X), ﬁ'Y) (see Corollary 7.7.4)
~7(CX,U(F'Y)) (see Proposition 8.5.16)
~ n(FCX,U(F'Y)) (see Lernma 8.5.13)
(

7(FCX,FCU(F'Y))
= HoM(X, U(F'Y))
= HoM(X, RUY).

see Corollary 7.7.4)

8.5.19. Quillen equivalences.

DEeFINITION 8.5.20. Let M and N be model categories and let F: M =2 N :U
be a Quillen pair (see Definition 8.5.2). We will say that
(1) ¥ is a left Quillen equivalence,
(2) U is a right Quillen equivalence, and
(3) (F,U) is a pair of Quillen equivalences
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if for every cofibrant object B in M, every fibrant object X in N, and every map
f:B — UX in M, the map f is a weak equivalence in M if and only if the
corresponding map f!: FB — X is a weak equivalence in N.

ExaMPLE 8.5.21. The geometric realization functor from SS to Top (see No-
tation 7.10.5) and the total singular complex functor from Top to SS are Quillen
equivalences.

ExXAMPLE 8.5.22. The geometric realization functor from SS. to Top, (see
Notation 7.10.5) and the total singular complex functor from Top, to SS, are
Quillen equivalences.

THEOREM 8.5.23. Let M and N be model categories and let F: M = N :U be
a Quillen pair. If (F,U) is a pair of Quillen equivalences (see Definition 8.5.20),
then the total derived functors LF: HoM 2 HoN :RU (see Theorem 8.5.18) are
equivalences of the homotopy categories HoM and HoN.

PROOF. Theorem 8.5.18 implies that we have adjoint functors LF: HoM =
HoN :RU; we must show that
(1) for every object X in HoM the natural map nx: X — RUoLF(X) is an
isomorphism, and
(2) for every object ¥ in HoN, the natural map ey: LFoRU(Y) — Y is an
isomorphism.
We will prove part 1; the proof of part 2 is similar.
If X is an object of HoM, then the map nx: X — RUoLF(X) corresponds to
the identity map 1y p(x;: LF(X) — LF(X) under the adjunction of Theorem 8.5.18,
and that identity map is the homotopy class of the identity map of F"G’F(GX ).
The “two out of three” property of weak equivalences implies that the correspond-
ing element of w(F(CX),f"F(aX)) (see the proof of Theorem 8.5.18) consists of
weak equivalences, and so our hypotheses implies that the corresponding element
of 7 (CX, U(F'F(CX))) also consists of weak equivalences. The “two out of three”
property now implies that the corresponding element of w(I?‘éX ,FCU(FF(CX D))
consists of weak equivalences, and is thus an isomorphism in Ho M. ||



CHAPTER 9

Simplicial Model Categories

A simplicial category (see Definition 9.1.2) is a category M that is enriched over
simplicial sets, i.e., that comes with a simplicial set of maps Map(X,Y) for every
pair of objects X and Y, the vertices of which are the maps from X to Y in M. A
simplicial model category M is a simplicial category that is also a mode] category
for which there are natural constructions of objects X ® K and X¥ in M for X
an object of M and K a simplicial set, satisfying two axioms (see Definition 9.1.6).
The first of these axioms (M6) describes adjointness relations between X ® K, YX|
and Map(X,Y), and the second (M7) is the homotopy lifting extension theorem
for the simplicial mapping space Map(X,Y).

We define simplicial model categories in Section 9.1, and in Section 9.2 we
discuss commuting function complexes with colimits and limits. In Section 9.3
we discuss when a map induces a weak equivalences of mapping spaces and, via
adjointness, obtain results on the tensor product and exponential constructions. In
Section 9.4 we discuss the homotopy left lifting property and the homotopy right
lifting property (see Definition 9.4.2), which are analogous to the left lifting property
and the right lifting property in not necessarily simplicial model categories.

In Sections 9.5 and 9.6 we discuss the simplicial homotopy relation for maps
in a simplicial model category. Neither the left homotopy relation nor the right
homotopy relation is well behaved for maps between objects that are not cofibrant
or fibrant. The simplicial homotopy relation, however, is an equivalence relation
by definition (see Definition 9.5.2), and it behaves well with respect to composi-
tion even when the objects are neither cofibrant nor fibrant (see Corollary 9.5.4).
Simplicial homotopy implies both left homotopy and right homotopy (see Proposi-
tion 9.5.23), and it agrees with both left homotopy and right homotopy when the
domain is cofibrant and the codomain is fibrant (see Proposition 9.5.24).

In Section 9.7 we discuss detecting when a map is a weak equivalence by exam-
ining whether it induces weak equivalences of mapping spaces, and in Section 9.8
we discuss when a functor between the underlying categories of two simplicial cat-
egories can be extended to a simplicial functor.

9.1. Simplicial model categories
9.1.1. Simplicial categories.
DEFINITION 9.1.2. A simplicial category (or a category enriched over simplicial
sets) M is a category together with

(1) for every two objects X and Y of M a simplicial set Map(X,Y) (which we
will call the simplicial set of maps from X to Y or the function complex
from X to Y or the simplicial mapping space from X to Y),

159
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(2) for every three objects X, Y, and Z of M a map of simplicial sets
ex.y,z: Map(Y,2) x Map(X,Y) — Map(X, Z)

(which we will call the composition rule),

(8) for every object X of M a map of simplicial sets ix: * — Map(X, X)
(where “+” is the simplicial set consisting of a single point), and

(4) for every two objects X and Y of M an isomorphism Map(X,Y)o =
M(X,Y) that commutes with the composition rule

such that for all objects W, X, Y, and Z of M the following three diagrams com-
mute:

(Associativity)

€X,Y,Z X 1Map(w, x)
__—_*_)

{Map(Y, Z) x Map(X,Y)) x Map(W, X)

Jz

Map(Y, Z) x (Map(X,Y) x Map(W, X)) ew,x,2

Map(X, Z) x Map(W, X)

JylMap(Y,Z)XCW,Y,Z

Map(Y, Z) x Map(W,Y) » Map(W, Z)

w,y.2

iy X IMap(x,Y)

(Left unit)  * x Map(X,Y) Map(Y,Y) x Map(X,Y)

2

tX,y,Y
Map(X,Y)

IMap(x,Y) XX

(Right unit) Map(X,Y) x * — Map(X,Y) x Map(X, X)

Map(X,Y)

PROPOSITION 9.1.3. Let M be a simplicial category.

(1) For each object X of M the simplicial mapping space defines a functor
Map(X,—): M — SS that takes the object Y of M to Map(X,Y) and
the map g: Y — Z to the map g.: Map(X,Y) — Map(X, Z) that is the
composition

Map(X,Y) &  x Map(X,Y) 220X \an(, Z) x Map(X, Y)
Levz, Map(X, Z)

where ig: ¥+ — Map(Y, Z) takes the vertex of * to g.

(2) For each object Y of M the simplicial mapping space defines a functor
Map(—,Y): M° — SS that takes the object X of M to Map(X,Y) and
the map f: W — X to the map f*: Map(X,Y) — Map(W,Y) that is
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the composition

Map(X,Y) ~ Map(X, Y) x « ~M22X0XY vpan(X,Y) x Map(W, X)

cw, XY

—= Map(W,Y)
where is: % — Map(W, X) takes the vertex of x to f.

Proor. This follows directly from the definitions. 0

ExaMPLE 9.1.4. Let SS denote the category of simplicial sets.

e If X and Y are simplicial sets, we let Map(X,Y) be the simplicial set
that in degree n is the set of maps of simplicial sets from X x A[n] to Y,
with face and degeneracy maps induced by the standard maps between
the Aln].

e If X is a simplicial set and K is a simplicial set, then we let X ® K be
X x K and we let X¥ be Map(K, X).

This gives SS the structure of a simplicial category.

9.1.5. Simplicial model categories.

DEFINITION 9.1.6. A simplicial model category is a model category M that is

also a simplicial category (see Definition 9.1.2) such that the following two axioms
hold:

MS6: For every two objects X and Y of M and every simplicial set K there
are objects X ® K and YX of M such that there are isomorphisms of
simplicial sets

Map(X ® K,Y) ~ Map(K,Map(X,Y)) =~ Map(X, Y¥)
(see Example 9.1.4) that are natural in X, Y, and K.

MT7: If i: A — B is a cofibration in M and p: X — Y is a fibration in M, then

the map of simplicial sets

Map(B, X) “E% Map(A, X) sutop(a,v) Map(B,Y)
(see Proposition 9.1.3) is a fibration that is a trivial fibration if either ¢ or
p is a weak equivalence.

REMARK 9.1.7. Axiom M7 of Definition 9.1.6 is the homotopy lifting extension
theorem, which was originally a theorem of D. M. Kan for categories of simplicial
objects (see [45]).

PROPOSITION 9.1.8. Let M be a simplicial model category. If X and Y are
objects of M and K is a simplicial set, then there are natural isomorphisms of
simplicial sets

Map(X ® K,Y) =~ Map(K,Map(X,Y)) ~ Map(X, Y¥)
which, in simplicial degree zero, yield natural isomorphisms of the sets of maps
M(X ® K,Y) ~ SS(K,Map(X,Y)) ~ M(X,Y¥) .

ProoF. This follows from Definition 9.1.2 and axiom M6 of Definition 9.1.6.
0
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ProposiTION 9.1.9. Let M be a simplicial model category. If X and Y are
objects of M, then for every n > 0 the set of n-simplices of Map(X,Y) is naturally
isomorphic to the set of maps M(X ® A[n],Y).

PRrROOF. Since the set of n-simplices of a simplicial set K is naturally isomor-
phic to the set of maps SS(A[n], K), axiom M6 of Definition 9.1.6 yields natural
isomorphisms

Map(X, Y)n = SS(A[n], Map(X,Y))
~ Map(Afn], Map(X,Y)),
~ Map(X ® An],Y)e
=MX ®An],Y) .
(m]

ProposITION 9.1.10. If M is a simplicial model category, then for every object
X of M there are natural isomorphisms

X®AD ~X and X°0 =X .

PROOF. There are natural isomorphisms M(X ® A[0],Y) = Map(X,Y), =
M(X,Y) for every object ¥ of M (see Proposition 9.1.9), and the Yoneda lemma
implies that the composition of these is induced by a unique natural isomorphism
X = X ® A[0]. The second isomorphism follows in a similar manner. 0

ProposrITiON 9.1.11. If M is a simplicial model category, then for all objects
X of M and all simplicial sets K and L there are natural isomorphisms

X@K xL)~(X®K)®L and XYOD ~ (x¥)F .
PROOF. Proposition 9.1.8 implies that for every object ¥ of M we have natural
isomorphisms
M(X ® (K x L),Y) = SS(K x L,Map(X,Y))
~ SS(L, Map (K, Map(X,Y)))
~ SS(L,Map(X ® K,Y))
~M(X®K)®L,Y)
and the Yoneda lemma implies that the composition of these is induced by a unique

natural isomorphism X ® (K x L) ~ (X ® K) ® L. The proof for the second
isomorphism is similar. 0

9.1.12. Examples.

ExaMPLE 9.1.13. Let SS denote the model category of simplicial sets (see
Theorem 7.10.12), and give SS the simplicial category structure of Example 9.1.4.
With these definitions, SS has the structure of a simplicial model category (see [42,
Theorem 3.6.5]), or (39, Chapter 1]), or [52, Chapter 11, Section 3].

ExaMPLE 9.1.14. Let SS, denote the model category of pointed simplicial sets
(see Theorem 7.10.13).

e If X and Y are pointed simplicial sets, we let Map(X,Y) be the (un-
pointed) simplicial set that in degree n is the set of maps of pointed
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simplicial sets from X A (A[n]*) to Y, with face and degeneracy maps
induced by the standard maps between the A[n].

e If X is a pointed simplicial set and K is a simplicial set, then we let X @ K
be X x Kt and we let X¥ be Map(K*, X).

With these definitions, SS. has the structure of a simplicial model category (see
(42, Corollary 3.6.6]), or {39, Chapter 1]), or {52, Chapter II, Section 3].

EXAMPLE 9.1.15. Let Top denote the model category of topological spaces (see
Theorem 7.10.10).

e If X and Y are topological spaces, we let Map(X,Y) be the simplicial
set that in degree 7 is the set of continuous maps from X x |A[n]| to Y,
with face and degeneracy maps induced by the standard maps between
the Aln).

e If X is a topological space and K is a simplicial set, then we let X ® K
be X x |K| and we let X* be the space of maps from |K| to X.

With these definitions, Top has the structure of a simplicial model category (see
[42, Theorem 2.4.19)) or [52, Chapter II, Section 3].

ExaMpLE 9.1.16. Let Top, denote the model category of pointed topological
spaces (see Theorem 7.10.11).

e If X and Y are pointed topological spaces, we let Map(X,Y) be the
(unpointed) simplicial set that in degree n is the set of continuous maps
from X A |A[n]*| to ¥, with face and degeneracy maps induced by the
standard maps between the Afn].

e If X is a pointed topological space and K is a simplicial set, then we let
X ® K be X x |K|* and we let XX be the space of maps from |K|* to
X.

With these definitions, Top, has the structure of a simplicial model category (see
[42, Corollary 2.4.20]) or [52, Chapter II, Section 3].

9.2. Colimits and limits

LEMMA 9.2.1. Let € be a small category and let M be a simplicial model cate-
gory.

(1) If X is a C-diagram in M and K a simplicial set, then there is a natural
isomorphism

(colim X) ® K =~ colim(X ® K) .

(2) If X is an object of M and K is a C-diagram of simplicial sets, then there
is a natural isomorphism

X ® (colim K) = colim(X ® K) .

ProoOF. We will prove part 1; the proof of part 2 is similar.
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If Y is an object of M, then Proposition 9.1.8 implies that we have natural
isomorphisms
M((colim X) ® K,Y) =~ M(colim X, Y¥)
~ limM(X, Y ¥)
~limM(X ® K,Y)
~ M(colim(X ® K),Y) ,
and the Yoneda Lemma implies that the composition of these must be induced by

a natural isomorphism (colim X) ® K = colim(X ® K). 0

ProPosITION 9.2.2. IfM is a simplicial model category, C is a small category, X
is a C-diagram in M, and Y is an object of M, then there are natural isomorphisms
of simplicial sets

Map(colim X,Y) ~ lim Map(X,Y)
Map(Y, lim X) = lim Map(¥, X)) .

Proor. We will prove that the first isomorphism exists; the proof that the
second exists is similar.

For every n > 0, Proposition 9.1.9 and Lemma 9.2.1 yield natural isomorphisms

Map(colim X ,Y ), = M((colim X) ® A[n],Y)
~ M{colim(X ® A[n]),Y)
=~ limM(X ® A}, Y)
=~ limMap(X,Y), .
]
COROLLARY 9.2.3. Let M be a simplicial model category and let Y be an object

of M. If S is a set and X, is an object of M for every s € S, then there is a natural
isomorphism of simplicial sets

Map(]] X, ¥) = [ Map(X,,Y) .
sES SES
Proor. This follows from Proposition 9.2.2. ]

9.3. Weak equivalences of function complexes

ProposiTiON 9.3.1. Let M be a simplicial model category.
(1) Ifi: A — B isa cofibration in M and X is a fibrant object of M, then the
map ©*: Map(B, X) — Map(4, X) is a fibration of simplicial sets.
(2) If A is cofibrant in M and p: X — Y is a fibration in M, then the map
pa: Map(A4, X) — Map(A4,Y) is a fibration of simplicial sets.
Proor. This follows from axiom M7 (see Definition 9.1.6). 0O

PROPOSITION 9.3.2. Let M be a simplicial model category and let X, Y, and
Z be objects of M.
(1) If X is cofibrant and g: Y — Z is a trivial fibration, then g induces a
trivial fibration of simplicial sets g,: Map(X,Y) — Map(X, Z).
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(2) If Z is fibrant and h: X — Y is a trivial cofibration, then h induces a
trivial fibration of simplicial sets h*: Map(Y, Z) — Map(X, Z).

Proor. This follows from axiom M7 (see Definition 9.1.6). [}
CoroLLARY 9.3.3. Let M be a simplicial model category and let X, Y, and Z
be objects of M.

(1) If X is cofibrant and g: Y — Z is a weak equivalence of fibrant objects,
then g induces a weak equivalence of simplicial sets g,: Map(X,Y) —
Map(X, Z).

(2) If Z is fibrant and h: X — Y is a weak equivalence of cofibrant objects,
then h induces a weak equivalence of simplicial sets h: Map(Y,Z) —
Map(X, Z).

PRroor. This follows from Proposition 9.3.2 and Corollary 7.7.2. [}
9.3.4. Consequences of adjointness.

DerFINITION 9.3.5. Let M be a simplicial model category, let A — B and
X — Y be maps in M, and let L — K be a map of simplicial sets.
(1) The map of simplicial sets
Map(B, X) — Map(4, X) Xmap(a,y) Map(B,Y)
will be called the pullback corner map of the maps A - Band X - Y.
(2) The map
A® K4, B®L — B®K
will be called the pushout corner map of the maps A - Band L — K.
(3) The map
XK o xE sy Y
will be called the pullback corner map of the maps X - Y and L — K.

LEMMA 9.3.6. Let M be a simplicial model category. If A — B and X — Y are
maps in M and L — K is a map of simplicial sets, then the following are equivalent:
(1) The dotted arrow exists in every solid arrow diagram of the form

L ———  Map(B, X)
| |
K —— Map(4, X) Xuapa,y) Map(B,Y) .
(2) The dotted arrow exists in every solid arrow diagram of the form
A——— xK
|
B—— Xt sy YK |
(3) The dotted arrow exists in every solid arrow diagram of the form
A@KlserBOL—— X

BK——Y .
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Proor. This follows from Definition 9.1.6. O

PRropPosSITION 9.3.7. If M is & both a model category and a simplicial category
and M satisfies axiom M6 of Definition 9.1.6, then the following are equivalent:

(1) M satisfies axiom M7 of Definition 9.1.6 (i.e., M is a simplicial model
category).

(2) If+: A — B is a cofibration in M and p: X — Y is a fibration in M, then
the pullback corner map Map(B, X) — Map(A4, X) Xmap(a,y) Map(B,Y)
is a fibration of simplicial sets that is a trivial fibration if either i or p is
a weak equivalence.

(3) Ifi: A — B is a cofibration in M and j: L — K is an inclusion of
simplicial sets, then the pushout corner map AQ Kllqgr, B®& L - BQK
is a cofibration in M that is a trivial cofibration if either i or j is a weak
equivalence.

(4) Ifj: L — K is an inclusion of simplicial sets and p: X — Y is a fibration
in M, then the pullback corner map X¥ — X% xy. Y¥ is a fibration in
M that is a trivial fibration if either j or p is a weak equivalence.

ProoOF. Condition 2 is the definition of condition 1. The equivalence of con-
ditions 2, 3, and 4 follows from Proposition 7.2.3 and Lemma 9.3.6. [}

PROPOSITION 9.3.8. Let M be a simplicial model category.

(1) Ifi: A — B is a cofibration in M and j: L — K is an inclusion of
simplicial sets, then the pushout corner map AQ Kll4, B& L - B® K
is a cofibration in M that is a trivial cofibration if either i or j is a weak
equivalence.

(2) Ifj: L — K is an inclusion of simplicial sets and p: X — Y is a fibration
in M, then the pullback corner map X — X% xyr Y is a fibration in
M that is a trivial fibration if either j or p is a weak equivalence.

PRroOOF. This follows from Proposition 9.3.7. 0

PRrOPOSITION 9.3.9. Let M be a simplicial model category.

(1) (a) If B is a cofibrant object of M and j: L — K is an inclusion of
simplicial sets, then the map 1 ®j: B® L - B®K is a cofibration
in M that is a weak equivalence if j is a weak equivalence.

(b) Ifi: A — B is a cofibration in M and K is a simplicial set, then the
map j®1x: A® K — B® K is a cofibration in M that is a weak
equivalence if i is a weak equivalence.

(2) (a) IfX is afibrant object of M and j: L — K is an inclusion of simplicial
sets, then the map (1x)?: XX — X is a fibration in M that is a
weak equivalence if j is a weak equivalence.

(b) Ifp: X — Y is a fibration in M and K is a simplicial set, then the
map ptix): XX YK js a fibration in M that is a weak equivalence
if p is a weak equivalence.

PRroor. This follows from Proposition 9.3.8. a

PROPOSITION 9.3.10. Let M be a simplicial model category.

(1) Ifi: A — B is a cofibration and X is fibrant, then i induces & weak
equivalence of function complexes i*: Map(B, X) ~ Map(4, X) if and
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only if every map A ® A[n] Uagoam) B ® 8An] — X can be extended
over B ® A[n] for every n > 0.

(2) If B is cofibrant and p: X — Y is a fibration, then p induces a weak equiv-
alence of function complexes if and only if every map B — X281 xy sa1n)
Y2 can be factored through X2 for every n > 0.

PROOF. We will prove part 1; the proof of part 2 is similar.

Proposition 9.3.1 implies that i* is a fibration, and so it is a weak equivalence
if and only if it is a trivial fibration. Since a map of simplicial sets is a trivial
fibration if and only if it has the right lifting property with respect to the maps
8A[n] — Aln] for all n > 0, the result follows from Lemma 9.3.6. O

9.4. Homotopy lifting

If M is a model category, i: A — B is a cofibration in M, p: X — Y is
a fibration in M, and at least one of i and p is also a weak equivalence, then
axiom M4 (see Definition 7.1.3) implies that (¢,p) is a lifting-extension pair (see
Definition 7.2.1), i.e., that the map of sets

M(B, X) — M(A, X) xm(a,vy M(B,Y)

is surjective. If M is a simplicial model category, then a stronger statement is
possible: Axiom M7 (see Definition 9.1.6) implies that, under the same hypotheses
on 7 and p, the map of simplicial sets

(9.4.1) Map(B, X) — Map(A4, X) XMap(a,y) Map(B,Y)

is a trivial fibration. This analog for simplicial model categories of being a lifting-
extension pair is called being a homotopy lifting-extension pair (see Definition 9.4.2).

DEFINITION 9.4.2. Let M be a simplicial model category. If i: A — B and
p: X — Y are maps for which the map of simplicial sets (9.4.1) is a trivial fibration,
then

e (i,p) is called a homotopy lifting extension pair,
e i is said to have the homotopy left lifting property with respect to p, and
e p is said to have the homotopy right lifting property with respect to 4.

PROPOSITION 9.4.3. Let M be a simplicial model category. If i: A — B and
p: X — Y are maps in M such that (1,p) is a homotopy lifting-extension pair (see
Definition 9.4.2), then (3,p) is a lifting-extension pair (see Definition 7.2.1).

ProoF. This follows because a trivial fibration of simplicial sets is surjective
on the set of vertices. [}

PROPOSITION 9.4.4. Let M be a simplicial model category.

(1) A map is a cofibration if and only if it has the homotopy left lifting
property with respect to all trivial fibrations.

(2) A map is a trivial cofibration if and only if it has the homotopy left lifting
property with respect to all fibrations.

(3) A map is a fibration if and only if it has the homotopy right lifting property
with respect to all trivial cofibrations.

(4) A map is a trivial fibration if and only if it has the homotopy right lifting
property with respect to all cofibrations.
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Proor. This follows from axiom M7 (see Definition 9.1.6), Proposition 9.4.3,
and Proposition 7.2.3. ]

ProprosITION 9.4.5. Let M be a simplicial model category and let A, B, X,
and Y be objects of M.

(1) If B is cofibrant and p: X — Y is a fibration, then p has the homotopy
right lifting property with respect to the map from the initial object to B
if and only if p induces a weak equivalence p,: Map(B, X) = Map(B,Y).

(2) If X is fibrant and i: A — B is a cofibration, then i has the homotopy left
lifting property with respect to the map from X to the terminal object if
and only if i induces a weak equivalence i*: Map(B, X) = Map(4, X).

PROOF. Proposition 9.3.1 implies that both p, and i* are fibrations of simplicial
sets, and so each of p. and ¢* is a weak equivalence if and only if it is a trivial
fibration. 0

9.4.6. Closure properties of homotopy lifting properties.

LEMMA 9.4.7. Let M be a simplicial model category. Ifi: A— B andp: X —
Y are maps in M, then the following are equivalent:
(1) The pair (i,p) is a homotopy lifting-extension pair (see Definition 9.4.2).
(2) For every pair of simplicial sets (K, L), the map p has the right lifting
property with respect to the pushout corner map

A®KHA®LB®L—’B®K .

(3) For every n > 0, the map p has the right lifting property with respect to
the pushout corner map

A® Aln] Uyganm B® AR — B Aln] .

(4) For every pair of simplicial sets (K,L), the map i has the left lifting
property with respect to the pullback corner map

XK S v¥ x xt .

(5) For every n > 0, the map i has the left lifting property with respect to
the pullback corner map

XA[n] . YA[n] Xy oain] X@A[n} )

ProorF. Since a map of simplicial sets is a cofibration if and only if it is an
inclusion and a trivial fibration if and only if it has the right lifting property with
respect to the maps 8A[n] — Afn] for n > 0, this follows from Lemma 9.3.6 and
Proposition 7.2.3. [}

ProproOSITION 9.4.8. Let M be a simplicial model category.

(1) Ifi: A — B has the homotopy left lifting property with respect top: X —
Y and (K, L) is a pair of simplicial sets, then the pushout corner map
A® KU g, B® L — B® K has the homotopy left lifting property with
respect to p.

(2) If p: X — Y has the homotopy right lifting property with respect to
i: A— B and (K, L) is a pair of simplicial sets, then the pullback corner
map XX — Y¥ xy . XL has the homotopy right lifting property with
respect to 1.
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Proor. We will prove part 2; the proof of part 1 is dual.
Lemma 9.4.7 implies that it is sufficient to show that the map
XK L ¥¥ %y XT
has the right lifting property with respect to the map
A® An] Uagoa[n B ® 0A] — B® Alnj .

Lemma 9.3.6 implies that this is equivalent to showing that the map p: X — Y
has the right lifting property with respect to the map

(A® Aln HA@BA[n] B®An]) ® K Wiagamlusgonm BesamherL (B®AN]) ® L
— (BoAR|) ®K .

Lemma 9.2.1 and the isomorphisms of axiomn M6 (see Definition 9.1.6) imply that
that map is isomorphic to the map

B ® (0An] x K Uaapmyxz Aln] x L) L agaaim)x KitpamxAlnlx L) 4 © (Aln] x K)
. B® (A x K)

and Lemma 9.4.7 implies that that map has the left lifting property with respect
to p. a

LemMA 9.4.9. Let M be a simplicial model category and let p be a map in M.
(1) The class of maps with the homotopy left lifting property with respect to
p is closed under pushouts.
(2) The class of maps with the homotopy right lifting property with respect
to p is closed under pullbacks.

Proor. This follows from Lemma 9.4.7 and Lemma 7.2.11. a

LemMa 9.4.10. Let M be a simplicial model category and let p be a map in M.
(1) The class of maps with the homotopy left lifting property with respect to
p is closed under retracts.
(2) The class of maps with the homotopy right lifting property with respect
to p is closed under retracts.

Proor. This follows from Lemma 9.4.7 and Lemma 7.2.8. 0
9.4.11. Homotopy lifting and lifting.

PROPOSITION 9.4.12. Let M be a simplicial model category and let C be a class
of maps in M.

(1) If every map g: X — Y in M can be factored as X 5> W 2 Y where p
is in € and j has the homotopy left lifting property with respect to every
map in C, then a map has the left lifting property with respect to every
map in C if and only if it has the homotopy left lifting property with
respect to every map in C.

(2) If every map g: X — Y in M can be factored as X &> W 5 Y where j is
in € and p has the homotopy right lifting property with respect to every
map in C, then a map has the right lifting property with respect to every
map in C if and only if it has the homotopy right lifting property with
respect to every map in C.
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PrOOF. We will prove part 1; the proof of part 2 is dual.

Proposition 9.4.3 implies that if a map has the homotopy left lifting property
with respect to every map in € then it has the left lifting property with respect to
every map in C.

Conversely, if the map g: X — Y has the left lifting property with respect to

every map in €, factor g as X L W 2, ¥ where pis in € and j has the homotopy
left lifting property with respect to every map in €. The retract argument (see
Proposition 7.2.2) implies that g is a retract of j, and so the result follows from
Lermma 9.4.10. g

9.5. Simplicial homotopy

9.5.1. Definitions. If X is cofibrant and Y is fibrant then all notions of ho-
motopy for maps from X to Y coincide and are equivalence relations (see Propo-
sition 9.5.24), but this is not true for arbitrary objects X and Y. Thus, it is often
useful to consider the simplicial homotopy relation (see Definition 9.5.2). The sim-
plicial homotopy relation is an equivalence relation by definition, it is always well
behaved under composition (see Corollary 9.5.4), and simplicial homotopy implies
both left homotopy and right homotopy (see Proposition 9.5.23). In addition, sim-
plicially homotopic maps of simplicial sets induce simplicially homotopic maps in
a simplicial model category (see Lemma 9.5.17).

DEFINITION 9.5.2. Let M be a simplicial model category, let X and Y be
objects of M, and let g and h be maps from X to Y (i.e., vertices of Map(X,Y);
see Definition 9.1.6 and Definition 9.1.2).

(1) g is strictly simplicially homotopic to h {denoted g z h) if there is a 1-
simplex of Map(X,Y) whose initial vertex is ¢ and whose final vertex is
h, i.e., if there is a map F: X ® A[l] — Y such that the composition
X ~ X ® 40 22295 X @A[1] 5 Y equals g and the composition
X~ X ®A0] 2225 X @ A[1] 5 Y equals h (see Proposition 9.1.9).

(2) g and h are simplicially homotopic (denoted g 2 h) if they are equivalent
under the equivalence relation generated by the relation of strict simplicial
homotopy.

PROPOSITION 9.5.3. Let M be a simplicial model category and let X andY be
objects of M. If g and h are maps from X to Y, then g = h if and only if g and h
are in the same component of the simplicial set Map(X,Y).

Proor. This follows directly from the definitions. 0

COROLLARY 9.5.4. Let M be a simplicial model category and let W, X, Y, and
Z be objects of M. Ifg,h: X — Y are simplicially homotopic mapsand j: W — X
and k: Y — Z are maps, then kg ~ kh and gj ~ hj.

Proor. This follows from Proposition 9.5.3. a

DEFINITION 9.5.5. A generalized interval is a simplicial set that is a union of
finitely many one simplices with vertices identified so that its geometric realization
18 homeomorphic to a unit interval. If J is a generalized interval, we will let ¢ and
i1 denote the inclusions of A[0] into J at the two end vertices of J.
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PrOPOSITION 9.5.6. Let M be a simplicial model category and let X and Y
be objects of M. If g and h are maps from X toY, then g and h are simplicially
homotopic if and only if there is a generalized interval J (see Definition 9.5.5) and
a map of simplicial sets J — Map(X,Y) taking the ends of J to g and h.

Proor. This follows from Proposition 9.5.3. (]

DEFINITION 9.5.7. A map J — Map(X,Y) as in Proposition 9.5.6 will be
called a simplicial homotopy from g to h. The maps X® J — Y and X — Y that
correspond under the isomorphisms of Definition 9.1.6 will also be called simplicial
bomotopies from g to h.

DEFINITION 9.5.8. Let M be a simplicial mode] category. The map g: X — Y
is a simplicial homotopy egquivalence if there is a map h: ¥ — X such that gh 21y
and hg ’é 1x.

In general, strict simplicial homotopy need not be an equivalence relation, since
Map(X,Y’) need not be a fibrant simplicial set. In Topy,), however, Map(X,Y) is
isomorphic to the total singular complex of the topological space (in our category
of spaces) of continuous functions from X to Y, and so it is always a fibrant sim-
plicial set. (Strict simplicial homotopy in Topy,) is exactly the classical definition
of homotopy which is, of course, always an equivalence relation.) In SS(,y every
space is cofibrant, and so Map(X,Y") will be a fibrant simplicial set if Y is a fibrant
space.

9.5.9. Isomorphisms of simplicial homotopy classes of maps.
PROPOSITION 9.5.10. Let M be a simplicial model category, let g: X — Y be
a map in M, and let W be an object of M.
(1) If g induces a weak equivalence of simplicial mapping spaces
g*: Ma.p(VV, X) & Map(W: Y) ?
then g induces an isomorphism of the sets of simplicial homotopy classes
of maps g.: [W, X] =~ [W,Y].
(2) If g induces a weak equivalence of simplicial mapping spaces
g": Map(Y, W) = Map(X, W) ,
then g induces an isomorphism of the sets of simplicial homotopy classes
of maps ¢*: [Y, W] =~ [X, W].
Proor. This follows from Proposition 9.5.3. O
COROLLARY 9.5.11. Let M be a simplicial model category and let X, Y, and
W be objects of M.

(1) IfW is cofibrant and g: X — Y is a trivial fibration, then g induces an iso-
morphism of the sets of simplicial homotopy classes of maps g, (W, X| =
(W, Y.

(2) IfW is fibrant and g: X — Y is a trivial cofibration, then g induces an iso-

morphism of the sets of simplicial homotopy classes of maps g*: [V, W] =
(X, W].

Proor. This follows from Proposition 9.3.2 and Proposition 9.5.10. |
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COROLLARY 9.5.12. Let M be a simplicial model category and let X, Y, and
W be objects of M.

(1) IfW is cofibrant and g: X — Y is a weak equivalence of fibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes

of maps g.: [W, X] =~ [W,Y].
(2) If W is fibrant and ¢g: X — Y is a weak equivalence of cofibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes

of maps g*: [Y, W] = [X,W].
ProoFr. This follows from Corollary 9.3.3 and Proposition 9.5.10. a

9.5.13. Simplicial homotopy, left homotopy, and right homotopy.

LeMMA 9.5.14. Let M be a simplicial model category and let J be a generalized
interval (see Definition 9.5.5) with endpoint inclusions ig: A[0] — J and i1 : A{0] —
J.

(1) If X is a cofibrant object of M, then

XTI X ~ (X ®AJ0) 1 (X @ Afo]) LXEH0x®), 3 o 7 X @ Al] »

is a cylinder object for X (see Definition 7.3.2).
(2) IfY is a fibrant object of M, then

Y oyl ys A0OxGnt yal) sl vy« Y
is a path object for Y (see Definition 7.3.2).

Proor. We will prove part 1; the proof of part 2 is dual.

Since A[0] IT A[0] 224, J is a cofibration of simplicial sets, Proposition 9.3.9
implies that our map XII1X — X®J is a cofibration. Since the inclusion 4o: A[0] —
J is a trivial cofibration of simplicial sets, Proposition 9.3.9 also implies that the
map X ® A[0] - X ® J is a trivial cofibration, and so the “two out of three”
property of weak equivalences (see axiom M2 of Definition 7.1.3) implies that the
composition X ® J — X ® A[0] =~ X is a weak equivalence.

LeMMA 9.5.15. Let M be a simplicial model category and let X and Y be
objects of M. If f,g: X — Y are simplicially homotopic maps, then f and g
represent the same map in the homotopy category of M.

ProoF. If f and g are simplicially homotopic, then there is a generalized
interval J (see Definition 9.5.5) and a simplicial homotopy H: X — Y7 such
that evoH = [ and ev; H = g. If we choose fibrant cofibrant approximations
px: X — X and py: Y »Y (see Definition 8.1.2), then we have the solid arrow
diagram

" l(py)“ﬂ

XS X —o Y’

in which (py)(*"): Y7 — Y7 is a trivial fibration (see Proposition 9.3.9) and X
is cofibrant. Thus, the dotted arrow H exists, and we can define f,§: XY by
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letting f = evoH and § = ev; H. We then have fpx = evq Hpx = evo(py ) H =
Py eve H = pyf and s0 fpx = py f. Similarly, gpx = PYg-

Since X is cofibrant, X ® J is a cylinder object for X (see Lemma 9.5.14),
and so if welet H*d: X @ J — Y be the map adjoint to H: X — Y7 then
Ho is a left homotopy from f to §. Thus, if we use square brackets to denote
the image of a map in HoM, then Lemma 8.3.4 implies that [f] = [g]. Thus,
we have [py]~!{f]lpx] = [pv]!lg]lpx] and, since [px] and [py] are isomorphisms,
fl1=lgl- a

ProposITION 9.5.16. If M is a simplicial model category, then a simplicial
homotopy equivalence in M is a weak equivalence in M.

Proor. If f: X — Y is a simplicial homotopy equivalence in M then there is
amap ¢: Y — X such that gf 2 1x and fg 2 1y. Lemma 9.5.15 implies that
the images of f and g in the homotopy category of M are isomorphisms, and so
Theorem 8.3.10 implies that f and g are weak equivalences. a

LEMMA 9.5.17. Let M be a simplicial model category. If K and L are simplicial

sets and f,g: K — L are simplicially homotopic maps, then for every object X of
M

(1) the induced maps 1x ® f,1x ® g: X ® K — X ® L are simplicially
homotopic, and
(2) the induced maps (1x)7,(1x)9: X* — X¥ are simplicially homotopic.

Proor. Let J be a generalized interval (see Definition 9.5.5) such that there
is a simplicial homotopy H: K ® J — L from f to g (see Definition 9.5.7). The
map lx ®H: X®(KxJ)=(X®K)®J — X ®L is then a simplicial homotopy
from 1x ® f to 1x ® g and the map (1x)¥: X% — XKy = (X¥)Y is then a
simplicial homotopy from (1x)7 to (1x)9. 0O

PROPOSITION 9.5.18. Let M be a simplicial model category. If K and L are

simplicial sets and f: K — L Is a simplicial homotopy equivalence, then for every
object X of M

(1) the induced map 1x @ f: X ® K — X ® L is a simplicial homotopy
equivalence, and
(2) the induced map (1x)’: XL — XX is a simplicial homotopy equivalence.

Proor. This follows from Lemma 9.5.17. a

LeMMA 9.5.19. Ifn > 0, then the inclusion of A[0] into Aln)| as either the initial
vertex or the final vertex is the inclusion of a simplicial strong deformation retract.

Proor. We will prove this for the inclusion as the initial vertex; the proof for
the inclusion as the final vertex is similar.

We will define a homotopy H: A[n] x A[l] — A[n] such that the restriction
of H to the initial end of A[l] is the constant map from A[n] to its initial vertex
and the restriction of H to the terminal end of A[l] is the identity map of A[n].
If k > 0 then a k-simplex of Aln} is a (k + 1)-tuple of integers (ig, 1, ...,%k) such
that 0 < 4o <4 £ -+ £ 4 < n. Thus, a k-simplex of Aln] x A[l] is an ordered
pair (30,41, ...,3k), (Jo, J1.- - ., Jk)) such that 0 <4g <41 < -+~ <4k < n and there
is an integer ¢, 0 < £ < k+ 1, such that j,, =0 for m < £ and j, =1 form > ¥,
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and we let H((i0,%1,---,%k), (do, 51, .- -, k) = (0,0,0,...,0,4¢,4¢41,...,4k). (That
is, we replace 4,, by 0 for every m such that jm, = 0.) It follows directly from
the definition that H commutes with face and degeneracy operators and that its
restrictions to the two ends of A[l] are as required. 0O

ProrosiTion 9.5.20. If M is a simplicial model category, X is an object of M,
and n > 0, then the maps X ® A[0] — X ® Aln] and XAIM — X200 jnduced by
the inclusion of Al0] as the initial vertex of Aln] are weak equivalences.

PRrOOF. Lemma 9.5.19 and Proposition 9.5.18 imply that these maps are sim-
plicial homotopy equivalences, and so the result follows from Proposition 9.5.16. 0O

LemMA 9.5.21. If J is a generalized interval (see Definition 9.5.5) then the
mclusion of Al0] into J at any vertex of J is a simplicial homotopy equivalence.

PRroOOF. This follows from Lemma 9.5.19 by induction on the number of non-
degenerate 1-simplices of J. O

LEMMA 9.5.22. Let M be a simplicial model category and let J be a generalized
interval (see Definition 9.5.5). If X is an object of M, then

(1) a map X — X ® J induced by the inclusion of Al0] as a vertex of J is a
weak equivalence, and

(2) a map X7 — X induced by the inclusion of A[0] as a vertex of J is a
weak equivalence.

PRrROOF. This follows from Lemma 9.5.21, Proposition 9.5.18, and Proposi-
tion 9.5.16. a

PROPOSITION 9.5.23. Let M be a simplicial model category and let X and Y
be objects of M. If f,g: X — Y are maps that are simplicially homotopic, then
they are both left homotopic and right homotopic.

PROOF. If f and g are simplicially homotopic, then there is a generalized in-
terval J and simplicial homotopies H: X ® J — Y and H': X — Y from f
to g (see Definition 9.5.7). The result now follows from Proposition 7.3.5 and
Lemma 9.5.22. d

PROPOSITION 9.5.24. Let M be a simplicial model category and let X and Y
be objects of M.

(1) Ifg,h: X - Y are simplicially homotopic then they are both left homo-
topic and right homotopic.

(2) If X is cofibrant and Y is fibrant, then the strict simplicial, simplicial, left,
and right homotopy relations on the set of maps from X to Y coincide
and are equivalence relations.

PROOF. This follows from Proposition 9.5.23, Lemma 9.5.14, Proposition 7.4.7,
and Theorem 7.4.9. a
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9.6. Uniqueness of lifts

ProprosiTION 9.6.1. Let M be a simplicial model category. If we have the solid
arrow diagram

A— X
[
1 P
B—Y

in M and if i: A — B has the homotopy left lifting property with respect to
p: X — Y (see Definition 9.4.2), then there exists a map h: B — X making both
triangles commute, and the map h is unique up to simplicial homotopy.

Proor. This follows from Definition 9.4.2 and Proposition 9.5.3. a

COROLLARY 9.6.2. Let M be a simplicial model category. If we have the solid
arrow diagram
C
l”

h
—D

|

j
2

T

—_—

W

inM and if both i and j have the homotopy left lifting property with respect to each
of p and ¢, then there exists & map h: B — C, unique up to simplicial homotopy,
such that hi = j and ph = q, and any such map is a simplicial homotopy equivalence.

Proor. This follows from Proposition 9.6.1. a

LemMMaA 9.6.3. If M is a simplicial model category, then an isomorphism in M
has both the homotopy left lifting property and the homotopy right lifting property
with respect to every map in M.

ProoF. This follows from the fact that an isomorphism induces an isomor-
phism of the simplicial set of maps from (or to) any fixed object. a

PROPOSITION 9.6.4. Let M be a simplicial model category and let g: X — Y
be a map in M.

(1) If g has the homotopy left lifting property with respect to the maps from
each of X and Y to the terminal object of the category, then g is the
inclusion of a strong deformation retract, i.e., there isa mapr: Y — X
such that rg = 1x and gr =~ ly, where the simplicial homotopy (see
Definition 9.5.7) is constant on X.

(2) If g has the homotopy right lifting property with respect to the maps from
the initial object of the category to each of X and Y, then there is a map
s: Y — X such that gs = 1y and sg 2 1x, where the simplicial homotopy
(see Definition 9.5.7) lies over the identity map of Y.

PROOF. We will prove part 1; the proof of part 2 is similar.
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We have the solid arrow diagram

Se

«
—

».<
|

e e

(in which “x” is the terminal object of the category), and so Corollary 9.6.2 and
Lemma 9.6.3 imply that there exists a map r: Y — X such that rg = 1x. Thus,
we can construct the solid arrow diagram

X® A[l] HX@BA[I] Ye® c’)A[l] —}’ Y

l' s
YRA] ——

in which the top map is the composition X ® A[l] - X ® A0} ~ X & Y on
X ®A[l] and gr111y on Y @ OA[1]. Proposition 9.4.8 implies that the vertical map
on the left has the homotopy left lifting property with respect to the vertical map on
the right, and so Proposition 9.4.3 implies that the dotted arrow s: Y @ A[l] - Y
exists. ]

COROLLARY 9.6.5. Let M be a simplicial model category and let g: X — Y be
a map in M.

(1) If both X and Y are fibrant and g is a trivial cofibration, then g is a
simplicial homotopy equivalence. In particular, g is the inclusion of a
strong deformation retract.

(2) If both X and Y are cofibrant and g is a trivial fibration, then g is a
simplicial homotopy equivalence. In particular, g has a right inverse that
is a simplicial homotopy inverse.

Proor. This follows from Proposition 9.6.4. ]

9.6.6. Weak equivalences of simplicial mapping spaces. It should be
noted that none of the results of this section make any assumption that any object
is cofibrant or fibrant.

PROPOSITION 9.6.7. Let M be a simplicial model! category and let W, X, and
Y be objects of M. If g,h: X — Y are simplicially homotopic maps, then g. 2
h.: Map(W, X) — Map(W,Y) and g* ~ h*: Map(Y,W) — Map(X, W).

PRrOOF. Let X — Y be a simplicial homotopy from g to h (where J is
a generalized interval; see Definition 9.5.7). This induces the map of simplicial
sets Map(W, X) — Map(W,Y7), which corresponds to a map Map(W, X) —
Map(W ® J,Y), which corresponds to a map Map(W, X) — Map(J, Map(W,Y)),
which corresponds to a map Map(W, X) ® J — Map(W,Y), which is a simplicial
homotopy from g. to h..

The second assertion is proved similarly, starting with a simplicial homotopy
X@J-Y. O

COROLLARY 9.6.8. Let M be a simplicial model category and let X and Y be
objects of M. If g: X — Y is a simplicial homotopy equivalence, then for any
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object W of M the maps g.: Map(W,X) — Map(W,Y) and g*: Map(Y,W) —
Map(X, W) are simplicial homotopy equivalences of simplicial sets.

Proor. This follows from Proposition 9.6.7. 0

ProrosITION 9.6.9. Let M be a simplicial model category. If g: X - Y isa
map in M, then g is a simplicial homotopy equivalence if either of the following two
conditions is satisfied:

(1) The map g induces isomorphisms of the sets of simplicial homotopy classes
of maps g.: [X,X] = [X,Y] and g.: [, X] = [Y,Y].

(2) The map g induces isomorphisms of the sets of simplicial homotopy classes
of maps ¢g*: [Y, X] = [X, X] and ¢g*: [Y,Y] = [X,Y].

PRrROOF. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g, : [Y, X] = [Y,Y] implies that there is a map h: ¥ — X
such that gh < 1y. Corollary 9.5.4 and the isomorphism g,: [X, X] = [X,Y] now
imply that h induces an isomorphism h,: [X,Y] = [X, X], and so there is a map
k: X — Y such that hk < 1x. Thus, g = glx ~ ghk ~ lyk =k, and s0 g is 2
simplicial homotopy equivalence whose inverse is h. 0

ProPOSITION 9.6.10. Let M be a simplicial model category. If g: X — Y is
a map in M, then g is a simplicial homotopy equivalence if either of the following
two conditions is satisfied:
(1) The map g induces weak equivalences of simplicial sets g.: Map(X, X) =
Map(X,Y) and g,: Map(Y, X) = Map(¥,Y).
(2) The map g induces weak equivalences of simplicial sets g*: Map(Y, X) =
Map(X, X) and g*: Map(Y,Y) = Map(X,Y).

PRrROOF. This follows from Proposition 9.6.9 and Proposition 9.5.10. O

9.7. Detecting weak equivalences

PROPOSITION 9.7.1. Let M be a simplicial model category. If g: X — Y is a
map in M, then g is a weak equivalence if either of the following two conditions is
satisfied:

(1) For every fibrant object Z the map of function spaces ¢g*: Map(Y, Z) —
Map(X, Z) is a weak equivalence of simplicial sets.

(2) For every cofibrant object W the map of function spaces g.: Map(W, X) —
Map(W,Y) is a weak equivalence of simplicial sets.

PrOOF. We will prove part 1; the proof of part 2 is dual.
Choose cofibrant fibrant approximations (see Deﬁmtnon 8.12)jx: X — X and

jy: Y — ¥ and a fibrant approximation §: X-YVto g (see Definition 8.1.22). If
Z is a fibrant object, then we have the commutative square

Map(¥, 2) —— Map(X, 2)

UY).J, J,UX).

Ma‘p(yy Z) — Ma'p(Xv Z)
g
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in which all the maps except §* are weak equivalences of simplicial sets (see Prop-
osition 9.3.2). This implies that §* is also a weak equivalence, and so Proposi-
tion 9.6.10 implies implies that § is a simplicial homotopy equivalence. Thus, g is a
weak equivalence, and so the “two out of three” property implies that g is a weak
equivalence. 0

PropoSITION 9.7.2. Let M be a simplicial model category, let g: X — Y be a
map in M, and let W be an object of M.
(1) If W is cofibrant and there is a fibrant approximation §: X - Y to
(see Definition 8.1.22) such that the induced map of simplicial sets
: Map(W, X) — Map(W Y) is a weak equivalence, then for any other
ﬁbrant approximation § : X' — ¥ to g the induced map of simplicial sets
§.: Map(W, X') — Map(W, Y") is a weak equivalence.

(2) If W is fibrant and there is a cofibrant approximation §: X — Y to
g (see Definition 8.1.22) such that the induced map of simplicial sets
g Ma.p(?, W) — Map()?,W) is a weak equivalence, then for any other
cofibrant approximation §': X SV to ¢ the induced map of simplicial

sets (§')*: Map(Y',W) — Map(X', W) is a weak equivalence.

PRrooF. This follows from Proposition 8.1.24 and Proposition 9.3.2. 0

PROPOSITION 9.7.3. Let M be a simplicial model category, let f: X — Y bea
map in M, and let W be an object of M.

(1) If X and Y are fibrant and there is a cofibrant approximation Wow
to W such that the induced map of simplicial sets f.: Ma.p(W X) —
Map(W Y') is a weak equivalence, then for any other cofibrant approxima-
tion W' — W to W the induced map of simplicial sets f,: Map(W X)—
Map(W’, Y') is a weak equivalence.

(2) If X and Y are cofibrant and there is a fibrant approximation W — w
to W such that the induced map of simplicial sets f*: Map(Y, W) —
Map(X, W) is a weak equivalence, then for any other fibrant approxima-
tion W — W' to W the induced map of simplicial sets f*: Map(Y, W’) —
Map(X, W’) is a weak equivalence.

Proor. We will prove part 1; the proof of part 2 is dual.
Let W — W be a fibrant coﬁbrant approximation to W (see Proposition 8.1.17).
There are maps of cofibrant approximations (see Definition 8.1.4) W — W and

W — W, both of which are weak equivalences {see Proposition 8.1.7). Thus, we
have the diagram

Map(W’, X) ¢—— Map(W, X) —— Map(W, X)

| | |

Map(W',Y) +—=— Map(W,Y) —— Map(W,Y
p = =

and Corollary 9.3.3 implies that all the horizontal maps are weak equivalences. O
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THEOREM 9.74. If g: X — Y is a map in a simplicial model category, then the
following are equivalent:

(1) The map g is a weak equivalence.

(2) For some fibrant approximation §: X>Ytog (see Definition 8.1.22) and
every cofibrant object W the map of simplicial sets §.: Map(W, X ) —
Map(W,Y) is a weak equivalence.

(3) For every fibrant approximation §: X - Y togand every cofibrant object
W the map of simplicial sets §.: Map(W, X - Map(W, }7) is a weak
equivalence.

(4) For some cofibrant approximation §: X — Y to g (see Definition 8.1.22)
and every fibrant object Z the map of simplicial sets g*: Map(?, Z) —
Map(X, Z) is a weak equivalence.

(5) For every cofibrant approximation §: XY to g and every fibrant object
Z the map of simplicial sets §*: Map(?,Z) — Map(X,Z) is a weak
equivalence.

PROOF. Proposition 9.7.2 implies that 2 is equivalent to 3 and that 4 is equiv-

alent to 5. Proposition 9.7.1 implies that any of 2, 3, 4, or 5 implies 1, and Coro}-
lary 9.3.3 implies that 1 implies both 2 and 4. |

COROLLARY 9.7.5. Let M be a simplicial model category and let g: X — Y be
a map in M.

(1) If X and Y are fibrant, then g is a weak equivalence if and only if for
every cofibrant object W in M the map g.: Map(W, X) — Map(W,Y) is
a weak equivalence of simplicial sets.

(2) If X and Y are cofibrant, then g is a weak equivalence if and only if for
every fibrant object Z in M the map ¢*: Map(Y,Z) — Map(X,Z) is a
weak equivalence of simplicial sets.

Proor. This follows from Theorem 9.7.4. 0

9.8. Simplicial functors

DEFINITION 9.8.1. If M and N are simplicial model categories, then a simplicial
functor F from M to N consists of

(1) an object F(X) of N for every object X of M and
(2) for every two objects X and Y of M a map of simplicial sets
Fx,y: Map(X,Y) — Map(FX, FY)
such that for all objects X, Y, and Z of M the following two diagrams
commute:

cX.v,2

Map(Y, Z) x Map(X,Y) —————— Map(X, Z)

Fy,z XFX.YJ' J'Fx,z

Map(FY, FZ) x Map(FX,FY) ———— Map(FX,FZ)

CFX,FY,FZ
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ix

* » Map(X, X)

tFX Fx,x

Map(FX,FX) .

If M and N are simplicial model categories and F: M — N is a functor between
the underlying categories of M and N, then we often want to consider whether F
can be extended to a simplicial functor, i.e., whether the definition of F can be
extended to define a natural map of simplicial sets

(9-8.2) Map(X,Y) - Map(FX,FY)

that is compatible with composition and with the isomorphisms Map(X,Y)e =
M(X,Y) and Map(FX,FY)o = N(FX,FY).

If F is to be a simplicial functor, then given an n-simplex in Map(X,Y), i.e.,
a map a: X ® Aln] — Y (see Proposition 9.1.9), we must assign to it an n-
simplex of Map(FX,FY), i.e., a map FX ® A[n] — FY. We can attempt to use
F(a): F(X ® A[n]) — FY, but then we need a map

g:FX ®Aln] - F(X ® An])

to compose with F(a). If we ensure that o yields a natural isomorphism o: FX ®
A[0] = F(X ® A[0]) that commutes with the natural isomorphisms FX @ A[0] ~
and X ® A[0] = X (see Proposition 9.1.10), then the map (9.8.2) would be an
extension of F on Map(X,Y)s = M(X,Y). This would allow us to define the map
(9.8.2) for each pair of objects X and Y, but even if we require that ¢ be natural
in both X and A[n], we still could not be sure that the function (9.8.2) commutes
with composition of functions, i.e., that the diagram

Map(X,Y) x Map(Y, Z) ———— Map(X, Z)

| |

Map(FX,FY) x Map(FY,FZ) —— Map(FX,FZ)

commutes. For this, ¢ must have an additional property.

Given n-simplices a € Map(X,Y), and 8 € Map(Y, Z),, i.e,, functions a: X ®
Aln] » Y and 8: Y ® Aln] — Z, their composition in Map(X, Z), is the compo-
sition

1QD

X AR 222 X o (Al x AR) ~ (X @ Aln)) ® Aln] 225 Y @ Al S 2

{where D: A[n] — A[n] x A[n] is the diagonal map). If we apply F and compose
with the natural transformation o, then we get the n-simplex
FX ® Aln] 5 F(X ® Aln))
F1D)
——= F(X ® (Aln] x A))) = F((X ® Aln]) ® Aln])

F‘(a@l) Feel), py @ Afn)) 22 FB), F(Z)
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of Map(FX,FZ). Since ¢ is natural, this can also be written as the composition

(9.8.3) FX ® Aln] 222 FX ® (A[n] x Aln])

Z P(X ® (Aln] x Aln))) ~ F((X ® An]) ® Aln])

e, iy @ Afn]) ~2 F(2)

If we start with the same n-simplices o and (3, apply F to each, and compose
each with the natural transformation o, then we get the pair of simplices

FX ® Aln] % F(X ® Aln]) =2, Y

FY ® Aln] < F(Y ® Aln]) 2 Fz

in Map(FX,¥Y), x Map(FY,FZ),,. If we compose these, then we get the element

FX ® Ajn] 18D, rx @ (An] x Aln])

~ (FX ® Aln)) ® Afn] 225 F(X ® A[n]) ® An]

HD®L vy @ Aln] < F(Y ® Aln)) 2 Fz

of Map(FX,FZ),. Since o is natural, this can also be written as the composition

(9.8.4) FX ® Aln] 222, FX ® (A[n] x Aln])
~ (FX ® Aln)) ® Aln] 225 F(X ® Aln]) ® Aln]
4 P((X @ Afn)) ® Aln)) 22 By @ Afn)) 22 Fz
Since we want the composition (9.8.3) to equal the composition (9.8.4), we must
require that the diagram

FX ® (A[n] x Aln]) —=— (FX ® Aln]) ® Afn]

Jvc'®l

. F(X & Afn)) ® Aln)

F(X ® (Aln] x Aln])) —> F((X ® Aln]) ® Aln])
commute. ’
This leads us to the following theorem.

THEOREM 9.8.5. Let M and N be simplicial model categories. A functor
F: M — N can be extended to a simplicial functor if and only if for every fi-
nite simplicial set K and object X of M there is amap 0: FX ® K — F(X ® K),
natural in both X and K, such that
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(1) for every object X of M, o defines an isomorphism o: (FX) ® A[0] =
F(X ® A[0]) such that the triangle

(FX) ® A0} ———=— F(X @ A0])

R

commutes, and
(2) for every object X of M and finite simplicial sets K and L, the diagram

FX®(KxL)—— (FX®K)®L

Jf!@l

- FIX®K)®L

F(X®(KxL)) —F((X ®JK) ®L)
commutes.
Proor. We have isomorphisms
Map(X,Y), ~ SS(A[n], Map(X,Y)) = M(X ® Aln],Y)

that are natural in X, Y, and A[n], and so we can define F: Map(X,Y), —
Map(FX,FY), as the composition
M(X ® Aln],Y) 2220 N(F(X ® Afn]), FY) <5 N(FX @ Aln), FY) .

The discussion preceding the statement of the theorem explains why this yields a
simplicial functor.

Conversely, if F: M — N is simplicial, then we can define o as the map corre-
sponding to the composition

K — Map(X, X ® K) == Map(FX,F(X ® K))

(where the first map above is adjoint to the identity map of X ® K) under the
isomorphism

SS(K,Map(FX,F(X ® K))) ~ N(FX ® K,F(X ® K)) .
0

ExaMPLE 9.8.6. Let M be a simplicial model category. If W is an object of
M, then the functor Map(W, —): M — 88 is simplicial. In this case, for (f,k) €
(Map(W, X) ® K)n we have o(f, k) = f x k, where k is the composition of the
projection W ® A[n| — A[n] with the map A[n] — K that takes the nondegenerate
n-simplex of A[n] to k.

EXAMPLE 9.8.7 (Counterexample to continuity). If A is any nonempty space
in Top, we define a functor W4 : Top — Top by WaX =[1,_ x 4, that is, we take
the disjoint union of one copy of A for each continuous function g: A — X. This
defines a functor in which the copy of A corresponding to g as above maps under
Wal(f): WaX — W,Y by the identity map to the copy corresponding to f o g,
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but W4 cannot be extended to a simplicial functor. To see this, take X = A and
Y = A x I. The simplicial set Map(X,Y) = Map(A4, A x I) has vertices (i.e., maps
A — A x I) the inclusions ip and i; (where ig(a) = (@,0) and 41(a) = (a,1)), and
these vertices of Map(A, A x I) are connected by a l-simplex A x A[l] — A x I
of Map(4, A x I). The functions W4 (ip) and W4 (41), however, take each point of
W4 A into different components of Wa(A x I), and so there can be no 1-simplex of
Map(WaA, Wa(A x I)) connecting these vertices.

ExaMpLE 9.8.8. If we change Example 9.8.7 slightly, we can construct a func-
tor that s continuous. Define W§ by W5X = X4 x A (where X4 is the compactly
generated topological space of continuous functions A — X). We have a natu-
ral transformation W4 — W such that WaX — WSX is always a continuous
bijection, but it is not, in general, a homeomorphism.

ProprosITION 9.8.9. Let M and N be simplicial model categories, let € be a
small category, and let X be a C-diagram of functors M — N and natural trans-
formations between them. If for each a € € there is a map o, as in Theorem 9.8.5
that is natural in o and that extends X, to a simplicial functor, then there is a
map o that extends colimace X o to a simplicial functor.

PROOF. Let o = colimace 0n- O






CHAPTER. 10
Ordinals, Cardinals, and Transfinite Composition

The main subject of this chapter is a rigorous treatment of the idea of an infin-
itely long sequence of maps, and of the composition of such a sequence. These are
the ideas used in the small object argument (see Proposition 10.5.16), which is a
fundamental method of constructing factorizations of maps needed both to estab-
lish model category structures (see Theorem 11.3.1) and to construct localization
functors (see Section 1.3 and Section 4.3).

If A is an ordinal, then a A-sequence X in a category € is a “sequence” of maps
in € indexed by the ordinal A (see Definition 10.2.1); that is, there are objects Xg
of € for 8 < A, for every ordinal 3 such that 8+ 1 < A there is a map X5 — Xg4,
in €, and we require that if 3 is a limit ordinal then X = colima«g Xo. We define
the composition of the M-sequence to be the natural map Xy — colimgey Xg. A
composition of a A-sequence is called a transfinite composition.

An object W in a category € is said to be small with respect to a class D of
maps in € if for every large enough regular cardinal (see Definition 10.1.11) A and
every X-sequence all of whose maps are elements of D, every map W — colimg< X
from W to the colimit of the sequence factors essentially uniquely through some
earlier stage X in the sequence (see Definition 10.4.1). The small object argument
is a method of factoring maps into factors that have appropriate lifting properties,
and it can be done when the domains of a set of maps are small with respect to the
class of pushouts of those maps (see Definition 10.5.15 and Proposition 10.5.16).

We discuss ordinals and cardinals in Section 10.1, transfinite compositions in
Section 10.2, and the lifting properties of transfinite compositions in Section 10.3.
We discuss small objects in Section 10.4.

Given a set I of maps in a category €, we define a relative I-cell complez in
Section 10.5 to be a map that can be constructed as a transfinite composition
of pushouts of elements of I (see Definition 10.5.8). (If € = Top, the category of
topological spaces, and I is the set of inclusions S*~! — D™ for n > 0, then a relative
I-cell complex is a map that can be constructed as a transfinite composition of maps
that attach a single cell along a map of its boundary sphere.) This allows us to
describe the small object argument in Proposition 10.5.16. We discuss subcomplexes
of relative I-cell complexes in Section 10.6. In Section 10.7 we discuss cell complexes
in the category of topological spaces. This class of spaces includes the class of CW-
complexes, but it also contains spaces built by attaching cells via maps that do not
factor through a subcomplex of lower dimensional cells.

In Section 10.8 we discuss compactness, which is a variation on the notion of
smallness: An object W is compact relative to a set I of maps if every map from
W to an I-cell complex factors through a subcomplex of bounded size (see Defi-
nition 10.8.1). If relative I-cell complexes are monomorphisms, then compactness
implies smallness (see Proposition 10.8.7). In Section 10.9 we discuss what it means

185



186 10. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITION

for a map to be an effective monomorphism (see Definition 10.9.1). In the category
of sets the effective monomorphisms are the monomorphisms, but the two notions
do not agree in general. We will use this to define cellular model categories in
Chapter 12 (see Definition 12.1.1).

10.1. Ordinals and cardinals

For a thorough discussion of the definitions and basic properties of ordinals and
cardinals, see, e.g., [29, Chapter II], [17, Chapters 4 and 5], or [40, Chapter 6].

10.1.1. Ordinals.

DEerFINITION 10.1.2.

(1) A preordered set is a set with a relation that is reflexive and transitive.

(2) A partially ordered set is a preordered set in which the relation is also
antisyrometric.

(3) A totally ordered set is a partially ordered set in which every pair of
elements is comparable.

(4) A well ordered set is a totally ordered set in which every nonempty subset
has a first element.

We adopt the definition of ordinals that arranges it so that an ordinal is the
well ordered set of all lesser ordinals, and every well ordered set is isomorphic to a
unique ordinal (see, e.g., [29, Chapter 11}, [17, page 47|, or [40, page 202|). Thus,
the union of a set of ordinals is an ordinal, and it is the least upper bound of the
set.

REMARK 10.1.3. We will often consider a preordered set to be a small category
with objects equal to the elements of the set and a single morphism from the object
s to the object ¢ if s <.

DeriniTION 10.1.4. If S is a totally ordered set and T is a subset of S, then T
will be called right cofinal (or terminal) in S if for every s € S there exists t € T
such that s <t.

THEOREM 10.1.5. If € is a cocomplete category, S is a totally ordered set, T
is a right cofinal subset of S, and X: S — C is a functor, then the natural map
colimr X — colimg X is an isomorphism.

PROOF. We will construct a map colimg X — colimr X that is an inverse to
the natural map colimmr X — colimg X. For every s € S we choose an element
t of T such that s < t and define a map X; — colimr X as the composition
Xs — X; — colimp X. If we choose a different element ¢’ of T such that s < #
then ejther ¢ < ¢/ or ¢/ < ¢, and so our map X, — colimr X is independent of
the choice of the element ¢. Similarly, if s’ € § is such that s < §’, then for
t € T satisfying s' < ¢ the composition X3 — X — X; — colimp X equals the
composition X; — X; — colimr X, and so the maps X, — colimr X combine to
define a map colimg X — colimr X.

If s € 9, then the composition X; — colimg X — colimr X — colimg X
equals the map X, — colimg X, and so the composition colimg X — colimr X —
colimg X is the identity map. Similarly, the composition colimr X — colimg X ~
colimr X is the identity map. a
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ProposiTioN 10.1.6. If S is a totally ordered set, then there is a right cofinal
subset T of S that is well ordered.

PRrROOF. We will prove the proposition by considering the set of well ordered
subsets of . We will show that this set has a maximal element, and that a maximal
element must be right cofinal in S.

Let U be the set of pairs (A, f: A — S) where )X is an ordinal and f is a one to
one order preserving function. We define a preorder on U by defining (A, f) < (x, ¢)
if A< kand f=g|x. HU’ CU isa chain (i.e., a totally ordered subset of U), let
A= U(,\..,f..)eu' Ay and define f: A — S to be the colimit of the f, for (A, fu) € U'.
The pair (}, f) is an element of U, and it is an upper bound for the chain. Thus,
Zorn’s lemma implies that U has a maximal element, and it remains only to show
that a maximal element of U must be right cofinal.

If (Am, fm) is a maximal element of U and the image of fp,: Ay, — S is not
right cofinal, then there is an element s of S such that f,(8) < s for all 8 € .
Thus, we can define g: (Am + 1) — S by extending f,, to include s in its image.
This would imply that (Am, fm) was not a maximal element of U, and so the image
of fm: Am — S must actually be a right cofinal well ordered subset of S. ]

10.1.7. Cardinals.

DEeFINITION 10.1.8. A cardinal is an ordinal that is of greater cardinality than
any lesser ordinal.

DermNviTiON 10.1.9. If X is a set, then the cardinal of X is the unique cardinal
whose underlying set has a bijection with X.

DerFiNiTION 10.1.10. If 7 is a cardinal, then by Succ(y) we will mean the
successor of v, i.e., the first cardinal greater then 7.

DermviTION 10.1.11. A cardinal v is regular if, whenever A is a set whose
cardinal is less than -y and for every a € A there is a set S, whose cardinal is less
than v, the cardinal of the set |, 4 S is less than 7.

ExaMpLE 10.1.12. The countable cardinal Rq is a regular cardinal. This is just
the statement that a finite union of finite sets is finite.

ProrosITION 10.1.13. The product of two cardinals, at least one of which is
infinite, equals the greater of the two cardinals.

PROOF. See [29, page 53, {17, page 69], or [40, page 227]. 0

ProrosiTiON 10.1.14. If v is infinite and a successor cardinal, then +y is regular.

PRrOOF. Let 3 be the cardinal such that v = Succ(B); if a set has cardinal
less than <, then its cardinal is less than or equal to 8. Let B be a set whose
cardinal is 8 and for every b € B let Sp be a set whose cardinal is 8. Then, if
we have sets A4 and S, for a € A all of whose cardinals are less than 7, then
card(U,e 4 Sa) S card{(Upe g Sp) S BxB=6 <. ]

ProrosITiON 10.1.15. If u is an infinite cardinal and v = p*, then y* = ~.

PROOF. 4# = (pk)# = plBxe) = yp = 4, O
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LeEMMA 10.1.16. Let v be a cardinal with v > 2 and let S be a set whose
cardinal isv. If u is a cardinal, then the collection T of subsets of S whose cardinal
is at most y has cardinal at most v¥.

PROOF. Choose a bijection between S and the cardinal v. This induces a well
ordering of every subset of .S under which every such subset U is order isomorphic
to a unique ordinal n(U) < v. This defines a one to one correspondence between T
and a subset of the set of functions from u to S, under which a subset U corresponds
to the function that takes 7(U) isomorphically onto U and takes every element of
u —n(U) to the first element of U. Thus, there is a subset of v* that maps onto
T. 0

LEMMA 10.1.17. Let M be a category and let X, Y, and Z be objects of M. If
X is a retract of Y, then
(1) the cardinal of M(X, Z) is less than or equal to the cardinal of M(Y, Z),
and
(2) the cardinal of M(Z, X) is less than or equal to the cardinal of M(Z,Y).

Proor. If i: X — Y and r: Y — X are maps such that ri = lx, then
(ri)*: M(X, Z) — M(X, Z) is the identity map. Thus, i*: M(Y,2Z) - M(X, Z) is
a surjection. Similarly, r.: M(Z,Y) —» M(Z, X) is a surjection. ]

10.2. Transfinite composition

DEFINITION 10.2.1. Let € be a category that is closed under colimits.

(1) If A is an ordinal, then a A-sequence in € is a functor X: A — € (see
Remark 10.1.3) (i.e., a diagram

Xo—X1—=Xo— = Xg— - (B<A)
in €) such that for every limit ordinal ¥ < A the induced map
cglang - X,

is an isomorphism.
(2) The composition of the A-sequence is the map Xo — colimpcx Xg.

DEFINITION 10.2.2. Let € be a category that is closed under colimits.

(1) If D is a class of maps in € and A is an ordinal, then a A-sequence of maps
in Disa A-sequence Xo - X1 =2 Xo— - —> Xg— - (B<A)in€
such that the map Xg — Xgp4y isin D for S+ 1 < A

(2) If D is a class of maps in C, then a transfinite composition of maps in D is
a map in C that is the composition of a A-sequence in D (for some ordinal
A, possibly finite).

(3) If D is a subcategory of €, then a transfinite composition of maps in D is
a transfinite composition of maps in the class of maps of D.

10.2.3. Reindexing. If A is an ordinal and C is a category, then not every
functor from X to € is a A-sequence in €, since Definition 10.2.1 requires that at
every limit ordinal v < A the functor take the value of the colimit of that functor
restricted to . However, if A is a limit ordinal, then any functor from X to € can
be reindezed to define a A-sequence in € with the same composition as that of the
original functor (see Definition 10.2.5).
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LEMMA 10.2.4. Let C be a category, let A be a limit ordinal, and let X: A — €
be a functor. If the functor Y: A — C is defined by

Yo = Xo
Y = coligl X, ifB < X and g is a limit ordinal
<

then Y is a A-sequence in € and colimgcy Xg = colimgey Y.

Proor. This follows from the universal mapping property of the colimit. O

DEeFINITION 10.2.5. If € is a category, A is a limit ordinal, and X: A — Cis a
functor, then the A-sequence Y obtained from the functor X as in Lemma 10.2.4
will be called the reindezing of X.

ProrosiTioN 10.2.6. Let C be a category that is closed under colimits, let D
be a class of maps in €, and let f: P — Q be a map in C. If there is an ordinal v
and a function X: v — € such that

e Xo=P,

e colimgey X = @Q,

e the natural map to the colimit P = Xy — colimgey Xg = Q is the map
f, and

e for every $+ 1 <~y the map colimy<g Xo — Xp+1 is an element of D,

then the map f is a transfinite composition of elements of D. If y is infinite, then
it is a transfinite composition indexed by an ordinal whose cardinal equals that of
.

Proor. If v is a limit ordinal then let § = 7; otherwise, let § be the first
limit ordinal greater than . We can extend X to a functor X: § — € by letting
Xp — Xp41 be an identity map for v < 8+ 1 < ¢ and then reindex X (see
Definition 10.2.5) to obtain a é-sequence Y. If we let A be the smallest ordinal
such that the map Y3 — Y341 is an identity map for A < 8+ 1 < §, then the
restriction of Y to X is a A-sequence whose composition is f: P — @ and is such
that Y3 — Y341 is an element of D for every f+ 1 < A. O

ProrosiTION 10.2.7. If C is a category, S is a set, and g;: Cs — D, is a map in
C for every s € S, then the coproduct lg,: IIC, — ILD; is a transfinite composition
of pushouts of the g,. If S is infinite, then it is a transfinite composition indexed
by an ordinal whose cardinal equals that of S.

Proor. Choose a well ordering of the set S. There is a unique ordinal X that
is isomorphic to the ordered set S (see, e.g., {29, Chapter 1I], [17, page 47], or [40,
page 202]), and we will identify S with . We define a functor X: A +1 — € by
letting

Xe=([Ipa)u( IT Ca)

a<p BLa<i+l
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for all # < A, with the maps in the sequence being the obvious ones. For each
B+ 1 < X we have a pushout diagram

CB—gB—)DB

|

Xﬁ _— XB-H

and for each limit ordinal 8 < A we have a pushout diagram

Cp—2 5 Dg

|

e Ko — Xp -
The result now follows from Proposition 10.2.6. a

ProposiTioN 10.2.8. Let € be a category. If the map X — Y is the composition
of the A-sequence

(for some ordinal \) in which each map Xg — Xp41 is the composition of the
Yg-sequence

(10.2.10) Xp=WE WP oWl ... oWl 5.l (a<y)

(for some ordinal ), then the set P = {(8,) | 8 < A, a < v} is well ordered by
the dictionary order, i.e.,

(Bryen) < (B2,a2) If By <Pz or By =Pranda <a.

We define a quotient P of P as follows: For each vp that is a successor ordinal we
let 73 be the ordinal such that g + 1 = ~g (and, thus, W% = Wé’“), and we
identify (8,7p) with (8+ 1,0). The well ordering on P induces a well ordering on
f’, and so there is a unique ordinal k for which there is an isomorphism of ordered
sets f: k ~ P, and this isomorphism is also unique. If we define a functorY: x — €
by Y(v) = W(f(v)), then Y is a k-sequence in €.

PRrROOF. We need only show that if v < x and «y is a limit ordinal, then Y (y) =
colima <y Y(a). This follows from the universal mapping property of the colimit.
a

DerINITION 10.2.11. The n-seqixence of Proposition 10.2.8 will be said to have
been obtained by interpolating the sequences (10.2.10) into the sequence (10.2.9).

ProposiTION 10.2.12. The A-sequence of (10.2.9) is right cofinal (see Defini-
tion 10.1.4) in the x-sequence of Proposition 10.2.8.

Proor. This follows directly from the definition. 0

LemMa 10.2.13. Let € be a category, let D be a class of maps in €, and let
A be an ordinal. If the map X — Y is the composition of a A-sequence X =
Xo—- Xy - Xo— - > Xg— -+ (B <)) in which each map Xg — Xp41 Is
a transfinite composition of maps in D, then interpolating (see Definition 10.2.11)
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the sequences for each Xg — Xg1 into the original A-sequence gives a k-sequence
(for some ordinal k) of maps in D whose composition is the map X — Y.

Proor. This follows directly from the definitions. ]

ProrosITiON 10.2.14. Let C be a category, and let D be a class of maps in
C. If the map g: X — Y is a transfinite composition of pushouts of coproducts of
elements of D, then g is a transfinite composition of pushouts of elements of D.

Proor. This follows from Proposition 10.2.7 and Lemma 10.2.13. a

ProrosiTion 10.2.15. Let C be a category, let I be a class of maps in €, and
let A be a regular cardinal (see Definition 10.1.11). If the map X — Y is the
composition of a A-sequence

(10.2.16) X=X X2 Xo—- o Xg— - (B< N

in which each map Xg — Xpgy is a transfinite composition, indexed by an ordinal
whose cardinal is less than X, of pushouts of coproducts of elements of I, then
interpolating the sequences for the Xg — Xp41 into the sequence (10.2.16) (see
Definition 10.2.11) yields a A-sequence (indexed by the same ordinal A) of pushouts
of coproducts of elements of I.

PrOOF. Lemma 10.2.13 implies that there is an ordinal & such that the map
X — Y is the composition of a x-sequence of pushouts of coproducts of elements
of I, and so it remains only to show that the ordinal x constructed in the proof of
Lemma 10.2.13 equals A. Since the cardinal of s equals that of a union, indexed by
A, of sets of cardinal less than ), the cardinal of k equals . Since any ordinal less
than k is contained within a subunion indexed by an ordinal less than A of sets of
cardinal less than ), and X is a regular cardinal, that subunion would have cardinal
less than A, i.e., k is the first ordinal having its cardinal, and so & is a cardinal, and
S0 K= A 0

10.2.17. Simplicial model categories.

ProrosiTioN 10.2.18. If K is a simplicial set and L is a subcomplex of K,
then the inclusion L — K is a transfinite composition of pushouts of the maps
{0A[n] — Aln] | n >0}

ProoOF. For each integer n > 0 let 9, be the set of nondegenerate n-simplices
of K that are not in L, and choose a well ordering of each set S,,. Let T =, 54 Sn
and let T be ordered by the “dictionary order”, i.e., if o,7 € T, then ¢ < 7 if either

e o is an n-simplex, 7 is a k-simplex, and n < k, or

e o and 7 are both n-simplices and ¢ < 7 in the well ordering of S,,.
The set T is then a well ordered set and is thus isomorphic to a unique ordinal « (see,
e.g., [29, Chapter II], [17, page 47}, or [40, page 202]). We define a functor X : v+
2 — 88 by letting X (for 8 < v+ 1) be the union of L with the nondegenerate
simplices of K — L of index less than @ and their degeneracies. Proposition 10.2.6
now implies that there is an ordinal A and a A-sequence Y5 - ¥ - Yo — -+ =
Yg — --- (B < A) whose composition is the inclusion I — K and such that each
Ys — Y41 (for §+1 < X) attaches a single nondegenerate simplex, and is thus
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the bottom arrow of a pushout square
8A[n] — Aln]
Ygp—— Vo4 -
a

LeEMMA 10.2.19. Let M be a simplicial category and let f: A — B be a map in
M. If M — L — K are maps of simplicial sets, then the square

A®LIag BOM ———— B@L

l l

AQKUpem BOM — AQ K. B®L
is a pushout.

PRroOF. For the square to be a pushout, the lower right hand corner must be
the colimit of the diagram

B®L

TN

A® L+ A®M +yB®M

L]

ARK+———A®QM —BQ®M .

The colimit of that diagram is isomorphic to the colimit of the diagram
B®L

TN

A® K ¢ A® L« A®@M yBM |

which the universal mapping property of the colimit implies is isomorphic to A ®
K1lagr B® L (see Theorem 14.2.5). a

ProrosITION 10.2.20. Let M be a simplicial model category and let f: A — B
be a map in M. If (K, L) is a pair of simplicial sets, then the map
A® Kl e, B®L —- B® K
is a transfinite composition of pushouts of the maps A® A[n]ygsa[m BRIAR] —
B ® A[n] for various values of n.

Proor. The inclusion I — K can be written as a transfinite composition
of pushouts of the inclusions dA[n] — A[n] for various values of n (see Proposi-
tion 10.2.18), and so the result follows from Lemma 10.2.19. ]

CorOLLARY 10.2.21. Let M be a simplicial model category. If f: A — B isa
map in M, K Is a simplicial set, and n > 0, then the map

(A® Aln) Hagsap BR®IAR]) @ K - (B®AR]) @ K
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is a transfinite composition of pushouts of the maps A® A[m| U agaam) BRIA[M] —
B ® A[m] for various values of m.

PROOF. Lemma 9.2.1 and axiom M6 (see Definition 9.1.6) imply that the map
(A® An] Uagonpn BRIAR]) ® K - (BRAR]) @ K
is isomorphic to the map
A® (Afn] x K) Wag@aamxr) B® (0A[R] x K) —» B® (Aln] x K),

and so the result follows from Proposition 10.2.20. ]

10.3. Transfinite composition and lifting in model categories

LEMMA 10.3.1. If M is a category and p: X — Y is a map in M, then the class
of maps with the left lifting property with respect to p is closed under transfinite
composition (see Definition 10.2.2).

PROOF. Given a A-sequence of maps with the left lifting property with respect
to p and a lifting problem for the composition of the A-sequence, a lift can be
constructed by a transfinite induction. O

ProrosiTION 10.3.2. If M is a category and p: X — Y is a map in M, then
the class of maps with the left lifting property with respect to p is closed under
pushouts, transfinite composition, and retracts.

PROOF. This follows from Lemma 7.2.11, Lemma 10.3.1, and Lemma 7.2.8. O

ProrosiTiON 10.3.3. If M is a simplicial model category and C is a class of maps
in M, then the class of maps in M that have the homotopy left lifting property with
respect to every element of C is closed under pushouts, transfinite compositions,
and retracts.

ProoFr. This follows from Lemma 9.4.7 and Proposition 10.3.2. O

ProrposiTiON 10.3.4. If M is a model category, then the classes of cofibrations
and of trivial cofibrations are closed under pushouts, transfinite compositions, and
retracts.

PRrOOF. This follows from Proposition 7.2.3 and Proposition 10.3.2. ]

LEMMA 10.3.5. Let M be a model category and let p: X — Y be 2 map in M.
If S is a totally ordered set and W: S — M is a functor such that if s, € S and
s < t, then W — W, has the left lifting property with respect to p, then for every
s € S the map W — colimy>s W, has the left lifting property with respect to p.

PRrROOF. Proposition 10.1.6 implies that we can choose a right cofinal subset T'
of {t € S|t > s} such that T is well ordered. There is a unique ordinal A that
is isomorphic to T (see, e.g., {29, Chapter 1I], {17, page 47, or [40, page 202]),
and so we have a right cofinal functor A — M. If we reindex this functor (see
Definition 10.2.5), then we have a A-sequence of maps with the left lifting property
with respect to p. The lemma now follows from Lemma 10.3.1 and Theorem 10.1.5.

O



194 10. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITION

ProrosiTION 10.3.6. Let M be a model category, and let S be a totally ordered
set. f W: S — M is a functor such that, ifs,t € S and s <t, then W, - W, is
a cofibration, then, for every s € S, the map Wy — colim,>, W, is a cofibration.

Proor. This follows from Proposition 7.2.3 and Lemma 10.3.5. a

10.4. Small objects

DEFINITION 10.4.1. Let € be a cocomplete category and let D be a subcategory
of C.

(1) If & is a cardinal, then an object W in € is k-small relative to D if, for
every regular cardinal (see Definition 10.1.11) A > & and every A-sequence
(see Definition 10.2.1)

Xo- X1 2 Xp— - > Xg— - B<N

in € such that the map Xg — Xg4, is in D for every ordinal 3 such that
B+1 < A, the map of sets colimges C(W, Xg) — C(W, colimgr Xg) is an
isomorphism.

(2) An object is small relative to D if it is s-small relative to D for some
cardinal k, and it is small if it is small relative to €.

EXAMPLE 10.4.2. In the category SS,), every simplicial set with finitely many
nondegenerate simplices is Ro-small relative to the subcategory of inclusions of
simplicial sets (where Rg is the first infinite cardinal).

ExaMPLE 10.4.3. Let X be a finite cell complex in Top,y (see Definition 10.7.1).
Corollary 10.7.7 implies X is Ro-small relative to the subcategory of inclusions of
cell complexes (where Rp is the first infinite cardinal).

EXAMPLE 10.4.4. Let X be an object of 8S(,y. If x is the first infinite cardinal
greater than the cardinal of the set of nondegenerate simplices of X, then X is
x-small relative to the subcategory of inclusions (see Proposition 10.1.14). Thus,
every simplicial set is small relative to the subcategory of inclusions.

EXAMPLE 10.4.5. Let X be a cell complex in Top,) (See Definition 10.7.1).
If x is the first infinite cardinal greater than the cardinal of the set of cells of X
(see Proposition 10.1.14), then Proposition 10.7.4 implies that X is x-small relative
to the subcategory of relative cell complexes. Thus, every cell complex is small
relative to the subcategory of relative cell complexes.

LeMMA 10.4.6. If C is a cocomplete category, D is a subcategory of €, and I
is a set of objects in € that are small relative to D, then there is a cardinal x such
that every element of I is k-small relative to D.

ProoF. For every object A of I let x4 be a cardinal such that A is k4-small
relative to D. If we let x be the union |J,; &4, then every object of I is x-small
relative to D. 0

ProprosiTioN 10.4.7. Let € be a cocomplete category and let D be a subcate-
gory of €. If k is a cardinal and X is an object of C that is k-small relative to D,
then any retract of X is x-small relative to D.
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Proor. Leti: W — X and r: X — W be maps such that ri = 1. If Mis a
regular cardinal such that A> kand Zp = 2, 2 22— - —= Zg—--- (<)) is
a A-sequence in D, then we have the commutative diagram

leonm e(w,25)

//——_———\}
. . . AT W
cgl<15\n C(W, Zg) _colimr” cglg\n C(X, Zg) _colimi” cglim (W, Zg)

l l l

W eol . . . .
e( »colim Zg) T L, C(X, cglgl Zg) L, C(W, CglgrAn Zg)

\h_//)

le(w,colim )

Thus, the map colimgy €(W, Zg) — €(W, colimgx Zg) is a retract of the isomor-
phism colimgey €(X, Zg) — C(X, colimger Zg), and is thus an isomorphism. O

ProrosiTiON 10.4.8. Let C be a cocomplete category and let D be a subcate-
gory of C. IfJ is a small category and W :J — C is a diagram in € such that W is
small relative to D for every object 1 in J, then colim,es W, is small relative to D.

PROOF. Let 4 be a cardinal such that W; is y-small relative to D for every
object i in J (see Lemma 10.4.6), let § be the cardinal of the set of morphisms
in J, and let x be the first cardinal greater than both v and §; we will show that
colim;eg W, is k-small relative to D.

Let A be a regular cardinal such that A > k, and let

Xo=X1—>Xp— - > Xg— - (B<X

be a A-sequence in C such that the map Xg — Xpy41 is in D for all 8 < A
If we have a map f: colim,eg W; — colimgcy X, then for every object j in J
the composition of f with the natural map W, — colimijeg W; defines a map
fit W, — colimgex Xg. Since W, is small relative to D and X is a large enough
regular cardinal, there exists an ordinal 8; < A such that f; factors through Xg, .
If welet 8= U_,,-Eobj B;, then (since X is a regular cardinal) B < X, and the dotted
arrow g, exists in the diagram

W,
I

3, i
Xpg—— cgl(if\n Xg
for every object j in J,

Ifs: j — kis a morphism in J, then the composition W, W, W, Xﬁ need
not equal the map g,: W, — Xﬁ, but their compositions with the natural map
X5 — colimg<x X are equal. Since the natural map of sets colimgcx €(W,, X) —
C(W,, colimgcx Xg) is an isomorphism, there must exist an ordinal Bs < A such
that their compositions with the map Xz — Xﬁg are equal. If we let § =

Ugs: y—ryen Bs, then (since A is a regular cardinal) we have § < X. If, for every

object j of J, we let §; equal the composition W %, X5 — X3, then for every
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morphism s: § — k in J the triangle

w; 2wy,
. l@k
9
Xp
cornmutes, and so the g, define a map g: colim;es W; — X, whose composition
with the natural map X3 — colimgcx X equals f. Thus, the map
. . . coli
B Clogn Wy Xa) — Elogin Wi cpln Xo)
is surjective.
To show that that map is also injective, let g’: colim;es W; — X3 be a map

whose composition with the natural map Xz — colimg<x X equals f. For every
object j in J the compositions

W; — colimW; % X5 — colim Xy
2€J B<A
and
W; — colimW, 5, Xp — colim Xp
i€J B<A
are equal, and so there exists an ordinal ; < A such that the compositions
W; — colimW, % X; — X,
J i€ s s
and
W — colimW; 5 X5 — Xa,
i€l
are equal. If we let a = Ujeob(g) «;, then o < A and the compositions
colij,-—»XB—»Xa and colimW,-—»Xg—»Xa
1€J i€l
are equal, and so the map
cgl(i&n C(c?éign Wi, Xp) — C(c?éijm Wi, cgl(iin X3)
is an isomorphism. O

COROLLARY 10.4.9. Let C be a cocomplete category, let D be a subcategory of
G, and let I be a set of maps in € whose domains and codomains are small relative
to D. If X is small relative to D and the map X — Y is a transfinite composition
of pushouts of elements of I, then Y is small relative to D.

ProoOF. This follows from Proposition 10.4.8, using a transfinite induction. O

10.5. The small object argument
10.5.1. Injectives, cofibrations, and relative cell complexes.

DEFINITION 10.5.2. Let C be a category, and let I be a set of maps in €.

(1) The subcategory of I-injectives is the subcategory of maps that have the
right lifting property (see Definition 7.2.1) with respect to every element
of I.
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(2) The subcategory of I-cofibrations is the subcategory of maps that have the
left lifting property (see Definition 7.2.1) with respect to every I-injective.
An object is I-cofibrant if the map to it from the initial object of € is an
I-cofibration.

REMARK 10.5.3. The term I-injective comes from the theory of injective classes
([36]). The map p: X — Y is an I-injective if and only if, in the category (C|Y)
of objects over Y, the object p is injective relative to the class of maps whose image
under the forgetful functor (€| Y) — € is an element of I. The term I-cofibration
comes from Proposition 11.2.1, which asserts that if I is the set of generating
cofibrations of a cofibrantly generated model category (see Definition 11.1.2), then
the I-cofibrations are the cofibrations of the model category.

ExXAMPLE 10.5.4. If I is the set of inclusions dA[n] — A[n] in SS, then the
I-injectives are the trivial fibrations, and the I-cofibrations are the inclusions of
simplicial sets (see Proposition 7.2.3).

ExaMPLE 10.5.5. If J is the set of inclusions A[n, k] — A[n] in SS, then the J-
injectives are the Kan fibrations, and the J-cofibrations are the trivial cofibrations
(see Proposition 7.2.3).

ProrosiTION 10.5.6. Let € be a category and let J and K be sets of maps in
C. If every J-injective is a K-injective, then every K-cofibration is a J-cofibration.

Proor. This follows directly from the definitions (see Definition 10.5.2). O

ProrosiTion 10.5.7. Let € be a category and let J and K be sets of maps in
C. If the subcategory of J-injectives equals the subcategory of K-injectives, then
the subcategory of J-cofibrations equals the subcategory of K-cofibrations.

Proor. This follows from Proposition 10.5.6. [}

DerFINITION 10.5.8. If € is a category that is closed under small colimits and
I is a set of maps in C, then

(1) the subcategory of relative I-cell complezes (also known as the subcate-
gory of regular I-cofibrations) is the subcategory of maps that can be con-
structed as a transfinite composition (see Definition 10.2.2) of pushouts
(see Definition 7.2.10) of elements of I,

(2) an object i3 an I-cell complez if the map to it from the initial object of €
is a relative I-cell complex, and

(3) a map is an inclusion of I-cell complezes if it is a relative I-cell complex
whose domain is an I-cell complex.

REMARK 10.5.9. Note that Definition 10.5.8 defines a relative I-cell complex
to be a map that can be constructed as a transfinite composition of pushouts of
elements of I, but it does not assume that there is any preferred such construction.
In Definition 10.6.3 we define a presented relative I-cell complex to be a relative
I-cell complex together with a choice of such a construction.

ProprosiTION 10.5.10. If C is a category and I is a set of maps in €, then every
relative I-cell complex is an I-cofibration (see Definition 10.5.2).

Proor. This follows from Lemma 7.2.11 and Lemma 10.3.1. ]
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ProprosiTion 10.5.11. If M is a category and I is a set of maps in M, then a
retract of a relative I-cell complex is an I-cofibration.

Proor. This follows from Proposition 10.5.10 and Lemma. 7.2.8. a

DEFINITION 10.5.12. Let M be a cocomplete category and let I be a set of
maps in M.

(1) If x is a cardinal, then an object is x-small relative to I if it is k-small rel-
ative to the subcategory of relative I-cell complexes (see Definition 10.4.1
and Definition 10.5.8).

(2) Anobject is small relative to I if it is k-small relative to I for some cardinal
.

ProprosrTiON 10.5.13. Let C be a cocomplete category and let I be a set of
maps in €. If K is a set of relative I-cell complexes, then an object that is small
relative to I is also small relative to K.

PROOF. Since every relative K-cell complex is also a relative I-cell complex,

a A-sequence of relative K-cell complexes is also a A-sequence of relative I-cell
complexes. The result now follows from Proposition 10.2.12 and Theorem 10.1.5.
a

10.5.14. The small object argument.

DerFINITION 10.5.15. If M is a category and [ is a set of maps in M, then
(following D. M. Kan) we say that I permits the small object argument if the
domains of the elements of I are small relative to I (see Definition 10.5.12 and
Definition 10.5.8).

ProposITION 10.5.16 (The small object argument). If € is a cocomplete cat-
egory and I is a set of maps in € that permits the small object argument (see
Definition 10.5.15), then there is a functorial factorization of every map in € into
a relative I-cell complex (see Definition 10.5.8) followed by an I-injective (see Def-
inition 10.5.2).

PRrROOF. Lemma 10.4.6 implies that we can choose a regular cardinal A such
that every domain of an element of I is A-small relative to the subcategory of
relative I-cell complexes. If g: X — Y is a map in €, then we will factor g as

X 3 E; Y, where j is the transfinite composition of a A-sequence

X:EO__)EI__)EZ—)_..—>EB_)... (ﬁ<,\)
Po P1 J’p/
Ps
Y

in which each E? — EP*! is a pushout of a coproduct of elements of I, each
E® comes with a map pg: E? — Y such that all the triangles commute, and
p = colimg» pg.
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We begin by letting E° = X and letting po: E° — Y equal g. Given EP, we
have the solid arrow diagram

(10.5.17) I 4 — 5 Rf S EAH
(Ac—By)el K
M(A,E®) xp(a,,v)M(B,,Y)

l p  Po

e
I o5 v
(A, —B,)el
M(AEP) X (a,,v)M(BL,Y)

and we let E°* be the pushout (I]B;) I(ya,y E®. If 4 is a limit ordinal, we
let E7 = colimgc, Eﬁ, and we let E; = colimgea E?. The construction of the
factorization X — Ej — Y makes it clear that it is functorial. Proposition 10.2.7,
Lemma 7.2.13, and Lemma 10.2.13 imply that X — E; is a relative I-cell complex,
and so it remains only to show that E; — Y is an I-injective.

Given an element A — B of I and a solid arrow diagram

(10.5.18) A——E;

| ]

B—Y
we must show that the dotted arrow exists. Since E; = colimgea EP and A is
A-small relative to I, the natural map of sets colimg<y M(A4, Ef) & M(A,Ef) is an

isomorphism. Thus, the map A — E; factors through E? — E; for some 8 < ),
and we have the solid arrow diagram

A 34 y pB+1 yE;

| |

B——Y

The construction of Ef*! implies that the dotted arrow exists, and this dotted
arrow defines the dotted arrow in Diagram 10.5.18. 0

DermviTION 10.5.19. Let € be a cocomplete category, let I be a set of maps
in €, and let A be an ordinal. If we apply the construction in the proof of Propo-
sition 10.5.16 to a map g: X — Y using the set I and the ordinal A to obtain the
factorization X — E;r — Y, then we will call Ey the object obtained by applying
the small object factorization with the set I and the ordinal ) to the map g.

ProposiTION 10.5.20. Let € be a cocomplete category, let I be a set of maps in
C, and let A be an ordinal. If the map g: X — Y is a retract of the map §: XoY
and we apply the small object factorization to both g and § using the set I and the
ordinal A (see Definition 10.5.19), then the factorization X — Er — Y obtained
from g is a retract of the factorization X — Ey > Y obtained from § g

PROOF. At each step in the constructlon of Fr and E'I, the factorization X —
Ef Y is a retract of the factorization X — Ef Y. |
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CoRroOLLARY 10.5.21. Let C be a cocomplete category and let I be a set of maps
in €. If k is a regular cardinal such that the domains of the elements of I are k-
small relative to I, then there is a functorial factorization of every map in C into
the composition of & k-sequence of pushouts of coproducts of elements of I followed
by an I-injective.

Proor. This is identical to the proof of Proposition 10.5.16 if we choose the
cardinal A in that proof to equal x. a

COROLLARY 10.5.22. If C is a cocomplete category, I is a set of maps in C
that permits the small object argument, and g: X — Y is an I-cofibration (see
Definition 10.5.2), then g is a retract of a relative I-cell complex.

Proor. If we apply the factorization of Proposition 10.5.16 to g, we obtain

x4 Er 2 Y in which j is a relative J-cell complex and p is an I-injective. The
result now follows from the retract argument (see Proposition 7.2.2). ]

COROLLARY 10.5.23. Let € be a cocomplete category. If I is a set of maps
in C that permits the small object argument, then the class of I-cofibrations (see
Definition 10.5.2) equals the class of retracts of relative I-cell complexes (see Defi-
nition 10.5.8).

Proor. This follows from Proposition 10.5.10, Proposition 10.5.11, and Corol-
lary 10.5.22. 0

10.5.24. Smallness and cofibrations.

LeEMMA 10.5.25. Let C be a cocomplete category, let I be a set of maps in M
that permits the small object argument (see Definition 10.5.15), and let k be a
regular cardinal such that the domain of every element of I is k-small relative to
I (see Lemma 10.4.6). If A is an ordinal and Xo —» X; —» X9 — -+ = Xg — -+
(B < A) is a A-sequence of I-cofibrations, then there is a A-sequence Xo— X1 >
Xe— > )?ﬂ — - (B < A) of relative I-cell complexes and maps of A-sequences

(10.5.26) Xo—220 X, — s X, 22 ... y Xp -2
iko i1J in ing
550 Toﬁ)?l = ’552 2 ’)?B =
Xo—2s ¥, -2 X, 72, s Xg 22

such that, for every 8 < A,
(1) the composition rgig is the identity map of Xg, and
(2) the map 1g: Xg — Xpy, is the composition of a k-sequence of pushouts
of coproducts of elements of I.

ProoF. We let Xy = Xo, and we let both ig and r¢ be the identity map of
Xo. If B is an ordinal such that 8 +1 < A and we've defined the sequence through
Xp, then we apply the factorization of Corollary 10.5.21 to the map ogrg: Xz —
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Xpy1 to obtain Xﬂ =, Xﬂ“ ALLZH Xp41, in which 75 is the composition of a
s-sequence of pushouts of coproducts of elements of I and rg4; is an I-injective.
Since rg117g18 = 0grgis = 05, we now have the solid arrow diagram

Taig  ~
Xg—— Xp+1

. h
6+1
o5 7o+

Xp+1 Xpe1

in which og is an J-cofibration and rg4; is an I-injective, and so there exists a
dotted arrow igy) such that ig105 = 75ig and rgi1iger = 1x,,,-

For every limit ordinal v such that v < A, we let )?,, = colimgey }?g, iy, =
colimg, i, and ., = colimg<y 73 ]

THEOREM 10.5.27. Let € be a cocomplete category and let I be a set of maps
in € that permits the small object argument (see Definition 10.5.15). If W is an
object that is small relative to I, then it is small relative to the subcategory of all
I-cofibrations.

PROOF. Let u be a cardinal such that W is y-small relative to . Lemma 10.4.6
implies that there is a cardinal « such that the domain of every element of I is x-
small relative to I. If v is the first cardinal greater than both u and x, then we will
show that W is v-small relative to the subcategory of I-cofibrations.

Let A be a regular cardinal such that A > v and let Xg —» X; - X, —» -+ —
Xg — - (B < A) be a A-sequence of I-cofibrations. Lemma 10.5.25 implies that
there is a A-sequence jfo — }?1 — }?2 — - > Xg > - (B < A) of relative I-cell
complexes and maps of A-sequences as in Diagram 10.5.26 satisfying the conclusion
of Lemma 10.5.25. Proposition 10.2.15 implies that, after interpolations, the A-
sequence Xg — X; — X9 — -+~ = Xg — -+ (8 < A) is a A-sequence of relative
I-cell complexes, and so Proposition 10.2.12 and Theorem 10.1.5 imply that the
map of sets colimgc M(W, Xg) — M(W, colimg<s Xg) is an isomorphism. Since
the map of sets colimgey M(W, Xg) — M(W, colimgex Xg) is a retract of this
isomorphism, it is also an isomorphism. 0

10.6. Subcomplexes of relative I-cell complexes

If € is a cocomplete category and I is a set of maps in €, then a relative I-cell
complex is a map that can be constructed as a transfinite composition of pushouts
of coproducts of elements of I (see Definition 10.5.8 and Proposition 10.2.14). To
consider “subcomplexes” of a relative I-cell complex, we need to choose a “presen-
tation” of it (see Definition 10.6.2), i.e., a particular such construction. In Defi-
nition 10.6.3, we define a presented relative I-cell complez to be a relative I-cell
complex together with a chosen presentation.

10.6.1. Presentations of relative I-cell complexes.

DeriNiTION 10.6.2. Let C be a cocomplete category and let I be a set of maps
inC If f: X — Y is a relative I-cell complex (see Definition 10.5.8), then a
presentation of f is a pair consisting of a A-sequence

X=Xg-X; > Xz > Xg—o-  (B<N
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(for some ordinal A) and a sequence of ordered triples

{(Tﬁ,eﬁ,hﬁ)}[,<A
such that
(1) the composition of the A-sequence is isomorphic to f, and
(2) for every § < A
o TP is a set,
e ¢ is a function ¢#: TP — I,
e if i € TP and ¢ is the element C; — D; of I, then h? is a map
h?: C; — X4 such that there is a pushout diagram

]:[Ci — ]:[ D,
T8 T8

]

Xg — Xp11 -

If the map f: @ — Y (where 0 is the initial object of €) is a relative I-cell complex,
then a presentation of f will also be called a presentation of Y.

DEeFINITION 10.6.3. If € is a cocomplete category and I is a set of maps in

C, then a presented relative I-cell complez is a relative I-cell complex f: X — Y

together with a particular presentation (X =Xo—- X1 2 X9~ - > X5 —

(B < A),{TP,€5,hP}gc) of it (see Definition 10.6.2). A presented relative

I-cell complex in which X = § (the initial object of C) will be called a presented
I-cell complex.

DEeEFINMITION 10.6.4. Let C be a cocomplete category and let I be a set of
maps in €. If(f: X - Y X=X X, > Xo— - > Xg— - (<
M), {TP,eP,hP}p.») is a presented relative I-cell complex (see Definition 10.6.3),
then
) the presentation ordinal of f is A,

) the set of cells of fis [J5.,T?,

) the size of f is the cardinal of the set of cells of f,

) if e is a cell of f, the presentation ordinal of e is the ordinal § such that
ee TP and

(5) if B < A, then the B-skeleton of f is Xg.

(1
(2
(3
(4

PROPOSITION 10.6.5. If € is a cocomplete category and I is a set of maps in €,
then a presented relative I-cell complex is entirely determined by its presentation
ordinal X (see Definition 10.6.4) and its sequence of triples {(T,€®, h?)}g<x.

PrOOF. This follows directly from the definitions. ]
10.6.6. Subcomplexes of relative I-cell complexes.

DerFmviTION 10.6.7. Let € be a cocomplete category and let I be a set of
mapsine If (f: XHYX Xo = X1 = Xz — > Xg > - (B<
A), {T?,eP,hP} g<») is a presented relative I-cell complex, then a subcomplez of f
con31sts of a presented relative I-cell complex (f X - Y X=Xo— X1 — Xo—
= Xg— - (B<A),{T#,& k) 4.») such that
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(1) for every B < A the set T# is a subset of T# and &7 is the restriction of
ef to TP, and
(2) there is a map of A-sequences

X * Xo » X, » X »
X— Xo y X1 > Xo >
X

such that, for every 8 < A and every i € Tﬁ, the map iz? C; — )?g isa
factorization of the map A?: C; — X through the map X5 — Xp.

REMARK 10.6.8. Although a subcomplex of a cell complex is defined to be a
presented relative I-cell complex, we will often abuse language and refer to the
A-sequence associated with the subcomplex, or the colimit of that A-sequence, as
the subcomplex.

10.6.9. The case of monomorphisms.

ProrosITION 10.6.10. If C is a cocomplete category and I is a set of maps in C
such that relative I-cell complexes (see Definition 10.5.8 and Proposition 10.2.14)
are monomorphisms, then a subcomplex of a presented relative I-cell complex (see
Definition 10.6.7) is entirely determined by its set of cells {fﬁ}g<,\ (see Defini-
tion 10.6.4).

PROOF. The definition of a subcomplex implies that the maps X g — Xp are all
inclusions of subcomplexes. Since inclusions of subcomplexes are monomorphisms,
there is at most one possible factorization hf’ of each hf through Xz — Xg. ]

PROPOSITION 10.6.11. Let € be a cocomplete category and let I be a set of maps
in € such that relative I-cell complexes are monomorphisms. If (f: X - YV, X =
Xo— X1 X2— > Xg— - (B<A),{T? e rPYs.,) is a presented
relative I-cell complex, then an arbitrary subcomplex of f can be constructed by
the following inductive procedure:

(1) Choose an arbitrary subset T° of T°.
(2) If B < X and we have defined {T"},.p, then we have determined the

object Xg and the map Xg — Xg (where Xg is the object that appears
in the A-sequence associated with the subcomplex). Consider the set

{ieT?| KP: C; — X factors through X5 — Xp}

Choose an arbitrary subset T8 of this set. For every i € T# there is a
unique map hf: C; — Xp that makes the diagram
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commute. Let 555+1 be defined by the pushout diagram

HCi —_— HD.L'
6 6

o

Xo— Xpp -
Proor. This follows directly from the definitions. a

ReEMARK 10.6.12. If € is a cocomplete category, I is a set of maps in C such
that relative I-cell complexes are monomorphisms, and (f: X — Y, X = X, —
X1 > Xo— > Xg— o (B < A, {TP,6%,hP}pcn) is 2 presented relative
I-cell complex, then not every sequence {T%} < of subsets of {7}y determines
a subcomplex of f. Given such a sequence {T%} ., it determines a subcomplex of
f if and only if it satisfies the inductive conditions described in Proposition 10.6.11.

10.7. Cell complexes of topological spaces

A cell complex in Top(,) is a topological space built by a sequential process of
attaching cells. The class of cell complexes includes the class of CW-complexes, but
the attaching map of a cell in a cell complex need not be contained in a union of cells
of lower dimension. Thus, while a CW-complex can be built by a countable process
of attaching coproducts of cells, a general cell complex may require an arbitrarily
long transfinite construction.

The main disadvantage of using cell complexes that are not CW-complexes
is that the cell structure cannot be used to compute the homology groups of the
space. Cell complexes, however, have all the convenient mapping properties of
CW-complexes, and the small object factorization (see Definition 10.5.19) produces
cell complexes. Cell complexes and their retracts are the cofibrant objects in the
standard model category of topological spaces (see Example 11.1.8, Example 11.1.9,
and Corollary 11.2.2).

DerFmiITION 10.7.1. Let Top denote our category of (unpointed) topological
spaces and let Top, denote our category of pointed topological spaces.

o A relatwe cell complez in Top is a map that is a transfinite composition
(see Definition 10.2.2) of pushouts (see Definition 7.2.10) of maps of the
form |9A[n]| — |A[n|| for n > 0. The topological space X in Top is a cell
complez if the map § — X is a relative cell complex, and it is a finite cell
complez if the map § — X is a finite composition of pushouts of maps of
the form |8A([n]| — |A[n]| for n > 0.

o A relative cell complez in Top, is a map that is a transfinite composition
of pushouts of maps of the form |dA[n]|* — |An]|* for n > 0. The
topological space X in Top, is a cell complez if the map * — X is a
relative cell complex, and it is a finite cell complez if the map * — X is
a finite composition of pushouts of maps of the form |8A[n]|* — |A[n]|*
forn > 0.

ExamMpLE 10.7.2. A relative CW-complex in Top(*) is a relative cell complex,
and a CW-complex in Top,) is a cell complex.
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REMARK 10.7.3. Definition 10.7.1 implies that a relative cell complex in Topy,,
is a map that can be constructed as a transfinite composition of pushouts of in-
clusions of the boundary of a cell into that cell, but there will generally be many
different possible such constructions. When dealing with a topological space that
is a cell complex or a map that is a relative cell complex, we will often assume that
we have chosen some specific such construction. Furthermore, we may choose a
construction of the map as a transfinite composition of pushouts of coproducts of
cells, 1.e., we will consider constructions as transfinite compositions in which more
than one cell is attached at a time (see Proposition 10.2.7).

PROPOSITION 10.7.4. If X — Y is a relative cell complex in Top(,), then a
compact subset of Y can intersect the interiors of only finitely many cellsof Y — X.

ProoF. Let C be a subset of Y; we will show that if C intersects the interi-
ors of infinitely many cells of ¥ — X, then C has an infinite subset that has no
accumulation point (which implies that C is not compact).

Suppose now that C intersects the interiors of infinitely many cells of ¥ — X.
We construct a subset P of C' by choosing one point of C from the interior of each
cell whose interior intersects C. We will now show that this infinite subset P of C
has no accumulation point in C. We will do this by showing that for every point
¢ € C there is an open subset U of Y such that ¢ € U and U N P is either empty
or contains the one point c.

Let e, be the unique cell of Y — X that contains c¢ in its interior. Since there is
at most one point of P in the interior of any cell of Y — X, we can choose an open
subset U, of the interior of e. that contains no points of P (except for ¢, if ¢ € P).
We will use Zorn's lemma to show that we can enlarge U, to an open subset of Y’
that contains no points of P (except for ¢, if ¢ € P).

Let o be the presentation ordinal (see Definition 10.6.4) of the cell e.. If the
presentation ordinal of the relative cell complex X — Y is <, consider the set T of
ordered pairs (8,U) where &« < 8 < v and U is an open subset of Y# such that
UnYe = U, and U contains no points of P except possibly ¢. We define a preorder
onT by deﬁning (,31, Ul) < (ﬂz,Uz) if ,31 < 52 and U, ﬂyﬁl =U.

If {(Bs,Us)}ses is a chain in T, then (U,eg s, Uses Us) (see Section 10.1.1)
is an upper bound in T for the chain, and so Zorn’s lemma implies that T' has a
maximal element (Bm, Us). We will complete the proof by showing that B, = 7.

If Bm < 7, then consider the cells of presentation ordinal B, + 1. Since Y
has the weak topology determined by X and the cells of ¥ — X, we need only
enlarge Uy, so that its intersection with each cell of presentation ordinal G, + 1
is open in that cell, and so that it still contains no points of P except possibly c.
If h: 8771 — YP= is the attaching map for a cell of presentation ordinal B, + 1,
then h~*U.,, is open in S™ 7}, and so we can “thicken” A~*U,, to an open subset of
D™, avoiding the (at most one) point of P that is in the interior of the cell. If we
let U’ equal the union of U,, with these thickenings in the interiors of the cells of
presentation ordinal Bm + 1, then the pair (G, + 1,U’) is an element of T' greater
than the maximal element (B,,,Us,) of T. This contradiction implies that B, = v,
and so the proof is complete. a

CoroLLARY 10.7.5. A compact subset of a cell complex in Top(,y can intersect
the interiors of only finitely many cells.
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Proor. This follows from Proposition 10.7.4. (]

ProrposiTiON 10.7.6. Every cell of a cell complex in Top(*) is contained in a
finite subcomplex of the cell complex.

ProOOF. If we choose a presentation of the cell complex X (see Definition 10.6.2),
then the proposition follows from Corollary 10.7.5, using a transfinite induction on
the presentation ordinal of the cell. The attaching map of any cell intersects the
interiors of only finitely many cells, each of which (by the induction hypothesis) is
contained in a finite subcomplex of X. O

CoROLLARY 10.7.7. A compact subset of a cell complex in Topy,, is contained
in a finite subcomplex of the cell complex.

ProoF. This follows from Corollary 10.7.5 and Proposition 10.7.6. (]

10.8. Compactness

DEeFINITION 10.8.1. Let € be a cocomplete category and let I be a set of maps
in C.

(1) If 7 is a cardinal, then an object W in C is y-compact relative to I if, for
every presented relative I-cell complex f: X — Y (see Definition 10.6.3),
every map from W to Y factors through a subcomplex of f of size (see
Definition 10.6.4) at most ~.

(2) An object W in € is compact relative to I if it is y-compact relative to [
for some cardinal ~.

EXAMPLE 10.8.2. If € =SS,y and [ is the set of inclusions {8A[n] — A[n] |
n > 0}, then every finite simplicial set is w-compact relative to I (where w is the
countable cardinal). If  is an infinite cardinal and X is a simplicial set of size 7,
then X is y-compact relative to I.

ExampLE 10.8.3. If ¢ = Top(,, and I is the set of inclusions {loan])] —
|AR]| | n > 0}, then Corollary 10.7.7 implies that every finite cell complex is w-
compact relative to I (where w is the countable cardinal). If -y is an infinite cardinal
and X is a cell complex of size +y, then Corollary 10.7.7 implies that X is y-compact
relative to [.

PROPOSITION 10.8.4. Let € be a cocomplete category and let I be a set of maps
in C. Ify is a cardinal and an object W is y-compact relative to I, then any retract
of W is y-compact relative to I.

PrOOF. Let i: V — W and r: W — V be maps such that ri = ly. If
f: X — Y is a relative I-cell complex and f: V — Y is a map, then the map
fr: W — Y must factor through some subcomplex Z of Y of size at most -y. Thus,
fri: V = Y factors through Z, and fri = f. ]

PROPOSITION 10.8.5. Let C be a cocomplete category and let I be a set of maps
in €. If x and X are cardinals such that « < A, then any object that is k-compact
relative to I is also A-compact relative to I.

Proor. This follows directly from the definitions. (]
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PROPOSITION 10.8.6. If € is a cocomplete category, I is a set of maps in €, and
S is a set of objects that are compact relative to I, then there is a cardinal vy such
that every element of S is y-compact relative to I.

PROOF. For each element X of S, let yx be a cardinal such that X is yx-
compact relative to I. If v is the cardinal of | Jye57x, then Proposition 10.8.5
implies that every element of S is y-compact relative to I. 0

PROPOSITION 10.8.7. Let € be a cocomplete category and let I be a set of maps
in € such that relative I-cell complexes are monomorphisms. If v is a cardinal and
W is an object that is y-compact relative to I (see Definition 10.8.1), then W is
(v + 1)-small relative to I.

PROOF. Let A be a regular cardinal such that A > v and let Xo — X; —
Xz = - = Xg — --- (B < X) be a A-sequence of inclusions of relative I-cell
complexes. Since inclusions of relative I-cell complexes are monomorphisms, the
map colimgex C(W, Xg) — C(W, colimpx Xp) is injective, and it remains only to
show that it is surjective.

If W — colimgex Xg is a map, then (since W is y-compact) there is a subcom-
plex K of colim Xpg, of size at most ~, such that the map factors through K. For
each cell of K there is an ordinal § < A such that that cell is contained in Xg. Since
A is a regular cardinal, the union p of these 3 is less than A, and K is contained in
X, ]

PROPOSITION 10.8.8. Let € be a cocomplete category and let I be a set of
maps in € such that relative I-cell complexes are monomorphisms. If D is a small
category and X : D — € is a diagram such that X, is compact relative to I for
every object a of D, then colimp X is compact relative to I.

PROOF. Let & be a cardinal such that X, is k-compact relative to I for every
object & of D (see Proposition 10.8.6), let i be the cardinal of the set of objects of
D, and let v = ku; we will show that colimp X is y-compact relative to I.

If f: X - Y is arelative J-cell complex and g: colimp X — Y is a map, then
for every object # of D the composition Xg — colimp X 2, Y factors through
some sub relative J-cell complex X — Wy of f of size at most k. If W is the union
of the Wy, then W is of size at most k= 4. If s: @ — [ is a map in D, then the
triangle

Xa

[N

Xg—Y
commutes; since the inclusion W — Y is a monomorphism, the triangle
Xa
xml \
Xg— W

must commute as well, and so the maps X, — W define the map colimp X — W
that we require. (|



208 10. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITION

10.9. Effective monomorphisms

DerFINITION 10.9.1. Let € be a category that is closed under pushouts. The
map f: A — B in € is an effective monomorphism if f is the equalizer of the pair
of natural inclusions B =% B1l4 B.

REMARK 10.9.2. An effective monomorphism is dual to what Quillen has called
an effective epimorphism (see [52, Part II, page 4.1]). Effective monomorphisms
have also been called regular monomorphisms (see [1, page 2]), and effective epi-
morphisms have also been called regular epimorphisms (see [6, Definition 4.3.1]).

ExampPLE 10.9.3. If € is the category of sets, then the class of effective monomor-
phismas is the class of injective maps.

ProrosITION 10.9.4. If € is a category that is closed under pushouts, then a
map is an effective monomorphism if and only if it is the equalizer of some pair of
parallel maps.

ProOF. If f: A — B is an effective monomorphism, then it is defined to be
the equalizer of a particular pair of maps. Conversely, if f: A — B is the equalizer
9
of the maps B =3 W, then the maps g and h factor as
h

guh

1
B—=BU, B2 w
(3%

and we must show that f is the equalizer of ip and 7;. Since (g I h)ig = g and
(g 1L )i = h, this follows directly from the definitions. 0

ProrosiTioN 10.9.5. if € is a category that is closed under pushouts, then an
effective monomorphism is a monomorphism.

PROOF. Let f: A — B be an effective monomorphism and let g: W — A and
h: W — A be maps such that fg = fh. If 4y and 4, are the natural maps from B
to BII4 B, then iof =11 f, and s0 i9fg = 41 fg and iofh = i3 fh. The uniqueness
requirement in the definition of equalizer now implies that g = h. O

ProrosiTion 10.9.6. If € is a category that is closed under pushouts, then the
class of effective monomorphisms is closed under retracts.

PrOOF. If f: A — B is a retract of g: C — D, then we have the diagram

A C » A
I S ¢
B D B

fo

BHAB—)DucD—)BHAB

in which all of the horizontal compositions are identity maps. If ¢ is an effective
monomorphism then g is the equalizer of jo and j;, and a diagram chase then shows
that f is the equalizer of 79 and ;. 0



CHAPTER 11

Cofibrantly Generated Model Categories

A model category structure on a category consists of three classes of maps
(the weak equivalences, the cofibrations, and the fibrations) satisfying five axioms
(see Definition 7.1.3). Any two of these classes determine the third (see Propo-
sition 7.2.7), but there are other ways to determine the three classes of maps as
well. For example, the fibrations are the maps with the right lifting property (see
Definition 7.2.1) with respect to all trivia} cofibrations (see Proposition 7.2.3), and
so the class of trivial cofibrations determines the class of fibrations. Similarly, the
trivial fibrations are the maps with the right lifting property with respect to all
cofibrations (see Proposition 7.2.3), and so the class of cofibrations determines the
class of trivial fibrations. Since the weak equivalences are the maps that can be
written as the composition of a trivial cofibration followed by a trivial fibration (see
Proposition 7.2.6), this shows that the classes of cofibrations and of trivial cofibra-
tions entirely determine the model category structure. In some model categories,
this leads to a convenient description of the model category structure.

For example, the standard model category structure on the category of simpli-
cial sets can be described as follows:

e A map is a cofibration if it is a retract of a transfinite composition (see
Definition 10.2.2) of pushouts of the maps dA[n] — A[n] for all n > 0.

e A map is a trivial fibration if it bas the right lifting property with respect
to the maps 8A[n] — Aln} for all n > 0.

e A map is a trivial cofibration if it is a retract of a transfinite composition

(see Definition 10.2.2) of pushouts of the maps A[n, k] — Aln| foralln > 1

and 0 <k < n.

A map is a fibration if it has the right lifting property with respect to the

maps Aln, k] > An] foralln > 1and 0 < k < n.

e A map is a weak equivalence if it is the composition of a trivial cofibration
followed by a trivial fibration.

These ideas lead to the notion (due to D. M. Kan) of a cofibrantly generated model
category (see Definition 11.1.2).

We define cofibrantly generated model categories in Section 11.1; this requires
the notions of transfinite composition (see Definition 10.2.2) and smallness (see
Definition 10.4.1) discussed in Chapter 10. In Section 11.2 we discuss cofibrations,
trivial cofibrations, and smallness in cofibrantly generated model categories.

In Section 11.3 we prove two theorems useful for establishing cofibrantly gen-
erated model category structures: The first is a set of sufficient conditions to have
a cofibrantly generated model category structure on a category, and the second
provides for “lifting” a cofibrantly generated model category structure from one

209
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category to another via a pair of adjoint functors. In Section 11.4 we discuss com-
pactness (see Definition 10.8.1) in a cofibrantly generated model category.

In the remainder of the chapter we study categories of diagrams, i.e., functor
categories (see Definition 11.5.2). If M is a cofibrantly generated model category
and € is a small category, then there is a cofibrantly generated model category
structure on the category of C-diagrams in M, i.e., the category of functors from
€ to M (see Theorem 11.6.1). In Section 11.5 we describe free diagrams, which
are diagrams constructed via the left adjoint to the functor that evaluates a C-
diagram at a fixed object of € (see Proposition 11.5.8 and Proposition 11.5.26),
and free cells, which are maps of C-diagrams in M constructed by applying the free
diagram functor to the generating cofibrations of M (see Definition 11.5.30). The
free cells will be the generating cofibrations for the model category of C-diagrams
in M. In Section 11.6 we establish the model category of diagrams in a cofibrantly
generated model category, and in Section 11.7 we show that if M is a cofibrantly
generated model category that is also a simplicial category, then the model category
of C-diagrams in M is also simplicial.

In Section 11.8 we define overcategories and undercategories, and we use them
in Section 11.9 to define extensions of diagrams, which generalize the idea of a free
diagram (see Definition 11.9.1).

11.1. Cofibrantly generated model categories
11.1.1. Definitions.

DEFINITION 11.1.2. A cofibrantly generated model category is a model category
M such that

(1) there exists a set I of maps (called a set of generating cofibrations) that
permits the small object argument (see Definition 10.5.15) and such that
a roap is a trivial fibration if and only if it has the right lifting property
with respect to every element of I, and

(2) there exists a set J of maps (called a set of generating trivial cofibrations)
that permits the small object argument and such that a map is a fibration
if and only if it has the right lifting property with respect to every element
of J.

REMARK 11.1.3. Although the sets I and J of Definition 11.1.2 are not part of
the structure of a cofibrantly generated model category, we will often assume that
some particular set I of generating cofibrations has been chosen.

DerFINITION 11.1.4. Let M be a cofibrantly generated model category with
generating cofibrations I (see Remark 11.1.3).

(1) A relative I-cell complex (see Definition 10.5.8) will be called a relative
cell complez, and an I-cell complex (see Definition 10.5.8) will be called a
cell complex.

(2) If X is a cell complex and g: X — Y is a relative cell complex, then g will
be called an inclusion of a subcomplex.

(3) f & — X (where 0 is the initial object of M) is a finite composition of
pushouts of elements of I, then X will be called a finite cell complez.

We will show in Proposition 11.2.1 that in a cofibrantly generated model cate-
gory the class of cofibrations equals the class of retracts of relative cell complexes
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and the class of trivial cofibrations equals the class of retracts of relative J-cell
complexes.

11.1.5. Examples.

ExamPLE 11.1.6. The model category SS is cofibrantly generated. The gener-
ating cofibrations are the inclusions 8A[n] — A[n] for n > 0, and the generating
trivial cofibrations are the inclusions Aln, k] — Aln] forn >0 and 0 < k < n.

ExaMPLE 11.1.7. The model category SS. is cofibrantly generated. The gener-
ating cofibrations are the inclusions 8A[n]* — A[n]* for n > 0, and the generating
trivial cofibrations are the inclusions A[n, k]* — A[n]* forn >0and 0 < k < n.

ExaMPLE 11.1.8. The model category Top is cofibrantly generated. The gener-
ating cofibrations are the inclusions |@A[n]| — |Afn]| for n > 0, and the generating
trivial cofibrations are the inclusions |A[n, k]| — |An]| for n > 02and 0 < k < n.

ExaMPLE 11.1.9. The model category Top, is cofibrantly generated. The gen-
erating cofibrations are the inclusions |#A[n]|* — |A[n]|* for n > 0, and the
generating trivial cofibrations are the inclusions |Aln, k]|* — |A[n]|* for n > 0
and 0 <k <n.

ProrosiTION 11.1.10. If S is a set and for every element s of S we have a
cofibrantly generated model category M, with generating cofibrations I, and gen-
erating trivial cofibrations J,, then the model category structure on [],csMs of
Proposition 7.1.7 is cofibrantly generated with generating cofibrations I and gen-
erating trivial cofibrations J where

I=U(ISXH1¢‘)

SES t#s
J= U(JS X H1¢t)
SES ts#s

and where 14, is the identity map of the initial object of M,.

Proor. This follows directly from the definition (see Definition 11.1.2), since
a map has the right lifting property with respect to I, x H#s 14, if and only if
its s-component is a trivial fibration and a map has the right lifting property with
respect to Js x [],, 1g, if and only if its s-component is a fibration.

11.2. Cofibrations in a cofibrantly generated model category

ProrosiTION 11.2.1. Let M be a cofibrantly generated model category (see
Definition 11.1.2) with generating cofibrations I and generating trivial cofibrations
J.

(1) The class of cofibrations of M equals the class of retracts of relative I-cell
complexes (see Definition 10.5.8), which equals the class of I-cofibrations
(see Definition 10.5.2).

(2) The class of trivial fibrations of M equals the class of I-injectives (see
Definition 10.5.2).

(3) The class of trivial cofibrations of M equals the class of retracts of rela-
tive J-cell complexes, which equals the class of J-cofibrations (see Defini-
tion 10.5.2).
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{(4) The class of fibrations of M equals the class of J-injectives.

ProOF. This follows from Proposition 7.2.3, Proposition 10.5.11, and Corol-
lary 10.5.22. g

COROLLARY 11.2.2. If M is a cofibrantly generated model category with gener-
ating cofibrations I, then every cofibrant object of M is a retract of a cell complex
(see Definition 11.1.4).

Proor. This follows from Proposition 11.2.1. a

ProroSITION 11.2.3. Let M be a cofibrantly generated model category with
generating cofibrations I. If W is an object that is small relative to I, then it is
small relative to the subcategory of all cofibrations.

Proor. This follows from Theorem 10.5.27 and Proposition 11.2.1. 0

COROLLARY 11.2.4. Let M be a cofibrantly generated model category with
generating cofibrations I. If the codomains of the elements of I are small relative
to I, then every cofibrant object of M is small relative to the subcategory of all
cofibrations.

PROOF. This follows from Corollary 10.4.9, Corollary 11.2.2, Proposition 10.4.7,
and Proposition 11.2.3. 0

PROPOSITION 11.2.5. If M is a cofibrantly generated model category and I is
a set of generating cofibrations for M, then there is a regular cardinal k such that
the domain of every element of I is k-small relative to I.

PRroor. This follows from Lemma 10.4.6. 0

CoROLLARY 11.2.6. Let M be a cofibrantly generated model category. If I is
a set of generating cofibrations for M and k is a regular cardinal such that the
domain of every element of I is k-small relative to I (see Proposition 11.2.5), then
there is a functorial factorization of every map in M into a cofibration that is the
composition of a k-sequence of pushouts of coproducts of elements of I followed by
a trivial fibration.

Proor. This follows from Corollary 10.5.21 and Proposition 11.2.1. g

PROPOSITION 11.2.7. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then every object X has a fibrant cofibrant approximation
7: X — X such that X is a cell complex.

PRrooF. This follows from Proposition 10.5.16, Proposition 10.5.10, and Prop-
osition 11.2.1. 0

PROPOSITION 11.2.8. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then every map g: X — Y has a cofibrant approxima-
tJOH g X — Y such  that g: X — ¥ is an inclusion of a subcomplex and both

: X — X and iy: Y — Y are trivial fibrations.

PROOF. Choose a cofibrant approximation ix : X — X such that X is a cell
complex and ix is a trivial ﬁbratlon (see Proposmon 11.2.7). We can then factor

the composition X 2% X % YV as X & ¥ 2 Y where 7 is a relative I-cell
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complex and 4y is a trivial fibration (see Proposition 10.5.16). The result now
follows from Proposition 10.5.10 and Proposition 11.2.1. 0

PROPOSITION 11.2.9. Let M be a cofibrantly generated model category, and
let I be a set of generating cofibrations for M. If J is a set of generating trivial
cofibrations for M, then there is a set J of generating trivial cofibrations for M such
that

(1) there is a bijection between the sets J and J under which corresponding
elements have the same domain, and
(2) the elements of J are relative I-cell complexes.

PROOF. Factor each element j: C — D of J as C 5 D 2 D where 7is
a relative I-cell complex and p is a trivial fibration (see Corollary 11.2.6). The
retract argument (see Proposition 7.2.2) implies that j is a retract of 7. Since j and
p are weak equivalences, 7 is also a weak equivalence, and so 7 is a trivial cofibration.
Thus, if we let J = {7};eJ, then J satisfies conditions 1 and 2, and it remains only
to show that J is a set of generating trivial cofibrations for M.

Proposition 10.5.7 implies that it is sufficient to show that the subcategory of J-
injectives equals the subcategory of J-injectives (i.e., of fibrations). Since every j is
a trivial cofibration, Proposition 7.2.3 implies that every J-injective is a J-injective,
and since every j is a retract of j, Lemma 7.2.8 implies that every j—injective isa
J-injective. a

PROPOSITION 11.2.10. Let M be a cofibrantly generated model category with
generating cofibrations I. If relative I-cell complexes are effective monomorphisms
(see Definition 10.9.1), then all cofibrations are effective monomorphisms.

ProoF. This follows from Proposition 11.2.1 and Proposition 10.9.6. 0

ProprosITION 11.2.11. Let M be a cofibrantly generated model category with
generating cofibrations I. If relative I-cell complexes are monowmnorphisms, then all
cofibrations are monomorphisms.

PROOF. Since a retract of a monomorphism is a monomorphism, this follows
from Proposition 11.2.1. m]

11.3. Recognizing cofibrantly generated model categories

In this section we present two theorems of D. M. Kan that are used to establish
a cofibrantly generated model category structure on a category. Theorem 11.3.1 is
a recognition theorem that gives sufficient conditions to have a cofibrantly gener-
ated model category structure on a category. Theorem 11.3.2 is a lifting theorem
that gives sufficient conditions for a pair of adjoint functors to “lift” a cofibrantly
generated model category structure from one category to another.

THEOREM 11.3.1 (D. M. Kan). Let M be a category that is closed under small
limits and colimits and let W be a class of maps in M that is closed under retracts
and satisfies the “two out of three” axiom (axiom M2 of Definition 7.1.3). If I and
J are sets of maps in M such that

(1) both I and J permit the small object argument (see Definition 10.5.15),
(2) every J-cofibration is both an I-cofibration and an element of W,
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(3) every I-iujective is both a J-injective and an element of W, and
(4) one of the following two conditions holds:
(a) a map that is both an I-cofibration and an element of W is a J-
cofibration, or
(b) amap that is both a J-injective and an element of W is an I-injective,

then there is a cofibrantly generated model category structure (see Definition 11.1.2)
on M in which W is the class of weak equivalences, I is a set of generating cofibra-
tions, and J is a set of generating trivial cofibrations.

Proor. We define the weak equivalences to be the elements of W, the cofibra-
tions to be the I-cofibrations, and the fibrations to be the J-injectives. We must
show that axioms M1 through M5 are satisfied (see Definition 7.1.3).

Axioms M1 and M2 are part of our assumptions, and axiom M3 follows from
the assumptions on W, the definition of I-cofibration (see Definition 10.5.2), and
Lermma 7.2.8.

If we apply the small object argument (Proposition 10.5.16) to the set I, then
assumption 3 implies that this satisfies axiom M5 part 1, and if we apply the small
object argument to the set J, then assumption 2 implies that this satisfies axiom
MS part 2.

It remains only to show that axiom M4 is satisfied. The proof of axiom M4
depends on which part of assuroption 4 is satisfied. If assumption 4a is satisfied,
then axiom M4 part 2 is clear. For axiom M4 part 1, if f: X — Y is both a

fibration and a weak equivalence, we can factor it as X 5 Z 2, ¥ where g is an
I-cofibration and h is an I-injective. Axiom M2 and assumption 3 imply that ¢
is also a weak equivalence, and s0 assumption 4a implies that g is a J-cofibration.
Since f is a J-injective, the retract argument (Proposition 7.2.2) implies that f is
a retract of h, and is thus an I-injective (see Lemma 7.2.8). This proves axiom M4
part 1, and o0 the proof in the case that assumption 4a is satisfied is complete. The
proof in the case in which assumption 4b is satisfied is similar. a

THeEOREM 11.3.2 (D. M. Kan). Let M be a cofibrantly generated model cat-
egory (see Definition 11.1.2) with generating cofibrations I and generating trivial
cofibrations J. Let N be a category that is closed under small limits and colimits,
and let F: M 22 N :U be a pair of adjoint functors. If we let FI = {Fu | u € I}
and FJ = {Fv |v € J} and if

(1) both of the sets FI and FJ permit the small object argument (see Defi-
nition 10.5.15) and

(2) U takes relative FJ-cell complexes (see Definition 10.5.8) to weak equiv-
alences,

then there is a cofibrantly generated model category structure on N in which FI is
a set of generating cofibrations, FJ is a set of generating trivial cofibrations, and
the weak equivalences are the maps that U takes into a weak equivalence in M.
Furthermore, with respect to this model category structure, (F,U) is a Quillen pair
(see Definition 8.5.2).

PRrROOF. Let W be the class of maps in N that U takes to a weak equivalence
in M; we will show that W, FI, and FJ satisfy the conditions of Theorem 11.3.1.

Since any functor preserves retract and compositions, W is closed under retracts
and satisfies the “two out of three” axiom.
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Part 1 of Theorem 11.3.1 is one of our assumptions about the sets FI and FJ.

For part 2 of Theorem 11.3.1, our assumptions imply that relative FJ-cell com-
plexes are elements of W, and so Corollary 10.5.22 implies that every FJ-cofibration
is an element of W. Since every I-injective is a J-injective, Proposition 7.2.17 im-
plies that every Fl-injective is an FJ-injective, and so Proposition 10.5.6 implies
that every ¥J-cofibration is an FI-cofibration.

For part 3 of Theorem 11.3.1, we showed in the last paragraph that every
FI-injective is an FJ-injective, and Proposition 7.2.17 implies that U takes every
FI-injective to a trivial fibration in M.

For part 4 of Theorem 11.3.1, we will show that condition b holds. If g: X — Y
is both an FJ-injective and an element of W, then Proposition 7.2.17 implies that
Ug is both a J-injective and a weak equivalence in M. Thus, Ug is a trivial fibration
in M, and so it is an J-injective. Proposition 7.2.17 now implies that g is an FI-
injective.

Finally, since left adjoints preserve all colimits, F takes all relative I-cell com-
plexes to relative FI-cell complexes and all relative J-cell complexes to relative
FJ-cell complexes. Since every functor preserves retracts, Proposition 11.2.1 im-
plies that F is a left Quillen functor, and so Proposition 8.5.3 implies that (¥, U)
is a Quillen pair. (]

11.4. Compactness

DEFINITION 11.4.1. Let M be a cofibrantly generated model category with
generating cofibrations I.
(1) If v is & cardinal, then an object W in M is y-compact if it is y-compact
relative to I (see Definition 10.8.1).
(2) An object W in M is compact if there is a cardinal v for which it is
y-compact.

ExAMPLE 11.4.2. If M = 88y, then every finite simplicial set is w-compact
(where w is the countable cardinal). If v is an infinite cardinal and X is a simplicial
set of size v, then X is y-compact.

ExaMPLE 11.4.3. f M = Top,), then Corollary 10.7.7 implies that every finite
cell complex is w-compact (where w is the countable cardinal). If v is an infinite
cardinal and X is a cell complex of size «, then Corollary 10.7.7 implies that X is
y-compact.

ProrosiTiON 11.4.4. Let M be a cofibrantly generated model category with
generating cofibrations I. If v is a cardinal and an object W in M is y-compact,
then any retract of W is y-compact.

Proor. This follows from Proposition 10.8.4. ]

PROPOSITION 11.4.5. Let M be a cofibrantly generated model category with
generating cofibrations I. If k and X are cardinals such that k < ), then any object
of M that Is k-compact is also A-compact.

Proor. This follows directly from the definitions. ]

PROPOSITION 11.4.6. If M is a cofibrantly generated model category with gen-
erating cofibrations I and S is a set of objects that are compact, then there is a
cardinal y such that every element of S is «y-compact.
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Proor. This follows from Proposition 10.8.6. a

PROPOSITION 11.4.7. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms and let I be a set of generating cofibrations for
M. If the domains and codomains of the elements of I are compact (see Defini-
tion 11.4.1), then every cofibrant object is compact.

PRrOOF. Since an I-cell complex is the colimit of a A-sequence of codomains
of elements of I, the result follows from Proposition 10.8.8, Corollary 11.2.2, and
Proposition 11.4.4. O

PROPOSITION 11.4.8. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms. If vy is a cardinal and K is a set of cofibrations
whose domains are y-compact (see Definition 11.4.1), then every K-cell of a relative
K-cell complex (see Definition 10.5.8) is contained in a sub relative K-cell complex
(see Definition 10.6.7) of size (see Definition 10.6.4) at most ~.

PrOOF. If f: X — Y is a relative K-cell complex, then we can write f as the
composition of a A-sequence X = Xo > X1 > Xp — - > Xg— --- (< A)in
which each map Xg — Xg4, is a pushout of an element of K. We will show by
induction on 3 that the attaching map of each K-cell factors through a sub relative
K-cell complex of size at most . The induction is begun because the attaching
map of the K-cell of presentation ordinal 1 has codomain X = Xj.

We now assume that o < A and that every K-cell of X — X, is contained in
a subcomplex of size at most 4. Let C — D be the element of K such that X,
is constructed as a pushout

C——D

Xa > Xat1
we must show that h® factors through a sub relative K-cell complex of size at most
~. Lemma 10.5.25 implies that we can find a diagram
%

o1 o2

Xo X, X

[

Xo—> %) /=X, 25— X,

I |

Xo 220 X, 2 Xy, 2 Xo

such that rgig = 1x, for § < a and every 75 is a relative I-cell complex (where
I is the set of generating cofibrations for M). Thus, the composition Xo o X
is a relative I-cell complex, and so the composition igh®: C' — X, must factor
through some sub relative I-cell complex Xo — C of Xo — X of size at most
~v. We will complete the proof by showing that the composition V — X. > X,
factors through a sub relative K-cell complex of Xy — X, of size at most .

For each I-cell of V' there is exactly one 8 < a such that that cell is a part of
7g, and (by the induction hypothesis) the corresponding relative K-cell og: Xg —
Xpg+1 is contained in a sub relative K-cell complex of Xy — X, of size at most
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~. If we take the union Z of these sub relative K-cell complexes, then the relative
K-cell complex Xq — Z has size at most v X v = « (since ~ is infinite), and the
composition V — X, — X, factors through the inclusion Z — X,. 0

PROPOSITION 11.4.9. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms and let K be a set of cofibrations with compact
domains (see Definition 11.4.1). If an object W of M is compact, then it is cornpact
relative to K.

Proor. Let v be an infinite cardinal such that W and the domains of the
elements of K are y-compact (see Proposition 11.4.6); we will show that W is
~-compact relative to K.

Let X = Xo— X3 - X2 = - = Xg — -+ (8 < ) be a A-sequence of
pushouts of elements of K, let X = colimg<s Xg be the colimit of that sequence,
and let g: W — X be a map; we will show that g factors through a sub relative
K-cell complex of f: Xg — X of size at most .

Lemma 10.5.25 implies that we can find a diagram

oo £} o2

Xo X, X, Xp
zoJ HJ' zzj' igJ’
B Xy I Ky T Ky

o o) o o

oy o2

Xo —— X, X y- o —— Xg

such that rgig = 1x, for § < X and every 75 is a relative I-cell complex (where I
is the set of generating cofibrations for M). Thus, the composition Xo— Xy isa
relative I-cell complex, and so the composition 1y g: W — X must factor through
some sub relative I-cell complex Xo — V of Xo — X, of size at most y. We
will complete the proof by showing that the composition V — X5 — X, factors
through a sub relative K-cell complex of Xo — X of size at most ~.

For each I-cell of V there is exactly one 8 < A such that that cell is a part of
18, and Proposition 11.4.8 implies that the corresponding relative K-cell og: Xg —
Xp+1 is contained in a sub relative K-cell complex of Xo — X of size at most
~. If we take the union Z of these sub relative K-cell complexes, then the relative
K-cell complex Xo — Z has size at most v X v = v (since v is infinite), and the
composition V — )?A — X factors through the inclusion Z — X,. O

11.5. Free cell complexes

11.5.1. Diagram categories.

DerFINITION 11.5.2. Let € and M be categories.

(1) A C-diagram in M is a functor from € to M.

(2) a map of C-diagrams in M from the diagram X to the diagram Y is a
natural transformation of functors from X to Y.

(3) If C is a small category, then the category of C-diagrams in M is the
category in which the class of objects is the class of functors from € to
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M and in which the set of morphisms between two functors is the set of
natural transformations between those functors.

REMARK 11.5.3. If € is not small, then there may be a proper class of natural
transformations between two functors from € to M, and so the collection of all
functors from € to M and all natural transformations between them may not form
a category (except possibly in some higher universe; see, e.g., [60, page 17]).

DEFINITION 11.5.4. Let € be a category and let M be a model category.
(1) If X is a C-diagram in M, then X is
o objectwise cofibrant if X, is a cofibrant object of M for every object
a of € and
o objectwise fibrant if X, is a fibrant object of M for every object a of
C.
(2) If X and Y are C-diagrams in M, then a map of diagrams f: X - Y is
e an objectwise cofibration if fo: X o — Y4 is a cofibration for every
object a of G,
e an objectwise fibration if fo: Xo — Y, is a fibration for every object
a of €, and
e an objectwise weak equivalence if f,: X, — Y, is a weak equivalence
for every object a of €,

DEeFINITION 11.5.5. Let M be a category, let € and D be small categories, and
let F: € — D be a functor. If X is a D-diagram in M (see Definition 11.5.2), then
composition with F defines a C-diagram F*X = X oF in M, which we will call the
C-diagram in M induced by F:

e If a is an object of € then (F*X)s = Xp,, and
e if o: & — & is amap in € then (F*X), = Xpo: Xpg = Xpor-

In Section 11.6 we will show that if € is a small category and M is a cofibrantly
generated model category, then there is a model category structure on the category
of C-diagrams in M (and that this model category of diagrams is also cofibrantly
generated). The cofibrant objects in this model category will be the free cell corm-
plexes (see Definition 11.5.35) and their retracts. Among the examples of free cell
complexes are the C°P-diagram of simplicial sets B(— } €)°P (see Definition 14.7.2)
and the C-diagram of simplicial sets B(€ | —) (see Definition 14.7.8), and the fact
that these are cofibrant diagrams will imply the homotopy invariance of the homo-
topy colimit and homotopy limit functors (see Theorem 18.5.3 and Theorem 19.4.2).

11.5.6. Free diagrams of sets. In this section, we define free diagrams of
sets. This will be used in the next section to define free diagrams in a category of
diagrams, which will be used in Section 11.5.29 to define free cell complexes in a
category of diagrams in a cofibrantly generated model category.

DEFINITION 11.5.7. Let € be a small category.
(1) If o is an object of €, then the free C-diagram of sets generated at position
o is the C-diagram of sets FZ for which
e F¥(B) = €(a,B) for B an object of € and
e (F3(g9))(h) =ghfor he FI(B) and g: f — v in €.
(2) A free C-diagram of sets is a C-diagram of sets that is a coproduct of
C-diagrams of the form Fg.
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ProposITION 11.5.8 (The Yoneda lemma). If € is a small category and « is an

object of €, then for every C-diagram of sets S there is a natural isomorphism
Set®(F2,8)~ S, .

ProorF. This is the Yoneda lemma (see, e.g., [6, page 11] or [47, page 61]).

If g € Set®(F2, 8), then g is a map of diagrams from F2 to S, and s0 g, is a
function from F%(a) = C(a, @) to Su; we define a function ¢: Set®(F%, §4) — Sa
by letting ¢(g) = ga(la)-

To see that ¢ is injective, let ¢ and h be elements of Sete(Ff,S) such that
#(g) = ¢(h). If B is an object of € and o € F3(B8) = C(c, B), then

98(0) = gp(o 0 1)
= gﬂ(( () (1a))

=(

= hg((F2(0))(1a))
=hg(oola)

= hg(o) -

—
=

Thus, g = h.

To see that ¢ is surjective, let s € S,. If B is an object of € and 0 € FZ(8) =
€(a, B), then S(0) is a function from S, to Sg. Thus, we can define gg: F(8) —
S by letting gg(o) = (5(0))(s). If B and 7y are objects of € and 7 € €(83,7), then
for every o € F2(f) we have

(8(1)(98(0)) = (S(1))((S(2))(s))

= S(70)(0)

= gy(70)

= gy ((F2()(0))
and so we have a well defined map of diagrams ¢g: F§ — S for which ¢(g) =
ga(la) = (S(1a))(s) = 1s.(s) = s 0

ExaMmpLE 11.5.9. The diagram of sets A — B is free if and only if the map
A — B is an inclusion.

ExampPLE 11.5.10. The diagram of sets A — C « B is free if and only if the
maps A — C and B — C are inclusions with disjoint images in C.

ExaMmpPLE 11.5.11. The diagram of sets A; — A2 — A3 — --- is free if and
only if all of the maps in the diagram are inclusions.

ExaMPLE 11.5.12. The diagram of sets Ay — Ay «— Az ~ --- is free if and
only if all of the maps are inclusions and the inverse limit of the diagram is empty.

ExaMpLE 11.5.13. If a discrete group G is considered to be a category with
one object and morphisms equal to the elements of G, then a free G-diagram of
sets is what classically is called a free G-set.
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ExampLE 11.5.14. If C is a small category and P: C — Set is the constant
diagram at a point, then P is free if and only if each connected component of €
has an initial object.

ExaMpLE 11.5.15. Let A be the cosimplicial indexing category (i.e., for every
nonnegative integer n let [n] denote the ordered set (0, 1, 2, ..., n) and let A be the
category with objects {[n] | n > 0} and with A([n], [k]) the weakly monotone maps
from [n] to [k]). If € = AP, then a C-diagram of sets is a simplicial set. The free
C-diagram of sets generated at position [n] is the standard n-simplex Afn]. Thus,
the set of k-simplices of A[n] equals the set A% ([n], [k]) = A([k], [n]).

ExaMPLE 11.5.16. If C is the category A%, so that F is the standard n-
simplex A[n] (see Example 11.5.15), then Proposition 11.5.8 is the statement that
for every simplicial set X the set of simplicial maps SS(A[n], X) is naturally iso-
morphic to the set of n-simplices of X.

DerFiniTION 11.5.17. If € is a small category and S is a set, the free C-diagram
of sets on the set S generated at position « is the C-diagram of sets Fg = [ F
Thus, for every object 8 in €,

F$(8) = [] (e, 8).
SES

ProposiTionN 11.5.18. If € is a small category and « is an object of €, then
the functor F*: Set — Set® (see Definition 11.5.17) is left adjoint to the functor
Set® — Set that evaluates at a, i.e., for every set S and every C-diagram of sets T
there is a natural isomorphism Set®(F%, T = Set(S, To).

PROOF. Since F§ is a coproduct of diagrams of the form Fy, this follows from
Proposition 11.5.8. u

DEeFINITION 11.5.19. If € is a small category, €4%¢ is the discrete category with

objects equal to the objects of €, and S is an object of Set(edm), then the free
C-diagram of sets generated by S is defined by

FS$)= ] F"‘a
aeOb(€
(see Definition 11.5.17), so that for every object B of € we have

= II I ¢eh) .

a€O0b(C) sESq

THEOREM 11.5.20. If @ is a small category and C¥5¢ js the discrete category
with objects equal to the objects of C, then the functor F: Set€™*) — Set® of
Definition 11.5.19 is left adjoint to the forgetful functor U: Set® — Set(edhc), ie., if
S is an object ofSet(edm) and T is an object of Set€, there is a natural isomorphism

Set®(F(S), T) ~ Set &™) (S, U(T)) .

PROOF. Since F(S) is a coproduct of diagrams of the form Fg_, this follows
from Proposition 11.5.18. O
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11.5.21. Free diagrams. In this section, we define free diagrams in a cate-
gory of diagrams (see Definition 11.5.25). In section Section 11.5.29, we will apply
this to the generating cofibrations (see Definition 11.1.2) of a cofibrantly generated
model category M to obtain the free cells, which are the generating cofibrations in
the category of C-diagrams in M.

DEFINITION 11.5.22. Let M be a cocomplete category (see Definition 7.1.2). If
X is an object of M and S is a set, then by X ® S we will mean the object of M
obtained by taking the coproduct, indexed by S, of copies of X;i.e., X®85 ~ [[¢ X

REMARK 11.5.23. If the cocomplete category M of Definition 11.5.22 is actually
a simplicial category (see Definition 9.1.2) and we view the set S as a discrete
simplicial set, then the object X ® S defined by the simplicial structure is naturally
isomorphic to the object defined in Definition 11.5.22.

DeFINITION 11.5.24. If € is a small category, M is a cocomplete category, S
is a C-diagram of sets, and X is an object of M, then by X ® S we will mean the
C-diagram in M such that
for every object « in € (see Definition 11.5.22).

DEFINITION 11.5.25. If € is a small category, a is an object of €, M is a
cocomplete category, and X is an object of M, then the free diagram on X generated
at o is the C-diagram in M defined by F} = X @ Fg (see Definition 11 5.24 and

Definition 11.5.7). Thus, if 3 is an object of €, then F% (8) = [{e(a,5 X

We have the following variant of the Yoneda lemma (see Proposition 11.5.8)
for free diagrams in M.

PRrROPOSITION 11.5.26. If C is a small category, a Is an object of €, and M Is a
cocomplete category, then the functor F* : M — MC (see Definition 11.5.25) is left
adjoint to the functor M® — M that evaluates at o, ie., for every object X in M
and every diagram Y in M® there is a natural isomorphism

ME(FS,Y) = M(X,Y,) -

PROOF. We define ¢: ME(F%,Y) — M(X,Y,) by letting ¢(g) be the com-

position
SR H X =F%(a) 2=
C(a,a)
The remainder of the proof is similar to that of the Yoneda lemma (see Proposi-
tion 11.5.18). 0

DEFINITION 11.5.27. If € is a small category, €3¢ is the discrete category with
objects equal to the objects of G, M is a cocomplete category, and X is an object
of M(E™™) | then the free G-diagram in M generated by X is defined by

= J] F&.= J] Xa.o®F
a€0b(e) a€0b(e)
(see Definition 11.5.25), so that for every object 3 of C we have

FX),= I II Xa-

a€Ob(€) €(a,B)
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TueOREM 11.5.28. IfC is a small category and M is a cocomplete category, then
the functor F: M(€™™) —, M€ of Definition 11.5.27 is left adjoint to the forgetful
functor U: ME — M) je., if X is an object of M(C™™) and Y is an object of
ME, then there is a natural isomorphism

ME(F(X),¥) ~ M) (X, UY) .

PROOF. Since F(X) is a coproduct of diagrams of the form F%, this follows
from Proposition 11.5.26. O

11.5.29. Free cell complexes. Relative free cell complexes are the analogues
for diagrams of topological spaces of relative cell complexes for topological spaces
(see Definition 10.7.1). In a cofibrantly generated model category with generating
cofibrations I, the relative I-cell complexes play that role, as do the free relative
I-cell complexes for a category of diagrams in a cofibrantly generated model cat-
egory. Relative free cell complexes and their retracts will be the cofibrations in
the model category of C-diagrams in a cofibrantly generated model category (see
Theorem 11.6.1).

We first describe free cells, which will be the generating cofibrations (see Defi-
nition 11.1.2) in this model category structure.

DEFINITION 11.5.30. Let € be a small category and let a be an object of €. If
M is a model category and I is a set of maps in M, then a free I-cell generated at
a in M€ is a map of the form

Fq - Fg

(see Definition 11.5.25) where A — B is an element of /. At every object 3 in €,

this is the rap
II4- I 5
C(a,B) €(a,B)

EXAMPLE 11.5.31. Let C be a small category and let & be an object of C.
e A free cell generated at o in Tope is a map of the form
|6A[R)| @ FS — |Aln]] @ F2

(see Definition 11.5.24) for some n > 0.
e A free cell generated at o in TOpf is a map of the form

|6A[n]|+ ®F — |A[n]|+ QF2

(see Definition 11.5.24) for some n > 0.
o A free cell generated at o in SS® is a map of the form

0A[n] @ F2 — Aln| Q FY

(see Definition 11.5.24) for some n > 0.
o A free cell generated at o in SSE is a map of the form

AAn]* ® F2 — Aln]t @ F2
(see Definition 11.5.24) for some n > 0.
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LEMMA 11.5.32. Let € be a small category and let M be a model category. If
g: A — B isamapinM, o is an object of C, and the square

a—Fp

|

X —Y

is a pushout diagram in M®, then for every object B of C there is a pushout diagram
inM
C——D

| ]

XB —_— YB
in which the map C — D is a coproduct of copies of g.

PROOF. This follows because pushouts in M€ are constructed componentwise
and the map (F%)p — (Fg)g is the map [1¢(, 5 A — [le(ap B- a

DErINITION 11.5.33. If M is a model category, C is a small category, and K is
a set of maps of M, then F(;{ will denote the set of maps of M® of the form
;k - F%k
(see Definition 11.5.25) where Ax — By is an element of K and « is an object of €.

PROPOSITION 11.5.34. If M is a category, C is a small category, and K is a set of
maps in M, then themap g: X — Y inMC isan F%-injective (see Definition 10.5.2)
if and only if go: Xo — Y o is a K-injective for every object a of C.

Proor. This follows from Proposition 11.5.26. O

DEerINITION 11.5.35. If M is a cofibrantly generated model category and € is
a small category, then

o a relative free cell complex in MC is a map that is a transfinite composition
(see Definition 10.2.2) of pushouts (see Definition 7.2.10) of free cells (see
Definition 11.5.30),

e a free cell complez in M® is a diagram X such that the map from the
initial object of M€ to X is a relative free cell complex, and

e an inclusion of free cell compleres is a relative free cell complex whose
domain is a free cell complex.

The relative free cell complexes and their retracts will be the cofibrations in
the model category of C-diagrams in a cofibrantly generated model category M (see
Theorem 11.6.1).

ProposiTion 11.5.36. If M is a cofibrantly generated model category, € is a
small category, and f: X — Y is a relative free cell complex in M€, then fy: X, —
Y, is a cofibration in M for every object a of €.

Proor. This follows from Lemma 11.5.32, Proposition 7.2.5, and Proposi-
tion 7.2.12. ]
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11.6. Diagrams in a cofibrantly generated model category

THEOREM 11.6.1. If C is a small category and M is a cofibrantly generated
model category (see Definition 11.1.2) with generating cofibrations I and generating
trivial cofibrations J, then the category M® of C-diagrams in M is a cofibrantly
generated model category with generating cofibrations F? (see Definition 11.5.33)
and generating trivial cofibrations Fg In this model category structure, a map
X—-Yis

e a weak equivalence if X, — Y, is a weak equivalence in M for every
object a of C,

e a fibration if X, — Y o is a fibration in M for every object  of C, and

e a cofibration if it is a retract of a transfinite composition of pushouts of
elements of FY.

Proor. If @4 is the discrete category with objects equal to the objects of
e, then ME™™) = [Tob(ey M, and so Proposition 11.1.10 gives us a cofibrantly

generated model category structure on ME™). We will show that the adjoint
functors of Theorem 11.5.28 satisfy the conditions of Theorem 11.3.2 and thus
define a cofibrantly generated model category structure on ME.

For every object a of € let I, be the set of maps in M(E™) given by

Ia =7Ix H 1¢
BEODB(E)
B#a

that is, the product of the identity map of the initial object of M at every object
8 of C other than « with an element of I at . If we let Ioyne) = Uanb(G) I, and
Job(e) = Uanb(e) Ja (where the definition of J, is analogous to that of I,), then
Proposition 11.1.10 implies that the cofibrantly generated model category structure
on M"*® has Iop(e) as a set of generating cofibrations and Jop(e) as a set of
generating trivial cofibrations. If g: A — B is a map in M, then the functor F of
Definition 11.5.27 takes g X [] 5., 14 to the map F3 — Fg, and so F(Iop(e)) = F$
and F(JOb(G)) = Fg

Proposition 11.5.26, Lemma. 11.5.32, and Theorem 10.5.27 imply that F§ per-
mits the small object argument. Simila.rly,,Fg permits the small object argument.
Finally, Lemma 11.5.32 implies that a relative Fg-cell complex is a relative J-cell
complex at every object a of €, and is thus a weak equivalence at every object «
of €. 0

ProposITION 11.6.2. If € is a small category and M is a cofibrantly generated
model category, then a free cell complex (see Definition 11.5.35) in M€ is cofibrant
in the model category structure of Theorem 11.6.1.

Proor. This follows from Theorem 11.6.1. a
ProposiTION 11.6.3. If € is a small category and is a cofibrantly generated

model category, then a cofibration in the model category structure on M€ of The-
orem 11.6.1 is also an objectwise cofibration.

Proor. This follows from Theorem 11.6.1 and Proposition 11.5.36. ]
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LEMMa 11.6.4. Let M and N be categories and let F: M & N .U be a pair of
adjoint functors. If C is a small category, then there is a pair of adjoint functors
between diagram categories F€: M® = N€ : U® where F¢(X) = Fo X for X: C —
Mand US(Y)=UoY forY:C— N.

PROOF. Let ¢xy: M(X,UY) — N(FX,Y) be an adjunction isomorphism
(where X is an object of M and Y is an object of N). We define an adjunc-
tion isomorphism ¢¢: M®(X,U°Y) — NC(FCX,Y) (where X: € — M and
Y: € — N are diagrams) by letting ¢S(f) on an object a of € be (¢¢f)s =
bxovalfa): (FEX)o =F(X,) = Y, for f € ME(X,UCY). 0

THEOREM 11.6.5. Let M and N be cofibrantly generated model categories and
let F: M = N :U be a Quillen pair (see Definition 8.5.2).
(1) If C is a small category, then the adjoint pair F¢: M€ 2 N€ :UC (see
Lemma 11.6.4) is a Quillen pair (see Theorem 11.6.1).
(2) If € is a small category and (F,U) is a pair of Quillen equivalences (see
Definition 8.5.20), then (F€, U®) is a pair of Quillen equivalences.

PROOF. Since fibrations and weak equivalences in M® and N€ are defined
objectwise (see Theorem 11.6.1), U® preserves both fibrations and trivial fibrations,
and so part 1 follows from Proposition 8.5.3. Since weak equivalences in M® and
N€ are defined objectwise, part 2 follows from Proposition 11.5.36. 0

ExaMpPLE 11.6.6. If € is a small category, then the geometric realization and
total singular complex functors extend to Quillen equivalences between 85S¢ and
Top® (see Notation 7.10.5).

ExaMPLE 11.6.7. If € is a srall category, then the geometric realization and
total singular complex functors extend to Quillen equivalences between 8s¢ and
TopS (see Notation 7.10.5).

THEOREM 11.6.8. If € is a small category and M is a cofibrantly generated
model category, then
(1) the colimit functor M€ — M and the constant diagram functor M — ME
are a Quillen pair, and
(2) the colimit functor M® — M takes objectwise weak equivalences between
cofibrant C-diagrams in M into weak equivalences between cofibrant ob-
Jects in M.

PROOF. The colimit and constant diagram functors are an adjoint pair for all
categories M and small categories €. Since fibrations and weak equivalences are
defined objectwise in M€, the constant diagram functor preserves both fibrations
and trivial fibrations, and so Proposition 8.5.3 implies that this adjoint pair is a
Quillen pair. Part 2 follows from part 1 and Proposition 8.5.7. ]

11.7. Diagrams in a simplicial model category

DEFINITION 11.7.1. Let M be a simplicial model category, let € be a small
category, let X: € —» M be a C-diagram in M, and let K be a simplicial set.
(1) The C-diagram X ® K in M is defined by letting (X ® K)o = X4 ® K
for every object a of € and, if 6: @ — &' is a map in €, by letting
(X®K)y=X,®1g.
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(2) The C-diagram X in M is defined by letting (X %), = (X o)X for every
object @ of @ and, if 0: @ — & is a map in €, by letting (X¥), =
(X )k},

DerFNITION 11.7.2. Let M be a simplicial model category. If € is a small
category and X,Y: € — M are C-diagrams in M, then Map(X,Y) is defined
to be the simplicial set whose set of n-simplices is the set of maps of diagrams
X ® Aln] — Y (see Definition 11.7.1) and whose face and degeneracy maps are
induced by the standard maps between the A{n].

THEOREM 11.7.3. If € is a small category and M is a simplicial cofibrantly
generated model category, then the model category structure of Theorem 11.6.1
with the simplicial structure of Definition 11.7.1 and Definition 11.7.2 makes M€ a
simplicial model category.

PROOF. Definition 11.7.1 and Definition 11.7.2 satisfy axiom M6 (see Defini-
tion 9.1.6) because the constructions are all done objectwise and M is a simplicial
model category. For axiom M7, Proposition 9.3.7 implies that it is sufficient to show
that if j: K — L is an inclusion of simplicial sets and p: X — Y is a fibration
in M€, then X¥ — xK Xy K Y% is a fibration that is also a weak equivalence if
either j or p is a weak equivalence. Since both fibrations and weak equivalences in
ME are defined objectwise, this follows from the assumption that M is a simplicial
model category. ]

11.8. Overcategories and undercategories

If € and D are categories and F: € — D is a functor, then for each object & of
D we define the category (a | F) of objects of € under o and the category (F | &)
of objects of € over a. These reduce to Definition 7.6.2 and Definition 7.6.1 when
€ = D and F is the identity functor.

These more general notions will be used in Section 11.9 to define extensions
of diagrams (see Definition 11.9.1), in Chapter 15 to define the Reedy model cate-
gory structure (see Section 15.2), and in in Chapters 18 and 19 to define homotopy
colimit and homotopy limit functors (see Definition 18.1.2, Definition 18.1.8, Defi-
nition 19.1.2, and Definition 19.1.5).

DeriNITION 11.8.1. If € and D are categories, F: € — D is a functor, and « is
an object of D, then the category (F | a) of objects of € over a is the category in
which an object is a pair (8, ¢) where 3 is an object of € and ¢ is a map F3 — a in
D, and a morphism from the object (3, o) to the object (',0’) isamap r: 8 — &
in € such that the triangle

Fp—X7 L pg

commutes.

If € = D and F is the identity functor, then we use (€| a) to denote the
category (F | a). An object of (€| a) is a map # — a in €, and a morphism from
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B—oatof — aisamap f— @ in C such that the triangle

B—F

%

ExaMPLE 11.8.2. Let € and D be categories and let F: € — D be a functor.
If & is an object of C, then there is a functor F,: (€| a) — (F | Fa) that takes the
object 0: B — a of (C|a) to the object (G,Fo: F3 — Fa) of (F| Fa) and the
morphista 7: 8 — B from o: 8 — a to o’: f/ — « to the morphism 7: 8 — 3
from (3,Fo: F3 — a) to (8, Fo’: F§' — Fa).

cominutes.

DEFINITION 11.8.3. If € and D are categories, F: € — D is a functor, and a is
an object of D, then the category (a | F) of objects of € under a is the category in
which an object is a pair (3, o) where § is an object of € and ¢ is a map a — F@ in
D, and a morphism from the object (8, o) to the object (§',0') isamaprt: f— §

in € such that the triangle
7N

} I
Fﬂ Fr Fﬂ

commutes. The opposite (o | F)°P is the category in which an object is a pair (8, o)
where (3 is an object of € and o is a map @ — F@ in D, and a morphism from the
object (B, o) to the object (8’,0”) is a map 7: ' — B in € such that the triangle

a
o o’
Fﬂ (—F‘r_— Fﬂ’

commutes.

If € = D and F is the identity functor, then we use (o] @) to denote the
category (o | F). An object of (a| C) is a map a — § in C, and a morphism from
a—fBtoa— Fisamap 8 — F in € such that the triangle

[o]

N

p-—0

commutes. The opposite (o | C)° is the category in which an object is a map
a — (3 in €, and a morphisma from o — B to a — # is amap # — [ in € such

that the triangle
./ a\
Be———"f

commutes.
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ExaMPLE 11.8.4. Let € and D be categories and let F: € — D be a functor.
If @ is an object of €, then there is a functor F,: (@ | €)°" — (Fa | F)°® that takes
the object 0: & — 8 of (& ] €)°P to the object (3, Fo: Fa — Ff) of (Fa | F)* and
the morphism 7: # — f from 0: @ — F to ¢’: @ — (' to the morphism 7: § —
from (G, Fo: Fa — FB) to (6, Fo’: Fa —» Fg').

PropPoSITION 11.8.5. If € and D are small categories, F: € — D is a functor,
and FoP: C°P — D°P js the opposite of F, then for every object o of D there is a
natural isomorphism of categories

(@lF)® =~ (F®|a) .

PROOF. An object of (F°P | @) is a map @ — F@ in D for some object 3 of €,
and a morphism in (F°P | @) from a — FGtoa — F# isamap 6: f/ — fin €

such that the triangle

(11.8.6)
Ffe————Ff'

commutes. An object of (@ | F) is a map @ — Ff in D for some object § of €, and
a morphism in (@ | F) from ¢ — FBtoa — F@ is amap 7: § — A’ in € such that
the triangle

o

Ff ———— Ff'

commutes. Thus, an object of (| F)°® is a map ¢ — F8 in D and a morphism in
(@ F)°P from @ — FBtoa — F@ isa map o: 8 — G in € such that the triangle
(11.8.6) commutes. (i

CoroLLARY 11.8.7. If € is a small category and o is an object of C, then there
is a natural isomorphism of categories

(alC)® ~ (€% L)
Proor. This follows from Proposition 11.8.5. i

11.9. Extending diagrams

If 1 is the category with one object and with no non-identity maps, then an
object X of a category M can be identified with a functor ix: 1 — M. If Cis a
small category, & is an object of €, and i,: 1 — C is the functor that takes the
object of 1 to ¢, then, for a diagram X : € — M, evaluation of X at « is equivalent
to composing X with i,. In this setting, Proposition 11.5.26 says that there is a
natural isomorphism

MEFL,Y) = MYX,Y 0ig) -
In this section, we will obtain a similar result for functors of indexing categories
more general than i,: 1 — €.

Let € be a small category, let B be a subcategory of €, and let i: B — €
be the inclusion functor. If M is a cocomplete category (see Definition 7.1.2) and



11.9. EXTENDING DIAGRAMS 229

X:B — M is a diagram, we want to “extend” X to a diagram LX: € — M so
that if Y': € — M is a diagram and *Y = Y o1 is its “restriction” to B, we have
a natural isomorphism

MELX,Y)=MB(X,'Y) .

If o is an object of €, then we must define (LX), so that for every object £
of B and every map o: i(8) — « in € we have & map (LX),: X5 — (LX), If
7: ' — (is a map in ‘B, then we must ensure that the triangle

Xﬂ/ ———-———)Xﬁ

ka A .

(LX)a

commutes. This suggests that we define (LX )4 to be a colimit indexed by (¢} a),
the category of objects of B over o (see Definition 11.8.1). In fact, this construction
works well for an arbitrary functor between small categories 7: B — €.

DEFINITION 11.9.1. Let i: B — € be a functor between small categories, let M
be a cocomplete category (see Definition 7.1.2), and let X : B — M be a functor.
The extension LX of X to € is the functor LX: € — M that on an object o of €
is defined by

(LX)a= colim X
(8,0)€0b (ila)

(see Definition 11.8.1) and on a map 7: a — ¢’ in € is the natural map of colimits
induced by 7.: (i} a) — (i | @’) (where 7. takes the object (§,0) of (i]a) to the
object (8, 7o) of (i} o).

REMARK 11.9.2. In the setting of Definition 11.9.1, the functor LX is known
as the left Kan extension of X along i (see, e.g., (6, Section 3.7] or [47, Chapter X]).

THEOREM 11.9.3. Let i: B — € be a functor between small categories, let M
be a cocomplete category, and let X : B — M be a functor. If LX is the extension
of X to C (see Definition 11.9.1), then for every functor Y: € — M there is an
isomorphism

ME(LX,Y) = MB(X,3Y)
(where i*Y =Y o) that is natural in both X and Y.

PROOF. We will define natural maps ¢: M®(LX,Y) — M3(X,i*Y) and
P: MB(X,i*Y) —» ME(LX,Y) that are inverses to each other. If F: LX — Y
is a natural transformation, we let (#F): X — i*Y be the natural transformation
that on an object v of B is the composition

LICH Y

v b)), (ﬁ’d)ecglgr(?“(’y))xﬁg = (LX)ity RN Y, =(G"Y),

If G: X — ¢*Y is a natural transformation, we let (4G): LX — Y be the natural
transformation that on an object a of € is the composition

. colim G . " .
EX)e = oselntam X8 T pofentaa Y8 (5§20 Y0 = Yo
where the last map in the composition is the natural map from the colimit. The
compositions ¢ and ¢ are identity natural transformations, and so ¢ and 3 are
isomorphisms. a
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THEOREM 11.9.4. If M is a cofibrantly generated model category andi: B — €
is a functor between small categories, then the adjoint functors L: M® & M® :4*
of Theorem 11.9.3 are a Quillen pair.

PROOF. Since fibrations and weak equivalences in both M® and M€ are defined
objectwise (see Theorem 11.6.1), the right adjoint i* preserves both fibrations and
trivial fibrations. The result now follows from Proposition 8.5.3. 0



CHAPTER 12

Cellular Model Categories

A cellular model category is a cofibrantly generated model category (see Defi-
nition 11.1.2) in which the cell complexes (see Definition 11.1.4) are well behaved
(see Definition 12.1.1). Most of the model categories with which I am acquainted
are cellular model categories (but not all; see Example 12.1.7).

We define cellular model categories in Section 12.1. In Section 12.2 we show
that the intersection of two subcomplexes of a cell complex in a cellular model
category always exists, and in Section 12.3 we prove that the cell complexes in a
cellular model category are uniformly compact, i.e., that there is a cardinal ¢ (called
the “size of the cells”; see Definition 12.3.3) such that if 7 is a cardinal and X is a
cell complex of size T, then X is or-compact (see Theorem 12.3.1).

In Section 12.4 we discuss smallness, and prove that every cofibrant object
in a cellular model category is small relative to the class of all cofibrations (see
Theorem 12.4.3). The main result of Section 12.5 is Proposition 12.5.3, which
asserts that if a small object factorization (see Definition 10.5.19) is applied to a
map between large enough cell complexes, then the resulting cell complex is no
larger than those with which you started.

12.1. Cellular model categories

DEFINITION 12.1.1. A cellular model category is a cofibrantly generated (see
Definition 11.1.2) model category M for which there are a set I of generating cofi-
brations and a set J of generating trivial cofibrations such that

(1) both the domains and the codomains of the elements of I are compact
(see Definition 11.4.1),

(2) the domains of the elements of J are small relative to I (see Defini-
tion 10.5.12), and

(3) the cofibrations are effective monomorphisms (see Definition 10.9.1).

REMARK 12.1.2. Although the sets I and J in Definition 12.1.1 are not part
of the structure of a cellular model category, we will generally assume that some
specific sets I and J satisfying the conditions of Definition 12.1.1 have been chosen.

12.1.3. Examples of cellular model categories.

PRrROPOSITION 12.1.4. The categories SS, SS., Top, and Top, are cellular model
categories.

Proor. This follows from Example 9.1.13, Example 9.1.14, Example 9.1.15,
and Example 9.1.16. ]

231
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PROPOSITION 12.1.5. If M is a cellular model category and C is & small category,
then the diagram category M® with the model category structure of Theorem 11.6.1
is & cellular model category.

Proor. This follows from Theorem 11.6.1. 0

ProprosiTiON 12.1.6. If M is a cellular model category and Z is an object of M,
then the overcategory (M | Z) (see Definition 11.8.1) is a cellular model category.

Proor. This follows from Theorem 7.6.5. 0

We are indebted to C. Simpson for the following example.

ExaMPLE 12.1.7 (C. Simpson). We present here an example of a cofibrantly
generated model category that fails to be a cellular model category. Let M be the
category of sets, let the weak equivalences be the isomorphisms, and let both the
cofibrations and the fibrations be all the maps in M. We let I be the set containing
the two maps @ — * (where @ is the empty set and * is the one point set) and *+ — *
(where ** is the two point set). We let J be the set containing as its only element
the identity map of the empty set. The cofibrantly generated model category M is
not cellular because not all elements of I are monomorphisms.

12.1.8. Recognizing cellular model categories.

THEOREM 12.1.9. If M is a model category, then M is a cellular model category
if there are sets I and J of maps in M such that

(1) a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I,

(2) a map is a fibration if and only if it has the right lifting property with
respect to every element of J,

(3) the domains and codomains of the elements of I are compact relative to
I,

(4) the domains of the elements of J are small relative to I, and

(8) relative I-cell complexes are effective monomorphisms.

PROOF. Proposition 10.8.7 and Proposition 10.9.5 imply that I permits the
small object argument (see Definition 10.5.15), and so I is a set of generating
cofibrations for M. Proposition 11.2.3 now implies that J is a set of generating
trivial cofibrations for M, and so the theorem follows from Proposition 11.2.10. O

12.2. Subcomplexes in cellular model categories

ProposiTION 12.2.1. If M is a cellular model category, then a subcomplex

of a presented relative cell complex is entirely determined by its set of cells (see
Definition 10.6.4).

PRroOF. This follows from Proposition 10.6.10 and Proposition 10.6.11. O

Thus, if f: X — Y is a presented relative cell complex, then the union of a set
of subcomplexes of f is well defined. The intersection of a family of subcomplexes
would also be well defined if it was known to exist, i.e., if it was known that the
attaching maps of the cells factored as necessary to build the subcomplex. We will
show in Theorem 12.2.6 that the intersection of any fwo subcomplexes does exist.
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12.2.2. Intersections of subcomplexes. The main result of this section
is Theorem 12.2.6, which asserts that the intersection of two subcomplexes of a
presented cell complex always exists. We have not been able to determine whether
an arbitrary intersection of subcomplexes must exist.

PROPOSITION 12.2.3. Let M be a cellular model category and let X be a pre-
sented cell complex. If K and L are subcomplexes of X such that their intersection
K N L exists (see Remark 10.6.12), then the pushout square

KNnL—K

| L

L—KUL
is & pullback square.

ProOF. If f: W — L and g: W — K are maps such that vg = uf, then we
have the solid arrow diagram

w
h

IS K———3Klx K

A
Kn
AN .
s v r
o
L—— KUL == (KUL) T (KUL)
3%
in which the left hand square commutes, iy = i4v, and ri;, = ijv. We now have
rigg = igvg = iguf = {{uf = ijvg = ri1g; since r is an inclusion of a subcomplex, it
is a monomorphism (see Proposition 10.9.5), and so iog = i1¢. Sincet is an inclusion
of a subcomplex (and, thus, an effective monomorphism), this implies that there is
a unique map h: W — KNL such that th=g. Since ush =vth =vg=uf and uis

an inclusion of a subcomplex (and, thus, a monomorphism; see Proposition 10.9.5),
we have sh = f. O

THEOREM 12.2.4. Let M be a cellular model category and let (X,(D = Xy —
Xy = Xa — - = Xg = -+ (B < M), {T? e, hP}p5) be a presented cell
complex. If {UP}p.x and {VP}gs.» are subcomplexes of X (see Remark 10.6.12),
then the sequence {T#}s.x such that T8 = UP N VB for all B < ) determines a
subcomplex of X.

PROOF. We must show that the sequence {7 }s<x can be constructed by the
inductive procedure of Proposition 10.6.11. Since Proposition 10.6.11 allows T to
be any subset of T, the induction is begun.

Suppose now that 8 is an ordinal such that § < ) and that the condition is
satisfied for T for all v < . We must show that ifi € T8 then h?: C; — Xg factors
through )‘Eg — Xg. Since T#=UPn V#, this follows from Proposition 12.2.3. O

DEFINITION 12.2.5. The subcomplex {79} g of Theorem 12.2.4 will be called
the intersection of the subcomplexes {U”}gcx and {VP}g.a.
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THEOREM 12.2.6. Let M be a cellular model category and let X be a cell
complex. If K and L are subcomplexes (see Remark 10.6.8) of X (relative to some
presentation of X ), then the subcomplex K N L of X exists.

ProOOF. This follows from Theorem 12.2.4. 0

12.3. Compactness in cellular model categories

THEOREM 12.3.1 (Uniform compactness). If M is a cellular model category
then there is a cardinal o such that if T is a cardinal and X is a cell complex of size
7, then X is or-compact (see Definition 11.4.1).

PROOF. Since the domains and codomains of the elements of I are compact,
we can choose an infinite cardinal o such that each of these domains and codomains
is o-compact (see Proposition 11.4.6).

If 7 i1s a cardinal and X is a cell complex of size 7, then we can choose a
presentation of X (see Definition 10.6.2), indexed by an ordinal A whose cardinal is
7, that has no two cells with the same presentation ordinal (see Definition 10.6.4).
Thus, we have a A-sequence § = Xo — X3 — X2 — -+ — Xg — - (8 < A) whose
colimit is X and such that every Xp4, (for 6+ 1 < A) is obtained as a pushout

(12.3.2) Cpy1 — Dy

|

Xp— Xpn

for some element Cgy1 — Dgyy of I. If Y is a presented cell complex and f: X —» Y
is a map, then we must show that there is a subcomplex K of Y of size at most
o1 through which f factors. We will do this by showing (by induction on 8) that
for every f < A the composition Xg — X — Y factors through a subcomplex
Kp of Y of size at most 7. The map f will then factor through the union of
the {Kp}p<n (since the inclusion of that union into Y is a monomorphism; see
Proposition 10.9.5), which is of size at most (o7)T = o7.

The induction is begun by noting that Xo = @ (the initial object of M). If
B+1 < A and the composition Xg — X — Y factors through a subcomplex Kz of
Y of size at most o7, then the composition of the attaching map Dgy1 — Xgy1 —
X — Y (see Diagram 12.3.2) also factors through a subcomplex of size at most o,
and (since ¢ is infinite) the union of these subcomplexes will be of size at most o7
(see Proposition 10.1.13). Finally, if 8 is a limit ordinal such that 8 < A and for
every a < (3 the composition X, — X — Y factors through a subcomplex K, of Y
of size at most o7, then the composition X5 — X — Y factors through the union
Ua<ﬂ K, which is of size at most o7. ]

DEerINITION 12.3.3. If M is a cellular model category, then the smallest cardinal
o satisfying the conclusion of Theorem 12.3.1 will be called the size of the cells of
M.

COROLLARY 12.34. If M is a cellular model category and X is a cofibrant
object of M, then X is compact.

Proor. This follows from Theorem 12.3.1, Proposition 10.8.4, and Corol-
lary 11.2.2. 0
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12.4. Smallness in cellular model categories

The main result of this section is Theorem 12.4.3, which asserts that all cofi-
brant objects in a cellular model category are small relative to the subcategory of
all cofibrations.

LemMMma 12.4.1. If M is a cellular model category with generating cofibrations
1, then every cell complex (see Definition 11.1.4) is small relative to I.

Proor. This follows from Proposition 10.8.7 and Corollary 10.4.9. O

LeMmMa 12.4.2. If M is a cellular model category with generating cofibrations
I, then every cofibrant object of M is small relative to I.

PRrOOF. Corollary 11.2.2 implies that every cofibrant object of M is a retract of
a cell complex, and so the result follows from Proposition 10.4.7 and Lemma 12.4.1.
]

TBEOREM 12.4.3. If M is a cellular model category, then every cofibrant object
is small relative to the subcategory of cofibrations.

PRrOOF. This follows from Lemma 12.4.2 and Proposition 11.2.3. ]

THEOREM 12.4.4. If M is a cellular model category and J is a set of gener-
ating trivial cofibrations for M as in Definition 12.1.1, then the domains and the
codomains of the elements of J are small relative to the subcategory of all cofibra-
tions.

PROOF. Proposition 11.2.3 implies that the domains are small relative to the
subcategory of all cofibrations. Since every element of J is a cofibration (and thus
a retract of a relative I-cell complex), Corollary 10.4.9, Proposition 10.4.7, and
Proposition 10.8.7 imply that the codomains are small relative to the subcategory
of all cofibrations. 0

COROLLARY 12.4.5. If M is a cellular model category and J is a set of generating
trivial cofibrations for M as in Definition 12.1.1, then the domains and codomains
of the elements of J are small relative to J.

PROOF. Since every element of J is a cofibration, this follows from Theo-
rem 12.4.4. a

PRrROPOSITION 12.4.6. Let M be a cellular model category. If S is a set of
cofibrations with cofibrant domains and J is a set of generating trivial cofibrations
for M as in Definition 12.1.1, then there is a functorial factorization of every map
XoYasXLWLY where p Is a relative (S U J)-cell complex and g is an
(S'U J)-injective.

PrOOF. Theorem 12.4.3 and Theorem 12.4.4 imply that the domains of the
elements of SU J are small relative to SU J, and so the result follows from Prop-
osition 10.5.16. O

ProrosSITION 12.4.7. Let M be a cellular model category, and let S be a set
of inclusions of subcomplexes. If X — X' is the inclusion of a subcomplex and
we apply a small object factorization using the set S and some ordinal A\ (see



236 12. CELLULAR MODEL CATEGORIES

Definition 10.5.19) to both of the maps X — x and X’ — % to obtain the diagram

X ——Bsg— %

L]

X —Eg——
then the map Es — Ej is the inclusion of a subcomplex.
s

Proor. Using Proposition 10.9.5, one can check inductively that, at each stage
in the construction of the factorization, the map EP — (EP)’ is the inclusion of a
subcomplex. a

12.5. Bounding the size of cell complexes

The main result of this section is Proposition 12.5.3, which asserts that if a
small object factorization (see Definition 10.5.19) is applied to a map between
“large enough” cell complexes, then the resulting cell complex is no larger than the
ones with which you started.

PROPOSITION 12.5.1. Let M be a cellular model category. If X is a cell complex
(see Definition 11.1.4), then there is a cardinal 1) such that if v is a cardinal, v > 2,
and Y is a cell complex of size v, then the set M(X,Y) has cardinal at most v7.

PROOF. Let o be the size of the cells of M (see Definition 12.3.3) and let 7
be the size of X. The collection of isomorphism classes of cell complexes of size at
most o7 is a set, and so we can choose a set {Yy}aea Of representatives of those
isomorphism classes. We let 1 be an infinite cardinal at least as large as the set
(Iaea M(X, Ya)) x (o).

Let v be a cardinal such that v > 2 and let Y be a cell complex of size v. Every
map from X to Y must factor through a subcomplex of Y that is isomorphic to one
of the Y, (see Theorem 12.3.1). The set of such subcomplexes of ¥ has cardinal
at most 17 < v7 (see Proposition 10.6.10 and Lemma 10.1.16), and so the set
M(X,Y) has cardinal at most 7 X (v) = max(n, ") = V7. 0

COROLLARY 12.5.2. Let M be a cellular model category. If X is a cofibrant
object then there is a cardinal 1) such that if v is & cardinal, v > 2, and Y is a cell
complex of size v, then the set M(X,Y) has cardinal at most 7.

Proor. This follows from Proposition 12.5.1, Lemma 10.1.17, and Corol-
lary 11.2.2. a

PROPOSITION 12.5.3. Let M be a cellular model category with generating cofi-
brations I. If K is a set of relative I-cell complexes with cofibrant domains and k
is an infinite cardinal that is at least as large as each of the following cardinals:

e for each domain of an element of K, the cardinal 7 as in Corollary 12.5.2,

e for each codomain of an element of K, the cardinal 1) as in Corollary 12.5.2,

o for each relative I-cell complex in K, the cardinal of the set of cells in
that relative I-cell complex, and

o the cardinal of the set K,
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then if g: X — Y is a map of cell complexes of size at most k* (or if X is a cell
complex of size at most k* and Y is the terminal object of M) and Ek Is the
object constructed by applying the small object factorization with the set K and
an ordinal pp < k* to the map g (see Definition 10.5.19), then Eg is a cell complex
of size at most k*.

PrROOF. Let i be an ordinal such that p < &%, let g: X — Y be a map of cell
complexes of size at most x*, and let X = Xo —» X; — Xo — -+ — Xg — -+
(8 < p) be the p-sequence constructed by applying the small object factorization
with the set K and the ordinal u to g. We will show by transfinite induction that for
B < p the complex Xg has size at most *. Since Succ(x”) (see Definition 10.1.10)
is a regular cardinal (see Proposition 10.1.14), this will imply the proposition.

‘We begin the induction by noting that Xg = X. If we now assume that 3 is an
ordinal such that 8+ 1 < p and that X has size at most *, then the domain of
each element of K has at most (k*)* = k*X*) = x* maps to X, the codomain has
at most (k") = w{FXF) = k* maps to Y, and there are at most k elements of K.
Thus, X441 is built from Xz by pushing out at most (k) x (k%) X & = &* maps,
each of which attaches at most « cells to Xg, and so Xg4; has size at most &*.

If 3 is a limit ordinal such that # < g, then Xp is a colimit of complexes of size
at most x*. Since 8 < p < k*, this implies that Xp is of size at most x*~. [}

12.5.4. Natural cylinder objects.

DeriNiTION 12.5.5. Let M be a cellular model category with generating cofi-
brations I and let p be the smallest regular cardinal such that the domains of the
elements of I are p-small relative to I (see Definition 10.5.12). We define a natural
cylinder object (see Definition 7.3.2) X 11 X — CyI™(X) — X on M by applying
the small object factorization with the set I and the ordinal p to the fold map
1x Tlx: XIIX — X (see Definition 10.5.19).

DEFINITION 12.5.6. Let M be a cellular model category. If X is a cell comn-
plex, H: CyM(X) — Y (see Definition 12.5.5) is a homotopy of maps from X
to Y, and K is a subcomplex of X (see Definition 10.6.7), then we will use
Hlgym 1y Cyl™(K) — Y to denote the composition Cy™(K) — CyP"'(X) Hy,
and we will call this coraposition the restriction of the homotopy H to the subcorn-
plex K.

PROPOSITION 12.5.7. If M is a cellular model category with generating cofibra~
tions I and & is an infinite cardinal that is at least as large as each of the following
cardinals:
for each domain of an element of I, the cardinal n as in Corollary 12.5.2,
for each codomain of an element of I, the cardinal 1 as in Corollary 12.5.2,
the cardinal p described in Definition 12.5.5, and
e the cardinal of the set I,

and if X is a cell complex of size at most k", then the natural cylinder object
Cy™(X) (see Definition 12.5.5) is of size at most *.

PRrOOF. This follows from Proposition 12.5.3. a






CHAPTER 13
Proper Model Categories

A model category is left proper if weak equivalences are preserved by pushing
them out along cofibrations, and it is right proper if they are preserved by pulling
them back along fibrations (see Definition 13.1.1). Many model categories that come
up in practice are left proper, right proper, or proper (i.e., both left proper and
right proper), and even more model categories have homotopy theories equivalent
to the homotopy theory of a proper model category (see, e.g., [59]).

In Section 13.1 we define properness and show that our categories of topological
spaces and of simplicial sets are proper model categories. In Section 13.2 we prove a
result relating lifting in left or right proper model categories and cofibrant or fibrant
approximations that will be important for our localization results. In Sections 13.3
and 13.4 we discuss homotopy pullbacks and homotopy fibers in a right proper
model category, and in Section 13.5 we discuss homotopy pushouts in a left proper
model category.

13.1. Properness
DEFINITION 13.1.1. Let M be a model category.

(1) The model category M will be called left proper if every pushout of a weak
equivalence along a cofibration (see Definition 7.2.10) is a weak equiva-
lence.

(2) The model category M will be called right proper if every pullback of
a weak equivalence along a fibration (see Definition 7.2.10) is a weak
equivalence.

(3) The model category M will be called proper if it is both left proper and
right proper.

The following proposition of C. L. Reedy shows that for weak equivalences
between cofibrant objects, it follows from the definition of a model category that a
pushout along a cofibration must be a weak equivalence (and, dually, that for weak
equivalences between fibrant objects, a pullback along a fibration must be a weak
equivalence).

ProposITION 13.1.2 (C. L. Reedy, [57]). Let M be a model category.

(1) Every pushout of a weak equivalence between cofibrant objects along a
cofibration (see Definition 7.2.10) is a weak equivalence.

(2) Every pullback of a weak equivalence between fibrant objects along a
fibration (see Definition 7.2.10) is a weak equivalence.

ProoOF. We will prove part 1; the proof of part 2 is dual.

239
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If we have a pushout diagram

i

A—C

f lg

B —J'> D
in which f is a weak equivalence, A and B are cofibrant, and i is a cofibration,
then we must show that g is a weak equivalence. Since C and D are cofibrant (see
Proposition 7.2.12), Theorem 7.8.6 implies that it is sufficient to show that if Z is
a fibrant object of M then g induces an isomorphism of homotopy classes of maps
g :n(D,Z) = n(C, Z).

To see that g* is an epimorphism, let $: C — Z be a map. Corollary 7.7.4
implies that there is a map t: B — Z such that tf =~ si. Since 7 is a cofibration,
Proposition 7.3.10 and Theorem 7.4.9 iraply that there is a map s': C — Z such
that s’ ~ s and ¢’i = tf. The maps s’ and ¢ combine to define u: D — Z such that
ug = ¢, and so ug ~ s, and ¢* is an epimorphism.

To see that g* is a monomorphism, let u and «’ be maps from D to Z such that
ug ~ u'g. Proposition 7.4.7 and Theorem 7.4.9 imply that there is a path object
Z 3 Path(Z) PoXP1, Z x Z for Z and a map v: C — Path(Z) such that pov = ug
and p;v = u'g. Thus, we have the diagram

A— ¢ —Y— Path(2)

B——D——ZxZ.
J uxu

In the category (M | Z x Z) of object of M over Z x Z (see Theorem 7.6.5), the
object Path(Z) is fibrant (see Definition 7.3.2), and so Corollary 7.7.4 implies that
there is a map w: B — Path(Z) in (M | Z x Z) such that wf ~vi in (M| Z x Z).
Proposition 7.3.10 implies that there is a map v': C — Path(Z) in (M| Z x Z)
such that v @ v in (M | Z x Z) and v'i = wf, and the pair (v/,w) induces a map
H: D — Path(Z) such that poH = v and ;) H =/, i.e., a right homotopy from u
to u'. O

COROLLARY 13.1.3. Let M be a model category.

(1) If every object of M is cofibrant, then M is left proper.
(2) If every object of M is fibrant, then M is right proper.
(3) If every object of M is both cofibrant and fibrant, then M is proper..

ProoF. This follows from Proposition 13.1.2. O

CoOROLLARY 13.1.4. The categories SS and SS. (see Notation 7.10.5) are both
left proper.

Proor. This follows from Corollary 13.1.3. O

COROLLARY 13.1.5. The categories Top and Top, (see Notation 7.10.5) are
both right proper.

Proor. This follows from Corollary 13.1.3. 0
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We will show in Theorem 13.1.10 that Top and Top, are proper and in Theo-
rem 13.1.13 that SS and SS. are proper.

13.1.6. Topological spaces and simplicial sets.

LemMma 13.1.7. Let f: X — Y be a map of path connected topological spaces.
If f induces an isomorphism of fundamental groups f.: m (X, zo) = m1 (Y, f(zo)) for
some point zo € X and an isomorphism of homology f.: H.(X; f*A) ~ H.(Y; 4)
for every local coefficient system A on Y, then f is a weak equivalence.

PROOF. It is sufficient to show that the induced map of total singular complexes
is a weak equivalence. Since this is a map of connected simplicial sets inducing
an isomorphism of fundamental groups, it is sufficient to show that it induces
isomorphisms of all higher homotopy groups/,g.gi foL\tEs it is iu\fﬁ/cient to show
that the induced map of universal covers Sing f: Sing X — SingY induces an
isomorphisin\_o/f all homology groups. Since the homology groups of the universal
cover H.(Sing X) are naturally isomorphic to the local coefficient horology groups
H. (Sing X; Z[m X]), this follows from our assumptions. a

THEOREM 13.1.8. A map of topological spaces f: X — Y is a weak equivalence
if and only if it induces an isomorphism of the sets of path components f,: moX =~
moY and, for each path component of X and the corresponding path component of
Y, isomorphisms of fundamental groups and of homology with all local coefficient
systems.

PROOF. The conditions are clearly necessary, and the converse follows from
Lemma 13.1.7. a

PROPOSITION 13.1.9. Let f: X — Y be a weak equivalence of topological
spaces. If n > 0 and o: S® — X is a map, then the induced map f: X U, D™*! —
Y U, D™+ is a weak equivalence.

PROOF. We will use Theorem 13.1.8. It follows immediately that f induces an
isomorphism on the set of path components.

If n = 0 or n =1, then the van Kampen theorem implies that f induces an
isomorphism on the fundamental group of each path component. If n > 1, then the
fundamental groups of the components of X and Y were unchanged when the cells
were attached.

To see that f induces an isomorphism of homology with arbitrary local coeffi-
cients, we let

T ={zeR*"™ |0<|z| <1}
)? =X Uyf Tntl
X = X uy D™*?
and let ¥ and ¥ be the corresponding constructions for Y. Since X is a deformation
retract of X and Y is a deformation retract of Y, the induced map f X—-Yisa

weak equivalence. If B™*! is the interior of D**!, then the subsets X and B™+1 of

X are an excisive pair, and so a Mayer-Vietoris argument shows that f induces an
isomorphism of homology with arbitrary local coefficients. a
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THEOREM 13.1.10. The categories Top and Top, (see Notation 7.10.5) are both
left proper.

PROOF. Let f: X — Y be a weak equivalence of topological spaces, let s: X —
W is a cofibration, and let the square

X——Ww

/| E

Y—2Z2

is a pushout; we roust show that g is a weak equivalence. The cofibration s must be a
retract of a relative cell complex t: X — U (see Proposition 11.2.1, Example 11.1.8,
and Example 11.1.9). If

X —=U

fi o ‘Lh

is a pushout, then g is a retract of A, and so it is sufficient to show that A is a
weak equivalence. If we write ¢ as a transfinite composition of maps, each of which
attaches a single cell, then a transfinite induction using Proposition 13.1.9 and
Proposition 10.7.4 implies that A is a weak equivalence. a

THEOREM 13.1.11. The categories Top and Top, (see Notation 7.10.5) are
proper model categories.

ProOF. Right properness follows from Corollary 13.1.3 and left properness
follows from Theorem 13.1.10. a

PropPoSITION 13.1.12. The geometric realization functor commutes with finite
limits.

PROOF. See (38, page 49]. O

THEOREM 13.1.13. The categories SS and SS, (see Notation 7.10.5) are proper
model categories.

PRrOOF. Left properness follows from Corollary 13.1.3. Right properness fol-
lows from the right properness of Top and Top, (see Theorem 13.1.11) and the
facts that

(1) the geometric realization functor commutes with pullbacks (see Proposi-
tion 13.1.12) and

(2) the geometric realization of a fibration of simplicial sets is a fibration of
topological spaces (see [53]).

a

THEOREM 13.1.14. Let € be a small category and let M be a cofibrantly gen-
erated model category. If M is left proper, right proper, or proper, then the model
category structure on M€ of Theorem 11.6.1 is, respectively, left proper, right
proper, or proper.
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ProoF. Pullbacks in M€ are constructed objectwise. Since fibrations in M®
are objectwise fibrations and weak equivalences in M® are objectwise weak equiva-
lences, if M is right proper then the pullback of a weak equivalence along a fibration
is an objectwise weak equivalence, and so M is right proper.

Pushouts in M€ are also constructed objectwise. Since Proposition 11.6.3 im-
plies that a cofibration in M® is an objectwise cofibration, if M is left proper then
the pushout of an objectwise weak equivalence along a cofibration is an objectwise
weak equivalence, and so M is left proper. D

13.2. Properness and lifting
We are indebted to D. M. Kan for the following proposition.

ProrosiTioN 13.2.1. Let M be a model category.

(1) Let M be left proper, let g: A — B be a cofibration, let p: X — Y be
a fibration, and Jet §: A — B be a cofibrant approximation (see Defini-
tion 8.1.22) to g such that § is a cofibration. If p has the right lifting
property with respect to §, then p has the right lifting property with
respect to g.

(2) Let M be right proper, let g: A — B be a cofibration, let p: X — Y be
a fibration, and let §: X — Y be a fibrant approximation (see Defini-
tion 8.1.22) to p such that p is a fibration. If g has the left lifting property
with respect to p, then g has the left lifting property with respect to p.

PROOF. We will prove part 2; the proof of part 1 is dual.
We have the diagram

ix

»<)

P

W
VPN
(_

-3

— Y —

iy

=<

in which both ix and ¢y are weak equivalences. If we let P be the pullback Y xp X
then we have the diagram

B

and, since g has the left lifting property with respect to p, it also has the left lifting
property with respect to j (see Lemma 7.2.11).

If we now consider the category (4 | M |Y) of objects of M under A and over
Y, then B, X, and P are objects in this category. Since g has the left lifting
property with respect to 7, we know that there is a map in this category from B to
P, and we must show that there is a map in this category from B to X.

The category of objects under A and over Y is a model category in which a
map is a cofibration, fibration, or weak equivalence if and only if it is one in M (see
Theorem 7.6.5). Since j is a pullback of the fibration p, it is also a fibration, and so

kS
><
w
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X and P are fibrant objects in our category, and B is a cofibrant object. If we knew
that k was a weak equivalence, then the result would follow from Corollary 7.7.5.
Since iy is a weak equivalence, p is a fibration, and M is a right proper model
category, the map h is also a weak equivalence. Since ix = hk and both ix and A
are weak equivalences, k is also a weak equivalence, and the proof is complete. [

COROLLARY 13.2.2. Let M be a simplicial model category.

(1) Let M be left proper, let g: A — B be a cofibration, let p: X — Y be
a fibration, and let §: 4 — B be a cofibrant approximation (see Defini-
tion 8.1.22) to g such that § is a cofibration. If p has the homotopy right
lifting property with respect to § (see Definition 9.4.2), then p has the
homotopy right lifting property with respect to g.

(2) Let M be right proper, let g: A — B be a cofibration, let p: X — Y
be a fibration, and let p: X — Y be a fibrant approximation (see Defi-
nition 8.1.22) to p such that p is a fibration. If g has the homotopy left
lifting property with respect to p (see Definition 9.4.2), then g has the
homotopy left lifting property with respect to p.

PROOF. This follows from Proposition 13.2.1 and Lemma 9.4.7. W]

13.3. Homotopy pullbacks and homotopy fiber squares

If all objects in a model category M were fibrant, then we would define homo-
topy pullbacks and homotopy fibers in terms of the homotopy limit functor (see
Definition 19.1.5). Unfortunately, homotopy limits are homotopy invariant only for
diagrams of fibrant objects (see Theorem 19.4.2). However, in a right proper model
category (see Definition 13.1.1), we can define a homotopy pullback functor (see
Definition 13.3.2) that is always homotopy invariant (see Proposition 13.3.4) and
that is naturally weakly equivalent to the homotopy limit when all the objects in
the diagram are fibrant (see Proposition 19.5.3).

13.3.1. Homotopy pullbacks. If M is a right proper model category (see

Definition 13.1.1), then the homotopy pullback of the diagram X % Z Lyis
constructed by replacing g and h by fibrations and then taking a pullback (see
Definition 13.3.2). In order to have a well defined functor, we need to choose a
fixed functor to convert our maps into fibrations. We will show, however, that any
other factorization into a weak equivalence followed by a fibration yields an object
naturally weakly equivalent to the homotopy pullback and that, in fact, only one of
the maps must be converted to a fibration (see Proposition 13.3.7). Thus, if either
of the maps is already a fibration, then the pullback is naturally weakly equivalent
to the homotopy pullback (see Corollary 13.3.8).

DErFINITION 13.3.2. Let M be a right proper model category and let E be an
arbitra.ry but fixed functorial factorization of every map g: X — Y into X 2
(g) — Y, where %, is a trivial coﬁbratlon and p, is a fibration. The homotopy
pullback of the diagram X % Z &Y is defined to be the pullback of the diagram
E(g) 2% Z &~ E(h).

LEMMA 13.3.3. Let M be a right proper model category. If g: X — Y is a
weak equivalence and h: W — Z is a fibration, then, for any map k: Y — Z, the
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natural map from the pullback of the diagram X k¥, 722 W to the pullback of
the diagram Y k72 2 W is a weak equivalence.

PrROOF. We have the commutative diagram
XXgW—">3Y xg W —W

N

XY —— 2

in which the vertical maps are all fibrations. Since g is a weak equivalence, the
result follows from Proposition 7.2.14. O

ProrosiTION 13.3.4 (Homotopy invariance of the homotopy pullback). Let M
be a right proper model category. If we have the diagram

X2zt y

Ll

X - Z (E— Y
in which the vertical maps are weak equivalences, then the induced map of homo-
topy pullbacks
E(g) %z B(h) — E(g) xz B(R)
is a weak equivalence.
PRroor. It is sufficient to show that if g, h, §, and k are fibrations, then the

map of pullbacks X xz Y — X Xz Y is a weak equivalence. This map equals the
composition

XxZY—+(55 xz Z) szz)? xZY—a)?xZ?.
Since M is a right proper model category, the map X — X xz Z is a weak equiv-

alence, and Lemma 13.3.3 implies that the last map in the composition is a weak
equivalence. O

COROLLARY 13.3.5. Let M be a right proper model category. If k: W — X is
a weak equivalence, then the homotopy pullback of the diagram X > Z 2y s

naturally weakly equivalent to the homotopy pullback of the diagram W LLNy
Y.

PRrROOF. We have the commutative diagram

gk h
W-—DZ2—Y

1 ] ]

X—g—)ZTY

in which the vertical maps are weak equivalences, and so the result follows from
Proposition 13.3.4. 0
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COROLLARY 13.3.6. Let M be a right proper model category. If the maps
r,8: X — Z are left homotopic (see Definition 7.3.2), right homotopic, or (if M
is a simplicial model category) simplicially homotopic (see Definition 9.5.2), then

the homotopy pullback of the diagram X - Z Ly s weakly equivalent to the
homotopy pullback of the diagram X > 2 sy

PRrOOF. We will prove this in the case that r and s are left homotopic; the proof
in the case that they are right homotopic is similar, and either of these cases implies
the corollary in the case that they are simplicially homotopic, since maps that are
simplicially homotopic are both left and right homotopic (see Proposition 9.5.24).

If r and s are left homotopic, there is a diagram

20 %
X +,’ C—2Z
(31

such that Hig = r, Hi) = s, and both iy and 4; are weak equivalences. The
corollary now follows from Corollary 13.3.5. ]

PROPOSITION 13.3.7. Let M be a right proper model category. If X 22, Wy 3,
Z andY 2% Wy, 2% Z are factorizations of, respectively, g: X — Z andh: Y — Z,
Jg and jn are weak equivalences, and qg and qp, are fibrations, then the homotopy

pullback of the diagram X % 2 Ly s naturally weakly equivalent to each of
Wg Xz Wh, Wg Xz Y, and X Xz Wh.

Proor. If E is the natural factorization used in Definition 13.3.2, then
Lemma 13.3.3 implies that the homotopy pullback E(g) xz E(h) is naturally weakly
equivalent to both E(g) xz Y and X xz E(h). Lemma 13.3.3 implies that these
are naturally weakly equivalent to E(g) xz Wx and Wy xz E(h) respectively, and
that these are naturally weakly equivalent to X Xz Wx and W, xz Y, respec-
tively. Lemma 13.3.3 implies that both of these are naturally weakly equivalent to
Wg Xz Wh,.

]

COROLLARY 13.3.8. Let M be a right proper model category. If at least one
of the maps g: X — Z and h: Y — Z is a fibration, then the pullback X xz Y is

naturally weakly equivalent to the homotopy pullback of the diagram X 2 Z Ly,
Proor. This follows from Proposition 13.3.7. O

In Proposition 19.5.3, we show that if M is a right proper model category
and X, Y, and Z are fibrant, then the homotopy pullback of the diagram X —
Z « Y is naturally weakly equivalent to the homotopy limit of that diagram (see
Definition 19.1.5).

PROPOSITION 13.3.9. Let M be a right proper model category. If the vertical
maps in the diagram

T

Py —— 4
N F—— N

T

R
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are weak equivalences a.ng at Iegst one map in each row is a fibration, then the map
of pullbacks X xzY — X X5 Y is a weak equivalence.

Proor. This follows from Corollary 13.3.8 and Proposition 13.3.4. 3

PROPOS!TION 13. 3 10. Let M be a right proper model category. If we have

a diagram X 3, 72 & v in which at least one of g and h is a fibration and if
h: Y = Z is a fibrant approximation to h, then the pullback of h along g has a
fibrant approximation that is a pullback of h.

Proor. We have the diagram
—

w
|
X

—

LN

N
N)(—S_’—"Q

in which W is the pullback X Xz Y and iy and iz are weak equivalences, and we
must show that there is a pullback of h that is a fibrant approximation to k. If
we factor the composition izg: X — ZasX X X2 7 where ix is a trivial

cofibration and § is a fibration, then we can let wW=2X Xz ¥ and we have the
diagram

in which the front and back squares are pullba.cks.AProAposition 13.3.9 now implies
that tw is a weak equivalence, and so the pullback k of A is a fibrant approximation
to k. O

13.3.11. Homotopy fiber squares.
DEFINITION 13.3.12. If M is a right proper model category, then a square

A—C

| ]

B— D

will be called a homotopy fiber square if the natural map from A to the homotopy
pullback (see Definition 13.3.2) of the diagram B — D « C is a weak equivalence.
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PrOPOSITION 13.3.13. If M is a right proper model category and we have the
diagram
A——B
J(\‘IA | \fﬂ

A——Pp
. Jv p l
fe N\ fo N\

Cl ___) D/

in which fa, fB, fc, and fp are weak equivalences, then the front square is a

homotopy fiber square if and only if the back square is a homotopy fiber square.
Proor. If P is the homotopy pullback of the diagram C — D « B and P’ is

the homotopy pullback of the diagramm C’ — D' « B’, then we have the diagram

A—P
fAl lfp
AI ___)P/

and Proposition 13.3.4 implies that fp is a weak equivalence. Since f4 is a weak
equivalence, this implies that the top map is a weak equivalence if and only if the
bottom map is a weak equivalence. ]

PROPOSITION 13.3.14. Let M be a right proper model category. If the front
and back squares of the diagram

A—B

J( \‘fA I \‘fe

Al__l_)Bl
C—j'—) D j'
fe N\ o\

are homotopy fiber squares and if fg, fc, and fp are weak equivalences, then f4
is a weak equivalence.

Proor. This follows from Proposition 13.3.4. ]

PROPOSITION 13.3.15. Let M be a right proper model category. If the right
hand square in the diagram

D—E——F

is a homotopy fiber square, then the left hand square is a homotopy fiber square if
and only if the combined square is a homotopy fiber square.
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PROOF. Factor C — F as C 5 G 2 F where i is a trivial cofibration and p is
a fibration, and let P = E xp G and P’ = D xg G. We now have the diagram

A—B—C

kl El} E‘li
PP—P—CG
| L]
D—E—F

and Proposition 13.3.7 implies that 7 is a weak equivalence. Proposition 7.2.14
implies that P’ is the pullback D xg P, and so Proposition 13.3.7 implies that k
is a weak equivalence if and only if the (original) left hand square is a homotopy
fiber square. Since Proposition 13.3.7 implies that k is a weak equivalence if and
only if the (original) combined square is a homotopy fiber square, the proof is
complete. ]

13.4. Homotopy fibers

The homotopy fiber of the map X — Y over a point (see Definition 13.4.1) of
Y will be defined so that it is a fibrant object weakly equivalent to the homotopy
pullback of the diagram X — Y « x (where “4” denotes the terminal object of M)
(see Definition 13.4.3 and Remark 13.4.5).

DerINITION 13.4.1. If M is a model category and Z is an object of M, then by
a point of Z we will mean a map * — Z (where “¥” is the terminal object of M).

DEerINITION 13.4.2. If M is a model category, g: Y — Zisamap,and z: * — Z
is a point of Z (see Definition 13.4.1), then the fiber of g over z is the pullback of
the diagram * = Z £ Y.

DEFINITION 13.4.3. Let M be a right proper model category. If g: ¥ — Z is a
map and z: * — Z is a point of Z, then the homotopy fiber HFib,(g) of g over z is
the pullback of the diagram * % Z <&~ E(Y) (see Definition 13.3.2).

ProrosITION 13.4.4. If M is a right proper model category, g: Y — Z is a
map in M, and z: ¥ — Z is a point of Z, then the homotopy fiber of g over Z is a
fibrant object of M that is naturally weakly equivalent to the homotopy pullback
of the diagram * 5 Z 2L Y.

PROOF. This follows from Proposition 7.2.12 and Proposition 13.3.7. ]
REMARK 13.4.5. The homotopy fiber of the map g: Y — Z over a point z: * —

Z was not defined to be the homotopy pullback of the diagram * = Z 2 Y because
that homotopy pullback need not be a fibrant object of M.

PROPOSITION 13.4.6. Let M be a right proper model category. If g: Y — Z
is a fibration and z: * — Z is a point of Z, then the fiber of g over z is naturally
weakly equivalent to the homotopy fiber of g over z.

PrOOF. This follows from Proposition 13.4.4 and Corollary 13.3.8. O
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ProprosITION 13.4.7. Let M be a right proper model category. If g: Y — Z
is a map and z: ¥ — Z and z’: x — Z are points of Z that are (either left or
right) homotopic, then the homotopy fiber of g over z is weakly equivalent to the
homotopy fiber of g over 2’.

ProoF. This follows from Proposition 13.4.4 and Corollary 13.3.6. a

COROLLARY 13.4.8. If h: Y — Z is a map in Spc and z and z’ are points in
the same path component of Z, then the homotopy fiber of h over z is weakly
equivalent to the homotopy fiber of h over 2’.

PROOF. This follows from Proposition 13.4.7. 0

PROPOSITION 13.4.9. Let M be a right proper model category. If Z is an object
of M, z: x —» Z is a point of Z, and * — P — Z is a factorization of z into a weak
equivalence followed by a fibration, then the homotopy fiber of any map h: ¥ — 7
over z Is naturally weakly equivalent to P xz Y.

PROOF. This follows from Proposition 13.3.7. ]

PROPOSITION 13.4.10. Ifh: Y — Z is a map in Top and z is a point of Z, then
the total singular complex of the homotopy fiber of h over z is naturally homotopy
equivalent to the corresponding homotopy fiber of (Sing h): SingY — Sing Z.

Proor. If E is the factorization in Top of Definition 13.3.2 and i,: * — Z
is the constant map to z, then Sing(x) — SingE(i,) — Sing Z is a factorization
of Sing(*) — Sing Z into a weak equivalence followed by a fibration. Since the
total singular complex functor commutes with pullbacks and all the simplicial sets
involved are fibrant, the result now follows from Proposition 13.4.9. 0

ProrositioN 13.4.11. If h: Y — Z is a map in SS and z is a vertex of Z,
then the geometric realization of the homotopy fiber of h over z is naturally weakly
equivalent to the corresponding homotopy fiber of \h|: |Y| — |Z|

PROOF. Since the geometric realization functor commutes with pullbacks (see
[38, page 49]), this is similar to the proof of Proposition 13.4.10. ]

13.5. Homotopy pushouts and homotopy cofiber squares

Most of the definitions and results of this section are dual to those of Sec-
tion 13.3.

13.5.1. Homotopy pushouts.

DEFINITION 13.5.2. Let M be a left proper model category and let £ be an
arbitrary but fixed functorial factorization of every map ¢g: X — Y into X L,
E(g) LN Y, where 44 is a cofibration and pg is a trivial fibration. The homotopy
pushout of the diagram X & 2 2, ¥ is defined to be the pushout of the diagram
E(g) < Z 2 B(h).



13.5. HOMOTOPY PUSHOUTS AND HOMOTOPY COFIBER SQUARES 251

ProprosiTION 13.5.3 (Homotopy invariance of the homotopy pushout). Let M
be a left proper model category. If we have the diagram

Xz "0y
X AP Z 5 Y
in which the vertical maps are weak equivalences, then the induced map of homo-
topy pushouts E(g) Iz E(h) — E(§) Uz E(h) is a weak equivalence.
Proor. This follows from Proposition 13.3.4 and Proposition 7.1.9 (see Re-
mark 7.1.10). ]
PROPOSITION 13.5.4. Let M be a left proper model category. If the vertical
maps in the diagram
— X —

16— N
e/

Z5—X Y
are weak equivalences and at least one map in each row is a cofibration, then the
induced map of pushouts Zx Y — Z 1l Y is a weak equivalence.

ProoF. This follows from Proposition 13.3.9 and Proposition 7.1.9 (see Re-
mark 7.1.10). a

PROPOSITION 13.5.5. If we have a pushout diagram in Top,,

A——B
C——D
in which the map i is a cofibration, then the natural map of simplicial sets
(Sing C) I(sing 4) (Sing B) — Sing D
is a weak equivalence.

ProoF. Since left adjoints commute with pushouts, there is a natural home-
omorphism |(Sing C) Wging 4) (Sing B)| =~ |Sing C| L) ging 4] |Sing B|, and so it is
sufficient to show that the map |Sing C| Iljsing 4 |Sing B| — |Sing D| is a weak
equivalence. We have the diagram

|Sing C| +—— |Sing A| —— |Sing B|

I

C+ A *B

in which both of the maps pointing to the right are cofibrations (since both the
geometric realization and total singular complex functors preserve cofibrations), and
so Proposition 13.5.4 implies that the map |Sing C| 1) sing 4) |Sing B| — D is a weak
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equivalence. Since this map factors through the weak equivalence |Sing D| — D,
the result follows from the “two out of three” axiom for weak equivalences. 0

PROPOSITION 13 5.6. Let M be a left proper model category. If we have a
diagram Y & X 2 W in which at least one of g and h is a cofibration and if

g: X = Y is a cofibrant approximation to g, then the pushout of g along h has a
cofibrant approximation that is a pushout of §.

Proor. This follows from Proposition 13.3.10 and Proposition 7.1.9 (see Re-
mark 7.1.10). a

13.5.7. Homotopy cofiber squares.

DEFINITION 13.5.8. If M is a left proper model category, then a square

A—C

| ]

B——D

will be called a homotopy cofiber square if the natural map to D from the homotopy
pushout (see Definition 13.5.2) of the diagram B «— A — C is a weak equivalence.

ProposrTioN 13.5.9. If M is a left proper model category and we have the
diagram
A—B
J\‘f,q l \‘fa

A/—)BI

: l e J,
Jo N [ERN
Cl )D/

in which fa, fB, fc, and fp are weak equivalences, then the front square Iis a
homotopy cofiber square if and only if the back square is a homotopy cofiber square.

Proor. This follows from Proposition 13.3.13 and Proposition 7.1.9 (see Re-
mark 7.1.10). 0

PRrROPOSITION 13.5.10. Let M be a left proper model category. If the front and
back squares of the diagram

A— B

\‘fA \\‘fa

J A—p
R l

C—|—D

fe N IERN
Cl )DI

are homotopy cofiber squares and if f4, fg, and fc are weak equivalences, then fp
is a weak equivalence.

Proor. This follows from Proposition 13.3.14 and Proposition 7.1.9 (see Re-
mark 7.1.10). a



CHAPTER 14
The Classifying Space of a Small Category

The classifying space (or nerve) of a small category € is a simplicial set B€ in
which

e the vertices of BC are the objects of C,

e the 1-simplices of BC are the morphisms of €, and

o the n-simplices of BC for n > 2 are the strings of n composable morphisms
in C.

We will often want to know whether a category “has a contractible classifying
space”. If € is not small then the class of objects is not a set and so there can-
not exist a simplicial set BC except possibly in some higher universe, but we are
still able to describe what it means to say that “C has a contractible classifying
space” by considering the classifying spaces of the small subcategories of € (see
Definition 14.3.1). Our main use for this will be to prove the “essential unique-
ness” of a construction that requires making choices: We build a category € whose
objects are the possible outcomes and whose morphisms are equivalences between
them. The assertion that C has a contractible classifying space then implies that
any two outcomes are connected by an “essentially unique” zig-zag of equivalences
(see Theorem 14.4.5).

We define the classifying space of a small category in Section 14.1. In Sec-
tion 14.2 we define what it means for a functor between small categories to be
left (or right) cofinal (see Definition 14.2.1). Our definition is in terms of whether
the classifying spaces of the overcategories (or undercategories) are non-empty and
connected, and we show in Theorem 14.2.5 that this is the “correct” notion for
discussing limits (or colimits) of diagrams indexed by these categories. (We define
the analogous notions of homotopy left (or right) cofinal in Definition 19.6.1 in
terms of whether those classifying spaces are contractible, and we show in Theo-
rem 19.6.13 that this is the “correct” notion for discussing homotopy limits and
homotopy colimits.)

In Section 14.3 we discuss what it means to say that a category has a contractible
classifying space. If € is a small category, then this just means that the simplicial set
B€ is contractible. For categories C that may not be small, we define this in terms
of the classifying spaces of the small subcategories of € (see Definition 14.3.1). In
Section 14.4 we define eguivalent zig-zags in a category, and we say that there is an
essentially unique zig-zag connecting two objects if the objects are connected by a
zig-zag, any two of which are equivalent. We then show that if € has a contractible
classifying space, then any pair of objects of C are connected by an essentially
unique zig-zag in C.

In Section 14.5 we discuss the situation in which we have categories X and L
and our interest is in the functors from X to L. If X is not small then there is

253
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no “category of all functors from X to £ and all natural transformations between
them”, and so we consider collections of functors from X to £ and natural trans-
formations between them that do formn categories. The main result is a sufficient
condition for every small category of functors over a fixed functor to be contained
in one with a contractible classifying space (see Theorem 14.5.4). Section 14.6
contains uniqueness results for cofibrant and fibrant approximations as our first
application of contractible classifying spaces. Similar results for resolutions and
homotopy function complexes will follow in Chapter 16 and Chapter 17.

In Sections 14.7 and 14.8 we discuss diagrams of classifying spaces of over-
categories and undercategories. In Section 14.7 we describe the D°P-diagrams of
opposites of undercategories and the D-diagram of overcategories defined by a func-
tor of small categories F': € — D. If we take the classifying spaces of the opposites
of undercategories (or of the overcategories), then we obtain D°P-diagrams (or D-
diagrams) of simplicial sets, and we show in Section 14.8 that they are free cell
complexes (see Proposition 14.8.5). Thus, they are cofibrant objects in the model
category of D°P-diagrams (or D-diagrams) of simplicial sets. These diagrams will
be used in Chapters 18 and 19 to define homotopy colimit and homotopy limit
functors.

14.1. The classifying space of a small category

DErFINITION 14.1.1. If € is a small category, then the classifying space of €
(also called the nerve of €) is the simplicial set BC in which an n-simplex o is a
diagram in € of the form

oo 4} On—1}
Qg = ap = 0

and the face and degeneracy maps are defined by

(14.1.2)
o o Tn—1 . .
o oy o o, ifi=0
_ 2 o1—2 F.0,1-1 T On~) . .
dio=Cag 2% - 2o = Qg —— - ——ra, f0<i<n
oo oy On-2 ip s
Qg — Q] — - — Q] ifi=n
oo g1 la, g, Tigpl On—1
S0 =0 — 1 T 0y —— 0 Q] 2 Q-

IfF: € — Disa functor between small categories, then F induces a map of simplicial
sets BF: BC — BD defined by

Foo Fon-1

On— F
BF(ag 2 0; 2 - 2L o)) = Fog — Fay —5 -+ Fo, .

objects {0,1,2,...,n} and with a single morphism from ¢ to j when 7 < j. There
is a natural isomorphism of simplicial sets B[n] =~ A[n] that takes the k-simplex
19 — 41 — 12 — - -+ — ik of B[n] to the simplex [ig,71,%2,...,4k] of Aln].

Let O denote the category with objects the [n] for n > 0 and with O([n], [k])
the functors from [n] to [k]. O is a skeletal subcategory of the category of finite
ordered sets, and we have a functor B: O — SS whose image is isomorphic to the
subcategory of SS consisting of the standard simplices A[n} for n > 0 and the
standard maps between them.

ExaMpLE 14.1.3. For every integer n > 0 let [n] denote the category with
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ExaMpPLE 14.1.4. Let G be a discrete group. If we consider G to be a category
with one object and with morphisms equal to the group G, then BG is the standard
classifying space of the group G, i.e., mBG =~ G and mBG ~ 0 for ¢ # 1.

PROPOSITION 14.1.5. If C and D are small categories, then there is a natural
isomorphism of simplicial sets B(C x D) ~ BC x BD.

PRroOF. This follows directly from the definitions. 0

Although there is an obvious one to one correspondence between the simplices of
BC and the simplices of BC°P, this does not define a map of simplicial sets because it
does not commute with the face and degeneracy operators. It does, however, define
a homeomorphism between the geometric realizations of these simplicial sets.

PROPOSITION 14.1.6. If C is a small category, then there is a natural homeo-
morphism of topological spaces |BE| ~ |BC°P|.

PROOF. We define ¢: [BC| — |BECP| by letting ¢ take the realization of the
simplex ag 2% a; 2 -+ 2271 o, of BE to the realization of the simplex ay, <=4
Qn—1 kL IR ag of BE°P, reversing the orientation of the simplex. This
commutes with the realizations of the face and degeneracy operators and so we

have a map |BC| — |B€°P| that has an obvious inverse. m]

ExampLE 14.1.7. Let C and D be small categories, let F': € — D be a functor,
and let & be an object of C.

(1) If n > 0 then an n-simplex o of B(F | &) (see Definition 11.8.1) is a pair

((Bo 2 8 2 - 228 8,), 7 P — a)

o, On . . )
where By 2% ) 25 - - =74 8, is a string of composable maps in € and

7: FBn — aisamap in D. The face and degeneracy maps on the simplex

g are
(B 25 Bz 75 - T2 Bo), 7 P — @) ifi=0
oy - 0,0y~
((50 22 ﬁl—l 5 ﬂl+l
d,,O' = Tt On—-1
—

N B,), T FBn —a) f0<i<n
((Bo 2> i = -+ 225 1), 70 (Fono1): Fuy — a) ifi=n

T1~1

1p L Trp1 On—
5.0 =((Bo 2>+ =5 B =5 B T By — 5 - 55 B,), 7 FB —a)

(2) If n > 0 then an n-simplex o of B(a | F)*® (see Definition 11.8.3) is a pair

((Bo 2 By 2 - =2 B.),7: a — FB,)

where By <= By <~ - - Nkl Br is a string of composable maps in € and

T:a — Ff, is amap in D. The face and degeneracy maps on the simplex
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g are

(B2 B2 L B),mia > ) ifi=0
((,30 o9 Oy—2 ,B,'_l 010, ﬁi_',l
T141 On—-1
.

= B, Tia—FBy) if0<i<n
((50 B A Sn? Bn-1),(Fon_1)oT: a—»Fﬂn_,) ifi=n

d,;d =

- 1 . -
s,o=((ﬂ0*0—°“-*ﬂ—lﬂi‘iﬂz‘g—ﬂi+1&""Lﬂn):’“a_’m’n) .

ExaMpLE 14.1.8. Let € and D be small categories, let F: € — D be a functor,
and let o be an object of C.
(1) The map of simplicial sets BF.: B(€ | @) — B(F | Fa) (see Example 11.8.2)

takes the n-simaplex ((Bo 2% B = -+ 2% B,),7: B, — a) of B(€ )
On—1

to the simplex ((Bo == B1 = -+ — B,),Fr: FB, — Fa) of B(F | Fa).
(2) The map of simplicial sets BF.: B(a | €)*® — B(Fa |F)® (see Exam-
ple 11.8.4) takes the n-simplex ((5o g Snot Brn) T 00— ﬂn)

of B(C | ) to the simplex ((Bo <= A1 <% -~ <=1 3,),Fr: Fa — Fg,)
of B(F | Fa).

14.2. Cofinal functors

If C and D are small categories and F: € — D is a functor, then for ev-
ery cocomplete and complete category M and every diagram X: D — M there
is an induced C-diagram F*X and natural maps colime F*X — colimp X and
limp X — lime F*X. The main result of this section is Theorem 14.2.5, which
characterizes those functors F for which that natural map of colimits or that nat-
ural map of limits is always an isomorphism.

DeriniTION 14.2.1. Let € and D be small categories and let F: € — D be a
functor.

e The functor F is left cofinal (or initial) if for every object o of D the clas-
sifying space B(F | a) of the overcategory (F | ) (see Definition 11.8.1)
is non-empty and connected. If in addition F is an inclusion of a sub-
category, then we will say that € is a left cofinal subcategory (or initial
subcategory) of D.

e The functor F is right cofinal (or terminal) if for every object a of D
the classifying space B(a | F) of the undercategory (a|F) (see Defini-
tion 11.8.3) is non-empty and connected. If in addition F' is an inclusion
of a subcategory, then we will say that C is a right cofinal subcategory (or
terminal subcategory) of D.

There are differing uses of the above terms in the literature; see Remark 19.6.2.

REMARK 14.2.2. We will show in Theorem 14.2.5 that left cofinal and right
cofinal are the “correct” notions when considering colimits and limits of functors.
In Definition 19.6.1 we will define a functor between small categories to be homotopy
left cofinal or homotopy right cofinal if the classifying spaces of the overcategories
(or undercategories) are contractible, rather than just non-empty and connected.
We show in Theorem 19.6.13 that these are the “correct” notions when considering
homotopy colimits and homotopy limits.
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LEMMA 14.2.3. Let € be a small category. If a is an object of € and F¢ is the
free C-diagram of sets generated at a (see Definition 11.5.7), then colime FZ is a
set with one element.

PROOF. If B is an object of € and h € FE(B) = €(a, B), then (FE(h))(14) =
hol, = h. That is, FJ(h) takes 14 € F2(a) = €(a,a) to h € FZ(B), and so h and
14 represent the same element of colime FY. a

LemMA 14.24. Let C and D be small categories and let G: € — D be a func-
tor. If o is an object of D and F¥ is the free D-diagram of sets generated at o
(see Definition 11.5.7), then there is a natural one to one correspondence between
colime G*F¢ and the components of B(a | G).

PrOOF. There is a natural one to one correspondence between the vertices
of B(arl G) and the set [T, cone) Fo (G(0)) = Il,cone)(G*F2)(0). Under this
correspondence, there is a 1-simplex from the vertex f: @ — F(o) to the vertex
g: @ — G(7) if and only if there is a map h: ¢ — 7 in € such that F(h)o f = g.
Thus, two vertices of B(a | F) are in the same component of B(a | G) if and only
if they represent the same element of colime G*F$. a

THEOREM 14.2.5. Let C and D be small categories and let G: € — D be a
functor.

(1) The functor G is right cofinal (see Definition 14.2.1) if and only if for every
cocomplete category M and every diagram X : D — M the natural map
colime G* X — colimp X is an isomorphism.

(2) The functor G is left cofinal (see Definition 14.2.1) if and only if for every
complete category M and every diagram X: D — M the natural map
limp X — lime G* X is an isomorphism.

Proof of part 1: Let G be right cofinal, let M be a cocomplete category, and
let X: D — M be a diagram; we will define a map ¥: colimp X —
colime G*X that is an inverse to the natural map ¢: colime G*X —
colimp X. If o is an object of D, we can choose an object o of € and
a map f:a — G(o) (since B(a]G) is nonempty) and define a map
X4 — colime G* X as the composition X, ELN Xgo) = (G*X)y —
colimeG*X. If h: 0 — 7 is a map in € then the map (G*X), —
colime G* X equals the composition (G*X ), LR (G* X)), — colime G* X.
Since B(a | G) is connected, this implies that our map X, — colime G*X
is independent of the choices. If k: @ — # is a map in D, then it also
implies that the map X, — colime G*X equals the composition X o LN
Xp — colime G* X, and so we have an induced map 9%: colinp X —

colime G*X. The composition X, — colimp X 2, colime G* X 4,

colimp X equals the map X, — colimp X, and s0 ¢ = lcolimp X-
Similarly, the composition (G*X), — colime G*X 2, colimp X Y,
colime G* X equals the map (G*X), — colime G*X, and so the com-
position ¥¢ = lcolime G+ x -

If G is not right cofinal, then we can choose an object a of D such
that B(a | G) is either empty or not connected. If we let F® be the free D-
diagram of sets generated at o (see Definition 11.5.7), then colimp FY is
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a set with one element (see Lemma 14.2.3) but colime G*F¢ has as many
elements as the number of components of B(a | G) (see Lemma 14.2.4).

Proof of part 2: Proposition 11.8.5 implies that the functor G is left cofinal
if and only if B(a | F°?)°® is nonempty and connected for every object
a of D, and Proposition 14.1.6 implies that this is true if and only if
B(a | F°P) is nonempty and connected for every object a of D. Part 1 im-
plies that this is true if and only if for every cocomplete category M°P and
every diagram X °P: D% — M°P the natural map colimeep (GP)* X°P —
colimper X °P is an isomorphism, and this is true if and only if for every
complete category M and every diagram X: D — M the natural map
limp X — lime G*X is an isomorphism.

14.3. Contractible classifying spaces

If € is a small category, then its classifying space BC (see Definition 14.1.1)
exists and is a simplicial set, and it makes sense to ask whether BC is contractible.
If € is not small, though, then there is no simplicial set BC unless we are working
in a universe U from which we can pass to a higher universe U’ and construct the
simplicial set BC in U’. Definition 14.3.1 allows us to say what we mean by “C
has a contractible classifying space” without assuming that there exists a simplicial
set BC. Proposition 14.3.3 shows that this definition is equivalent to our intuitive
potion of having a simplicial set B€ that is contractible.

DEFINITION 14.3.1. If € is a category (that is not necessarily small), then we
will say that € has a contractible classifying space if for every small subcategory D
of € there is a small subcategory D’ of € such that D C D’ and BD' is a contractible
simplicial set.

REMARK 14.3.2. If C is a small category, then Definition 14.3.1 is equivalent
to the assertion that BC is a contractible simplicial set. However, if a category €
is not small, then there is no simplicial set BC unless we are working in a universe
from which we can pass to a higher universe in which the class of objects of € is a
set (see, e.g., [60, page 17]), so that BC is a simplicial set in that higher universe.
For this situation, see Proposition 14.3.3.

ProprOSITION 14.3.3. If € is a category in a universe U and U’ is a higher
universe in which BC is a simplicial set, then BC is contractible in the sense of
Definition 14.3.1 if and only if BC is a contractible simplicial set in U'.

Proor. If BC is contractible in the sense of Definition 14.3.1 and if f: §* —
|BG | is a map of topological spaces in U’, then the image of f factors through the
image of |B'D| — |B€‘ for some small (in U) subcategory D of €. There is then a
small (in U) subcategory D’ of € such that D C D’ and BT’ is contractible, and so
the map f is nullhomotopic.

Conversely, let B be contractible in U’ and let D be a small (in U) subcategory
of €. We will inductively define a sequence D = Dy C D) C Dy C --- of small
(in U) subcategories of € such that for every k > 0, n > 0, and map S — |BD,|,
the composition S¥ — |B'D,,| C ]B'D,H.l| is nullhomotopic. If we then let D’ =
Un>o D, then BD’ will be contractible (because any map from a sphere to IB'D'I
must factor through IB'DnI for some n > 0 and will thus be nullhomotopic in
|BD g )-
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If n > 0 and we have defined D,,, then for every k > 0 there is a set (in U)
of maps f:S$* — |BD,|, and for each of these maps there is a nullhomotopy of
the composition §¥ — |BD,| C |BC|. The image of each of these nullhomotopies
is contained in some finite subcomplex of |B€| and the union of all of these finite
subcomplexes of IB(? l is a small subcomplex of |B€|. We can thus find a small
subcategory D41 of € such that BD,; contains both BD,, and the image of all
of the nullhomotopies. a

PROPOSITION 14.34. Let X and L be categories. If both BX and BL are
contractible (see Definition 14.3.1), then for every small subcategory D of X x L
there are small subcategories DYy of X and D, of L such that

(1) BD% and BD}. are contractible and
(2) DC Dy xDL.

PRroOF. If D is a small subcategory of X x L, let Dy be the image of D under
pri: X x L — X and let Dg be the image of D under prg : X x L — L. Both Dy
and Dy are small, and so there exist small subcategories D} of X and D} of L
such that Dy C Dy, Dg C DY, and both BDY and BD,, are contractible. O

ProprosITION 14.3.5. Let X and L be categories. If both BX and BL are
contractible (see Definition 14.3.1), then B(X x L) is contractible.

ProoF. This follows from Proposition 14.3.4 and Proposition 14.1.5. g

14.3.6. Homotopic maps of classifying spaces.

PROPOSITION 14.3.7. If C is a small category then there is a natural isomor-
phism
B(C x [1]) =~ (BC) x A[1]
(where [1] is the category of Example 14.1.3).

Proor. This follows from Proposition 14.1.5 and Example 14.1.3. a

LemMA 14.3.8. Let [1] be the category of Example 14.1.3. If C is a small
category, then
e the objects of the category € x [1] consist of two objects (¢, 0) and (e, 1)
for every object o of C, and
e the morphisms of € x [1] consist of three morphisms (o, 1o), (o,11), and
(6,0 — 1) for every morphism o of € (where 0 — 1 is the unique non-
identity map of [1]).

PRrOOF. This follows directly from the definitions. g

LEMMA 14.3.9. Let C and D be categories, let F,G: C — D be functors from C
to D, and let [1] be the category of Example 14.1.3. If ip: € — € x [1] is the functor
that takes an object a to (&, 0) and a morphism g to (g,1o) and 41: € — € x [1] is
the functor that takes an object a to (¢, 1) and & morphism g to (g, 11), then there
is a natural transformation ¢: F — G if and only if there is a functor ®: €x[1] —» D
such that ®ig = F and &1, = G.

PRrROOF. If ¢: F — G is a natural transformation, then we define @ by letting
e &(a,0) = F(a) and (e, 1) = G(a) for every object « of C, and
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e 3(0,1y) = F(o), ®(0,11) = G(0o), and P(0,0 — 1) = ¢(o) for every
morphism o of € (see Lemma 14.3.8).
Conversely, if ®: € x [1] — D is a functor such that ®ip = F and ®i) = G,
define a natural transformation ¢: F — G by letting ¢(a) = $(,0 — 1) for every
object a of C. ]

PropPOSITION 14.3.10. Let € and D be small categories and let F,G: € —» D
be functors from C to D. If there is a natural transformation from F to G, then
the induced maps of classifying spaces BF, BG: BC — BD are homotopic.

Proor. This follows from Leruma 14.3.9 and Proposition 14.3.7. a

DEFINITION 14.3.11. If € and D are categories and « is an object of D, then
the constant functor from C to D at a is the functor that takes every object of €
to @ and every morphism of € to 1,.

COROLLARY 14.3.12. Let C be a category and let o be an object of €.

(1) If there is a natural transformation from the identity functor of € to the
constant functor from € to € at a (see Definition 14.3.11), then BC is
contractible (see Definition 14.3.1).

(2) If there is a natural transformation from the constant functor from € to
C at a (see Definition 14.3.11) to the identity functor of C, then BC is
contractible (see Definition 14.3.1).

PROOF. We will prove part 1; the proof of part 2 is similar.

If D is a small subcategory of €, let D’ be the subcategory of € consisting
of D, the object @, and the maps {¢(3) ‘ B € Ob(D)}. D’ is also small, and
Proposition 14.3.10 implies that BD’ is contractible. O

PROPOSITION 14.3.13. Let € be a category.
(1) If « is an initial object of C, then there is a natural transformation from
the constant functor at o (see Definition 14.3.11) to the identity functor
of C.
(2) If « is a terminal object of €, then there is a natural transformation
from the identity functor of € to the constant functor at a (see Defini-
tion 14.3.11).

ProOOF. We will prove part 1; the proof of part 2 is dual.

For every object 8 of €, let ¢(3) be the unique map from o to 3. Since a is an
initial object of C, it follows that ¢ is a natural transformation, and so the result
follows from Corollary 14.3.12. a

PROPOSITION 14.3.14. If the small category € has either a terminal or an initial
object, then BC is contractible (see Definition 14.3.1.)

Proor. This follows from Corollary 14.3.12 and Proposition 14.3.13. ]

14.4. Uniqueness of weak equivalences

DEFINITION 14.4.1. Let € be a category. If X and Y are objects of €, then
two zig-zags (see Definition 7.9.1) in € from X to Y are equivalent if one can be
changed into the other by a finite sequence of the following transformations and
their inverses:
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(1) If two consecutive arrows in a zig-zag point in the same direction, compose
them; i.e.,

XoW e oW, 25 W 22 W 0 Y
is equivalent to
X—)qu—--~—ka_lm>Wk+lq—--v—)Y
and
X oW W B (1 Brar
— ] — s — k—l"—Wk‘—Wk+1‘_"'_'Y
is equivalent to

BxBr+r
Padsladeid

X->W e - oW, Wis1 = > Y .

(2) If an arrow is immediately followed by the same arrow pointing in the
opposite direction, remove the pair; i.e., both

X—'Wl‘—"'—'W]c—lik—"WkFal‘—Wk_l‘—"'—'y

and

XoW e oW w2 we oy

are equivalent to
X oWy Wig—= W1 & Wiga- o Y

DEFINITION 14.4.2. Let € be a category and let X and Y be objects of €. If
any two zig-zags in € from X to Y are equivalent (see Definition 14.4.1), then we
will say that there is an essentially unique zig-zag in € from X to Y.

PROPOSITION 14.4.3. Let M be a model category and let X be a small and
full subcategory of M. If X, Y, and Z are objects in X, then composition of
zig-zags of weak equivalences (see Definition 7.9.1) passes to equivalence classes of
zig-zags of weak equivalences in X (see Definition 14.4.1) to define the composition
of an equivalence class of zig-zags of weak equivalences from X toY in X with an
equivalence class of zig-zags of weak equivalences from Y to Z in X.

Proof. This follows directory from the definitions. ]

ProOPOSITION 14.4.4. Let K be a small category. If X and Y are objects of X,
then the set of equivalence classes of zig-zags in X from X to Y is isomorphic to
the set of maps from X toY in the edge path groupoid of BX.

Proor. This almost follows directly from the definitions. If o and § are com-
posable maps in X, then there is a 2-simplex in BX with faces a, G, and fo ¢, and
50 the definition of the edge path groupoid contains the relation (Boa)™!-8 = a1,
which is not part of the definition of equivalence of zig-zags. However, this relation
is a consequence of the definition of equivalence of zig-zags because (Boa)™! -8 =
a” ! B7!. 8 = ol (and similarly for the other relations derived from the 2-
simplex). (i

THEOREM 14.4.5. Let € be a category and let X and Y be objects of €. If BC
is contractible (see Definition 14.3.1), then there is an essentially unique zig-zag in
€ from X toY (see Definition 14.4.2).

Proor. This follows from Proposition 14.4.4. O
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14.4.6. Homotopy equivalences.

PROPOSITION 14.4.7. Let M be a model category, let C be a category, and let
F: € — M be a functor such that F(a) is a weak equivalence between cofibrant-
fibrant objects of M for every map « of . If

o a o Cn—2 o
X33 wEw, s W, Y

is a zig-zag in C from X to Y, then we can choose a homotopy inverse g, to F(ay)
for each oy, that points to the left and let g, = F(ax) for each ax that points to the
right and the composition gngn—1---¢1: X — Y will be a homotopy equivalence
whose homotopy class is independent of the choices made.

PRroOOF. This follows from Theorem 7.5.10. 0

DEFINITION 14.4.8. If M is a model category, C is a category, F: € > M is a
functor such that F(a) is a weak equivalence between cofibrant-fibrant objects of
M for every map « of €, and if

Qp—
X LW, S, & St

Wn—l a—"' Y

is a zig-zag in € from X to Y, then any homotopy equivalence from F(X) to F(Y)
that is homotopic to one obtained from the zig-zag as in Proposition 14.4.7 will be
called a homotopy equivalence determined by that zig-zag.

LEMMA 14.4.9. Let M be a model category, let € be a category, and let F: C —
M be a functor such that F(a) is a weak equivalence between cofibrant-fibrant
objects of M for every map a of €. If X and Y are objects of € and we have
two equivalent zig-zags (see Definition 14.4.1) from X to Y, then those zig-zags
determine (see Definition 14.4.8) the same homotopy class of homotopy equivalences
from F(X) to F(Y).

Proor. This follows immediately from the definitions. a

PROPOSITION 14.4.10. Let M be a model category, let € be a category, and let
F: € — M be a functor such that F(a) is a weak equivalence between cofibrant-
fibrant objects of M for every map « of C. If there is an essentially unique zig-zag
(see Definition 14.4.2) in € from X to Y then the zig-zags from X toY determine
(see Definition 14.4.8) a homotopy class of homotopy equivalences from F(X) to
F(Y).

Proor. This follows from Lemma 14.4.9. O

PROPOSITION 14.4.11. Let M be a model category, let C be a category, and let
F: € — M be a functor such that F(«a) is a weak equivalence between cofibrant-
fibrant objects of M for every map o of C. If there is an essentially unique zig-zag
(see Definition 14.4.2) in € between any two objects of €, then for any two objects
X and Y of C those zig-zags define a homotopy class of homotopy equivalences
hxy: F(X) — F(Y) such that if X, Y, and Z are objects of C, then hyzhxy =
hxz.

ProoF. This follows from Proposition 14.4.10. O
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14.5. Categories of functors

In this section, we consider a situation in which we have categories X and £ and
a functor X : X — L. We would like to discuss what would be called “subcategories
of the overcategory (L% | X )" (see Definition 11.8.1), where £ is the “category of
functors from X to L”, but we cannot do this because the collection of functors from
X to L and all natural transformations between them maght not form a category.
This is because if X is not small, then there might be a proper class of natural
transformations between any pair of functors from X to L.

There are two ways to deal with this situation. The first is to work in a universe
that allows us to pass, temporarily, to a “higher universe” (see, e.g., [60, page 17]) in
which X and L are small and so there is a category of “all functors from X to £ and
all natural transformations between them”. We could pass to such a higher universe,
prove theorems there, and then state the implications of those theorems for our
original universe. The second is to work with subcollections of those functors and
natural transformations, restricting ourselves to those subcollections that do form
categories, and draw our results from the relationships between those categories of
functors and natural transformations. This second method is the one that we shall
use (see Definition 14.5.2 and Remark 14.5.3). We are indebted to D. Dugger for
suggesting this approach.

DEFINITION 14.5.1. Let X and L be categories, let W be a class of maps in L,
and let X: X — L be a functor.

(1) A functor over X relative to W is a pair (},i) in which X: X — L is a
functor and i: X — X is a natural transformation such that iqt 5(1, —
X o is in W for every object a of X. .

(2) A functor under X relative to W is a pair (/)Z,j) in which X: X —» Lisa
functor and j: X — X is a natural transformation such that Ja: Xa —
X4 is in W for every object a of X.

DEFINITION 14.5.2. Let X and L be categories, let W be a class of maps in L,
and let X: X — L be a functor.

(1) A category of functors over X relative to W is a category C such that

(a) every object of € is a functor over X relative to W (see Defini-
tion 14.5.1),

(b if (X,4) and (X’,#') are objects of C, then (:‘((3(4,1'), (}’,i')) is a set
of patural transformations ¢: X — X' such that i'p =1,

(c) if (X,%) is an object of €, then the identity natural transformation
of X is an element of C((},i), (X,i)), and

(d) composition of morphisms in € is defined by composition of natural
transformations.

(2) A category of functors under X relative to W is a category C such that
(a) every object of € is a functor under X relative to W (see Defini-
tion 14.5.1),
(b) if (X,7) and (X', ) are objects of €, then €((X,7), (E',j')) is a
set of natural transformations ¢: X — X’ such that ¢i=7,
(c) if (X 7) is an object of €, then the identity natural transformation
of X is an element of C((X 7), (X 7)), and
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(d) composition of morphisms in € is defined by composition of natural
transformations.

REMARK 14.5.3. If X is a small category and L is a category, then there is a
category L% with objects all the functors from X to £ and morphisms all natural
transformations between such functors. In this case, a category of functors over X
is just a subcategory of (L¥ | X)) (see Definition 11.8.1) and a category of functors
under X is just a subcategory of (X | LX) (see Definition 11.8.3). If X is not small,
however, then the collection of natural transformations between two functors may
not be a set, and so there may not be a “category of all functors and all natural
transformations” except in a universe higher than the one in which we work.

We are indebted to D. M. Kan for the following theorem.

THEOREM 14.5.4. Let X and L be categories, let X: X — L be a functor, and
let W be, a class of maps in L that is closed under composition.

(1) If there is an augmented functor (see Definition 8.1.12) (F,p) on L such
that py: FY — Y is in W for every object Y of L, then for every small
category D of functors over X relative to W (see Definition 14.5.2) there
is a small category D’ of functors over X relative to W such that D C D’
and BD’ is contractible.

(2) If there is a coaugmented functor (see Definition 8.1.12) (G, ¢) on L such
that gy: Y — GY is in W for every object Y of L, then for every small
category D of functors under X relative to W (see Definition 14.5.2) there
is a small category D’ of functors under X relative to W such that D C D’
and BT’ is contractible.

Proor. We will prove part 1; the proof of part 2 is dual.
Let D be a small category of functors over X relative to W. If we let D’ be
the category generated by
D)
the objects {(FX,iopg) | (X,i) € Ob(D)},
the object (FX,px),
the maps {F(g) | g is a map in D},
the maps {F(i): (FX,i opg)— (FX,px) | (X,i) € Ob(D)}, and
e the maps {pg | (X,4) € Ob(D)},
then T is a small category and D C I’. We will show that BT’ is contractible by
showing that there is a subcategory D < D’ such that
(1) D has a terminal object (and so BD is contractible; see Proposition 14.3.14)
and
(2) BD is a deformation retract of BD'.

Let D be the subcategory of D’ generated by

the objects {(FX,i0p%) | (X,i) € Ob(D)},

the object (FX,px),

the maps {F(g) | ¢ is a map in D}, and

the maps {F(i): (FX,iop%) — (FX,px) | (X, 7) € Ob(D)}.

The object (FX, px ) is a terminal object of D, and so it remains only to show that
BD is a deformation retract of BD’.
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We define a retraction F: D’ — D by letting
F(X,i) = (FX,iopg) for (X,4) € Ob(D),
F(g: (X,1) — (X, i')) =F(g )'(FX,zopi)—b(FX',i’opi,)forga.mapin‘D,
Flpg: (FX,iopg)— (X,9) = lpx, iong) o1 (X,7) € OB(D),

and by letting F be the identity on the subcategory D. Proposition 14.3.10 implies
that it is sufficient to construct a natural transformation ¢ from Fto 1p.. We do
this by letting ¢(X i) =pg for (X 1) € Ob(D) and by letting ¢ take every object
of D to the identity map of that object. d

THEOREM 14.5.5. Let X and L be categories, let X : X — L be a functor, and
let W be a class of maps in L that is closed under composition.

(1) If there is an augmented functor (see Definition 8.1.12) (F,p) on L such
that py: FY — Y is in W for every object ¥ of L and if (X X —
L,i: X - X) and (X': X — L,#: X' — X) are functors over X
relative to W (see Definition 14.5. 1), then there is an essentially unigue
zig-zag (see Definition 14.4.2) of natural transformations of functors over
X relative to W from X to X'.

(2) If there is a coaugmented functor (see Definition 8.1.12) (G, q) on L such
that ¢v: Y — GY is in W for every object ¥ of L and if (X X —
Lj: X — X) and(X’ X — L7 X — X) are functors under X
relative to W (see Definition 14.5.1), then there is an essentially unique
zig-zag (see Definition 14.4.2) of natural transformations of functors under
X relative to W from X to X'.

Proor. This follows from Proposition 14.5.7 and Theorem 14.5.4. a

THEOREM 14.5.6. Let € be a category and let W be a class of maps in € that
is closed under composition.

(1) Let X be an object of € and let €x be the full subcategory of (€l X)
determined by the objects X — X that are in' W. If there is an augmented
functor (see Definition 8.1.12) (F,%) on C such that iy : FY — Y isin W
for every object Y of €, then BCx is contractible (see Definition 14.3.1).
(2) Let X be an object of C and let €x be the full subcategory of (X16)
determined by the objects X — X that arein'W. If thereis a coaugmented
functor (see Definition 8.1.12) (G, 7) on € such that jy: Y — GY isin W

for every object Y of C, then B@x is contractible.

PROOF. If we let X be the category with one object and one (identity) map,
then this follows from Theorem 14.5.4. 0

PRrOPOSITION 14.5.7. Let X and L be categories, let W be a class of maps in
L, and let X: X — L be a functor.

(1) If every small category D of functors over X relative to W (see Defini-
tion 14.5.2) is contained in a small category D' of functors over X relative
to W such that BD’ is contractible, then there is an essentially unique zig-
zag (see Definition 14.4.2) of natural transformations of functors over X
relative to W connecting any two functors over X.
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(2) If every small category D of functors under X relative to W (see Def-
inition 14.5.2) is contained in a small category D’ of functors under X
relative to W such that BD' is contractible, then there is an essentially
unique zig-zag (see Definition 14.4.2) of natural transformations of func-
tors under X relative to W connecting any two functors under X.

Proor. This follows from Theorem 14.4.5. 0O

14.6. Cofibrant approximations and fibrant approximations

DEFINITION 14.6.1. Let M be a model category.

(1) If X is an object of M, we let CofAp(X) denote the category whose
objects are cofibrant approximations to X (see Definition 8.1.2) and whose
morphisms are maps of cofibrant approximations (see Definition 8.1.4).

(2) If X is an object of M, we let FibAp(X) denote the category whose objects
are fibrant approximations to X and whose morphisms are maps of fibrant
approximations.

THEOREM 14.6.2. Let M be a model category.
(1) If X is an object of M, then B CofAp(X) is contractible (see Defini-
tion 14.3.1).
(2) If X is an object of M, then BFibAp(X) is contractible (see Defini-
tion 14.3.1).

Proor. We will prove part 1; the proof of part 2 is dual.
If we let W be the class of weak equivalences in M with cofibrant domain, then
the result follows from Theorem 14.5.6 and Proposition 8.1.17. O

PROPOSITION 14.6.3. Let M be a model category and let X be an object of M.
(1) If ()?,z‘) and ()?’,i’) are cofibrant approximations to X, then there is an
essentially unique zig-zag (see Definition 14.4.2) of weak equivalences of
cofibrant approximations to X from ()?,i) to (f’,i').
(2) If (f,j) and ()?’,j’) are fibrant appraximations to X, then there is an
essentially unique zig-zag (see Definition 14.4.2) of weak equivalences of
fibrant approximations to X from ()?,j) to ()?',j').

Proor. This follows from Theorem 14.4.5 and Theorem 14.6.2. 0O

DEFINITION 14.6.4. Let M be a model category.

(1) If g: X - Y is a map in M, we let CofAp(g) denote the category whose
objects are cofibrant approximations to g (see Definition 8.1.22) and whose
morphisms are maps of cofibrant approximations (see Definition 8.1.26).

(2) If g: X - Y is a map in M, we let FibAp(g) denote the category whose
objects are fibrant approximations to g and whose morphisms are maps
of fibrant approximations.

PROPOSITION 14.6.5. Let M be a model category.
(1) Ifg: X —» Y is a map in M, then B CofAp(g) is contractible (see Defini-
tion 14.3.1).
(2) If g: X = Y is a map in M, then BFibAp(g) is contractible.
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Proor. We will prove part 1; the proof of part 2 is dual.
Let X be the category of maps in M, in which a map from f: A — B to
f'+ A’ — B’ is a commutative square

Ay

fl Js

B—L>B' ,

and let W be the class of maps for which both s and t are weak equivalences with
cofibrant domains. If (F,1) is a functorial cofibrant approximation on M, then (F, i)
defines a functorial cofibrant approximation on X, and so the result follows from
Theorem 14.5.6. g

PROPOSITION 14.6.6. Let M be a model category and let f: X — Y be a map
in M.

(1) I (X,ix), (Y,iv),§: X = ¥) and ((X',i%), (Y',é%),§: X' = Y") are
cofibrant approximations to g, then they are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of cofibrant
apprg\)dmatiofr\zs tog. R

(2) I ((X,5x),(Y,5v),9: X = V) and (X, 5%), (V',5%),9': X' = V') are
fibrant approximations to g, then they are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of fibrant ap-
proximations to g.

ProoF. This follows from Theorem 14.4.5 and Proposition 14.6.5. O

DEFINITION 14.6.7. Let M be a model category and let X be a subcategory of
M.

(1) A category of functorial cofibrant approzimations on X is category of
functors from X to M over the inclusion functor with respect to those
maps in M that are weak equivalences with cofibrant domains (see Defi-
nition 14.5.2).

(2) A category of functorial fibrant approzimations on X is category of func-
tors from X to M under the inclusion functor with respect to those
maps in M that are weak equivalences with fibrant codomains (see Defi-
nition 14.5.2).

THEOREM 14.6.8. Let M be a model category and let X be a subcategory of
M.
(1) For every small category D of functorial cofibrant approximations on X
(see Definition 14.6.7) there is a small category D' of functorial cofibrant
approximations on X such that D C D’ and BD' is contractible.
(2) For every small category D of functorial fibrant approximations on X
(see Definition 14.6.7) there is a small category D’ of functorial fibrant
approximations on X such that D C D’ and BD' is contractible.

PrRoOF. This follows from Theorem 14.5.4 and Proposition 8.1.17. O

THEOREM 14.6.9. Let M be a model category and let X be a subcategory of
M.
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(1) If (X; 1) and (3(” 1') are functorial cofibrant approximations on X, then
there is an essentially unique zig-zag o of weak equivalences of functorial
coﬁbrant approximations on X from (X, i) to (X’ 7).

2) If( ,j) and (X’ j') are functorial fibrant approximations on X, then
there is an essentially unique zig-zag of weak k equivalences of functorial
fibrant approximations on X from (X j) to (X’ ).

Proor. This follows from Proposition 14.5.7 and Theorem 14.6.8. 0

14.7. Diagrams of undercategories and overcategories

In this section, for every small category € we define a natural €°P-diagram of
simplicial sets B(— | €)°F that will be used to define the homotopy colimit of a
C-diagram in a model category (see Definition 18.1.2 and Definition 19.1.2) and
a natural C-diagram of simplicial sets B(C | —) that will be used to define the
homotopy limit of a C-diagram in a model category (see Definition 18.1.8 and Defi-
nition 19.1.5). We also derive a relation between them (see Corollary 14.7.13) that
we will use to obtain a relation between the homotopy colimit and the homotopy
limit functors (see Theorem 18.1.10). We will show in Proposition 14.8.5 that these
diagrams are free cell complexes (see Definition 11.5.35).

14.7.1. Diagrams of undercategories.

DEFINITION 14.7.2. If C and D are small categories and F': € — D is a functor,
then for every object a of D we have the category (a | F)°P, the opposite of the
category of objects of € under o (see Definition 11.8.3). If 6: @ — &’ is a map in
D, then ¢ induces a functor o*: (¢’ | F)°P — (a | F)°P, defined on objects by

(¢ HFB) =a IS FL.
If we take the classifying space (see Definition 14.1.1) of each undercategory, we
obtain the D°P-diagram of simplicial sets B(— | F)°? that on the object a of D
takes the value B(a | F)°®. Thus, an n-simplex of B(— | F)®P(a) = B(a | F)°P is a
pair
((:30‘2‘,31 S ‘g:‘——lﬂn):'r: a_’Fﬂn)

where By <% 8, < ... £22L 3, is a string of composable maps in € and 7: a —
¥, is a map in D, with face and degeneracy maps defined as in (14.1.2).

As in Definition 11.8.3, if € = D and F is the identity functor, then we use
B(— | €)°® to denote the diagram of classifying spaces of the opposites of the un-
dercategories, and an n-simplex of B(— | €)*"(a) = B(al€)°" is a commutative
diagram in €

with face and degeneracy maps defined as in (14.1.2).

LEMMA 14.7.3. If € and D are small categories and ¥: € — D is a functor, then
for every object o of C there is a map of simplicial sets F, : B(a | €)°° — B(Fa | F)P
that takes the simplex

((aoﬂ.alq—‘l.,, Tn—~1 an)’T:a—)an)
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of B(a | €)F to the simplex

(o L RN S @), F7: Fa — Fay)
of B(Fa | F).
PROOF. This follows directly from the definitions. ]

LEMMA 14.7.4. If C is a small category and ¢ is an object of €, then B(a | €)°P
is contractible.

PrOOF. This follows from Proposition 14.3.14, since (o | €)°® has the terminal
object 1o: o — a. ]

The C°P-diagram B(— | €)°P will be used to define the homotopy colimit functor
(see Definition 18.1.2 and Definition 19.1.2). Lemma 14.7.4 implies that, in the
model category of C°P-diagrams of simplicial sets (see Theorem 11.6.1), the €°P-
diagram B(- | C)°" is weakly equivalent to the constant diagram at a point. We
will show in Corollary 14.8.8 that B(— | €)°" is also a free cell complex, and so
B(— | €)°? is a cofibrant approximation to the constant diagram at a point (see
Definition 8.1.2). This will imply (in Theorem 19.4.7) that if we use a different
cofibrant approximation to the constant diagram at a point in the definition of the-
homotopy colimit of a diagram; then for objectwise cofibrant diagrams we will get
a functor naturally weakly equivalent to the homotopy colimit functor.

PRrOPOSITION 14.7.5. If € and D are small categories and F: € — D is a func-
tor, then the colimit of the D°P-diagram of classifying spaces of undercategories
colimper B(— | F) is naturally isomorphic to BC.

PROOF. We define a map colimper B(— | F) — BC by taking the simplex (8o —
By — - = Pn,o:a— Ffy) of Bl F) to the simplex 8¢ — 8, — --- — (B, of BC.
This map is onto because the simplex 3y — 0, — - -+ — B, of BC is in the image of
(Bo— By — - — Bn,1rg,: FBo — FBy), and it is one to one because the simplex
(Bo — By — -+ = PBnyo:a — Ffp) of Bla]F) is identified with the simplex
(Bo— By =+ — Bn, 1rp, : FBo — Ffo) of B(FBo L F) in colimB(— | F). 0

REMARK 14.7.6. We will show in Proposition 14.8.5 that the D°P-diagram
B(— 1 F) is also a free cell complex (see Definition 11.5.35). It will then follow
from Proposition 18.9.4 that the natural map hocolim B(— [ F) — colimB(— | F) is
a weak equivalence, and so hocolim B(— | F) is naturally weakly equivalent to BC
(see Proposition 18.9.5).

14.7.7. Diagrams of overcategories.

DEFINITION 14.7.8. If € and D are small categories and F': € — D is a functor,
then for every object o of D we have the category (F | a), the category of objects
of € over a (see Definition 11.8.1). If 0: @ — ¢ is a map in D, then ¢ induces a
functor oy : (F la) — (F | a’), defined on objects by

0 (FBD a)=F3 5 .

If we take the classifying space of each overcategory (see Definition 14.1.1), we
obtain the D-diagram of simplicial sets B(F | —) that on the object a of D takes
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the value B(F | @). Thus, an n-simplex of B(F | —)(a) = B(F | ) is a pair

((Bo 2 1 =5 - 275 BL), 7 Ffn — @)

where 8o 2% 8y 2 ... 274§, is a string of composable maps in € and 1: F3, —

a is a map in D, with face and degeneracy maps defined as in (14.1.2).

As in Definition 14.7.2, if € = D and F is the identity functor, then we use
B(€ ] —) to denote the diagram of overcategories, and an n-simplex of B(C | —)(a) =
B(€ | ) is a commutative diagram in C

o0 41 On—1
a7 y Q) y e —5 Qi

Nl

o
with face and degeneracy maps defined as in (14.1.2).

LEMMA 14.7.9. If C and D are small categories and F: € — D is a functor, then
for every object o of C there is a map of simplicial sets F,: B(€|a) — B(F | Fa)
that takes the simplex

oo o1 On—-1
((ao ) s ), T Qy — a)

of B(a | €Y to the simplex

(o =%y -+ 2224 o,), Fr: Fa, — Fa)

of B(Fa | F).

Proor. This follows directly from the definitions. a

LEMMA 14.7.10. If € is a small category and o is an object of €, then B(C | @)
is contractible.

Proor. This follows from Proposition 14.3.14, since (€ | ) has the terminal
object 1,: & — a. O

The C-diagram B(C | —) will be used to define the homotopy limit functor
(see Definition 18.1.8 and Definition 19.1.5). Lemma 14.7.10 implies that in the
model category of C-diagrams of simplicial sets (see Theorem 11.6.1), the C-diagram
B(€| —) is weakly equivalent to the constant diagram at a point. We will show
in Corollary 14.8.8 that B(€C | —) is also a free cell complex, and so B{C|-) is a
cofibrant approximation to the constant diagram at a point (see Definition 8.1.2).
This will imply (in Theorem 19.4.7) that if we use a different cofibrant approxima-
tion to the constant diagram at a point in the definition of the homotopy limit of
a diagram, then, for objectwise fibrant diagrams, we will get a functor naturally
weakly equivalent to the homotopy limit functor.

14.7.11. Relations.

PROPOSITION 14.7.12. If € is a small category, then the isomorphism (a | €)°P =
(C°P | a) of Corollary 11.8.7 is natural in the object o of C.

Proor. This follows directly from the definitions. O
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COROLLARY 14.7.13. If € is a small category, then there is a natural isomor-
phism of C°P-diagrams of simplicial sets

B(~1€)® ~B(C? | -) .
Proor. This follows from Proposition 14.7.12. O

14.8. Free cell complexes of simplicial sets

In this section, we characterize those diagrams of simplicial sets that are free
cell complexes (see Theorem 14.8.4). Our main application of this will be to the di-
agrams of opposites of undercategories and of overcategories (see Proposition 14.8.5
and Corollary 14.8.8), which will be used to define the homotopy colimit and homo-
topy limit functors (see Definition 18.1.2, Definition 18.1.8, Definition 19.1.2, and
Definition 19.1.5).

PROPOSITION 14.8.1. If € is a small category and X is a C-diagram of simplicial
sets, then X is a free cell complex if and only if there is a sequence S = {SO, s,
S2,...} of @dsc_diagrams of sets (where C4i5¢ js the discrete category with objects
equal to the objects of C) such that

(1) for n > 0 and « an object of C, the set ST, is a subset of the set of
n-simplices of X 4,

(2) for 0 < i < n and o an object of C, we have s,(S2) C Sat! (ie, S is
closed under degeneracies), and

(3) for n > 0 the natural map F(S™) — X, (see Theorem 11.5.20) is an
isomorphism of C-diagrams of sets (where X, is the C-diagram of n-
simplices of X, at every object a of €).

PROOF. We first assume that there is a sequence {S°, S, §% ...} of @disc.
diagrams of sets satisfying conditions 1 through 3, and we will show that the n-
skeleton X™ of X can be obtained from the (n — 1)-skeleton X™™! of X as a
pushout of a coproduct of free cells. Proposition 10.2.14 will then imply that X is
a free cell complex.

We begin by noting that X° = A[0] ® F(S®) (see Definition 11.5.19 and Def-
inition 11.5.24). We now assume that n is a positive integer. If a is an object of
e, let 87 C S7 be the subset of nondegenerate simplices. If o € g’;, then all faces
of o are contained in X2 ™', and 50 ¢ defines a map do: dA[n] — X!, Proposi-
tion 11.5.26 implies that this defines a map of C-diagrams 8o @ FS: A[n| @ FS —
X™! and we can take the coproduct of these to obtain

[[ too¥Fs: ]| oAR @ FS =0AR @FE, — X" .

€Sy €51
If we combine these for all objects a of €, we obtain the map

[I daln®Fg, =0AR @ F(S™) — X
2€0b(€) ¢
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(see Definition 11.5.19), and condition (3) implies that the square

dA[n] @ F(§") — x-?

l

Aln] @ F(§") —— X"

is a pushout, which completes the first direction of the proof.
We now assume that X is a free cell complex. If v is an ordinal and

X, - Xo—- - Xg— - (B<y)

is a presentation of X as a transfinite composition of pushouts of free cells, then
for every B <+ there is an integer n > 0, an object ag of €, and a pushout diagram

OA[n| @ FS® —— X

L]

Al @ FY —— Xpy1 -

For every object a of C let S, be the union over all § for which ag = « of the images
in X of 6, ® 14, and its degeneracies (where d,, is the nondegenerate n-simplex of
Aln] and we mean the image under the composition é, ® 1, C An] ® Fi*(ag) —
(X g+1)a). Let ST be the set of n-simplices in S,. Since for every 0 < # < v the
diagram X is enlarged by adding the free diagram of simplices generated by the
images of §, ®1,, and its degeneracies, it follows that the sets S™ satisfy conditions
(1) through (3). O

DEFmNITION 14.8.2. If € is a small category and X is a C-diagram of simplicial
sets that is a free cell complex, then a sequence {S° §*, 82,...} as in Proposi-
tion 14.8.1 will be called a basis for X, and an element of an S, will be called
a generator of the free cell complex X. We will use S to denote the sequence
{50,51,52, ...}, We will let E'Z C 8% be the subset of nondegenerate simplices,
and we will call an element of an 3’2 a nondegenerate generator of X. An element
of an S — g”; will be called a degenerate generator.

REMARK 14.8.3. The reader should note the similarity between the free cell
complezes among diagrams of simplicial sets and the free simplicial groups among
simplicial groups (see, e.g., [46, Section 5]). Since a C-diagram of simplicial sets
is equivalently a simplicial object in the category of C-diagrams of sets, we are
comparing the definitions of free simplicial groups and free simplicial C-diagrams of
sets. This similarity can be made more precise by noting that a group is an algebra
over the “underlying set of the free group” triple on the category of sets (see,
e.g., 3, page 339] or [48, pages 176-177]), while a C-diagram of sets is an algebra
over the “underlying C45°-diagram of sets on the free C-diagram of sets” triple on
the category of C45c_diagrams of sets. The sequence S in Proposition 14.8.1 is
the analogue for C-diagrams of simplicial sets of a basis of a free simplicial group
(see Definition 14.8.2). Free cell complexes are also free objects in the category of
simplicial C-diagrams of sets in the sense of [45, Definition 5.1].



14.8. FREE CELL COMPLEXES OF SIMPLICIAL SETS 273

THEOREM 14.8.4. Let C be a small category and let X be a C-diagram of
simplicial sets. If § = {8°, 8!, 8%,...} is a sequence of C4s°.diagrams of sets, then
X is a free cell complex with basis S (see Definition 14.8.2) if and only if:

(1) for n > 0 and « an object of €, the set ST, is a subset of the set of
n-simplices of X,

(2) for 0 < i < n and & an object of €, we have s,(S%) C Si*! (ie, S is
closed under degeneracies), and

(3) ifn >0, B is an object of €, and T is an n-simplex of X g, then there exist
an object a of €, an element o of S%., and a map v: a — 3 in € such that
X (o) =7, and such a triple (a,0,v) is unique.

Proor. This follows directly from Proposition 14.8.1 and Definition 11.5.19.
a

ProOPOSITION 14.8.5. Let C and D be small categories and let F¥: € — D be a
functor.
(1) The D°P-diagram of simplicial sets B(— | F)°P (see Definition 14.7.2) is
a free cell complex with a basis (see Definition 14.8.2) consisting of the
simplices of the form

(14.8.6) ((Bo = By < - &2 B,), 1pp, : FBn — FBa)

(see Definition 14.7.2).
(2) The D°P-diagram of simplicial sets B(— | F) is a free cell complex with a
basis consisting of the simplices of the form

((Bo =% By = - =25 Bo), gg, : FBn — Fhn)
(3) The D-diagram of simplicial sets B(F | —) (see Definition 14.7.8) is a free
cell complex with a basis consisting of the simplices of the form
(14.8.7) ((Bo 2% B 2% - 225 B,), 1pp, : FBn — Ffn)
(see Definition 14.7.8).
PROOF. We will prove part 1; the proof of the other parts are similar.
For every object o of D and every n > 0, let ST, be the set of n-simplices of the
form (14.8.6) for which Ff3, = «; the result now follows from Theorem 14.8.4. O
COROLLARY 14.8.8. If C is a small category, then

o the C°P-diagram of simplicial sets B(— | €)°° (see Definition 14.7.2) and
e the C-diagram of simplicial sets B(C | —) (see Definition 14.7.8)

are both free cell complexes.
PRroor. This follows from Proposition 14.8.5. a

PROPOSITION 14.8.9. Let € be a small category.

(1) The €°P-diagram of simplicial sets B(— | €) (see Definition 14.7.2) is a
cofibrant approximation (see Theorem 11.6.1) to the constant C°P-diagram
at a point.

(2) The C-diagram of simplicial sets B(C | ) (see Definition 14.7.8) is a cofi-
brant approximation (see Theorem 11.6.1) to the constant diagram at a
point.
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Proor. This follows from Corollary 14.8.8, Proposition 11.6.2, Lemma 14.7.4,
and Lemma 14.7.9. O

COROLLARY 14.8.10. Let € and D be small categories and let F: € — D be a

functor.

(1) (a) There is a basis for the free cell complex B(— | F)°? in SSP% con-

(14.8.11)

(2)

(14.8.13)

(14.8.14)

(a)

(b)

sisting of the simplices of the form

((Bo <2 By = - 22 3.), 1gg, : FfBn — Ffn)

(where (8o <% By <~ - dials B) is a string of n composable maps

in €). The simplex of (14.8.11) is a nondegenerate generator when
none of the maps oy, 01, ..., On—) is an identity map.

There is a basis for the free cell complex B(— | €)% in S consist-
ing of the simplices of the form

((Bo €% By -+ 2L B), 15,2 P — Bn)

(where (B &2 By - - i Bn) is a string of n composable maps
in €). The simplex of (14.8.12) is a nondegenerate generator when
none of the maps gy, 01, ..., On— is an identity map.

The maps of simplicial sets ¥. of Lemma 14.7.3 induce a natural
one to one correspondence ¥, from the set of simplices in the basis
of B(— 1 F)°® to the set of simplices in the basis of B(— | €)°® that
takes the simplex of (14.8.11) to the simplex of (14.8.12). This
one to one correspondence restricts to a one to one correspondence
between the sets of nondegenerate generators. Furthermore, if « is
the simplex of (14.8.11) and ¢ < n, then d;F.(y) = F.di(v), and if v
is a nondegenerate generator then there is a nondegenerate (n — 1)-
dimensional generator n such that d,(v) = o5_;(n) and F.d.(y) =
(Fan—l)*(Fm(n)) =dnF.(7)

There is a basis for the free cell complex B(F | —) in SS® consisting
of the simplices of the form

((Bo 2 By 2 - 2225 B,), 1pg, : FB, — Ffr)

(where (Bp =% B 22+ --- 2221, 8,,) is a string of n composable maps
in €). The simplex of (14.8.13) is a nondegenerate generator when
none of the maps oy, 0y, ..., On—) is an identity map.

There is a basis for the free cell complex B(€ | —) in SS€ consisting
of the simplices of the form

((Bo =% B 2 - 225 B), 16, B — Bn)

(where (Bp 2% By 2 - .- 221, 8. is a string of n. composable maps

in €). The simplex of (14.8.14) Is a nondegenerate generator when
none of the maps og, 0y, ..., On_1 is an identity map.

The maps of simplicial sets ¥, of Lemma 14.7.9 induce a natural
one to one correspondence F, from the set of simplices in the ba-
sis of B(F | =) to the set of simplices in the basis of B(C | —) that
takes the simplex of (14.8.13) to the simplex of (14.8.14). This
one to one correspondence restricts to a one to one correspondence
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between the sets of nondegenerate generators. Furthermore, if
is the simplex of (14.8.13) and i < n, then d;F.(y) = F.di(y),
and if vy is a nondegenerate generator then there is a nondegener-
ate (n — 1)-dimensional generator 1 such that d,(y) = (0n-1)«(n)
and F,dn(7) = (Fon_1)« (F*(ﬂ)) =dnF.(7)

Proor. This follows from Proposition 14.8.5 and Example 14.1.8. a

ProOPOSITION 14.8.15. Let C be a small category, let X be a C-diagram of
simplicial sets that is a free cell complex with basis {S°,§',8% ...} (see Defini-
tion 14.8.2), and for every n > 0 let X™ be the C-diagram of n-skeletons of X (i.e.,
let X7, be the n-skeleton of X, for every object o of €). If Y is a C-diagram of
simplicial sets and g: X™ — Y is a map of C-diagrams, then extensions of g to the
(n+1)-skeleton of X correspond to maps of C¥°-diagrams h: S™*' — Y., such
that d;ho = gad, for every object o of € and every 0 < i < n + 1.

PRrOOF. This follows from Theorem 14.8.4. a

PRropPosITION 14.8.16. Let € be a small category.

(1) If X is a C-diagram of unpointed simplicial sets that is a free cell complex,
then X*: @ — SS, (defined by X} = (X )% for every object a of €) is
a free cell complex of pointed simplicial sets.

(2) If X is a C-diagram of (pointed or unpointed) simplicial sets that is a free
cell complex, then IX|: € — Top(,y (defined by |X|a = |Xa|) is a free
cell complex of (pointed or unpointed) topological spaces.

PRroOF. This follows from the definition of free cell complex and the facts that
if
(14.8.17) OANRF: —— Xp
A®F —— Xp1
is a pushout of €-diagrams of (pointed or unpointed) simplicial sets, then
A® (FO)Yt — X ;
AQFHY — X;+1

is a pushout of C-diagrams of pointed simplicial sets, and if Diagram 14.8.17 is a
pushout of C-diagrams of unpointed simplicial sets, then

|3A| ®Ff — |XB|

Al FZ — | Xp|

is a pushout of C-diagrams of (pointed or unpointed) topological spaces. O






CHAPTER 15

The Reedy Model Category Structure

The model category structures on a category of simplicial objects in a model
category and a category of cosimplicial objects in a model category of [14, Chap-
ter X], [57, Section 1], [13, Theorem B.6], and [34, Section 2.4} have a common
generalization: the Reedy model category structure on a category of diagrams
in a model category indexed by a Reedy category. A Reedy category (see Defini-
tion 15.1.2) is D. M. Kan's generalization of both the indexing category for simplicial
objects and the indexing category for cosimplicial objects {see Definition 15.1.8).
The Reedy model category structure will be defined for diagrams in a model cat-
egory indexed by a Reedy category (see Definition 15.3.3). The main examples of
Reedy categories are the cosimplicial and simplicial indexing categories (see Defi-
nition 15.1.8) and, more generally, the category of simplices of a simplicial set (see
Definition 15.1.16) and its opposite.

If € is a Reedy category and M is a cofibrantly generated model category,
then we have already defined a model category structure on M€, the category
of C-diagrams in M (see Theorem 11.6.1). The Reedy model category structure
on M® has the same weak equivalences as that model category structure but has
more cofibrations (see Proposition 15.6.3 and Corollary 15.9.11) and, thus, fewer
fibrations (see Proposition 7.2.3).

Most of the definitions and results of this chapter are due to D. M. Kan.

In Section 15.1 we define Reedy categories and describe the main examples.
In Section 15.2 we describe how to construct a diagram indexed by a Reedy cat-
egory inductively over the filtrations of the Reedy category. This leads us to the
definition of the latching and matching categories of a Reedy category (see Def-
inition 15.2.3) and the latching and matching objects of a diagram indexed by a
Reedy category (see Definition 15.2.5). We also show how maps between diagrams
indexed by a Reedy category are naturally analyzed inductively over the filtrations
(see Section 15.2.11).

In Section 15.3 we define the Reedy model category structure and prove that
it is a model category. In Section 15.4 we show that if F: M &2 N :U is a Quillen
pair and € is a Reedy category, then the induced functors F€: M€ & N : U€ form
a Quillen pair and that F€ and U are Quillen equivalences if F and U are Quillen
equivalences. In Section 15.5 we discuss diagrams indexed by a product of Reedy
categories, and show that the various possible model category structures are the
same. In Section 15.6 we discuss diagramns in a cofibrantly generated model category
indexed by a Reedy category, and we show that the two possible model category
structures are different, although they are Quillen equivalent. We also show that
the Reedy model category structure is also cofibrantly generated. In Section 15.7
we show that the model category of diagrams in a cellular model category indexed
by a Reedy category is a cellular model category.

277
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We discuss the model category of bisimplicial sets (i.e., simplicial simplicial sets)
in Section 15.8 and the model category of cosimplicial simplicial sets in Section 15.9.
In Section 15.10 we discuss Reedy categories with fibrant constants, which are Reedy
categories for which an objectwise weak equivalence of cofibrant diagrams induces
a weak equivalence of their colimits, and Reedy categories with cofibrant constants,
which have the dual property. We will show in Theorem 19.9.1 that if € is a Reedy
category with fibrant constants and X is a cofibrant C-diagram in a model category,
then the homotopy colimit of X is naturally weakly equivalent to the colimit of X
(with a dual statement for Reedy categories with cofibrant constants).

In Section 15.11 we discuss bisimplicial sets. We define the realization of a
bisimplicial set and show that it is isomorphic to the diagonal, and we show that a
levelwise weak equivalence of bisimplicial sets induces a weak equivalence of their
realizations.

15.1. Reedy categories
15.1.1. Reedy categories.

DEeFINITION 15.1.2. A Reedy Category is a small category € together with two
subcategories € (the direct subcategory) and 3 (the inverse subcategory), both
of which contain all the objects of C, in which every object can be assigned a
nonnegative integer (called its degree) such that

(1) Every non-identity morphism of € raises degree.

(2) Every non-identity morphism of € lowers degree.

(3) Every morphism g in € has a unique factorization g = § ‘g where 7 is
in € and ?isin‘@.

REMARK 15.1.3. According to Definition 15.1.2, a Reedy category consists of
a category and two subcategories, subject to certain conditions. The function that

assigns to each object its degree is not a part of the structure, but we will often
implicitly assume that a degree function has been chosen.

REMARK 15.1.4. It is possible to use a more general definition of a Reedy
category in which the degree function takes values that are ordinal, rather than
just positive integers. All of the results of this chapter would go through, although
some arguments would have to be rephrased slightly to be correct for limit ordinals.

ProrosiTION 15.1.5. If C is a Reedy category, then C°P is a Reedy category in
— — — —
which C°P = ( € )°P and €°P = (C)°P,
PROOF. A degree function for € will serve as a degree function for C°P. |

PROPOSITION 15.1. 6 I[(‘,’ and D are Reedy categones then € x D is a Reedy
i ikl
category with C x D = €xDandExD=1¢ xD.

Proor. If we have chosen degree functions for € and D, we define a degree
function for € x D by deg(X x Y) = deg X + deg Y. The existence and uniqueness
of the required factorization of maps in € x D follows from that of €and D. O

15.1.7. Examples: The simplicial and cosimplicial indexing categories.

DEFINITION 15.1.8 (The cosimplicial and simplicial indexing categories). If n is
a nonnegative integer, we let [n] denote the ordered set (0,1,2,...,n). The category
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A is the category with objects the [n] for n > 0 and with morphisms A([n], [k])
the weakly monotone functions {n] — [k], i.e., the functions o : [n] — [k] such that
g(i)<a(f)for0<i<j<m.

(1) The cosimplicial indezing category is the category A.

(2) The simplicial indezing category is the category A°P.

REMARK 15.1.9. The cosimplicial indexing category A (see Definition 15.1.8)
is a skeletal subcategory of the category whose objects are the finite ordered sets
and whose morphisms are the weakly monotone maps.

DEerFINITION 15.1.10. Let M be a category.

(1) A simplicial object in M is a functor AP — M.
(2) A cosimplicial object in M is a functor A — M.

NoTATION 15.1.11. Let M be a category.

(1) If X is a simplicial object in M, we will usually denote the object X
by X,..

(2) If X is a cosimplicial object in M, we will usually denote the object X
by X™.

ExAMPLE 15.1.12. The cosimplicial indexing category A (see Definition 15.1.8)
is a Reedy category in which the object [r] has degree n, the direct subcategory
consists of the injective maps, and the inverse subcategory consists of the surjective
maps.

ExAMPLE 15.1.13. The simplicial indexing category A°P (see Definition 15.1.8)
is a Reedy category in which the object [n] has degree n, the direct subcategory
consists of the opposites of the surjective maps, and the inverse subcategory consists
of the opposites of the injective maps (see Proposition 15.1.5).

15.1.14. Example: The category of simplices of a simplicial set. If X
is a simplicial set, we will define a category AX whose objects are the simplices
of X and whose morphisms from the simplex o to the simplex T are the simplicial
operators that take 7 to o (see Definition 15.1.16). Note the reversal of direction:
If d;7 = o, then d; corresponds to a morphism that takes o to 7. This is because
a simplicial set is a functor A°? — Set, while AX is defined as an overcategory
using a covariant functor A — SS. A diagram indexed by AX is a sort of gener-
alized cosimplicial object, and a diagram indexed by A°? X is a sort of generalized
simnplicial object (see Example 15.1.18 and Definition 15.1.10).

DEFINITION 15.1.15. The cosimplicial standard simplez is the cosimplicial sim-
plicial set A: A — SS (see Definition 15.1.10) that takes the object [n] of A to
the standard n-simplex A[n]. The simplicial set A[n] has as k-simplices the weakly
monotone functions [k} — [n], i.e., Aln]x = A([K], [n])-

DEFINITION 15.1.16. Let A be the cosimplicial indexing category (see Defini-
tion 15.1.8), and let A: A — SS be the cosimplicial standard simplex (see Defini-
tion 15.1.15).

(1) If K is a simplicial set, then AK, the category of simplices of K, is defined
to be the overcategory (A | K) (see Definition 11.8.1). Thus, AK is the
category with objects the simplicial maps A[n] — K (for some n > 0)
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and with morphisms from o: Aln} — K to 7: Alk] — K the commutative
triangles of simplicial maps

Aln] ————— Afk]

o T

2) if K is a simplicial set, then A°PK is defined to be (AK)°P, the opposite
( p , PP
of the category of simplices of K.

PrOPOSITION 15.1.17. If K is a simplicial set, then there is a natural isomor-
phism of sets Ob(AK) = [] 5o Kn. If 7 is an n-simplex (for some n > 0), k is
an integer satisfying 0 < k < n, and dxT = 0, then dy corresponds under this
isomorphism to a morphism from x,: Ajn ~ 1] — K to x-: Aln] — K (where the
characteristic map x, of an n-simplex 7 of K is the unique map Afn] — K that
takes the non-degenerate n-simplex of A[n] to T; see Example 11.5.16).

ProOF. This follows from the one to one correspondence between n-simplices
of K and maps of simplicial sets Afn] — K (see Example 11.5.16). 0

ExaMPLE 15.1.18. If K is the one point simplicial set (i.e., K, = x for all
n > 0), then AK is the cosimplicial indexing category A (see Definition 15.1.8).

ExAMPLE 15.1.19. If X is a simplicial set, then the category AX of simplices
of X (see Definition 15.1.16) is a Reedy category in which the degree of an object
is the dimension of the simplex of X to which it corresponds, the direct subcate-
gory consists of the morphisms corresponding to iterated face maps in X, and the
inverse subcategory consists of the morphisms corresponding to iterated degener-
acy maps of X. Note that Example 15.1.12 is a special case of this example (see
Example 15.1.18).

PROPOSITION 15.1.20. If K is a simplicial set and G: AK — SS is the AK-
diagram of simplicial sets that takes the object o: A[n] — K of AK to A[n], then
there is a natural isomorphism colimag G = K.

PROOF. The objects o: A[n] — K.of AK come with natural maps G(o) —
K that commute with the structure maps of G, and so there is a natural map
colimag G — K. Since every n-simaplex o of K defines an object xo: Afn] —» K
of AK for which the image of the natural map G(x,) — K contains o, the map
colimax G — K is surjective.

To show that the map colimax G — K is injective, assume that there are
objects o: Afm] — K and 7: A[n] = K of AK together with a k-simplex 7 of
Alm} and a k-simplex p of Aln] such that the image in K of  under G(o) — K
equals the image in K of 4 under G(r) — K. Example 11.5.16 implies that there
is a commutative square in SS

Alk) =2 Aln)

Afm)l —— K
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which we can regard as a diagram in AK. This diagram in AK implies that the
image of 77 in colima x G equals the image of u in colima ik G, and so the natural
surjection colimpx G — K is a natural isomorphism. a

15.1.21. Filtrations. Most arguments involving diagrams indexed by a Reedy
category are done inductively on the degree of the object in the Reedy category.
We define the filtrations of a Reedy category in order to facilitate such arguments.

DEFINITION 15.1.22. If € is a Reedy category with a degree function (see Re-
mark 15.1.3) and n is a nonnegative integer, the n-filtration FC is the full sub-
category of C whose objects are the objects of € of degree less than or equal to
n.

ExaMpPLE 15.1.23. If € is a Reedy category, then the O-filtration of € is a
category with no non-identity maps.

ExaMpLE 15.1.24. If X is a sirnplicial set and € = AX (see Example 15.1.19),
then the n-filtration F*AX of AX is not the same as A(X"™), the category of
simplices of the n-skeleton of the simplicial set X. This is because F*AX has
no objects of degree greater than n, while A(X™) has among its objects the high
dimensional simplices of X that are degeneracies of simplices of dimension less than
or equal to n.

PROPOSITION 15.1.25. If C is a Reedy category,ien eaf{z of its ﬁItratior}s_F"(‘f
(see Definition 15.1.22) is a Reedy category with F*C = € N (F*C) and F"C =
en (F™@), and € equals the union of the increasing sequence of subcategories
FOCCF€CFC---.

PrROOF. This follows directly from the definitions. a

15.2. Diagrams indexed by a Reedy category

Diagrams indexed by a Reedy category and maps of such diagrams are most
naturally analyzed inductively on the degree of the object. In this section, we
assume that we have a Reedy category with a degree function (see Remark 15.1.3),
and we describe how to define a diagram indexed by the Reedy category by defining
it inductively over the filtrations of the Reedy category (see Definition 15.1.22 and
Proposition 15.1.25). In Remark 15.2.10, we summarize this description in terms
of the latching objects and matching objects of the diagram, which we define in
Definition 15.2.5. In Section 15.2.11, we will describe how to define a map between
two such diagrams. We will use this analysis in Section 15.3 to define a model
category structure on a category of diagrams in a model category indexed by a
Reedy category.

Since the O-filtration of a Reedy category (see Definition 15.1.22) contains no
non-identity maps, we can define a diagram X : FOC — M by choosing an object
X . of M for each object a of € of degree 0.

Suppose that we have a diagram X : F*~1€ — M indexed by the (n — 1)-
filtration of a Reedy category €, and we wish to extend it to a diagram X : F*€C —
M. We begin by choosing an object X, in M for each object o of € of degree
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n. For each object B of F*7'€ and map 8 — « in F"€, we must choose a map
Xg — X, in M. We must do this so that if 8 — S’ is 2 map in F*71C and

is a commutative triangle in F™C, then the triangle in M

X Xp
Xa

commutes. If I": F*~1€¢ — F»€ is the inclusion functor, then this is equiva-
lent to choosing a map colim(in)oy X — Xo (see Definition 11.8.1). (The object
colim(in o) X is the value on a of the left Kan extension of X : F*~1€ — M along
the inclusion F*71€ — F"C (see Remark 8.4.3 and {47, page 232-236]).) We will
show in Proposition 15.2.8 that this colimit is actually independent of the choice
of degree function (see Remark 15.1.3).

Similarly, for each object v of F*1€ and map @ — v in F™€, we must choose
amap X, — X, such that if ¥ — 4/ is a map in F*"1€ and

is a commutative triangle in F™@, then the triangle in M

Xa
X, — Xy
commutes. This is equivalent to choosing a map X, — lime my X (see Defini-
tion 11.8.3). (The object lim(a iny X is the value on @ of the right Kan extension
of X: F"~1€ — M along the inclusion F**€ — F"C (see Remark 8.4.3 and [47,
page 232-236]).) We will show in Proposition 15.2.8 that this limit is actually
independent of the choice of degree function.
The maps colim(n)qa) X — X, and X, — lime)y) X cannot be totally
arbitrary. If 8 — v is a map in F*71€ and
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is a commutative triangle in F"C, then the triangle in M

Xa
Xg—m—v X,
must commute. This is equivalent to requiring that the composition
colimX — X, — lim X
(I*la) (all?)
be a factorization of the natural map
colimX — lim X .
(I la) (al¥?)
We will now show that the definition of a Reedy category implies that this last
condition suffices to construct an extension of X from F*~'C to F"C.

THEOREM 15.2.1. Let C be a Reedy category, let M be a category closed
under limits and colimits, let n be a positive integer, and let X: F*71€ — M
be a diagram. If for every object a of C of degree n we choose an object X,
of M and a factorization colimn o) X — Xo — limemy X of the natural
map colimnjay X — limgmy X, then this uniquely determines an extension
X:F*C — M of the diagram X.

PROOF. The discussion above explains why our choices determine everything
except the maps X, — X, for a map & — o in F*C between objects of de-

gree n. Given such a map, if a % 8 5 o is the factorization described
in Definition 15.1.2; then we must define X, — X, to be the composition
Xo = Xp — Xo. It remains only to show that, if o — o' — o are com-
posable maps in F*€ between objects of degree n, then the triangle

/\

o X ’”
commutes

Let o 2> [3 2, o and o 2 ﬁ' 2, & be the factorization of Definition 15.1.2
applied toa — o’ and o’ — a” respectlvely If the factorization of Definition 15.1.2

applied to %?? a— fisa 2 pr X, B, then we have the commutative
diagram

[63
Vl‘_
k
B B
-
g —
lk
/ W W
o s 8 r o .

. R4 TS e BE
Since hk k = h h'g'g and R K isin G the factorization « —~>ﬁ” — &” must
be the factorization of & — & described in Definition 15.1.2. Thus, it is sufficient to
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show that the composmon Xo Fox B LIS p equals the composition X o EAN

Xp 25 X0 IR X . Since both of the maps X, — Xp and X, — X are
defined as the composition of our map X, — lim(s »y X with a projection from
the limit, the first of these maps equals the composition

Xo— lim X - Xgn —_'Xﬁ’
(a]I™)

while the second equals the composition

Xo— llm)X—aXpL»X/—>Xﬂ/.

The universal property of the limit implies that these are equal. a

15.2.2. Latching objects and matching objects. In this section, we show
that the colimits and limits used in Section 15.2 to construct diagrams indexed by
a Reedy category (which will also be used in Section 15.2.11 to construct maps of
such diagrams) are independent of the choice of degree function (see Remark 15.1.3)
and have a particularly convenient form. These colimits and limits are the latching
objects and matching objects (see Definition 15.2.5). We continue to assume that
we have chosen a degree function for our Reedy category (see Remark 15.1.3).

DEFINITION 15.2.3. Let C be a Reedy category and let o be an object of C.
(1) The latching category 6(-(? l &) of € at « is the full subcategory of (?f la)
containing all the objects except the identity map of a.

(2) The matching category 8(a ] €) of € at « is the full subcategory of (o | %—)
containing all the objects except the identity map of a.

PROPOSITION 15.2.4. Let C be a Reedy category and let a be an object of €.
(1) The opposite of the latching category of € at « is naturally isomorphic to
the matching category of C°P at o (see Proposition 15.1.5).
(2) The opposite of the matching category of € at « is naturally isomorphic
to the latching category of C°P at a.

Proor. This follows from Corollary 11.8.7. a

DerINITION 15.2.5. Let € be a Reedy category, let M be a model category, let
X be a C- dla,gra.m in M, and let @ be an object of C. We use X to denote also the

1nduced o( 54 | @)-diagram (defined on objects by X (3_.o) = X p) and the induced
O(a] G) diagram (defined on objects by X o) = Xp).
(1) The latching object of X at o is Lo X = co]ima(—éla) X and the latching
map of X at o is the natural map L,X — X,. We will sometimes use
LEX to denote L, X when we want to emphasize the indexing category
C.
(2) The matching object of X at o is Mo X = lima(c‘1 ) X and the matching
map of X at o is the natural map X, — M,X. We will sometimes use

MEX to denote M, X when we want to emphasize the indexing category
C.
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Matching objects were first defined for cosimplicial simplicial sets, in (14,
page 274], where they were called matching spaces. The following proposition shows
that the definition used there agrees with Definition 15.2.5.

ProbosiTION 15.2.6. Let M be a model category.

(1) If X is a simplicial object in M (see Definition 15.1.10) and n > 2, then
the latching object of X at [n] is the colimit of the diagram obtained by

—

restricting X (see Definition 15.2.5) to the full subcategory of 3(A°P | [n])
(see Definition 15.1.10) with objects the maps [k} — [n] withk =n—1 or
k=n-—-2.

(2) If X is a cosimplicial object in M and n > 2, then the matching object of
X at [n] is the limit of the diagram obtained by restricting X to the full

—

subcategory of 3([n] | A) with objects the maps [n] — [k] withk=n—1
ork=n-—2.

PROOF. We will prove part 1; the proof of part 2 is dual.

—
Let D denote the full subcategory of (AP | [n]) with objects the maps [k] —
—
[n] with k =n— 1 or k =n — 2; we will show that the inclusion D — 8(AP | [n])
is right cofinal (see Theorem 14.2.5).

If k=n—1or k =n— 2 then the identity map of [k] is an initial object of
([£] L D), and so B(|k] | D) is connected. If k < n — 2, then there are morphisms
from the object 8;, 8i, '+~ $i,,_,_, : [kl = [n — 1] to each of the objects

8084y 84y " Sip k- [k] - [n]’
183,845 " Sinpy [K] = [n],..., and
Sn—1843 84y " Syt [k] - [n]1
and so it is sufficient to show that the object 8;,si,---8;,_,_, is connected to the
object (o)™ *: [k] — [n]. Since 8;,8i, - 8:,_,_, is connected to

80(81,84, """ Sip_y_y) = Siy 41841 " " Sin_s_,+150
which is connected to
8084341 """ 8ipn_14+150 = Sip428iz+2° " Sin_p_r+2(%0)

which is connected to ...which is connected to

k=2 —k—
808in_pr4n—k—2(55 " 7) = Sin_p_y4n—k-1(50)" "
which is connected to (so)® ¥, the proof is complete. O

DEerInITION 15.2.7. If C is a Reedy category and « is an object of € of degree
n, then

(1) 8(a |l F™C) is the full subcategory of (a 1 Fre ) with objects the maps a

Ié] for which there is a factorization a 2- v 2~ 8 with g € C’ T e C
and ‘7 g # 14, and

(2) O(F™C | a) is the full subcategory of (F"Gl a) with objects the maps g3
a for Wh.lch there is a factorization 8 2 ~ LI with g € G g€ G

T # la.
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The objects colimn o) X and lim(s sy X (where I": F*~1€ — F™C is the
inclusion functor and X is a diagram defined on F*~!€) were used in Section 15.2 to
construct diagrams indexed by a Reedy category. The objects colima(pngqy X and
limg (o rne) X (where X is a diagram defined on F*€) will be used in Section 15.2.11
to analyze maps between such diagrams. Corollary 15.2.9 shows that all of these
colimits are latching objects of X and all of these limits are matching objects of
X.

PrOPOSITION 15.2.8. Let C be a Reedy category, let a be an object of € of
degree n, and let I : F*~1€ — F™C be the inclusion functor.

(1) The latching category 3(_6? 1 @) is a right cofinal subcategory (see Defini-
tion 19.6.1) of both (I" | a) and 8(F™C | o) (see Definition 15.2.7).
—
(2) The matching category 8(a ] C) is a left cofinal subcategory of both
(a ]I™) and 8(a | F"C) (see Definition 15.2.7).
PROOF. W_e) will prove part 1; the proof of part 2 is dual.
Let J™: 8( € la) — (I" | a) be the inclusion functor. If g B8 — a is an obJect
of (I" | @), then we can factor it as § 2+ g’ I, o where G € © and g € €. This
gives us the object

p—7T g

N5

of ((B— «) ] J*); we will show that there is a map from this object to every other
obJect of ((8 — «a)|J™), which will imply that ((8 — a)]J") is nonempty and
connected (see Definition 14.2.1).

Any object of ((8 — &) | J*) is of the form 3 LR 'y K awherek € € , % # 1o
—_ —~—
and the composition k h equals our map 8 — a. If we factor h as h = hh, then
the uniqueness of the factorization in Definition 15.1.2 1mp11es that h = g and

*h = g, ie., Iy 1samapfromﬁ—->ﬂ’:->atoﬂ~—>'y—k->a
The proof that 8( 54 } @) is right cofinal in 8(F™C | a) is identical to this. O

COROLLARY 15.2.9. Let C be a Reedy category, let M be a model category, let o
be an object of C of degree n, and let X be a C-diagram in M. IfI*: F*~1€ — F"C
is the inclusion functor, then there are natural isomorphisms

coimX ~ L. X~ colim X and lim X~M,X= lim
(I"la) 3(FCla) (alIn) 8(alFne)

(see Definition 15.2.7).
Proo¥r. This follows from Proposition 15.2.8 and Theorem 14.2.5. d

REMARK 15.2.10. In light of Definition 15.2.5 and Corollary 15.2.9, the discus-
sion in Section 15.2 can be summarized as follows: If € is a Reedy category, M is a
model category, X: F*~1€ — M is a diagram indexed by the (n — 1)-filtration of
G, and « is an object of € of degree n, then there is a natural map Lo X — MaX
from the latching object of X at « to the matching object of X at a. Extending
X to a diagram F*€ — M is equivalent to choosing, for every object a of degree n,
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an object X, and a factorization Lo X — X, — M,X of that natural map, and
this can be done independently for each of the objects of degree n.

15.2.11. Maps between diagrams. Maps between diagrams indexed by a
Reedy category are most naturally defined inductively over the filtrations of the
Reedy category (see Definition 15.1.22). We assume that we have chosen a degree
function for our Reedy category (see Remark 15.1.3).

Let € be a Reedy category, let M be a model category, and let X and Y be
C-diagrams in M. Since the 0-filtration (see Definition 15.1.22) of a Reedy category
contains no non-identity maps, amap f: X|poe — Y |poe is determined by choosing
amap X, — Y, for every object a of degree 0.

Suppose that f: X|pa-1¢ — Y |pn-1¢ is a map of the restrictions of the dia-
grams to the (n — 1)-filtration of €. For every object a of € of degree n we have
the solid arrow diagram

coimX — X, —— lim X
(i la) (alI™)

|

colimY —Y,—— lim Y
(I la) (e)I™)

(where I": F*~1€ — F"@ is the inclusion functor) and Corollary 15.2.9 implies that
this diagram is isomorphic to the diagram

colim X — X, —— lim
B(FnCla) . 3(alF~E€)

colim Y — };a —  lim

A(F"Cla) 8(alF~e)

Thus, extensions of f to the n-filtration of € correspond to a choice, for every object
a of degree n, of a dotted arrow that makes both squares commute. Corollary 15.2.9
implies that this diagram is also isomorphic to the diagram

L. X — X,—MX

Lo

LY —Y,— MY .
Thus, if A, B, X, and Y are C-diagrams in M and we have a diagram
(15.2.12) A— X
"]
B—Y

in which the dotted arrow k is defined only on the restriction of B to the (n — 1)-
filtration of €, then for every object a of € of degree n we have an induced solid
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arrow diagram

Aa I-'[LQA Lo B —!{ Xa

[

B, — Y4 xm, vy Mo X

and there is a map B, — X, for every object a of degree n that makes both
triangles commute if and only if h can be extended over the restriction of B to the
n-filtration of € so that both triangles in Diagram 15.2.12 commute. This is the
motivation for the definitions of the relative latching map and relative matching map
(see Definition 15.3.2) and their appearance in the definitions of Reedy cofibration
and Reedy fibration (see Definition 15.3.3).

15.3. The Reedy model category structure

If € is a Reedy category and M is a model category, we will define a model
category structure on M€, the category of C-diagrams in M, called the Reedy model
category structure. If M is a simplicial model category, then we will show that
the simplicial structure of Definition 11.7.1 and Definition 11.7.2 makes the Reedy
model category structure on M€ a simplicial model category.

If M is a cofibrantly generated model category, then the Reedy model category
structure will have the same weak equivalences as the model category structure
of Theorem 11.6.1, but it will have a larger class of cofibrations (see Proposi-
tion 15.6.3). Thus, free cell complexes and their retracts will be cofibrant in the
Reedy model category structure, as will some diagrams that are not retracts of free
cell complexes.

15.3.1. Statement of the theorem.

DEFINITION 15.3.2. Let € be a Reedy category, let M be a model category, let
X and Y be C-diagrams in M, and let f: X — Y be a map of C-diagrams.
(1) If o is an object of C, then the relative latching map of f at o is the map
Xoly,x LaY — Y, (see Definition 15.2.5).
(2) If a is an object of €, then the relative matching map of f at & is the map
Xa — Y, XMoY MQX.

DEFINITION 15.3.3. Let € be a Reedy category, let M be a model category, and
let X,Y: € — M be C-diagrams in M.

(1) A map of diagrams f: X — Y is a Reedy weak equivalence if, for every
object a of €, the map fo: X4 — Y, is a weak equivalence in M.

(2) A map of diagrams f: X — Y is a Reedy cofibration if, for every object
a of @€, the relative latching map (see Definition 15.3.2)

Xol x LY =Y,

is a cofibration in M.
(3) A map of diagrams f: X — Y is a Reedy fibration if, for every object
of €, the relative matching map (see Definition 15.3.2)

Xo— Yo,y Mo X

is a fibration in M.
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THEOREM 15.3.4 (D. M. Kan). Let € be a Reedy category and let M be a
model category.

(1) The category M® of C-diagrams in M with the Reedy weak equivalences,
Reedy cofibrations, and Reedy fibrations (see Definition 15.3.3) is a model
category.

(2) If M is a left proper, right proper, or proper model category (see Defini-
tion 13.1.1), then the model category of part 1 is, respectively, left proper,
right proper, or proper.

(3) If M is a simplicial model category (see Definition 9.1.6), then the model
category of part 1 with the simplicial structure defined in Definition 11.7.1
and Definition 11.7.2 is a simplicial model category.

The proof of Theorem 15.3.4 is in Section 15.3.16.

EXAMPLE 15.3.5. If M is a model category, then the category M2 of simplicial
objects in M has a mode] category structure from the Reedy category structure of
A°P (see Definition 15.1.10 and Proposition 15.1.5).

EXAMPLE 15.3.6. If M is a model category, then the category M of cosirapli-
cial objects in M has a model category structure from the Reedy category structure
of A.

LeEMMA 15.3.7. Let C be a Reedy category, let M be a model category, and let
X be a C-diagram in M.
(1) If X is Reedy cofibrant then for every object a of C the restriction of X
to 3(?3) L a) (see Definition 15.2.3) is Reedy cofibrant.
(2) If X is Reedy fibrant then for every object o of C the restriction of X to
G ‘E) (see Definition 15.2.3) is Reedy fibrant.

Proor. We will prove pa.rt_}; the proof of part 2 is similar.
If 3 — o is an object of (€ | &), then the latching category of 8 in C equals

the latching category of 3 in 6(6 l @), and so the latching map of the restriction
of X at 8 — a equals the latching map of X at 3. a

15.3.8. Trivial cofibrations and trivial fibrations. In order to prove The-
orem 15.3.4, we need to identify those maps of diagrams that are both Reedy
cofibrations and Reedy weak equivalences and those maps that are both Reedy
fibrations and Reedy weak equivalences. In this section, we will show that f is
both a Reedy cofibration and a Reedy weak equivalence if and only if each of the
maps X, I, x LaY — Y, is a trivial cofibration in M, and that f is both a
Reedy fibration and a Reedy weak equivalence if and only if each of the maps
Xa = Yo XM,y Mo X is a trivial fibration in M (see Theorem 15.3.15). We will
use this theorem in Section 15.3.16 to prove Theorem 15.3.4.

LemMMa 15.3.9. Let C be a Reedy category, let M be a model category, let
f: X — Y be a map of C-diagrams in M, let o be an object of C, and let S be a
class of maps in M.

(1) If for every object 8 of € whose degree is less than that of o the relative
latching map

XﬁHLBxLﬁY—’Yﬁ
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has the left lifting property (see Definition 7.2.1) with respect to every
element of S, then the induced map of latching objects Lo X — L,Y has
the left lifting property with respect to every element of S.

(2) If for every object 3 of C whose degree is less than that of a the relative
matching map

.Xg - Yg XMgY Mg.X

has the right lifting property (see Definition 7.2.1) with respect to every
element of S, then the induced map of matching objects M, X — M,Y
has the right lifting property with respect to every element of S.

Proor. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for € (see Remark 15.1.3).

There is a filtration of the category 0(@ l @) in which F"c’?(_@' l @) is the full
subcategory of 0(6 | @) whose objects are the maps § — « in C such that the
degree of (3 is less than or equal to k. Thus, FOE)(E' | @) has no non-identity maps,
and Fdeg(°)‘13(81a) = a(Ela). If E — B is an element of S and we have the
solid arrow diagram

Lo X —F
[
L,Y—B
then we will define the map h by defining it inductively over WIikaa(Ela) Y.

For objects 8 — « of (_6 | @) such that 8 is of degree zero, the latching objects
LgX and LgY are the initial object of M, and so the map X g — Y g equals the
relative latching map X g Iy, x LgY — Y'g, which we have assumed has the left
lifting property with respect to E — B. Thus, there exists a dotted arrow h that
makes both triangles commute in the diagram

.Xg———)E
4

| ]
Yﬂ .—) B
Since Foc?(_é’ | @) has no non-identity maps, this defines h on F°3(_8 la).

For the inductive step, we assume that 0 < k < deg(c) and that the map
. —_
Pr-18(C la) Y. Let 8 — a be an object of 8( € | a) such

that 3 is of degree k. The map [ — « defines a functor 0(6 18) — F"'lc?(_(? 1)
which, defines the map h on LgY'. Thus, we have the commutative diagram

has been defined on colim

Xpgl,x LgY — E
Yg———)B

and the vertical map on the left is assumed to have the left lifting property with
respect to E — B. This implies that the map h can be defined on Y, and the
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discussion in Section 15.2.11 explains why this can be done independently for the
various objects of degree k. This completes the induction, and the proof. 0

LeMmMA 15.3.10. Let C be a Reedy category, let M be a model category, let
f: X =Y be a map of C-diagrams in M, and let S be a class of maps in M.

(1) If for every object c of € the relative latching map
X x LY =Y,

has the left lifting property with respect to every element of S, then for
every object & of C the map f,: X, — Y, has the left lifting property
with respect to every element of S.

(2) If for every object a of C the relative matching map

Xo > Yo xMmy Mo X

has the right lifting property with respect to every element of S, then for
every object a of C the map f,: X, — Y, has the right lifting property
with respect to every element of S.

Proor. We will prove part 1; the proof of part 2 is dual.

The map fo: X4 — Y, equals the composition X, — X xLoY — Y.
Since the first of these maps is the pushout of Lo X — L,Y along L. X — X,
the result follows from Lermnma 15.3.9 and Lemma 7.2.11. a

PROPOSITION 15.3.11. Let C be a Reedy category, let M be a model category,
and let f: X — Y be a map of C-diagrams in M.

(1) If f is a Reedy cofibration, then for every object a of C both the map
fo: Xo — Y, and the induced map of latching objects Lo X — LY are
cofibrations in M.

(2) If f is a Reedy fibration, then for every object a of C both the map
fo: Xo — Y, and the induced map of matching objects M, X — MY
are fibrations in M.

ProoF. This follows from Lemma 15.3.9, Lemma 15.3.10, and Proposition 7.2.3.
]

CoOROLLARY 15.3.12. Let C be a Reedy category, let M be a model category,
and let X be a C-diagram in M.

(1) If X is Reedy cofibrant, then for every object & of € both the object X ,
and the latching object L, X are cofibrant objects of M.

(2) If X is Reedy fibrant, then for every object « of C both the object X,
and the matching object M, X are fibrant objects of M.

Proor. This follows from Proposition 15.3.11. 0

PROPOSITION 15.3.13. Let C be a Reedy category, let M be a model category,
and let f: X — Y be a map of C-diagrams in M.

(1) If for every object a of C the relative latching map X, L, x LY —
Y, is a trivial cofibration, then for every object o of C both the map
fo: X4 — Y, and the induced map of latching objects Lo X — L, Y are
trivial cofibrations.
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(2) If for every object o of € the relative matching map X, — Y o xpm, vy Mg X
is a trivial fibration, then for every object a of C both the map fo: X, —
Y, and the induced map of matching objects M, X — M,Y are trivial
fibrations.

Proor. This follows from Lemma 15.3.9, Lemma 15.3.10, and Proposition 7.2.3.
a

PrOPOSITION 15.3.14. Let € be a Reedy category, let M be a model category,
and let f: X —'Y be a map of C-diagrams in M.

(1) If f is both a Reedy cofibration and a Reedy weak equivalence, then for
every object a of C the map fo: X o — Y, the induced map of latching
objects LoX — L,Y, and the relative latching map X 111, x LY — Y,
are trivial cofibrations.

(2) If f is both a Reedy fibration and a Reedy weak equivalence, then for
every object & of C the map fo: X4 — Y 4, the induced map of matching
objects Mo X — M,Y, and the relative matching map X4 — Y o xM, ¥
M, X are trivial fibrations.

PrROOF. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for € (see Remark 15.1.3).

Proposition 15.3.11 implies that f, is a cofibration for every object o in C.
Since f is a Reedy weak equivalence, this implies that f, is a trivial cofibration for
every object a of C.

We will prove that the maps LoX — L,Y and X, I x LoaY — Y, are
trivial cofibrations for every object a of € by induction on the degree of a. If
L.X — L,Y is a trivial cofibration in M for some particular object & of €, then,
since X4 — X o1, x LaY is a pushout of Lo X — LoY, this map is also a trivial
cofibration. Since the weak equivalence f,: X, — Y, equals the composition
Xa = X, x LY — Y, this implies that the cofibration X, Iy, x Lo Y —
Y, is actually a trivial cofibration.

If o is of degree 0, then L, X and L,Y are both the initial object of M, and
50 Lo X — L,Y is the identity map, which is certainly a trivial cofibration.

‘We now assume that 7 is a positive integer, LgX — LgY is a trivial cofibration
for all objects 3 of degree less than n, and a is an object of degree n. The discussion
above explains why our inductive hypothesis implies that X gy, x LgY — Yz is
a trivial cofibration for all objects @ of degree less than n, and so Lemma 15.3.9
and Proposition 7.2.3 imply that Lo X — L,Y is a trivial cofibration. 0

THEOREM 15.3.15. Let € be a Reedy category, let M be a model category, and
let f: X =Y be a map of C-diagrams in M.

(1) The map f is both a Reedy cofibration and a Reedy weak equivalence if
and only iIf for every object a of C the relative latching map X, Iy,_ x
L.Y — Y, is a trivial cofibration in M.

(2) The map f is both a Reedy fibration and a Reedy weak equivalence if
and only if for every object a of C the relative matching map X, —
Y. XM, v Mo X is a trivial fibration in M.

PROOF. This follows from Proposition 15.3.13 and Proposition 15.3.14. O
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15.3.16. Proof of Theorem 15.3.4. For part 1, we must show that axioms
M1 through M5 of Definition 7.1.3 are satisfied. Axioms M1 and M2 follow from
the fact that limits, colimits, and weak equivalences of diagrams are all defined
objectwise.

Axiom M3 follows from the observation that if the map g: X — Y is a retract
of the map h: W — Z, then for every object a of C the relative latching map
X1l xLoY — Y, is aretract of the relative latching map W, Iy, wl,Z — Z,
and the relative matching map X4 — Y4 xm, ¥y Mo X is a retract of the relative
matching map W, — Z4 xm,z M W.

If we choose a degree function for C (see Remark 15.1.3), then the maps required
by axiom M4 are constructed inductively on the degree of the objects of €, using
Theorem 15.3.15 (see the discussion in Section 15.2.11).

The factorizations required by axiom M5 are also constructed inductively on
the degree of the objects of C. For axiom M5 part 1, if g: X — Y is a map in M€,
then, for every object a of degree zero of €, we have a functorial factorization of go

in Mas X, — Z o LN Y, with 7 a cofibration and h a trivial fibration. If we now
assume that g has been factored on all objects of degree less than n and that o is an
object of degree n, then we have an induced map X oIy, x LaZ — Yo XMy Mo Z.
We can factor this map (functorially) in M as

Xl xLoZ 5 2o 5 Yo sy MaZ

with 7 a cofibration and h a trivial fibration to obtain Z,. This completes the
construction, and Theorem 15.3.15 implies that it has the required properties. The
proof for axiom M5 part 2 is similar, and so M€ is a model category, and the proof
of part 1 is complete.

For part 2, Proposition 15.3.11 implies that a Reedy cofibration is an objectwise
cofibration and a Reedy fibration is an objectwise fibration. Since weak equivalences
are defined objectwise and both pushouts and pullbacks are constructed objectwise,
the conditions of Definition 13.1.1 follow if they hold in M.

For part 3, if M is a simplicial model category, then axiom M6 of Definition 9.1.6
follows because the constructions are all done objectwise and M is a simplicial
model category, and so it remains only to show that axiom M7 follows as well.
Proposition 9.3.7 implies that it is sufficient to show that if i: A — B is a Reedy
cofibration and j: K — L is a cofibration of simplicial sets, then A®Q LU gagx B ®
K — B@® L is a Reedy cofibration that is also a weak equivalence if either ¢ or j is
a weak equivalence. Thus, we raust show that for every object a of € the map

(A® LHA®K B ®K)a HLG(A®LUA®KB®K) LQ(B®L) — (B®L)a

is a cofibration in M that is also a weak equivalence if either i or 7 is a weak
equivalence. Since each latching object is a colimit, Lemma 9.2.1 implies that this
map is isomorphic to the map

(Boa ® K) I, Bu;_ a4y (LaB L, 4 Ax) ® L) = Bo ® L.

Since i: A — B is a Reedy cofibration and M is a simplicial model category, this
map is a cofibration that is a weak equivalence if either 7 or j is a weak equivalence,
and so the proof is complete.
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15.4. Quillen functors

PropPosITION 15.4.1. Let € be a Reedy category and let M and N be model
categories.

(1) fF: M 2 N :U is a Quillen pair (see Definition 8.5.2), then the induced
functors F€: M€ = N€ :U® form a Quillen pair.

(2) If (F,U) is a pair of Quillen equivalences, then so is the induced pair
(F€,U°).

PrROOF. The induced functors F¢ and U® are adjoint (see Lemma 11.6.4),
and so for part 1 it is sufficient to show that F€ preserves both cofibrations and
trivial cofibrations (see Proposition 8.5.3). If f: A — B is a cofibration or a
trivial cofibration in M€, then for every object a of € the relative latching map
LoBlL, a Ay — B, is, respectively, a cofibration or a trivial cofibration in M (see
Theorem 15.3.15). Since the latching objects L, A and L, B are defined as colimits
(see Definition 15.2.5) and left adjoints commute with colimits, the relative latching
map LoFBIly raFA, — FB, isisomorphic to the map F(LoBIl;,_4Aq) — FBg,
and is thus, respectively, a cofibration or a trivial cofibration in N. Thus, F¢ is
a left Quillen functor. Part 2 follows immediately, since weak equivalences in M¢
and N¢ are defined objectwise in C. d

COROLLARY 15.4.2. Let € be a Reedy category, let M and N be model cate-
gories, and let F: M &2 N :U be a Quillen pair.

(1) If B: € — M is a cofibrant C-diagram in M, then ¥FB: C — N is a
cofibrant €-diagram in N.

(2) If X: € - N is a fibrant C-diagram in N, then UX: € — M is a fibrant
C-diagram in M.

PROOF. This follows from Proposition 15.4.1. a

15.5. Products of Reedy categories

In this section, we show that if € and D are Reedy categories and M is a model
category, then the three possible Reedy model category structures on ME*P are
all the same (see Theorem 15.5.2).

LEMMA 15.5.1. Let € and D be Reedy categories, let M be a model category,
and let X be a € x D-diagram in M.

(1) For every object (a,) of C x D (see Proposition 15.1.6) the latching

object L?:;J;)X is naturally isomorphic to the pushout LgX(_,g) HLSL};’X

L2X (o).
(2) For every object (o, ) of € x D the matching object Mf:;X is naturally
isomorphic to the pullback MEX (_ g XMEMP X MP X (4,-)-

PRrOOF. We will prove part 1; the proof of part 2 is similar.

We begin by defining a map LEX(_,g) — L&X?)X. We define an embedding of

6(6 la)in 8(€ x D | (a,B)) by taking the object f: o’ — « of 6(73) La) to(f,1p)
in 8(€ x D] (e, B)). This defines a map LSX (_ 5 — Lf:,ﬁD)X. Similarly, we have

an embedding of ('B(C_Db 1B) in 8(€ x D | (e, B)) that defines a map LG X (q,—) —
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Lfﬂx;))X . We have natural isomorphisms

LILZX = colim (LEX (r—y)
(o’ —a)E0b (€ Ja)
~ colim (0 oolim  X(agy)
(o’ —a)e0bB( € |a) (B'—PB)EObB(DIB)
= colim | o Xy
(@’ —e,f'~B)EOb(B(C La) x8(D14))

and natural maps LSX(_,ﬁ) — LELEX — L?X(ﬂ)_) such that the composition

LELEX — LEX (- ) — LEX5) equals the composition LSLE X — L2 X (4,-) —

Lﬁ:;)). Thus, we have a well defined map LS X (_ 4 Mperpx L X (a,-) — Lfa"’gy)X.
—

The latching object L&",;X is a colimit indexed by pairs (f,g) € Ob(8( € | a)x

6(.5 l,@)) in which at least one of f and g is not an identity map. The pushout
LEX(_)ﬁ) HLg L2 X LEX(G__) is the same coproduct with the indexing category par-
titioned into three subcategories according to whether f # 1, and g = 15, f # 1a
and g # lg, or f = 1, and g # lg, and so our map is an isomorphism. ]

THEOREM 15.5.2. If € and D are Reedy categories and M is a model category,
then the category ME*P of (€ x D)-diagrams in M has the same model category
structure when viewed as either

(1) diagrams in M indexed by the Reedy category (€ x D) (see Proposi-
tion 15.1.6),

(2) the category (MP)C, i.e., diagrams in MP indexed by the Reedy category
G, or

(3) the category (M®)P, i.e., diagrams in M€ indexed by the Reedy category
D.

PROOF. We will prove that the model category structure of 1 equals that of 2;
the proof that the model category structure of 1 equals that of 3 is similar.

Since the weak equivalences of both M®*? and (M?)€ are defined objectwise,
these two model categories have he same weak equivalences. Thus, Proposition 7.2.3
implies that it is sufficient to show that they have the same cofibrations.

A map f: X — Y is a cofibration in (MP)€ if and only if, for every object o
of €, the relative latching map X o I1ex LEY — Y, is a cofibration in MP. This
is the case if and only if, for every object § of D, the relative latching map

(15.5.3) (XoHpex LSY)g LR (X 11, LEY) LYY, - Yoy

is a cofibration in M. Since colimits cornmute, the domain of this map is isomorphic
to

(X(es) Hex, LEYp) H(LZ,’X(,ULELCXLZ,’LEY) L?;Ya )
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which is the colimit of the diagram

X(a.ﬁ) ¢ LgXﬁ > LgYB

[

LY +——LJLSX — LFLIY

L

L3Y, .
This is isomorphic to the pushout

X (@) Tp Xan, p, ¢ x LX) (LYo ey LsYp)
and so Lemma 15.5.1 implies that the map (15.5.3) is isomorphic to the map
X (a,8) HL(E)(;J]X L(ea"[;D)Y — Y (a,8), which is the relative latching map of f at (a, 8)

in ME*®_ Thus, the class of cofibrations of (MP)€ equals that of M®*P. a

15.6. Reedy diagrams in a cofibrantly generated model category

If € is a Reedy category and M is a cofibrantly generated model category (see
Definition 11.1.2), then we have two model category structures on M, the category
of C-diagrams in M: The first is constructed using the cofibrantly generated model
category structure on M (see Theorem 11.6.1), and the second is constructed using
the Reedy category structure on € (see Theorem 15.3.4). Although these two
model category structures have the same class of weak equivalences, they are not,
in general, equal (see Example 15.6.2).

‘We begin by showing (in Section 15.6.1) that although these two model cate-
gory structures are not, in general, equal, they are always Quillen equivalent (see
Theorem 15.6.4). In Section 15.6.22 we will show that the Reedy model category
structure on M€ is nearly always cofibrantly generated (see Theorem 15.6.27).

15.6.1. Two model category structures. We begin with an example that
shows that if M is a cofibrantly generated model category and € is a Reedy cat-
egory, then the two model category structures on M® (see Theorem 11.6.1 and
Theorem 15.3.4) are not, in general, equal. In Theorem 15.6.4 we will show that
these two model category structures are always Quillen equivalent.

ExaMpLE 15.6.2. Let € be A°P, the simplicial indexing category (see Exam-
ple 15.1.13), and let M be the standard model category of simplicial sets. If X
is a simplicial object in M, then X is fibrant in the cofibrantly generated model
category structure on M2” whenever X, is a fibrant simplicial set for all n > 0.
However, for X to be fibrant in the Reedy structure the map X, Goxdr, XoxXg
must be a fibration, which is a strictly stronger requirement. (For example, let Z
be a nontrivial fibrant simplicial set and let X be the constant simplicial object at
Z. The map X, Hoxdy, Xo x X is then the diagonal map Z — Z x Z, which is
not, in general, a fibration.)
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PrOPOSITION 15.6.3. Let C be a Reedy category, let M be a cofibrantly gen-
erated model category (see Definition 11.1.2), and let X and Y be C-diagrams in
M.

(1) If the map f: X — Y is a Reedy fibration (see Definition 15.3.3) then it
is also a fibration in the cofibrantly generated model category structure
on M® (see Theorem 11.6.1).

(2) If themap f: X — Y is a cofibration in the cofibrantly generated model
category structure on M€ then it is a Reedy cofibration.

PROOF. Part 1 follows from Proposition 15.3.11.
Part 2 follows from part 1 and Proposition 7.2.3, since the weak equivalences
are the same in both model category structures. ]

THEOREM 15.6.4. If C is a Reedy category and M is a cofibrantly generated
model category, then the identity functor of M is a left Quillen equivalence (see
Definition 8.5.20) from the cofibrantly generated model category structure (see
Theorem 11.6.1) to the Reedy model category structure (see Theorem 15.3.4) and
a right Quillen equivalence in the opposite direction.

ProoOF. This follows from Proposition 15.6.3. ]

COROLLARY 15.6.5. If C is a Reedy category, M is a cofibrantly generated
model category, X and Y are C-diagrams in M, and f: X — Y is a relative free
cell complex (see Definition 11.5.35), then f is a Reedy cofibration.

Proor. This follows fromm Theorem 11.6.1 and Proposition 15.6.3. ]

COROLLARY 15.6.6. Let C be a Reedy category, let M be a cofibrantly generated
model category, and let X be a C-diagram in M. If X is a free cell complex (see
Definition 11.5.35) then X is Reedy cofibrant.

Proor. This follows from Corollary 15.6.5. O

COROLLARY 15.6.7. If € is a Reedy category then the C°P-diagram of simplicial
sets B(— | €)°P and the C-diagram of simplicial sets B(€C | —) (see Section 14.7) are
Reedy cofibrant diagrams.

ProoF. This follows from Corollary 14.8.8 and Corollary 15.6.6. ]

COROLLARY 15.6.8. Let C be a Reedy category.
(1) The €°P-diagram of simplicial sets B(— | €)°P is a Reedy cofibrant approx-
imation to the constant C°P-diagram at a point.
(2) The C-diagram of simplicial sets B(€ | =) is a Reedy cofibrant approxi-
mation to the constant C-diagram at a point.

ProoF. Corollary 15.6.7 implies that these diagrams are Reedy cofibrant, and
Lemma 14.7.4 and Lernma 14.7.10 imply that for every object a of € the maps from
B(a] €)°P and B(€| a) to a point are weak equivalences. ]

15.6.9. An adjoint to the matching object. If € is a Reedy category, o is
an object of €, and M is a category, then we construct in this section a left adjoint
to the matching object functor M, : M® — M (see Proposition 15.6.20). This will
be used in Section 15.6.22 to show that the Reedy model category structure is
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cofibrantly generated if M is almost any cofibrantly generated model category (see
Theorem 15.6.27).

DEeFINITION 15.6.10. If € is a Reedy category and a and § are objects of €
then the boundary 8€(a, ) of C(a, B) is the set of maps g: & — B for which there
is a factorization g = gg with g € €, g € C,and g # 1,. That is, 8C(c, ) is
the set of maps from a to @ that factor through an object of degree less than that
of a.

LEMMA 15.6.11. Let C be a Reedy category. If o, 3, and v are objects of C,
g € 8€(a, B), and h: B — v is any map, then hg € 8C(a,v).

PROOF. Let g = §F with ¢ €, (3 ‘g € G and ‘g 961 The composition

—

(hg) has a factorization (hg) = %% with & € € and k € (3 and so the
composition (hg) has the factorization (hg) = ?(T ) with % €€ and (k ) €
€, and (k ‘7) # 1o because g # lg. ]

PROPOSITION 15.6.12. If C is a Reedy category and a is an object of C then
there is a sub-diagram of ¥, the free C-diagram of sets generated at o (see Defl-
nition 11.5.7), that on an object 8 of € equals 8C(a, §).

ProoF. This follows from Lemma 15.6.11. 0

DEerINITION 15.6.13. If € is a Reedy category and o is an object of € then the
C-diagram of sets described in Proposition 15.6.12 will be called the boundary 8¥F$
of FZ.

ExAMPLE 15.6.14. If @ = A°P (the simplicial indexing category (see Defini-
tion 15.1.8)) and 7 > 0, then F{™ is the simplicial set Aln] (see Example 11.5.15)
and OF™ is what is commonly called A[n)].

PROPOSITION 15.6.15. If € is a Reedy category and  is an object of € then OFS
(see Definition 15.6.13) is naturally isomorphic to the colimit of the a(a1'€)°1=-
diagram (see Definition 15.2.3) of C-diagrams of sets that takes the object g: a — 8
of d(a ] ‘@)” to the diagram F? (see Definition 11.5.7) and the morphism

(15.6.16)
N

ﬂ(—-——’Y

fromg: a— B toh:a— vindlal €)°p to the map of diagrams k*: F — F7
determined (sece Proposition 11.5.8) by the element k: v —  of F}(B).

Proor. If g: @ — B is an object of a(al‘@)”, then composition with g
defines a map of diagrams g*: F# — F® whose image is contained in dF% (see
Lemma 15.6.11). For each morphism (15.6.16) of (e | ‘@)°p, the map k*: F¥ — FY
is defined by composition with k. Since kh = g, we have k*h* = g*, and so we have
a well defined map of diagrams

(15.6.17) colim F, — OF] .
6(01€)°P
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The map (15.6.17) is surjective because if g: @ — [ is an element of FZ(3),
thenwecanfactorgasa—h-vyiﬁwithhe?,ke?, and h # 1,4, and ¢ is in
the image of k under h*: F} — OF?.

To see that the map (15.6.17) is injective, suppose that g: @ — Band h: & — 7

—
are objects of &(a] €)°P and s € FP(§) and t € FY($) are elements such tha.t
g*(s) = h*(t). We then have sg = th. If we factor s:B—odasf

with 5 € € and 5 € € and factor ¢: 7—»6&87-—+p.-—+6w1th % € C and

— —

t € C,then 3('Tg) =sg=th= {(Th), and so (3)(Fg) and (€)(Th) are
—

two factor1zat10ns of the same map into a map in T followed by a map lB €. By

the uniqueness of such factorizations, we must have 5 = T and 5 g = th (and,
of course, 7 = ), and so we have the diagram

\}/

—

Thus (7 )*: F7 — FY takes ¥ = ¢ to £ ¢ =tand (F)*: F? — FP takes 3 = ¢
to %5 = s, and so s and ¢ represent the same element of colin:m’_c,(olr@)op F_, and
the map (15.6.17) is injective. ]

DEFINITION 15.6.18. If C is a Reedy category, M is a cocoraplete category, X is
an object of M, and a is an object of €, then the boundary OF% of the free diagram
on X generated at o is the C-diagram OF% = X @ OF7 (see Definition 15.6.13,
Definition 11.5.25, Definition 11.5.24, and Definition 11.5.7).

PROPOSITION 15.6.19. Let M be a cocomplete category and let € be a Reedy
category. If X is an object of M and o is an object of €, then 8F% (see Defini-

tion 15.6.18) is naturally isomorphic to the colimit of the O(E)la)”-diagram of
C-diagrams in M that takes the object g: & — 8 of (€ | a)°P to the disgram F%
(see Definition 11.5.25) and the morphism

(o3
RN
pe——"

fromg:a— B toh:a—vyin 8(?1&)“’ to the map of diagrams k*: Ff{ — F}
determined (see Proposition 11.5.8) be the element k: v — 3 of F1(8).

PRrOOF. This follows from Proposition 15.6.15. O
PROPOSITION 15.6.20. Let € be a Reedy category and let M be & model cate-

gory. For every object a of € the functor M — M that takes the object X of M to
the C-diagram 8F% (see Definition 15.6.18) is left adjoint to the matching object
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functor My : M& — M (see Definition 15.2.5), i.e., for every C-diagram Y there is
a natural isomorphism of sets

ME(OFS,Y) =~ M{X,M,Y) .
Proor. We have natural isomorphisms

ME(OFS,Y) = Me( colim_  F%, Y) (see Proposition 15.6.19)
(a—B)e0b 8( € |a)or
~ lim ME(F%,Y)
(a—B)eOb8(€ La)
~ m _ M(X,Yp)
(a—B)EObA( C |a)
~ M(X, lim Y;5)
(a—B)EObA(C La)
=M(X,M,Y) .

0

COROLLARY 15.6.21. Let € be a Reedy category and let M be a model category.
IfA— BisamapinMand X — Y is a map of C-diagrams in M, then for every
object o of € the following are equivalent:

(1) The dotted arrow exists in every solid arrow diagram of the form
A— X,
|
B—— Y, xmy Mo X .

(2) The dotted arrow exists in every solid arrow diagram of the form

F3 lory 0F — X

L

sy

Proor. This follows from Proposition 15.6.20. g

15.6.22. Cofibrant generation of the Reedy model category struc-
ture. In this section, we show that if € is a Reedy category and M is a cofibrantly
generated model category in which both the domains and the codomains of the el-
ements of I are small relative to I and both the domains and the codomains of the
elements of J are small relative to J, then the Reedy model category structure on
ME (see Theorem 15.3.4) is cofibrantly generated (see Theorem 15.6.27). Although
this seems to be a restriction on the class of cofibrantly generated model categories
to which our results apply, it includes all cofibrantly generated model categories of
which I am aware.

DEFINITION 15.6.23. If € is a Reedy category, M is a model category, and K
is a set of maps in M, then RF?( will denote the set of maps in M€ of the form

a o o
F§, lorg 8F%, — F3,
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(see Definition 11.5.25 and Definition 15.6.13) for & an object of € and Ax — By
an element of K.

PROPOSITION 15.6.24. If C is a Reedy category and M is a cofibrantly generated
model category with generating cofibrations I and generating trivial cofibrations J,
then a map of C-diagrams in M is a Reedy fibration if and only if it has the right
lifting property with respect to every element of RFS (see Definition 15.6.23) and
it is a Reedy trivial fibration if and only if it has the right lifting property with
respect to every element of RF(;.

ProOOF. This follows from Corollary 15.6.21 and Theorer 15.3.15. ad

LeEmMma 15.6.25. If € is a Reedy category, M is a cocomplete category, and I is
a set of maps in M, then for every object § of C and every element F Ilgrs OF g —
2 of RF{ (see Definition 15.6.23) the map

F Harg 0F3(8) — F(h)
is a relative I-cell complex.

PrOOF. If A — B is amap in M and « and § are objects of €, then the map
OF3(B) — F4(B) is the inclusion of a summand. Thus, the pushout F3(8)Lgpa (g
dF%(P) is isomorphic to the coproduct ([[(ga(s)-sre(a)) 4) I (Llgre(s B) 2nd
the map F(8) Uaps (5) OFF(8) — Fg(B) is isomorphic to the coproduct of the
identity map of [ [5pg gy B with the map [pe (g)-ara(sy) 4 = Lre(g)-o¥: (8)) B-
Proposition 10.2.7 now implies that the map F3(8) Upra(s) OF3(8) — FE(B) is
a transfinite composition of pushouts of the map A — B. a

LeMMA 15.6.26. Let C be a Reedy category and let M be a cocomplete category.
If I and K are sets of maps in M such that the domains and codomains of the
elements of K are small relative to I, then the domains and codomains of the
elements of RF$; (see Definition 15.6.23) are small relative to RF¢.

PROOF. Proposition 10.5.13, Proposition 11.5.26, and Lemma 15.6.25 imply
that if A is a domain or a codomain of an element of K and « is an object of €
then F¢ is small relative to RFS. Proposition 10.4.8 and Proposition 15.6.15 now
imply that the domains and codomains of the elements of RF% are small relative
to RFS. a

The next theorem may seern to be weak in that it applies only to those cofi-
brantly generated model categories M for which there are a set I of generating
cofibrations whose domains and codomains are small relative to I and a set J of
generating trivial cofibrations whose domains and codomains are small relative to
J. However, this is a property shared by every cofibrantly generated model category
of which I am aware.

THEOREM 15.6.27. Let M be a cofibrantly generated model category for which
there are a set I of generating cofibrations whose domains and codomains are small
relative to I (see Definition 10.5.12) and a set J of generating trivial cofibrations
whose domains and codomains are small relative to J. If € is a Reedy category then
the Reedy model category structure on M is cofibrantly generated with generating
cofibrations RFS (see Definition 15.6.23) and generating trivial cofibrations RF“;.
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PrOOF. This follows from Proposition 15.6.24, Lemma 15.6.25, and
Lemma 15.6.26.

a

15.7. Reedy diagrams in a cellular model category

In this section we show that if C is a Reedy category and M is a cellular model
category (see Definition 12.1.1), then the Reedy model category structure on M€
(see Theorem 15.3.4) is a cellular model category (see Theorem 15.7.6).

PROPOSITION 15.7.1. If M is a cellular model category and € is a Reedy cat-
egory, then the cofibrations of the Reedy model category structure on ME (see
Theorem 15.3.4) are effective monomorphisms.

ProoOF. Let f: X — Y be a Reedy cofibration in M€. Proposition 15.3.11
implies that for every object a of € the map fo: X4 — Y4 is a cofibration in M,
and so f, is an effective monomorphism. Thus, for every object @ of € the map
fo: Xo — Y, is the equalizer of the natural inclusions Y, 3 Y, I x, Y. Since
the pushout ¥ IIx Y on an object a of Cis Y, 1Ix, Y4, this implies that the map
f: X — Y is the equalizer of the natural inclusion Y 3 Y lIx Y. a

COROLLARY 15.7.2. If M is a cellular model category and C is a Reedy cat-
egory, then the cofibrations of the Reedy model category structure on MC (see
Theorem 15.3.4) are monomorphisms.

ProoF. This follows from Proposition 15.7.1 and Proposition 10.9.5. ]

COROLLARY 15.7.3. If M Is a cellular model category with generating cofi-
brations I and C is a Reedy category then the relative R,F?-cell complexes (see
Definition 15.6.23) are monomorphisms.

PrOOF. This follows from Corollary 15.7.2 and Theorem 15.6.27. 0

LemMma 15.7.4. Let M be a cellular model category with generating cofibrations
I and let C be a Reedy category. If 3 is an object of € and W is an object of M
that is compact relative to I, then Fﬁ, (see Definition 11.5.25) is compact relative
to RF?. ‘

PROOF. Proposition 11.5.26 and Proposition 11.4.9 imply that it is sufficient
to show that for every element A — B of I and every object & of € the map
(F3 Ugps OF5)(8) — FE(B) is a cofibration whose domain js compact relative
to I. Lemma, 15.6.25 implies that that map is a cofibration, and (since (Fj Ilapa
OFE)(B) = F4(B) Usrs (s OFF(B) and both A and B are compact relative to I)
Proposition 10.8.8 implies that its domain is compact relative to I. a

PRrOPOSITION 15.7.5. If M is a cellular model category with generating cofibra-
tions I and C is a Reedy category, then the domains and codomains of the elements
of RF§ (see Definition 15.6.23) are compact relative to RF§.

PROOF. Since the domains and codomains of the elements of I are compact
relative to I, this follows from Proposition 15.6.15, Proposition 10.8.8, Corol-
lary 15.7.3, and Lemma 15.7.4. 0
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THEOREM 15.7.6. If M is a cellular model category and C is a Reedy category
then the Reedy model category structure on M® (see Theorem 15.3.4) is a cellular
model category.

PRroOF. This follows from Theorem 15.6.27, Proposition 15.7.5, Lerama 15.6.26,
Corollary 12.4.5, and Proposition 15.7.1. |

15.8. Bisimplicial sets

There are two possible Reedy model category structures on the category of
bisimplicial sets, obtained by viewing a bisimplicial set as a simplicial object in the
category of simplicial sets in two different ways. We show in Proposition 15.8.1 that
these model category structures have different classes of weak equivalences. (This
does not contradict Theorem 15.5.2 because the category of simplicial sets is not a
Reedy model category structure obtained from some model category of sets.) We
also show (in Theorem 15.8.7) that in either of these model category structures the
cofibrations are the monomorphisms.

PROPOSITION 15.8.1. The two possible Reedy model category structures on
the category of bisimplicial sets (obtained by viewing a bisimplicial set as either a
horizontal simplicial object in the category of vertical simplicial sets or as a vertical
simplicial object in the category of horizontal simplicial sets) are not the same.

PROOF. We will show that these two model category structures have different
classes of weak equivalences. Let X be the bisimplicial set such that X, , = Afl],
with all horizontal face and degeneracy maps equal to the identity, let Y be the
bisimplicial set such that Y, x is a single point for all n > 0 and k > 0, and let
f:X — Y be the unique map from X to Y.

As a map of horizontal simplicial objects in the category of vertical simplicial
sets, f is a weak equivalence, because for every n > 0 the map of simplicial sets
Xnx — Y. is the map A[l] — A[0], which is a weak equivalence of sirnplicial
sets. However, as a map of vertical siraplicial objects in the category of horizontal
simplicial sets, f is not a weak equivalence, because (for example) the map of
simplicial sets f.o: X, 0 — Y. is the map (A[0] H A[0]) — A[0], which is not a
weak equivalence of simplicial sets. ]

LemMma 15.8.2. Let X be a simplicial set, let n > 0, and let o and T be el-
ements of X, for which there are iterated degeneracy operators 8;,8,, - -+ s, and
85y 8js -+ 83, such that sy sy, ---8:,(0) = 85,8, ---85.(7). If o Is nondegenerate,
then so Is 7.

PROOF. If 7 = spv for some 0 < m < n-—1, then
0 =dy - diydi; 8;,8i, - 5,0
=diy, iy dy 55,85, 0 55, T
=di, - dipdi 85,85, S SmV
and this last expression for o has k face operators and (k + 1)-degeneracy opera-

tors. The simplicial identities would then imply that o was degenerate, which was
assumed not to be the case. 0O
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LeMMma 15.8.3. If M is a category and X is a simplicial object in M, then
every iterated degeneracy operator X, — X,y in X has a unique expression in
the form 84y 8iy - Siy with 1y > 29 > -+ > i,

PROOF. Such an iterated degeneracy operator corresponds to an epimorphism
a: [n+ k] — [n] in A (see Definition 15.1.8), and the set {i1,43,...,1x} is the set
of integers ¢ in [n + k] such that a(i + 1) = «(7). ]

Lemma 15.8.4. If X is a simplicial set and p is a degenerate simplex of X, then
there is a unique nondegenerate simplex v of X and a unique iterated degeneracy
operator a such that a(v) = p.

PRrROOF. Lemma 15.8.2 implies that it is sufficient to show that

(1) if n > 0 and ¢ and T are nondegenerate n-simplices such that some degen-
eracy of o equals some (possibly different) degeneracy of , then o = 7,
and

(2) if o is a nondegenerate simplex and o and § are iterated degeneracy
operators such that a(o) = 8(7), then a = 8.

For assertion 1, let k be the smallest positive integer for which there are iterated
degeneracy operators s;, 8, - - - 8;, with 4, > i3 > .- > 4, and 54,55, - -5;, with
J1>j2 > -+ > ji (see Lemma 15.8.3) such that s,, 84, -+ 85, (0) = 85,84, - 85, (7).
If we apply the face operator d;, to both sides of this equation, we obtain
8i284g © " Siy (‘7) = d‘il 851552 " S (T) ’

and the simplicial identities imply that the right hand side is either a (k — 1)-fold
iterated degeneracy of T or a k-fold iterated degeneracy of a face of 7. Lemma 15.8.2
implies that it cannot be the latter, and so our assumption that k was the smallest
positive integer of its type implies that k = 1, i.e., s;,0 = 85, 7. If 1 > 7, then
0 =di +18i,0 = di; +18;T = s;d;, T, which is impossible because o is nondegenerate.
Similarly, we cannot have 7; < j;. Thus, i} = j;, and so ¢ = 7 (because degeneracy
operators have left inverses).

For assertion 2, let k be the smallest positive integer for which there are iterated
degeneracy operators si, s, - - - 8, With iy > 49 > ++- > i and s; 85, -+ 55, With
J1>j2 > - > jk such that s;, 84, -+ 55, (0) = 85,85, - -+ 85, (0) (see Lemma 15.8.3).
Because k is the smallest such integer and degeneracy operators have left inverses,
we must have iy # j,. If 43 > j,, then we can apply d;, 41 to obtain

Sip8ig """ iy (0’) = di1+lsj18.fz © Sk (‘7)
= 85,85, " 8 iy +1-k(0)
which contradicts Lemma 15.8.2. Similarly, we cannot have iy < j;. Thus, 4; = 7,

and S0 8i, 84, - - - 81, (0) = 84,84, - - - 84, (0), which implies that k = 1 (or else we have
contradicted our assumption that k is the smallest positive integer of its type). O

LemMa 15.8.5. Let X be a simplicial set. If n > 0 and o is an n-simplex of X,
then o is nondegencrate if and only if no two of the simplices sg0, 810, ..., 8,0 are
equal.

ProoF. If o is degenerate, then o = s;7 for some 0 < i < n and some (n — 1)-
simplex T, and so 8i410 = 8;418:iT = 88T = 8§;0.

Conversely, if s;o = sjo for 0 < i < j < n, then o = 8;5,0 = 9;5;0 = 5;_18;0,
and so o is degenerate.
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PROPOSITION 15.8.6. If A°P is the indexing category for simplicial sets (see
Example 15.1.13 and Definition 15.1.10) and X is an object of 8§47 (i.e., a bisim-
plicial set, which we view as a “horizontal” simplicial object in the category of
“vertical” simplicial sets, so that the object of degree n is the simplicial set X, +),
then for n > 0 the latching object L, X of X at n (see Definition 15.2.5) is naturally
isomorphic to the subcomplex of X, . consisting of those simplices that are in the
image of a horizontal degeneracy operator.

PROOF. For every k > 0 there is a natural map from the set (L, X)y of k-
simplices of L, X onto the set of “horizontally” degenerate k-simplices of the “hori-
zontal” simplicial set X, r; we must show that this map is one to one. Lemma 15.8.4
implies that for every horizontally degenerate simplex o € X, x there is a unique
horizontally nondegenerate simplex 7 € X, ». (for some m < n) and a unique hor-
izontal iterated degeneracy operator a such that a(r) = o, and that if u is any
other simplex for which there is an iterated horizontal degeneracy operator 8 such
that (i) = o then there is an iterated horizontal degeneracy operator v such that
¥(r)=pand B =q. 0

THEOREM 15.8.7. In the Reedy model category structure on §gA™ (the cat-
egory of simplicial simplicial sets; see Example 15.1.13 and Definition 15.1.10) a
map f: X — Y of simplicial simplicial sets is a cofibration if and only if it is a
monomorphism.

PRrROOF. Proposition 15.3.11 implies that if f is a Reedy cofibration, then for
every n > 0 the map f,: X, — Y, is a cofibration (i.e., a monomorphism) of
simplicial sets.

Conversely, assume that f,: X, — Y, is a monomorphism of simplicial sets
for every n > 0. Proposition 15.8.6 implies that each latching object L, X is a
subcomplex of X,, and that each L, Y is a subcomplex of Y, and Lemma 15.8.5
implies that the intersection of X, and L, Y inY ,, is L, X . Thus, X, xL,Y —
Y ,, is an inclusion of simplicial sets, and so f: X — Y is a Reedy cofibration. O

COROLLARY 15.8.8. A simplicial object in the category of simplicial sets is
always Reedy cofibrant.

Proor. This follows from Theorem 15.8.7. O

15.9. Cosimplicial simplicial sets

Lemma 15.8.4 implies that the cofibrations in the Reedy model category struc-
ture on simplicial simplicial sets are the monomorphisms (see Theorem 15.8.7)
and that every object is cofibrant (see Corollary 15.8.8). The precise analogue of
Lemma 15.8.4 for cosimplicial simplicial sets is false, because there can be sim-
plices of codegree zero whose images under the coface operators d° and d* coincide.
Thus, we define the mazimal augmentation (see Definition 15.9.2) of a cosimplicial
simplicial set to be the subspace of simplices of codegree 0 with this property, and
we establish Lemma. 15.9.5 as our replacement for Lemma 15.8.4. We then show
in Theorem 15.9.9 and Corollary 15.9.10 that, except for the special attention re-
quired by the maximal augmentation, the situation for cosimplicial simplicial sets
is as convenient as that for simplicial simplicial sets.
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LemMMA 15.9.1. If M is a category and X is a cosimplicial object in M, then
every iterated coface operator X™ — X™* in X has a unique expression in the
form d“d*2 - - d* with 1) > iy > -+ > ig.

PrOOF. Such an iterated coface operator corresponds to a monomorphism
[n] — [n+ k] in A, the cosimplicial indexing category (see Definition 15.1.8),
and the set {4),%2,...,ix} is the complement of the image of [n] in [n + k] O

DeFIMITION 15.9.2. If X is a cosimplicial simplicial set, then the mazimal
augmentation of X is the simplicial set that is the equalizer of the coface operators
d® and d from X° to X'. That is, an n-simplex of the maximal augmentation of
X is an n-simplex ¢ of X° such that &°c = d'o.

If X is a cosimplicial set, then by the mazimal augmentation of X we mean
the maximal augmentation of the cosimplicial discrete simplicial set determined by
X.

DermNITION 15.9.3. If X is a cosimplicial set, n > 0, and ¢ € X", then we will
say that o s a coface if o is in the image of some coface operator, and that o is a
non-coface if o is not in the image of any coface operator.

LEMMA 15.9.4. Let X be a cosimplicial set, let n > 0, and let o and T be
elements of X™ for which there are iterated coface operators di*d¥---d* and
dirgiz ... g such that d»dz---d*¢ = dirdi?---di*T. If o0 is a non-coface (see
Definition 15.9.3), then so is T.

Proor. If 1 = d™v, then
o=l grlgnmlghgiz L gik(g)
= gik—l .. g2—lga-l gi gz ... gk (m)
=g g lghmlgh g g™ ()

and this last expression for o has k codegeneracy operators and (k + 1) coface
operators. The cosimplicial identities would then imply that o was a coface, which
was assumed not to be the case. |

LemMa 15.9.5. If X is a cosimplicial set, n > 0, and u is an element of X™ that
is not the image of an element of the maximal augmentation {see Definition 15.9.2)
under an iterated coface operator, then there is a unique non-coface o (see Defini-
tion 15.9.3) and a unique iterated coface operator « such that a(o) = p.

PrOOF. Lemma 15.9.4 implies that it is sufficient to show that

(1) if m > 0 and o and T are non-coface elements of X™ for which some

iterated coface of o equals some (possibly different) iterated coface of

7, then either ¢ = 7 or one of o and 7 is an element of the maximal
augmentation, and

(2) if o is not a coface and not an element of the maximal augmentation and

« and (3 are iterated coface operators such that (o) = §(g), then a = 3.

For assertion 1, let k be the smallest positive integer for which there are iterated co-

face operators did*2 - - - d* and d"d’2 --- d%* with4; >4 > - - >4 and §; > jp >

-+ > j (see Lemma 15.9.1) such that d*d'z - - - d* (o) = d"1d?? - - - d7% (7). If we ap-

ply the operator s* ~! to both sides of this equation, the we obtain d*2d* - - - di (o) =

s1 1@ sz .. @%% () and the cosimplicial identities imply that the right hand side
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is either a (k — 1)-fold iterated coface of 7 or a k-fold iterated coface of a code-
generacy of 7. Lemma 15.9.4 implies that it cannot be the latter, and so our
assumption that k was the smallest positive integer of its type implies that k£ = 1,
ie, d(o) = &1 (7). If 44 = ji1, then ¢ = 7 (becaunse coface operators have left
inverses) and we are done. If 4, # j;, then we assume that 4, > ) (the case ) < j;
is similar).
o If s* is defined on d'(), then o = s"'d¥ (v) = sud”1 (1) = drsm71(7),
which contradicts Lemma 15.9.4.
o If i) > j1y + 1, then o = sh~1dh(g) = sh 1 (1) = &5~ 2(7), which
contradicts Lemma 15.9.4.
o If 3 > 0, then 7 = s/t=1gn (1) = sh~1gu (o) = d~ s~ 1(o), which
contradicts Lemma 15.9.4.
Thus, we must have j, =0, iy = 1, and m = 0; that is, 0,7 € X° and d'o = d°r.
Thus, ¢ = sed o = °d°r = 71, ie., d® = d'o, and so o is an element of the
maximal augmentation.

For assertion 2, let k be the smallest positive integer for which there are iterated
coface operators dd'e - -- @ with i) > 43 > -+ > ig and d*d’? .- d% with j; >
g2 > <=+ > ji such that d#d¥-..d* (o) = dl*d’z---d’*(o) (see Lemma 15.9.1).
Applying s%~1 to both sides of this equation, we obtain

dod g (o) = sh A d . i (o) .
The right hand side of this equation is either a (k — 1)-fold coface of o or a k-fold
coface of a codegeneracy of o. The latter would contradict Lemma 15.9.4, and so
we must have k = 1, ie., d*(0) = d’* (), and we must show that 4, = j;. If not,
then we’ll assume that 4; > j, (the other case is similar). If 43 > 7 + 1, then
o = ' g (o) = st 1di(g) = d15'7%(0), which contradicts out assumption
about o. Thus, i, = jy + 1. Similarly, s =0and ¢, =n+1, ie,0€ X% i) =1,
and j, = 0. This would imply that ¢ is an element of the maximal augmentation,
which was assumed not to be the case, and so we are done. O

ProrosiTION 15.9.6. Let X be a cosimplicial simplicial set (i.e., an object of
8s4).

(1) If n > 2, then the latching object L, X of X at codegree n is naturally
isomorphic to the subcomplex of X™ cousisting of those simplices that are
in the image of a coface operator.

(2) The latching object Ly X of X at codegree 1 is naturally isomorphic to
the pushout Cy X Hn, x C1 X where C, X is the subspace of X* consisting
of the simplices that are cofaces (see Definition 15.9.3) and N, X is the
subspace of C1 X consisting of those cofaces that are not in the image of
the maximal augmentation (see Definition 15.9.2) under a coface operator.

(3) The latching object Lo X of X at codegree 0 is the empty simplicial set.

Proor. This follows from Lemma 15.9.5. O

LeEMMA 15.9.7. Let X be a cosimplicial set. If n > 1 and o is an element
of X", then o is a non-coface (see Definition 15.9.3) if and only if no two of the
elements d%, d'o, ..., d*'o of X™*! are equal.

ProOF. If o is a coface, then o = dir for some 7 € X™ ! and 0< i < m, and
so ditle = d*tidir = d*dir = dio.
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Conversely, suppose d’c = d’o for 0 < i < j < n+ 1. There are three {non-
exclusive) cases:
e Ifj<n+1, theno = s/dio = s/dioc = d's? 0.
o Ifi< j—1,then o = 87 1dio = s 1dlo = dsio.
elfj=n+landi=j—1 theni=mn;sincen >1, 0 = s dlo =
s ldlo = @1 1o

Thus, in each case, o is a coface. a

REMARK 15.9.8. The assertion of Lemma 15.9.7 for n = 0 is false; this is why
we needed Definition 15.9.2.

THEOREM 15.9.9. In the Reedy model category structure on SS° (the category
of cosimplicial simplicial sets; see Definition 15.1.8 and Example 15.1.12), a map
f: X — Y of cosimplicial simplicial sets is a cofibration if and only if it is a
monomorphism that takes the maximal augmentation (see Definition 15.9.2) of X
isomorphically onto that of Y.

PrROOF. If f is a cofibration, then Proposition 15.3.11 implies that f*: X" —
Y™ is a monomorphism for every n > 0. Since the relative latching map X' Ilp, x
LY — Y! is a monomorphism, Proposition 15.9.6 implies that f must map the
maximal augmentation of X isomorphically onto that of Y.

Conversely, if f is a monomorphism, then Proposition 15.9.6 and Lemma 15.9.7
imply that for n # 1, the intersection of X™ and L,Y in Y" is L, X, and so the
relative latching map X" liy_x L,Y — Y™ is a monomorphism. If f takes the
maximal augmentation of X isomorphically onto that of Y, then Proposition 15.9.6
implies that the relative latching map X* O,y LY — Y! is a monomorphism,
and so f is a cofibration. O

COROLLARY 15.9.10. A cosimplicial simplicial set is Reedy cofibrant if and only
if its maximal augmentation (see Definition 15.9.2) is empty.

ProOOF. This follows from Theorem 15.9.9. O

COROLLARY 15.9.11. The cosimplicial standard simplex (see Definition 15.1.15)
is a Reedy cofibrant cosimplicial set.

ProoF. This follows from Corollary 15.9.10. O

COROLLARY 15.9.12. The cosimplicial standard simplex (see Definition 15.1.15)
is a Reedy cofibrant approximation (see Definition 8.1.2) to the constant A-diagram
at a point.

PRrOOF. Since for every n > 0 the map from Aln] to a point is a weak equiva-
lence, this follows from Corollary 15.9.11. O

15.10. Cofibrant constants and fibrant constants

Some Reedy categories € have the property that, for every model category M,
the colimit of an objectwise weak equivalence of Reedy cofibrant C-diagrams in M is
a weak equivalence of cofibrant objects. These are the Reedy categories with fibrant
constants (see Definition 15.10.1 and Theorem 15.10.9). Dually, a Reedy category
C with cofibrant constants has the property that, for every model category M, the
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limit of an objectwise weak equivalence of Reedy fibrant C-diagrams in M is a weak
equivalence of fibrant objects.

DEerFINITION 15.10.1. Let C be a Reedy category.

(1) We will say that € has cofibrant constants if for every model category
M and every cofibrant object B of M the constant C-diagram at B is
cofibrant in the Reedy model category structure on ME.

(2) We will say that € has fibrant constants if for every model category M
and every fibrant object X of M the constant C-diagram at X is fibrant
in the Reedy model category structure on M.

PROPOSITION 15.10.2. Let C be a Reedy category.

(1) The Reedy category € has cofibrant constants (see Definition 15.10.1)
if and only if for every object o of € the latching category (see Defini-
tion 15.2.3) of € at « is either connected or empty.

(2) The Reedy category C has fibrant constants if and only if for every object
a of € the matching category of € at ¢ is either connected or empty.

PROOF. We will prove part 1; the proof of part 2 is dual.

If M is a model category, B is an object of M, X: € — M is the constant
diagram at B, and o is an object of €, then the latching object of X at a (see
Definition 15.2.5) is the colimit of a diagram in which every map is the identity
map of B, and so it is isomorphic to a coproduct, indexed by the components of
8(_(:’) L @), of copies of B. Thus, if 8(? l @) is either connected or empty for every
object a of €, then the latching map of X at o is either the identity map of B or
the map § — B (where “@” is the initial object of M) for every object  of C, and
so if B is cofibrant then so is X. .

Conversely, if there is an object a of € such that (€ | @) has more than one
component, B is a nonempty simplicial set, and X : € — S8 is the constant diagram
at B, then the latching map of X at € will not be a monomorphisim. a

ProposiTion 15.10.3. If € is a Reedy category, then € has cofibrant constants
if and only if C°P has fibrant constants.

PROOF. This follows from Proposition 15.10.2 and Proposition 15.2.4. a

ProPoSITION 15.10.4. If € is the category of simplices of a simplicial set (see
Definition 15.1.16), then

(1) the category € has fibrant constants (see Definition 15.10.1), and
(2) the category C°P has cofibrant constants.

PROOF. Proposition 15.10.3 implies that it is sufficient to prove part 1. Let
K be a sim‘glicia.l set such that € = AK. If o is a nondegenerate simplex of K,
then d(a| €) is empty. If o is a degenerate simplex of K, then there is a unique
nondegenerate simplex 7 such that o is the image of 7 under a degeneracy operator
(see Lemma 15.8.4), and the map o — T is a terminal object of 8(al‘€). The
proposition now follows from Proposition 15.10.2. [}

COROLLARY 15.10.5. The cosimplicial indexing category (see Definition 15.1.8)
is a Reedy category with fibrant constants and the simplicial indexing category is
a Reedy category with cofibrant constants.
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ProoF. This follows from Proposition 15.10.4 and Example 15.1.18. a

ProposITION 15.10.6. Let C be a Reedy category and let o be an object of C.
(1) The latching category 6(_8 la) of € at o is a Reedy category with fibrant
_— —

— — —
constants in which (€ | a) = 8(€ | a) and 8( € | &) has only identity
maps. o
(2) The matching category 8(a| C) of € at  is a Reedy category with cofi-
— e}

—

brant constants in which 8(a| C) = c’)(al@) and c’)(alE) has only
identity maps.

PROOF. We will prove part 1; the proof of part 2 is dual.

The restriction of a degree function for € yields a degree function for 6(@ la),
and so 6(_6 | @) is a Reedy category. Since the matching category at every object
of 6(? | &) is empty, the result follows from Proposition 15.10.2. 0

ProposiTioN 15.10.7. Let € be a Reedy category.

(1) The Reedy category € has cofibrant constants if and only if the C-diagram
of simplicial sets that is a single point at every object of C is a Reedy
cofibrant diagram.

(2) The Reedy category C has fibrant constants if and only if the C°P-diagram
of simplicial sets that is a single point at every object of C°? is a Reedy
cofibrant diagram.

PROOF. We will prove part 1; part 2 will then follow from part 1 and Propo-
sition 15.10.3.

Definition 15.10.1 implies one direction of part 1. Conversely. if the constant
diagram at a point is cofibrant, then every latching object is the domain of a
cofibration with codomain a single point. Thus, every latching object is either
empty or asingle point, and so every latching category is either empty or connected.
The result now follows from Proposition 15.10.2. a

THEOREM 15.10.8. Let C be a Reedy category.

(1) The Reedy category C has cofibrant constants if and only if, for every
model category M, the constant diagram functor M — M® and the limit
functor M® — M are a Quillen pair (see Definition 8.5.2).

(2) The Reedy category C has fibrant constants if and only if, for every model
category M, the colimit functor M® — M and the constant diagram
functor M — M® are a Quillen pair (see Definition 8.5.2).

PROOF. We will prove part 1; part 2 will then follow from Proposition 15.10.3,
Proposition 15.10.2, and Proposition 15.2.4.

The colimit and constant diagram functors are an adjoint pair for all categories
M and small categories . Proposition 15.10.7 implies that if the constant diagram
functor is a left Quillen functor, then € has cofibrant constants. For the converse,
Proposition 15.10.2 implies that if € has cofibrant constants, i: A — B is a cofibra-
tion in a model category M, and « is an object of C, then the relative latching map
(see Definition 15.3.2) at & of the induced map of constant C-diagrams is either the
identity map of B or is isomorphic to the map 4, and is thus a cofibration. 0

THEOREM 15.10.9. Let M be a model category and let € be a Reedy category.
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(1) If € has cofibrant constants, then the limit functor lime: M® — M takes
Reedy fibrant diagrams to fibrant objects of M and takes objectwise weak
equivalences between Reedy fibrant diagrams to weak equivalences be-
tween fibrant objects of M.

{2) IfC has fbrant constants, then the colimit functor colime: M — M takes
Reedy cofibrant diagrams to cofibrant objects of M and takes objectwise
weak equivalences between Reedy cofibrant diagrams to weak equivalences
between cofibrant objects of M.

PRrOOF. This follows from Theorem 15.10.8 and Corollary 7.7.2. d

PROPOSITION 15.10.10. Let M be a model category and let

(15.10.11) A—fi—-u3 fo
NN
j' A/"_)Bl

P
C —J’—) D fb JP'
Y hN

fe O —— D

be a diagram in M.

(1) If all of the objects of Diagram 15.10.11 are cofibrant, the front and back
squares are pushouts, i and i’ are cofibrations, and all of fa, fB, and f¢
are weak equivalences, then fp is a weak equivalence.

(2) If all of the objects of Diagram 15.10.11 are fibrant, the front and back
squares are pullbacks, p and p' are fibrations, and all of fg, fc,and fp
are weak equivalences, then f4 is a weak equivalence.

PROOF. We will prove part 1; the proof of part 2 is dual.

Let € be the Reedy category with three objects and two non-identity maps
v +— a — [, in which we let deg(a) = 2, deg(f8) = 3, and deg(y) = 1. The
Reedy category € has fibrant constants (see Proposition 15.10.2), and we have an
objectwise weak equivalence of Reedy cofibrant C-diagrams in M

C(———A—i>B

A

C+—A——B .
k3

Theorem 15.10.9 now implies that the induced map of pushouts fp: D — D' is a
weak equivalence. |

PROPOSITION 15.10.12. Let M be a model category.

(1) If we have a map of sequences in M

i i iz
Xo y X3 y Xo

NN

Jjo n J2
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in which all of the objects are cofibrant, the maps i, and j, are cofibrations
for all n > 0, and the maps f, are weak equivalences for all n > 0, then
the induced map of colimits colim fr: colim X, — colimY, is a weak
equivalence.

(2) If we have a map of towers in M

LN X2 P2 Xl Pr Xo
J'fz J'fx J'fo
w2

in which all of the objects are fibrant, the maps p, and g, are fibrations
for all n > 0, and the maps f, are weak equivalences for all n > 0, then
the induced map of limits lim f,: lim X, — limY,, is a weak equivalence.

Proor. This follows from Theorem 15.10.9. 0

15.11. The realization of a bisimplicial set

DerFINITION 15.11.1. If X is a simplicial object in the category of simplicial
sets (i.e., a bisimplicial set), then the realization |X| of X is the simplicial set
built from X and the cosimplicial standard simplex (see Definition 15.1.15) as the
coequalizer of the diagram

[
11 X, x Akl ? [] X~ x Al

(a: [n)—>[k})eAoP n>0

where the map ¢ on the summand a: [n] — [k] is 1x, xo*: X, x A[k] = X, xAn]
composed with the natural injection into the coproduct and the map 3 on the
summand a: [n] — [K] is o x 1apg: Xn x Alk] = X x Alk] composed with the
natural injection into the coproduct.

REMARK 15.11.2. The realization of a bisimplicial set is an example of a tensor
product of functors; see Definition 18.3.2.

DerFINITION 15.11.3. If X is a bisimplicial set, its diagonal is the simplicial
set diag X for which (diag X), = X, , for n > 0, d;: (diag X), — (diag X),—1
is did¥: Xon — Xn_yn-1for 0 <i < n, and s;: (diag X)n — (diag X)p4 is

shs¥: X = Xniner for 0 <i <m.

ProrosiTION 15.11.4. If X is a simplicial set and cs.X denotes the constant
simplicial object at X (i.e., the bisimplicial set such that (cs.X):; = X; and such
that all horizontal face and degeneracy maps are the identity), then there is a
natural isomorphism X ~ diag(cs. X).

Proor. This follows directly from the definitions. O

DEFINITION 15.11.5. If X is asimplicial object in the category of simplicial sets,
then there is a natural map cs.(Xo) — X from the constant simplicial simplicial
set at Xo to X that on (cs.(Xo)), = Xo is the map (s0)": Xo — X, We will
call the composition X & diagcs.«(Xo) — diag X (see Proposition 15.11.4) the
natural map Xo — diag X.
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THEOREM 15.11.6. If X is a bisimplicial set, then its realization |X| is naturally
isomorphic to its diagonal diag X.

PROOF. We first define a map f: (diag X) — |X|. If o € (diag X)n = Xpnn,
we let f(o) be the image of (0, 1j,)) € Xy x Afn] in | X|, where 1() is the nondegen-
erate n-simplex of A[n] (see Definition 15.11.1). If @ € A°P([n}, [k]) is a simplicial
operator, then 1x % a*: Xn x Alk] — X, x Aln] takes (0,1[) to (o, 1)) and
e X 1apy: Xa x AlK] = Xi x Alk] takes (o, 1) to (a(0), 1) in |X| Thus,
f(a(o)) =a(f(s)), and so f is a map of simplicial sets.

We now define a map g: | X[ — (diag X). Since A[n] is the free AP-diagram
generated at [n] (see Example 11.5.15), a k-simplex of A[n] is a simplicial operator
a: [n] — [k], and so a k-simplex of X, x A[n] is of the form (o,a) for 0 € X,
and a € A°([n], [k]). We define g.: X, x Aln] — (diag X) by letting gn(0,a) =
ol(o) € Xyy. ¥ B € A°®([k],[m]) is a simplicial operator, then B.(c,a) =
(52(0), 8 ), and 50 g (B.(0,)) = 6n(82(0), Bx) = B2 (0) = BB (o) =
BrBYgn(0,a) = Bugn(o,a), 50 gn is a map of simplicial sets. To see that the
gn define a map on |X|, let & € A°([n],[k]) (see Definition 15.11.1), and let
(0,8) be a simplex of Xn x A[k]; then gr¢(c,8) = gk(o,a*(B)) = gk(o,Ba) =
(Ba)t (o) = Bral(o) = gn (a’,‘(a),ﬁ) = gn9(0, B). Thus, the g, combine to define
g: | X| — (diag X).

We first show that gf = lgieg x)- If 0 € (diag X)n = Xpp, then gf(o) =
gn(U, 1) = (1[n])*(a) =0.

We now show that fg = 1)x|. If 0 € Xpn, then fg(0, 1) = f((Ln))u(0)) =
f(o) = (0,1n)) in |X|, and so it is sufficient to show that every simplex of |X| is
equivalent to one of the form (0, 1j)). If (0, @) is a k-simplex of X, x A[n], then o €
X, and o € A%([n], [k]), and so (o, ) is a k-simplex of X, x A[k]. We have
o, 1) = (or,a"(llk])) = (0,a) and Yo, 1) = (a(or), l(x)) and (o) € Xk, and
so the simplex of | X | represented by (o, ) is also represented by (o(a), ). O

THEOREM 15.11.7 (A. K. Bousfield and E. M. Friedlander, [13]). If f: X —= Y
is a map of bisimplicial sets such that

(1) as a map of horizontal simplicial objects in the category of vertical sim-
plicial sets (i.e., (Xn)x = Xn k), f is a Reedy fibration, and

(2) as a map of vertical simplicial objects in the category of horizontal sim-
plicial sets (i.e., (Xn)x = Xgn), f is an objectwise fibration (i.e., every
induced map X, n — Y., is a fibration of simplicial sets),

then the induced map of diagonals diag f: (diag X') — (diagY’) is a fibration of
simplicial sets.

PrOOF. This is (13, Lemma B.9]. O

DEFINITION 15.11.8. If X is a bisimplicial set, i.e., an object of S84, and
Y is a simplicial set, then Map(X,Y) is the cosimplicial simplicial set given by
Map(X,Y)” = Map(X,,Y), with coface and codegeneracy maps induced by the
face and degeneracy maps of X.
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THEOREM 15.11.9. If X: A°® — 8S is a bisimplicial set, Y: A — §S js a
cosimplicial simplicial set, and Z is a simplicial set, then there is a natural isomor-
phism of simplicial sets

Map(X ®a Y,Z) =~ Map(Y,Map(X, Z)).

PRrROOF. We have the coequalizer diagram of simplicial sets

[
X, xY" = HX,,xY" - X®aY.
(o [al=[mhea v oax0
Since the functor — x Afk]: SS — SS is a left adjoint, the diagram
XpxY"x Ak 3 [[XaxY"x Ak = (X@aY) x Al
(o: [n]—[m]}ea n>0
is also a coequalizer diagram, and so we have the equalizer diagram
SS((X ®a Y) x A[k], Z) — [] SS(Xn x Y™ x A[k], 2)
n>0
=3 11 S8(Xm x Y™ x AlK], Z)
(o: [nl-Imhea
which is isomorphic to the diagram
SS((X ®a Y) x A[k], Z) — [ SS(Y™ x Ak}, Map(Xn, Z))
n>0
= 11 SS(Y™ x Alk], Map(Xm, Z)).
(o: Inl—[mhea
This implies that the diagram

Map(X ®aY,Z) — || Map(¥™, Map(X ., 2))

n>0
=[]  Map(Y", Map(Xm, 2))
(o: [n]—[mhea
is an equalizer diagram, from which the result follows. O

LEMMA 15.11.10. Let € be a Reedy category and let M be a simplicial model
category. If X Is a Reedy cofibrant C-diagram in M and Y is a fibrant object
of M, then the C°P-diagram of simplicial sets Map(X,Y’) is Reedy fibrant (see
Proposition 15.1.5).

ProoF. If a is an object of € and L, X is the latching object of X at o (see
Definition 15.2.5), then Proposition 15.2.4 implies that there are natural isomor-
phisms

Map(LoX,Y) = Ma.p( colim X, Y)
8(€lo)
~ lim Map(X,Y)
8(Cla)r
~ lim_ Map(X,Y)
B(al C°P)
= M, Map(X,Y) ,
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i.e., Map(L,X,Y) is naturally isomorphic to the matching object at o of the €°P-
diagram Map(X,Y). Since the latching map L,X — X, is a cofibration and
Y is fibrant, Proposition 9.3.1 implies that the matching map Map(X,,Y) —
M, Map(X,Y) is a fibration, and so Map(X,Y) is a Reedy fibrant C°°-diagram of
simplicial sets. a

THEOREM 15.11.11. If f: X — Y is a map of bisimplicial sets such that
fa: Xn — Y, is a weak equivalence of simplicial sets for every n > 0, then the
induced map of realizations | f|: | X | — |Y| is a weak equivalence of simplicial sets.

Proor. It is sufficient to show that if Z is a fibrant simplicial set, then the
induced map If“: Map(lYI, Z) — Ma.p(|X|, Z) is a weak equivalence (see Corol-
lary 9.7.5).

Corollary 15.8.8 implies that X and Y are Reedy cofibrant. Since Z is fi-
brant, Lemma 15.11.10 implies that the map Map(Y, Z) — Map(X, Z) is a map
of Reedy fibrant cosimplicial simplicial sets, and Corollary 9.3.3 implies that it
is a Reedy weak equivalence of cosimplicial simplicial sets. Since A (see Defini-
tion 15.1.15) is a cofibrant cosimplicial simplicial set (see Corollary 15.9.11), the
map Map(A,Map(Y,Z)) — Map(A,Map(X,Z)) is a weak equivalence of sirn-
plicial sets (see Corollary 9.3.3 and Theorem 15.3.4). This is isomorphic to the
map Map(Y ®a A,Z) — Map(X ®a A, Z) (see Theorem 15.11.9), which is the
definition of the map Map(|Y'|,Z) — Map(| X|, Z) (see Definition 15.11.1). O

CoroLLARY 15.11.12. If X is a simplicial object in the category of simplicial
sets in which all the face and degeneracy operators are weak equivalences, then the
natural map Xg — |X| (defined as the composition Xqo — diag X =~ |X|; see
Definition 15.11.5) is a weak equivalence.

PRrRoOF. This follows from Theorem 15.11.11. 0







CHAPTER 16
Cosimplicial and Simplicial Resolutions

If M is a simplicial model category and W — X is a cofibrant approximation
to X, then the cosimplicial object X in which X™ = W ® A[n] is a cosimplicial
resolution of X. Dually, if M is a simplicial model category and ¥ — Z is a
fibrant approximation to Y, then the simplicial object Y in which ¥, = 240} s
a simplicial resolution of Y. In this chapter, we define cosimplicial and simplicial
resolutions in an arbitrary model category (see Definition 16.1.2), and establish a
number of their technical properties. The constructions of this chapter will be used
in Chapter 17 to define homotopy function complexes between objects in a model
category (see Definition 17.4.1) and in Chapter 19 to define homotopy colimits
and homotopy limits of diagrams in model categories (see Definition 19.1.2 and
Definition 19.1.5).

In Section 16.1 we define cosimplicial and simplicial resolutions of objects and
maps, and we establish existence and uniqueness theorems. In Section 16.2 we show
that left Quillen functors preserve cosimplicial resolutions of cofibrant objects and
that right Quillen functors preserve simplicial resolutions of fibrant objects.

In Section 16.3 we define the realization X ® K of a cosimplicial object X in M
and a simplicial set K. This is an object of M that is the colimit of a diagram of the
X, indexed by the simplices of the simplicial set K. If M = Top and X" = |A[n]|,
then X ® K is the geometric realization of K (see Example 16.3.5). Dually, we
also define the corealization YX of a simplicial object ¥ in M and a simplicial set
K. This is an object of M that is the limit of a diagram of the Y, indexed by the
simplices of K.

If X is a simplicial object in M and Y is an object of M, then there is a simplicial
set M(X,Y) in which M(X,Y), = M(X™,Y) (with face and degeneracy operators
induced by the coface and codegeneracy operators of X ). Dually, if X is an object of
M and Y is a simplicial object in M, then there is a simplicial set M(X,Y") in which
M(X,Y)n =M(X,Y,), and if X is a cosimplicial object in M and Y is a simplicial
object in M then there is a bisimplicial set M(X,Y") in which M(X,Y ) =
M(X*,Y,) (see Notation 16.4.1). We will use these constructions in Chapter 17
to define homotopy function complexes (see Definition 17.1.1, Definition 17.2.1, and
Definition 17.3.1). In Section 16.4 we establish some adjointness properties for these
constructions, and we use these in Section 16.5 to prove several homotopy lifting
extension theorems (see Theorem 16.5.2, Theorem 16.5.13, and Theorem 16.5.18).

If M is a simplicial model category and X is an object of M, then the cosim-
plicial object X in which X™ = X ® A[n] will not be a cosimplicial resolution of X
unless X is cofibrant. In Section 16.6 we define cosimplicial and simplicial frame:
on an object to describe this situation, and we show that a cosimplicial resolution
of an object is exactly a cosimplicial frame on a cofibrant approximation to that

317
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object (with dual definitions and results for simplicial frames.) These will be used
in Chapter 19 to define homotopy colimit and homotopy limit functors. .

If € is a Reedy category, X is a C-diagram in a model category M, and X is
a natural cosimplicial frame on X, then even if X is a Reedy cofibrant diagram
it need not be true that X is a Reedy cofibrant diagram of cosimplicial objects
in M. (A dual statement applies to sinplicial frames.) In Section 16.7 we define
a Reedy frame on a diagram (see Definition 16.7.8) as one in which this difficulty
does not arise, and we obtain existence and unigueness results (see Theorem 16.7.6,
Proposition 16.7.11, and Theorem 16.7.14). These will be used in Chapter 19 to
discuss homotopy colimits of Reedy cofibrant diagrams and homotopy limits of
Reedy fibrant diagrams (see Theorem 19.9.1).

16.1. Resolutions
NOTATION 16.1.1. Let M be a model category.

e The category of cosimplicial objects in M will be denoted M2.

o The category of simplicial objects in M will be denoted MA™ .

e If X is an object of M, then
— the constant cosirnplicial object at X will be denoted cc, X, and
— the constant simplicial object at X will be denoted cs. X .

DeFINITION 16.1.2. Let M be a model category and let X be an object of M.

() e A cosimplicial resolution of X is a cofibrant approximation (see Def-
inition 8.1.2) X —ccy X to cc X (see Notation 16.1.1) in the Reedy
model category structure (see Definition 15.3.3) on M4,

o A fibrant cosimplicial resolution is a cosimplicial resolution in which
the weak equivalence X — cc, X is a Reedy trivial fibration.

We will sometimes use the term cosimplicial resolution to refer to the

object X without explicitly mentioning the weak equivalence X — cc, X.

(2) o A simplicial resolution of X is a fibrant approximation cs. X — X
to ¢s, X in the Reedy model category structure on M2,

o A cofibrant simplicial resolution is a simplicial resolution in which
the weak equivalence cs.X — X is a Reedy trivial cofibration.

We will sometimes use the term simplicial resolution to refer to the

object X without explicitly mentioning the weak equivalence cs, X — X.

PROPOSITION 16.1.3. Let M be a simplicial model category.

(1) If X is an object of M and W — X is a cofibrant approximation to X,
then the cosimplicial object W in which W™ = W ® A|n] is a cosimplicial
resolution of X.

(2) IfY is an object of M and Y — Z is a fibrant approximation to Y, then
the simplicial object Z in which 211 = Z8M js a simplicial resolution of
Y.

PRrROOF. We will prove part 1; the proof of part 2 is similar.

Since all of the inclusions A[0] — Afn] are trivial cofibrations and W is cofi-
brant, all of the maps W =~ W ®A[0] — W ® A[n] are trivial cofibrations (see Prop-
osition 9.3.9). Thus, W is weakly equivalent to cc.X. Since each 3A[n] — Aln] is
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a cofibration and W is cofibrant, each latching map W ® 8A[n] —» W ® A[n] (see
Lemma 9.2.1) is a cofibration, and so W is cofibrant. O

COROLLARY 16.1.4. Let M be a simplicial model category.

(1) If X is a cofibrant object of M, then the cosimplicial object X in which
X"=X® Aln] Is a cosimplicial resolution of X.

(2) IfY is a fibrant object of M, then the simplicial object Y in which ¥, =
Y2 js a simplicial resolution of Y.

Proor. This follows from Proposition 16.1.3. O

The next two propositions show that if X is an object in a model category
and X - cc.X is a c031mp11c1a.l resolution of X, then X X0 -, X is a cofibrant
approximation to X and Xlisa cylinder object for X0, Thus, a cosimplicial
resolution of X is a sort of collection of “higher cylinder objects” for a cofibrant
approximation to X . Dually, a simplicial resolution is a sort of collection of “higher
path objects” for a fibrant approximation to X.

PROPOSITION 16.1.5. Let M be a model category and let X be an object of M.

(1) 1If X — cc.X is a cosimplicial resolution of X (see Definition 16.1.2),
then X° — X is a cofibrant approximation to X. X — ce X is a
fibrant cosimplicial resolution of X, then X9 s X s a fibrant cofibrant
approximation to X.

(2) Ifesa X — X isa simplicial resolution of X, then X — /)-(\0 is a fibrant
approximation to X. Ifcs.X — X is a cofibrant simplicial resolution of
X, then X — X is a cofibrant fibrant approximation to X.

PROOF. This follows from Proposition 15.3.11. 0

PROPOSITION 16.1.6. Let M be a model category.
(1) X isa cosimplicial resolution in M, then X011 X0 Lud, X! LR X0
is a cylinder object (see Definition 7.3.2) for X0,
(2) IfX isa simplicial resolution in M, then /X\o 2o, /X\ Goxd, X X Xo is
a path object for /}-{\0.

Proor. This follows directory from the definitions. O

16.1.7. Existence of functorial resolutions.

DEFINITION 16.1.8. Let M be a model category and let X be a subcategory of

(1) A functorial cosimplicial resolution on X is a pair (F, 1) in which F: X —
MA is a functor and 1 is a natural transformation such that ix: FX —
cc. X is a cosimplicial resolution of X for every object X of X.

(2) A functorial simplicial resolution on X is a pair (G, j) in which G: X —
M2 is a functor and j is a natural transformation such that jx : cs. X —
GX is a simplicial resolution of X for every object X of XK.

PROPOSITION 16.1.9. Let M be a model category.
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(1) There is a functorial cosimplicial resolution (F,1) on M such that for every
object X of M the cosimplicial resolution ix: FX — cc,X is a fibrant
cosimplicial resolution of X

(2) There is a functorial simplicial resolution (G, j) on M such that for every
object X of M the simplicial resolution jx : cs, X — GX is a cofibrant
simplicial resolution of X

PROOF. This follows from Proposition 8.1.17. ]
16.1.10. Uniqueness of resolutions.
DEerNiTION 16.1.11. Let M be a model category and let X be an object of M.

1) x4 cce X and x’ LR cc. X are co&mphma.l resolutions of X then a
map of coszmplzczal resolutions from (X i) to (X’ ') isamap g: XX
such that g = 1.

(2) HesuX 2, X and csy X j—'» X7 are simplicial resolutions of X, then a map
of simplicial resolutions from (/)E,j) to (/)E',j') is a map g: X — X’ such
that gj = j'.

LEMMA 16.1.12. Let M be a model category and let X be an object of M.
(1) If (X,3) and (X', ') are cosimplicial resolutions of X and g: X — X' is
a map of cosimplicial resolutions, then g is a Reedy weak equivalence.
(2) If X, j) and (X', j') are simplicial resolutions of X and g: XoX'isa
map of simplicial resolutions, then g is a Reedy weak equivalence.

Proor. This follows from Lemma 8.1.5. O

PROPOSITION 16.1.13. Let M be a model category and let X be an object of

(1) If X — cc, X is cosimplicial resolution of X and X’ — cc.X is & fibrant
cosimplicial resolution of X, then there is a map X - X' of cosimplicial
resolutions, unique up to homotopy over cc,X, and any such map is a
weak equivalence. .

(2) Ifes X — X is a simplicial resolution of X and cs:Z( - )/(i is a cofibrant
simplicial resolution of X, then there is a map X' — X of simplicial
resolutions, unique up to homotopy under cs.X, and any such map is a
weak equivalence.

Proor. This follows from Proposition 8.1.7. d

DEFINITION 16.1.14. Let M be a model category and let X be an object of M.

(1) The category CRes(X) is the category whose objects are cosimplicial res-
olutions of X and whose morphisms are maps of cosimplicial resolutions.

(2) The category SRes(X) is the category whose objects are simplicial reso-
lutions of X and whose morphisms are maps of simplicial resolutions.

PROPOSITION 16.1.15. Let M be a model category and let X be an object of
M.
(1) The classifying space B CRes(X) of the category of cosimplicial resolutions
of X (see Definition 16.1.14) is contractible (see Definition 14.3.1).
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(2) The classifying space B SRes(X) of the category of simplicial resolutions
of X (see Definition 16.1.14) Is contractible (see Definition 14.3.1).

Proor. This follows from Theorem 14.6.2. O

PROPOSITION 16.1.16. Let M be a model category and let K be a subcategory
of M.

(1) For every small category D of functorial cosimplicial resolutions on X (see
Definition 14.6.7) there is a small category D’ of functorial cosimplicial
resolutions on X such that D C D' and BD' is contractible.

(2) For every small category D of functorial simplicial resolutions on X (see
Definition 14.6.7) there is a small category D’ of functorial simplicial res-
olutions on X such that D C D' and BD' is contractible.

PRroOOF. This follows from Theorem 14.6.8. O

PROPOSITION 16.1.17. Let M be a model category and let X be an object of
M.

(1) Any two cosimplicial resolutions of X are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences.

(2) Any two simplicial resolutions of X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences.

Proor. This follows from Proposition 16.1.15. 0
PROPOSITION 16.1.18. Let M be a model category and let X be a subcategory
of M.

(1) Any two functorial cosimplicial resolutions on K are connected by an
essentially unique zig-zag (see Definition 14.4.2) of weak equivalences.

(2) Any two functorial simplicial resolutions on X are connected by an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences.

Proor. This follows from Proposition 16.1.16. 0

16.1.19. Resolutions of maps.

DEFINITION 16.1.20. Let M be a model category, and let g: X — Y be a map
in M.
(1) A cosimplicial resolution of g consists of a cosimplicial resolution X -

ccx X of X, a cosimplicial resolution Y ¢ Y of Y, and a map §: X -
¥ that makes the square

X——y

|

cc X —ce Y

commute.
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(2) A simplicial resolution of g consists of a simplicial resolution ncs, X — X
of X, a simplicial resolution cs,Y — Y of Y, and a map §: X — ¥ that
ma.kes the square

cs, X — cs. Y

commute.

REMARK 16.1.21. The effect of Definition 16.1.2 and Definition 16.1.20 is that

¢ a cosimplicial resolution of an object or map in a model category is exactly
a Reedy cofibrant approximation to a constant cosimplicial object or map,
and
e a simplicial resolution of an object or map in a model category is exactly
a Reedy fibrant approximation to a constant simplicial object or map.
This is the explanation of the terminology “fibrant cosimplicial resolution” and
“cofibrant simplicial resolution”.

PROPOSITION 16.1.22. Let M be a model category and let g: X — Y be a map
in M.
(1) There exists a natural cosimplicial resolution §: X — Y of g such that

X and Y are fibrant cosimplicial resolutions of, respectively, X and Y,
and § is a Reedy cofibration.

(2) There exists a natural simplicial resolution §: X — ¥ of g such that X
and Y are cofibrant simplicial resolutions of, respectively, X and Y, and
§ Is a Reedy fibration.

Proor. This follows from Proposition 8.1.23. a

PROPOSITION 16.1.23. Let M be a model category and let g: X — Y be a map
in M.
(1) IfX — cc X is a cosimplicial resolution of X and v cc.Y is a fibrant
cosimplicial resolution of Y, then there exists a resolution §: X Y of
g, and § is unique up to homotopy in (M2 [ ce,Y).
(2) Ifes.Y — Visa simplicial resolution of Y and ¢s, X — /)E is a cofibrant
simplicial resolution of X, then there exists a resolution §: X ¥ of g,
and § is unique up to homotopy in (cse X | MA).

ProoOF. This follows from Proposition 8.1.25. a

PROPOSITION 16.1.24. If M is a model category and g: X — Y is a weak equiv-
alence in M, then every cosimplicial resolution of g and every simplicial resolution
of g are Reedy weak equivalences.

ProOOF. This follows from the “two out of three” axiom for weak equivalences.
O
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16.1.25. Recognizing resolutions.

DEFINITION 16.1.26. Let M be a model category.

() I Xisa cosimplicial object in M, then we will say that Xisa cosimplicial
resolution if there is an object X in M and a map X — cc.X thatis a
cosimplicial resolution of X (see Definition 16.1.2).

(2) 1t Y is a simplicial object in M, then we will say that ¥ is a simplicial
resolution if there is an object Y in M and a map cs.Y — Y that is a
simplicial resolution of Y.

PROPOSITION 16.1.27. Let M be a model category.

(1) If X is a cosimplicial object in M, then X is a cosimplicial resolution (see
Definition 16.1.26) if and only if X is Reedy cofibrant and all of the coface
and codegeneracy operators of X are weak equivalences.

(2) IfY is a simplicial object in M, then Y is a simplicial resolution if and
only if Y is Reedy fibrant and all of the face and degeneracy operators of
Y are weak equivalences.

PRrRooOF. We will prove part 1; the proof of part 2 is dual.

If X is a cosimplicial resolution, then it follows directly from the definitions
that X is Reedy cofibrant and all of the coface and codegeneracy operators of X
are weak equivalences. For the converse, the map X — cc. X 0 defined on X" as
any n-fold iterated coface map is a cosimplicial resolution of X o 0

LeMMA 16.1.28. Let M be a model category.

(1) Ifi: A — B is a weak equivalence of cosimplicial resolutions in M, then
there Is a natural factorization of i as A & C 5 B such that C is a
cosimplicial resolution in M, q is a Reedy trivial cofibration, and r has a
right inverse that Is a Reedy trivial cofibration.

(2) If p: X — Y is a weak equivalence of simplicial resolutions in M, then
there is a natural factorization of p as X % Z 5+ Y such that Z is a
simplicial resolution in M, r is a Reedy trivial fibration, and ¢ has a left
inverse that is a Reedy trivial fibration.

PROOF. This follows from Lemma 7.7.1 and Proposition 16.1.27. a

16.2. Quillen functors and resolutions

PROPOSITION 16.2.1. Let M and N be model categories and let F: M2 N :U
be a Quillen pair (see Definition 8.5.2).

(1) If X is a cofibrant object of M anclzi1 — cc. X Is a cosimplicial resolution
of X (see Definition 16.1.2), then FX — cc.FX is a cosimplicial resolution
of FX.

(2) IfY is a fibrant object of N and ¢cs.Y — Visa simplicial resolution of
Y, then cs, . UY — UY isa simplicial resolution of UY .

ProOOF. We will prove part 1; the proof of part 2 is dual. ~

Corollary 15.4.2 implies that FX is Reedy cofibrant. Since X and X™ for all
n > 0 are cofibrant, Proposition 8.5.7 implies that FX — cc,FX is a Reedy weak
equivalence. 4
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COROLLARY 16.2.2. Let € be a Reedy category, let M and N be small categories,
and let F: M 2 N :U be a Quillen pair.

(1) Ifi: A — B is amap of cofibrant objects in M and i: A — B is a cosimpli-
cial resolution of 1 such that 7 is a Reedy cofibration, then F7: FA - FB
is a cosimplicial resolution of F'i and F7 is a Reedy cofibration.

(2) Ifp: X — Y isa map of fibrant objects in N and p: X Yisa simplicial
resolution of p such that p is a Reedy fibration, then Up is a simplicial
resolution of Up and Up is a2 Reedy fibration.

Proor. This follows from Proposition 15.4.1 and Proposition 16.2.1. 0

16.3. Realizations

This section contains a number of technical results needed for the homotopy
lifting extension theorems of Section 16.5.

DEFINITION 16.3.1. Let M be a model category.
(1) If X is a cosimplicial object in M and K is a simplicial set, then X @ K is
defined to be the object of M that is the colimit of the (AK)-diagram in M
(see Definition 15.1.16) that takes the object Aln] — K of AK = (A | K)

to X" and takes the commutative triangle

(16.3.2) Aln) ——F——— A[K|

K

to the map a,: X" — Xk,

(2) If Y is a simplicial object in M and K is a simplicial set, then Y'¥ is
defined to be the object of M that is the limit of the (A°PK)-diagram in
M (see Definition 15.1.16) that takes the object A[n] — K of APK =
(A ] K)°P to Y, and takes the commutative triangle (16.3.2) to the map
Y, =Y,

PROPOSITION 16.3.3. If M is a model category, then the constructions of Defi-
nition 16.3.1 are natural in X, Y and K.

PRrOOF. This follows directly from the definitions. ]

PRrOPOSITION 16.3.4. If M =SS, the cosimplicial object X is the cosimplicial
standard simplex (see Definition 15.1.15), and K is a simplicial set, then X ® K is
naturally isomorphic to K.

Proor. This is a restatement of Proposition 15.1.20. [}

ExaMpPLE 16.3.5. If M = Top, the cosimplicial object X is the geometric
realization of the cosimplicial standard simplex (i.e, X™ = |Aln]|), and K is a
simplicial set, then X ® K is the usual geometric realization of K.

LeMmMa 16.3.6. Let M be a model category.

(1) If B is a cosimplicial object in M and n > 0, then B ® A[n] is naturally
isomorphic to B™.
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(2) If X is a simplicial object in M and n > 0, then XAk naturally
isomorphic to X .

PROOF. The nondegenerate n-simplex of Aln| is a terminal object of A(A[n])
and an initial object of A°P(A[n]). 0O

LeMmma 16.3.7. Let M be a model category.
(1) If B is a cosimplicial object in M and n > 0, then B ® 8A[n]| is naturally
isomorphic to L, B, the latching object of B at [n] (see Definition 15.2.5).
(2) If X is a simplicial object in M and n > 0, then X920 js naturally
isomorphic to M, X, the matching object of X at [n].

ProoF. We will prove part 1; the proof of part 2 is dual.
If n > 0, then the latching object of B at n is

L.B = colim B= c‘?lim B
JAUA AT

(see Corollary 15.2.9). Since A([k],[n]) is naturally isomorphic to the set of k-
simplices of Aln], this is the colimit of the diagram with one copy of B* for every
k-simplex of A[n] for k < n. The result now follows from Definition 16.3.1. 3

PROPOSITION 16.3.8. Let M be a model category.
(1) If B is a cosimplicial object in M and n > 0, then the latching map

(see Definition 15.2.5) of B at [n] is naturally isomorphic to the map
B ® 0A[n] —» B® Aln).

(2) If X is a simplicial object in M and n > 0, then the matching map of X
at [n] is naturally isomorphic to the map X2l . x4},

ProoF. This follows from Lemma 16.3.6, Lemma 16.3.7, and the proof of
Lemma 16.3.7. 0

COROLLARY 16.3.9. Let M be a model category.
(1) If B is a Reedy cofibrant cosimplicial object in M and n > 0, then both
B ® 0A[n] and B ® A[n] are cofibrant objects of M.
(2) If X is a Reedy fibrant simplicial object in M and n > 0, then both X 4!
and X221 are fbrant objects of M.

ProOF. This follows from Proposition 16.3.8 and Corollary 15.3.12. a

PROPOSITION 16.3.10. Let M be a model category.

(1) If A — B is a Reedy cofibration of cosimplicial objects in M and n > 0,
then the induced map A @ An] Hagaap) B ® 0An] — B® Aln] is a
cofibration in M that is a trivial cofibration if A — B Is a Reedy trivial
cofibration.

(2) If X —Y is a Reedy fibration of simplicial objects in M and n > 0, then
the induced map XAk _, yaln Xy oa(n] X221 s a fibration in M that
is a trivial fibration if X — Y Is a Reedy trivial fibration.

Proor. This follows from Proposition 16.3.8 and Theorem 15.3.15. a

COROLLARY 16.3.11. Let M be a model category.
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(1) If A — B is a Reedy cofibration of Reedy cofibrant cosimplicial objects
in M and n > 0, then the induced map A ® Aln] L sgaam B ® dA[n] —
B ® A[n] is a cofibration between cofibrant objects in M that is a trivial
cofibration if A — B is a Reedy trivial cofibration.

(2) If X — Y is a Reedy fibration of Reedy fibrant simplicial objects in M
and n > 0, then the induced map XM — y & xyoam XA s o
fibration between fibrant objects in M that is a trivial fibration if X — Y
is a Reedy trivial fibration.

Proor. We will prove part 1; the proof of part 2 is dual.

Proposition 16.3.8 and Corollary 16.3.9 imply that A ® A[n] Hsgsaim; B ®
8A[n] and B ® Afn| are cofibrant objects, and so the result follows from Proposi-
tion 16.3.10. a

ProposITION 16.3.12. Let M be a model category.

(1) If X is a Reedy cofibrant cosimplicial object in M and K is a simplicial
set, then the (AK)-diagram in M whose colimit is defined to be X ® K
(see Definition 16.3.1) is a Reedy cofibrant diagram (see Example 15.1.19).

(2) IfY is a Reedy fibrant simplicial object in M and K is a simplicial set,
then the (A°PK)-diagram in M whose limit is defined to be Y¥ (see
Definition 16.3.1) is a Reedy fibrant diagram.

PROOF. We will prove part 1; the proof of part 2 is similar.

If 0: Aln] — K is an object of AK, then the latching category a(ﬁ la) of
AK at o has an object for each k < n and each iterated coface operator a: Afk] —
Aln]. Thus, the latching category of AK at o is isomorphic to the latching category
of A at [n], and the latching map of our diagram at o is isomorphic to the latching
map of X at [n]. Since X is Reedy cofibrant, so is our diagram. O

16.4. Adjointness

This section contains technical results for various simplicial sets constructed
from cosimplicial objects and simplicial objects in a category (see Notation 16.4.1).
These constructions will be used in Chapter 17 to define homotopy function com-
plexes between objects in a model category (see Definition 17.1.1, Definition 17.2.1,
and Definition 17.3.1).

NOTATION 16.4.1. Let M be a model category.

(1) If X is a cosimplicial object in M and Y is an object of M, then M(X,Y)
will denote the simplicial set, natural in both X and Y, defined by
M(X,Y), = M(X",Y), with face and degeneracy maps induced by the
coface and codegeneracy maps in X.

(2) If X is an object of M and Y is a simplicial object in M, then M(X,Y’)
will denote the simplicial set, natural in both X and Y, defined by
M(X,Y), = M(X,Y,), with face and degeneracy maps induced by those
inY.

(3) If X is a cosimplicial object in M and Y is a simplicial object in M,
then M(X,Y") will denote the bisimplicial set, natural in both X and Y,
defined by M(X,Y)nx = M(X*,Y ), with face and degeneracy maps
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induced by the coface and codegeneracy maps in X and the face and
degeneracy maps in Y.

(4) If X is a cosimplicial object in M and Y is a simplicial object in M, then
diag M(X,Y) will denote the simplicial set, natural in both X and Y,
defined by (diagM(X,Y)) = M(X",Y,), with face and degeneracy
maps induced by the coface and codegeneracy maps in X and the face
and degeneracy maps in Y.

THEOREM 16.4.2. Let M be a model category.

(1) If A is a cosimplicial object in M, X is an object of M, and K is a
simplicial set, then there is a natural isomorphism of sets

SS(K, M(A, X)) ~M(A® K, X)

(see Notation 16.4.1 and Definition 16.3.1).
(2) If B is an object of M, Y is a simplicial object in M, and K is a simplicial
set, then there is a natural isomorphism of sets

SS(K,M(B,Y)) =~ M(B,Y¥)
(see Notation 16.4.1 and Definition 16.3.1).

PrOOF. We will prove part 1; the proof of part 2 is similar.

Since A ® K is the colimit of a (AK)-diagram, a map in M from A ® K to
X corresponds to a coherent set of maps from each object in the diagram to X.
Thus, a map A ® K — X is defined by a map A™ — X for each n-simplex of K
that commute with the simplicial operators. This is also a description of a map of
simplicial sets from K to M(A, X). D

PROPOSITION 16.4.3. Let M be a model category.

(1) If A is a cosimplicial object in M, € is a small category, and K : € — SS
is a C-diagram of simplicial sets, then the natural map colime(A® K) —
A ® (colime K) is an isomorphism.

(2) If X is a simplicial object in M, € is a small category, and K: € — SS
is a C-diagram of simplicial sets, then the natural map X(c°ime ¥) _,
limeer (X ) is an isomorphism.

Proor. This follows from the adjointness relations of Theorem 16.4.2. ]

LeMMA 16.4.4. Let M be a model category, and let (K, L) be a pair of simplicial
sets.
(1) If A is a Reedy cofibrant cosimplicial object in M, then the map AQ L —
A ® K is a cofibration in M.
(2) If X is a Reedy fibrant simplicial object in M, then the map X¥ — Xt
is a fibration in M.

PRrOOF. Since an inclusion I, — K of simplicial sets is a transfinite composition
of pushouts of the maps 8A[n] — A[n] for n > 0 (see Proposition 10.2.18), the map
A®L — A® K is a transfinite composition of pushouts of the maps A® 0A[n] —
A®Aln] for n > 0, and so part 1 follows from Proposition 16.4.3, Proposition 16.3.8,
and Proposition 10.3.4. The proof of part 2 is similar. 0

PROPOSITION 16.4.5. Let M be a model category.
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(1) Ifi: A — B is a map of cosimplicial objects in M, p: X — Y is 2 map in
M, and (K, L) is a pair of simplicial sets, then the following are equivalent:
(a) The dotted arrow exists in every solid arrow diagram of the form

L —— M(B, X)
| |
K —— M(A, X) xpeay) M(B,Y) .
(b) The dotted arrow exists in every solid arrow diagram of the form

A®KUA®LB®L—%X

| |

B®K——Y .

(2) Ifi: A— BisamapinM, p: X — Y is a map of simplicial objects in M,
and (K, L) is a pair of simplicial sets, then the following are equivalent:
(a) The dotted arrow exists in every solid arrow diagram of the form

L—————M(B, X)
b

|

K ——M(A, X) xva,y)M(B,Y) .
(b) The dotted arrow exists in every solid arrow diagram of the form
A—— XK
|l
B—— XL xy YH
Proor. This follows from Theorem 16.4.2. a

PROPOSITION 16.4.6 (Partial homotopy lifting extension theorem). Let M be
a model category.
(1) Ifi: A — B is a Reedy cofibration of cosimplicial objectsinM,p: X —» Y
is a fibration in M, and at least one of i and p is also a weak equivalence,
then the map of simplicial sets

M(B, X) hd M(A, X) XM(A,Y) M(B, Y)

is a trivial fibration.

(2) Ifi: A — B is a cofibration in M, p: X — Y is a Reedy fibration of sim-
plicial objects in M, and at least one of ¢ and p is also a weak equivalence,
then the map of simplicial sets

M(B, X) — M(A, X) xm(a,y)M(B,Y)
is a trivial fibration.

PRrOOF. A map of simplicial sets is a trivial fibration if and only if it has the
right lifting property with respect to the maps dA[n] — A[n] for n > 0, and so the
result follows from Proposition 16.4.5 and Proposition 16.3.10. 0
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Proposition 16.4.6 may seem to be incomplete in that it does not assert the
full homotopy lifting extension theorem. We will show in Theorem 16.5.2 that if
the cosimplicial and simplicial objects are assumed to be cosimplicial and simplicial
resolutions (see Definition 16.1.26) then the full homotopy lifting extension theorem
does hold. Example 16.4.7 shows that it does not hold without the assumption that
the cosiraplicial or simplicial objects are resolutions.

EXaMPLE 16.4.7. We present here an example of a model category M, a Reedy
cofibrant cosimplicial object B in M, and a fibration p: X — Y in M such that
the map of simplicial sets M(B, X) — M(B,Y) is not a fibration. (This implies
that the partial homotopy lifting extension theorem of Proposition 16.4.6 is the
strongest result possible without assuming that the cosimplicial objects A and B
are cosimplicial resolutions; see also Theorem 16.5.2.)

Let M be the category SS. of pointed simplicial sets. Let B be the cosimplicial
object in M that is the free diagram on S! generated at [1] (see Definition 11.5.25
and Definition 15.1.8), so that B™ = /4 () S* (where A([1], [n]) is the set of 1-
sirnplices of A[n]). Corollary 15.6.6 implies that B is a Reedy cofibrant cosimplicial
object.

Let p: X — Y be any fibration of fibrant pointed simplicial sets for which the
induced homomorphism of fundamental groups p,: m X — mY is not surjective.
We will show that the map of simplicial sets M(B, X) — M(B,Y) is not a fibration.

B is the wedge of three copies of S* (indexed by [0,0], (1,1], and 0, 1]), B®
is a single copy of S, and the maps d° d': B® — B! take the S! in B° to the
summand indexed by, respectively, {0,0] and [1,1]. Thus, we can define a 1-simplex
of M(B,Y) by sending the surnmands of B* corresponding to [0,0] and [1,1] to
the basepoint of Y and sending the summand S! of B' corresponding to [0, 1] to
some l-simplex of Y that represents an element of m Y that is not in the image
of p.: X — mY. If we define a O-simplex of M(B, X) by sending B° to the
basepoint of X, then we have a solid arrow diagram

A0} —— M(B, X)
All] — M(B,Y)

for which there is no dotted arrow making the triangles commute.

LEMMA 16.4.8. Let M be a model category.

(1) If A — B is a Reedy cofibration of cosimplicial objects in M, n > 1,
andn > k >0, then the induced map A ® An] U sgafn k) B ® Aln, k] —
B ® A[n] is a cofibration.

(2) If X - Y is a Reedy fibration of simplicial objects in M, n > 1, and
n >k >0, then the induced map X2 — YA x 0y XA s o
fibration.

PROOF. We will prove part 1; the proof of part 2 is similar.
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‘We have the diagram
A®An-1] HA®8A[11— 1) B®dAn—1] —— AR Aln] HA®A[n,k] B ® Aln, k]

l

B®An-1 » A® Aln] L agoam B ® AN

|

B ® Aln|

in which the square is a pushout, and so Proposition 16.3.10 implies that all of the
vertical maps are cofibrations. Our map is thus the composition of two cofibrations.
D

16.4.9. Resolutions.
LEMMA 16.4.10. If n > 1 and n > k > 0, then there is a finite sequence of

inclusions of simplicial sets
Al0] = Ko — Ky — K2 — -+ — Ky = Aln, k]
where each map K, — K, for i < p is constructed as a pushout

Afmi, L] —— K,

|

Afmy] K
with m; < n.

Proor. We let A[0] = K be vertex k of A[n]. We can then add in all the
1-simplices of A[n, k] that contain that vertex, followed by the 2-simplices of A[n, k]
that contain that vertex, etc., until we’ve added in all of Afn, k. D

LEMMA 16.4.11. Let M be a model category.
(1) If A is a cosimplicial resolution in M, n > 1, and n > k > 0, then the
natural map A ® Afn, k] - A ® Aln] is a trivial cofibration.
(2) If X is a simplicial resolution in M, n > 1, and n > k > 0, then the
natural map X2 - XA s o trivial fibration.

PRroOF. We will prove part 1; the proof of part 2 is similar.

‘We will prove the lemma by induction on n. If n = 1, then the result follows
from Lemma 16.3.6, Proposition 16.1.27, and Lemma 16.4.4.

We now assume that A @ A[m,l] — A ® A[m] is a trivial cofibration for | <
m < n. Lemma 16.4.10 implies that there is a finite sequence of maps in M

ARAD=A®Ky - A®K —- A®Ky, — -+ — AR K, = A® A[n, k]
where each A ® K; — A ® Ky for i < p is constructed as a pushout
A®A[m.,l.]———)A®K,

|

A® A[m,] ')A®Ki+1
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with m, < n. The induction hypothesis implies that each of these maps is a
trivial cofibration, and so A ® A[0] — A ® A[n, k] is a trivial cofibration. Since
A ® AJ0] - A® Aln] is a weak equivalence, the “two out of three” property of
weak equivalences implies that A ® A[n, k| — A ® A[n] is a weak equivalence and
Lemma 16.4.4 implies that it is a cofibration. 0

PROPOSITION 16.4.12. Let M be a model category.

(1) If A — B is a Reedy cofibration of cosimplicial resolutions in M, n > 1,
andn > k > 0, then the map A® A[n] I sgfn,k) B®Aln, k] — B®A(n]
is a trivial cofibration.

(2) If X — Y is a Reedy fibration of simplicial resolutions in M, n > 1, and
n > k > 0, then the map XM — xAlnH Xy Aln k) Y2 s a trivial
fibration.

PROOF. We will prove part 1; the proof of part 2 is similar.

Lemma 16.4.8 implies that our map is a cofibration, and so it remains only
to show that it is a weak equivalence. Lernma 16.4.11 implies that A ® A[n, k] —
A ® Afn] is a trivial cofibration. Since the diagram

A® Aln, k| —————— B® Aln, k]

l

A® A[n] —AQ® A[n] HA®A[n,lc] B® A[n, k]

is a pushout, the map B®An, k] - A® A[n] L gga(n,x) B ® An, k] is also a trivial
cofibration. Since Lemma 16.4.11 implies that the map B ® Aln, k] - B® An] is
a weak equivalence, the result follows from the “two out of three” property of weak
equivalences. ]

16.5. Homotopy lifting extension theorems

This section contains several versions of the homotopy lifting extension theorem
(Theorem 16.5.2, Theorem 16.5.13, and Theorem 16.5.18). These will be used in
Chapters 17 and 19 to obtain homotopy invariance results for homotopy function
complexes (see Definition 17.1.1, Definition 17.2.1, and Definition 17.3.1), homotopy
colimits (see Definition 19.1.2), and homotopy limits (see Definition 19.1.5).

16.5.1. One-sided constructions.
THEOREM 16.5.2 (The one-sided homotopy lifting extension theorem). Let M
be a model category.
(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
p: X — Y is a fibration in M, then the map of simplicial sets
M(B, X) — M(A, X) Xpm(a,v) M(B,Y)

is a fibration that is a trivial fibration if at least one of 1 and p is also a
weak equivalence.

(2) Ifi: A — B is a cofibration in M and p: X — Y is a Reedy fibration of
simplicial resolutions in M, then the map of simplicial sets

M(B, X) — M(4, X) Xm(a,y) M(B,Y)
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is a fibration that is a trivial fibration if at least one of i and p is also a
weak equivalence.

PROOF. A map of simplicial sets is a fibration if and only if it has the right

lifting property with respect to the maps A[n,k] — A[n] for n > 0 and n >
k > 0, and so the result follows from Proposition 16.4.5, Proposition 16.4.12, and
Proposition 16.4.6. O

COROLLARY 16.5.3. Let M be a model category.
(1) If B is a cosimplicial resolution in M and X is a fibrant object of M, then
M(B, X) is a fibrant simplicial set.
(2) If B is a cofibrant object of M and X is a simplicial resolution in M, then
M(B, X) is a fibrant simplicial set.

PRrRooOF. This follows from Theorem 16.5.2. O

COROLLARY 16.5.4. Let M be a model category.

(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
X is a fibrant object in M, then the map i*: M(B, X) — M(A, X) is a
fibration of simplicial sets that Is a trivial fibration if i is a Reedy trivial
cofibration.

(2) If B is a cosimplicial resolution in M and p: X — Y is a fibration in M,
then the map p.: M(B,X) — M(B,Y) is a fibration of simplicial sets
that is a trivial fibration if p is a trivial fibration.

(8) Ifi: A — B is a cofibration in M and X is a simplicial resolution in M,
then the map i*: M(B,X) — M(A4, X) is a fibration of simplicial sets
that is a trivial fibration if i is a trivial cofibration.

(4) If B is a cofibrant object of M and p: X — Y is a Reedy fibration of
simplicial resolutions in M, then the map p.: M(B,X) - M(B,Y) is a
fibration of simplicial sets that is a trivial fibration if p is a Reedy trivial
cofibration.

Proor. This follows from Theorem 16.5.2. (]

COROLLARY 16.5.5. Let M be a model category.

(1) Ifi: A — B is a Reedy weak equivalence of cosimplicial resolutions in M
and X is a fibrant object of M, then the map i*: M(B,X) — M(A, X)
is a weak equivalence of fibrant simplicial sets.

(2) If B is a cosimplicial resolution in M and p: X — Y is a weak equivalence
of fibrant objects of M, then the map p.: M{B, X) — M(B,Y) is a weak
equivalence of fibrant simplicial sets.

(3) Ifi: A — B is a weak equivalence of cofibrant objects of M and X is a
simplicial resolution in M, then the map ©*: M(B,X) — M(A,Y) is a
weak equivalence of fibrant simplicial sets.

(4) If B is a cofibrant object of M and p: X — Y is a Reedy weak equivalence
of simplicial resolutions in M, then the map p.: M(B, X) - M(B,Y) is
a weak equivalence of fibrant simplicial sets.

PROOF. This follows from Corollary 16.5.4, Corollary 7.7.2, and Corollary 16.5.3.
O

PROPOSITION 16.5.6. Let M be a model category.
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(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
j: L — K is a cofibration of simplicial sets, then the map A ® K UagL
B®L — B®XK is a cofibration in M that is a trivial cofibration if either
i or j is a weak equivalence.

(2) Ifp: X —'Y is a Reedy fibration of simplicial resolutionsinM and j: L —
K is a cofibration of simplicial sets, then the map X¥ — X7 xyr Y
is a fibration in M that is a trivial fibration if either p or j is a weak
equivalence.

Proor. This follows from Proposition 7.2.3, Proposition 16.4.5, and Theo-
rem 16.5.2. 0

THEOREM 16.5.7. Let M be a model category.

(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
j: L — K is an inclusion of simplicial sets, then the pushout corner map
AR Kl B®L — B® K is a cofibration in M that is a trivial
cofibration if at least one of i and p is a weak equivalence.

(2) If j: L — K is an inclusion of simplicial sets and p: X — Y is a Reedy
fibration of simplicial resolutions in M, then the pullback corner map
X¥ — X% %y YX is a fibration in M that is a trivial fibration if at
least one of j and p is a weak equivalence.

Proor. This follows from Proposition 7.2.3, Proposition 16.4.5, and Theo-
rem 16.5.2. ]

16.5.8. Two-sided constructions. The main theorems of this section are
the bisimplicial homotopy lifting extension theorem (Theorem 16.5.13) and the
two-sided homotopy lifting extension theorem (Theorem 16.5.18).

LemMMA 16.5.9. Let C and D be Reedy categories, let M be a complete and

cocomplete category, let X be a C-diagram in M, and let Y be a D-diagram in M.

(1) If we view M(X,Y) as a C°P-diagram in the category of D-diagrams of

sets (see Proposition 15.1.5), then for every object ¢ of € there is a natural
isomorphism of D-diagrams of sets MoM(X,Y) = M(L.X,Y).

(2) If we view M(X,Y) as a D-diagram in the category of €°P-diagrams of

sets, then for every object a of D there is a natural isomorphism of C°P-

diagrams of sets M,M(X,Y) = M(X ,M,Y).

PROOF. We will prove part 1; the proof of part 2 is similar.
Proposition 15.2.4 implies that we have natural isomorphisms

M M(X,Y) = lim _ M(XpY)
(a—B)E0b 8(a) C°P)
] lim M(Xp,Y)
(B—a)e0b8(T La)
zM( colim _ X;;,Y)
(B—a)€0b 8(T La)
=M(LX,Y) .
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DEFINITION 16.5.10. Let M be amodel category. If B is a cosimplicial object in
M and X is a simplicial object in M, then the bisimplicial set M(B, X) (for which
MB, X )i = M(Bk, X)) can be considered a simplicial object in the category
of simplicial objects in M in two ways. We define the horizontal simplicial object to
be the one whose object in degree n is M(B, X),. = M(B,X,) and the vertical
simplicial object to be the one whose object in degree k is M(B, X),.r = M(B*, X).

LEMMA 16.5.11. Let M be a model category, let B be a cosimplicial object in
M, and let X be a simplicial object in M.

(1) If we view M(B, X) as a horizontal simplicial object in the category of
simplicial sets (see Definition 16.5.10), then for every n > 0 there is a nat-
ural isomorphism of simplicial sets (see Definition 15.2.5) M, M(B, X ) =~
M(B, M, X).

(2) If we view M(B,X) as a vertical simplicial object in the category of
simplicial sets (see Definition 16.5.10), then for every n > 0 there is a
natural isomorphism of simplicial sets M,\M(B, X) =~ M(L,B, X).

Proor. This follows from Lemma. 16.5.9, letting C be the cosimplicial indexing

category and letting D be the simplicial indexing category (see Definition 15.1.8).
O

LEMMA 16.5.12. Let M be a model category, let A — B be a map of cosimpli-
cial objects in M, and let X — Y be a map of simplicial objects in M.

(1) If all bisimplicial sets are viewed as horizontal simplicial objects, then
for every n > 0 there is a natural isomorphism of simplicial sets (see
Definition 15.2.5)

M, (M(A, X) XM(A,Y) M(B,Y)) ~ M(A, MnX) XM(A,M..Y) M(B, MnY) .

(2) If all bisimplicial sets are viewed as vertical simplicial objects, then for
every n > 0 there is a natural isomorphism of simplicial sets

Mn (M(A, X) XM(A,Y) M(B, Y)) ~ M(LnA, X) XM(LnA,)_’) M(LnB,Y) .

ProoFr. This follows from Lemma 16.5.11. a

THEOREM 16.5.13 (The bisimplicial homotopy lifting extension theorem). Let
M be a model category. Ifi: A — B is a Reedy cofibration of cosimplicial res-
olutions in M and p: X — Y is a Reedy fibration of simplicial resolutions in
M, then for both the horizontal and the vertical simplicial object structures (see
Definition 16.5.10), the induced map of bisimplicial sets

M(B, X) - M(A, X) xpa,y) M(B,Y)

is a Reedy fibration of simplicial objects that is a Reedy trivial fibration if at least
one of i and p is a weak equivalence.

Proor. We will prove this for the horizontal structure; the proof for the ver-
tical structure is similar.

Theorem 15.3.15 implies that it is sufficient to show that for every n > 0 the
map

M(B, X)n
— (M(A, X) xo(a,v) M(B,Y)), XM.(M(AX)xr0avyM(B,¥)) MaM(B, X)
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is a fibration of simplicial sets that is a trivial fibration if either of 4 and p is a weak
equivalence. Lemma 16.5.11 and Lemma 16.5.12 irnply that this map is isormorphic
to the map

M(B, X )
— (M(A, X2)%m(a,Y HM(B, Y 1)) X(M(AMn X) 50 4 20, vy M(B Ma Y)Y M(B, M X)
The codomain of this map is the limit of the diagram

M(A, X)) —— M(A, Y ) ———— M(B, ¥)

l | l

M(A, Mp X) —— M(A,MnY) —— M(B, M,Y)

T

M(B,M, X)
and so our map is isomorphic to the map
M(B, X,)
— M(A, X 2)XM(A,Y )2 (a vy MAM XN (M(B, Y 0 )Xo M, v)M(B, M, X))

Since p is a Reedy fibration, the map X, — Y, xm,y M, X is a fibration of
simplicial sets, and so the result now follows from Theorem 16.5.2 and Theo-
rem 15.3.15. 0

COROLLARY 16.5.14. If M is a model category, B is a cosimplicial resolution
in M, and X is a simplicial resolution in M, then M(B,X) is a Reedy fibrant
simplicial object in both the horizontal and vertical simplicial object structures
(see Definition 16.5.10).

Proor. This follows from Theorem 16.5.13. 0

COROLLARY 16.5.15. Let M be a model category, let B be a cosimplicial reso-
lution in M, and let X be a simplicial resolution in M.

(1) If we consider the bisimplicial set M(B,X) as a horizontal simplicial
object (see Definition 16.5.10) in the category of simplicial sets (so that in
simplicial degree n we have the simplicial set M(B, X)), then M(B, X)
is a simplicial resolution of the simplicial set M(B, Xg).

(2) If we consider the bisimplicial set M(B, X) as a vertical simplicial object
in the category of simplicial sets (so that in simplicial degree n we have
the simplicial set M(B", X)), then M(B, X) is a simplicial resolution of
the simplicial set M(BO, X).

Proor. Corollary 16.5.14 implies that M(B, X) is a Reedy fibrant simpli-
cial object, and Corollary 16.5.5 implies that, for every n > 0, the natural maps
M(B, X)) = M(B, X,,) and M(By, X) = M(B,, X) are weak equivalences. O

COROLLARY 16.5.16. Let M be a model category, let B be a cofibrant object of
M with cos/ir\nplicial resolution B, and let X be a fibrant object of M with simplicial
resolution X.
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(1) If we consider the bisimplicial set M(é,/i) as a horizontal simplicial
object (see Definition 16.5.10) in the category of simplicial sets (so that in
simplicial degree n we have the simplicial set M(1~3, /)Z,,)), then M(1~3, /)Z)
is a simplicial resolution of the simplicial set M(B, X).

(2) If we consider the bisimplicial set M(B, X)) as a vertical simplicial object
in the category of simplicial sets (so that in simplicial degree n we have
tne simplicial set M(E",A/X\)), then M(1§, 5(\) is a simplicial resolution of

the simplicial set M(B, X).
ProOF. This follows from Corollary 16.5.15 and Corollary 16.5.5. ]

COROLLARY 16.5.17. Let M be a model category.

(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
X is a simplicial resolution in M then, for both the horizontal and verti-
cal simplicial object structures (see Definition 16.5.10), the induced map
i*: M(B, X) — M(A, X) is a Reedy fibration of Reedy fibrant simplicial
objects that is a Reedy trivial fibration if i is a Reedy trivial cofibration.

(2) If B is a cosimplicial resolution in M and p: X — Y is a Reedy fibration
of simplicial resolutions in M then, for both the horizontal and vertical
simplicial object structures, the induced map p.: M(B,X) — M(B,Y)
is a Reedy fibration of Reedy fibrant simplicial objects that is a Reedy
trivial fibration if p is a Reedy trivial fibration.

PrOOF. This follows from Theorem 16.5.13. ]
THEOREM 16.5.18 (The two-sided homotopy lifting extension theorem). Let M
be a model category. Ifi: A — B is a Reedy cofibration of cosimplicial resolutions

inM and p: X — Y is a Reedy fibration of simplicial resolutions in M, then the
induced map of simplicial sets

diag M(B, X) — diag M(A, X) xdiagM(A,Y) diag M(B, Y)
is a fibration of fibrant simplicial sets that is a trivial fibration if at least one of 1
and p is a weak equivalence.
ProOOF. The result follows from Theorem 16.5.13, Proposition 15.3.11, Theo-
rem 15.11.7, Proposition 15.3.13, Theorem 15.11.11, and Theorem 15.11.6. O

COROLLARY 16.5.19. If M is a model category, B is a cosimplicial resolution in
M, and X is a simplicial resolution in M, then diag M(B, X)) is a fibrant simplicial
set.

Proor. This follows from Theorem 16.5.18. 0

COROLLARY 16.5.20. Let M be a model category.

(1) Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and
X is a simplicial resolution in M, then the induced map

diagi*: diagM(B, X) — diag M(A, X)

is a fibration of fibrant simplicial sets that is a trivial fibration if i is a
Reedy trivial cofibration.
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(2) If B is a cosimplicial resolution in M and p: X — Y is a Reedy fibration
of simplicial resolutions in M, then the induced map
diagp.: diagM(B,X) — diagM(B,Y’)

is a fibration of fibrant simplicial sets that is a trivial fibration if p is a
Reedy trivial fibration.

Proor. This follows from Theorem 16.5.18 and Corollary 16.5.19. 0

COROLLARY 16.5.21. Let M be a model category.

(1) Ifi: A — B is a Reedy weak equivalence of cosimplicial resolutions in M
and X Is a simplicial resolution in M, then the induced map

diag:*: diagM(B, X) — diagM(A, X)
is a weak equivalence of fibrant simplicial sets.

(2) If B is a cosimplicial resolution in M and p: X — Y is a Reedy weak
equivalence of simplicial resolutions in M, then the induced map

diagp.: diagM(B, X) — diagM(B,Y)
is a weak equivalence of fibrant simplicial sets.

Proor. This follows from Corollary 16.5.20 and Corollary 7.7.2. ]

16.6. Frames

Proposition 16.1.5 shows how a cosimplicial resolution of an object in a model
category yields a cofibrant approximation to that object (and how a sirnplicial
resolution yields a fibrant approximation). Frames (see Definition 16.6.1) allow us
to discuss the reverse operation (see Proposition 16.6.7). Frames will also be used
to define the homotopy colimit and homotopy limit functors (see Definition 19.1.2
and Definition 19.1.5).

DEFINITION 16.6.1. Let M be a model category and let X be an object of M.
o A cosimplicial frame on X is a cosimplicial object X inM together with
a weak equivalence X — cc. X (see Notation 16.1.1) in the Reedy model
category structure (see Definition 15.3.3) on M# such that
(1) the induced map X°® — X is an isomorphism, and
(2) if X is a cofibrant object of M, then X is a cofibrant object of M2.
We will sometimes refer to X as a cosimplicial frame on X, without
explicitly mentioning the map X — cc. X. N
o A simplicial frame on X is a simplicial object X in M together with a
weak equivalence cs, X — X in the Reedy model category structure on
MA™ such that .
(1) the induced map X — X is an isomorphism, and
(2) if X is a fibrant object of M, then X is a fibrant object of MA™.
We will sometimes refer to X as a simplicial frame on X, without explicitly
mentioning the map cs,. X — X.

REMARK 16.6.2. Note that Definition 16.6.1 does not require cosimplicial frames
on non-cofibrant objects to be cofibrant or simplicial frames on non-fibrant objects
to be fibrant. This was done in order to make Proposition 16.6.4 true.
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PROPOSITION 16.6.3. Let M be a model category and let X be an object of M.
(1) If X is cofibrant, then any cosimplicial frame on X is a cosimplicial reso-

lution of X.
(2) If X is fibrant, then any simplicial frame on X is a simplicial resolution
of X.
Proor. This follows directly from the definitions. a

ProposITION 16.6.4. If M is a simplicial model category and X is an object of
M, then
o the cosimplicial object X in which X™ = X ® A[n] is 2 cosimplicial frame
on X, and ~ N
o the simplicial object Y in which Y, = X2 s 4 simplicial frame on X.

Proor. This follows from Proposition 9.5.20 and Proposition 16.1.3. |

DerInITION 16.6.5. If M is a simplicial model category and X is an object of M,
then the cosimplicial frame on X of Proposition 16.6.4 will be called the standard
cosimplicial frame on X, and the simplicial frame on X of Proposition 16.6.4 will
be called the standard simplicial frame on X.

ProOPOSITION 16.6.6. Let M be a simplicial model category.

(1) If X is an object of M, X is the standard cosimplicial frame on X (see
Proposition 16.6.23), and K is a simplicial set, then X®K is naturally
isomorphic to X @ K.

(2) If X is an object of M, X is the standard simplicial frame on X, and K
is a simplicial set, then XX is naturally isomorphic to XX.

PROOF. This follows from Proposition 16.4.3 and Proposition 15.1.20. |

PROPOSITION 16.6.7. Let M be a model category.

(1) If X is an object of M, X — X is a cofibrant approximation to X, and
X' > cc.X isa cosimplicial frame on X then the induced map X' -
cc. X Is a cosimplicial resolution of X, and every cosimplicial resolution
of X can be constructed in this way.

(2) If X is an object of M, X — X is a fibrant approximation to X, and
. X > X'isa simplicial frame on X, then the induced map cs, X — X’
is a simplicial resolution of X, and every simplicial resolution of X can be
constructed in this way.

Proor. This follows from Proposition 16.1.5. a

PROPOSITION 16.6.8. Let M be a model category.
(1) There is an augmented functor (F,i) on M2 (see Definition 8.1.12) such
that
(a) ix: FX — X is a Reedy trivial fibration for every object X of M2,
(b) (ix)%: (FX)® — X is an isomorphism for every object X of M4,
and
{c) if X° is cofibrant in M, then FX is Reedy cofibrant.
(2) There is a coaugmented functor (G,5) on M2™ (see Definition 8.1.12)
such that
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(a) jx: X — GX is a Reedy trivial cofibration for every object X of
MaT,

(b) (3x)o: Xo — (GX)o is an isomorphism for every object X of MA™
and

(c) if X is fibrant in M, then GX is Reedy fibrant.

Proor. We will construct FX and the map FX — X inductively, and we
begin by letting (FX)0 = X° If n > 0 and we have constructed FX — X in
degrees less than 7, then we have the induced map L,(FX) — X" xpq_ x M, (FX).
‘We can factor this map functorially in M as

Lo (FX) —— (FX)" —2— X" xy. x Mp(FX)

with 7 a cofibration and p a trivial fibration. This completes the construction, and
Theorem 15.3.15 implies that the map FX — X is always a Reedy trivial fibration.
If X0 is cofibrant, then La.(FX) — (FX)™ is a cofibration for all n > 0, and so
FX is Reedy cofibrant. O

THEOREM 16.6.9. If M is a model category then there exists a functorial cosim-
plicial frame on M and a functorial simplicial frame on M.

Proor. This follows from Proposition 16.6.8. O

THEOREM 16.6.10. Let M be a model category and let X be a subcategory of
M.

(1) Any two functorial cosimplicial frames on X are connected by an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences of func-
torial cosimplicial frames on X.

(2) Any two functorial simplicial frames on X are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of functorial
simplicial frames on X.

PrOOF. This follows from Theorem 14.5.5 and Proposition 16.6.8. O

16.6.11. Frames on maps.

DEFINITION 16.6.12. Let M be a model category and let g: X — Y be a map
in M.
(1) A cosimplicial frame on g consists of a cosimplicial frame X — cc,X on

X, a cosimplicial frame Y S ce,Y on Y, and a map §: X - Y that
ma.kes the square

X——¥

L

cce X —rce, Y

commute. .
(2) A simplicial frame on g consists of a simplicial frame cs.X — X on X, a
simplicial frame ¢s,Y — Y on Y, and a map §: X — Y that makes the
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square
8. X ——cs.Y
X—5— 7
commute.

ExaMPLE 16.6.13. Let M be a simplicial model category.

(1) Let i: A —» B be a map in M, let A and B be the cosimplicial ¢ objects in
M such that A® = A ® Aln| and B® = B ® A[n], and let i: A — B be
the obvious map. Proposition 16.6.4 implies that 7 is a cosimplicial frame
on 4, and Proposition 9.3.8 implies that 7 is a Reedy cofibration if ¢ is a
cofibration in M.

(2) Letp: X — Y be a map in M, let X and ¥ be the simplicial obJects in
M such that X, = X2 and ¥, = Y2l and let p: X — ¥ be the
obvious map. Proposition 16.6.4 implies that P is a simplicial frame on p,
and Proposition 9.3.8 implies that p is a Reedy fibration if p is a fibration
in M.

PROPOSITION 16.6.14. Let M be a model category and let g: X — Y be a map
in M.

(1) There is a natural cosimplicial frame §: X - Y on g that is a Reedy

cofibration if g is a cofibration.

(2) There is a natural simplicial frame §: X - ¥ on g that is a Reedy
fibration if g is a fibration.
ProoF. We will prove part 1; the proof of part 2 is dual.
We begin by constructing a natural cosimplicial frame X — cc,X on X as in
the proof of Theorem 16.6.9.
We will define ¥ and § inductively. We let ¥ = Y. If n > 0 and we
have constructed Y and g in degrees less than n, then we have the induced map
LY L X o (cc. YY) XMoce.y M, Y. We factor this map functorially in M as

LY I, ;X" LY B (ce.Y)" Xmoce.y Mn ¥

with 7 a cofibration and p a trivial ﬁbratiorh This completes the construction,
and Theorem 15.3.15 implies that the map ¥ — cc.Y is always a Reedy trivial
ﬁbratlon Since LnX — X" was constructed to be a cofibration for all n > 0,
and LY — LY IIL % X" is a pushout of that cofibration, the composition
L.Y - L YIIL % X™ — Y™ is a cofibration for all n > 0. Thus, if Y is cofibrant,
then Y is Reedy cofibrant. Finally, if g is a cofibration, then L YIILﬂ X" YT
is a cofibration for all n > 0, and so § is a Reedy cofibration. a

16.6.15. Uniqueness of frames.

DEFINITION 16.6.16. Let M be a model category and let X be an object of M.

(1) The category CosFr(X) is the category whose objects are cosimplicial
frames on X and whose morphisms are maps of cosimplicial frames on X.
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(2) The category SimpFr(X) is the category whose objects are simplicial
frames on X and whose morphisms are maps of simplicial frames on X.

THEOREM 16.6.17. Let M be a model category.

(1) If X is an object of M, then the category CosFr(X) of cosimplicial frames
on X (see Definition 16.6.16) has a contractible classifying space (see
Definition 14.3.1).

(2) If X is an object of M, then the category SimpFr(X) of simplicial frames
on X (see Definition 16.6.16) has a contractible classifying space (see
Definition 14.3.1).

ProoOF. We will prove part 1; the proof of part 2 is dual.

Let W be the class of Reedy weak equivalences X — Y in M% such that
X° - YO is an isomorphism and such that if Y0 is cofibrant in M then X is Reedy
cofibrant. The result now follows from Theorem 14.5.6 and Proposition 16.6.8. (1

THEOREM 16.6.18. Let M be a model category and let X be an object of M.

(1) Any two cosimplicial frames on X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences of cosimplicial frames
on X.

(2) Any two simplicial frames on X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences of simplicial frames on

ProoF. This follows from Theorem 16.6.17 and Theorem 14.4.5. a
PROPOSITION 16.6.19. Let M and N be model categories and let F: M 2 N : U
be a Quillen pair (see Definition 8.5.2).

(1) If X is a cofibrant object of M and X — cc,X is a cosimplicial frame on
X, then FX — ce,FX isa cosimplicial frame on FX.

(2) IfY is a fibrant object of N and cs,Y — ¥ is a simplicial frame on Y,
then cs,UY - UY isa simplicial frame on UY.

Proor. This follows from Proposition 16.2.1 and Proposition 16.6.7. a

16.6.20. Framed model categories.
DEPINITION 16.6.21. A framed model category is a model category M together
with ~
(1) a functorial cosimplicial frame (see Definition 16.6.1) X on every object
X in M, and .
(2) a functorial simplicial frame X on every object X in M.

PROPOSITION 16.6.22. If M is a model category, then there exists a framed
model category structure on M.

PRroor. This follows from Theorem 16.6.9. 0

ProOPOSITION 16.6.23. If M is a simplicial model category, then there is a nat-
ural framing on M (called the standard framing) defined on objects X in M by
X" =X ®Aln] and X, = X20,

Proor. This follows from Proposition 16.6.4. O
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REMARK 16.6.24. If M is a simplicial model category and we make reference
to M in a context that calls for a framed model category, then we will consider M
as a framed model category using the standard framing of Proposition 16.6.23.

16.7. Reedy frames

If M is a framed model category, € is a small category, and X is a C-diagram in
M, then the framing defines a C-diagram X in M2, i.e., a C-diagram of cosimplicial
objects in M. If € is a Reedy category and X is Reedy cofibrant, though, there
is no reason to expect X to be Reedy cofibrant. Thus, we define a Reedy frame
on a diagram (see Definition 16.7.8), and we show that Reedy frames always exist
(see Proposition 16.7.11). We also show that any two frames on a diagram (see
Definition 16.7.2) are connected by an essentially unique zig-zag of equivalences
(see Theorem 16.7.6), so that a frame on a diagram defined by a framed model
category structure can always be replaced by a Reedy frame.

16.7.1. Frames on diagrams.

DEFINITION 16.7.2. Let M be a model category, let € be a small category, and
let X be a C-diagram in M.

(1) A cosimplicial frame on X is a diagram X: € M2 of cosimplicial ob-
jects in M together with a map of diagrams i: X — cc.X to the diagram
of constant cosimplicial objects such that, for every object @ in €, the map
ia: X o — cc.X 4 I8 a cosimplicial frame on X, (see Definition 16.6.1).

(2) A simplicial frame on X is a diagram X: € MA” of simplicial objects
in M together with a map of diagrams j: cs.X — X from the diagram
of constant simplicial objects such that, for every object a in C, the map
Ja:C8:Zy — ?a is a simplicial frame on X ,.

ExAMPLE 16.7.3. Let M be a framed model category (see Definition 16.6.21).
If € is a small category and X is a C-diagram in M, then the framing on M defines
a natural cosimplicial frame X: € — M on X and a natural simplicial frame
X:€—>Mon X.

DEFINITION 16.7.4. Let M be a model category, let € be a small category, and
let X be a C-diagram in M.

(1) The category CosFr(X)is the category whose objects are cosimplicial
frames on X and whose morphisms are maps of cosimplicial frames on
X.

(2) The category SimpFr(X)is the category whose objects are simplicial frames
on X and whose morphisms are maps of simplicial frames on X.

THEOREM 16.7.5. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.

(1) The category CosFr(X) of cosimplicial frames on X has a contractible
classifying space (see Definition 14.3.1).

(2) The category SimpFr(X) of simplicial frames on X has a contractible
classifying space.
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PrOOF. We will prove part 1; the proof of part 2 is dual.
Let W be the class of maps of C-diagrams X — X in M2 such that for every
object a of C

(1) the map Xo—o Xgisa Reedy weak equivalence,
(2) (X4)° = (X4)° is an isomorphism, and
(3) if (X4)° is cofibrant in M then X is Reedy cofibrant.
The result now follows from Theorem 14.5.6 and Proposition 16.6.8. d

THEOREM 16.7.6. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.
(1) Any two cosimplicial] frames on X are connected by an essentially unique
zig-zag of maps of cosimplicial frames on X .
(2) Any two simplicial frames on X are connected by an essentially unique
zig-zag of maps of simplicial frames on X.

Proor. This follows from Theorem 14.4.5 and Theorem 16.7.5. a

16.7.7. Reedy frames. The notion of a Reedy frame (see Definition 16.7.8)
on a diagram will be used in our discussion of homotopy limits and homotopy
colimits of diagrams indexed by a Reedy category (see Section 19.9).

DEFINITION 16.7.8. Let M be a model category, let € be a Reedy category (see
Definition 15.1.2), and let X be a C-diagram in M.
(1) A Reedy cosimplicial frame on X is a cosimplicial frame X: € M2 on
X (see Definition 16.7.2) such that if X is a Reedy cofibrant diagram in
M (see Definition 15.3.3) then X is a Reedy cofibrant diagram in M2.
(2) A Reedy simplicial frame on X is a simplicial frame X:€— M2 on X
such that if X is a Reedy fibrant diagram in M then Xisa Reedy fibrant
diagram in M2

PROPOSITION 16.7.9. Let M be a simplicial model category, let C be a Reedy
category, and let X be a C-diagram in M.
(1) The cosimplicial frame on X defined by the standard frame on M (see
Definition 16.6.5) is a Reedy cosimplicial frame on X.
(2) The simplicial frame on X defined by the standard frame on M is a Reedy
simplicial frame on X.

PROOF. We will prove part 1; the proof of part 2 is dual.

Let X be Reedy cofibrant, and let X: € — M2 be the cosimplicial frame on
X defined by the standard frame on M. For every « object a in €, let X - X,
denote the latching map of X in M, and let LM X — X denote the latching map
of X in M2 For every object a in €, LMX — X is a cofibration in M, and we
must show that LL"‘ABE — P}Eo, is a cofibration in M%2. Thus, Proposition 16.3.8
implies that we must show that for every n > 0 the relative latching map
(16.7.10) Xo® 0[] U xa 2)g500m IM*X)® Aln] - X o ® Aln]

(see Proposition 16.3.8) is a cofibration in M. Since the latching object Li’tA’i
is defined as a colimit (see Definition 15.2.5), Proposition 16.6.6 and Lemma 9.2.1
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imply that the map (16.7.10) is isomorphic to the map
X o ® 00 Uixxygoapm (Lo X) ® Afn] - Xo® Aln|

Since LXX — X, is a cofibration in the simplicial model category M, Proposi-
tion 9.3.8 implies that this is a cofibration. (]

PROPOSITION 16.7.11. If M is a model category and C is a Reedy category,
then

(1) there is a functorial Reedy cosimplicial frame on every C-diagram in M,
and
(2) there is a functorial Reedy simplicial frame on every C-diagram in M.

PROOF. We will prove part 1; the proof of part 2 is similar. .

Theorem 16.6.9 implies that we can choose a functorial cosimplicial frame X on
every object X of the model category ME. _The definition of a frame on an object
implies that if X is Reedy cofibrant, then X is a cofibrant object of (M€)A, and

Theorem 15.5.2 implies that this is equivalent to the assertion that X is cofibrant
in (M2)¢, 0

DEFINITION 16.7.12. Let M be a model category, let € be a Reedy category,
and let X be a C-diagram in M.

(1) The category ReCosFr(X) is the category whose objects are Reedy cosim-
plicial frames on X and whose morphisms are maps of cosimplicial frames

on X.
(2) The category ReSimpFr(X) is the category whose objects are Reedy sim-
plicial frames on X and whose morphisms are maps of simplicial frames

on X.

THEOREM 16.7.13. Let M be a model category, let C be a Reedy category, and
let X be a C-diagram in M.

(1) The classifying space of the category of Reedy cosimplicial frames on X
is contractible (see Definition 14.3.1).

(2) The classifying space of the category of Reedy simplicial frames on X is
contractible.

PROOF. We will prove part 1; the proof of part 2 is dual.
Let W be the class of maps X X of C-diagrams in M2 such that
(1) for every object o of € the map Xo— X, is a Reedy weak equivalence,
(2) for every object & of € the map (X o)° — (X 4)° is an isomorphism, and
(3) if X° is a Reedy cofibrant diagram in M then X isa Reedy cofibrant
diagram in M4,
The result now follows from Theorem 14.5.6 and Proposition 16.7.11. (]

THEOREM 16.7.14. Let M be a model category, let C be a Reedy category, and
let X be a C-diagram in M.

(1) Any two Reedy cosimplicial frames on X are connected by an essentially
unique zig-zag of maps of Reedy cosimplicial frames on X .

(2) Any two Reedy simplicial frames on X are connected by an essentially
unique zig-zag of maps of Reedy simplicial frames on X .
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Proor. This follows from Theorem 14.4.5 and Theorem 16.7.13. O

DEFINITION 16.7.15. A Reedy framed diagram category consists of

(1) a Reedy category €,

(2) a model category M,

(3) a choice of a functorial Reedy cosimplicial frame on every C-diagram in

M, and

(4) a choice of a functorial Reedy simplicial frame on every C-diagram in M
(see Proposition 16.7.11). We will often denote a Reedy framed diagram cate-
gory by (€, M), without making explicit reference to the choice of functorial Reedy
cosimplicial frame or the choice of functorial Reedy simplicial frame.

PROPOSITION 16.7.16. Let € be a Reedy category, let M be a model category,
and let X be a C-diagram in M.

(1) If X is Reedy cofibrant and X: € — MA is 2 Reedy cosimplicial frame on

X, then for every object a of C the latching object Lo X = colima(E-la) X

of X ataisa cosimplicial frame on Lo X.
(2) If X is Reedy fibrant and X : € — M2” is a Reedy simplicial frame on

X, then for every object o of C the matching object Mo X = lima(ml 3 X

of X ataisa simplicial frame on My X.

PRroOOF. We will prove part 1; the proof of part 2 is dual.

Lemma 15.3.7 and Theorem 15.10.9 imply that L, X is a cofibrant cosimplicial
object. Corollary 15.3.12 implies that X g is cofibrant in M for every object 8 — «
of 8(@ la), and so every coface and codegeneracy operator of L, X is a colimit of
an objectwise weak equivalence between cofibrant objects. Theorem 15.10.9 thus
implies that every coface and codegeneracy operator of L, X is a weak equivalence.

O






CHAPTER 17

Homotopy Function Complexes

In this chapter, we define homotopy function complezes between objects in
a model category. A homotopy function complex between a pair of objects is a
simplicial set that plays the role of the “space of functions” between those objects,
and its set of components is isomorphic to the set of maps in the homotopy category
between those objects.

In a simplicial model category, a homotopy function complex between a cofi-
brant object and a fibrant object is weakly equivalent to the simplicial mapping
space between those objects, and in the category of topological spaces it is weakly
equivalent to the total singular complex of the topological space of continuous
functions between them. Homotopy function complexes are defined for all model
categories, though, and for a simplicial model category they give the “correct” func-
tion space even between objects that may not be cofibrant or fibrant (which is not
true of the space of maps obtained from the simplicial structure).

If M is a model category and X and Y are objects of M, then there are three
varieties of homotopy function complexes from X to Y:

o Left homotopy function complezes, obtained by resolving the first object
(see Definition 17.1.1),

o Right homotopy function complexes, obtained by resolving the second ob-
ject (see Definition 17.2.1), and

o Two-sided homotopy function complezes, obtained by resolving both ob-
jects (see Definition 17.3.1).

We can work with any one of these three varieties, or work with all three combined.

Although constructing a homotopy function complex requires making choices,
there is an essentially unique zig-zag (see Definition 14.4.2) of change of homotopy
function complex maps (see Definition 17.4.7) connecting any two homotopy func-
tion complexes between a pair of objects (see Theorem 17.1.11, Theorem 17.2.11,
Theorem 17.3.9, and Theorem 17.4.14). Since every change of homotopy function
complex map is a weak equivalence of fibrant simplicial sets (see Theorem 17.4.8),
this implies that there is a distinguished homotopy class of homotopy equivalences
connecting any two homotopy function complexes between a pair of objects, and
the composition of two of these distinguished homotopy classes of homotopy equiv-
alences is another (see Theorem 17.5.30).

Homotopy function complexes are actually only a part of the larger theory of
the simplicial localization of W. G. Dwyer and D. M. Kan ((33, 31, 32]). Dwyer
and Kan start with a category € and a subcategory W of €, the maps of which are
called “weak equivalences”. They then construct the simplicial localization sLwC
of € with respect to W, which is a simplicial category, i.e., a category enriched over
simplicial sets. (If C is not assumed to be small, then the simplicial localization may

347
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exist only in a higher universe; see, e.g., [60, page 17].) The simplicial localization of
€ with respect to W is the derived functor of the localization of € with respect to W
(which also may exist only in a higher universe if € is not small; see Remark 8.3.3).
The simplicial localization thus constructs composable function complexes between
objects in the category, and the sets of components of these function complexes are
the sets of maps in the localization of € with respect to W.

Dwyer and Kan show that if M is a simplicial model category and W is its
subcategory of weak equivalences, then when X is cofibrant and Y is fibrant the
simplicial set Map(X,Y) that is part of the simplicial structure of M is naturally
weakly equivalent to sLwM(X,Y). They show that a weak equivalence Y — Z
in M always induces a weak equivalence sLywM(X,Y) 2 sLywM(X, Z), while the
map Map(X,Y) — Map(X, Z) is guaranteed to be a weak equivalence only when
X is cofibrant and both Y and Z are fibrant (and a similar statement is true for
weak equivalences of the first argument). Thus, the simplicial set sSLywM(X,Y) is
the “correct” function complex of maps from X to Y, even for simplicial model
categories.

Dwyer and Kan also show that if M is a model category and ‘W is the sub-
category of weak equivalences in M, then the simplicial sets sLwM(X,Y") can be
computed (up to weak equivalence) using resolutions (see Definition 16.1.2) in the
model category M (see [32, Section 4]), with no need to consider higher universes.
In this chapter, we define a homotopy function complez to be a simplicial set ob-
tained from the Dwyer-Kan construction using resolutions in the model category
M (see Definition 17.4.1). We present a self-contained development of the proper-
ties of these homotopy function complexes, with no explicit reference to the more
general construction of the simplicial localization of Dwyer and Kan.

We define left homotopy function complezes in Section 17.1, right homotopy
function complexzes in Section 17.2, and two-sided homotopy function complezes
in Section 17.3, proving existence and uniqueness theorems for each of these. In
Section 17.4 we discuss homotopy function complexes in general (left, right, and
two-sided). We define left to two-sided change of homotopy function complex maps
and right to two-sided change of homotopy function complex maps, and we prove a
uniqueness theorem for homotopy function complexes. We also show that a Quillen
pair induces isomorphisms of homotopy function complexes for cofibrant domains
and fibrant codomains.

In Section 17.5 we discuss functorial homotopy function complexes. We prove
existence and uniqueness theorems for functorial left homotopy function complexes,
functorial right homotopy function complexes, functorial two-sided homotopy func-
tion complexes, and for all functorial homotopy function complexes combined. In
Section 17.6 we show that (left or right) homotopic maps induced homotopic maps
of homotopy function complexes. In Section 17.7 we show that the set of compo-
nents of a homotopy function complex between a pair of objects is isomorphic to
the set of maps in the homotopy category between those objects, and that weak
equivalences can be detected as maps that induce weak equivalences of homotopy
function complexes.

In Section 17.8 we discuss homotopy orthogonal maps, which is the general-
ization for homotopy function complexes of homotopy lifting-extension pairs in a
simplicial model category, and in Section 17.9 we use homotopy function complexes
to obtain some results on colimits of A-sequences of weak equivalences.
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17.1. Left homotopy function complexes

DEFINITION 17.1.1. If M is a model category and X and Y are objects of M,
then a left homotopy function complez from X to Y is a triple

(X, 7, M(X,Y))
where
e X is a cosimplicial resolution of X (see Definition 16.1.2),

e ¥ is a fibrant approximation to Y (see Definition 8.1.2), and
e M(X,Y) is the simplicial set of Notation 16.4.1.

The left homotopy function complex (f)\(’, Y, M(f, 17)) is thus entirely determined
by the cosimplicial resolution X and 1 the fibrant approximation ¥, but we will com-
monly refer to the simplicial set M(X, }7) that is a part of the left homotopy func-
tion complex as though it were the left homotopy function complex (see also Nota-
tion 17.4.2). Strictly speaking, though, a left homotopy function complex from X to
Y can be identified with an object of the undercategory ((cc,X, Y) L (MA)°P x M)
(see Notation 16.1.1 and Definition 11.8.3)).

REMARK 17.1.2. If we embed M in M2 as the subcategory of constant simpli-
cial objects, then a left homotopy function complex from X to Y can be identified
with an object of the undercategory ({cc.X,cs.Y) | (M2)%P x MA™) (see Nota-
tion 16.1.1), in which case the simplicial set M(}, }7) is naturally isomorphic to
diag M(X, cc.¥).

PROPOSITION 17.1.3. If M is a model category and X and Y are objects of M,
then a left homotopy function complex from X to Y is a fibrant simplicial set.

Proor. This follows from Corollary 16.5.3. (]

EXAMPLE 17.1.4. If M is a simplicial model category, X is a cofibrant object
of M, and Y is a fibrant object of M, then Corollary 16.1.4 implies that Map(X,Y)
(i.e., the simplicial set that is part of the simplicial structure of M) is a left homotopy
function complex from X to Y.

DEFINITION 17.1.5. A change of left homotopy function complez map
(X, ¥, M(X,7)) - (X', ¥, M(X",¥")
is a triple (f, g, h) where

o f: X »Xisa map of cosimplicial resolutions of X,
o g: Y — ¥/ is a map of fibrant approximations to Y (see Definition 8.1.4),
and
o h: M(X,¥) - M(X, ¥’) is the map of simplicial sets induced by f and
g
The change of left homotopy function complex map is thus entirely determined by
f and g, but we will commmonly refer to the map of simplicial sets k as though it
were the change of left homotopy function complex map. Strictly speaking, though,
a change of left homotopy function complex map can be identified with a map in
the undercategory ((cc.X,cs.Y) | (M2)°P x MA™) (see Remark 17.1.2).
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ProrposiTION 17.1.6. If M is a model category and X and Y are objects of
M, then a change of left homotopy function complex map is a weak equivalence of
fibrant simplicial sets.

Proor. This follows from Corollary 16.5.5, Lemma 16.1.12, and Lemma 8.1.5.
O

DeFINITION 17.1.7. If M is a model category and X and Y are objects of M,
then the category of left homotopy function complezes from X to Y is the category
LHFC(X,Y) whose objects are left homotopy function complexes from X to Y and
whose maps are change of left homotopy function complex maps.

PROPOSITION 17.1.8. If M is a model category and X and Y are objects of
M, then the category LHFC(X,Y) (see Definition 17.1.7) can be identified with
a full subcategory of ((cc.X,cs.Y) | (M2)°P x MA™) (see Notation 16.1.1 and
Definition 11.8.3).

Proor. This follows from Remark 17.1.2. d

PROPOSITION 17.1.9. If M is a model category and X and Y are objects of M,
then the category LHFC(X,Y) (see Definition 17.1.7) is naturally isomorphic to
CRes(X)°P x FibAp(Y) (see Definition 16.1.14).

PROOF. This follows directly from the definitions. O

PROPOSITION 17.1.10. If M is a model category and X andY are objects of M,
then the classifying space BLHFC(X,Y) of the category of left homotopy function
complexes from X to Y (see Definition 17.1.7) is contractible.

Proor. This follows from Proposition 14.3.5, Proposition 17.1.9, Proposi-
tion 14.1.5, Theorem 14.6.2, and Proposition 16.1.15. O

THEOREM 17.1.11. If M is a model category and X and Y are objects of M,
then any two left homotopy function complexes from X toY are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of left homotopy function
complex maps.

ProoF. This follows from Theorem 14.4.5 and Proposition 17.1.10. O

17.2. Right homotopy function complexes

DEeFINITION 17.2.1. If M is a model category and X and Y are objects of M,
then a right homotopy function complez from X to Y is a triple
(XY, M(X,Y))

where

o X is a cofibrant approximation to X (see Definition 8.1.2),

¢ Y is a simplicial resolution of ¥ (see Definition 16.1.2), and

e M(X,Y) is the simplicial set of Notation 16.4.1.
The right homotopy function complex (X Y M(X Y)) is thus entirely determined
by the cofibrant approximation X and the simplicial resolution Y, but we will
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commonly refer to the simplicial set M(X,Y) that is a part of the right homo-
topy function complex as though it were the right homotopy function complex
(see also Notation 17.4.2). Strictly speaking, though, a right homotopy func-
tion complex from X to Y can be identified with an object of the undercategory
((X,cs.Y) L MP x MA™) (see Notation 16.1.1 and Definition 11.8.3).

REMARK 17.2.2. If we embed M in M as the subcategory of constant cosimpli-
cial objects, then a right homotopy function complex from X to Y can be identified
with an object of the undercategory ((cc.X,cs.Y) ] (M2)°P x MA™) (see Nota-
tion 16.1.1), in which case the simplicial set M(X,¥’) is naturally isomorphic to
diag M(cc.)?,?).

PROPOSITION 17.2.3. If M is a model category and X and Y are objects of M,
then a right homotopy function complex from X to Y is a fibrant simplicial sets.

PrRoOF. This follows from Corollary 16.5.3. 0

EXAMPLE 17.2.4. If M is a simplicial model category, X is a cofibrant object
of M, and Y is a fibrant object of M, then Corollary 16.1.4 implies that Map(X,Y)
(i.e., the simplicial set that is part of the simplicial structure of M) is a right
homotopy function complex from X to Y.

DEeFINITION 17.2.5. A change of right homotopy function complez map
(X, Y, M(X,¥)) - (X', ¥, M(X,¥"))
is a triple (f, g, h) where
e f: X' — X is a map of cofibrant approximations to X (see Defini-
tion 8.1.4),
e g: Y — Y’ is a map of simplicial resolutions of Y (see Definition 16.1.11),
and
o h: M(X,Y) - M(X’,Y') is the map of simplicial sets induced by f and
g.
The change of right homotopy function complex map is thus entirely determined
by f and g, but we will commonly refer to the map of simplicial sets h as though
it were the change of right homotopy function complex map. Strictly speaking,
though, a change of right homotopy function complex map can be identified with
a map in the undercategory ((cc.X,cs.Y) | (M2)°P x MA™) (see Remark 17.2.2).

PROPOSITION 17.2.6. If M is 2 model category and X and Y are objects of M,
then a change of right homotopy function complex map is a weak equivalence of
fibrant simplicial sets.

PROOF. This follows from Corollary 16.5.5, Lemma 16.1.12, and Lemma 8.1.5.
0

DerFiNiTION 17.2.7. If M is a2 model category and X and Y are objects of M,
then the category of right homotopy function complezes from X to Y is the category
RHFC(X,Y) whose objects are right homotopy function complexes from X to Y
and whose maps are change of right homotopy function complex maps.

PROPOSITION 17.2.8. If M is a model category and X and Y are objects of
M, then the category RHFC(X,Y) (see Definition 17.2.7) can be identified with
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a full subcategory of ({cc,X,cs,Y) | (M2)°P x MA™) (see Notation 16.1.1 and
Definition 11.8.3).

ProoF. This follows from Remark 17.2.2. O

PROPOSITION 17.2.9. If M is a model category and X and Y are objects of M,
then the category RHFC(X,Y) (see Definition 17.2.7) is naturally isomorphic to
CofAp(X)°P x SRes(Y) (see Definition 16.1.14).

Proor. This follows directly from the definitions. O

PROPOSITION 17.2.10. If M is a model category and X and Y are objects of
M, then the classifying space BRHFC(X,Y’) of the category of right homotopy
function complexes from X to Y (see Definition 17.2.7) is contractible.

Proor. This follows from Proposition 14.3.5, Proposition 17.2.9, Proposi-
tion 14.1.5, Theorem 14.6.2, and Proposition 16.1.15. O

THEOREM 17.2.11. If M is a model category and X and Y are objects of M,
then any two right homotopy function complexes from X to Y are connected by
an essentially unique (see Definition 14.4.2) zig-zag of change of right homotopy
function complex maps.

PrROOF. This follows from Theorem 14.4.5 and Proposition 17.2.10. O

17.3. Two-sided homotopy function complexes

DEFINITION 17.3.1. If M is a model category and X and Y are objects of M,
then a two-sided homotopy function complex from X to Y is a triple
(X,¥,diegM(X,¥))

where

e Xisa cosimplicial resolution of X (see Definition 16.1.2),

o Y is 2 simplicial resolution of Y (see Definition 16.1.2), and

e diag M(jf,?) is the simplicial set of Notation 16.4.1.
The two-sided homotopy function complex (’)\f, Y, diagM(X, f’)) is thus entirely
determined by the cosimplicial resolution X and the simplicial resolution Y, but
we will commonly refer to the simplicial set diagM(’.j(’,f’) that is a part of the
two-sided homotopy function complex as though it were the two-sided homotopy
function complex (see also Notation 17.4.2). Strictly speaking, though, a two-sided
homotopy function complex from X to Y can be identified with an object of the
undercategory ((cc.X, cs,Y) | (MA)%P x MA") (see Notation 16.1.1).

ProprosITION 17.3.2. If M is a model category and X and Y are objects of M,
then a two-sided homotopy function complex from X to Y is a fibrant simplicial
set.

ProorF. This follows from Corollary 16.5.19. d
DEFINITION 17.3.3. A change of two-sided homotopy function complez map
(X,¥,diagM(X,Y)) - (X', ¥, diag M(X", "))
is a triple (f, g, h) where



17.3. TWO-SIDED HOMOTOPY FUNCTION COMPLEXES 353

o f: X' —»:XJ is a map of cosimplicial resolutions of X,
¢ g: Y — Y is a map of simplicial resolutions of ¥ (see Definition 16.1.11),
and
o h: diagM(X,Y) — diag M(X’, Y") is the map of simplicial sets induced
by f and g¢.
The change of two-sided homotopy function complex map is thus entirely deter-
mined by f and g, but we will commonly refer to the map of simplicial sets h as
though it were the change of two-sided homotopy function complex map. Strictly
speaking, though, a change of two-sided homotopy function complex map can be
identified with a map in the undercategory ((cc.X,cs.Y) | (MA)°P x MA™).

PRroOPOSITION 17.3.4. If M is a model category and X and Y are objects of M,
then a change of two-sided homotopy function complex map is a weak equivalence
of fibrant simplicial sets.

ProoF. This follows from Corollary 16.5.21 and Lemma 16.1.12. a

DerFmITION 17.3.5. If M is a model category and X and Y are objects of M,
then the category of two-sided homotopy function complezes from X to Y is the
category TSHFC(X,Y) whose objects are two-sided homotopy function complexes
from X to Y and whose maps are change of two-sided homotopy function complex
maps.

ProposITION 17.3.6. If M is a model category and X and Y are objects of
M, then the category TSHFC(X,Y) (see Definition 17.3.5) can be identified with
a full subcategory of ((cc.X,cs.Y) | (MA)°P x MA™) (see Notation 16.1.1 and
Definition 11.8.3).

ProorF. This follows directly from the definitions. a

PROPOSITION 17.3.7. If M is a model category and X and Y are objects of M,
then the category TSHFC(X,Y) (see Definition 17.3.5) is naturally isomorphic to
CRes(X)°P x SRes(Y') (see Definition 16.1.14).

Proor. This follows directly from the definitions. ]

PROPOSITION 17.3.8. If M is a model category and X and Y are objects of M,
then the classifying space BTSHYFC(X,Y') of the category of two-sided homotopy
function complexes from X to Y (see Definition 17.3.5) is contractible.

Proor. This follows from Proposition 14.3.5, Proposition 17.3.7, Proposi-
tion 14.1.5, and Proposition 16.1.15. a

THEOREM 17.3.9. If M is a model category and X and Y are objects of M, then
any two two-sided homotopy function complexes from X to Y are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of two-sided homotopy
function complex maps.

Proor. This follows from Theorem 14.4.5 and Proposition 17.3.8. A
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17.4. Homotopy function complexes

DeFinNITION 17.4.1. A homotopy function complez from X to Y is either

e a left homotopy function complex from X to Y (see Definition 17.1.1),
e a right homotopy function complex from X to Y (see Definition 17.2.1),
or

¢ a two-sided homotopy function complex from X to Y (see Definition 17.3.1).
Every homotopy function complex from X to Y can be identified with an ob-
ject of the undercategory ((cc.X,cs,Y) | (MA)°P x MA™) (see Remark 17.1.2, Re-
mark 17.2.2, and Definition 17.3.1), but we will commonly refer to the simplicial set
diagM(.ﬁXv,f’) that is a part of the homotopy function complex ((cc.X,cs.Y) —
(jf, f’)) as though it were the homotopy function complex.

NoTaTION 17.4.2. If M is a model category and X and Y are objects of M,

then we will use the notation map(X,Y) to denote a simplicial set that is some

unspecified homotopy function complex from X to Y (see Definition 17.4.1). Thus,
map(X,Y) will denote either

e the SlmpllCla.l set M(’)‘f }7) that is part of a left homotopy function com-
plex (X ¥, M X Y)),

e the simplicial set M()N( Y) that is part of a right homotopy function
complex (X, Y m(X Y))

e the simplicial set dla.gM X Y) that is part of a two-sided homotopy
function complex (X, YV diagM(X, Y))

PropPoSITION 17.4.3. If M is a model category and X and Y are objects of M,
then a homotopy function complex from X toY is a fibrant simplicial set.

Proor. This follows from Proposition 17.1.3, Proposition 17.2.3, and Propo-
sition 17.3.2. ]

PROPOSITION 17.4.4. Let M be a model category and let' X andY be objects
of M. If (X Y, diagM(X, Y)) is a two-sided homotopy function complex from X
toY, then

(1) there is a left homotopy function complex (jf, Yo, M(X, f’o)) obtained
Ily replacing the simplicial resolution Y with the fibrant approximation
Y, and ~ —_ o~
(2) there is a right homotopy function complex (X°,Y,M(X?°,Y’)) obtained
by replacing the cosimplicial resolution X with the cofibrant approxima-
tion X©°.
Proor. This follows from Proposition 16.1.5. a
DEFINITION 17.4.5. Let M be a model category and let X and Y be objects of

M. If (')\f, f’,diag M(’J\f, f’)) is a two-sided homotopy function complex from X to
Y, then

(1) We will let
LTS(X, Y): (’)\f cs, ¥, diag M(X, cs,f’o)) (} Y, diagM(X, f’))
denote the natural map in ({cc. X, cs.Y) | (MA)'Jp x MA7) defined by the
identity of X and the natural map cs,YO -y (see Notation 16.1.1 and
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Remark 17.1.2), and we will call such a map a left to two-sided change of
homotopy function complez map. Although this map Is, strictly spea.k-
ing, a map in the undercategory ((cc,X,cs.Y )J,(MA)°p x M2 ), we
will commonly refer to the map of simplicial sets diag M( cs,Yo)
diag M(}, f’) that is a part of the left to two-sided change of homotopy
function complex map as though it were the left to two-sided change of
homotopy function complex map.
(2) We will let
RTS(X,Y): (cc, X0, ¥, diagM(cc. X0, ¥)) — (X, ¥, disgM(X, ¥))

denote the natural map in {({cc.X, cs. )l(MA)°p x M) defined by
the natural map X — cc.X° and the identity of Y (see Notation 16.1.1
and Remark 17.2.2), and we will call such a map a right to two-sided
change of homotopy function complez map. Although thlS map is, strictly
speaking, a map in the undercategory ((cc.X,cs,Y MA)°P x MAop)
we will commonly refer to the map of simplicial sets dlag M(cc.X Y)
diag M(X Y) that is a part of the right to two-sided change of homotopy
function complex map as though it were the right to two-sided change of
homotopy function complex map.

PROPOSITION 17.4.6. Let M be a model category. If X isa cosimplicial resolu-
tion in M and Y is a simplicial resolution in M, then the left to two-sided change of
homotopy function complex map M(}, f’o) = diag M(X, cs,f’o) — diagM(X, f’)
(see Definition 17.4.5) and the right to two-sided change of homotopy function com-
plex map M(X°,¥) ~ diagM(cc. X0, ¥) — diagM(X,Y) are weak equivalences
of fibrant simplicial sets.

PROOF. Corollary 16.5.5 implies that the bisimplicial set M(X, ¥') satisfies the
hypotheses of Corollary 15.11.12, and so Theorem 15.11.6 implies that the natural
map M(XP, V) - diag M(f, V) is a weak equivalence. Similarly, reversing the in-
dices of the bisimplicial set M(f, f’), the natural map M(f, f’o) — diag M(FE, f’)
is a weak equivalence. 0

DerFINITION 17.4.7. If M is a model category and X and Y are objects of
M, then a change of homotopy function complez map is a finite composition (in
((ccs X, cs.Y) | (MA)°P x MA™); see Notation 16.1.1) of

o change of left homotopy function complex maps (see Definition 17.1.5),

e change of right homotopy function complex maps (see Definition 17.2.5),

e change of two-sided homotopy function complex maps (see Definition
17.3.3),

e left to two-sided change of homotopy function complex maps (see Defini-
tion 17.4.5), and

e right to two-sided change of homotopy function complex maps (see Defi-
nition 17.4.5).

Although these maps are, strictly speaking, maps in the undercategory
((ces X, cs,Y) L (MA)P 5 MATY

we will commonly refer to the corresponding maps of siraplicial sets as though they
were the change of homotopy function complex maps.
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THEOREM 17.4.8. If M is a model category and X and Y are objects of M,
then a change of homotopy function complex map (see Definition 17.4.1) is a weak
equivalence of fibrant simplicial sets.

PRrRoOF. This follows from Proposition 17.1.6, Proposition 17.2.6, Proposi-
tion 17.3.4, and Proposition 17.4.6. O

DEeFINITION 17.4.9. If M is a model category and X and Y are objects of M,
then the caetegory of homotopy function complezes from X to Y is the category
HFC(X,Y) whose objects are homotopy function complexes from X to Y and
whose maps are change of homotopy function complex maps.

PROPOSITION 17.4.10. If M is a model category and X and Y are objects of
M, then the category HFC(X,Y) (see Definition 17.4.9) can be identified with a
subcategory of ({cc.X,cs,Y) | (M2)°P x MA™) (see Notation 16.1.1 and Defini-
tion 11.8.3).

ProoF. This follows from Proposition 17.1.8, Proposition 17.2.8, and Propo-
sition 17.3.6. O

DEeFINITION 17.4.11. Let M be a model category and let X and Y be objects
of M. We will call an object (X,Y) of (MA)oP x MA™

(1) a left resolving pair if X is a cosimplicial resolution (see Definition 16.1.26)
and Y is isomorphic to cs.Y (see Notation 16.1.1) for some fibrant object
Y of M,

(2) a right resolving pair if X is isomorphic to cc.X (see Notation 16.1.1)
for some cofibrant object X of M and Y is a simplicial resolution (see
Definition 16.1.26), or

(3) a two-sided resolving pair if X is a cosimplicial resolution and Y is a
simplicial resolution (see Definition 16.1.26).

An object (X,Y) of (M2)P x M2 will be called a resolving pair if it is either a
left resolving pair, a right resolving pair, or a two-sided resolving pair.

REMARK 17.4.12. The conditions of Definition 17.4.11 are not mutually ex-
clusive. For example, in the category of simplicial simplicial sets, the constant
simplicial object at the one point simplicial set is both a simplicial resolution and
a constant simplicial object at a fibrant simplicial set.

THEOREM 17.4.13. If M is a model category and X and Y are objects of M,
then the classifying space BHFC(X,Y’) of homotopy function complexes from X
to Y (see Definition 17.4.9) is contractible (see Definition 14.3.1).

ProOF. We view HFC(X,Y') as a subcategory of the undercategory
({cea X, cuY) L (MA)%P x MA™)

(see Remark 17.1.2, Remark 17.2.2, and Definition 17.3.1), and we let ‘W be the
class of maps h = (f°P, g) in (M2)°P x M2 such that

(1) both f and g are degreewise weak equivalences and
(2) the codomain of A is a resolving pair {see Definition 17.4.11).

The result now follows from Theorem 14.5.6 and Proposition 8.1.17. a
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THEOREM 17.4.14. Let M be a model category. If X and Y are objects of
M, then any two homotopy function complexes from X to Y are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of homotopy function
complex maps.

PRrRoOF. This follows from Theorem 14.4.5 and Theorem 17.4.13. 0

17.4.15. Quillen functors and homotopy function complexes.

ProrosSITION 17.4.16. Let M and N be small categories, let F: M 2 N :U be
a Quillen pair (see Definition 8.5.2), let X be a cofibrant object of M and let Y be
a fibrant object of N.

(1) If Xisa cosimplicial resolution of X then FX isa cosimplicial resolution
of FX and the adjointness isomorphism defines a natural isomorphism of
left homotopy function complexes N(FX Y) ~ M(X,UY).

(2) If Y is a simplicial resolution of Y then UY is a simplicial resolution of
UY and the adjointness isomorphism defines a natural isomorphism of
right homotopy function complexes N(FX, Y) M(X, U}A’)

(3) IfXisa cosimplicial resolution of X and Y is a simplicial resolution of Y,
then the adjointness isomorphism defines a natural isomorphism of’\two-
sided homotopy function complexes diag N(FX,Y") = diagM(X,UY").

PROOF. This follows from Proposition 16.2.1. a

17.5. Functorial homotopy function complexes
17.5.1. Functorial left homotopy function complexes.

DEFINITION 17.5.2. If M is a model category and X is a subcategory of M°P xM,
then a functorial left homotopy function complez on X is a pair (F, ¢) where F is a
functor F: X — (J\ftA)°p><J\!tA°p and ¢ is a natural transformation ¢: (cc. X, cs.Y) —
F(X,Y) (see Remark 17.1.2) such that

(1) ¢(X,Y) is a left homotopy function complex from X to Y for every object
(X,Y) of X (see Proposition 17.1.8) and

(2) F takes maps of X into compositions of maps of left homotopy function
complexes.

DEFINITION 17.5.3. Let M be a model category and let X be a subcategory
of M°P x M. If (F,¢) and (F/,¢’) are functorial left homotopy function complexes
on K, then a change of functorial left homotopy function complex map from (F, ¢)

o (¥F/,¢') is a natural transformation ¢g: F — F’ such that g(X,Y): F(X,Y) —
F'(X,Y) is a change of left homotopy function complex map for every object (X,Y")
of K.

PROPOSITION 17.5.4. If M is a model category, then there exists a functorial
left homotopy function complex defined on all of M°P x M.

Proor. This follows from Proposition 16.1.9 and Proposition 8.1.17. g

DEFINITION 17.5.5. If M is a model category and X is a subcategory of M°P x M,
then a category of functorial left homotopy function complezes on X is a category
of functors from X to (M2)°P x M2™ under the “constant object” functor (that
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takes (X,Y) to (cc. X, cs,Y)) with respect to those maps in (MA)°P x MA™” that
are componentwise Reedy weak equivalences with codomain a left resolving pair
(see Definition 17.4.11).

THEOREM 17.5.6. If M is a model category and X is a subcategory of M°P x M,
then for every small category D of functorial left homotopy function complexes on
X there is a small category D’ of functorial left homotopy function complexes on
X such that D C D’ and BD' is contractible.

Proor. This follows from Theorem 14.5.4, Proposition 16.1.9, and Proposi-
tion 8.1.17. a

THEOREM 17.5.7. If M is a model category, X is a subcategory of M°P x M,
and (F,¢) and (¥, ¢') are functorial left homotopy function complexes on X, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
left homotopy function complex maps from (F, ¢) to (F,¢').

Proor. This follows from Proposition 14.5.7 and Theorem 17.5.6. a

17.5.8. Functorial right homotopy function complexes.

DEFINITION 17.5.9. If M is a model category and X is a subcategory of M°P x M,
then a functorial right homotopy function complez on a subcategory X of M x M
is a pair (F, ) where F is a functor F: 3¢ — (M2)P x M2 and ¢ is a natural
transformation ¢: (cc, X, cs.Y) — F(X,Y) such that

(1) ¢(X,Y) is a right homotopy function complex from X to Y for every
object (X,Y) of X (see Proposition 17.2.8) and

(2) F takes maps of K into compositions of maps of right homotopy function
complexes.

DEFINITION 17.5.10. Let M be a model category and let X be a subcategory
of M°P x M. If (F, ¢) and (F', ¢') are functorial right homotopy function complexes
on X, then a change of functorial right homotopy function complez map from (F, ¢)
to (F,¢') is a natural transformation g: F — F’ such that g(X,Y): F(X,Y) —
F/(X,Y) is a change of right homotopy function complex map for every object
(X,Y) of X.

PROPOSITION 17.5.11. If M is a model category, then there exists a functorial
right homotopy function complex defined on all of M°P x M.

PROOF. This follows from Proposition 16.1.9 and Proposition 8.1.17. ad

DEFINITION 17.5.12. If M is a model category and X is a subcategory of M°P x
M, then a category of functorial right homotopy function complezes on K is a
category of functors from X to (M2)°P x MA™ under the “constant object” functor
(that takes (X,Y) to (cc, X, cs.Y)) with respect to those maps in (M2)°P x M2
that are componentwise Reedy weak equivalences with codomain a right resolving
pair (see Definition 17.4.11).

THEOREM 17.5.13. If M is a model category and X is a subcategory of MP x M,
then for every small category D of functorial right homotopy function complexes
on X there is a small category D’ of functorial right homotopy function complexes
on X such that D C D’ and BD' is contractible.
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PrOOF. This follows from Theorem 14.5.4, Proposition 16.1.9, and Proposi-
tion 8.1.17. O

THEOREM 17.5.14. If M is a model category, X is a subcategory of M°P x M,
and (F, ¢) and (F', ¢') are functorial right homotopy function complexes on X, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
right homotopy function complex maps from (F, ¢) to (F/,¢').

Proor. This follows from Proposition 14.5.7 and Theorem 17.5.13. ]

17.5.15. Functorial two-sided homotopy function complexes.

DEFINITION 17.5.16. If M is a model category and X is a subcategory of M°P x
M, then a functorial two-sided homotopy function complez on a subcategory X of
MOP x M is a pair (F, ¢) where F is a functor F: K — (M2)°" x M2 and ¢ is a
natural transformation ¢: (cc,X,cs,Y) — F(X,Y) such that
(1) ¢(X,Y) is a two-sided homotopy function complex from X to Y for every
object (X,Y) of X (see Proposition 17.3.6) and
(2) F takes maps of X into compositions of maps of two-sided homotopy
function complexes.

DEFINITION 17.5.17. Let M be a model category and let X be a subcategory
of M x M. If (F,¢) and (F',¢') are functorial two-sided homotopy function
complexes on XK, then a change of functorial two-sided homotopy function com-
plez map from (F, ¢) to (F/,¢') is a natural transformation g: F — F’ such that
¢(X,Y): F(X,Y)— F/(X,Y) is a change of two-sided homotopy function complex
map for every object (X,Y) of X.

PROPOSITION 17.5.18. If M is a model category, then there exists a functorial
two-sided homotopy function complex defined on all of M°P x M.

Proor. This follows from Proposition 16.1.9. O

DEFINITION 17.5.19. If M is a model category and X is a subcategory of M°P x
M, then a category of functorial two-sided homotopy function complezes on X is
a category of functors from X to (M2)°P x M2” under the “constant object”
functor (that takes (X,Y) to (cc. X, cs,Y)) with respect to those maps in (M2 )P x
MA” that are componentwise Reedy weak equivalences with codomain a two-sided
resolving pair (see Definition 17.4.11).

THEOREM 17.5.20. If M is a model category and X is a subcategory of M°P x
M, then for every small category D of functorial two-sided homotopy function
complexes on X there is a small category D’ of functorial two-sided homotopy
function complexes on X such that D C D’ and BD' is contractible.

Proor. This follows from Theorem 14.5.4 and Proposition 16.1.9. ]

THEOREM 17.5.21. If M is a model category, X is a subcategory of M° x M,
and (F,¢) and (F’,¢’) are functorial two-sided homotopy function complexes on
X, then there is-an essentially unique zig-zag (see Definition 14.4.2) of change of
functorial two-sided homotopy function complex maps from (¥, ¢) to (F',¢').

ProOF. This follows from Proposition 14.5.7 and Theorem 17.5.20. O
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17.5.22. Functorial homotopy function complexes.

DEFINITION 17.5.23. If M is a model category and X is a subcategory of M°P x
M, then a functorial homotopy function compler on a subcategory K of M x M
is either
e a functorial left homotopy function complex on X,
e a functorial right homotopy function complex on X, or
o a functorial two-sided homotopy function complex on X.

PROPOSITION 17.5.24. Let M be a model category and let X be a subcategory
of M°P x M. If (F,¢) is a functorial two-sided homotopy function complex on X
(see Definition 17.5.16) such that F(X,Y) = (F(X,Y),F(X,Y)) for every object
(X,Y) of X, then
(1) there is a functorial left homotopy function complex (I~7', f*"o) obtained by
replacing the functorial simplicial resolution P with the functorial fibrant
approximation i’o, and
(2) there is a functorial right homotopy function complex (f"’,f’) obtained
by replacing the functorial cosimplicial resolution F with the functorial
cofibrant approximation F°.

PrOOF. This follows from Proposition 17.4.4. O

DEFINITION 17.5.25. Let M be a model category, let X be a subcategory of
M x M, and let F = (F,F,diagM(F, F)) be a functorial two-sided homotopy
function complex on XK.

(1) We will let

LTS(F): (F,cs.Fo,diag M(F, cs. Fo)) — (F, F, diagM(F, F))

denote the natural map defined by the identity of F and the natural trans-
formation cs,Fo — F and we will call such a map a functorial left to two-
sided change of homotopy function compler map. We will commonly refer
to the natural map of simplicial sets diag M(F, cs,f«"o) — diagM(F,fT')
as though it were the functorial left to two-sided change of homotopy
function complex map.

We will let

RTS(F): (ccoFP, F, diag M(cc. F°, F)) — (F, F, diag M(F, F))

(2

~—

denote the natural map defined by the natural transformation F - cc F°
and the identity of i’, and we will call such a map a functorial right to two-
sided change of homotopy function complex map. We will commonly refer
to the natural map of simplicial sets diag M(cs, F?, ') — diag M(F, F) as
though it wee the functorial left to two-sided change of homotopy function
cornplex map.

DEFINITION 17.5.26. If M is a model category and X is a subcategory of M°P x
M, then a functorial change of homotopy function complez map on X is a finite
composition of

(1) functorial change of left homotopy function complex maps (see Defini-
tion 17.5.3),
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(2) functorial change of right homotopy function complex maps (see Defini-
tion 17.5.10),

(3) functorial change of two-sided homotopy function complex maps (see Def-
inition 17.5.17),

(4) functorial left to two-sided change of homotopy function complex maps
(see Definition 17.5.25), and

(5) functorial right to two-sided change of homotopy function complex maps
(see Definition 17.5.25).

We will commonly refer to the natural map of simplicial sets that is a part of
the change of functorial homotopy function complex map as though it were the
functorial change of homotopy function complex map.

DEFINITION 17.5.27. If M is a model category and X is a subcategory of M°P x
M, then a category of functorial homotopy function complezes on X is a category
of functors from X to (M2)°P x M4™ under the “constant object” functor (that
takes (X,Y) to (cc, X, cs,Y)) with respect to those maps in (M2)°P x M2 that
are componentwise Reedy weak equivalences with codomain a resolving pair (see
Definition 17.4.11).

THEOREM 17.5.28. If M is & model category and X is a subcategory of M°P x M,
then for every small category D of functorial homotopy function complexes on X
there is a small category D’ of functorial homotopy function complexes on X such
that D C D’ and BY' is contractible.

PRrOOF. This follows from Theorem 14.5.4 and Proposition 16.1.9. ]

THEOREM 17.5.29. If M is a model category, X is a subcategory of M°P x M,
and (F,¢) and (¥F',¢') are functorial homotopy function complexes on X, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
homotopy function complex maps from (F,¢) to (F', ¢).

PRroOOF. This follows from Proposition 14.5.7 and Theorem 17.5.28. 0

THEOREM 17.5.30. Let M be a model category and let X be a subcategory of
MOP x M.

(1) For every ordered pair of functorial left homotopy function complexes
map, (X,Y) and map,(X,Y) defined on K there is a homotopy equiv-
alence h;2: map,(X,Y) — map,(X,Y), defined up to homotopy and
natural up to homotopy, such that if maps(X,Y) is a third one and
hi3: map,(X,Y) — maps(X,Y) and hy3: map,(X,Y) — maps(X,Y)
are the corresponding homotopy equivalences, then hy3hy 3 =~ h) 3.

(2) For every ordered pair of functorial right homotopy function complexes
map,(X,Y) and map,(X,Y) defined on X there is a homotopy equiv-
alence hyz: map,(X,Y) — map,(X,Y), defined up to homotopy and
natural up to homotopy, such that if map;(X,Y) is a third one and
hyz: map,(X,Y) — map;(X,Y) and ha3: map,(X,Y) — maps(X,Y)
are the corresponding homotopy equivalences, then hq3hy o > h 3.

For every ordered pair of functorial two-sided homotopy function com-
plexes map, (X,Y) and map,(X,Y) defined on X there is a homotopy
equivalence hyz: map;(X,Y) — map,(X,Y), defined up to homotopy
and natural up to homotopy, such that if map;(X,Y) is a third one and

—
w
=
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hys: map,(X,Y) — map,(X,Y) and hy3: map,(X,Y) — map;(X,Y)
are the corresponding homotopy equivalences, then haahy 2 =~ hy 3.

(4) For every ordered pair of functorial homotopy function complexes (see
Definition 17.4.1) map,(X,Y) and map,(X,Y) defined on X there is a
homotopy equivalence hy5: map,(X,Y) — map,(X,Y), defined up to
homotopy and natural up to homotopy, such that if maps;(X,Y) is a
third one and hy 3: map;(X,Y) — map,(X,Y) and hy 3: map,(X,Y) —
map;{X,Y) are the corresponding homotopy equivalences, then hg 3hy 5 ~
hl,3'

PROOF. This follows from Proposition 14.4.11 and Theorem 17.5.29. a

THEOREM 17.5.31. Let M be a model category.

(1) If B is an object of M and g: X — Y is a map for which there is some
map of homotopy function complexes g.: map(B, X) — map(B,Y) (see
Notation 17.4.2) induced by g that is a weak equivalence, then every such
map of homotopy function complexes induced by ¢ is a weak equivalence.

(2) If X is an object of M and f: A — B is a map for which there is some map
of homotopy function complexes (see Definition 17.6.2) f*: map(B, X) —
map(A, X) (see Notation 17.4.2) induced by f that is a weak equivalence,
then every such map of homotopy function complexes induced by f is a
weak equivalence.

Proor. This follows from Theorem 17.5.30, Proposition 7.7.6, and the “two
out of three” axiom (see Definition 7.1.3). a

17.6. Homotopic maps of homotopy function complexes

17.6.1. Induced maps of homotopy function complexes.

DEFINITION 17.6.2. Let M be a model category, let W, X, Y, and Z be objects
of M, and let g: X — Y be a map.

(1) A map of left homotopy function complezes induced by g will mean either
(a) the map §.: M(W, X) — M(W,Y) where W is a cosimplicial res-
olution of W and §: X — ¥ is a fibrant approximation to g (see
Definition 8.1.22), or
(b) the map §*: M(f’, 2) — M(}/, 2) where §: X +Yisa cosimplicial
resolution of g (see Definition 16.1.20), and Z is a fibrant approxi-
mation to Z. '
(2) A map of right homotopy function complezes induced by g will mean either
(a) the map §.: M(W,X) — M(W,Y) where W is a cofibrant approx-
imation to W and §: XosVisa simplicial resolution of g, or
(b) the map §*: M(?, 2) — M()?, 2) where g is a cofibrant approxima-
tion to g (see Definition 8.1.22) and Zisa simplicial resolution of
Z.
(3) A map of two-sided homotopy function complezes induced by g will mean
either
(a) the map diagg.: diagM(W’j(\) — diagM(W, 17) where W is a
cosimplicial resolution of W and §: X—>Yisa simplicial resolution
of g, or
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(b) the map diag §*: diagM(Y,Z) — diagM(X,Z) where §: X - Y

is a cosimplicial resolution of g and Zisa simplicial resolution of Z.

(4) A map of homotopy function complezes induced by g will mean either a

map of left homotopy function complexes induced by g, a map of right ho-

motopy function complexes induced by g, or a map of two-sided homotopy
function complexes induced by g.

THEOREM 17.6.3. Let M be a model category and let W, X, Y, and Z be
objects in M. If g: X — Y is a weak equivalence, then

(1) any map of homotopy function complexes g.: map(W, X) — map(W,Y)
induced by g (see Notation 17.4.2 and Definition 17.6.2) is a weak equiv-
alence of fibrant simplicial sets, and

(2) any map of homotopy function complexes g*: map(Y,Z) — map(X, Z)
induced by g is a weak equivalence of fibrant simplicial sets.

Proor. This follows from Corollary 16.5.5, Corollary 16.5.21, and Proposi-
tion 16.1.24. O

17.6.4. Homotopic maps of homotopy function complexes. The main
result of this section is Theorem 17.6.7, which implies that if M is a model category
and if f and g are maps in M that are either left homotopic or right homotopic,
then any maps of homotopy function complexes induced by f and g are homotopic
maps of fibrant simplicial sets.

LeEMMA 17.6.5. If M is a model category and f,g: X — Y are left homotopic,
right homotopic, or homotopic, then both the induced maps of constant cosimpli-
cial objects cc. f,ccug: ccu X — cc,Y and the induced maps of constant simplicial
objects cs. f,cs.g: s, X — cs.Y are, respectively, left homotopic, right homotopic,
or homotopic.

ProoF. The constant cosimplicial and constant simplicial objects obtained
from either a cylinder object for X or a path object for Y satisfy the conditions of
Proposition 7.3.5. 0

ProrosITION 17.6.6. Let M be a model category.

(1) (a) If Bisa cosimplicial resolution in M and f,§: X — ¥ are left
homotopic, right homotopic, or homotopic maps of fibrant objects
in M, then the induced maps of left homotopy function complexes
AR M(E, )?) — M(B, }’;) are homotopic.

(b) If f,5: A — B are left homotopic, right homotopic, or homotopic
maps of cosimplicial resolutions in M and X is a fibrant object
of M, then the induced maps of left homotopy function complexes
7*,5: M(B, X) — M(A, X) are homotopic.

(2) (a) If B is a cofibrant object of M and f,§: X — Y are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions
in M, then the induced maps of right homotopy function complexes
furde: M(B, X)) — M(B,Y) are homotopic.

(b) If f.g: A — B are left homotopic, right homotopic, or homotopic
maps of cofibrant objects in M and X isa simplicial resolution in



364 17. HOMOTOPY FUNCTION COMPLEXES

M, then the induced maps of right homotopy function complexes
f*,5%: M(B,X) — M(4, X) are homotopic.

(3) (a) If B is a cosimplicial resolution in M and f, §: X — Y are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions in
M, then the induced maps of two-sided homotopy function complexes
diag fur diag g.: diag M(B, X) — diag M (B, Y) are homotopic.

(b) If f, g: A — B are left homotopic, right homotoplc or homotopic
maps of cosimplicial resolutions in M and X isa simplicial resolu-
tion in M, then the induced maps of two-sided homotopy function
complexes diag f*, diag§*: diag M(E,/)E) — diagM(A, X)) are ho-
motopic.

ProoF. We will prove part 1(a); the proofs of the other parts are similar.

If f and § are left homotopic, then Proposition 7.3.4 implies that there is a
cylinder object Xux-— Cyl()? 2, X for X such that p is a trivial fibration and
a left homotopy H: Cyl(X A) — Y from f to g. Corollary 16.5.4 implies that the
map M(E,Cyl()?)) — M(B, X) is a weak equivalence, and so Proposition 7.3.5
implies that f, and g. are left homotopic. Proposition 17.1.3 and Theorem 7.4.9
now imply that f. and §, are homotopic.

If fand g are right homotoplc and if ¥ — Path(Y) Y xVisa path object
for ¥ and H: X — Path(Y) is a right homotopy from f to §, then Corollary 16.5.5
implies that the map M(E,}?) - M(ﬁ,Path(?)) is a weak equivalence. Thus,
Proposition 7.3.5 implies that f. and g. are right homotopic. Proposition 17.1.3
and Theorem 7.4.9 now imply that f, and g, are homotopic. a

THEOREM 17.6.7. Let M be a model category, and let W, X, Y, and Z be
objects in M.

(1) If f,g: X — Y are left homotopic, right homotopic, or homotopic, and
if fa, 9«7 map(W, X) — map(W,Y) (see Notation 17.4.2) are maps of
homotopy function complexes induced by, respectively, f and g, then f,
and g. are homotopic maps of fibrant simplicial sets.

(2) If f,g: X — Y are left homotopic, right homotopic, or homotopic, and
if f*,¢™: map(Z,W) — map(Z,W) (see Notation 17.4.2) are maps of
homotopy function complexes induced by, respectively, f and g, then f*
and g* are homotopic maps of fibrant simplicial sets.

PrOOF. We will prove part 1 in the case in which f, and g. are maps of left
homotopy function complexes; the proofs in the other cases (and of part 2) are
similar. _ R

Let W be a cosimplicial resolution of W and let f,§: X — ¥ be fibrant approx-
imations to, respectively, f and g, such that the maps f. and g, are, respectively,
the maps f,: M(W, X) —» M(W,¥) and g,: M(W, X) —» M(W,Y). If we factor
the weak equivalences X — XandY - Y as, respectively, X =5 X' 2 X and
Y ¥ ¥/ 2Y, ¥ such that ix and 1y are trivial cofibrations and px and py are
fibrations, then the “two out of three” axiom implies that px and py are trivial
fibrations.
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The dotted arrow exists in the solid arrow diagram
X __j__) Y _ty_!' v
L
X PY
X 55X —f-> ¥
and a similar diagram implies that the corresponding map §': X’ — Y exists.

Thus, f’ and §' are cofibrant fibrant approximations to, respectively, f and g, and
we have the diagram

fl
X' —3Y’
g
pxl l”y
L _f =
X—3Y
g

in which py f' = fpx and py§’ = jpx. Lemma 17.6.5 and Proposition 8.2.4 imply
that if f and g are left homotopic, right homotopic, or homotopic, then f" and g
are, respectively, left homotopic, right homotopic, or homotopic. In any of these
cases, Proposition 17.6.6 implies that the maps f/: M(W’, )?’) — M(W’, }7’) and
gl M(W’, )?’) — M(W’, }7’) are homotopic. Since px and py are weak equivalences
of fibrant objects, Corollary 16.5.5 implies that the maps M(W’,)?’) — M(W’, )?)
and M(W’,}’}’) — M(W’,?) are homotopy equivalences of fibrant simplicial sets,
and this implies that f,: M(W,X) - M(W,¥) and §.: M(W,X) - M(W,7)
are homotopic. The result now follows from Proposition 17.4.3. O

17.7. Homotopy classes of maps

ProposiTION 17.7.1. Let M be a model category.
1) IfBisa cosimplicial resolution in M and X is a fibrant object of M, then
the set rroM(E, X) is naturally isomorphic to the set of homotopy classes
of maps from B° to X.
(2) If B is a cofibrant object of M and Xisa simplicial resolution in M, then
the set meM(B, /_f) is naturally isomorphic to the set of homotopy classes
of maps from B to /X\o.

PROOF. We will prove part 1; the proof of part 2 is dual.

The set of vertices of M(B, X) is the set of maps from B° to X and Prop-
osition 16.1.6 implies that if two vertices of M(B X) represent the same element
of mM(B, X) then those vertices (i.e., maps from By to X) are homotopic. Fi-
nally, if two maps from B to X are homotopic, then Proposition 7.4.7 and Prop-
osition 16.1.6 imply that there is a 1-simplex of M(E‘,X) whose faces are those
maps. 0

THEOREM 17.7.2. Let M be a model category. If X and Y are objects of M
and map(X,Y) is a homotopy function complex from X to Y, then momap(X,Y)
is naturally isomorphic to the set of maps from X toY in HoM.
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ProoF. This follows from Proposition 17.7.1 and Proposition 16.1.5. a

LeMMA 17.7.3. Let M be a model category.

(1) If B is a cosimplicial resolution in M and p: X — Y is a map of fi-
brant objects in M that induces a weak equivalence of simplicial sets
po: M(B, X) = M(B,Y), then p induces an isomorphism of the sets of
homotopy classes of maps p.: m(B°®, X) ~ m(B°,Y).

(2) If X isa simplicial resolution in M and i: A — B is a2 map of cofi-
brant objects in M that induces a weak equivalence of simplicial sets
i M(B,/)Z) = M(A,/)Z), then ¢ induces an isomorphism of the sets of
homotopy classes of maps 1*: W(B,/X\o) ~ (A, 3(\0).

ProoF. This follows from Proposition 17.7.1. a

PRoOPOSITION 17.7.4. Let M be a model category.

(1) If B is cofibrant and p: X — Y is a map of fibrant objects that induces
a weak equivalence of homotopy function complexes p,: map(B, X) —
map(B,Y) (see Notation 17.4.2), then p induces an isomorphism of the
sets of homotopy classes of maps p.: w(B, X) = n(B,Y).

(2) If X is fibrant and i: A — B is 2 map of cofibrant objects that induces
a weak equivalence of homotopy function complexes i*: map(B, X) —
map(A, X) (see Notation 17.4.2), then ¢ induces an isomorphism of the
sets of homotopy classes of maps i*: w(B, X) ~ w(4, X).

PRrOOF. We will prove part 1; the proof of part 2 is dual.

If Bisa cosimplicial resolution of B, then p induces a weak equivalence
po: M(B,X) — M(B,Y) (see Theorem 17.5.31), and so Lemma 17.7.3 implies
that p induces an isomorphism p. : m(B°, X) = 7(B®% Y). Since B® — B is a weak
equivalence of cofibrant objects, the result now follows from Corollary 7.7.4. a

COROLLARY 17.7.5. Let M be a model category.

(1) If B is cofibrant and p: X — Y is a fibration of fibrant objects for which
the induced map of homotopy function complexes p.: map(B,X) —
map(B,Y) is a weak equivalence, then for every map f: B — Y there
is a map g: B — X, unique up to homotopy, such that pg = f.

(2) If X is fibrant and i: A — B is a cofibration of cofibrant objects for
which the induced map of homotopy function complexesi*: map(B, X) —
map(A, X) is a weak equivalence, then for every map f: A — X there is
a map g: B — X, unique up to homotopy, such that gt = f.

ProoF. This follows from Proposition 17.7.4, Proposition 7.3.13, and Theo-
rem 7.4.9. a

PROPOSITION 17.7.6. If M is a model category, then a map g: X — Y is a
weak equivalence if either of the following two conditions is satisfied:

(1) The map ¢ induces weak equivalences of homotopy function complexes
g.: map(X, X) ¥ map(X,Y) and g.: map(Y,X) = map(Y,Y)
(see Notation 17.4.2).
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(2) The map g induces weak equivalences of homotopy function complexes
g": map(Y,X) =map(X,X) and g¢*: map(¥,Y) = map(X,Y)
(see Notation 17.4.2).

PrOOF. We will prove this using condition 1; the proof using condition 2 is
dual. o

If§: X — Y is a cofibrant approximation to g, then Theorem 17.6.3 implies that
g induces weak equivalences of homotopy function complexes g.: map(X, X)
map(X,Y) and g.: map(Y,X) = map(Y,Y). If 5: X — ¥ is a cofibrant fi-
brant approximation to §, then § is a map of cofibrant-fibrant objects, and The-
orem 17.6.3 implies that § induces weak equivalences of homotopy function com-
plexes §.: map()?, )?) ~ map(f,?) and §.: map(?,)?) = map(}’;, Y). Prop-
osition 17.7.4 now implies that § induces isomorphisms of the sets of homotopy
classes of maps g.: m(X, X) ~ n(X, f’) and §,: n(¥, X) ~ »(¥,¥), and so Propo-
sition 7.5.12 implies that § is a homotopy equivalence. Thus, § is a weak equivalence
(see Theorem 7.8.5), and so § is a weak equivalence, and so g is a weak equiva-
lence. ]

THEOREM 17.7.7. If M is a model category and g: X — Y is a map in M, then
the following are equivalent:

(1) The map g is a weak equivalence.

(2) For every object W in M the map g induces a weak equivalence of homo-
topy function complexes g.: map(W, X) = map(W,Y).

(3) For every cofibrant object W in M the map g induces a weak equivalence
of homotopy function complexes g.: map(W, X) = map(W,Y).

(4) For every object Z in M the map ¢ induces a weak equivalence of homotopy
function complexes g*: map(Y, Z) = map(X, Z).

(5) For every fibrant object Z in M the map ¢ induces a weak equivalence of
homotopy function complexes g*: map(Y, Z) = map(X, Z).

ProoF. This follows from Theorem 17.6.3, Proposition 17.7.6, and Proposi-
tion 8.1.17. t

17.8. Homotopy orthogonal maps

If M is a simplicial model category and if i: A — B and p: X — Y are maps
in M such that either

(1) 4 is a trivial cofibration and p is a fibration, or
(2) i is a cofibration and p is a trivial fibration,

then the map of function complexes Map(B, X) — Map(4, X) Xvap(a,y)Map(B,Y)
is a trivial fibration (see Definition 9.1.6). If at least one of A and B is cofibrant then
at least one of the maps Map(4, X) — Map(A4,Y) and Map(B,Y) — Map(4,Y) is
a fibration, and so the pullback Map(4, X) Xmap(a,v) Map(B,Y) is weakly equiva-
lent to the homotopy pullback (see Corollary 13.3.8 and Theorem 13.1.13). If both
A and B are cofibrant and both X and Y are fibrant, then these function cornplexes
are homotopy function complexes (see Example 17.1.4 and Example 17.2.4), and
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in this case the “orthogonality” condition is equivalent to saying that the square

Map(B, X) —— Map(B,Y)

J J

Map(A4, X) —— Map(A4,Y)
is a homotopy fiber square (see Definition 13.3.12).

DerFiniTION 17.8.1. If M is a model category and i: A - Band p: X —» Y
are maps in M, then we will say that
(1) (¢,p) is a homotopy orthogonal pair,
(2) i is left homotopy orthogonal to p, and
(8) p 1is right homotopy orthogonal to i

if there is a homotopy function complex map(~—, ~) on M (see Notation 17.4.2) such
that the square

map(B, X) — map(B,Y)

J J

map(4, X) —— map(4,Y)

is a homotopy fiber square (see Definition 13.3.12). (We will show in Proposi-
tion 17.8.2 that if this is true for any one homotopy function complex, then it is
true for every homotopy function complex.)

PROPOSITION 17.8.2. Let M be a model category, andleti: A— Bandp: X —
Y be maps in M. If there is some homotopy function complex map(—,—) (see
Notation 17.4.2) such that the square

(17.8.3) map(B, X) — map(B,Y)

J J

map(4, X) — map{4,Y)

is a homotopy fiber square of simplicial sets (see Definition 13.3.12), then Dia-
gram 17.8.3 for any other homotopy function complex is also a homotopy fiber
square.

Proor. If map,(—, —) and map,(—, —) are homotopy function complexes on
M, then Theorem 17.5.30 implies that there is a homotopy equivalence map, (—, —) =
mapy(—, —) that is natural up to homotopy. If we can alter these homotopy equiva-
lences by homotopies to get maps from Diagram 17.8.3 for map, to Diagram 17.8.3
for map, that commute on the nose, then the result will follow from Proposi-
tion 13.3.13. If the maps map,(4, X) — map,(A4,Y), mapy(B,Y) — map,(4,Y),
and mapy(B, X) — maps(A4, X) Xmap,(a,v) mapy(B,Y) are fibrations, then we can
use the homotopy lifting property (see Proposition 7.3.11) to alter the homotopy
equivalences from map, to map, in our diagrams by homotopies so that we do get
a map of diagrams. Thus, it is sufficient to show that for any homotopy function
complex, Diagram 17.8.3 maps to one with fibrations as described. We will do this
for left homotopy function complexes; the proofs for right and two-sided homotopy
function complexes are similar.
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If map is a left homotopy function complex defined by the cosxmpllcxa.l resolu-
tion i: A — B to i and the fibrant approximation #: X - ¥ top, then we can
factor 7 into a cofibration followed by a trivial fibration A — B’ — B and factor
p into a trivial cofibration followed by a fibration X — X’ — Y. This yields a
diagram

M(B,X)— M(B,?)
™~ [ ™
l M(B', X' T M(B'.Y)
M(A, X) —J—> M(A,T) J
It ~

M(A, X)) ——— M(A,Y)
in which all four maps from the back square to the front square are weak equiva-

lences (see Corollary 16.5.5), and Corollary 16.5.4 and Theorem 16.5.2 imply that
the front square has the fibrations required. ]

THEOREM 17.8.4. Let M be a model category. Ifi: A— B andp: X —» Y are
maps in M, then the following are equivalent:
(1) (3,p) is a homotopy orthogonal pair.

(2) For some cosimplicial resolution i: A — B of i such that i is a Reedy

cofibration and some fibrant approximation p: XVt p such that p is
a fibration, the map of simplicial sets

M(B, X) - M(A, X) %o 7.9y M(B, V)
is a trivial fibration. _ _
(3) For every cosimplicial resolution i: A — B of i such that i is a Reedy

cofibration and every fibrant approximation p: X% to p such that p
is a fibration, the map of simplicial sets
M(B, X) - M(4, X) xp .9y M(B, V)
is a trivial fibration. L
(4) For some cofibrant approximationi: A — B tot such that1is a cofibration

and some simplicial resolution 7: X ¥ of p such that p is a Reedy
fibration, the map of simplicial sets

M(B,X) - M(4,X) X0 5.9 M(B, ¥)
is a trivial fibration. o
(5) For every cofibrant approximation i: A — B to i such that 7 is a cofibra-
tion and every simplicial resolution p: X — Y of p such that p is a Reedy
fibration, the map of simplicial sets
M(B,X) = M(A4, X) xp 7.9 M(B, ¥)
is a trivial fibration. _ _
(6) For some cosimplicial resolution i: A — B of 1 such that 7 is a Reedy
cofibration and some simplicial resolution p: X — Y of p such that p is
a Reedy fibration, the map of simplicial sets

diag M(B, X) — diag M(A, X) X diag M(A,¥) diagM(B,Y)
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is a trivial fibration.

(7) For every cosimplicial resolution i: A —» B ofz such that 7 is a Reedy
cofibration and every simplicial resolution p: X ¥ of p such that p is
a Reedy fibration, the map of simplicial sets

diag M(B, Y) — diag M(A, ?) X diag M(A,7) diag M(B,Y)
is a trivial fibration.

ProoF. This follows from Proposition 17.8.2, Theorem 16.5.2, and Theorem
16.5.18. 0

ProprosiTION 17.8.5. Let M be a model category.

(1) Ifi: A—> BisamapinMand p: X — = is the map to the terminal object
of M, then (i,p) is a homotopy orthogonal pair if and only if 1 induces
a weak equivalence of homotopy function complexes ©*: map(B,X) =
map(A, X) (see Notation 17.4.2).

(2) Ifp: X > YisamapinM andi: § — B is the map from the initial object
of M, then (i,p) is a homotopy orthogonal pair if and only if p induces
a weak equivalence of homotopy function complexes p,: map(B,X) =
map(B,Y) (see Notation 17.4.2).

Proor. This follows directly from the definitions. 3

PROPOSITION 17.8.6. Let M be a model category.
(1) Ifp: X =Y is a map in M and we have a square

A— g

B'—a‘—)B'

in which the horizontal maps are weak equivalences, then (i, p) is a homo-
topy orthogonal pair if and only if (', p) is one.
(2) Ifi: A— B is a map in M and we have a square

X —sx

)

Y ——Y

in which the horizontal maps are weak equivalences, then (i,p) is & homo-
topy orthogonal pair if and only if (i,p’) is one.

Proor. This follows from Proposition 13.3.13 and Theorem 17.6.3. 3

ProposiTION 17.8.7. Let M be a model category and leti: A —» B andp: X —
Y be maps in M such that (i,p) is a homotopy orthogonal pair.
(1) Ifi': A’ — B’ is a retract of © (see Definition 7.1.1), then (i',p) is a
homotopy orthogonal pair.
(2) Ifp’: X’ > Y' is a retract of p, then (1,p’) is a homotopy orthogonal pair.
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PROOF. We w1ll prove part 1; the proof of part 2 is dual.

Let p: X » Y bea snmphma.l resolution of p such that p is a Reedy fibration
(see Proposition 16.1.22). Proposition 8.1.23 implies that there are cofibrant ap-
proximations i: A — B toiand #: A’ — B’ to ¢ such that i and 7 are cofibrations
and 7’ is a retract of 7. The map M(E’,X\) — M(ﬁ’,j(\) X i) M(E’,?) is thug
a retract of the map M(f?,j(\) — M(A, 5(\) X (A F) M(E,l?), and so the result
follows from Theorem 17.8.4. O

PROPOSITION 17.8.8. Let M be a model category. Ifi: A— Bandp: X - Y
are maps in M, then the following are equivalent:

(1) (¢,p) is a homotopy orthogonal pair.

(2) For some cosimplicial resolution 7: A — B of i such that i is a Reedy
cofibration, some fibrant approximation p: X oY to p such that p is a
fibration, and every n > 0, the dotted arrow exists in every solid arrow
diagram of the form

A® A Ujgppm B® AN — %

| |

BeAn ———— 7

(3) For every cosimplicial resolution 1: A — B of i such that 7 is a Reedy
cofibration, every fibrant approximation p: XY to p such that p is a
fibration, and every n > 0, the dotted arrow exists in every solid arrow
diagram of the form

A® Aln] Mzp0n, BO®OA[R — %

| |

B®Ap] ————— ¢

(4) For some cofibrant approximation %: A = B to i such that i is a cofibra-
tion, some simplicial resolution p: X - Y to p such that P is a Reedy
fibration, and every n > 0, the dotted arrow exists in every solid arrow
diagram of the form

I————— X
R

b Sa s
B—— YAk Xgoapm X Al

—

(5) For every cofibrant approximation i: A — B to i such that 7 is a cofibra-
tion, every simplicial resolution p: X — Y to p such that p is a Reedy
fibration, and every n > 0, the dotted arrow exists in every solid arrow



372 17. HOMOTOPY FUNCTION COMPLEXES

diagram of the form

i s xam
"

B —— pam X oain XAl

—

PROOF. Since a map of simplicial sets is a trivial fibration if and only if it has
the right lifting property with respect to the map 8A[n] — Aln] for every n > 0,
this follows from Theorem 17.8.4 and Proposition 16.4.5.

PROPOSITION 17.8.9. Let M be a model category. Ifi: A — B is a cofibra-
tion between cofibrant objects, p: X — Y is a fibration between fibrant objects,
and (i,p) is a homotopy orthogonal pair, then (i,p) is a lifting-extension pair (see
Definition 7.2.1).

PROOF. Proposition 16.6.14 implies that there is a cosimplicial frame 7: Ao
B on i such that 7 is a Reedy cofibration. Proposition 17.8.8 now implies that AR
Al0) — B® A|0] has the left lifting property with respect to p, and Lemma 16.3.6
implies that A ® A[0] — B ® A[0] is isomorphic to the map i. O

THEOREM 17.8.10. If M is a model category and g: X — Y is a map in M,
then the following are equivalent:

(1) g is a weak equivalence.

(2) g is right homotopy orthogonal to every map in M.

(3) For every cofibrant object W of M, g is right homotopy orthogonal to the
map @ — W (where Q is the initial object of M).

(4) g is left homotopy orthogonal to every map in M.

(5) For every fibrant object Z of M, g is left homotopy orthogonal to the map
Z — x (where * is the terminal object of M).

ProOF. We will prove that conditions 1, 2, and 3 are equivalent. The proof
that conditions 1, 4, and 5 are equivalent is dual.

1 implies 2: If i: A — B is a map in M, choose a cofibrant approximation
i: A — B to i such that 7 is a cofibration (see Proposition 8.1.23) and
choose a simplicial resolution §: X — ¥ such that § is a Reedy trivial
fibration (see Proposition 16.1.22 and Proposition 16.1.24); the result now
follows from Theorem 16.5.2.

2 implies 3: This is immediate.

3 implies 1: This follows from Proposition 17.8.5 and Theorem 17.7.7.

O

PROPOSITION 17.8.11. Let M be a model category.

(1) Ifi: A — B is a cofibration between cofibrant objects and p: X — Y is
a map such that i is left homotopy orthogonal to p, then for every map
j: A — C such that C is cofibrant the map C — B4 C is left homotopy
orthogonal to p.

(2) If p: X — Y 1s a fibration between fibrant objects and i: A — B is a
map such that p is right homotopy orthogonal to %, then for every map
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W — Y such that W is fibrant the map W xy X — W is right homotopy
orthogonal to i.

ProoF. We will prove part 1; the proof of part 2 is dual.

If we choose a simplicial resolution p: X _s Y of p such that p is a Reedy
fibration (see Proposition 16.1.22), then Proposition 17 .SA.8 implies thaLi has the
left lifting property with respect to the map X 20 — Y2 xgou) X081 for
every . > 0. Since the map C — BUl, Cisalsoa cofibration between cofibrant
objects, the result follows from Lemma 7.2.11 and Proposition 17.8.8. a

COROLLARY 17.8.12. Let M be a model category.

(1) If X is an object of M andi: A — B isa cofibration between cofibrant
objects that induces a weak equivalence of homotopy function complexes
i*: map(B, X) = map(A4, X) (see Notation 17.4.2), then for every map
A — C such that C is cofibrant the map C — BIL4C also induces a weak
equivalence of homotopy function complexes to X.

(2) If B is an object of M and p: X — Y is a fibration between fibrant
objects that induces a weak equivalence of homotopy function complexes
px: map(B, X) = map(B,Y) (see Notation 17.4.2), then for every map
W — Y such that W is fibrant the map W xy X — W also induces a
weak equivalence of homotopy function complexes from B.

PROOF. This follows from Proposition 17.8.5 and Proposition 17.8.11. a

PROPOSITION 17.8.13. Let M be a model category.

(1) Ifi: A— B’ ] B — C’) andp; X — Y are maps in M such that (l,p) is
a homotopy orthogonal pair, then (j,p) is & homotopy orthogonal pair if
and only if (ji,p) is one.

(2) Ifi: A>B,p: X »Y,andq: Y — Z are maps in M such that (i,q) is
a homotopy orthogonal pair, then (i,p) is a homotopy orthogonal pair if
and only if (i, gp) is one.

Proor. This follows from Proposition 13.3.15. O

PROPOSITION 17.8.14. Let M be a model category, and let i: A — B and
p: X — Y be maps in M such that (i,p) is a homotopy orthogonal pair.
(1) If7: A->Bisa cosimplicial resolution of @ such tharli is a Reedy cofi-
bration, then for every n > 0 the pushout corner map A®Aln] Hix«gaalnl
B® ?\A[n] — B ® Aln] is left homotopy orthogonal to p.
(2) Ifp: X — Y is a simplicial resolution of p such that § is a Reedy fibration,
then for every n > 0 the pullback corner map XAkl Yol X os(n]
X040 ig right homotopy orthogonal to i.

ProoF. We will prove part 1; the proof of part 2 is dual.

Corollary 16.3.11implies that for every n > 0 the map ox: A® Aln] H,Tx@amn]
B®dsh - Be Aln] is a cofibration between cofibrant objects. Thus, Proposi-
tion 17.8.8 implies that if : X — Y is a simplicial resolution of p such that p is
a Reedy fibration, then it is sufficient to show that o, _has the left lifting property
with respect to the map r,: X2k — Y2k Xgoaik X0 for every k > 0. We
will do this by induction on n.
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Lemma 16.3.6 and Proposition 17.8.6 imply that for every n > 0 the map
A® A[n] > B® A[n] is left homotopy orthogonal to p. Since the map oq is the
map A ® Al0] — B® AJ0], the induction is begun.

We now assume that n > 0 and that the result is true for all lesser values of
n. Lemma 15.3.9 now implies that L,A — L, B has the left lifting property with
respect to 7, for every k > 0. Proposition 15.3.11 and Corollary 15.3.12 imply that
L.A — L,B is a cofibration between cofibrant objects and Lemma 16.3.7 implies
that this map is isomorphic to the map A ® 8A[n] — B ® 8A[n]. Since the map
A®An] — A®A[n] HA®3A[n]I§®6A[n] is the pushout of A@A[n] — B®3A[n)
along the map A ® dA[n] —» A® Afn), Proposition 17.8.11 implies that it is left
homotopy orthogonal to p. Since the composition A ® Afn] — A ® Aln) I PPINE
B ® 0A[n] —» B ® A[n] is also left homotopy orthogonal to p, Proposition 17.8.13
completes the inductive step. ]

17.8.15. Properness.

ProPOSITION 17.8.16. Let M be a left proper model category andleti: A — B
and p: X — Y be maps in M such that (i,p) is a homotopy orthogonal pair (see
Definition 17.8.1).

(1) If the diagram

is a pushout and at least one of i and j is a cofibration, then (k,p) is a
homotopy orthogonal pair.

(2) If the diagram
w

z q

i

—
b

w

is a pullback and at least one of p and g is a fibration, then (i,7) is a
homotopy orthogonal pair.

PrOOF. We will prove part 1; the proof of part 2 is dual.,

Leti: A — B be a cofibrant approximation to i such that § is a cofibration (see
Proposition 8.1.23). Proposition 17.8.6 implies that 7 is left homotopy orthogonal
to p, and Proposition 13.5.6 implies that k£ has a cofibrant approximation k that is
a pushout of 7 (which must be a pushout of k along a map to a cofibrant object).
Thus, Proposition 17.8.11 implies that (k,p) is a homotopy orthogonal pair, and so
Proposition 17.8.6 implies that (k,p) is a homotopy orthogonal pair. ]

17.8.17. Cofibrantly generated model categories.

THEOREM 17.8.18. Let M be a cofibrantly generated model category. If there
is a set I of generating cofibrations for M such that either
(1) the domains of the elements of I are cofibrant, or
(2) M is left proper,
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then a map g: X — Y in M is a weak equivalence if and only if it is homotopy
right orthogonal to every element of I.

PRroOF. If g is a weak equivalence, then Theorem 17.8.10 implies that g is
right homotopy orthogonal to every map in M. Conversely, assume that g is right
homotopy orthogonal to every element of I. We will show that if W is a cofibrant
object of M, then g is right homotopy orthogonal to the map § — W (where § is
the initial object of M); the result will then follow from Theorem 17.8.10.

Since every cofibrant object of M is a retract of a cell complex (see Corol-
lary 11.2.2), it is sufficient to assume that W is a cell complex (see Proposi-
tion 17.8.7). Thus, there is an ordinal A and a A-sequence § — W) — Wy — -+ —
Wg — --- (8 < A) such that W = colimg<) Wy and each map Wz — Wpy, for
B < X is a pushout of an element of I. We will show by induction on 8 that § — W
is left homotopy orthogonal to g.

The induction is begun because § — Wy is the identity map of 8. If 8 < A and
@ — Wp is left homotopy orthogonal to g, then there is an element A — B of I and
a pushout diagram

A—B

|

Wﬁ —h-) Wg+1 .

Either Proposition 17.8.11 or Proposition 17.8.16 implies that A is left homotopy
orthogonal to g, and so Proposition 17.8.13 implies that @ — W, is left homotopy
orthogonal to g.

Finally, let 7 be a limit ordinal with v < A and assume that & — Wy is left
homotopy orthogonal to g for all 8 < v. If §: X — Y is a simplicial resolution of
¢ such that § is a Reedy fibration, then we have a map of towers of simplicial sets

X) <—M(W1,X) <—M(W2,X)<— <—M(W3,X)<—

1T |

— MW, P) —— M(W,, V) —— - —— M(W,, V) — -

in which all the horizontal maps are fibrations and all the vertical maps are > weak
equivalences of fibrant simplicial sets. Thus, the induced map limg<y M(Wp, X) —
limg.y M(Wpg,Y) is a weak equivalence, and so we have weak equivalences

MW, X) ~ M(cgl;gnwﬁ, X) = }’12 M(Wg, X)

= lim M(W;, Y) &~ M(colim Wp, ¥) = M(W,,Y) ,
B<y B<y

and the result follows from Proposition 17.8.5. a
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17.9. Sequential colimits

PropoSITION 17.9.1. If M is a model category, A is an ordinal, and

Xo y X1 y Xo >

[

Yo Y Y2

is a map of A-sequences in M such that
(1) each of the maps go: Xo — Ya for o < X is a weak equivalence of cofibrant
objects and
(2) each of the maps Xy — Xay1 and Yo — Ya4y for a < X is a cofibration,

then the induced map of colimits (colim g4 ): colim X, — colim Y, is a weak equiv-
alence.

ProoF. If Z is an object of M and c¢s,Z2 — Zis a simplicial resolution
of Z, then Theorem 17.7.7 implies that it is sufficient to show that the map
M(colim Yg, z ) — M(colim X, z ) is a weak equivalence of simplicial sets.

Corollary 16.5.5 implies that the map g*: M(Ya,é) — M(Xq, 2) is a weak
equivalence of fibrant simplicial sets for every & < A, and so the diagram

= M(Ya, Z) —— M1, Z) —— M(Yo, Z)

l l l

o M(Xy, Z) — M(X1, Z) — M(Xo, Z)
is a weak equivalence of towers of fibrations of fibrant simplicial sets. Thus, the
induced map lim M(Y,, Z) — limM(X,, Z) is a weak equivalence, and that map
is isomorphic to the map M(colim Yy, Z) — M(colim X, Z). O
17.9.2. Properness. We are indebted to D. M. Kan for the following propo-
sition.

PROPOSITION 17.9.3. Let M be a left proper model category. If A is an ordinal
and

Xo y X1 y Xo >

Qol Qll Qﬂl
Yo N Y2 >

is a map of A-sequences in M such that

(1) each of the maps go: Xa — Yo for & < X is a weak equivalence and
(2) each of the maps X, — Xo41 and Yo — Yayi for a < X is a cofibration,

then the induced map of colimits (colim g4): colim X, — colim Yy is a weak equiv-
alence.

PROOF. We construct a A-sequence Zg — Z, — 2 — --- intermediate be-
tween the given ones by letting Z, be the pushout Yy IIx, X, for every a < §.
Proposition 7.2.14 implies that Z, — Z,4) is a cofibration for every & < A, and
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we have maps of A-sequences

Xo Xy X2
hol hxl h;l
Zo > Zy Zy
Yo » Y1 > Y, 3.

such that

(1) each of the maps Zy — Z, (for @ < A) is a cofibration,

(2) the map ko: Zo — Yo is an isomorphism, and

(3) (since M is left proper) each of the maps ko: Zo — Y, (for @ < A) is a

weak equivalence.

Since left adjoints commute with colimits, colim Z, is isomorphic to the pushout
Yo x, (colim X,) (see Lemma 7.6.6); thus, the map colim X, — colimZ, is a
weak equivalence. Thus, it is suflicient to show that colim Z, — colim Y, is a weak
equivalence. Since ko: Zy — Yj is an isomorphism, each of the maps ky: Z, — Y,
(for & < A) is a weak equivalence of cofibrant objects in the category (Zo | M) of
objects under Zy (see Theorem 7.6.5). Thus, Proposition 17.9.1 implies that the
map colim Z, — colim Y, is a weak equivalence, and the proof is complete. 0

PrOPOSITION 17.9.4. Let M be a left proper model category. If X is an ordinal
and

XO_’XI_’X2_’"'_’XB_’"' (ﬁ()\)

is a A-sequence in M such that Xg — Xgy, is a cofibration for every f < A, then
there is a A-sequence

XO_’Xl—’XQ_’"'_’Xﬂ‘—’"' B<X

and a map of A-sequences

Xo—— X —— X —— X (B<)

90‘[ 91‘[ 92‘[ gbl

Xos— X — X —— Xg—— -+ B <
such that

(1) every Xp is cofibrant,

(2) every gp: Xp — Xp is a weak equivalence,

(3) every )?5 — )?5+1 is a cofibration, and

(4) the map colimgey Xﬂ — colimg<y X is a weak equivalence.

Proor. We will define the )?g mnductively. We begin by choosing a cofibrant
approximation go: Xo — Xo to X (see Proposition 8.1.17). If 3+ 1 < A and we
have defined gg: X5 — X, then we factor the composition X5 — X — Xpy, into
a cofibration followed by a trivial fibration, to obtain X5 — Xpyy 255 Xgyy. If
B < X and § is a limit ordinal, then Proposition 17.9.3 implies that colima<g Xy —
colim, g X, is a weak equivalence, and so we can construct the )?5 as required.
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Proposition 17.9.3 implies that the map colimge) XB — colimgey Xp is a weak
equivalence, and so the proof is complete. O



CHAPTER 18

Homotopy Limits in Simplicial Model Categories

If € is a small category and M is a model category, then the colimit functor
takes a C-diagram X in M to an object colim X of M. For most diagrams, though,
the colimit functor does not have good homotopy properties: If f: X — Y is an
objectwise weak equivalence of C-diagrams in M, then it will not in general be true
that (colim f): colim X — colimY is a weak equivalence. The homotopy colimit
functor is an attempt to repair this deficiency of the ordinary colimit.

There is a class of C-diagrams in M for which the colimit functor does take
objectwise weak equivalences of diagrams into weak equivalences. For example,
if € is a Reedy category with fibrant constants (see Definition 15.10.1), then the
Reedy cofibrant diagrams are in that class (see Theorem 15.10.9). It can be shown
that our definition of the homotopy colimit of a diagram X (sei Definition 18.1.2)
is equivalent to constructing an objectwise weak equivalence X — X such that
X is in this “special class” when X is objectwise cofibrant, and then defining
hocolim X to be colim X. Thus, at the cost of replacing our original diagram with
an objectwise weakly equivalent one, we obtain a version of the colimit functor
that takes objectwise weak equivalences between objectwise cofibrant diagrams into
weak equivalences in M. It can be shown that, although there may not be a model
category structure on the category of all C-diagrams in M, the localization of that
category of diagrams with respect to the objectwise weak equivalences does exist
(see Remark 8.3.3), and that the homotopy colimit functor represents the total left
derived functor (see Definition 8.4.7) of the colimit functor. For this, see [30].

The definition that we use (see Definition 18.1.2) is homotopy invariant only for
objectwise cofibrant diagrams. To obtain a definition that is homotopy invariant
for all diagrams, we could first functorially take a cofibrant approximation to each
object in the diagram and then apply Definition 18.1.2. Our definition provides
simpler formulas, though, and it is the standard definition that is already in wide
use.

All of the above remarks can be dualized to describe the homotopy limit functor
as a replacement for the ordinary limit. The formula that we give below for the
homotopy limit (see Definition 18.1.8) is homotopy invariant only for objectwise
fibrant diagrams, and it can also be made completely homotopy invariant by first
functorially taking a fibrant approximation to each object in the diagram.

The standard reference for homotopy colimits and homotopy limits of diagrams
of simplicial sets, total spaces of cosimplicial simplicial sets, and realizations of
bisimplicial sets is {14, Chapters X through XII], and our definitions are essentially
the ones used there (but see Remark 18.1.11). The reference [19] gives a useful
discussion of the idea of a free diagram (see Definition 11.5.35), and [35] gives a
careful development of the homotopy colimit of certain small diagrams in a model
category.

379
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In this chapter we restrict ourselves to diagrams in a simplicial model category.
This includes most of the examples of interest and makes for simpler formulas. In
Chapter 19 we will work with general model categories, providing definitions and
results that specialize to those in this chapter for simplicial model categories with
the standard framing (see Proposition 16.6.23).

In Section 18.1 we define the homotopy colimit and homotopy limit of a dia-
gram in a siroplicial model category and give several examples. In Section 18.2 we
show that the homotopy limit of a diagram of spaces can be described as a space
of maps between diagrams. In Section 18.3 we discuss coends and ends, which
are constructions that generalize the definitions of the homotopy colimit and the
homotopy limit. If € is a small category, M is a simplicial model category, X is a
C-diagram in M, and K is a €°P-diagram of simplicial sets, then the coend X ®¢ K
(also called the tensor product of the functors X and K) reduces to the homotopy
colimit of X when K is the C°P-diagram B(— | €)°P. Dually, if K is a C-diagram
of simplicial sets, then the end hom® (K, X) (also called the hom of the functors
K and X)) reduces to the homotopy limit of X when K is the C-diagram B(C | —-).
We also establish adjointness properties for ends and coends, and we use those
adjointness properties in Section 18.4 together with the homotopy lifting extension
theorem (see Remark 9.1.7) to obtain homotopy invariance results for the pushout
corner map for coends and the pullback corner map for ends (see Theorem 18.4.1).
We also establish a homotopy lifting extension theorem for diagram indexed by
a Reedy category. In Section 18.5 we obtain homotopy invariance results for the
homotopy colimit and homotopy limit functors.

In Section 18.6 we discuss realizations of simplicial objects and total objects of
cosimplicial objects, and establish homotopy invariance results. In Section 18.7 we
discuss the Bousfield-Kan maps from the homotopy colimit of a simplicial object
to its realization and from the total object of a cosimplicial object to its homotopy
limit. In Section 18.8 we compare the homotopy colimit of a diagram of pointed
spaces with the homotopy colimit of the diagram of unpointed spaces obtained by
forgetting the basepoints, and in Section 18.9 we discuss diagrams of simplicial sets.

18.1. Homotopy colimits and homotopy limits
In this section we define the homotopy colimit and homotopy limit of a diagram
in a simplicial model category, and give several examples.

18.1.1. Homotopy colimits.

DEFINITION 18.1.2. Let M be a simplicial model category and let € be a small
category. If X is a C-diagram in M (see Definition 11.5.2), then the homotopy
colimit hocolim X of X is defined to be the coequalizer of the maps

¢
I XeoB@le)® —3 J] Xa®B(ale)”.
(0: a—a’)EC k4 «€0b(€)

(see Definition 14.1.1 and Definition 11.8.3) where the map ¢ on the summand
o: a — o is the composition of the map

o, ® lB(a’le): on ®B(a' 1 (‘3)°p h—t Xa’ ®B(a' 1 (‘3)°p
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with the natural injection into the coproduct, and the map % on the summand
o: a— o is the composition of the map

1x, ®B(o*): Xoa ®B(a/ | ) — X, ®B(a| €)°P

(where *: (o' | €)°® — (a] ©)°P; see Definition 14.7.2) with the natural injection
into the coproduct.

For a discussion of the relation of our definition of the homotopy colimit to
that of [14], see Remark 18.1.11.

REMARK 18.1.3. If Spc,, is one of our categories of spaces (see Notation 7.10.5),
€ is a small category, and X is a C-diagram in Spc,), then

Xc, x B(a | ©)°° if Spc,.) = SS
A (B(al©)*)" if Spey,, = S8,

X x |B(a]l €)%|  if Spey,, = Top
A|B(al€)®|* if Spe(,y = Top,

Xo®B(al€)® ~

(see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Example 9.1.16).

ExampLE 18.1.4. If Spey, is one of our categories of spaces (see Notation 7.10.5)
and g: X ~ Y is a map in Spc(,y, then the homotopy colimit of the diagram con-
sisting of just the map g is the mapping cylinder of g.

ExaMPLE 18.1.5. If Spey,, is one of our categories of spaces (see Notation 7.10.5)
andZ <X LYisa diagram in Spcy,, then the homotopy colimit of this diagram
is the double mapping cylinder of g and A.

ProposiTION 18.1.6. If € is a small category and P is the diagram of simplicial
sets in which P, is a single point for every object a of C (i.e., P is the constant
diagram at a point), then there is a natural isomorphism hocolim P = BC°P.

PROOF. Definition 18.1.2 defines hocolim P to be the coequalizer of the maps

I] BEie)” :¢—’_, ] Blaie)®

(0: a—a’)eC acOb(C)

where the map ¢ is induced by the identity map on each summand and the map
¥ on the summand o: @ — ¢ is the composition of the map B(o*): B(e/ | €)°P —
B(al €)°P with the natural injection into the coproduct. We define a map from
B(a | €)°" to BC°P by sending the simplex

s

90 4 4 In

of B(a] )P to the simplex gg < g, « -+ «— g, of BC°P, This defines a sur-
jective map hocolim P — BE°P which is also injective because every simplex of
HaEOb(e) B(a | €)°® that is mapped to gg + gy « - - - « 0, is equal (in hocolim P)
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to the simplex

8
2
Q
3

18.1.7. Homotopy limits.

DErFINITION 18.1.8. Let M be a simplicial model category and let € be a small
category. If X is a C-diagram in M (see Definition 11.5.2), then the homotopy limit
holim X of X is defined to be the equalizer of the maps

¢
H (XQ)B(elcx) — H (XQ,)B(GIQ)
a€0b(C) ¥ (0: a—a’)EC

(see Definition 14.1.1 and Definition 11.8.1) where the projection of the map ¢ on
the factor o: & — ¢« i8 the composition of a natural projection from the product
with the map

O’.:B(em) . (XO)B(GL(!) N (XQ,)B(GLQ)

and the projection of the map 7 on the factor o: @ — o is the composition of a
natural projection from the product with the map

(1x ,)B("‘): (Xa,)B(Glcx’) N (XQI)B((:’la)
(where o.: (€| a) — (€| o'); see Definition 14.7.8).

For a discussion of the relation of our definition of the homotopy limit to that
of [14], see Remark 18.1.11.

ExaMPLE 18.1.9. If Spc, is one of our categories of spaces (see Notation 7.10.5)
and g: X — Y is a map in Spc(*) , then the homotopy limit of the diagram con-
sisting of just the map g is what is usually called the mapping path space of g.

THEOREM 18.1.10. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M and Y is an object of M then there is a natural
isomorphism of simplicial sets Map(hocolime X,Y) & holimee» Map(X,Y).

PROOF. Definition 18.1.2 and Proposition 9.2.2 imply that Map(hocolime X, Y)
is naturally isomorphic to the limit of the diagram

[ Map(X.®B(ale)®Y) 3 [T Map(X.®B(a'1€)",Y)
a€0b(C) (6: a—a’)EC

Axiom M6 (see Definition 9.1.6) and Corollary 14.7.13 imply that there are natural
isomorphisms

Map (X, ® B(o' | €)%, Y) ~ Map(B(c’ | €)°",Map(X,,Y))
~ Map(B(C° | &), Map(X a, Y))
~ (Map(X,, ¥)) €7
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and so Map(hocolime X, Y') is naturally isomorphic to the limit of the diagram

B(€*® N B(C* Lo’
T (Map(Xo, 7)™ —3 T (Map(Xa,1))P"
a€O0b(CoP) (0: a’—a)€CoP
which is the definition of holimges Map(X,Y) (see Definition 18.1.8). O

REMARK 18.1.11. There are two respects in which our definitions of the ho-
motopy colimit and homotopy limit differ from those of [14] (which uses the term
homotopy direct limit for the homotopy colimit and homotopy inverse limit for
the homotopy limit). First, we use the diagrams of simplicial sets B(—} €)°" and
B(€| —) (see Definition 19.1.2 and Definition 19.1.5) where [14)] uses the diagrams
B(— 1 €) and B(€ ] —) (see [14, Chapter XII, Paragraph 2.1 and Chapter XI, Para-
graph 3.2]. Since both B(—|€)°® and B(— | €) are cofibrant approximations to
the constant C°P-diagram at a point (see Corollary 14.8.8), these two choices give
definitions that are naturally weakly equivalent for C-diagrams of cofibrant objects
(see Theorem 19.4.7), but our definition was chosen to make Theorem 18.1.10 true.
It is incorrectly stated in [14, Chapter XII, Proposition 4.1] that this is true for
the definitions used in [14}; this is due to an error in the proof of {14, Chapter XII,
Proposition 4.1]. This error is a minor one, since the spaces claimed there to be
isomorphic are in fact naturally weakly equivalent, which is all that was needed.

The second difference between our definitions and those of [14] is that the defi-
nition of the classifying space (i.e., the nerve) of a category used in [14] is “opposite”
to our definition (see Definition 14.1.1 and [14, Chapter XI, Paragraph 2.1)), i.e.,
if € is a small category, then the definition of BC used in [14] (which is called there
the underlying space of the category) is isomorphic to our definition of BE°P.

The combined effect of the above two differences is that our definition of the
homotopy colimit is isomorphic to that of [14], but our definition of the homotopy
limit is different. Since the C-diagrams of simplicial sets B(€} —) and B(€ | —)°P
are both free cell complexes (see Definition 11.5.35), these two definitions of the
homotopy limit are naturally weakly equivalent for diagrams of fibrant objects (see
Theorem 19.4.7).

18.2. The homotopy limit of a diagram of spaces

Each of our categories of spaces (see Notation 7.10.5) has an internal mapping
space, and these can be used to describe the homotopy limit of a diagram of spaces
as a space of maps.

DEeFINITION 18.2.1 (Internal mapping spaces).

e If X and Y are objects of SS, then the internal mapping space Y X equals
the simplicial mapping space Map(X,Y) (see Example 9.1.13).

e If X and Y are objects of SS,, then the internal mapping space Y X
is the pointed simplicial set with n-simplices the basepoint preserving
simplicial maps X A Aln]* — Y, and face and degeneracy maps induced
by the standard maps between the A[n|. When we need to emphasize the
category in which we work, we will use the notation Map, (X,Y) for the
pointed simplicial set of basepoint preserving maps.

e If X and Y are objects of Top, then the internal mapping space Y X is
the topological space (see Notation 7.10.2) of continuous functions from
X to Y. When we need to emphasize the category in which we work, we
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will use the notation map(X,Y) for the unpointed topological space of
continuous functions.

e If X and Y are objects of Top,, then the internal mapping space YX is
the pointed topological space (see Notation 7.10.2) of basepoint preserving
continuous functions from X to Y. When we need to emphasize the
category in which we work, we will use the notation map, (X,Y) for the
pointed topological space of basepoint preserving continuous functions.

PROPOSITION 18.2.2. The internal mapping spaces Y* of Definition 18.2.1 are

related to the simplicial mapping spaces Map(X,Y) of Example 9.1.13, Exam-
ple 9.1.14, Example 9.1.15, and Example 9.1.16 as follows:

—
w
Rt

—
Y
=

o If X and Y are objects of SS, then Map(X,Y) equals YX.

e If X and Y are objects of SS., then Map(X,Y) is obtained from Y* by
forgetting the basepoint.

e If X and Y are objects of Top, then the simplicial set Map(X,Y) is the
total singular complex of YX.

e If X and Y are objects of Top,, then the simplicial set Map(X,Y) is
the total singular complex of the unpointed space obtained from YX by
forgetting the basepoint.

Proor. This follows from the natural isomorphisms of sets

Top(|A[n]|, Y ™) = Top(X x |Aln]|,Y)
Top. (|Afn]|*, Y¥) ~ Top, (X A |AR][*,Y) .
O

DEFINITION 18.2.3. Let C be a small category.
(1) If X and Y are €-diagrams of unpointed simplicial sets, then Y'* is the

unpointed simplicial set of maps of diagrams (i.e., natural transforma-
tions) from X to Y whose set of n-simplices is the set of maps of diagrams
from X ® Aln] to Y (see Definition 11.7.1). When we need to emphasize
the category in which we work, we will use the notation Map(X,Y’) for
the unpointed simplicial set of maps from X to Y.

(2) If X and Y are C-diagrams of pointed simplicial sets, then YX is the

pointed simplicial set of maps of diagrams (i.e., natural transformations)
from X toY whose set of n-simplices is the set of maps of diagrams from
X @ Aln] to Y (see Definition 11.7.1). When we need to emphasize the
category in which we work, we will use the notation Map, (X,Y’) for the
pointed simplicial set of maps from X to Y.

If X and Y are C-diagrams of unpointed topological spaces, then YX
is the unpointed topological space of maps of diagrams (i.e., natural
transformations) from X to Y topologized as a subset of the product
Hanb(e) map(X4,Y o) (see Definition 18.2.1). When we need to empha-
size the category in which we work, we will use the notation map(X,Y)
for the unpointed topological space of maps from X to Y.

If X and Y are C-djagrams of pointed topological spaces, then Y X is the
pointed topological space of maps of diagrams (i.e., natural transforma-
tions) from X to Y topologized as a subset of [] con(e) Map.(Xa, ¥Ya)
(see Definition 18.2.1). When we need to emphasize the category in which
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we work, we will use the notation map, (X,Y’) for the pointed topological
space of maps from X to Y.

LEMMA 18.2.4. If C is a small category and X and Y are C-diagrams of un-
pointed topological spaces, then there is a natural isomorphism of simplicial sets
Sing(Y™) ~ Map(X,Y)
(see Definition 11.7.2 and Definition 18.2.3).
Proo¥r. Since the total singular complex functor is a right adjoint it commutes
with limits, and so the result follows from Proposition 18.2.2. A
ProprosITION 18.2.5. If € is a small category, Spc(,y is one of our categories
of spaces (see Notation 7.10.5), and X and Y are C-diagrams in Spc(,,, then
the internal mapping spaces Y of Definition 18.2.3 are related to the simplicial
mapping spaces Map(X,Y') of Definition 11.7.2 as follows:
e If Spe(,y = Top, then the simplicial set Map(X,Y) is the total singular
complex of YX.
o If Spc(,) = Top,, the simplicial set Map(X,Y") is the total singular com-
plex of the unpointed space obtained from Y by forgetting the basepoint.
e IfSpc(,y =SS, then Map(X,Y) equals Y *.
e If Spe(,, = 8S., then Map(X,Y') is obtained from Y* by forgetting the
basepoint.
Proor. This follows from Proposition 18.2.2 and Lemma 18.2.4. 0

PropPOSITION 18.2.6. If Spc(,) is one of our categories of spaces (see Nota-
tion 7.10.5), € is a small category, and X is a C-diagram in Spcy,), then holim X
is naturally isomorphic to the space of maps between diagrams

Map(B(€ | -), X), if Speg,y =S8
Map, (B(€ ] -)*, X), if Spe(,y = SS.
map(‘B(el—)"X), if Spc(t) = Top

map*('B(el_)|+)X)) if Spc(x) :TOp*
(see Definition 18.2.3).

PROOF. For each object o of C the space (X,)B(¢l®) is a Spc(,)-object of
maps in Spey,) (see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Exam-
ple 9.1.16)

Map(B(€ | ), X) if Spc,) =S8
XB(GLQ) ~ Mapt(B(ela)"',X) if SpC(‘) = SS*
map(|B(€la)|,X)  if Spc,) = Top
map, (|B(CLa)|*,X) if Spc(, = Top,
and so the result follows from Definition 18.1.8. 0

18.3. Coends and ends

In this section we define general constructions (see Definition 18.3.2) that al-
low us to analyze the colimit and homotopy colimit as two examples of the same
construction (and, similarly, the limit and homotopy limit as two examples of the
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same construction) (see Example 18.3.8). These definitions also enable us to obtain
adjointness relations (see Section 18.3.9) that will be used to obtain the homotopy
invariance results of Section 18.5.

18.3.1. Definitions.

DEFINITION 18.3.2. Let M be a simplicial model category and let € be a small

category.

(1)

(18.3.3)

(2)

(18.3.4)

If X is a C-diagram in M and K is a C°P-diagram of simplicial sets, then
X ®c K is defined to be the object of M that is the coequalizer of the
maps

¢
Xe®Koe —3 J] X.®Ka
(0: a—a’)EC ¥ a€Ob(C)

where the map ¢ on the summand o: a — @ is the composition of the
map

0 @ 1K°,: Xoe® Ky — Xal ® Ko
(where 0,: X4 — X, ) with the natural injection into the coproduct,
and the map % on the summand ¢: @ — @’ is the composition of the map

1X°®0'*: Xa®Ky — Xa® K,

(where 0*: K, — K,) with the natural injection into the coproduct.
The construction of the object X ®e K in M from the functor X @
K: € x €% — M is an example of the general construction known as
a coend (see [47, pages 222-223]). In the notation of [47], X ®¢ K =
[*Xa®K,.
If X is a C-diagram in M and K is a C-diagram of simplicial sets, then
home(K, X)) is defined to be the object of M that is the equalizer of the
maps

[[ o =3 [ e

a€O0b(C) (0: a—a’)eC

where the projection of the map ¢ on the factor ¢: ¢ — ¢’ is the compo-
sition of a natural projection from the product with the map

o (X o) Ke — (X o) Ke

(where 0.: X, — X&) and the projection of the map ¥ on the factor
o: a — o is the composition of a natural projection from the product
with the map

(L ) (Xa) Ko — (X o) Ko
(where o,: (€ | a) — (€| a'); see Definition 14.7.8).
The construction of the object home(K,X) of M from the functor
XK. @ x @P — M is an example of the general construction known as

an end (see [47, pages 218-223] or [7, page 329]). In the notation of [47],
hom®(K, X) = [ (X q)%=.
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REMARK 18.3.5. The tensor product of functors (see Definition 18.3.2) is a
special case of a coend of a functor H: € x €°? — SS, where H(K,L) = K x L (see
Definition 18.3.2). We use the name “tensor product” because of the similarity to
the case in which a ring R is viewed as an additive category (with one object, and
with morphisms equal to the elements of R). In that case, a left R-module is just
an additive functor G: R — A from R to the category of abelian groups, and a
right R-module is an additive functor F: R°® — A. If H: R°? x R — A is defined
by H(e, a) = F(a) ® G(a), then F ®pger G is the usual tensor product of a right
R-module F with a left R-module G.

EXAMPLE 18.3.6. Let M be a simplicial model category and let € be a small
category.
(1) If X is a C-diagram in M, then X ®¢ B(— | €)°® (see Definition 14.7.2)
is the homotopy colimit of X (see Definition 18.1.2).
(2) If X is a €-diagram in M, then hom®(B(€ | —), X) (see Definition 14.7.8)
is the homotopy limit of X (see Definition 18.1.8).

PROPOSITION 18.3.7. Let M be a simplicial model category and let € be a small
category.
(1) If X is a C-diagram in M and P: €% — SS is a single point for every
object @ of C, then X ®¢ P is naturally isomorphic to colim X .
(2) If X is a C-diagram in M and P: € — S8 is a single point for every object
@ of €, then hom®(P, X) is naturally isomorphic to lim X.

PROOF. For part 1, P, is naturally isomorphic to A[0} for every object a of
€°P, and so we have natural isomorphisms
Xa®Pyx XA = X, .

Under these isomorphisms, the map ¢ of Definition 18.3.2 is defined by o.: X4 —
X o and the map 9 is the identity.

For part 2, P, is naturally isomorphic to A[0] for every object a of €, and so
we have natural isomorphisms

XPon X200 5 X,
Under these isomorphisms, the map ¢ of Definition 18.3.2 is defined by o,.: X4 —
X o and the map ¢ is the identity. O
EXAMPLE 18.3.8. Let M be a simplicial model category and let C be a small
category.

(1) If P is the G°P-diagram of simplicial sets that is a single point for every
object a of €%, then the unique map of €°P-diagrams B(— | C)°® — P
induces a natural map

hocolim X = X ®¢ B(— ] €)®® — X ®¢ P = colim X

for all €-diagrams X in M (see Example 18.3.6 and Proposition 18.3.7).
(2) If P is the C-diagram of simplicial sets that is a single point for every
object a of €, then the unique map of C-diagrams B(C | —) — P induces
a natural map )
lim X = hom®(P, X) — hom®(B(€| —), X) = holim X
for all C-diagrams X in M.
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18.3.9. Adjointness.

ProposiTioN 18.3.10. Let M be a simplicial model category and let C be a
small category.
(1) If X is a C-diagram in M, K is a €°P-diagram of simplicial sets, and Z is
an object of M, then there is a natural isomorphism of sets
M(X ®¢ K, Z) =SS (K, M(X, Z))

(where X ®c K is as in Definition 18.3.2).
(2) If X is a C-diagram in M, K is a C-diagram of simplicial sets, and W is
an object of M, then there is a natural isomorphism of sets

M (W, hom® (K, X)) ~ 8§ (K, M(W, X))

(where hom® (K, X) is as in Definition 18.3.2).

Proor. We will prove part 1; the proof of part 2 is similar.
The object X ®¢ K is defined as the colimit of Diagram 18.3.3, and so M(X ®¢
K, Z) is naturally isomorphic to the limit of the diagram

.

¢
[l MXe0Kaz) =3 ]I MX@Ka2).
a€Ob(€) ¥ (o: a—a’)eC

Axiom M6 (see Definition 9.1.6) implies that this limit is naturally isomorphic to
the limit of the diagram

o
I Ss(KaM(X42) —3 II  s8(KaM(Xa,2)) ,
«€0b(C) ¥ (0: amar)EC
which is the definition of S5 (K, M(X, Z)). o

LEMMA 18.3.11. Let M be a simplicial model category and let C be a small
category.

(1) If A— B is a map of C-diagrams in M, K — L is a map of €°P-diagrams
of simplicial sets, and X — Y is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A®eLHA®eKB®eK—-——§X
BL——Y

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K —————»Map(B, X)

| |

L —— Map(A, X) Xmap(a,y) Map(B,Y) .



18.4. CONSEQUENCES OF ADJOINTNESS 389

(2) If X — Y is a map of C-diagrams in M, K — L is a map of C-diagrams
of simplicial sets, and A — B is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A——————hom®(L, X)

| 1
B — hom®(K, X) Xhom€ (K,Y) hom®(L, Y)

if and only if the dotted arrow exists in every solid arrow diagram of the

form
K ——— Map(B,X)
| |
L —— Map(A4, X)) Xmap(a,y) Map(B,Y) .
ProoF. This follows from Proposition 18.3.10. a

18.4. Consequences of adjointness

In this section we combine the adjointness relations of Section 18.3.9 with the
homotopy lifting extension theorem (see Remark 9.1.7) to obtain the technical
results that imply the homotopy invariance results of Section 18.5.

THEOREM 18.4.1. Let M be a simplicial model category and let € be a small
category.

(1) If j: A — B is an objectwise cofibration of C-diagrams in M andi: K —
L is a cofibration of C°P-diagrams of simplicial sets (see Theorem 11.6.1),
then the pushout corner map

A®c Lllgsgox B® K — B®e L

is a cofibration in M that is a weak equivalence if either j is an objectwise
weak equivalence or i is a weak equivalence.

(2) Ifp: X — Y is an objectwise fibration of C-diagrams in M andi: K — L
is a cofibration of C-diagrams of simplicial sets (see Theorem 11.6.1), then
the pullback corner map

hom®(L, X) — hom® (K, X) Xyome (k,yy hom®(L, Y)

is a fibration in M that is a weak equivalence if either p is an objectwise
weak equivalence or 1 is a weak equivalence.

PROOF. We will prove part 1; the proof of part 2 is similar.

If p: X — Y is a fibration in M, then axiom M7 (see Definition 9.1.6) implies
that the map of €°P-diagrams of simplicial sets Map(B, X) — Map(A4, X) XMap(4,Y)
Map(B,Y) is an objectwise fibration that is an objectwise weak equivalence if either
j is an objectwise weak equivalence or p is a weak equivalence. The result now
follows from Lemma 18.3.11, Proposition 7.2.3, and Theorem 11.6.1. a

COROLLARY 18.4.2. Let M be a simplicial model category and let € be a small
category.
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(1) If K is a cofibrant C°P-diagram of simplicial sets (see Theorem 11.6.1)
and j: A — B is an objectwise cofibration of C-diagrams in M, then the
map A®e K — B®c K is a cofibration in M that is a weak equivalence
if § is an objectwise weak equivalence.

(2) If K is a cofibrant C-diagram of simnplicial sets (see Theorem 11.6.1) and
p: X — Y is an objectwise fibration of C-diagrams in M, then the map
hom® (K, X) — hom®(K,Y) is a fibration in M that is a weak equiva-
lence if p is an objectwise weak equivalence.

PrROOF. This follows from Theorem 18.4.1. )

COROLLARY 18.4.3. Let M be a simplicial model category and let C be a small
category.
(1) If K is a cofibrant C°P-diagram of simplicial sets (see Theorem 11.6.1) and
X is an objectwise cofibrant C-diagram in M, then X ®¢ K is a cofibrant
object of M.
(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1) and
X is an objectwise fibrant C-diagram in M, then home(K, X) is a fibrant
object of M.

Proor. This follows from Theorem 18.4.1. O

COROLLARY 18.4.4. Let M be a simplicial model category and let € be a small
category.

(1) If K is a cofibrant C°P-diagram of simplicial sets (see Theorem 11.6.1)
and f: X — Y is an objectwise weak equivalence of objectwise cofibrant
C-diagrams in M, then the induced map fu: X ®c K — Y ®¢ K is a
weak equivalence.

(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1) and
f: X — Y is an objectwise weak equivalence of objectwise fibrant C-
diagrams In M, then the induced map f,: home(K, X) — home(K,Y)
is a weak equivalence.

ProoF. This follows from Corollary 18.4.2 and Lemma 7.7.1. O

COROLLARY 18.4.5. Let M be a simplicial model category and let € be a small
category.

(1) If X is an objectwise cofibrant C-diagram in M and f: K — K' is a
weak equivalence of cofibrant C°P-diagrams of simplicial sets (see Theo-
rem 11.6.1), then the induced map fo: X ®c K — X ®¢ K’ is a2 weak
equivalence of cofibrant objects in M.

(2) If X is an objectwise fibrant C-diagram in M and f: K — K’ is a weak
equivalence of cofibrant C-diagrams of simplicial sets (see Theorem 11.6.1),
then the induced map f*: hom®(K', X) — hom®(K, X) is a weak equiv-
alence of fibrant objects in M.

Proor. This follows from Theorem 18.4.1 and Corollary 7.7.2. (]

COROLLARY 18.4.6. Let M be a simplicial model category and let € be a small
category.
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(1) If K is a C°P-diagram of simplicial sets and both K — K and K' — K
are cofibrant approximations to K (see Theorem 11.6.1), then for ev-
ery objectwise cofibrant C-diagram X in M there is an essentially unique
(see Definition 14.4.2) natural zig-zag of weak equivalences (see Defini-
tion 14.4.1) in M from X ®¢ K to X @ K'. _ N

(2) If K is a C-diagram of simplicial sets and both K — K and K’ — K are
cofibrant approximations to K (see Theorem 11.6.1), then for every ob-
jectwise fibrant C-diagram X in M there is an essentially unique (see Def-
inition 14.4.2) natural zig-zag of weak equivalences (see Definition 14.4.1)
in M from home(g, X) to home(ﬂKv’, X).

PROOF. This follows from Corollary 18.4.5 and Proposition 14.6.3. 0
18.4.7. Reedy diagrams.

LemMa 18.4.8. Let C be a Reedy category and let M be a simplicial model
category.
(1) If B is a C-diagram in M and X is an object of M, then Map(B, X) is
a C°P-diagram of simplicial sets and for every object a of € there is a
natural isomorphism M, Map(B, X) ~ Map(L, B, X).
(2) If B is an object of M and X is a C-diagram in M, then Map(B,X) is a
C-diagram of simplicial sets and for every object o of C there is a natural
isomorphism M, Map(B, X)) = Map(B, M, X).

ProoF. We will prove part 1; the proof of part 2 is similar.
We have natural isomorphisms

M, Map(B,X)= lim Map(B,X) (see Definition 15.2.5)
8(al€)
~ Map( colim B,X) (see Proposition 9.2.2)
(8(al €))er
2~ Map( colim B, X) (see Proposition 15.2.4)
6(@10)
= Map(L.B, X) .

O
THEOREM 18.4.9 (The Reedy diagram homotopy lifting extension theorem).
Let € be a Reedy category and let M be a simplicial model category.
(1) Ifi: A — B is a Reedy cofibration of C-diagrams in M and p: X — Y is
a fibration in M, then the map of C°P-diagrams of simplicial sets
Map(B, X) — Map(A, X) Xmap(a,y) Map(B,Y)

is a Reedy fibration that is a Reedy weak equivalence if either of 1 or p is
a weak equivalence.

(2) Ifi: A — B is a cofibration in M and p: X — Y is a Reedy fibration of
C-diagrams in M, then the map of C-diagrams of simplicial sets

Map(B, X) — Map(A, X) Xmap(4,¥) Map(B,Y)

is a Reedy fibration that is a weak equivalence if either i or p is a weak
equivalence.
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Proor. We will prove part 1; the proof of part 2 is similar.
We must show that for every object & of € the map of simplicial sets
(18.4.10)

Map(Aon X) ><Map(Ac,,Y) Map(Ba ) Y)

l

Map(Ba, X) —  Pullback of | M, (Map(A, X) Xmap(a,v) Map(B,Y))
My Map(B, X)

is a fibration that is a weak equivalence if either ¢ or p is a weak equivalence.
Lemma 18.4.8 implies that this map is isomorphic to the map

Ma'p(Aav X) ><Map(Ac,,Y) MaP(Bav Y)

l

Map(Ba, X) —  Pullback of | Map(LaA, X) Xuap(w, a,v) Map(LaB,Y)

T

Map(Ly B, X)

)

and the codomain of this map is the limit of the diagram
Map(Aq, X) —— Map(A,,Y) +—— Map(B,,Y)

l l l

Map(LoA, X) —— Map(Lq4,Y) ¢—— Map(L,B,Y)
Map(L.B, X) .
Thus, the map (18.4.10) is isomorphic to the map

MaP(Aa ’ X) XMap(LaA4,X) Map(ch Ba X)

l

Map(Ba, X) —  Pullback of [ Map(A,,Y) XMap(L,4,v) Map(La B, Y)

T

Map(Bo,Y)

Since Aq Uy 4 LoB — Bg is a cofibration that is a weak equivalence if 7 is a
weak equivalence (see Theorem 15.3.15), the result now follows from axiom M7
(see Definition 9.1.6). O

THEOREM 18.4.11. Let € be a Reedy category and let M be a simplicial model
category.
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(1) Ifj: A — B is a Reedy cofibration of C-diagrams in M and i: K — L is
a Reedy cofibration of C°P-diagrams of simplicial sets, then the pushout
corner map A®e LIl pg. x B®e K — B®¢ L is a cofibration in M that
is a weak equivalence if either i or § is a Reedy weak equivalence.

(2) If p: X — Y is a Reedy fibration of C-diagrams in M and i: K — L
is a Reedy cofibration of C-diagrams of simplicial sets, then the pullback
corner map hom®(L, X) — hom® (K, X) Xhome (K,Y) bom®(L,Y) is a
fibration in M that is a weak equivalence if either i or p is a Reedy weak
equivalence.

PrOOF. This is similar to the proof of Theorem 18.4.1, using Theorem 18.4.9
in place of axiom M?7. )

COROLLARY 18.4.12. Let € be a Reedy category and let M be a simplicial
model category.
(1) If K is a Reedy cofibrant C°P-diagram of simplicial sets and X is a Reedy
cofibrant diagram in M, then X ®c K is a cofibrant object in M.
(2) If K is a Reedy cofibrant C-diagram of simplicial sets and X is a Reedy
fibrant C-diagram in M, then home(K, X) is a fibrant object in M.

ProoF. This follows from Theorem 18.4.11. [}

COROLLARY 18.4.13. Let C be a Reedy category and let M be a simplicial
model category.
(1) If K is a Reedy cofibrant C°P-diagram of simplicial sets end f: X — Y is
a weak equivalence of Reedy cofibrant C-diagrams in M, then the induced
map f,: X ®c K — Y ®¢ K is a weak equivalence of cofibrant objects
in M.
(2) If K is a Reedy cofibrant C-diagram of simplicial sets and f: X — Y is
a weak equivalence of Reedy fibrant C-diagrams in M, then the induced
map fi: home(K,X) — home(K,Y) is a weak equivalence of fibrant
objects in M.

Proor. This follows from Corollary 18.4.12, Theorem 18.4.11, and Corol-
lary 7.7.2. ]

COROLLARY 18.4.14. Let € be a Reedy category and let M be a simplicial
model category.

(1) If X is a Reedy cofibrant C-diagram in M and f: K — K' is a weak
equivalence of Reedy cofibrant C°P-diagrams of simplicial sets, then the
induced map f.: X ®c K — X ®¢ K’ is a weak equivalence of cofibrant
objects in M.

(2) If X is a Reedy fibrant C-diagram in M and f: K — K' is a weak equiv-
alence of Reedy cofibrant C-diagrams of simplicﬁl sets, then the induced
map f*: home(K',X) — home(K,X) is a weak equivalence of fibrant
objects in M.

Proor. This follows from Corollary 18.4.12, Theorem 18.4.11, and Corol-
lary 7.7.2. 0

COROLLARY 18.4.15. Let € be a Reedy category and let M be a simplicial
model category.
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(1) If K is a €°P-diagram of simplicial sets and both K — K and K' — K
are Reedy cofibrant approximations to K, then for every Reedy cofibrant
C-diagram X in M there is an essentially unique (see Definition 14.4.2)
natural zig-zag of weak equivalences in M from X ®¢ K to X ®¢ K.

(2) If K is a C-diagram of simplicial sets and both K - K and K' — K are
cofibrant approximations to K, then for every Reedy fibrant C-diagram X
in M there is an essentially unique (see Definition 14.4.2) natural zig-zag
of weak equivalences from hom® (K, X) to hom® (K", X).

ProoF. This follows from Corollary 18.4.14 and Proposition 14.6.3. O

THEOREM 18.4.16. Let € be a Reedy category and let M be a simplicial model
category.

(1) If P is a Reedy cofibrant C°P-diagram of simplicial sets such that Py is
contractible for every object a of €, then for every Reedy cofibrant G-
diagram X in M the object X ®¢ P is naturally weakly equivalent to
hocolim X .

(2) If P is a Reedy cofibrant C-diagram of simplicial sets such that P, is con-
tractible for every object a of C, then for every Reedy fibrant C-diagram X
in M the object home(P, X)) is naturally weakly equivalent to holim X.

Proor. This follows from Corollary 18.4.15 and Corollary 15.6.7. O

18.5. Homotopy invariance

THEOREM 18.5.1. Let M be a simplicial model category and let € be a small
category.

(1) If f: X —» Y is a map of C-diagrams in M that is an objectwise cofi-
bration, then the induced map of homotopy colimits f.: hocolim X —
hocolim Y is a cofibration that is a weak equivalence if f is an objectwise
weak equivalence.

(2) If f: X - Y is a map of C-diagrams in M that is an objectwise fibration,
then the induced map of homotopy limits f,: holim X — holimY is a
fibration that is a weak equivalence if f is an objectwise weak equivalence.

Proor. This follows from Corollary 18.4.2 and Corollary 14.8.8. O

THEOREM 18.5.2. Let M be a simplicial model category and let € be a small
category.
(1) If X is an objectwise cofibrant C-diagram in M, then hocolia X is cofi-
brant.
(2) If X is an objectwise fibrant C-diagram in M, then holim X is fibrant.

Proor. This follows from Corollary 18.4.3 and Corollary 14.8.8. a

THEOREM 18.5.3. Let M be a simplicial model category and let € be a small
category.

(1) If f: X — Y is a map of C-diagrams in M that is an objectwise weak
equivalence of cofibrant objects, then the induced map of homotopy co-
limits f,: hocolim X — hocolimY is a weak equivalence of cofibrant
objects of M.
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: — is a map of C-diagrams in that is an objectwise wea

) Iff: X Y i f C-di in M that i bj i k
equivalence of fibrant objects, then the induced map of homotopy limits
fu: holim X — holimY is a weak equivalence of fibrant objects of M.

PRrOOF. This follows from Corollary 18.4.4 and Theorem 18.5.2. a

REMARK 18.5.4. D. Dugger and D. Isaksen [28] bave proved that if € is a
small category and X is a C-diagram of topological spaces, then hocolim X has
the “correct” weak equivalence type even if X is not an objectwise cofibrant dia-
gram. That is, they prove that if X is an objectwise cofibrant diagram of topo-
logical spaces and j: X — X is an objectwise weak equivalence, then the map
hocolim j: hocolim X — hocolim X is a weak equivalence. Thus, their results
imply that if f: X — Y is an objectwise weak equivalence of C-diagrams of topo-
logical spaces, then hocolim f: hocolim X — hocolim Y is a weak equivalence even
if none of the spaces involved are cofibrant.

18.6. Simplicial objects and cosimplicial objects
18.6.1. Definitions.
DEFINITION 18.6.2. If M is a simplicial model category and X is a simplicial

object in M (see Definition 15.1.10), then the realization |X | of X is the coequalizer
of the maps

®
[ X.2aK — [I X.®am
(o: [n]—[k])ea [n]eOb(A)

where the map ¢ on the summand o: [n] — (k] is the composition of the map

04 ® Lapy: Xn ® Al — Xi ® A[K]
(where 0.: X, — X}) with the natural injection into the coproduct and the map
% on the summand o: [n] — [k] is the composition of the map

1x, ®c: X, ®Ak] — X, ® Aln]

(where o*: A[k] — A[n]) with the natural injection into the coproduct. In the
notation of Definition 18.3.2, | X | = X ®aer A (see Definition 15.1.15).

DEFINITION 18.6.3. If M is a simplicial model category and X is a cosimplicial
object in M (see Definition 15.1.10), then the total object Tot X of X is the equalizer
of the maps

(Xn)A[n] -—¢—) H (Xk)A[n]
—

[n]€Ob(A) v (o: [n]—=[khea

where the projection of the map ¢ on the factor o: [n] — [k] is the composition of
the natural projection from the product with the map

O‘,EIA["I)Z (Xn)Aln] N (Xk)A[n]

and the projection of the map ¢ on the factor o: [n] — [k] is the composition of
the natural projection from the product with the map

(1xk)a. . (Xk)A[k] N (Xk)A[n]
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(where 0. : A[n] — Alk}). In the notation of Definition 18.3.2, Tot X = hom”(A, X)
(see Definition 15.1.15).

REMARK 18.6.4. If Spey, is one of our categories of spaces (see Notation 7.10.5),
then the space (X ™)2M is a space of maps:

map(|Aln}|, X™) if Spc(,) = Top

map, (|Alr]|*, X™) if Spc(.y = Top.,

Map(A[n], X™) if Speg,y = S8

Map, (A[n]*,X™)  if Spe,y = SS.

(see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Example 9.1.16). Thus,
in each case the total space is constructed by first taking the codegreewise mapping
space from the cosimplicial space |A| (or [A]*, or A, or A¥) to the cosimplicial
space X, and then taking a subspace of the product of these mapping spaces. In the
notation of Definition 18.2.3, the total space of a cosimplicial space is Tot X = X 2.

(Xn)A[n] —

18.6.5. Homotopy invariance.

THEOREM 18.6.6. Let M be a simplicial model category.

(1) Ifg: X - Y is a level-wise weak equivalence of Reedy cofibrant simplicial
objects in M, then the induced map of realizations g.: | X| — |Y| is a
weak equivalence of cofibrant objects in M.

(2) Ifg: X - Y is alevel-wise weak equivalence of Reedy fibrant cosimplicial
objects in M, then the induced map of total objects g.: Tot X — TotY
is a weak equivalence of fibrant objects in M.

PROOF. This follows from Corollary 18.4.13 and Corollary 15.9.11. m]

THEOREM 18.6.7. Let M be a simplicial model category.

(1) ifi: A — B is a Reedy cofibration of simplicial objects in M, then the
induced map of realizations |i|: |A| — | B| is a cofibration in M that is a
trivial cofibration if 1 is a trivial cofibration.

(2) If p: X — Y is a Reedy fibration of cosimplicial objects in M, then the
induced map of total objects Totp: Tot X — TotY is a fibra