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Preface

The subject of this monograph is the homotopy theory of diagrams of spaces,
chain complexes, spectra, and generalized spectra, where the homotopy types are
determined locally by a Grothendieck topology.

The main components of the theory are the local homotopy theories of simplicial
presheaves and simplicial sheaves, local stable homotopy theories, derived cate-
gories, and non-abelian cohomology theory. This book presents formal descriptions
of the structures comprising these theories, and the links between them. Examples
and sample calculations are provided, along with some commentary.

The subject has broad applicability. It can be used to study presheaf and sheaf
objects which are defined on the open subsets of a topological space, or on the open
subschemes of a scheme, or on more exotic covers. Local homotopy theory is a
foundational tool for motivic homotopy theory, and for the theory of topological
modular forms in classical stable homotopy theory. As such, there are continuing
applications of the theory in topology, geometry, and number theory. The applications
and extensions of the subject comprise a large and expanding literature, in multiple
subject areas.

Some of the ideas of local homotopy theory go back to the work of the
Grothendieck school in the 1960s. The present form of the theory started to emerge
in the late 1980s, as part of a study of cohomological problems in algebraic K-theory.
Within the framework of this theory, these K-theory questions have now been almost
completely resolved, with a fusion of ideas from homotopy theory and algebraic
geometry that represents the modern face of both subjects. The theory has broad-
ened the scope of the applications of homotopy theory, while those applications
have led to a rethinking of what homotopy theory and particularly stable homotopy
theory should be. We also now have a good homotopy theoretic understanding of
non-abelian cohomology theory and its applications, and this theory has evolved into
the modern theories of higher stacks and higher categories.

The foundational ideas and results of local homotopy theory have been established
in a series of well-known papers which have appeared over the last 30 years, but have
not before now been given a coherent description in a single source.

This book is designed to rectify this difficulty, at least for basic theory. It is intended
for the members of the Mathematics research community, at the senior graduate
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student level and beyond, with interests in areas related to homotopy theory and
algebraic geometry. The assumption is that the reader either has a basic knowledge
of these areas, or has a willingness to acquire it.

This project was initiated as a result of a series of conversations with Ann Kostant
at Springer-Verlag during the spring of 2009, and I am grateful for her encouragement
and support.

I would like to thank Cihan Okay for a careful reading of the manuscript during
the summer of 2014, and for finding many typographical errors. I would also like
to thank Karol Szumillo and Kris Kapulkin for a series of helpful questions and
remarks.

Basically, I have worked on this book everywhere that I have gone over the past 5
years. Most of the work was done at the University of Western Ontario, but I would
like to give special thanks to the Fields Institute and to the Pacific Institute for the
Mathematical Sciences for the hospitality and stimulating environments that they
provided during multiple visits.

This work was made possible by the generous support of the Natural Sciences and
Engineering Research Council of Canada and the Canada Research Chairs program.

I would, finally, like to thank my wife Catharine Leggett, for her encouragement
and patience through another book writing adventure.

London, Canada J. F. Jardine

October, 2014
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Chapter 1
Introduction

In the broadest terms, classical homotopy theory is the study of spaces and related
objects such as chain complexes or spectra, and equivalence relations between them,
which are defined by maps called weak equivalences. These maps are typically
defined by inducing isomorphisms of homotopy groups and homology groups.

A homotopy theory also comes equipped with classes of cofibrations or fibrations
(usually both), which are families of maps that react with weak equivalences in ways
that specify solutions to particular, universally defined obstruction problems. Such
a theory is usually encoded in a Quillen closed model structure, but variants of that
concept occur.

The list of definitions, axioms and formal results which make up a closed model
structure is the barest of beginnings, on the way to the calculational results that are
typical of the homotopy theory of spaces and spectra. The point of the axiomatic
approach is to make basic obstruction theory easy and formal—more interesting
calculations and theoretical statements require further input, from either geometry
or algebra. Calculations also usually involve structures that are constructed from the
basic building blocks of homotopy theory.

Diagrams of spaces are everywhere. A space can be identified with a homotopy
colimit of a diagram of its universal covers, indexed on its fundamental groupoid,
while the universal covers are often studied as homotopy inverse limits of their
Postnikov towers. An action of a group G on a space (or spectrum) X is a diagram of
spaces (or spectra) which consists of the actions g : X → X by the various elements
g of G. It is also a standard practice to study the corresponding diagram of fixed
point spaces.

Homotopy colimits are derived colimits and homotopy inverse limits are derived
inverse limits, according to a construction that has been familiar to homotopy theorists
at least since the 1970s. Explicitly, the homotopy inverse limit of an I -diagram X

is an inverse limit of a fibrant model of X, in an “injective” model structure for
I -diagrams of spaces for which the cofibrations and weak equivalences are defined
sectionwise. The homotopy colimit of X is a colimit of a cofibrant model of X, in
a “projective” model structure for I -diagrams, for which the fibrations and weak
equivalences are defined sectionwise. Here, X is a space-valued functor which is
defined on a small index category I , and the collection of all such functors and the
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2 1 Introduction

natural transformations between them is the category of I -diagrams. One makes
analogous definitions for diagrams of spectra and for diagrams of chain complexes.

Local homotopy theory is the study of diagrams of spaces or spectrum-like objects
and weak equivalences, where the weak equivalences are determined by a topology
on the underlying index category.

The choice of underlying topology determines the local nature of the resulting
homotopy theory. For example, a simplicial presheaf X (or presheaf of spaces) on a
topological space T is a contravariant diagram

X : (op|T )op → sSet

that is defined on the category op|T of open subsets of T , and which takes values in
simplicial sets. We already have injective and projective model structures, and hence
homotopy theories, for the category of such diagrams in which a weak equivalence
of simplicial presheaves X → Y is a sectionwise weak equivalence, meaning a map
which induces weak equivalences X(U ) → Y (U ) in sections for all open subsets
U of T . On the other hand, a map X → Y is a local weak equivalence (for the
topology on the space T ) if it induces weak equivalences Xx → Yx in stalks for all
x ∈ T . Every sectionwise weak equivalence is a local weak equivalence, but local
weak equivalences certainly fail to be sectionwise equivalences in general.

There is a model structure on the category of simplicial presheaves on the space T ,
for which the weak equivalences are the local weak equivalences and the cofibrations
are defined sectionwise. Contrast this with the diagram-theoretic injective model
structure described above, for which both the weak equivalences and the cofibrations
are defined sectionwise. These two homotopy theories, while different, are still
avatars of the same phenomenon; the locally defined homotopy theory is determined
by the usual topology on the category op|T of open subsets of the space T , while the
sectionwise theory is defined by the “chaotic” topology on op|T , which imposes no
local conditions.

These examples are special cases of an extremely general and widely applicable
theorem: the category of simplicial presheaves on an arbitrary small Grothendieck
site has a model structure for which the cofibrations are defined sectionwise and
the weak equivalences are defined locally by the topology on the site. This result
is Theorem 5.8 of this book. Applications of this result have accumulated since its
discovery in the 1980s, in algebraic K-theory, algebraic geometry, number theory
and algebraic topology.

The groundwork for Theorem 5.8 is a bit technical, and is dealt with in Chaps. 2–
4. The technicality primarily arises from specifying what is meant by locally defined
weak equivalences, here called local weak equivalences, for general Grothendieck
sites. In cases where there is a theory of stalks, this is no problem; a local weak
equivalence is a stalkwise weak equivalence, as in the example above for a topological
space T .

In the language of topos theory, having a theory of stalks means that the Grothen-
dieck topos of sheaves on the site C has “enough points”. Not all Grothendieck toposes
have enough points—the flat sites from algebraic geometry are examples—and we
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have to be much more careful in such cases. There are multiple approaches, and
all of them are useful: one can, for example, specify local weak equivalences to be
maps that induce isomorphisms on locally defined sheaves of homotopy groups for
all local choices of base points (this was the original definition), or one can use the
theorem from topos theory which says that every Grothendieck topos has a Boolean
localization. This theorem amounts to the existence of a “fat point” for sheaves and
presheaves, taking values in a sheaf category which behaves very much like the
category of sets. In general, a local weak equivalence is a map which induces a
sectionwise equivalence of associated fat points, although there is still some fussing
to say exactly what that means.

The Boolean localization theorem (or Barr’s theorem, Theorem 3.31) is a ma-
jor result, and it is used everywhere. There are workarounds which avoid Boolean
localization—they have the flavour of the definition of local weak equivalence that
is based on sheaves of homotopy groups [7] and can be similarly awkward. A quick
proof of the Boolean localization theorem appears in Chap. 3, after a self-contained
but rapid discussion of the basic definitions and results of topos theory that one
needs for this type of homotopy theory. There is also a proof of the theorem of Gi-
raud (Theorem 3.17) which identifies Grothendieck toposes by exactness properties.
Some basic definitions and results for simplicial sets are reviewed in the first chapter.

From a historical point of view, these last paragraphs about simplicial presheaves
are quite misleading, because the original focus of local homotopy theory was on
simplicial sheaves. The homotopy theory of simplicial sheaves had its origins in
algebraic geometry and topos theory, and the applications of the theory, in algebraic
geometry, number theory and algebraic K-theory, are fundamental.

The local weak equivalence concept evolved, over the years, from Grothendieck’s
notion of quasi-isomorphism of sheaves of chain complexes [36] of 1957. Illusie [47]
extended this idea to morphisms of simplicial sheaves [47] in 1971, in his description
of a quasi-isomorphism of simplicial sheaves. We now say that such a map is a local
weak equivalence of simplicial sheaves.

Illusie conjectured that a local weak equivalence of simplicial sheaves induces
a quasi-isomorphism of associated free integral chain complexes—this is easy to
prove in the presence of stalks, but it resisted proof in general at the time. Illusie’s
conjecture was proved by van Osdol [101], in 1977, in the first homotopy theoretic
application of Boolean localization.

Joyal showed, in a letter to Grothendieck of 1984, that the category of simplicial
sheaves on an arbitrary small site has a closed model structure with sectionwise cofi-
brations and local weak equivalences. Joyal’s proof again used Boolean localization,
and was completely topos theoretic. His result generalized a theorem of Brown and
Gersten [17] from algebraic K-theory, which treated the case of simplicial sheaves
for the Zariski topology on a Noetherian scheme. Joyal’s result also specializes to the
injective model structure for diagrams which is described above. The first published
appearance of the injective model structure for diagrams is found in work of Heller
[37].

A half model structure (meaning, in this case, a category of fibrant objects struc-
ture) of local weak equivalences and local fibrations for simplicial sheaves was
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introduced in [49], along with a homotopy theoretic definition of the cohomology of
a simplicial sheaf. This was done to initiate a method of tackling various questions
of algebraic K-theory which relate discrete and topological behaviour.

The main example of the time was this: suppose that k is an algebraically closed
field and let � be a prime which is distinct from the characteristic of k. Let (Sm|k)et
be the site of smooth k-schemes (of high bounded cardinality), endowed with the
étale topology. The general linear groups Gln represent sheaves of groups on this
site, and one can form the corresponding simplicial sheaves BGln by applying the
nerve functor sectionwise. Form the simplicial sheaf BGl by taking the filtered
colimit of the objects BGln along the standard inclusions in the sheaf category. The
étale cohomology groups H ∗

et (BGl, Z/�) are defined, and can be computed from
classical topological results by using base change theorems—this graded ring is a
polynomial ring over Z/� in Chern classes. There is a canonical map of simplicial
sheaves ε : Γ ∗BGl(k) → BGl, where Γ ∗ is the constant simplicial sheaf functor
and the simplicial set BGl(k) is global sections of the simplicial sheaf BGl. The
map ε induces a ring homomorphism

ε∗ : H ∗
et (BGl, Z/�) → H ∗(BGl(k), Z/�)

relating the étale cohomology of BGl to the cohomology of the simplicial set BGl(k).
Here is a theorem: this map ε∗ is an isomorphism. This statement is equivalent to
the rigidity theorems of Suslin which compute the mod � algebraic K-theory of the
field k [95, 98], but it has an alternate proof that uses Gabber rigidity [29] to show
that ε induces an isomorphism in mod � homology sheaves.

This alternate proof of the Suslin theorems for algebraically closed fields was one
of the first calculational successes of the homotopy theory of simplicial sheaves (and
presheaves) in algebraic K-theory. The statement is a special case of the isomorphism
conjecture of Friedlander and Milnor, which asserts that the map ε∗ is an isomorphism
when the sheaf of groups Gl is replaced by an arbitrary reductive algebraic group
G. The Friedlander–Milnor conjecture is still open, but it is the subject of vigorous
study [81].

The passage from the local homotopy theory of simplicial sheaves to the local
homotopy theory of simplicial presheaves was predicated on a simple observation:
where one has stalks for sheaves, one also has stalks for presheaves, and the canonical
map F → F̃ from a presheaf F to its associated sheaf F̃ induces an isomorphism
on all stalks. Thus, if you can talk about stalkwise weak equivalences for simplicial
sheaves, you can do the same for simplicial presheaves, in which case the canonical
map X → X̃ from a simplicial presheaf X to its associated simplicial sheaf X̃ should
be a local weak equivalence. This is certainly true in general.

There are many circumstances where we care about presheaves more than their
associated sheaves. For example, the mod � K-theory presheaf of spectra K/� can
be defined on the étale site et |L of a sufficiently nice field L, and we might want
to use étale (or Galois) cohomological techniques to compute the stable homotopy
groups

Ks(L, Z/�) = πsK/�(L)
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of the spectrumK/�(L) in global sections of the presheaf of spectraK/�. Specifically,
there is a map

K/�(L) → K/�et (L)

taking values in the étale K-theory presheaf of spectra, and it is a special case of
the Lichtenbaum–Quillen conjecture that this map induces an isomorphism in stable
homotopy groups in a range of degrees. The étale K-theory presheaf of spectra
K/�et can be taken to be a sheaf of spectra, but we do not assume that the presheaf
of spectra K/� has anything to do with its associated sheaf, except locally for the
étale topology. This is an example of a descent problem. Such problems are about
presheaves rather than sheaves, and the associated sheaf just gets in the way.

Joyal’s theorem for simplicial sheaves follows from the simplicial presheaves re-
sult, and it appears as Theorem 5.9 here. The observation that the associated sheaf
map is a local weak equivalence further implies that the forgetful and associated
sheaf functors together determine a Quillen equivalence between the model struc-
tures for simplicial presheaves and simplicial sheaves. This means that there is no
difference between the local homotopy theories for simplicial presheaves and simpli-
cial sheaves, for a given topology on a site. What matters, in practice, is the behaviour
of the local homotopy theories as one varies the topology of the underlying site, or
more generally as one base changes along a geometric morphism. The behaviour of
the corresponding direct image functors creates descent problems.

The descent concept and descent theory are discussed in some detail in Chap. 5.
Descent theorems almost always have interesting proofs, which typically require
substantial geometric input. The Brown–Gersten descent theorem for the Zariski
topology and the Morel–Voevodsky descent theorem for the Nisnevich topology are
two of the most striking and useful examples. Proofs of these results are presented
in Sect. 5.4; they appear as Theorems 5.33 and 5.39, respectively. The Morel–
Voevodsky theorem is often called “Nisnevich descent”—it is a key foundational
result for much of motivic homotopy theory.

The locally defined model structure for simplicial presheaves on a site of Theorem
5.8, here called the injective model structure for simplicial presheaves, is a basis for
all that follows. There are many variants of this theme, including the projective local
model structure of Blander [9] which has been used frequently in motivic homotopy
theory, and a plethora of model structures between the local projective structure
and the injective structure, in which “intermediate structures” are characterized by
their classes of cofibrations. These model structures all have the same class of weak
equivalences, namely the local weak equivalences, so that they all define models for
local homotopy theory—see Theorem 5.41. Intermediate model structures have been
used in complex analytic geometry, in the study of Gromov’s Oka principle [25].

Classically [4], a hypercover of a scheme S is a resolution π : U → S of S by a
simplicial scheme U which is rather strongly acyclic. In modern terms, this means
that, if we identify the map π with a map U → ∗ of simplicial sheaves on the étale
site et |S for S, then this map is a local trivial fibration. There are various ways to say
what this means: the map π is a hypercover if and only if all induced simplicial set
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maps Ux → ∗ in stalks are trivial Kan fibrations, or alternatively π is a hypercover
if and only if it has a local right lifting property with respect to all simplicial set
inclusions ∂Δn ⊂ Δn, n ≥ 0. This local lifting concept generalizes immediately to
that of a local trivial fibration X → Y of simplicial presheaves on an arbitrary site,
and one often says that such a map is a hypercover over the simplicial presheaf Y .

There is a corresponding notion of local fibration, which is defined by a local right
lifting property with respect to all inclusions Λn

k ⊂ Δn, n ≥ 1, of horns in simplices.
Theorem 4.32 says that a map is a local trivial fibration if and only if it is both a
local fibration and a local weak equivalence—the proof of this result uses a Boolean
localization argument.

Every fibration for the injective model structure on a simplicial presheaf cate-
gory is a local fibration, but the converse assertion is false. The injective fibrations
exist formally, and are usually mysterious. In particular, injective fibrant simplicial
presheaves behave somewhat like injective resolutions, hence the name.

The Verdier hypercovering theorem, in its classical form [4], says that if A is a
sheaf of abelian groups on a site C having sufficiently many points, then the sheaf
cohomology group Hn(C, A) can be calculated by hypercovers in the sense that there
is an isomorphism

Hn(C, A) = lim−→
U

Hn(A(U )),

where U varies over simplicial homotopy classes of maps between hypercovers
U → ∗, and A(U ) is the cosimplicial abelian group which is defined by evaluating
A on the simplicial object U . This theorem is extended to a result about locally fibrant
simplicial sheaves in [49]: there is an isomorphism

[Y , K(A, n)] ∼= lim−→
[π ]:X→Y

π (Y , K(A, n)). (1.1)

Here, [Y , K(A, n)] denotes morphisms in the homotopy category arising from a
category of fibrant objects structure, while π (Y , K(A, n)) is defined to be simplicial
homotopy classes of maps between simplicial sheaves. The colimit is indexed over
the category of simplicial homotopy classes of hypercovers π : Y → X and the
simplicial homotopy classes of maps between them. The colimit is filtered, by a
calculus of fractions argument.

The cohomology group Hn(A(U )) can be identified with the group π (U , K(A, n))
of simplicial homotopy classes of maps. What we end up with is a general definition

Hn(Y , A) = [Y , K(A, n)]

of cohomology for locally fibrant simplicial sheaves Y that specializes to a homotopy
theoretic description

Hn(C, A) = [∗, K(A, n)]
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of sheaf cohomology. One defines the cohomology groups Hn(X, A) for general
simplicial presheaves X in the same way: we define Hn(X, A) by setting

Hn(X, A) = [X, K(A, n)],

where [X, K(A, n)] denotes morphisms in the homotopy category which is associated
to the injective model structure.

The isomorphism (1.1) leads to a different interpretation of morphisms in the
homotopy category: the displayed colimit is the group of path components of a
category whose objects are the pictures

X
[π ]←− Y

[g]−→ K(A, n)

where the square brackets indicate simplicial homotopy classes of maps and π is a
hypercover. The morphisms of this category are the commutative diagrams

Y
[π ]

�����
���

� [g]

����
���

��

[θ ]

��

X K(A, n)

Y ′[π ′]

��������
[g′]

���������

in simplicial homotopy classes of maps. The fact that the colimit in (1.1) is filtered
is incidental from this point of view, but the filtered colimit is useful in calculations.

One generalizes this observation as follows: for simplicial presheaves X and Y ,
say that a cocycle from X to Y is pair of simplicial presheaf maps

X
σ←
 U

g−→ Y

such that the map σ is a local weak equivalence. A morphism of cocycles from X to
Y is a commutative diagram

U
σ


����
��
��

g

����
���

��

θ

��

X K(A, n)

U ′σ ′


��������
g′

��������

The corresponding category is denoted by h(X, Y ) and is called the category of
cocycles from X to Y . It is a consequence of Theorem 6.5 that there is an isomorphism

π0h(X, Y ) ∼= [X, Y ], (1.2)

which identifies the set of morphisms in the homotopy category for simplicial
presheaves with the set of path components for the cocycle category h(X, Y ).
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Theorem 6.5 is a general phenomenon, which applies to all model structures,
which are right proper and whose classes of weak equivalences are closed under finite
products. The theory of cocycle categories is a particularly useful technical device
for the discussion of cohomology, both abelian and non-abelian, which follows in
Chaps. 8 and 9. The power of the theory comes from the generality of the definition:
there are no conditions on the objects X, U , and Y in the definition of cocycle above,
and the map σ is a local weak equivalence which is not required to be a fibration in
any sense.

The isomorphism (1.2) specializes to the isomorphism (1.1) of the Verdier hyper-
covering theorem, with a little work. Variations on this theme form the subject of
Sect. 6.2.

The motivic homotopy theory of Morel and Voevodsky [82] is a localized model
structure, in which one takes the injective model structure for the category of sim-
plicial presheaves on the smooth Nisnevich site of a scheme S and collapses the
affine line A

1 over S to a point by formally inverting a rational point ∗ → A
1. The

choice of rational point does not matter, though one normally uses the 0-section. This
is an important special case of a construction which formally inverts a cofibration
f : A → B in the injective model structure for simplicial presheaves, to produce an
f -local model structure.

Chapter 7 gives a self-contained account of a general machine, which applies in
all homotopy theoretic contexts described in this book, for formally inverting a set
of cofibrations of simplicial presheaves or of presheaves of spectrum-like objects.
Localizations of simplicial presheaf categories are formally constructed in Sect. 7.2.
Other applications include the construction of stable categories and localized stable
categories for categories of spectrum-like objects, and localizations for categories of
presheaves of chain complexes.

The approach that is taken here is axiomatic; it starts with a closed model category
M and a functor L : M → M which together have a certain list of properties. One
shows (Theorem 7.5) that there is a model structure on the category M which has the
same cofibrations, and has L-equivalences for weak equivalences. An L-equivalence
is the obvious thing: it is a map X → Y such that the induced map L(X) → L(Y )
is a weak equivalence in the original model structure on M.

The functor L is constructed, in all cases, as the solution to a lifting problem
for a set of cofibrations, following a prototype which is first displayed in Sect. 7.2.
The most interesting condition on the functor L that one needs to verify, in practice,
is that the L-equivalences should satisfy a bounded monomorphism condition. This
is always done with some kind of argument on cardinality, hence the name. The
bounded monomorphism condition is one of the most important technical devices of
the theory.

The homotopy theoretic approach to the homological algebra of abelian sheaves
and presheaves is the subject of Chap. 8. The starting point is an injective model
structure for presheaves of simplicial R-modules (or, via the Dold–Kan correspon-
dence, presheaves of chain complexes), which is defined by transport of structure
from the injective model structure on simplicial presheaves, in Theorem 8.6. The
weak equivalences in this case are quasi-isomorphisms in the traditional sense, and
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the fibrations are those maps A → B whose underlying simplicial presheaf maps are
injective fibrations. Here, R is a presheaf of commutative rings with identity. For the
proof of Theorem 8.6, we need to know that the free simplicial R-module functor
takes local weak equivalences to quasi-isomorphisms—this statement is the “Illusie
conjecture” which is discussed above, and it is a consequence of Lemma 8.2.

The preservation of local weak equivalences by the free R-module functor sets up
a Quillen adjunction, through which we identify sheaf cohomology with morphisms
in the simplicial presheaf homotopy category in Theorem 8.26. The proof of this
result involves chain homotopy calculations which are effected by using variants of
cocycle categories. The universal coefficients spectral sequence of Lemma 8.30 is a
byproduct of this approach, as is the fact that the good truncations of chain complexes
of injectives satisfy descent. Cocycle categories are also used to give an elementary
description of cup product structures for the cohomology of simplicial presheaves in
Sect. 8.4.

Chapter 8 concludes with a discussion of localizations in the injective model
structure for presheaves of chain complexes. In all cases, the technique is to formally
invert a cofibration f : A → B to construct an f -local model structure, by using the
methods of Chap. 7.

This technique is applied, in Sect. 8.6, to categories of presheaves of chain com-
plexes which are specializations of linear functors that are defined on an additive
category. The main example is the category of simplicial presheaves with transfers
which is defined on the category Cork of additive correspondences on a perfect field
k—the result is a model structure of chain complex objects whose derived category
is Voevodsky’s category of effective motives over the field k.

Chapter 9 is an extended discussion of non-abelian cohomology theory. The in-
jective model structure for simplicial presheaves specializes to an injective model
structure for presheaves of groupoids, for which a map G → H is a local weak
equivalence, respectively fibration, if and only if, the induced map BG → BH of
simplicial presheaves given by the nerve construction is a local weak equivalence,
respectively, injective fibration—this is Proposition 9.19, which is due to Hollander
[43]. From this point of view, stacks are sheaves (or presheaves) of groupoids which
satisfy descent for this injective model structure—this follows from Proposition 9.28.
Stacks are thus identified with homotopy types of sheaves or presheaves of groupoids.
Further, an injective fibrant model of a sheaf of groupoids can be identified with its
stack completion.

The examples are classical: they include the presheaf of G-torsors for a sheaf of
groups G and the quotient stack for an action G × X → X of G on a sheaf X. The
quotient stack X/G. for such an action is identified with the homotopy type of the
Borel construction EG ×G X in Lemma 9.24.

These identifications are consequences of cocycle category calculations. A similar
calculation identifies the stack completion of a sheaf of groupoids H with a presheaf
of H -torsors, suitably defined. In all cases, torsors are defined by the local acyclicity
of certain homotopy colimits. This homotopy colimit description coincides with the
classical description of G-torsors as principal G-bundles, for sheaves of groups G.
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A description of higher stack theory, as the local homotopy theory of presheaves
of groupoids enriched in simplicial sets, appears in Sects. 9.3 and 9.4.

Preliminary results, for “ordinary” groupoids enriched in simplicial sets are dis-
cussed in Sect. 9.3. These include the Dwyer–Kan model structure for these objects
in Theorem 9.30, for which the weak equivalences are those maps G → H whose
associated bisimplicial set map BG → BH is a diagonal weak equivalence, and
the natural identification of the diagonal d(BG) with the Eilenberg–Mac Lane con-
struction WG. The description of the object WG which is presented here, as the
Artin–Mazur total simplicial set T (BG) of the bisimplicial set BG, has only been
properly exposed recently, in [94].

This is the enabling technology for a model structure (Theorem 9.43) on groupoids
enriched in simplicial sets, for which the fibrations (respectively, weak equivalences)
are those maps G → H which induce Kan fibrations (respectively, weak equiva-
lences) WG → WH of simplicial sets. This model structure is Quillen equivalent
to the standard model structure on simplicial sets, via the left adjoint X �→ G(X)
(the loop groupoid functor) for the Eilenberg–Mac Lane functor W .

The model structure of Theorem 9.43 is promoted to a local model structure
for presheaves of groupoids enriched in simplicial sets in Theorem 9.50, which is
Quillen equivalent to the injective model structure on simplicial presheaves. This
model structure specializes to a homotopy theory of n-types in Theorem 9.56, and
to a homotopy theory for presheaves of 2-groupoids in Theorem 9.57.

The presheaves of 2-groupoids which satisfy descent for the structure of Theorem
9.57 are the 2-stacks. The model structure for 2-groupoids is also susceptible to a
cocycle calculus, which is used to give a homotopy classification of gerbes locally
equivalent to objects in a family of sheaves of groups in Corollary 9.68, and a
homotopy classification of families of extensions of a sheaf of groups in Corollary
9.72. These are modern expressions of classical results from higher non-abelian
cohomology theory.

The final two chapters of this book give an account of the basic results of local
stable homotopy theory. The discussion includes the stable homotopy theory of
presheaves of spectra on arbitrary sites, the various forms of motivic stable homotopy
theory, and abstractions of these theories.

The stable homotopy theory of presheaves of spectra has its own rich set of
applications, first in algebraic K-theory, and then most recently in “traditional”
stable homotopy theory via the theory of topological modular forms. This flavour of
stable homotopy theory is relatively simple to derive in isolation, and this is done in
Sect. 10.1.

Voevodsky’s motivic stable category [102] is a more complex object, for a
collection of reasons.

The first of these is a departure from the use of the topological circle S1 as a
parameter space. An ordinary spectrum E consists of pointed spaces En, n ≥ 0,
pointed maps σ : S1 ∧En → En+1. A presheaf of spectra E is a simple extension of
this concept: it consists of pointed simplicial presheaves En and pointed simplicial
presheaf maps σ . We continue to use the circle S1 as a parameter object in the
definition, and for this reason, most of the usual rules of stable homotopy theory
apply to presheaves of spectra.
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The objects which define the motivic stable category are T -spectra, which are de-
fined on the smooth Nisnevich site of a scheme: a T -spectrum X, in this context, con-
sists of pointed simplicial presheaves Xn, with bonding maps σ : T ∧ Xn → Xn+1,
where the parameter space T can be viewed as either the projective line P

1, or equiv-
alently a topological suspension S1 ∧ Gm of the multiplicative group Gm. The group
structure on Gm is irrelevant for this theory—we care more about its underlying
scheme A

1 −{0}—but the Gm notation is convenient. The parameter object S1 ∧Gm

is not a circle: it is a topological suspension of a geometric circle, and should perhaps
be thought of as a twisted 2-sphere.

The other major complication in the setup for motivic stable homotopy theory is
the requirement of working within the motivic model structure, which is a localization
of the base injective model structure that is constructed by formally inverting a
rational point of the affine line.

The original construction of the motivic stable model structure [57] used the
methods of Bousfield and Friedlander. That construction requires properness of the
underlying motivic model structure for simplicial presheaves, and then Nisnevich
descent is required at multiple points in the development to get traditional stabiliza-
tion constructions to work out correctly. When one looks at the overall argument, two
major features emerge, namely a compactness property for the parameter object and
a strong descent property for the underlying motivic model structure. To go beyond
the base construction of the motivic stable model structure, for example to show
that smashing with T is invertible on the motivic stable category, one also needs
to know that the cycle permutations act trivially on the threefold smash T ∧3, and
one uses a geometric argument to show this. Finally, to show that cofibre sequences
coincide with fibre sequences in the motivic stable category (so that, for example,
finite wedges coincide with finite products, as in the ordinary stable category), one
uses the fact that T is the topological suspension S1 ∧ Gm in the motivic homotopy
category.

Motivic stable homotopy theory and motivic cohomology theory [78] together
form the setting for many of the recent calculational advances in algebraic K-theory,
including the proofs of the Bloch–Kato conjecture [107] and the Lichtenbaum–
Quillen conjecture [96].

The major features of motivic stable homotopy theory can be abstracted, to form
the f -local stable homotopy theory of presheaves of T -spectra on an arbitrary site,
where f is a cofibration of simplicial presheaves and T is an arbitrary parameter
object. The overall model structure is constructed in a different way, following The-
orem 10.20, by inverting the map f and the stablization maps all at once. One then
has to assume a few things to show that this f -local stable model structure behaves
like ordinary stable homotopy theory: these assumptions amount to compactness of
T , a strong descent property for the f -local model structure, and the cycle triviality
of the 3-fold smash T ∧3. If the parameter object T is a topological suspension, then
we have coincidence of cofibre and fibre sequences in the f -local model structure,
as in ordinary stable homotopy theory—see Lemma 10.62.
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This technique specializes to a different construction of the motivic stable model
structure. Other applications arise from the fact that the class of pointed simpli-
cial presheaves T which are compact and cycle trivial is closed under finite smash
products.

Unlike the Bousfield–Friedlander stabilization method, one does not need
properness of the f -local model structure on simplicial presheaves to initiate the
construction. Further, with the assumptions on the parameter object and the underly-
ing f -local structure described above in place, the f -local stable model structure on
(S1 ∧ T )-spectra is proper (Theorem 10.64), without an assumption of properness
for the underlying f -local model structure for simplicial presheaves. The f -local
stable model structure for (S1 ∧ T )-spectra also has slice filtrations in the parameter
T , which are constructed with localization techniques in Sect. 10.6.

The same general themes and constraints continue in the study of symmetric
T -spectra in f -local settings in Chap. 11. The concept of symmetric T -spectrum
is a generalization of that of symmetric spectrum: a symmetric T -spectrum is a
T -spectrum X with symmetric group actions Σn × Xn → Xn, which actions are
compatible with twists of the smash powers T ∧k under iterated bonding maps. One
constructs the f -local stable model structure for symmetric T -spectra by localizing
at f and the stabilization maps simultaneously, by using Theorem 11.13. In the
presence of the three main assumptions just discussed, the resulting model structure
is a model for f -local stable homotopy theory in the sense that it is Quillen equivalent
to the f -local stable model structure for T -spectra (Theorem 11.36). As in the case
of ordinary symmetric spectra, there is a symmetric monoidal smash product for
symmetric T -spectra which is the basis of a theory of products for these objects—
this smash product is the subject of Sect. 11.6. The theory is a generalization of the
theory of motivic symmetric spectra [27].

These ideas carry over, in Sects. 10.7 and 11.7, to stable homotopy constructions
in various abelian settings. There are categories of of T -complexes and symmetric
T -complexes in presheaves of simplicial modules for each parameter object T , which
categories have stable f -local model structures which are Quillen equivalent under
the usual assumptions (Theorem 11.61). These ideas and results specialize to f -
local stable model structures for S1-complexes (or unbounded chain complexes)
and symmetric S1-complexes, and to Quillen equivalences between them. An f -
local stable model structure can also be defined for T -complex objects in enriched
linear settings (Theorem 10.96), such as the category of simplicial presheaves with
transfers. The f -local stable model structure, for the rational point f : ∗ → A

1

and (S1 ∧ Gm)-complexes, has an associated stable category which is equivalent to
Voevodsky’s big category of motives—see Example 10.97.
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Chapter 2
Homotopy Theory of Simplicial Sets

We begin with a brief description of the homotopy theory of simplicial sets, and
a first take on the homotopy theory of diagrams of simplicial sets. This is done to
establish notation, and to recall some basic constructions and well-known lines of
argument. A much more detailed presentation of this theory can be found in [32].

The description of the model structure for simplicial sets which appears in the
second section is a bit unusual, in that we first show in Theorem 2.13 that there is
a model structure for which the cofibrations are the monomorphisms and the weak
equivalences are defined by topological realization. The proof of the fact that the
fibrations for this theory are the Kan fibrations (Theorem 2.19) then becomes a
somewhat delicate result whose proof is only sketched. For the argument which is
presented here, it is critical to know Quillen’s theorem [88] that the realization of a
Kan fibration is a Serre fibration.

The proof of Theorem 2.13 uses the “bounded monomorphism property” for
simplicial sets of Lemma 2.16. This is a rather powerful principle which recurs in
various guises throughout the book.

The model structure for diagrams of simplicial sets (here called the projective
model structure) appears in the third section, in Proposition 2.22. This result was first
observed by Bousfield and Kan [14] and has a simple proof with a standard method
of attack. In the context of subsequent chapters, Proposition 2.22 gives a preliminary,
essentially non-local model structure for all simplicial presheaf categories.

2.1 Simplicial Sets

The finite ordinal number n is the set of counting numbers

n = {0, 1, . . . , n}.
There is an obvious ordering on this set which gives it the structure of a poset, and
hence a category. In general, if C is a category then the functors α : n → C can be
identified with strings of arrows

α(0) → α(1) → · · · → α(n)

© Springer-Verlag New York 2015 15
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of length n. The collection of all finite ordinal numbers and all order-preserving
functions between them (or poset morphisms, or functors) form the ordinal number
category Δ.

Example 2.1 The ordinal number monomorphisms di : n − 1 → n are defined by
the strings of relations

0 ≤ 1 ≤ · · · ≤ i − 1 ≤ i + 1 ≤ · · · ≤ n

for 0 ≤ i ≤ n. These morphisms are called cofaces.

Example 2.2 The ordinal number epimorphisms sj : n + 1 → n are defined by the
strings

0 ≤ 1 ≤ · · · ≤ j ≤ j ≤ · · · ≤ n

for 0 ≤ j ≤ n. These are the codegeneracies.

The cofaces and codegeneracies together satisfy the following relations

djdi = didj−1 if i < j ,

sj si = sisj+1 if i ≤ j

sjdi =

⎧
⎪⎨

⎪⎩

disj−1 if i < j ,

1 if i = j , j + 1,

di−1sj if i > j + 1.

(2.1)

The ordinal number category Δ is generated by the cofaces and codegeneracies,
subject to the cosimplicial identities (2.1) [76]. In effect, every ordinal number
morphism has a unique epi-monic factorization, and has a canonical form defined in
terms of strings of codegeneracies and strings of cofaces.

A simplicial set is a functor X : Δop → Set, or a contravariant set-valued functor
on the ordinal number category Δ. Such things are often written as n �→ Xn, and
Xn is called the set of n-simplices of X. A map of simplicial sets f : X → Y is a
natural transformation of such functors. The simplicial sets and simplicial set maps
form the category of simplicial sets, which will be denoted by sSet.

A simplicial set is a simplicial object in the set category. Generally, sA denotes
the category of simplicial objects Δop → A in a category A. Examples include the
categories sGr of simplicial groups, s(R−Mod) of simplicial R-modules, s(sSet) =
s2Set of bisimplicial sets, and so on.

Example 2.3 The topological standard n-simplex is the space

|Δn| := {(t0, . . . , tn) ∈ R
n+1 | 0 ≤ ti ≤ 1,

n∑

i=0

ti = 1}

The assignment n �→ |Δn| is a cosimplicial space, or a cosimplicial object in spaces.
A covariant functor Δ → A is a cosimplicial object in the category A.
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If X is a topological space, then the singular set or singular complex S(X) is the
simplicial set which is defined by

S(X)n = hom(|Δn|, X).

The assignment X �→ S(X) defines a functor

S : CGHaus → sSet,

and this functor is called the singular functor. Here, CGHaus is the category of
compactly generated Hausdorff spaces, which is the usual category of spaces for
homotopy theory [32, I.2.4].

Example 2.4 The ordinal number n represents a contravariant functor

Δn = homΔ( , n),

which is called the standard n-simplex. Write

ιn = 1n ∈ homΔ(n, n).

The n-simplex ιn is often called the classifying n-simplex, because theYoneda Lemma
implies that there is a natural bijection

hom(Δn, Y ) ∼= Yn

that is defined by sending the simplicial set map σ : Δn → Y to the element
σ (ιn) ∈ Yn. One usually says that a simplicial set map Δn → Y is an n-simplex of Y .

In general, if σ : Δn → X is a simplex of X, then the ith face di(σ ) is the
composite

Δn−1 di−→ Δn σ−→X,

while the j th degeneracy sj (σ ) is the composite

Δn+1 sj−→ Δn σ−→X.

Example 2.5 The simplicial set ∂Δn is the subobject of Δn which is generated by
the (n − 1)-simplices di , 0 ≤ i ≤ n, and Λn

k is the subobject of ∂Δn which is
generated by the simplices di , i �= k. The object ∂Δn is called the boundary of Δn,
and Λn

k is called the kth horn.
The faces di : Δn−1 → Δn determine a covering

n⊔

i=0

Δn−1 → ∂Δn,
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and for each i < j , there are pullback diagrams

Δn−2
dj−1

��

di

��

Δn−1

di

��
Δn−1

dj

�� Δn.

It follows that there is a coequalizer

⊔
i<j ,0≤i,j≤n Δn−2 ����

⊔
0≤i≤n Δn−1 �� ∂Δn

in sSet. Similarly, there is a coequalizer

⊔
i<j ,i,j �=k Δn−2 ����

⊔
0≤i≤n,i �=k Δn−1 �� Λn

k.

Example 2.6 Suppose that a category C is small in the sense that the morphisms
Mor (C) of C form a set. Examples of such things include all finite ordinal numbers
n, all monoids (small categories having one object), and all groups.

If C is a small category then there is a simplicial set BC with

BCn = hom(n, C),

meaning the functors n → C. The simplicial structure on BC is defined by pre-
composition with ordinal number maps. The object BC is called, variously, the
classifying space or nerve of the category C.

Note that the standard n-simplex Δn is the classifying space Bn in this notation.

Example 2.7 Suppose that I is a small category, and that X : I → Set is a set-valued
functor. The translation category, or category of elements

∗/X = EI (X)

associated to X has for objects all pairs (i, x) with x ∈ X(i), or equivalently all
functions

∗ x−→X(i).

A morphism α : (i, x) → (j , y) is a morphism α : i → j of I such that α∗(x) = y,
or equivalently a commutative diagram

X(i)

α∗

��
∗

x ��������

y
����

���
�

X(j )
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The simplicial set B(EIX) is often called the homotopy colimit for the functor X,
and one writes

holim−−−→ I X = B(EIX).

There is a canonical functor EIX → I which is defined by the assignment (i, x) �→ i,
and induces a canonical simplicial set map

π : B(EIX) = holim−−−→ I X → BI.

The functors n → EIX can be identified with strings

(i0, x0)
α1−→ (i1, x1)

α2−→ . . .
αn−→ (in, xn).

Such a string is uniquely specified by the underlying string i0 → · · · → in in the
index category Y and x0 ∈ X(i0). It follows that there is an identification

( holim−−−→ I X)n = B(EIX)n =
⊔

i0→···→in

X(i0).

This construction is functorial with respect to natural transformations in X. Thus, a
diagram Y : I → sSet in simplicial sets determines a bisimplicial set with (n, m)
simplices

B(EIY )m =
⊔

i0→···→in

Y (i0)m.

The diagonal d(Z) of a bisimplicial set Z is the simplicial set with n-simplices Zn,n.
Equivalently, d(Z) is the composite functor

Δop Δ−→ Δop × Δop Z−→ Set

where Δ is the diagonal functor.
The diagonal dB(EIY ) of the bisimplicial set B(EIY ) is the homotopy colimit

holim−−−→ I Y of the diagram Y : I → sSet in simplicial sets. There is a natural simplicial
set map

π : holim−−−→ I Y → BI.

Example 2.8 Suppose that X and Y are simplicial sets. There is a simplicial set
hom(X, Y ) with n-simplices

hom(X, Y )n = hom(X × Δn, Y ),

called the function complex.
There is a natural simplicial set map

ev : X × hom(X, Y ) → Y,
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which sends the pair (x, f : X × Δn → Y ) to the simplex f (x, ιn). Suppose that K

is another simplicial set. The function

ev∗ : hom(K , hom(X, Y )) → hom(X × K , Y ),

which is defined by sending the map g : K → hom(X, Y ) to the composite

X × K
1×g−−→ X × hom(X, Y )

ev−→ Y,

is a natural bijection, giving the exponential law

hom(K , hom(X, Y )) ∼= hom(X × K , Y ).

This natural isomorphism gives sSet the structure of a cartesian closed category. The
function complexes also give sSet the structure of a category enriched in simplicial
sets.

The simplex category Δ/X for a simplicial set X has for objects all simplices
Δn → X. Its morphisms are the incidence relations between the simplices (meaning
all commutative diagrams).

Δm
τ

��		
			

	

θ

��
X

Δn
σ

		







The realization |X| of a simplicial set X is defined by

|X| = lim−→
Δn→X

|Δn|,

where the colimit is defined for the functor Δ/X → CGHaus, which takes a simplex
Δn → X to the space |Δn|.

The space |X| is constructed by glueing together copies of the topological standard
simplices of Example 2.3 along the incidence relations of the simplices of X.

The assignment X �→ |X| defines a functor

| | : sSet → CGHaus.

The proof of the following lemma is an exercise:

Lemma 2.9 The realization functor | | is left adjoint to the singular functor S.

Example 2.10 The realization |Δn| of the standard n-simplex is the space |Δn|
described in Example 2.3, since the simplex category Δ/Δn has a terminal object,
namely 1 : Δn → Δn.

Example 2.11 The realization |∂Δn| of the simplicial set ∂Δn is the topological
boundary ∂|Δn| of the space |Δn|. The space |Λn

k | is the part of the boundary ∂|Δn|
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with the face opposite the vertex k removed. To see this, observe that the realization
functor is a left adjoint and therefore preserves coequalizers and coproducts.

The n-skeleton skn X of a simplicial set X is the subobject generated by the
simplices Xi , 0 ≤ i ≤ n. The ascending sequence of subcomplexes

sk0 X ⊂ sk1 X ⊂ sk2 X ⊂ . . .

defines a filtration of X, and there are pushout diagrams.

⊔
x∈NXn

∂Δn ��

��

skn−1 X

��⊔
x∈NXn

Δn �� skn X

Here, NXn denotes the set of non-degenerate n-simplices of X. An n-simplex x of
X is non-degenerate if it is not of the form siy for some (n − 1)-simplex y.

It follows that the realization of a simplicial set is a CW -complex. Every mono-
morphism A → B of simplicial sets induces a cofibration |A| → |B| of spaces,
since |B| is constructed from |A| by attaching cells.

The realization functor preserves colimits (is right exact) because it has a right
adjoint. The realization functor, when interpreted as taking values in compactly
generated Hausdorff spaces, also has a fundamental left exactness property:

Lemma 2.12 The realization functor

| | : sSet → CGHaus.

preserves finite limits. Equivalently, it preserves finite products and equalizers.

This result is proved in [30].

2.2 Model Structure for Simplicial Sets

This section summarizes material which is presented in some detail in [32].
Say that a map f : X → Y of simplicial sets is a weak equivalence if the induced

map f∗ : |X| → |Y | is a weak equivalence of CGHaus. A map i : A → B of
simplicial sets is a cofibration if and only if it is a monomorphism, meaning that all
functions i : An → Bn are injective. A simplicial set map p : X → Y is a fibration
if and only if it has the right lifting property with respect to all trivial cofibrations.

As usual, a trivial cofibration (respectively trivial fibration) is a cofibration
(respectively fibration) which is also a weak equivalence.

In all that follows, a closed model category will be a category M equipped with
three classes of maps, called cofibrations, fibrations and weak equivalences such that
the following axioms are satisfied:
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CM1 The category M has all finite limits and colimits.
CM2 Suppose given a commutative diagram

X
f

��

h


�

��
� Y

f
����
��

Z

in M. If any two of the maps f , g and h are weak equivalences, then so is
the third.

CM3 If a map f us a retract of g and g is a weak equivalence, fibration or
cofibration, then so is f .

CM4 Suppose given a commutative solid arrow diagram

A ��

i

��

X

p

��
B ��

��

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is a weak equivalence.

CM5 Every map f : X → Y has factorizations f = p · i and f = q · j , in
which i is a cofibration and a weak equivalence and p is a fibration, and j is
a cofibration and q is a fibration and a weak equivalence.

The definition of closed model category which is displayed here is the traditional
one, which is due to Quillen [86]. There are variants in the literature, which involve
either removing the finiteness condition from the limits and colimits in CM1, or
insisting that the factorizations of CM5 are functorial. These conditions almost
always hold in practice, and in particular they hold for all model structures that we use.

There are common adjectives which decorate closed model structures. For ex-
ample, one says that the model structure on M is simplicial if the category can be
enriched in simplicial sets in a way that behaves well with respect to cofibrations and
fibrations, and the model structure is proper if weak equivalences are preserved by
pullback along fibrations and pushout along cofibrations. A model structure is cofi-
brantly generated if its classes of cofibrations and trivial cofibrations are generated
by sets of maps in a suitable sense. The factorizations of CM5 can be constructed
functorially in a cofibrantly generated model structure, with a small object argument.
Much more detail can be found in [32] or [44].

Theorem 2.13 With the definitions given above of weak equivalence, cofibration
and fibration, the category sSet of simplicial sets satisfies the axioms for a closed
model category.

Here are the basic ingredients of the proof:

Lemma 2.14 A map p : X → Y is a trivial fibration if and only if it has the right
lifting property with respect to all inclusions ∂Δn ⊂ Δn, n ≥ 0.
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The proof of Lemma 2.14 is formal. If p has the right lifting property with respect
to all inclusions ∂Δn ⊂ Δn then it is a homotopy equivalence. Conversely, p has a
factorization p = q · j , where j is a cofibration and q has the right lifting property
with respect to all maps ∂Δn ⊂ Δn, so that j is a trivial cofibration, and then p is a
retract of q by a standard argument.

The following result can be proved with simplicial approximation techniques [62].

Lemma 2.15 Suppose that a simplicial set X has at most countably many non-
degenerate simplices. Then the set of path components π0|X| and all homotopy
groups πn(|X|, x) are countable.

The following bounded monomorphism property for simplicial sets is a conse-
quence.

Lemma 2.16 Suppose that i : X → Y is a trivial cofibration and that A ⊂ Y is a
countable subcomplex. Then there is a countable subcomplex B ⊂ Y with A ⊂ B

such that the map B ∩ X → B is a trivial cofibration.

Lemma 2.16 implies that the set of countable trivial cofibrations generates the
class of all trivial cofibrations, while Lemma 2.14 implies that the set of all inclusions
∂Δn ⊂ Δn generates the class of all cofibrations. Theorem 2.13 then follows from
small object arguments.

A Kan fibration is a map p : X → Y of simplicial sets which has the right lifting
property with respect to all inclusions Λn

k ⊂ Δn. A Kan complex is a simplicial set
X for which the canonical map X → ∗ is a Kan fibration.

Every fibration is a Kan fibration, and every fibrant simplicial set is a Kan complex.
Kan complexes Y have combinatorially defined homotopy groups: if x ∈ Y0 is a

vertex of Y , then

πn(Y , x) = π ((Δn, ∂Δn), (Y , x))

where π ( , ) denotes simplicial homotopy classes of maps and pairs. The path
components of any simplicial set X are defined by the coequalizer

X1 ⇒ X0 → π0X,

where the maps X1 → X0 are the face maps d0, d1. Say that a map f : Y → Y ′ of
Kan complexes is a combinatorial weak equivalence if it induces isomorphisms

πn(Y , x)
∼=−→ πn(Y ′, f (x))

for all x ∈ Y0, and

π0(Y )
∼=−→ π0(Y ′).

Going further requires the following major theorem, due to Quillen [88],[32]:

Theorem 2.17 The realization of a Kan fibration is a Serre fibration.
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The proof of this result requires much of the classical homotopy theory of Kan
complexes (in particular the theory of minimal fibrations), and will not be discussed
here—see [32].

Here are the consequences:

Theorem 2.18 [Milnor theorem] Suppose that Y is a Kan complex and that η :
Y → S(|Y |) is the adjunction homomorphism. Then η is a combinatorial weak
equivalence.

It follows that the combinatorial homotopy groups of πn(Y , x) coincide up to
natural isomorphism with the ordinary homotopy groups πn(|Y |, x) of the realization,
for all Kan complexes Y . The proof of Theorem 2.18 is a long exact sequence
argument that is based on the path-loop fibre sequences in simplicial sets. These are
Kan fibre sequences, and the key is to know, from Theorem 2.17 and Lemma 2.12,
that their realizations are fibre sequences.

Theorem 2.19 Every Kan fibration is a fibration.

Proof [Sketch] The key step in the proof is to show, using Theorem 2.18, that every
map p : X → Y which is a Kan fibration and a weak equivalence has the right lifting
property with respect to all inclusions ∂Δn ⊂ Δn. This is true if Y is a Kan complex,
since p is then a combinatorial weak equivalence by Theorem 2.18. Maps which are
weak equivalences and Kan fibrations are stable under pullback by Theorem 2.17 and
Lemma 2.12. It follows from Theorem 2.18 that all fibres of the Kan fibration p are
contractible. It also follows, by taking suitable pullbacks, that it suffices to assume
that p has the form p : X → Δk . If F is the fibre of p over the vertex 0, then the
Kan fibration p is fibrewise homotopy equivalent to the projection F × Δk → Δk

[32, I.10.6]. This projection has the desired right lifting property, as does any other
Kan fibration in its fibre homotopy equivalence class—see [32, I.7.10]. �

Remark 2.20 Theorem 2.19 implies that the model structure of Theorem 2.13 con-
sists of cofibrations, Kan fibrations and weak equivalences. This is the standard,
classical model structure for simplicial sets. The identification of the fibrations with
Kan fibrations is the interesting part of this line of argument.

The realization functor preserves cofibrations and weak equivalences, and it
follows that the adjoint pair

| | : sSet � CGHaus : S,

is a Quillen adjunction. The following is a consequence of Theorem 2.18:

Theorem 2.21 The adjunction maps η : X → S(|X|) and ε : |S(Y )| → Y are
weak equivalences, for all simplicial sets X and spaces Y , respectively.

In particular, the standard model structures on the categories sSet of simplicial
sets and CGHaus of compactly generated Hausdorff spaces are Quillen equivalent.
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2.3 Projective Model Structure for Diagrams

Suppose that I is a small category, and let sSetI denote the category of I -diagrams
of simplicial sets. The objects of this category are the functors X : I → sSet, and
the morphisms f : X → Y are the natural transformations of functors. One often
says that the category sSetI is the I -diagram category.

There is a model structure on the I -diagram category, which was originally intro-
duced by Bousfield and Kan [14], and for which the fibrations and weak equivalences
are defined sectionwise. This model structure is now called the projective model
structure. Cofibrant replacements in this structure are like projective resolutions of
chain complexes.

Explicitly, a weak equivalence for this category is a map f : X → Y such that the
simplicial set maps f : X(i) → Y (i) (the components of the natural transformation)
are weak equivalences of simplicial sets for all objects i of I . One commonly says
that such a map is a sectionwise weak equivalence. A map p : X → Y is said to be a
sectionwise fibration if all components p : X(i) → Y (i) are fibrations of simplicial
sets. Finally, a projective cofibration is a map which has the left lifting property
with respect to all maps which are sectionwise weak equivalences and sectionwise
fibrations, or which are sectionwise trivial fibrations.

The function complex hom(X, Y ) for I -diagrams X and Y is the simplicial set
whose n-simplices are all maps X × Δn → Y of I -diagrams. Here the n-simplex
Δn has been identified with the constant I -diagram which takes a morphism i → j

to the identity map on Δn.
The i-sections functor X �→ X(i) has a left adjoint

Li : sSet → sSetI,

which is defined for simplicial sets K by

Li(K) = hom(i, ) × K ,

where hom(i, ) : I → Set is the functor which is represented by i.
We then have the following:

Proposition 2.22 The I -diagram category sSetI, together with the classes of projec-
tive cofibrations, sectionwise weak equivalences and sectionwise fibrations defined
as above, satisfies the axioms for a proper closed simplicial model category.

Proof A map p : X → Y is a sectionwise fibration if and only if it has the right
lifting property with respect to all maps Li(Λn

k ) → Li(Δn) which are induced by
inclusions of horns in simplices. A map q : Z → W of I -diagrams is a sectionwise
fibration and a sectionwise weak equivalence if and only if it has the right lifting
property with respect to all maps Li(∂Δn) → Li(Δn).

Every cofibration (monomorphism) j : A → B of simplicial sets induces a
projective cofibration j∗ : Li(A) → Li(B) of I -diagrams, and that this map j∗ is
a sectionwise cofibration. If j is a trivial cofibration then j∗ is a sectionwise weak
equivalence.
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It follows, by a standard small-object argument, that every map f : X → Y of
I -diagrams has factorizations

Z
p












X

i 

���� f
��

j









 Y

W
q



����

(2.2)

where i is a projective cofibration and a sectionwise weak equivalence, p is a sec-
tionwise fibration, j is a projective cofibration and q is a sectionwise trivial fibration.
We have therefore proved the factorization axiom CM5 for this structure.

The maps i and j in the diagram (2.2) are also sectionwise cofibrations, by con-
struction, and the map i has the left lifting property with respect to all sectionwise
fibrations.

In particular, if α : A → B is a projective cofibration and a sectionwise weak
equivalence, then α has a factorization

A
i ��

α ���
��

� C

p��
B

where i is a projective cofibration and a sectionwise weak equivalence, and has the
left lifting property with respect to all sectionwise fibrations, and p is a sectionwise
fibration. The map p is also a sectionwise weak equivalence so the lift exists in the
diagram

A
i ��

α

��

C

p

��
B

1
��

��

B

It follows that α is a retract of the map i, and therefore has the left lifting property
with respect to all projective fibrations. This proves the axiom CM4.

All of the other closed model axioms are easily verified.
Suppose that j : K → L is a cofibration of simplicial sets. The collection of all

sectionwise cofibrations α : A → B, such that the induced map

(α, j ) : (B × K) ∪ (A × L) → B × L

is a projective cofibration, is closed under pushout, composition, filtered colimits,
retraction and contains all maps LiM → LiN which are induced by cofibrations
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M → N of simplicial sets. This class of cofibrations α therefore contains all
projective cofibrations. Observe further that the map (α, j ) is a sectionwise weak
equivalence if either α is a sectionwise equivalence or j is a weak equivalence of
simplicial sets.

The I -diagram category therefore has a simplicial model structure in the sense that,
if α : A → B is a projective cofibration and j : K → L is a cofibration of simplicial
sets, then the map (α, j ) is a projective cofibration, which is a sectionwise weak
equivalence if either α is a sectionwise weak equivalence or j is a weak equivalence
of simplicial sets.

All projective cofibrations are sectionwise cofibrations. Properness for the
I -diagram category therefore follows from properness for simplicial sets.

The model structure for the I -diagram category sSetI is cofibrantly generated,
in the sense that the class of projective cofibrations, respectively trivial projective
cofibrations, is generated by the set of maps

Li(∂Δn) → Li(Δ
n), (2.3)

respectively the set of maps

Li(Λ
n
k ) → Li(Δ

n). (2.4)

This means that the projective cofibrations form the smallest class of maps which
contains the set (2.3) and is closed under pushout, composition, filtered colimit and
retraction. The class of trivial projective cofibrations is similarly the smallest class
containing the set of maps (2.4) that has the same closure properties. The claim about
the cofibrant generation is an artifact of the proof of Proposition 2.22.

The category sSet of simplicial sets is also cofibrantly generated. The simplicial
set category is a category of I -diagrams, where I is the category with one morphism.

The proof of Proposition 2.22 follows a standard pattern. One starts with a set I of
cofibrations and a set J of trivial cofibrations and verifies that the set J determines
the fibrations and that the set I determines the trivial fibrations, both via lifting
properties. Small-object arguments are then used to construct the factorizations of
CM5, provided one knows (and this is a key point) that the pushouts of members of
the set J are weak equivalences. With that construction for the factorization axiom
CM5 in place (which argument produces functorial factorizations), the lifting axiom
CM4 is a formal consequence: one shows that every trivial cofibration is a retract of
a member of the saturation of the set of cofibrations J .

This last step, along with the analogous argument for cofibrations, also implies
that the model structure is cofibrantly generated.



Chapter 3
Some Topos Theory

This chapter contains a rapid introduction to the geometric flavour of topos theory that
is used in this book. There has been an effort to make this material as self-contained
as possible.

A Grothendieck topology is a formal calculus of coverings which generalizes the
algebra of open covers of a topological space, and can exist on much more general
categories.A category equipped with such a Grothendieck topology is a Grothendieck
site. The examples of most interest for our purposes come from algebraic geometry,
including the Zariski, flat, étale and Nisnevich topologies. All of these are discussed
in the first section of this chapter, along with the basic notions of presheaves, sheaves
and the associated sheaf functor.

A presheaf is just a functor, but the term “presheaf” is used to flag the existence of
a Grothendieck topology. A sheaf is a presheaf which satisfies patching conditions
arising from the Grothendieck topology, and applying the associated sheaf functor
to a presheaf forces compliance with these conditions. This forcing can be rather
brutal, in that a presheaf and its associated sheaf can be very different objects.

A simplicial presheaf is a functor, or diagram, which is defined on a site and
takes values in simplicial sets (or “spaces”, according to the standard abuse). The
main idea behind the theory that is presented here is that a Grothendieck topology
defines a local homotopy type for that diagram, through the associated simplicial
sheaf construction or otherwise. The local homotopy type of a simplicial presheaf
depends on the choice of topology, and there can be many topologies on a fixed index
category. Whatever the topology, one retains the underlying diagram of spaces or
simplicial presheaf as an explicit object of study.

A category of sheaves for a Grothendieck site is a Grothendieck topos. The remain-
ing sections of this chapter cover the main constructions and results for Grothendieck
topoi (or toposes) that we shall use, with rapid proofs. We shall not discuss elementary
toposes, as they do not explicitly occur in geometric settings.

Giraud’s theorem (Theorem 3.17) gives a recognition principle that says that a
category is a Grothendieck topos if it satisfies a certain list of exactness properties.
It implies, in particular, that the category of sheaves admitting an action by a sheaf
of groups G is a Grothendieck topos; this is the classifying topos for G, which is a

© Springer-Verlag New York 2015 29
J. F. Jardine, Local Homotopy Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4939-2300-7_3



30 3 Some Topos Theory

traditional geometric substitute for the classifying space of a group. This set of ideas
applies also to profinite groups—see Examples 3.19 and 3.20.

Geometric morphisms are discussed in Sects. 3.4–3.6. These are adjoint pairs
of functors between topoi (inverse and direct image functors) that satisfy certain
exactness properties.

In particular, a point of a Grothendieck topos E is a geometric morphism x :
Set → E. Points are generalized stalks, and a set I of points xi can be assembled to
define a geometric morphism

(xi) : �I Set → E.

One says that the topos E has enough points if one can find a set of points {xi} such
that the inverse image part of the morphism (xi) is fully faithful. This means that
the behaviour of morphisms of E, whether they be monomorphisms, epimorhisms
or isomorphisms, is completely determined by their inverse images in the disjoint
union of copies of the set category.

The categories of sheaves on a topological space and the categories of sheaves on
the Zariski and étale sites of a scheme all have enough points (stalks) in this sense.
Other commonly occurring geometric toposes, such as the flat topos on a scheme,
do not.

There is, however, a good generalization of this concept: Barr’s theorem (Theorem
3.31) says that there is a geometric morphism

π : Shv(B) → E

for every Grothendieck topos E with fully faithful inverse image, and such that Shv(B)
is the category of sheaves on a complete Boolean algebra B.

The existence of the morphism π generalizes the notion of “enough points”, in
that the topos �I Set can be identified with the category of sheaves Shv(P(I )) on the
Boolean algebra given by the power set P(I ) for the set I that indexes the points.

Barr’s theorem is commonly called the principle of Boolean localization, and the
morphism π is said to be a Boolean localization. The point is that the inverse image
functor π∗ is fully faithful, while the category of sheaves on a complete Boolean
algebra satisfies the axiom of choice, with the result that epimorphisms and isomor-
phisms in Shv(B) are defined sectionwise. The Boolean localization morphism π is
a “fat point”, and Barr’s theorem says that every Grothendieck topos has one.

A sketch proof of Barr’s theorem appears in the final section of this chapter. This
proof is abstracted from a much longer presentation that appears in the Mac Lane–
Moerdijk book [77]. The reader will note that some of the ideas from the logical side
of topos theory (e.g. frames and locales) make an appearance in the argument.

Barr’s theorem is perhaps the most important result for homotopy theoretic appli-
cations that has so far been found in the topos theory, and it is used heavily. In this,
we are following the methods of Joyal’s letter to Grothendieck [70], as well as Van
Osdol’s proof of the Illusie conjecture [101]. This general approach, for simplicial
presheaves, was also described in [55]. It is possible to get by without Barr’s theo-
rem, as in [50], but the quantifiers which are involved in that approach can be a bit
complicated.
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3.1 Grothendieck Topologies

A Grothendieck site is a small category C that is equipped with a topology T. A
Grothendieck topology T consists of a collection of subfunctors

R ⊂ hom( , U ), U ∈ C,

called covering sieves, such that the following axioms hold:

1) (base change) If R ⊂ hom( , U ) is covering and φ : V → U is a morphism of C,
then the subfunctor

φ−1(R) = {γ : W → V | φ · γ ∈ R}
is covering for V .

2) (local character) Suppose that R, R′ ⊂ hom( , U ) are subfunctors and R is
covering. If φ−1(R′) is covering for all φ : V → U in R, then R′ is covering.

3) hom( , U ) is covering for all U ∈ C

Typically, Grothendieck topologies arise from covering families in sites C having
pullbacks. Covering families are sets of functors which generate covering sieves.

More explicitly, suppose that the category C has pullbacks. Since C is small, a
pretopology (equivalently, a topology)TonC consists of families of sets of morphisms

{φα : Uα → U}, U ∈ C,

called covering families , such that the following axioms hold:

1) Suppose that φα : Uα → U is a covering family and that ψ : V → U is a
morphism of C. Then the collection V ×U Uα → V is a covering family for V .

2) If {φα : Uα → V } is covering, and {γα,β : Wα,β → Uα} is covering for all α, then
the family of composites

Wα,β
γα,β−−→ Uα

φα−→ U

is covering.
3) The family {1 : U → U} is covering for all U ∈ C.

Example 3.1 Let X be a topological space. The site op |X is the poset of open subsets
U ⊂ X. A covering family for an open subset U is an open cover Vα ⊂ U .

Example 3.2 Suppose that S is a scheme (which is a topological space with sheaf
of rings locally isomorphic to affine schemes Sp (R)). The underlying topology on
X is the Zariski topology. The Zariski site Zar|S is the poset whose objects are the
open subschemes U ⊂ S. A family Vα ⊂ U is covering if ∪Vα = U as sets.
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A scheme homomorphism φ : Y → X is étale at y ∈ Y if

a) Oy is a flat Of (y)-module (φ is flat at y).
b) φ is unramified at y: Oy/Mf (y)Oy is a finite separable field extension of k(f (y)).

Say that a map φ : Y → X is étale if it is étale at every y ∈ Y and locally of finite
type (see [79], for example).

Example 3.3 Let S be a scheme. The étale site et |S has as objects all étale maps
φ : V → S and all diagrams

V ��

φ
���
��
��
� V ′

φ′
����
��
��

S

for morphisms (with φ, φ′ étale). A covering family for the étale topology is a collec-
tion of étale morphisms φα : Vα → V such that V = ∪φα(Vα) as a set. Equivalently
every morphism Sp (Ω) → V lifts to some Vα if Ω is a separably closed field.

Example 3.4 The Nisnevich site Nis|S has the same underlying category as the
étale site, namely all étale maps V → S and morphisms between them. A Nisnevich
cover is a family of étale maps Vα → V such that every morphism Sp (K) → V

lifts to some Vα , where K is any field. Nisnevich originally called this topology the
“completely decomposed topology” or “cd-topology” [83], because of the way it
behaves over fields—see [56].

Example 3.5 A flat covering family of a scheme S is a set of flat morphisms φα :
Sα → S (i.e. mophisms that are flat at each point) such that S = ∪φα(Sα) as a set
(equivalently the scheme homomorphism �Sα → S is faithfully flat). The category
(Sch|S)f l is the “big” flat site. Pick a large cardinal κ; then (Sch|S) is the category
of S-schemes X → S such that the cardinality of both the underlying point set of X

and all sections OX(U ) of its sheaf of rings are bounded above by κ . Then the flat
site (Sch|S)f l is the (small, but big) category Sch|S , equipped with the flat topology.

Example 3.6 There are corresponding big sites (Sch|S)Zar , (Sch|S)et , (Sch|S)Nis ,
and one can play similar games with big sites of topological spaces.

Example 3.7 Suppose that G = {Gi} is profinite group such that all Gj → Gi are
surjective group homomorphisms. Write also G = lim←− Gi . A discrete G-set is a set
X with G-action which factors through an action of Gi for some i. Write G − Setdf

for the category of G-sets which are both discrete and finite. A family Uα → X in
this category is covering if and only if the induced map

⊔
Uα → X is surjective.

Example 3.8 Suppose that C is any small category. Say that R ⊂ hom( , x) is
covering if and only if 1x ∈ R. This is the chaotic topology on C.
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Example 3.9 Suppose that C is a site and that U ∈ C. Then the slice category C/U

has for objects all morphisms V → U of C, and its morphisms are the commutative
triangles

V

��

��		
			

	

U

V ′

		������

The category C/U inherits a topology from C: a collection of maps Vα → V → U

is covering if and only if the family Vα → V covers V .
There is a canonical functor

q : C/U → C

that takes the object V → U to the object V . This functor q and the topology on the
site C together create the topology on C/U , in the same way that the topology on a
topological space creates a topology on each of its open subsets.

A presheaf (of sets) on a Grothendieck site C is a set-valued contravariant functor
defined on C, or equivalently a functor Cop → Set defined on the opposite category
Cop, where Cop is the category C with its arrows reversed. The presheaves on C form
a category whose morphisms are natural transformation, which is often denoted by
Pre(C) and is called the presheaf category for the site C.

One can similarly define presheaves taking values in any category E, and following
[72] (for example) we can write Pre(C, E) for the corresponding category of E-
presheaves on C, or functors Cop → E and their natural transformations. The shorter
notation

sPre(C) := Pre(C, sSet)

denotes the category of presheaves Cop → sSet on C taking values in simplicial sets—
this is the category of simplicial presheaves on C. One views simplicial presheaves
as either simplicial objects in presheaves, or as presheaves in simplicial sets.

The constant presheaf that is associated to a set K is the functor which takes
an object U of the site C to the set K , and takes all morphisms V → U of C to
the identity function on K . We shall use the notation K for both the set K and its
associated constant presheaf. It is easily seen that there is a natural bijection

hom(K , F ) ∼= hom(K , lim←−
U∈C

F (U ))

that identifies presheaf morphisms K → F with functions K → lim←−U
F (U ).

In particular, let ∗ denote the one-point set. Then, there is an identification

hom(∗, F ) ∼= lim←−
U∈C

F (U ).
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A global section of a presheaf F is either a presheaf map ∗ → F or an element of
the inverse limit

lim←−
U∈C

F (U ).

One often writes Γ∗(F ) for the set of global sections of the presheaf F .
It is an exercise to show that, if the site C has a terminal object t , then the global

sections of a presheaf F coincides naturally with the set F (t) of sections at the object
t . This is the classical description of global sections—sites having terminal objects
are ubiquitous in geometry and topology.

Constant presheaves in other categories are similarly just constant functors.
For example, if L is a simplicial set, then the constant simplicial presheaf L

is the functor on C which takes all objects U to L, and takes all morphisms to the
identity on L. We use the notation ∗ = Δ0 to denote the one-point constant simplicial
presheaf—this is the terminal object in the simplicial presheaf category on the site
C. It is an exercise to show that there is a natural identification

hom(Δn, X) = Γ∗Xn

for all simplicial presheaves X.
Suppose that R ⊂ hom( , U ) is a sieve, and F is a presheaf on C. There is an

isomorphism

hom(R, F ) ∼= lim←−
V

φ−→U∈R

F (V ). (3.1)

One often writes {xφ} for the collection of component elements of a fixed element x of
the inverse limit. We say that such a collection is an R-compatible family in F . The
isomorphism (3.1) allows us to identify such R-compatible families with natural
transformations x : R → F . The natural transformation x takes the morphism
φ : V → U in R(V ) to the element xφ ∈ F (V ).

A sheaf (of sets) on C is a presheaf F : Cop → Set such that the canonical map

F (U ) → lim←−
V →U∈R

F (V ) (3.2)

is an isomorphism for each covering sieve R ⊂ hom( , U ). Equivalently, all induced
functions

hom(hom( , U ), F ) → hom(R, F )

should be bijections.

Exercise 3.10 If the topology on C is defined by a pretopology (so that C has all
pullbacks), show that F is a sheaf if and only if all diagrams

F (U ) →
∏

α

F (Uα) ⇒
∏

α,β

F (Uα ×U Uβ)
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arising from covering families Uα → U are equalizers.

Remark 3.11 In many cases of interest, the objects of the site C have underlying
sets, and the empty set ∅ is the initial object of C, while coverings are described
by existence of lifting of points. This is true of sites originating in topology and
algebraic geometry, as in Examples 3.1–3.7.

In all such cases, a sieve R ⊂ hom( , U ) is covering if and only if the corresponding
map

⊔

V →U∈R

V → U

is an epimorphism on the underlying sets. The inclusion

∅ ⊂ hom( , ∅)

defines a covering sieve in such cases, since an empty colimit must be the initial
object. It follows that the induced map

hom(hom( , ∅), F ) → hom(∅, F )

is a bijection for all sheaves of sets F , and so there is a bijection

F (∅) ∼= ∗
and the set of sections F (φ) is a one-point set for all sheaves F on such sites C.

Morphisms of sheaves are natural transformations—write Shv(C) for the corre-
sponding category. The sheaf category Shv(C) is a full subcategory of Pre(C).

There is an analogous definition for sheaves in any complete category E, and
one would write Shv(C, E) for the corresponding category. The assertion that the
category E is complete means that it has all small limits, so it makes sense to require
that the morphism (3.2) should be an isomorphism for the functor F : Cop → E to
be a sheaf.

We use the notation

sShv(C) := ShvC(C, sSet)

for the category of simplicial sheaves on the site C.

Lemma 3.12

1) If R ⊂ R′ ⊂ hom( , U ) and R is covering then R′ is covering.
2) If R, R′ ⊂ hom( , U ) are covering then R ∩ R′ is covering.
3) Suppose that R ⊂ hom( , U ) covering and that Sφ ⊂ hom( , V ) is covering for

all φ : V → U of R. Let R ∗ S be the sieve which is generated by the composites

W
γ−→V

φ−→U

with φ ∈ R and γ ∈ Sφ . Then R ∗ S is covering.
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Proof For 1), one shows that φ−1(R) = φ−1(R′) for all φ ∈ R, so that R′ is covering
by the local character axiom. The relation φ−1(R ∩ R′) = φ−1(R′) for all φ ∈ R

implies that R ∩ R′ is covering, giving 2). Statement 3) is proved by observing that
Sφ ⊂ φ−1(R ∗ S) for all φ ∈ R.

If S ⊂ R are sieves in hom( , U ) and F is a presheaf, then there is an obvious
restriction map

hom(R, F ) → hom(S, F ).

Write

LF (U ) = lim−→
R

hom(R, F ),

where the colimit is indexed over all covering sieves R ⊂ hom( , U ). This colimit is
filtered by Lemma 3.12. Elements of LF (U ) are classes [x] of morphisms x : R →
F . Then the assignment U �→ LF (U ) defines a presheaf, and there is a natural
presheaf map

ν : F → LF.

Say that a presheaf G is separated if the map ν : G → LG is a monomorphism in
each section, i.e. if all functions G(U ) → LG(U ) are injective.

Lemma 3.13

1) The presheaf LF is separated, for all presheaves F .
2) If G is a separated presheaf then LG is a sheaf.
3) If f : F → G is a presheaf map and G is a sheaf, then f factors uniquely through

a presheaf map f∗ : LF → G.

It follows from Lemma 3.13 that the object L2F is a sheaf for every presheaf F , and
the functor F �→ L2F is left adjoint to the forgetful functor

Shv(C) ⊂ Pre(C).

The unit of the adjunction is the composite

F
ν−→LF

ν−→L2F. (3.3)

One often writes F̃ := L2F for the sheaf associated to the presheaf F . It is standard
to write η : F → F̃ for the composite (3.3).

The resulting associated sheaf functor F �→ F̃ is left adjoint to the forgetful
functor, and the natural map η : F → F̃ is the unit of the adjunction.

Proof [of Lemma 3.13] Suppose that ψ∗([x]) = ψ∗([y]) for all ψ : W → U in some
covering sieve S ⊂ hom( , U ), where [x], [y] ∈ LF (U ). We can assume that x and
y are maps R → F that are defined on the same covering sieve R ⊂ hom( , U ). By
restricting to the intersection S ∩ R (Lemma 3.12), we can also assume that S = R.
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It follows that for each φ : V → U in R, there is a covering sieve Tφ ⊂ hom( , V )
such that

xφγ = γ ∗(xφ) = γ ∗(yφ) = yφγ

for each γ : W → V in Tφ(W ). The maps x, y : R → hom( , U ) therefore restrict
to the same map R ∗ T → F on the covering sieve R ∗ T ⊂ R, so that [x] = [y] in
LF (U ), and we have proved statement 1).

If φ : V → U is a member of a covering sieve R ⊂ hom( , U ), then φ−1(R) =
hom( , V ) is the unique covering sieve for V which contains the identity 1V : V → V .
It follows that φ∗[x] = ν(xφ) for all φ ∈ R.

Suppose that G is a separated presheaf, and that [v] : R → LG is a map, where
R ⊂ hom( , U ) is a covering sieve of U . Then each vφ lifts locally to G along some
covering sieve Tφ by the previous paragraph, so there is a refinement R ∗ T ⊂ R of
covering sieves such that vψ = ν(xψ ) for each ψ : W → U of R ∗ T . The presheaf
G is separated, so that the elements xψ define an element of x : R ∗ T → G and an
element [x] of LG(U ). Then φ∗[{xψ }] = vφ for each φ ∈ R since LG is separated,
and it follows that the canonical function

LG(U ) → hom(R, LG)

is surjective. This function is injective since LG is separated. Thus, LG is a sheaf,
giving statement 2).

If G is a sheaf, then the presheaf map ν : G → LG is an isomorphism essentially
by definition, and statement 3) follows.

The sheaf L2K = K̃ which is associated to the constant presheaf K is the constant
sheaf associated to the set K .

One often writes K for the constant sheaf associated to K , but this can be a bit
dangerous because the sheaf K̃ might be quite different from the constant functor K .

For example, it is an exercise to show that if et |S is the étale site of a scheme S,
then there is a bijection

L2(K)(φ) ∼=
∏

π0(U )

K

for étale maps φ : U → S, where π0(U ) is the set of connected components of the
topological space underlying the scheme U .

In general, the constant sheaf L2(∗) is the terminal object in the sheaf category
(see Lemma 3.14 below, or prove the claim directly), but this sheaf is not necessarily
terminal in the presheaf category.

The constant sheaf construction still picks out global sections of sheaves F , by
adjointness. There is a natural bijection

hom(L2(∗), F ) ∼= Γ∗(F )

relating sheaf morphisms L2(∗) → F with elements of the inverse limit

Γ∗(F ) = lim←−
U∈C

F (U ).
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For example, if F is a sheaf on the étale site et |S , then there is an identification

Γ∗F ∼= F (S)

(note the standard abuse of notation), since the identity map S → S is terminal in
et |S .

3.2 Exactness Properties

Lemma 3.14

1) The associated sheaf functor preserves all finite limits.
2) The sheaf category Shv(C) is complete and co-complete. Limits are formed

sectionwise.
3) Every monomorphism in Shv(C) is an equalizer.
4) If the sheaf morphism θ : F → G is both a monomorphism and an epimorphism,

then θ is an isomorphism.

Proof Statement 1) is proved by observing that LF is defined by filtered colimits,
and finite limits commute with filtered colimits.

If X : I → Shv(C) is a diagram of sheaves, then the colimit in the sheaf category
is L2(lim−→X), where lim−→ X is the presheaf colimit, giving statement 2).

If A ⊂ X is a subset, then there is an equalizer

A �� X

p
��

∗
�� X/A.

The same holds for subobjects A ⊂ X of presheaves, and hence for subobjects of
sheaves, since the associated sheaf functor L2 preserves finite limits. Statement 3)
follows.

For statement 4), observe that the map θ appears in an equalizer

F
θ �� G

f
��

g

�� K

since θ is a monomorphism. But θ is an epimorphism, so f = g. But then 1G :
G → G factors through θ , giving a section σ : G → F . Finally, θσθ = θ and θ is
a monomorphism, so σθ = 1.

Here are some fundamental definitions:

1) A presheaf map f : F → G is a local epimorphism if for each x ∈ G(U ) there is
a covering R ⊂ hom( , U ) such that φ∗(x) = f (yφ) for some yφ , for all φ ∈ R.

2) f : F → G is a local monomorphism if givenx, y ∈ F (U ) such thatf (x) = f (y),
there is a covering R ⊂ hom( , U ) such that φ∗(x) = φ∗(y) for all φ ∈ R.
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3) A presheaf map f : F → G which is both a local epimorphism and a local
monomorphism is a local isomorphism .

Example 3.15 The canonical map ν : F → LF is a local isomorphism for all
presheaves F . The fact that ν is a local monomorphism is a consequence of the
definitions, and the claim that ν is a local epimorphism appears as a detail in the
proof of Lemma 3.13.

It follows that the associated sheaf map η : F → L2F is also a local isomorphism,
for all presheaves F .

Lemma 3.16 Suppose that f : F → G is a presheaf morphism. Then f induces
an isomorphism (respectively monomorphism, epimorphism) f∗ : L2F → L2G

of associated sheaves if and only if f is a local isomorphism (respectively local
monomorphism, local epimorphism) of presheaves.

Proof It is an exercise to show that, given a commutative diagram

F
g

��

h 















 F ′

f

��
F ′′

of presheaf morphisms, if any two of f , g and h are local isomorphisms, then so is
the third. A sheaf map g : E → E′ is a monomorphism (respectively epimorphism)
if and only if it is a local monomorphism (respectively local epimorphism). Now use
the comparison diagram

F
η

��

f

��

L2F

f∗
��

G
η

�� L2G

to finish the proof of the Lemma.

A Grothendieck topos is a category E that is equivalent to a sheaf category Shv(C)
on some Grothendieck site C.

Grothendieck toposes are characterized by exactness properties

Theorem 3.17 (Giraud) A category E having all finite limits is a Grothendieck topos
if and only if it has the following properties:

1) The category E has all small coproducts; they are disjoint and stable under
pullback.

2) Every epimorphism of E is a coequalizer.
3) Every equivalence relation R ⇒ E in E is a kernel pair and has a quotient.
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4) Every coequalizer R ⇒ E → Q is stably exact.
5) There is a set of objects that generates the category E.

A sketch proof of Giraud’s theorem appears below, but the result is proved in many
places—see, for example, [77, 91].

Here are the definitions of the terms appearing in the statement of Theorem 3.17:

1) The coproduct
⊔

i Ai is disjoint if all diagrams

∅ ��

��

Aj

��
Ai

�� ⊔
i Ai

are pullbacks for i �= j . The coproduct
⊔

i Ai is stable under pullback if all
diagrams

⊔
i C ×B Ai

��

��

⊔
i Ai

��
C �� B

are pullbacks.
3) An equivalence relation is a monomorphism m = (m0, m1) : R → E × E such

that
a) The diagonal Δ : E → E × E factors through m (ie. a ∼ a),
b) The composite R

m−→ E×E
τ−→E×E factors through m (ie. a ∼ b ⇒ b ∼ a),

c) The map

(m0m0∗, m1m1∗) : R ×E R → E × E

factors through m (this is transitivity) where the pullback is defined by

R ×E R
m1∗ ��

m0∗
��

R

m0

��
R

m1

�� E

The kernel pair of a morphism u : E → D is a pullback

R
m1 ��

m0

��

E

u

��
E

u
�� D
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It is an exercise to show that every kernel pair is an equivalence relation.

A quotient for an equivalence relation (m0, m1) : R → E × E is a coequalizer

R

m0 ��
m1

�� E �� E/R.

4) A coequalizer R ⇒ E → Q is stably exact if the induced diagram

R ×Q Q′ ⇒ E ×Q Q′ → Q′

is a coequalizer for all morphisms Q′ → Q.
5) Following [10], a generating set is a set of objects S that detects the difference

between maps. This means precisely that the map
⊔

x→E

x → E

which is defined by all maps x → E with x ∈ S, is an epimorphism, for all
objects E of E.

Exercise 3.18 Show that any category Shv(C) on a site C satisfies the conditions of
Giraud’s theorem. The family L2hom( , U ), U ∈ C is a set of generators.

Proof [Sketch proof of Theorem 3.17] The key is to show that a category E that
satisfies the conditions of the theorem is cocomplete. In view of the assumption
that E has all small coproducts it is enough to show that E has all coequalizers. The
coequalizer of the maps f1, f2 : E′ → E is constructed by taking the canonical map
E → E/R, where R is the minimal equivalence relation which contains (f1, f2) in
the sense that there is a commutative diagram

R

��
E′

�����������

(f1,f2)
�� E × E

See also [77, p. 575].
Suppose that S is the set of generators for E that is prescribed by the statement of

Giraud’s theorem, and let C be the full subcategory of E on the set of objects A. A
subfunctor R ⊂ hom( , x) on C is covering if the map

⊔

y→x∈R

y → x

is an epimorphism of E. In such cases, there is a coequalizer
⊔

y0→y1→x

y0 ⇒
⊔

y→x∈R

y → x
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where the displayed strings y0 → y1 → x are defined by morphisms between
generators such that y1 → x is in R.

It follows that every object E ∈ E represents a sheaf hom( , E) on C, and a sheaf
F on C determines an object

lim−→
hom( ,y)→F

y

of E.
The adjunction

hom( lim−→
hom( ,y)→F

y, E) ∼= hom(F , hom( , E))

determines an adjoint equivalence between E and Shv(C).

The strategy of the proof of Giraud’s theorem is arguably as important as the
statement of the theorem itself. Here are some examples;

Example 3.19 Suppose that G is a sheaf of groups, and let G − Shv(C) denote the
category of all sheaves X admitting G-action, with equivariant maps between them.
G − Shv(C) is a Grothendieck topos, called the classifying topos for G, by Giraud’s
theorem. The objects G × L2hom( , x) form a generating set.

Example 3.20 If G = {Gi} is a profinite group such that all transition maps Gi →
Gj are surjective, then the category G − Setd of discrete G-sets is a Grothendieck
topos. A discrete G-set is a set X equipped with a pro-map G → Aut (X). The
finite discrete G-sets form a generating set for this topos, and the full subcategory
G − Setdf on the finite discrete G-sets (as in Example 3.7) is the site prescribed by
Giraud’s theorem.

If the profinite group G is the absolute Galois group of a field k, then the category
G− Setd of discrete G-sets is equivalent to the category Shv(et |k) of sheaves on the
étale site for k.

More generally, if S is a locally Noetherian connected scheme with geometric
point x, and the profinite group π1(S, x) is the Grothendieck fundamental group,
then the category of discrete π1(S, x)-sets is equivalent to the category of sheaves on
the finite étale site f et |S for the scheme S. See [1], [79].

3.3 Geometric Morphisms

Suppose that C and D are Grothendieck sites. A geometric morphism

f : Shv(C) → Shv(D)

consists of functors f∗ : Shv(C) → Shv(D) and f ∗ : Shv(D) → Shv(C) such that
f ∗ is left adjoint to f∗ and f ∗ preserves finite limits.
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The left adjoint f ∗ is called the inverse image functor, while f∗ is called the
direct image . The inverse image functor f ∗ is left and right exact in the sense that
it preserves all finite colimits and limits, respectively. The direct image functor f∗
is usually not left exact (i.e. it may not preserve finite colimits), and therefore has
derived functors.

Example 3.21 Suppose f : X → Y is a continuous map of topological spaces.
Pullback along f induces a functor op |Y → op |X that takes an open subset U ⊂ Y

to f −1(U ). Open covers pull back to open covers, so that if F is a sheaf on X, then
composition with the pullback gives a sheaf f∗F on Y with f∗F (U ) = F (f −1(U )).
The resulting functor

f∗ : Shv(op|X) → Shv(op|Y )

is the direct image. It extends to a direct image functor

f∗ : Pre(op|X) → Pre(op|Y )

between presheaf categories that is defined in the same way.
The left Kan extension

f p : Pre(op|Y ) → Pre(op|X)

of the presheaf-level direct image is defined by

f pG(V ) = lim−→ G(U ),

where the colimit is indexed over all diagrams

V ��

��

U

��
X

f

�� Y

in which the vertical maps are inclusions of open subsets. The category op |Y has
all products (i.e. intersections), so the colimit is filtered. The functor G �→ f pG

therefore commutes with finite limits. The sheaf theoretic inverse image functor

f ∗ : Shv(op|Y ) → Shv(op|X)

is defined by f ∗(G) = L2f p(G). The resulting pair of functors forms a geometric
morphism f : Shv(op|X) → Shv(op|Y ).

Example 3.22 Suppose that f : X → Y is a morphism of schemes. Etale maps
(respectively covers) are stable under pullback, and so there is a functor et |Y → et |X
which is defined by pullback. If F is a sheaf on et |X then there is a sheaf f∗F on
et |Y that is defined by f∗F (V → Y ) = f (X ×Y V → X).
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The restriction functor f∗ : Pre(et|X) → Pre(et|Y ) has a left adjoint f p defined
by

f pG(U → X) = lim−→ G(V ),

where the colimit is indexed over the category of all diagrams

U ��

��

V

��
X

f

�� Y

where both vertical maps are étale. The colimit is filtered, because étale maps are
stable under pullback and composition. The inverse image functor

f ∗ : Shv(et|Y ) → Shv(et |X)

is defined by f ∗F = L2f pF , and so f induces a geometric morphism

f : Shv(et|X) → Shv(et|Y ).

A morphism of schemes f : X → Y induces geometric morphisms f :
Shv(?|X) → Shv(?|Y ) and f : Shv(Sch|X)? → Shv(Sch|Y )? for all of the geometric
topologies (Zariski, flat, Nisnevich, qfh, ...), by similar arguments.

Example 3.23 A point of Shv(C) is a geometric morphism Set → Shv(C). Every
point x ∈ X of a topological space X determines a continuous map {x} ⊂ X and
hence a geometric morphism

Set ∼= Shv(op|{x})
x−→ Shv(op|X).

The set

x∗F = lim−→
x∈U

F (U )

is the stalk of F at x.

Example 3.24 Suppose that k is a field. Any scheme homomorphism x : Sp (k) →
X induces a geometric morphism

Shv(et |k) → Shv(et |X).

If the field k happens to be separably closed, then there is an equivalence Shv(et |k) 

Set and the resulting geometric morphism x : Set → Shv(et|X) is called a geometric
point of X. The inverse image functor

F �→ x∗F = lim−→ F (U )
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is the stalk of the sheaf (or presheaf) F at x. The indicated colimit is indexed by the
filtered category of diagrams

U

φ

��
Sp (k)

x

��

����������
X

in which the vertical maps φ are étale. These diagrams are the étale neighbourhoods
of the geometric point x.

The stalk x∗F coincides with global sections π∗
x F (Osh

x,X) of the inverse image π∗
x

along the induced scheme homomorphism πx : Sp (Osh
x,X) → X, where Osh

x,X is the
strict henselization of the local ring Ox,X of the point x on the scheme X [79, II.3.2].

Example 3.25 Suppose that S and T are topologies on a site C and that S ⊂ T . In
other words, T has more covers than S and hence refines S. Then every sheaf for T

is a sheaf for S; write

π∗ : ShvT (C) ⊂ ShvS(C)

for the corresponding inclusion functor. The associated sheaf functor for the topology
T gives a left adjoint π∗ for the inclusion functor π∗, and the functor π∗ preserves
finite limits.

In particular, comparing an arbitrary topology with the chaotic topology on a site
C gives a geometric morphism

Shv(C) → Pre(C)

for which the direct image is the inclusion of the sheaf category in the presheaf
category, and the inverse image is the associated sheaf functor.

A site morphism is a functor f : D → C between Grothendieck sites such that

1) If F is a sheaf on C, then the composite functor

Dop f op−→ Cop F−→ Set

is a sheaf on D.
2) Suppose that f p is the left adjoint of the functor

f∗ : Pre(C) → Pre(D)

which is defined by precomposition with f op. Then the functor f p is left exact
in the sense that it preserves all finite limits.

One often paraphrases the requirement 1) by saying that the functor f∗ should be
continuous: it restricts to a functor

f∗ : Shv(C) → Shv(D).
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The left adjoint

f ∗ : Shv(D) → Shv(C)

is defined for a sheaf E by f ∗(E) = L2f p(E). The functor f ∗ preserves finite limits
since the presheaf-level functor f p is required to have this property. It follows that
every site morphism f : D → C induces a geometric morphism

f : Shv(C) → Shv(D).

Suppose that g : D → C is a functor between Grothendieck sites such that

1′) If R ⊂ hom( , U ) is a covering sieve for D then the image g(R) of the set of
morphisms of R in C generates a covering sieve for C.

2′)The sites D and C have all finite limits, and the functor g preserves them.

It is an exercise to show that such a functor g must satisfy the corresponding properties
1) and 2) above, and therefore defines a site morphism. The functor g is what Mac
Lane and Moerdijk [77] would call a site morphism, while the definition in use here
is consistent with that of SGA4 [2].

In many practical cases, such as Examples 3.21 and 3.22 above, geometric
morphisms are induced by functors g which satisfy conditions 1′) and 2′).

3.4 Points

Say that a Grothendieck topos Shv(C) has enough points if there is a set of geometric
morphisms xi : Set → Shv(C) such that the induced functor

Shv(C)
(x∗

i )−−→
∏

i

Set

is faithful.

Lemma 3.26 Suppose that f : Shv(D) → Shv(C) is a geometric morphism. Then
the following are equivalent:

a) The functor f ∗ : Shv(C) → Shv(D) is faithful.
b) The functor f ∗ reflects isomorphisms
c) The functor f ∗ reflects epimorphisms
d) The functor f ∗ reflects monomorphisms

Proof Suppose that f ∗ is faithful, which means that if f ∗(g1) = f ∗(g2) then
g1 = g2. Suppose that m : F → G is a morphism of Shv(C) such that f ∗(m) is a
monomoprhism. If m · f1 = m · f2 then f ∗(f1) = f ∗(f2) so f1 = f2. The map m

is therefore a monomorphism. Similarly, the functor f ∗ reflects epimorphisms and
hence reflects isomorphisms.



3.4 Points 47

Suppose that the functor f ∗ reflects epimorphisms and suppose given morphisms
g1, g2 : F → G such that f ∗(g1) = f ∗(g2). We have equality g1 = g2 if and only
if their equalizer e : E → F is an epimorphism. But f ∗ preserves equalizers and
reflects epimorphisms, so e is an epimorphism and g1 = g2. The other arguments
are similar.

Here are some basic definitions:

1) A lattice L is a partially ordered set that has all finite coproducts x ∨ y and all
finite products x ∧ y.

2) A lattice L has 0 and 1 if it has an initial and terminal object, respectively.
3) A lattice L is said to be distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z.
4) A complement for x in a lattice L with 0 and 1 is an element a such that x ∨a = 1

and x ∧a = 0. If L is also distributive then the complement, if it exists, is unique:
if b is another complement for x, then

b = b ∧ 1 = b ∧ (x ∨ a) = (b ∧ x) ∨ (b ∧ a)

= (x ∧ a) ∨ (b ∧ a) = (x ∨ b) ∧ a = a.

One usually writes ¬x for the complement of x.
5) A Boolean algebra B is a distributive lattice with 0 and 1 in which every element

has a complement.
6) A lattice L is said to be complete if it has all small limits and colimits (or all small

meets and joins).
7) A frame P is a lattice that has all small joins (and all finite meets) and which

satisfies an infinite distributive law

U ∧ (
∨

i

Vi) =
∨

i

(U ∧ Vi).

Example 3.27

1) The poset O(T ) of open subsets of a topological space T is a frame. Every
continuous map f : S → T induces a morphism of frames f −1 : O(T ) → O(S),
defined by U �→ F−1(U ).

2) The power set P(I ) of a set I is a complete Boolean algebra.
3) Every complete Boolean algebra B is a frame. In effect, every join is a filtered

colimit of finite joins.

Every frame A has a canonical Grothendieck topology: a family yi ≤ x is covering
if

∨
i yi = x. Write Shv(A) for the corresponding sheaf category. Every complete

Boolean algebra B is a frame, and therefore has an associated sheaf category Shv(B).
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Example 3.28 Suppose that I is a set. Then there is an equivalence

Shv(P(I )) 

∏

i∈I

Set.

Any set I of points xj : Set → Shv(C assembles to give a geometric morphism

x : Shv(P(I )) → Shv(C).

Observe that the sheaf category Shv(C) has enough points if there is such a set I

of points such that the inverse image functor x∗ for the geometric morphism x is
faithful.

Lemma 3.29 Suppose that F is a sheaf of sets on a complete Boolean algebra B.
Then the poset Sub(F ) of subobjects of F is a complete Boolean algebra.

Proof The poset Sub(F ) is a frame, by an argument on the presheaf level. It remains
to show that every object G ∈ Sub(F ) is complemented. The obvious candidate for
¬G is

¬G =
∨

H≤F , H∧G=∅
H

and we need to show that G
∨ ¬G = F .

Every K ≤ hom( , A) is representable: in effect,

K = lim−→
hom( ,B)→K

hom( , B) = hom( , C),

where

C =
∨

hom( ,B)→K

B ∈ B.

It follows that Sub(hom( , A)) ∼= Sub(A) is a complete Boolean algebra.
Consider all diagrams

φ−1(G) ��

��

G

��
hom( , A)

φ

�� F

There is an induced pullback

φ−1(G) ∨ ¬φ−1(G) ��

∼=
��

G ∨ ¬G

��
hom( , A)

φ

�� F
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The sheaf F is a union of its representable subsheaves, since all φ are
monomorphisms—in effect all hom( , A) are subobjects of the terminal sheaf. It
follows that G ∨ ¬G = F .

Lemma 3.30 Suppose that B is a complete Boolean algebra. Then every epimor-
phism π : F → G in Shv(B) has a section.

Lemma 3.30 asserts that the sheaf category on a complete Boolean algebra satisfies
the axiom of choice.

Proof Consider the family of lifts

F

π

��
N ≤

��



�������
G

This family is non-empty, because every x ∈ G(1) restricts along some covering
B ≤ 1 to a family of elements xB that lift to F (B).

All maps hom( , B) → G are monomorphisms, so that all such morphisms
represent objects of Sub(G), which is a complete Boolean algebra by Lemma 3.29.

Zorn’s Lemma implies that the family of lifts has maximal elements. Suppose
that N is maximal and that ¬N �= ∅. Then there is an x ∈ ¬N (C) for some C, and
there is a covering B ′ ≤ C such that xB ′ ∈ N (B ′) lifts to F (B ′) for all members of
the cover. Then N ∧ hom( , B ′) = ∅ so the lift extends to a lift on N ∨ hom( , B ′),
contradicting the maximality of N .

A Boolean localization for Shv(C) is a geometric morphism p : Shv(B) → Shv(C)
such that B is a complete Boolean algebra and p∗ is faithful.

Theorem 3.31 (Barr) Boolean localizations exist for every Grothendieck topos
Shv(C).

Theorem 3.31 is one of the big results of the topos theory and is proved in multiple
places—see [5], [78], for example.

A Grothendieck topos Shv(C) may not have enough points, in general (exam-
ple: sheaves on the flat site for a scheme), but Theorem 3.31 asserts that every
Grothendieck topos has a “fat point” defined by a Boolean localization.

3.5 Boolean Localization

This section contains a relatively short proof of the Barr theorem (Theorem 3.31)
which says that every Grothendieck topos has a Boolean cover.

The proof is in two steps, just as in the literature (eg. [77]):

1) Show that every Grothendieck topos has a localic cover.
2) Show that every localic topos has a Boolean cover.
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We begin with the second step: the precise statement is Theorem 3.39 below. The
first statement is Diaconescu’s theorem, which appears here as Theorem 3.44.

Recall that a frame F is a lattice that has all small joins and satisfies an infi-
nite distributive law. Recall also that every frame A has a canonical Grothendieck
topology: say that a family yi ≤ x is covering if

∨
i yi = x. Write Shv(A) for the

corresponding sheaf category.
Say that a Grothendieck topos B is localic if it is equivalent to Shv(A) for some

frame A.

Theorem 3.32 A Grothendieck topos E is localic if and only if it is equivalent to
Shv(P ) for some topology on a poset P .

Proof [Outline] Starting with the poset P , the corresponding frame is the poset of
subobjects of the terminal object 1 = ∗. For the reverse implication, these subobjects
generate E, and then Giraud’s theorem is used to finish the proof.

A more detailed proof of Theorem 3.32 can be found in [77, IX.5].
A morphism of frames is a poset morphism f : A → B that preserves structure,

i.e. preserves all finite meets and all infinite joins, hence preserves both 0 and 1.

Lemma 3.33 Every frame morphism f : A → B has a right adjoint f∗ : B → A.

Proof Set f∗(y) = ∨
f (x)≤y x.

Suppose that i : P → B is a morphism of frames. Then precomposition with
i determines a functor i∗ : Shv(B) → Shv(P ), since i preserves covers. The left
adjoint

i∗ : Shv(P ) → Shv(B)

of i∗ associates to a sheaf F the sheaf i∗F , which is the sheaf associated to the
presheaf ipF , where

ipF (x) = lim−→
x→i(y)

F (y).

This colimit is filtered since i preserves meets.

Lemma 3.34 Suppose that i : P → B is a morphism of frames and that F is a
sheaf on P . Then the presheaf ipF is separated.

Proof Suppose that α, β ∈ ipF (x) map to the same element in i∗F (x). Then there
is a covering family zj ≤ x such that α, β restrict to the same element of ipF (zj ) for
all j .

Identify α and β with representatives α, β ∈ F (y) for some fixed x ≤ i(y). For
each j there is a commutative diagram of relations

zj

��

�� i(vj )

��
x �� i(y)
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such that α and β restrict to the same element of F (vj ). But then α and β restrict to
the same element of F (∨vj ) and ∨zj = x and there is a commutative diagram

x ��

���
��

��
��

��
i(∨vj )

��
i(y)

Then F is a sheaf, so that α and β map to the same element of F (∨vj )x and therefore
represent the same element of ipF (x).

Lemma 3.35 Suppose that the frame morphism i : P → B is a monomorphism.
Then the functor i∗ : Shv(P ) → Shv(B) is faithful.

Proof By Lemma 3.34, it is enough to show that the canonical map η : F → i∗ipF

is a monomorphism of presheaves for all sheaves F on P . For then η : F → i∗i∗F
is a monomorphism, and so i∗ is faithful (exercise).

The map

η : F (y) → lim−→
i(y)≤i(z)

F (z)

is the canonical map into the colimit which is associated to the identity map i(y) ≤
i(y) of B.

The frame morphism i is a monomorphism, so that x = i∗i(x) for all x ∈ P ,
where i∗ is the right adjoint of i : P → B. Thus, i(y) ≤ i(z) if and only if y ≤ z, so
that category of all morphisms i(y) ≤ i(z) has an initial object, namely the identity
on i(y). The map η is therefore an isomorphism for all y.

Suppose that P is a frame and x ∈ P . Write Px for the subobject of P consisting
of all y such that x ≤ y. Then Px is a frame with initial object x and terminal object
1. There is a frame morphism

φx : P → Px

which is defined by φx(w) = x ∨ w.
Suppose that Q is a frame and that x ∈ Q. Write

¬x =
∨

x∧y=0

y.

Note that x ∧ ¬x = 0 so that there is a relation (morphism)

η : x ≤ ¬¬x

for all x ∈ Q; this relation is natural in x. Further, the relation η induces the relation
¬η : ¬¬¬x ≤ ¬x, while we have the relation η : ¬x ≤ ¬¬¬x for ¬x. It follows
that the relation

η : ¬x ≤ ¬¬¬x
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is an equality (isomorphism) for all x ∈ Q.
Define a subposet ¬¬Q of Q by

¬¬Q = {y ∈ Q| y = ¬¬y}.
There is a diagram of relations

x ∧ y ��

��

¬¬(x ∧ y)

�����
���

���
��

(¬¬x) ∧ (¬¬y)

Thus, the element x ∧ y is a member of ¬¬Q if both x and y are in ¬¬Q, for in
that case the vertical map in the diagram is an isomorphism. If the set of objects xi

are members of ¬¬Q, then the element ¬¬(∨ixi) is their join in ¬¬Q. It follows
that the poset ¬¬Q is a frame, and that the assignment x �→ ¬¬x defines a frame
morphism

γ : Q → ¬¬Q.

Lemma 3.36 The frame ¬¬Q is a complete Boolean algebra, for every frame Q.

Proof Observe that y ≤ ¬z if and only if y ∧ z = 0. It follows that ¬(∨(¬yi)) is
the meet ∧yi in ¬¬Q, giving the completeness. Also, x is complemented by ¬x in
¬¬Q since

x ∨ (¬x) = ¬¬x ∨ ¬¬¬x = ¬(¬x ∧ x) = ¬0 = 1.

Write ω for the composite frame morphism

P
(φx )−−→

∏

x∈P

Px

(γ )−→
∏

x∈P

¬¬Px ,

and observe that the product
∏

x ¬¬Px is a complete Boolean algebra.

Lemma 3.37 The frame morphism γ is a monomorphism.

Proof If x ≤ y then ¬¬φx(y) = 0 in Px implies that there is a relation

x ∨ y ≤ ¬¬(x ∨ y) = x,

so that x ∨ y = x in Px and hence y = x in P . Thus, if x ≤ y and y �= x then x

and y have distinct images ω(x) < ω(y) in
∏

x ¬¬Px .
Suppose that y and z are distinct elements of P . Then y �= y ∨ z or z ≤ y and

z �= y. Then ω(y) �= ω(y) ∨ ω(z) or ω(z) ≤ ω(y) and ω(z) �= ω(y). The assumption
that ω(y) = ω(z) contradicts both possibilities, so ω(y) �= ω(z).
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Corollary 3.38 Every frame P admits an imbedding i : P → B into a complete
Boolean algebra.

We have proved the following:

Theorem 3.39 Suppose that P is a frame. Then there is a complete Boolean algebra
B, and a topos morphism i : Shv(B) → Shv(P ) such that the inverse image functor
i∗ : Shv(P ) → Shv(B) is faithful.

A geometric morphism i as in the statement of the theorem is called a Boolean
cover of Shv(P ).

Suppose that C is a (small) Grothendieck site. Write St(C) for the poset of all finite
strings

σ : xn → · · · → x0,

where τ ≤ σ if τ extends σ to the left in the sense that τ is of the form

yk → · · · → ym+1 → xn → · · · → x0.

There is a functor π : St(C) → C that is defined by π (σ ) = xn for σ as above.
If R ⊂ hom( , σ ) is a sieve of St(C), then π (R) ⊂ hom( , xn) is a sieve of C. In

effect, if τ ≤ σ is in R and z → yk is morphism of C, then the string

τ∗ : z → yk → · · · → ym+1 → xn → . . . x0

refines τ and the relation τ∗ ≤ τ maps to z → yk .
Say that a sieve R ⊂ hom( , σ ) is covering if π (R) is a covering sieve of C. Then

St(C) acquires the structure of a Grothendieck site.

Lemma 3.40 Suppose that F is a sheaf of sets on C. Then π∗(F ) = F ·π is a sheaf
on St(C).

The proof of this result is an exercise.

Lemma 3.41 The functor F �→ π∗(F ) is faithful.

Proof For x ∈ C let {x} denote the corresponding string of length 0. Then we
have π∗F ({x}) = F (x). If sheaf morphisms f , g : F → G on C induce maps
f∗, g∗ : π∗(F ) → π∗(G) such that f∗ = g∗, then f∗ = g∗ : π∗F ({x}) → π∗G({x})
for all x ∈ C. This means, then, that f = g.

Lemma 3.42 The functor π∗ preserves local epimorphisms and local monomor-
phisms of presheaves.

Proof Suppose m : P → Q is a local monomorphism of presheaves on C. This
means that if m(α) = m(β) for α, β ∈ P (x) there is a covering φi : yi → x such
that φ∗

i (α) = φ∗
i (β) for all φi .

Suppose that α, β ∈ π∗P (σ ) such that m∗(α) = m∗(β) in π∗Q(σ ). Then α, β ∈
P (xn) and m(α) = m(β) ∈ Q(xn). There is a covering φi : yi → xn such that
φ∗

i (α) = φ∗
i (β) for all φi . But then α, β map to the same element of

π∗P (yi → xn → · · · → x0)
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for all members of a cover of σ .
Suppose that p : P → Q is a local epimorphism of presheaves on C. Then for all

α ∈ Q(x) there is a covering φi : yi → x such that φ∗
i (α) lifts to an element of P (yi)

for all i. Given α ∈ π∗Q(σ ), α ∈ Q(xn), and there is a cover φi : yi → xn such that
φ∗

i (α) lifts to P (yi). It follows that there is a cover of σ such that the image of α in

π∗Q(yi → xn → · · · → x0)

lifts to

π∗P (yi → xn → · · · → x0)

for all members of the cover.

Lemma 3.43 The functor

π∗ : Shv(C) → Shv(St(C))

preserves all small colimits.

Proof Suppose that A : I → Shv(C) is a small diagram of sheaves. Write lim−→i
A

for the presheaf colimit, and let

η : lim−→ A → L2(lim−→A)

be the natural associated sheaf map. The map η is a local epimorphism and a local
monomorphism. The functor π∗ plainly preserves presheaf colimits, and there is a
diagram

π∗(lim−→ A)
π∗(η)

�� π∗(L2(lim−→ A))

lim−→ π∗A

∼=
��

η

�� L2(lim−→ π∗A)

��

Then π∗(η) is a local epimorphism and a local monomorphism by Lemma 3.42. It
follows that the map

L2(lim−→ π∗A) → π∗(L2(lim−→ A))

is a local epimorphism and a local monomorphism of sheaves (use Lemma 3.40) and
is therefore an isomorphism.

It is a consequence of the following result that any Grothendieck topos has a localic
cover (see also [77, IX.9]). The topos Shv(St(C)) is also called the Diaconescu cover
of Shv(C).
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Theorem 3.44 (Diaconescu) The right adjoint π∗ : Pre(St(C)) → Pre(C) of
precomposition with π restricts to a functor

π∗ : Shv(St(C)) → Shv(C),

which is right adjoint to π∗. The functors π∗ and π∗ determine a geometric morphism

π : Shv(St(C)) → Shv(C).

The functor π∗ is faithful.

Proof A covering sieve R ⊂ hom( , x) in C determines an isomorphism of sheaves

lim−→
y→x

L2hom( , y) ∼= L2hom( , x).

The functor π∗ preserves colimits of sheaves, and so π∗G is a sheaf if G is a sheaf.
The functor π∗ plainly preserves finite limits, so that the functors π∗ and π∗ form a
geometric morphism. The last statement is Lemma 3.41.

We have thus assembled a proof of Barr’s theorem (Theorem 3.31), which can be
restated as follows:

Theorem 3.45 Suppose that C is a small Grothendieck site. Then there are geo-
metric morphisms

Shv(B)
f−→ Shv(St(C))

π−→ Shv(C)

such that the inverse image functors f ∗ and π∗ are faithful, and such that B is a
complete Boolean algebra.
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Chapter 4
Local Weak Equivalences

Local weak equivalences have been with us, in one form or another, for a very long
time.

Quasi-isomorphisms, or maps of chain complexes that induce isomorphisms of all
homology sheaves, were already present in protean form in Grothendieck’s Tôhoku
paper [36] of 1957, and the concept was well entrenched in algebraic geometry by
the time that Illusie’s thesis appeared in 1971. Illusie expanded the definition to maps
of simplicial sheaves in [47], and what he said was a quasi-isomorphism of simplicial
sheaves is what we call a local weak equivalence today.

The concept was further expanded to maps of simplicial presheaves in [50] in 1987,
following the form introduced by Illusie: a map X → Y of simplicial presheaves is a
local weak equivalence if it induces an isomorphism in sheaves of path components
and in all possible sheaves of homotopy groups with locally defined base points.

Local weak equivalences of simplicial sheaves were given a simple and very useful
topos-theoretic description by Joyal in his letter to Grothendieck [70] in 1984, and
Joyal’s definition is easily adapted to simplicial presheaves. All of these descriptions
of local weak equivalences are equivalent and important, and are presented in the
first section of this chapter.

The concept of local fibration of simplicial sheaves, together with the local left
lifting property that describes it, was introduced in the 1986 paper [49]. The object of
that paper was to set up a homotopy theoretic machinery for simplicial sheaves, as a
framework for the study of some problems of algebraic K-theory of the day, including
the Lichtenbaum–Quillen conjecture and the Friedlander–Milnor conjecture for the
cohomology of algebraic groups. The machinery of [49] is a bit limited, in that it is an
artifact of a category of fibrant objects structure for locally fibrant simplicial sheaves
(defined in Brown’s thesis [16]), but it is a departure from stalkwise arguments.
It is also sufficiently strong computationally to give a sheaf-theoretic approach to
Suslin’s calculation of the K-theory of algebraically closed fields, starting from
Gabber rigidity. The category of fibrant objects result for simplicial sheaves from [49]
is proved here in Corollary 4.34, while Proposition 4.33 is the simplicial presheaves
version. The theory of local fibrations is the subject of the second section of this
chapter.

© Springer-Verlag New York 2015 59
J. F. Jardine, Local Homotopy Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4939-2300-7_4
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A category of fibrant objects structure is essentially half of a Quillen model
structure. A full model structure for simplicial sheaves, with the same (local) weak
equivalences and a very different class of fibrations, was the subject of Joyal’s letter
to Grothendieck [70]. The analogue of Joyal’s structure for simplicial presheaves
was introduced in [50]. These model structures for simplicial sheaves and simplicial
presheaves are now tools of choice for the study of local homotopy theory, and all
theories based on it.

These model structures and their close cousins form the subject of Chap. 5. The
present chapter is taken up with a description of the interplay between local fibrations
and local weak equivalences for simplicial presheaves and simplicial sheaves, much
of which is introduced with a view to proving the model structure results that come
later.

Local fibrations have their own intrinsic technical interest. It is a rather serious
result (Theorem 4.32 below) that maps of simplicial presheaves, which are local
fibrations and local weak equivalences, can be completely described by a local right
lifting property in arbitrary simplicial presheaf categories. From this point of view,
such morphisms are the natural generalizations of the hypercovers that one finds in
the Artin–Mazur book [4] and throughout étale homotopy theory. Other highlights
include the properness results of Corollary 4.36 and Lemma 4.37. The latter, in par-
ticular, is a right properness assertion for local weak equivalences and local fibrations
which is quite useful.

We use Boolean localization methods from Chap. 3 thoughout this discussion.
The interested reader can replace all Boolean localization arguments by stalkwise
arguments, in situations where there are enough stalks. That said, such situations are
usually classical, while stalkwise arguments do not address major settings of interest,
such as the flat site of a scheme or a variety.

4.1 Local Weak Equivalences

Suppose that C is a small Grothendieck site. The notations sPre(C) and sShv(C) de-
note the categories of simplicial presheaves and simplicial sheaves on C, respectively.

Recall that a simplicial set map f : X → Y is a weak equivalence if and only
if the induced map |X| → |Y | is a weak equivalence of topological spaces in the
classical sense. This is equivalent to the assertion that all induced morphisms

a) π0X → π0Y , and
b) πn(X, x) → πn(Y , f (x)), x ∈ X0, x ∈ X0, n ≥ 1

of homotopy “groups” are bijections.
Define

πn(X, x) = πn(|X|, x)

for now. This is standard, but this definition will be revised later.
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We have an identification

πn(X, x) = [(Sn, ∗), (X, x)]

with pointed homotopy classes of maps simplicial sets, where Sn = Δn/∂Δn is the
simplicial n-sphere. If X is a Kan complex, then we have

πn(X, x) = π ((Sn, ∗), (X, x))

by the Milnor Theorem (Theorem 2.18), where π ((Sn, ∗), (X, x)) is pointed (naive)
simplicial homotopy classes of maps.

Write

πnX =
⊔

x∈X0

πn(X, x)

for a simplicial set X, where n ≥ 1. Then the canonical function πnX → X0 gives
πnX the structure of a group object over X0, which is abelian if n ≥ 2.

One verifies easily that a map f : X → Y of simplicial sets is a weak equivalence
if and only if the following conditions are satisfied:

a) the function π0X → π0Y is a bijection, and
b) the diagrams

πnX ��

��

πnY

��
X0

�� Y0

are pullbacks for n ≥ 1.

If X is a Kan complex, then the object πn(X, x) can also be defined as a set by
setting

πn(X, x) = π0Fn(X)x ,

where the simplicial set Fn(X)x is defined by the pullback diagram

Fn(X)x ��

��

hom(Δn, X)

i∗
��

Δ0
x

�� hom(∂Δn, X)

in which i∗ is the Kan fibration between function spaces that is induced by the
inclusion i : ∂Δn ⊂ Δn. Define the space Fn(X) by the pullback diagram

Fn(X) ��

��

hom(Δn, X)

i∗
��

X0
α

�� hom(∂Δn, X)
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where α(x) is the constant map ∂Δn → Δ0 x−→X at the vertex x. Then

Fn(X) =
⊔

x∈X0

Fn(X)x ,

so that

π0Fn(X) =
⊔

x∈X0

π0Fn(X)x =
⊔

x∈X0

πn(X, x) = πnX,

as object fibred over X0.
It follows that if X and Y are Kan complexes, then the map f : X → Y is a weak

equivalence if and only if

a) the induced function π0X → π0Y is a bijection, and
b) all diagrams

π0Fn(X) ��

��

π0Fn(Y )

��
X0

�� Y0

are pullbacks for n ≥ 1.

Kan’s Ex∞ construction gives a natural combinatorial method of replacing a
simplicial set by a Kan complex up to weak equivalence.

The functor Ex : sSet → sSet is defined by

Ex (X)n = hom ( sd Δn, X).

The subdivision sd Δn is the nerve BNΔn, where NΔn is the poset of non-degenerate
simplices of Δn (subsets of {0, 1, . . . , n}). Any ordinal number map θ : m → n
induces a functor NΔm → NΔn, and hence induces a simplicial set map sd Δm →
sd Δn. Precomposition with this map gives the simplicial structure map θ∗ of Ex (X).
There is a last vertex functor NΔn → n, which is natural in ordinal numbers n; the
collection of such functors determines a natural simplicial set map

η : X → Ex (X).

Observe that Ex (X)0 = X0, and that η induces a bijection on vertices.
Iterating gives a simplicial set Ex∞(X) that is defined by the assignment

Ex∞(X) = lim−→ Exn (X),

and a natural map j : X → Ex∞(X).
The salient features of the construction are the following (see [32, III.4]):

1) the map η : X → Ex (X) is a weak equivalence,
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2) the functor X �→ Ex (X) preserves Kan fibrations
3) the simplicial set Ex∞(X) is a Kan complex, and the natural map j : X →

Ex∞(X) is a weak equivalence.

The weak equivalence claimed in statement 3) is a consequence of statement 1).
It follows that a simplicial set map f : X → Y is a weak equivalence if and only if

the induced map of Kan complexes f∗ : Ex∞(X) → Ex∞(Y ) is a weak equivalence,
so that f is a weak equivalence if and only if

a) the function π0X → π0(Y ) is a bijection, and
b) the diagram

π0Fn( Ex∞(X)) ��

��

π0Fn( Ex∞(Y ))

��
X0

�� Y0

is a pullback for n ≥ 1.

The sets of vertices X0 and Ex∞ X0 coincide, and the set π0Fn( Ex∞(X)) is a disjoint
union of simplicial homotopy groups πn( Ex∞ X, x) for x ∈ X0.

We shall define the nth homotopy group object πnX of a simplicial set X by
setting

πnX = π0Fn( Ex∞(X))

in all that follows.

The fundamental idea of local homotopy theory is that the topology of the
underlying site C should create weak equivalences.

It is relatively easy to see what the local weak equivalences should look like
for simplicial presheaves on a topological space: a map f : X → Y of simplicial
presheaves on op|T for a topological space T should be a local weak equivalence if
and only if it induces a weak equivalence of simplicial sets Xx → Yx in stalks for
all x ∈ T . In particular the map f should induce isomorphisms

πn(Xx , y) → πn(Yx , f (y))

for all n ≥ 1 and all choices of base point y ∈ Xx and x ∈ T , as well as bijections

π0Xx

∼=−→ π0Yx

for all x ∈ T .
Recall that the stalk

Xx = lim−→
x∈U

X(U )
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is a filtered colimit, and so each base point y of Xx comes from somewhere, namely
some z ∈ X(U ) for some U . The point z determines a global section of X|U , where
the restriction X|U is the composite

((op|T )/U )op → (op|T )op
X−→ sSet.

The map f restricts to a simplicial presheaf map f |U : X|U → Y |U . Then one can
show that f is a weak equivalence in all stalks if and only if all induced maps

a) π̃0X → π̃0Y , and
b) π̃n(X|U , z) → π̃n(Y |U , f (z)), for all n ≥ 1, U ∈ C, and z ∈ X0(U )

in associated sheaves.
This is equivalent to the following: the map f : X → Y of simplicial presheaves

on the topological space T is a local weak equivalence if and only if

a) π̃0X → π̃0Y is an isomorphism
b) the presheaf diagrams

πnX ��

��

πnY

��
X0

�� Y0

induce pullback diagrams of associated sheaves for n ≥ 1.

These last two descriptions generalize to equivalent sets of conditions for maps of
simplicial presheaves on an arbitrary site C, but the equivalence of conditions requires
proof.

We begin by saying that a map X → Y of simplicial presheaves on a site C is a
local weak equivalence if and only if

a) the map π̃0X → π̃0Y is an isomorphism of sheaves, and
b) the diagrams of presheaf maps

πnX ��

��

πnY

��
X0

�� Y0

induce pullback diagrams of associated sheaves for n ≥ 1.

The following result gives a first example. A sectionwise weak equivalence is a
simplicial presheaf map X → Y such that all maps X(U ) → Y (U ) in sections are
weak equivalences of simplicial sets.

Lemma 4.1 Suppose that the map f : X → Y is a sectionwise weak equivalence
of simplicial presheaves. Then f is a local weak equivalence.
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Proof The map π0X → π0Y is an isomorphism of presheaves, and all diagrams

πnX ��

��

πnY

��
X0

�� Y0

are pullbacks of presheaves. Apply the associated sheaf functor, which is exact by
Lemma 3.14.

The Ex∞ construction extends to a construction for simplicial presheaves, which
construction preserves and reflects local weak equivalences:

Lemma 4.2 A map f : X → Y of simplicial presheaves is a local weak equivalence
if and only if the induced map Ex∞ X → Ex∞ Y is a local weak equivalence.

Proof The natural simplicial set map j : X → Ex∞ X consists, in part, of a natural
bijection

X0
∼=−→ Ex∞ X0

of vertices for all simplicial sets X, and the horizontal arrows in the natural pullback
diagrams

πnX ��

��

πn Ex∞ X

��
X0

�� Ex∞ X0

are isomorphisms. It follows that the diagram

π̃nX ��

��

π̃nY

��

X̃0
�� Ỹ0

is a pullback if and only if the diagram

π̃n Ex∞ X ��

��

π̃n Ex∞ Y

��

X̃0
�� Ỹ0

is a pullback.
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Remark 4.3 The map j : X → Ex∞ X is a sectionwise equivalence, and is therefore
a local weak equivalence by Lemma 4.2. We do not yet have a 2 out of 3 lemma for
local weak equivalences so the apparent trick in the proof of Lemma 4.2 is required
to show that the Ex∞ functor preserves local weak equivalences. This situation is
repaired in Lemma 4.30 below.

We close this section by showing that the local weak equivalences that are defined
here coincide with the topological weak equivalences of [50]. A map f : X → Y of
simplicial presheaves is a topological weak equivalence if

1) the map π̃0X → π̃0Y is an isomorphism of sheaves, and
2) all induced maps π̃n(X|U , x) → π̃n(Y |U , f (x)) are isomorphisms of sheaves on

C/U for all n ≥ 1, all U ∈ C, and all x ∈ X0(U ).

The claim that local and topological weak equivalences coincide is an immediate
consequence of Lemma 4.4 below. To state and prove that result we need some
notation:

1) Suppose that X′ is a presheaf and that the presheaf map x : ∗ → X′ is a global
section of X′. Suppose that X → X′ is a presheaf morphism, and define a presheaf
X(x) by the pullback diagram

X(x) ��

��

X

��
∗

x

�� X′

2) The restriction X|U of a presheaf X to the site C/U is the composite

(C/U )op → Cop X−→ sSet.

Recall that the notations

L2(X) = X̃

denote the sheaf that is associated with a presheaf X.

Lemma 4.4 Suppose given a commutative diagram of presheaves

Z ��

��

W

��
Z′

f

�� W ′

(4.1)

Then the induced diagram of associated sheaves is a pullback if and only if the maps

L2(Z|U )(x)) → L2(W |U )(f (x))
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are isomorphisms of sheaves for all x ∈ Z′(U ) and U ∈ C.

Applying Lemma 4.4 to the diagrams

πnX ��

��

πnY

��
X0

�� Y0

associated to a simplicial presheaf map f : X → Y then gives the following:

Corollary 4.5 A map f : X → Y of simplicial presheaves on C is a local weak
equivalence if and only if it is a topological weak equivalence.

Proof [Proof of Lemma 4.1] This proof is a formality—it is displayed to fix ideas.
Suppose that x ∈ Z′(U ) is a section of Z′ and form the pullback diagram

ZU ,x

��

�� Z

��
U

x

�� Z′

in presheaves, where U = hom ( , U ) is the presheaf represented by U ∈ C. Then
there is an isomorphism

lim−→
U

x−→Z′

ZU ,x
∼=−→ Z

that is natural in presheaves over Z′, and hence there is an isomorphism

lim−→
U

x−→Z′

Z̃U ,x
∼=−→ Z̃

in sheaves over Z̃′. The diagrams

Z̃U ,x

��

��
Z̃

��

Ũ
x

��
Z̃′

of associated sheaves are pullbacks.
It follows that the diagram (4.1) induces a pullback diagram of sheaves if and

only if all sheaf maps

Z̃U ,x → W̃U ,f (x)
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are isomorphisms.
Write r∗ for the left adjoint of the restriction functor X �→ X|U , for both

presheaves and sheaves. There is a natural isomorphism of presheaves

r∗(X|U (x)) ∼= XU ,x ,

and hence a natural isomorphism of sheaves

r∗L2(X|U (x)) ∼= X̃U ,x. (4.2)

Restriction commutes with formation of the associated sheaf, and preserves
pullbacks. Thus, if the diagram of sheaves

Z̃
��

��

W̃

��

Z̃′
f

��
W̃ ′

is a pullback, then the diagram

L2(Z|U ) ��

��

L2(W |U )

��
L2(Z′|U )

f

�� L2(W ′|U )

is a pullback, and it follows that the map

L2(Z|U )(x)) → L2(W |U )(f (x)) (4.3)

is an isomorphism of sheaves.
If the map (4.3) is an isomorphism, then the map

Z̃U ,x → W̃U ,f (x)

is an isomorphism on account of the identification (4.2).

The sheaf π̃0X is the path component sheaf of a simplicial presheaf X, and it is
standard to say (as in [50]) that the sheaves

π̃n(X|U , z),

which are defined for all n ≥ 1, U ∈ C, and z ∈ X0(U ), are the sheaves of homotopy
groups of X.

The dependence on local choices of base points z ∈ X0(U ) for the homotopy
group sheaves π̃n(X|U , z) is important and cannot be suppressed.
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Local base points are, for example, the source of the base points for the stalks Xx

of X, where one has stalks. More generally, the homotopy group sheaf π̃n(X, z) is
the fibre over the vertex z ∈ X0(U ) of the sheaf map

π̃n(X) → X̃0.

This sheaf map is a group object in sheaves over X̃0, and contains all information
about the higher homotopy group sheaves in degree n. One often says that this map
is the nth sheaf of homotopy groups of the simplicial presheaf X.

4.2 Local Fibrations

Suppose that the map i : K ⊂ L is a cofibration of finite simplicial sets and that
f : X → Y is a map of simplicial presheaves. We say that f has the local right
lifting property with respect to i if for every commutative diagram

K ��

i

��

X(U )

f

��
L �� Y (U )

in simplicial sets there is a covering sieve R ⊂ hom ( , U ) such that the lift exists in
the diagram

K ��

i

��

X(U )
φ∗

�� X(V )

f

��
L ��

��

Y (U )
φ∗

�� Y (V )

for every φ : V → U in R.

Remark 4.6 There is no requirement for consistency between the lifts along the
various members of the sieve R. Thus, if R is generated by a covering family φi :
Vi → U , we just require liftings

K ��

i

��

X(U )
φ∗

i �� X(Vi)

f

��
L ��

��

Y (U )
φ∗

i

�� Y (Vi)
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The proof of the following result is an exercise.

Lemma 4.7

1) Suppose given simplicial presheaf maps

X
f−→Y

g−→Z

such that f and g have the local right lifting property with respect to i : K ⊂ L.
Then the composite g · f has the local right lifting property with respect to the
map i.

2) Suppose given a pullback diagram

Z ×Y X ��

f∗
��

X

f

��
Z �� Y

such that f has the local right lifting property with respect to i : K ⊂ L. Then
the map f∗ has the local right lifting property with respect to i.

Lemma 4.7 says, in summary, that the class of simplicial presheaf maps having
the local right lifting property with respect to i : K ⊂ L is closed under composition
and base change.

Write XK for the presheaf that is defined by the function complexes

XK (U ) = hom(K , X(U ))

Lemma 4.8 A map f : X → Y of simplicial presheaves has the local right lifting
property with respect to the simplicial set map i : K → L if and only if the simplicial
presheaf map

XL (i∗,f∗)−−−→ XK ×YK YL

is a local epimorphism in degree 0.

Proof The proof is again an exercise.
The condition on the map f : X → Y of Lemma 4.8 is the requirement that the

presheaf map

hom (L, X)
(i∗,f∗)−−−→ hom (K , X) ×hom (K ,Y ) hom (L, Y ) (4.4)

is a local epimorphism, where hom (K , X) is the presheaf that is specified in sections
by

hom (K , X)(U ) = hom (K , X(U )),

or the set of simplicial set morphisms K → X(U ).
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Lemma 4.9 Suppose that π : X → Y is a map of simplicial sheaves on C that
has the local right lifting property with respect to an inclusion i : K ⊂ L of finite
simplicial sets, and suppose that p : Shv(D) → Shv(C) is a geometric morphism.
Then the induced map p∗(π ) : p∗X → p∗Y has the local right lifting property with
respect to i : K ⊂ L.

Proof The identifications

p∗ hom (Δn, X) ∼= p∗Xn
∼= hom (Δn, p∗X)

are natural in simplices Δn and simplicial sheaves X, and therefore induce a natural
map

p∗ hom (K , X) → hom (K , p∗X).

This map is an isomorphism for all simplicial sheaves X and all finite simplicial sets
K , since the inverse image functor p∗ preserves finite limits.

The map (4.4) is a sheaf epimorphism, since π : X → Y has the local right
lifting property with respect to i. The inverse image functor p∗ preserves sheaf
epimorphisms, so applying p∗ to the map (4.4) gives a sheaf epimorphism which is
isomorphic to the map

hom (L, p∗X)
(i∗,p∗f∗)−−−−→ hom (K , p∗X) ×hom (K ,p∗Y ) hom (L, p∗Y ).

Lemma 4.10 A simplicial presheaf map g : X → Y has the local right lifting
property with respect to an inclusion i : K ⊂ L of finite simplicial sets if and only
if the induced map g∗ : X̃ → Ỹ of associated simplicial sheaves has the local right
lifting property with respect to i.

Proof The presheaf map (4.4) is a local epimorphism if and only if the induced map

hom (L, X̃) → hom (K , X̃) ×hom (K ,Ỹ ) hom (L, Ỹ )

of associated sheaves is a local epimorphism (i.e. an epimorphism of sheaves), by
Lemma 3.16.

A local fibration is a map X → Y of simplicial presheaves that has the local right
lifting property with respect to all inclusions Λn

k ⊂ Δn of horns in simplices, i.e.
where n ≥ 1 and 0 ≤ k ≤ n. A simplicial presheaf X is locally fibrant if the map
X → ∗ is a local fibration.

Example 4.11 Every sectionwise fibration is a local fibration.

Corollary 4.12

1) Suppose that p : Shv(D) → Shv(C) is a geometric morphism. Then the inverse
image functor p∗ preserves local fibrations X → Y of simplicial sheaves.

2) The associated sheaf functor preserves and reflects local fibrations of simplicial
presheaves.
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Say that a map p : X → Y that has the local right lifting property with respect to
the simplicial set maps ∂Δn ⊂ Δn, n ≥ 0, is a local trivial fibration. Such a map is
also sometimes called a hypercover.

This is the natural generalization, to simplicial presheaves, of the concept of
hypercover of a scheme for the étale topology which was introduced by Artin and
Mazur [4].

To see this, suppose that X is a simplicial sheaf. Then the map X → ∗ is a
hypercover (or local trivial fibration) if the maps

X0 → ∗,

hom (Δn, X) → hom (∂Δn, X), n ≥ 1, (4.5)

are sheaf epimorphisms. There is a standard definition

coskm (X)n = hom (skmΔn, X)

and skn−1 Δn = ∂Δn, so that the second map of (4.5) can be written as

Xn → coskn−1 (X)n,

which is the way that it is displayed in [4].

Example 4.13 Every map which is a sectionwise fibration and a sectionwise weak
equivalence is a local trivial fibration.

Remark 4.14 It is an exercise to show that a mapp : X → Y is a local trivial fibration
if and only if it has the local right lifting property with respect to all inclusions K ⊂ L

of finite simplicial sets.

Corollary 4.15

1) Suppose that p : Shv(D) → Shv(C) is a geometric morphism. Then the inverse
image functor p∗ preserves local trivial fibrations X → Y of simplicial sheaves.

2) The associated sheaf functor preserves and reflects local trivial fibrations of
simplicial presheaves.

Corollary 4.16 The maps ν : X → LX and η : X → L2X are local trivial
fibrations.

Proof Both maps induce isomorphisms of associated simplicial sheaves, and every
isomorphism is a local trivial fibration.

Example 4.17 Suppose that f : X → Y is a function. There is a groupoid C(f ),
whose objects are the elements x of X, and whose morphisms are the pairs (x1, x2)
such that f (x1) = f (x2). The set of path components

π0C(f ) = π0BC(f )

of the groupoid (and of its associated nerve) is isomorphic to the image f (X) of f ,
and there is a trivial Kan fibration BC(f ) → f (X) that is natural in functions f .
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The nerve BC(f ) of the groupoid C(f ) and constant simplicial set f (X) are both
Kan complexes.

Thus, if f : X → Y is a map of presheaves, then there is a sectionwise trivial
fibration BC(f ) → f (X), where B(C(f ))(U ) is the nerve of the groupoid associated
to the function f : X(U ) → Y (U ). If the map f is a local epimorphism, then the
inclusion f (X) ⊂ Y induces an isomorphism of associated sheaves, and is therefore
a local trivial fibration of constant simplicial presheaves. The groupoid C(f ) is the
Čech groupoid for the map f .

It follows that the canonical map BC(f ) → Y is a local trivial fibration if the
presheaf map f is a local epimorphism.

Write Č(U ) = BC(U ) for the copy of BC(t) associated to the presheaf map
t : U → ∗, where ∗ is the terminal presheaf. If the presheaf map t is a local
epimorphism, then the map Č(U ) → ∗ is a local trivial fibration (and therefore a
hypercover). This is the Čech resolution of the terminal object that is associated to
the covering U → ∗.

If C is the site op |T of open subsets of a topological space T , and Uα ⊂ T is an
open cover, then the subspaces Uα represent sheaves having the same names, and the
map U = �αUα → ∗ is a sheaf epimorphism. The n-fold product U×n has the form

U×n =
⊔

(α1,...,αn)

Uα1 ∩ · · · ∩ Uαn
,

and so the simplicial sheaf Č(U ) is represented by a simplicial space, which is the
classical Čech resolution associated to the covering Uα ⊂ T .

If C is the étale site et |k of a field k, and L/k is a finite Galois extension with Galois
group G, then the scheme homomorphism Sp (L) → Sp (k) represents a covering
Sp (L) → ∗ on et |k . There is a canonical sheaf isomorphism

G × Sp (L)
∼=−→ Sp (L) × Sp (L)

by Galois theory, and the sheaf of groupoids underlying C( Sp (L)) is isomorphic to
the translation groupoid EG Sp (L) for the action of G on Sp (L). It follows that the
Čech resolution Č(L) := Č( Sp (L)) is isomorphic in simplicial sheaves to the Borel
construction EG ×G Sp (L) for the action of the Galois group G on Sp (L).

Such an observation holds, more generally, for all principal bundles (torsors) in
sheaf categories. This phenomenon is discussed in much more detail in Chap. 9.

Lemma 4.18 Suppose that X and Y are presheaves of Kan complexes. Then a map
p : X → Y is a local fibration and a local weak equivalence if and only if p is a
local trivial fibration.

We show in Theorem 4.32 that an arbitrary map p : X → Y of simplicial
presheaves is a local weak equivalence and a local fibration if and only if it is a local
trivial fibration.

Example 4.19 If f : X → Y is a local epimorphism of presheaves, then the
local trivial fibration BC(f ) → Y of Example 4.17 is a local weak equivalence. In
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particular, every Čech resolution Č(U ) → ∗ associated to a covering U → ∗ is a
local weak equivalence.

Proof (Proof of Lemma 4.18) Suppose that p is a local fibration and a local weak
equivalence, and that we have a commutative diagram

∂Δn ��

��

X(U )

p

��
Δn �� Y (U )

(4.6)

of simplicial set maps. The idea is to show that this diagram is locally homotopic to
diagrams

∂Δn ��

��

X(V )

p

��
Δn ��

��

Y (V )

for which the lift exists. This means that there are homotopies

∂Δn × Δ1 ��

��

X(V )

p

��
Δn × Δ1 �� Y (V )

from the diagrams

∂Δn ��

��

X(U )
φ∗

�� X(V )

p

��
Δn �� Y (U )

φ∗
�� Y (V )

to the corresponding diagrams above for all φ : V → U in a covering for U . If such
local homotopies exist, then solutions to the lifting problems

(∂Δn × Δ1) ∪ (Δn × {0})

��

�� X(V )

p

��
Δn × Δ1 �� Y (V )
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have local solutions for each V , and so the original lifting problem is solved on a
refined covering of U .

The required local homotopies are created by arguments similar to the proof of
the corresponding result in the simplicial set case [32, I.7.10]. Here are the steps in
the construction:

a) The diagram (4.6) is homotopic to a diagram

∂Δn
(α0,x,...,x)

��

��

X(U )

p

��
Δn �� Y (U )

(4.7)

for some choice of base point x ∈ X(U ), since X and Y are presheaves of Kan
complexes.

b) The element [α0] ∈ πn−1(X(U ), x) vanishes locally in X since its image vanishes
in πn−1(Y (U ), p(x)), so that the diagram (4.7) is locally homotopic to a diagram

∂Δn
x ��

��

X(V )

p

��
Δn

β

�� Y (V ).

(4.8)

c) The element [β] ∈ πn(Y (V ), p(x)) lifts locally to X, and so the diagram (4.8) is
locally homotopic to a diagram

∂Δn
x ��

��

X(W )

p

��
Δn

β

��

�������������
Y (W )

for which the indicated lifting exists.

For the converse, show that the induced presheaf maps

π0X → π0Y ,

πi(X|U , x) → πi(Y |U , p(x))

are local epimorphisms and local monomorphisms—use presheaves of simplicial
homotopy groups for this.

Lemma 4.20 Suppose that the simplicial presheaf map f : X → Y is a local
trivial fibration. Then f is a local fibration and a local weak equivalence.
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Proof The local fibration part of the claim is easy, since the map f has the right
lifting property with respect to all inclusions of finite simplicial sets.

The induced map

f : Ex (X) → Ex (Y )

has the local right lifting property with respect to all ∂Δn ⊂ Δn, since f has the
local right lifting property with respect to all sd ∂Δn → sd Δn. It follows that the
map

f : Ex∞(X) → Ex∞(Y )

has the local right lifting property with respect to all ∂Δn ⊂ Δn and is a map of
presheaves of Kan complexes. Finish by using Lemmas 4.2 and 4.18.

Corollary 4.21 The maps ν : X → LX and η : X → L2X are local fibrations
and local weak equivalences.

Proof This result is a consequence of Corollary 4.16 and Lemma 4.20.

Corollary 4.22

1) A map f : X → Y of simplicial presheaves is a local weak equivalence if and
only if the induced map f∗ : LX → LY is a local weak equivalence.

2) A map f : X → Y of simplicial presheaves is a local weak equivalence if and only
if the induced map f∗ : X̃ → Ỹ of associated sheaves is a local weak equivalence.

3) A map f : X → Y of simplicial presheaves is a local weak equivalence if and only
if the induced map f∗ : L2 Ex∞(X) → L2 Ex∞(Y ) is a local weak equivalence.

Proof For statement 1), the map η : X → LX is a local weak equivalence, so that
the induced diagram of sheaves

π̃nX ��

��

π̃nLX

��

X̃0
�� L̃X0

is a pullback. The map X̃0 → L̃X0 is an isomorphism, so that both horizontal arrows
in the diagram are isomorphisms of sheaves. Finish with the argument for Lemma
4.2.

For statement 2), recall that X̃ = L2X, and use statement 1). Statement 3) is a
consequence of statement 2) and Lemma 4.2.
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4.3 First Applications of Boolean Localization

The local weak equivalence and local fibration concepts for simplicial presheaves
have very special interpretations for simplicial sheaves on a complete Boolean algebra
B.

The key point is that the sheaf category Shv(B) satisfies the Axiom of Choice
(Lemma 3.29), which says that every epimorphism F → F ′ of such sheaves has a
section. In particular, every sheaf epimorphism must be a sectionwise epimorphism.

It follows that a map F → F ′ of sheaves on B is an epimorphism of sheaves
if and only if it is a sectionwise epimorphism. We use this observation somewhat
relentlessly.

Lemma 4.23 Suppose that B is a complete Boolean algebra.

1) A map p : X → Y of simplicial sheaves on B is a local (respectively local trivial)
fibration if and only if all maps p : X(b) → Y (b) are Kan fibrations (respectively
trivial Kan fibrations) for all b ∈ B.

2) A map f : X → Y of locally fibrant simplicial sheaves on B is a local weak
equivalence if and only if all maps f : X(b) → Y (b) are weak equivalences of
simplicial sets for all b ∈ B.

Proof The induced map

XΔn → YΔn ×Y ∂Δn X∂Δn

is a sheaf epimorphism in degree 0 if and only if it is a sectionwise epimorphism in
degree 0, since the sheaf category Shv(B) satisfies the Axiom of Choice. The local
fibration statement is similar.

For part 2), suppose that f is a local weak equivalence. The map f has a
factorization

X
j

��

f
���

��
��

��
��

�� X ×Y YΔ1

p

��
Y

where p is a sectionwise Kan fibration and j is right inverse to a sectionwise trivial
Kan fibration, by a standard construction (see also Sect. 6.1 below). All objects in
the diagram are sheaves of Kan complexes. The map p is a local weak equivalence
and a local fibration, and is therefore a sectionwise weak equivalence by Lemma
4.18 and part 1). It follows that f is a sectionwise weak equivalence.

The converse follows from Lemma 4.1.

Recall that a Boolean localization (or Boolean cover) is a geometric morphism

p : Shv(B) → Shv(C)
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such that B is a complete Boolean algebra, and such that the inverse image functor

p∗ : Shv(C) → Shv(B)

is faithful. Recall also that Barr’s theorem (Theorem 3.31) says that Boolean
localizations exist for every Grothendieck topos Shv(C).

Lemma 4.24 Suppose that the geometric morphism p : Shv(B) → Shv(C) is a
Boolean localization. A map f : X → Y of simplicial sheaves on C is a local trivial
fibration (respectively local fibration) if and only if the induced map

p∗f : p∗X → p∗Y

is a sectionwise trivial Kan fibration (respectively sectionwise Kan fibration) in
sShv(B).

Proof The simplicial sheaf map

XΔn → X∂Δn ×Y ∂Δn YΔn

is a sheaf epimorphism in degree zero if and only if the induced map

p∗XΔn → p∗X∂Δn ×p∗Y ∂Δn p∗YΔn

is a sheaf epimorphism in degree 0, by Lemma 3.26. Now use Lemma 4.23.
The argument for the local fibration statement is similar.

Lemma 4.25 Suppose that the map f : X → Y of simplicial presheaves on
C is a local fibration (respectively local trivial fibration). Then the induced map
f∗ : Ex∞ X → Ex∞ Y is a local fibration (respectively local trivial fibration).

Proof We have already seen a proof of the local trivial fibration statement in the
proof of Lemma 4.20.

In more detail, if f : X → Y is a local trivial fibration, then it has the local
right lifting property with respect to all inclusions sd (∂Δn) → sd (Δn), and so the
induced map f∗ : Ex (X) → Ex (Y ) is a local trivial fibration. It follows inductively
that all maps f∗ : Exn (X) → Exn (Y ) are local trivial fibrations, and so the map
f∗ : Ex∞(X) → Ex∞(Y ) of filtered colimits is a local trivial fibration.

For the local fibration statement, suppose that p : Shv(B) → Shv(C) is a Boolean
localization.

The map f∗ is a local fibration of simplicial presheaves if and only if the induced
map p∗L2(f∗) : p∗L2 Ex∞ X → p∗L2 Ex∞ Y is a local fibration of simplicial
sheaves on B, by Corollary 4.12 and Lemma 4.24. This last map coincides up to
isomorphism with the map

L2 Ex∞ p∗X̃ → L2 Ex∞ p∗Ỹ . (4.9)

The map f̃ : X̃ → Ỹ of associated simplicial sheaves on C is a local fibration, as
is the induced map p∗f̃ : p∗X̃ → p∗Ỹ of simplicial sheaves on B. This map p∗f̃ is
a sectionwise Kan fibration, as is the induced simplicial presheaf map

Ex∞ p∗f̃ : Ex∞ p∗X̃ → Ex∞ p∗Ỹ ,
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since the Ex∞ functor preserves Kan fibrations of simplicial sets [32, III.4.5]. But
then the map (4.9) of associated simplicial sheaves on B is a local fibration, as
required.

Remark 4.26 One can give an alternate proof of the local fibration statement in
Lemma 4.25, by using the fact that the subdivision functor takes the inclusions
Λn

k ⊂ Δn to inclusions sd (Λn
k ) ⊂ sd (Δn), which are anodyne extensions in the

sense that they occur as finite iterated pushouts of maps of the form Λr
j ⊂ Δr . This

is proved in [62] and [28].
Every local fibration f : X → Y therefore has the local right lifting property

with respect to all maps sd (Λn
k ) ⊂ sd (Δn), and thus induces a local fibration f∗ :

Ex (X) → Ex (Y ).

Lemma 4.27 Suppose that p : Shv(B) → Shv(C) is a Boolean localization. Then
the simplicial sheaf map f : X → Y is a local weak equivalence if and only if the
map

f∗ : p∗X → p∗Y

is a local weak equivalence of sShv(B).

Proof The map f : X → Y is a local weak equivalence if and only if the induced
map f∗ : L2 Ex∞(X) → L2 Ex∞(Y ) is a local weak equivalence.

The simplicial presheaf map Ex∞(X) → Ex∞(Y ) has a factorization

Ex∞(X)
i ��

����
��

��
��

�
Z

q

��
Ex∞(Y )

such that q is a sectionwise Kan fibration and the map i is a section of a sectionwise
trivial Kan fibration Z → Ex∞(X), by Proposition 2.22. There is an induced diagram

p∗L2 Ex∞(X)
i∗ ��

f∗ ����
���

���
���

p∗L2Z

q∗
��

p∗L2 Ex∞(Y )

in simplicial sheaves on B, in which the map i∗ is a local weak equivalence and the
map q∗ is a local fibration.

One uses the natural isomorphism

p∗L2 Ex∞ X ∼= L2 Ex∞ p∗X

to show that the map p∗X → p∗Y is a local weak equivalence of sShv(B) if and
only if the map f∗ : p∗L2 Ex∞ X → p∗L2 Ex∞ Y is a local weak equivalence. This
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map f∗ is a local weak equivalence if and only if the map q∗ is a local trivial fibration,
and this is so if and only if the map q is a local trivial fibration of simplicial sheaves
on C by Lemma 4.24.

The following result is now a corollary of Lemma 4.27:

Proposition 4.28 Suppose that p : Shv(B) → Shv(C) is a Boolean localization.
Then the simplicial presheaf map f : X → Y is a local weak equivalence if and
only if the map

f∗ : p∗X̃ → p∗Ỹ

is a local weak equivalence of sShv(B).

Proof The associated sheaf functor preserves and reflects local weak equivalences
by Corollary 4.16, and the inverse image functor p∗ preserves and reflects local weak
equivalences of simplicial sheaves by Lemma 4.25.

The following result is a further consequence of this line of argument:

Corollary 4.29 Suppose that p : Shv(B) → Shv(C) is a Boolean localization.
Then a map f : X → Y of simplicial presheaves on C is a local weak equivalence
if and only if the induced map

f∗ : p∗L2 Ex∞(X) → p∗L2 Ex∞(Y )

is a sectionwise equivalence of simplicial sheaves on B.

Proof The map f is a local weak equivalence if and only if the map f∗ is a local
weak equivalence, by Lemma 4.2, Corollary 4.12 and Lemma 4.25. The simplicial
sheaves p∗L2 Ex∞(X) and p∗L2 Ex∞(Y ) are locally fibrant by Corollary 4.12. Finish
the proof by using Lemma 4.23.

We can now prove the two out of three axiom for local weak equivalences.

Lemma 4.30 Suppose given a commutative diagram of simplicial presheaf maps

X
f

��

h ���
��

��
��

Y

g

��
Z

(4.10)

on a Grothendieck site C. If any two of f , g or h are local weak equivalences then
so is the third.

Proof Suppose that p : Shv(B) → Shv(C) is a Boolean localization. Then a simpli-
cial presheaf map f : X → Y is a local weak equivalence if and only if the induced
map

f∗ : p∗L2 Ex∞ X → p∗L2 Ex∞ Y
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is a sectionwise equivalence of sheaves of Kan complexes on B by Corollary 4.29.
Apply the functor p∗L2 Ex∞ to the triangle (4.10) to prove the result.

Generally, if U is an object of a Grothendieck site C, then the left adjoint LU of
the U -sections functor X �→ X(U ) can be defined for simplicial sets K by

LU (K) = K × hom ( , U ).

It is an exercise to show that LU preserves cofibrations, takes weak equivalences
(respectively fibrations) to sectionwise weak equivalences (respectively sectionwise
fibrations).

Lemma 4.31 Suppose that B is a complete Boolean algebra. Suppose that the map
p : X → Y is a local fibration and a local weak equivalence of simplicial sheaves
on B. Then p is a sectionwise trivial fibration.

Proof The map p is a sectionwise Kan fibration by Lemma 4.23.
The functor X �→ L2 Ex∞ X preserves sectionwise (or local) fibrations of sim-

plicial sheaves on B (Corollary 4.12), and it preserves pullbacks. A sectionwise
fibration p : X → Y is local weak equivalence if and only if the induced map
p∗ : L2 Ex∞ X → L2 Ex∞ Y is a sectionwise weak equivalence, by Lemma
4.23. It follows that the family of all maps of simplicial sheaves on B, which are
simultaneously local fibrations and local weak equivalences, is closed under pullback.

Suppose given a diagram

∂Δn
α ��

i

��

X(b)

p

��
Δn

β

�� Y (b)

The simplex Δn contracts onto the vertex 0; write h : Δn × Δ1 → Δn for the
contracting homotopy. Let h′ : ∂Δn × Δ1 → X(b) be a choice of lifting in the
diagram

∂Δn
α ��

��

X(b)

p

��
∂Δn × Δ1

h′
�������������

β·h·(i×1)
�� Y (b)

Then the original diagram is homotopic to a diagram of the form

∂Δn
α′

��

i

��

X(b)

p

��
Δn

x

�� Y (b)
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where x : Δn → Y (b) is constant at the vertex x ∈ Y (b). Consider the induced
diagram

∂Δn ��

i

��

(LbΔ
0 ×Y X)(b)

p∗
��

Δn ��

		

LbΔ
0(b),

where Lb is the left adjoint of the b-sections functor X �→ X(b) in sheaves. The
object LbΔ

0 is the sheaf associated to a diagram of points and is therefore locally
fibrant, and is thus a sheaf of Kan complexes. The map p∗ : LbΔ

0 ×Y X → LbΔ
0

is a local fibration and a local weak equivalence between sheaves of Kan complexes
and is therefore a sectionwise trivial fibration by Lemma 4.24, so the indicated lift
exists.

We can now prove the following result. It is essentially a corollary of Lemma
4.31.

Theorem 4.32 A map q : X → Y of simplicial presheaves is a local weak equiv-
alence and a local fibration if and only if it has the local right lifting property with
respect to all inclusions ∂Δn ⊂ Δn, n ≥ 0.

To paraphrase, this result says that a map is a local fibration and a local weak
equivalence if and only if it is a local trivial fibration.

Proof If q has the local right lifting property with respect to all ∂Δn ⊂ Δn then
q is a local fibration and a local weak equivalence by Lemma 4.20. We prove the
converse statement here.

Suppose that the map q is a local weak equivalence and a local fibration. Suppose
that p : Shv(B) → Shv(C) is a Boolean localization. Then p∗L2q is a local weak
equivalence by Proposition 4.28, and is a local fibration by Corollary 4.12, and is
therefore a sectionwise trivial fibration by Lemma 4.31. The functor p∗L2 reflects
local epimorphisms by Lemma 3.16 and 3.26, so that the map

XΔn → YΔn ×Y ∂Δn X∂Δn

is a local epimorphism in degree 0.

Suppose that X is a locally fibrant simplicial presheaf, and form the standard
diagram

XI

(d0,d1)

��
X

Δ

��

s
�����������

X × X,

(4.11)

where XI = hom(Δ1, X) is the path space function complex, which is defined in
sections by

hom(Δ1, X)(U ) = hom(Δ1, X(U )).
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In other words, XI (U ) is the ordinary unbased path space X(U )I . The maps d0 and
d1 are defined by restriction to end points, and s is the constant path map. It is an
exercise to show that the map (d0, d1) is a local fibration and the maps di are local
trivial fibrations, since X is locally fibrant. It follows from Lemma 4.20 that the
maps di and s are local weak equivalences. The simplicial presheaf XI is also locally
fibrant.

Let sPre(C)f denote the full subcategory of the simplicial presheaf category
sPre(C), whose objects are the locally fibrant simplicial presheaves.

Proposition 4.33 The category sPre(C)f of locally fibrant simplicial presheaves,
with the classes of local weak equivalences and local fibrations within that category,
together satisfy the following:

A) Given a commutative diagram

X
f

��

h ���
��

��
��

Y

g

��
Z

of morphisms in sPre(C)f , if any two of the maps f , g or h is a local weak
equivalence, then so is the third.

B) Local fibrations are closed under composition. Any isomorphism is a local
fibration.

C) The classes of local fibrations and of those maps that are simultaneously local
fibrations and local weak equivalences are closed under pullback.

D) For every object X of sPre(C)f , there is a factoriztion

XI

p

��
X

Δ

��

s
�����������

X × X,

where Δ is the diagonal map, s is a local weak equivalence and p is a local
fibration.

E) For all objects X of sPre(C)f , the map X → ∗ is a local fibration.

Proposition 4.33 says that the category of locally fibrant objects, and local fibra-
tions and local weak equivalences in that category satisfies the axioms for a category
of fibrant objects in the sense of K. Brown’s thesis [16].

Proof [Proof of Proposition 4.33] StatementA) follows from Lemma 4.30. Statement
B) follows from Lemma 4.7. The requisite construction for statement C) is given in
the diagram (4.11) above. Statement E) is a tautology.
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We know from Theorem 4.32 that a map of simplicial presheaves is a local fibration
and a local weak equivalence if and only if it has the right lifting property with respect
to all inclusions ∂Δn ⊂ Δn, n ≥ 0. Statement D) therefore follows from Lemma
4.7.

Let sShv(C)f be the full subcategory of the category of simplicial sheaves, whose
objects are the locally fibrant simplicial sheaves.

Corollary 4.34 The category sShv(C)f of locally fibrant simplicial sheaves and the
classes of local weak equivalences and local fibrations within that category, together
satisfy the axioms for a category of fibrant objects.

Proof All statements for Proposition 4.33 restrict to simplicial sheaves. For state-
ment D), observe that the path object hom(Δ1, X) is a simplicial sheaf if X is a
simplicial sheaf.

Corollary 4.34 first appeared in [49], with a very different proof. This was the
first published method of constructing a local homotopy theory within an arbitrary
Grothendieck topos.

Say that a simplicial presheaf map i : A → B is a cofibration if it is a monomor-
phism in all sections. It follows from the proof of Proposition 2.22 that every
projective cofibration is a cofibration.

Lemma 4.35 Suppose given a pushout diagram

A
α ��

i

��

C

i∗
��

B
α∗

�� D

(4.12)

of simplicial sheaves on a complete Boolean algebra B such that i is a cofibration
and a local weak equivalence. Then the map i∗ is a cofibration and

1) the map i∗ is a local weak equivalence if i is a local weak equivalence, and
2) the map α∗ is a local weak equivalence if α is a local weak equivalence.

Proof Use the Ex∞ functor and write A′ for Ex∞(A) to form a diagram

B



��

A
i��



��

α �� C



��

B ′ A′
i′

��
α′

�� C ′

in simplicial presheaves on B, in which the vertical maps are sectionwise weak
equivalences, i ′ is a cofibration, and the objects A′, B ′ and C ′ are sectionwise fibrant.



4.3 First Applications of Boolean Localization 85

Form the pushout

A′ α′
��

i′
��

C ′

i′∗
��

B ′
α′∗

�� D′

all in the simplicial presheaf category on B. The map i ′ is a cofibration since the Ex∞
functor preserves cofibrations, so the induced map D → D′ is a sectionwise weak
equivalence by left properness of the standard model structure for simplicial sets. It
follows that

1) the map i∗ is a local weak equivalence if and only if i ′∗ is a local weak equivalence,
and

2) the map α∗ is a local weak equivalence if and only if α′∗ is a local weak equivalence.

Sheafifying gives a pushout diagram of simplicial sheaves

Ã′ α̃′
��

ĩ′
��

C̃ ′

��

B̃ ′ �� D̃′,

which is locally equivalent to the original, and for which ĩ ′ is a cofibration. We can
therefore assume that the objects A, B and C in the diagram (4.12) are locally fibrant
simplicial sheaves.

If the map i is a local weak equivalence, it is a sectionwise equivalence by Lemma
4.23. Sectionwise trivial cofibrations are closed under pushout in the simplicial
presheaf category, and since D is the associated sheaf of the presheaf pushout, the
map i∗ : C → D must then be a local weak equivalence by Lemma 4.30.

Similarly, if α is a local weak equivalence, then it is a sectionwise equivalence,
and so the map α∗ must be a sectionwise weak equivalence.

Corollary 4.36 Suppose given a pushout diagram

A
α ��

i

��

C

i∗
��

B
α∗

�� D

of simplicial presheaves on a Grothendieck site C, and suppose that i is a cofibration.
If the map i is a local weak equivalence then i∗ is a local weak equivalence. Also, if
α is a local weak equivalence then α∗ is a local weak equivalence.
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Proof Suppose that p : Shv(B) → Shv(C) is a Boolean localization. The functor
p∗L2 preserves cofibrations and pushouts, and preserves and reflects local weak
equivalences by Proposition 4.28.

The map p∗Ã → p∗B̃ induced by i is a local weak equivalence and a cofibration,
so the map p∗C̃ → p∗D̃ induced by i∗ is a local weak equivalence by Lemma 4.35.
It follows that the map i∗ is a local weak equivalence.

One uses the same argument to show that α∗ is a local weak equivalence if α is a
local weak equivalence.

Corollary 4.36 incorporates a left properness assertion for local weak equivalences
and cofibrations of simplicial presheaves. The following result is right properness
for local fibrations and local weak equivalences.

Lemma 4.37 Suppose given a pullback diagram

W
g∗ ��

��

X

p

��
Z

g

�� Y

in sPre(C) such that p is a local fibration and g is a local weak equivalence. Then
the map g∗ is a local weak equivalence.

Proof One can either use a direct Boolean localization argument to prove this result
(this is an exercise), or argue as follows.

Kan’s functor X �→ Ex∞(X) takes values in the category of locally fibrant simpli-
cial presheaves. It preserves local fibrations (Lemma 4.25) and pullbacks. It preserves
and reflects local weak equivalences by Lemma 4.2.

We can therefore assume that the diagram consists of locally fibrant simplicial
presheaves, and hence in a category of fibrant objects by Proposition 4.33. The map
g∗ is then a local weak equivalence by a formal property of categories of fibrant
objects—see, for example, [32, II.8.5].

Corollary 4.38 Suppose given a commutative diagram

Z ��

fZ

��

Y

fY

��

X
p

��

fX

��
Z′ �� Y ′ X′

p′
��

(4.13)

of simplicial presheaves on a site C such that the maps p and p′ are local fibrations,
and such that fX, fY and fZ are local weak equivalences. Then the induced map

Z ×Y X → Z′ ×Y ′ X′

is a local weak equivalence.
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Proof The right properness assertion for local fibrations of Lemma 4.35 implies this
result in a standard way—see [32, II.8.8].

Alternatively, we can assume that the diagram (4.13) lives in simplicial sheaves
on B, and that all objects in the diagram are locally fibrant. This is done in the usual
way, by applying the functor X �→ p∗L2 Ex∞ X, where p : Shv(B) → Shv(C) is a
Boolean localization. We also use Lemma 4.25.

But then the maps fX, fY and fZ are sectionwise weak equivalences and the maps
p and p′ are sectionwise Kan fibrations, so the result follows from the coglueing
lemma for simplicial sets [32, II.8.10].

The following result is a strong form of right properness for simplicial presheaves
fibred over presheaves which is useful in applications.

Lemma 4.39 Suppose given a commutative diagram of simplicial presheaf maps

X
f

��

���
��

��
� Y

����
��
��

Z �� A

such that A is simplicially discrete and f is a local weak equivalence. Then the
induced map

f∗ : Z ×A X → Z ×A Y

is a local weak equivalence.

Proof The result holds in the category of simplicial sets. In this case, all objects
are coproducts of fibres over x ∈ A, so that X = ⊔

x∈A Xx for example. Then
f : X → Y is a weak equivalence if and only if all maps of fibres Xx → Yx are
weak equivalences. Then all maps Zx × Xx → Zx × Yx are weak equivalences, so
that the map f∗ : Z ×A X → Z ×A Y is a weak equivalence.

More generally, form a diagram

X
j

��
f

���
��

�

���
��
��
��
��
� X′

f ′

���
��

�

  ��
��
��
��
��
�

Y
j

��

��

Y ′

!!���
���

���
���

A

such that the maps j are sectionwise equivalences and the maps X′ → A and Y ′ → A

are sectionwise Kan fibrations. This can be done in the projective model structure
for simplicial presheaves.

It suffices, by the observation about simplicial sets in the first paragraph, to show
that the map f ′∗ : Z ×A X′ → Z ×A Y ′ is a local weak equivalence.
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The maps X′ → A and and Y ′ → A are local fibrations and the map f ′ is a local
weak equivalence. It follows from Lemma 4.38 that the induced map f ′∗ is a local
weak equivalence.

Corollary 4.40 Suppose that f : X → Y is a local weak equivalence of simplicial
presheaves and that Z is a simplicial presheaf. Then the map

f × 1 : X × Z → Y × Z

is a local weak equivalence.

The following is an enriched version of the simplicial model axiom SM7 for
simplicial presheaves:

Corollary 4.41 Suppose that i : A → B and j : C → D are cofibrations of
simplicial presheaves. Then the induced cofibration

(i, j ) : (B × C) ∪ (A × D) → B × D

is a local weak equivalence if either i or j is a local weak equivalence.

Proof The map (i, j ) is plainly a cofibration.
Suppose that the map i : A → B is a local weak equivalence. Then the diagram

A × D

(i×1)∗
��

i×1

����
���

���
���

�

(B × C) ∪ (A × D)
(i,j )

�� B × D,

the maps i×1 and (i×1)∗ are trivial cofibrations, so (i, j ) is a local weak equivalence.

One could, alternatively, prove Corollary 4.41 directly with a Boolean localization
argument.

We close this chapter with a first result about local weak equivalences between
homotopy colimits.

Lemma 4.42

1) Suppose that the simplicial presheaf maps Xi → Yi , i ∈ I , are local weak
equivalences, where I is a set. Then the induced map

⊔

i∈I

Xi →
⊔

i∈I

Yi

is a local weak equivalence.
2) Suppose that f : X → Y is a natural transformation of J -diagrams of simplicial

presheaves, where J is a right filtered category. Then the induced map

lim−→
j∈J

Xj → lim−→
j∈J

Yj
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of filtered colimits is a local weak equivalence of simplicial presheaves.
3) Suppose that

X0 → X1 → · · · → Xs → Xs+1 → . . .

is an inductive system of simplicial presheaf maps, indexed by s < γ , where γ is
some limit ordinal. Suppose that all maps Xs → Xs+1 and the maps

lim−→
s<t

Xs → Xt

corresponding to limit ordinals t < γ are local weak equivalences. Then the map

X0 → lim−→
s<γ

Xs

is a local weak equivalence.

Proof For all statements, by applying a functor p∗L2 Ex∞ for some Boolean local-
ization p, it is enough to assume that all objects are locally fibrant simplicial sheaves
on a complete Boolean algebra B. But then the weak equivalences are sectionwise
weak equivalences, and the statements follow from the corresponding results for
simplicial sets.



Chapter 5
Local Model Structures

This chapter presents constructions of the basic model structures for simplicial
presheaves and simplicial sheaves. These include the injective model structures for
both categories—these structures, and the Quillen equivalence between them, are
the subject of Sect. 5.1. Precise statements appear in Theorems 5.8 and 5.9.

The construction of the injective model structures depends on the results for local
weak equivalences and local fibrations from Chap. 3, and uses Boolean localization
techniques. The other main technical device that is used is a bounded monomorphism
statement, which appears in Lemma 5.2. Variants of the bounded monomorphism
concept appear repeatedly in subsequent chapters.

The injective model structure for simplicial sheaves first appeared in a letter
of Joyal to Grothendieck [70], while the injective model structure for simplicial
presheaves had its first appearance in [50]. There are now many related structures
with the same (local) weak equivalences: the local projective structure was introduced
by Blander in [9], and the intermediate model structures appeared in [64].

The basic properties of injective fibrations and injective fibrant objects are dis-
cussed in Sect. 5.2. Injective fibrant objects, meaning objects which are acyclic and
fibrant for the injective model structure, behave like injective objects in an abelian
category, hence the name.

The overall message of Sect. 5.3 is that a geometric morphism of Grothendieck
sites induces a Quillen adjunction between the injective model structures on the
respective categories of simplicial presheaves. This means, in particular, that direct
image functors preserve injective fibrations—this observation leads to calculations
in the stye of the Leray spectral sequence, as in [52].

Section 5.3 closes with a discussion of restrictions to sites fibred over a simplicial
object, such as one encounters when discussing the cohomology of a simplicial
scheme. One outcome is that the cohomology of a simplicial scheme X, for whatever
topology, can be calculated either on the fibred site, as is traditional, or by interpreting
X as a representable simplicial presheaf on some bigger site. The homotopy theoretic
approach to cohomology calculations is discussed later in Chap. 8.

An injective fibrant model of a simplicial presheaf X is a local weak equivalence
X → Z with Z injective fibrant. Such morphisms exist for all objects X by a

© Springer-Verlag New York 2015 91
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standard argument, but can be mysterious. At the same time, one can start to calculate
the homotopy groups in the sections of an injective fibrant model Z with sheaf
cohomology (see Chap. 8), starting from the sheaves of homotopy groups of the
original object X. Thus, the closer that an object X is to being injective fibrant, the
more tools we have to compute its homotopy groups in sections.

Most coarsely, we say that a simplicial presheaf X satisfies descent if we can find
a local weak equivalence f : X → Z with Z injective fibrant, such that all induced
maps X(U ) → Z(U ) in sections are weak equivalences of simplicial sets.

The descent concept first arose in discussions of patching data for sheaves and
sheaf cohomology theory. The homotopy theoretic variant that is discussed here,
which is a great strengthening of the cohomological concept, had its origins in the
study of some of the leading open questions of algebraic K-theory of the 1970s and
1980s.

Variants of this concept are described in Sect. 5.4, and we prove two of the main
descent theorems from algebraic K-theory as examples, namely, the Brown–Gersten
descent theorem for the Zariski topology (Theorem 5.33) and the Morel–Voevodsky
descent theorem for the Nisnevich topology (Theorem 5.37). The arguments for both
results are quite geometric, and one generally expects that the proof of a descent
statement will be anything but purely homotopy theoretic. Descent theorems of this
kind are rare and important, and typically have interesting proofs.

Injective model structures for presheaf objects are the traditional platform for
homotopy theoretic descent questions and theorems. In particular, these model struc-
tures and their descent theories form the basis for the description of the theory of
stacks which appears in Chap. 9.

The local projective structure is constructed in Sect. 5.5, together with the interme-
diate model structures for simplicial presheaves. All of these variants of the injective
structure have the same weak equivalences, namely, the local weak equivalences, and
the respective model structures are found by varying the class of cofibrations. The
injective structure has the largest class of cofibrations, namely, all monomorphisms,
while the local projective structure has the smallest class: these are the monomor-
phisms which are projective cofibrations, as in Proposition 2.22. The intermediate
structures have classes of cofibrations which lie somewhere between the projective
cofibrations and the class of all monomorphisms, hence the name.

One says that a simplicial presheaf X is an n-type if the homotopy group sheaves
π̃kX are trivial for k > n. In particular, X has only finitely many nontrivial sheaves of
homotopy groups. Such objects can be extremely important for the study of descent
questions, as in [56] and [99].

A model theoretic approach to the study of n-types of simplicial presheaves is pre-
sented in Sect. 5.6, in which derived Postnikov sections PnX of simplicial presheaves
X are used to describe weak equivalences, here called n-equivalences. The resulting
model structure appears in Theorem 5.49. The proof of this result, which is due to
Biedermann [8], is an interesting variant of the Bousfield–Friedlander construction
of classical stable homotopy theory [13].
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5.1 The Injective Model Structure

We begin by reviewing the fibration replacement construction from classical
simplicial homotopy theory.

Suppose that f : X → Y is a map of Kan complexes, and form the diagram

X ×Y Y I
f∗ ��

d0∗
��

Y I
d1 ��

d0

��

Y

X
f

��

sf
��          

Y

in which the square is a pullback. Then d0 is a trivial fibration since Y is a Kan
complex, so d0∗ is a trivial fibration. The section s of d0 (and d1) induces a section
s∗ of d0∗, and

(d1f∗)s∗ = d1(sf ) = f

Finally, there is a pullback diagram

X ×Y Y I
f∗ ��

(d0∗,d1f∗)

��

Y I

(d0,d1)

��
X × Y

f ×1
�� Y × Y

and the projection map prR : X × Y → Y is a fibration since X is a Kan complex,
so that prR(d0∗, d1f∗) = d1f∗ is a fibration.

Write Zf = X ×Y Y I and π = d1f∗. Then we have functorial replacement

X
s∗ ��

f 

�
��

��
��

�
Zf

π

��

d0∗ �� X

Y

(5.1)

of f by a fibration π , where d0∗ is a trivial fibration such that d0∗s∗ = 1.
The same argument can be repeated exactly within the theory of local fibrations,

giving the following:

Lemma 5.1 Suppose that f : X → Y is a map between locally fibrant simplicial
presheaves. Then we have the following:

1) The map f has a natural factorization (5.1) for which π is a local fibration, d0∗
is a local trivial fibration, and d0∗s∗ = 1X.
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2) The map f is a local weak equivalence if and only if the map π in the factorization
(5.1) is a local trivial fibration.

The second statement of the Lemma follows from Theorem 4.32.
Suppose again that f : X → Y is a simplicial set map, and form the diagram

X
j

��

f

��

θf

��!
!!

!!
!!

Ex∞ X

f∗

��

s∗

"""
""

""
""

""

Z̃f
j∗

��

πf����
��
��
�

Zf∗

π##��
��
��
��
�

Y
j

�� Ex∞ Y

in which the front face is a pullback. Then πf is a fibration, and θf is a weak
equivalence since j∗ is a weak equivalence by properness of the model structure for
simplicial sets. The construction taking a map f to the factorization

X
θf

��

f ���
��

��
��

� Z̃f

πf

��
Y

(5.2)

is natural and preserves filtered colimits in f .
Say that a simplicial set X is α-bounded if |Xn| < α for all n ≥ 0, or in other

words if α is an upper bound for the cardinality of all sets of simplices of X. A
simplicial presheaf Y is α-bounded if all of the simplicial sets Y (U ), U ∈ C, are
α-bounded.

This construction (5.2) carries over to simplicial presheaves, giving a natural
factorization

X
θf

��

f ���
��

��
��

� Z̃f

πf

��
Y

of a simplicial presheaf map f : X → Y such that θf is a sectionwise weak equiv-
alence and πf is a sectionwise fibration. Here are some further properties of this
factorization:
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a) the factorization preserves filtered colimits in f

b) if X and Y are α-bounded where α is some infinite cardinal, then so is Z̃f

c) the map f is a local weak equivalence if and only if πf has the local right lifting
property with respect to all ∂Δn ⊂ Δn.

Statement c) is a consequence of Theorem 4.32, since πf is a local fibration.

Suppose that C is a Grothendieck site, and recall that we assume that such a
category is small. Suppose that α is a regular cardinal such that α > | Mor (C)|.

Regular cardinals are used throughout this book, in order that the size of filtered
colimits works out correctly.

Specifically, if α is a regular cardinal and F = lim−→i∈I
Fi is a filtered colimit

of sets Fi such that |I | < α and all |Fi | < α, then |F | < α. One could take this
condition to be the definition of a regular cardinal.

It is easy to see that if β is an infinite cardinal, then the successor cardinal β +1 is
regular, so that regular cardinals abound in nature. There are well known examples
of limit cardinals that are not regular.

The following result is the bounded monomorphism property for simplicial pre-
sheaves.

Lemma 5.2 Suppose that i : X → Y is a monomorphism and a local weak
equivalence of sPre(C). Suppose that A ⊂ Y is an α-bounded subobject of Y . Then,
there is an α-bounded subobject B of Y such that A ⊂ B and such that the map
B ∩ X → B is a local weak equivalence.

Proof Write πB : ZB → B for the natural pointwise Kan fibration replacement for
the monomorphism B ∩ X → B. The map πY : ZY → Y has the local right lifting
property with respect to all ∂Δn ⊂ Δn.

Suppose given a lifting problem

∂Δn ��

��

ZA(U )

πA

��
Δn ��

��

A(U )

where A is α-bounded. The lifting problem can be solved locally over Y along some
covering sieve for U having at most α elements. We have an identification

ZY = lim−→|B|<α

ZB

since Y is a filtered colimit of its α-bounded subobjects. It follows from the regularity
assumption on α that there is an α-bounded subobject A′ ⊂ Y with A ⊂ A′ such
that the original lifting problem can be solved over A′. The list of all such lifting
problems is α-bounded, so there is an α-bounded subobject B1 ⊂ Y with A ⊂ B1 so
that all lifting problems as above over A can be solved locally over B1. Repeat this
procedure countably many times to produce an ascending family

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .
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of α-bounded subobjects of Y such that all lifting local lifting problems

∂Δn ��

��

ZBi
(U )

πBi

��
Δn ��

��

Bi(U )

over Bi can be solved locally over Bi+1. Set B = ∪iBi .

Say that a map p : X → Y of sPre(C) is an injective fibration if p has the right
lifting property with respect to all maps A → B which are cofibrations and local
weak equivalences.

Remark 5.3 Injective fibrations are also called global fibrations in the literature, for
example in [50]. The use of the term “global fibration” originated in early work of
Brown and Gersten [17], but has declined with the introduction of the various model
structures associated with motivic homotopy theory.

Say that a map A → B of simplicial presheaves is an α-bounded cofibration if
it is a cofibration and the object B is α-bounded. It follows that the subobject A is
α-bounded as well.

A trivial cofibration is a map of simplicial presheaves that is both a cofibration
and a local weak equivalence. This is standard terminology, and is consistent with
the injective model structure which appears in Theorem 5.8 below. Similarly, for that
model structure, a trivial fibration is a map which is an injective fibration and a local
weak equivalence.

Lemma 5.4 The map p : X → Y is an injective fibration if and only if it has the
right lifting property with respect to all α-bounded trivial cofibrations.

Proof Suppose that p : X → Y has the right lifting property with respect to all
α-bounded trivial cofibrations, and suppose given a diagram

A ��

i

��

X

p

��
B �� Y

where i is a trivial cofibration. Consider the poset of partial lifts

A ��

��
X

p

��
A′

		������

��
B �� Y

in which the maps A → A′ → B are trivial cofibrations. This poset is non-trivial:
given x ∈ B(U ) − A(U ) there is an α-bounded subcomplex C ⊂ B with x ∈ C(U )
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(let C be the image of the map LUΔn → B which is adjoint to the simplex x :
Δn → B(U )), and there is an α-bounded subcomplex C ′ ⊂ B with C ⊂ C ′ and
i∗ : C ′ ∩ A → C ′ a trivial cofibration. Then x ∈ C ′ ∪ A, and there is a diagram

C ′ ∩ A ��

i∗
��

A ��

��

X

p

��

C ′ �� C ′ ∪ A

��

��#########

B �� Y

where the indicated lift exists because p has the right lifting property with respect to
the α-bounded trivial cofibration i∗. The map A → C ′ ∪ A is a trivial cofibration by
Corollary 4.36.

The poset of partial lifts has maximal elements by Zorn’s Lemma, and the maximal
elements of the poset must have the form

A

i

��

�� X

p

��
B ��

���������
Y

Recall that one defines

LUK = hom( , U ) × K

for U ∈ C and simplicial sets K , and that the functor K �→ LUK is left adjoint to
the U -sections functor X �→ X(U ).

Lemma 5.5 Suppose that q : Z → W has the right lifting property with respect to
all cofibrations. Then q is an injective fibration and a local weak equivalence.

Proof The map q is obviously an injective fibration, and it has the right lifting
property with respect to all cofibrations LU∂Δn → LUΔn, so that all maps q :
Z(U ) → W (U ) are trivial Kan fibrations. It follows from Lemma 4.1 that q is a
local weak equivalence.

Lemma 5.6 A map q : Z → W has the right lifting property with respect to all
cofibrations if and only if it has the right lifting property with respect to all α-bounded
cofibrations.

Proof The proof of this result is an exercise.
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Lemma 5.7 Any simplicial presheaf map f : X → Y has factorizations

Z
p



�
��

��
��

�

X
f

��

i


�������

j 














Y

W

q



��������

where

1) the map i is a cofibration and a local weak equivalence, and p is an injective
fibration,

2) the map j is a cofibration and p has the right lifting property with respect to all
cofibrations (and is therefore an injective fibration and a local weak equivalence)

Proof For the first factorization, choose a cardinal λ > 2α and do a transfinite small
object argument of size λ to solve all lifting problems

A ��

i

��

X

f

��
B ��

��

Y

arising from locally trivial cofibrations i which are α-bounded. We need to know
that locally trivial cofibrations are closed under pushout, but this is proved in Corol-
lary 4.36. The small object argument stops on account of the condition on the size
of the cardinal λ.

The second factorization is similar, and uses Lemma 5.6.

The main results of this section say that the respective categories of simplicial
presheaves and simplicial sheaves on a Grothendieck site admit well-behaved model
structures, and that these model structures are Quillen equivalent.

Theorem 5.8 Suppose that C is a small Grothendieck site. Then, the category
sPre(C), with the classes of local weak equivalences, cofibrations and injective
fibrations, satisfies the axioms for a proper closed simplicial model category. This
model structure is cofibrantly generated.

Proof The simplicial presheaf category sPre(C) has all small limits and colimits,
giving CM1. The weak equivalence axiom CM2 was proved in Lemma 4.30 with a
Boolean localization argument. The retract axiom CM3 is trivial to verify—use the
pullback description of local weak equivalences to see the weak equivalence part.
The factorization axiom CM5 is Lemma 5.7.
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Suppose that π : X → Y is an injective fibration and a local weak equivalence.
Then by Lemma 5.7, the map π has a factorization

X
j

��

π 















 W

p

��
Y

where p has the right lifting property with respect to all cofibrations and is therefore
a local weak equivalence. Then j is a local weak equivalence, and so π is a retract
of p. It follows that π has the right lifting property with respect to all cofibrations,
giving CM4.

The simplicial model structure comes from the function complex hom(X, Y ). This
is the simplicial set with n-simplices given by

hom(X, Y )n = homsPre(C) (X × Δn, Y ).

One uses Corollary 4.41 to show that, if i : A → B is a cofibration of simplicial
presheaves and j : K → L is a cofibration of simplicial sets, then the induced map

(B × K) ∪ (A × L) → B × L

is a cofibration which is a local weak equivalence if either i is a local weak equivalence
of simplicial presheaves or j is a weak equivalence of simplicial sets.

The properness of the model structure follows from Corollary 4.36 and
Lemma 4.37.

It is a consequence of the proof of the model axioms that a generating set J for the
class of trivial cofibrations is given by the set of all α-bounded trivial cofibrations,
while the set I of α-bounded cofibrations generates the class of cofibrations.

Write sShv(C) for the category of simplicial sheaves on C. Say that a map f : X →
Y is a local weak equivalence of simplicial sheaves if it is a local weak equivalence
of simplicial presheaves. A cofibration of simplicial sheaves is a monomorphism,
and an injective fibration is a map which has the right lifting property with respect
to all trivial cofibrations.

Theorem 5.9 Let C be a small Grothendieck site.

1) The category sShv(C) with the classes of local weak equivalences, cofibrations
and injective fibrations, satisfies the axioms for a proper closed simplicial model
category. This model structure is cofibrantly generated.

2) The inclusion i of sheaves in presheaves and the associated sheaf functor L2

together induce a Quillen equivalence

L2 : sPre(C) � sShv(C) : i.
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Proof The associated sheaf functor L2 preserves cofibrations, and it preserves and
reflects local weak equivalences (Corollary 4.22). The inclusion functor i therefore
preserves injective fibrations. The associated sheaf map η : X → L2X is a local
weak equivalence, while the counit of the adjunction is an isomorphism. Thus, we
have statement 2) if we can prove statement 1).

The axiom CM1 follows from completeness and cocompleteness for the sheaf
category sShv(C). The axioms CM2, CM3 and CM4 follow from the corresponding
statements for simplicial presheaves.

A map p : X → Y is an injective fibration (respectively trivial injective fibration)
of sShv(C) if and only if it is an injective fibration (respectively trivial injective
fibration) of sPre(C).

Choose a regular cardinal β such that β > |B̃| for all α-bounded simplicial preshe-
aves B. Then a simplicial sheaf map p is an injective fibration if and only if it has
the right lifting property with respect to all monomorphisms A ⊂ B of β-bounded
objects of sShv(C) which are local weak equivalences.

The factorization axiom CM5 is proved by a transfinite small object argument of
size λ, where λ is a regular cardinal such that λ > 2β .

The simplicial model structure is inherited from simplicial presheaves, as is
properness.

Example 5.10 The category sPre(C) of simplicial presheaves is also the category
of simplicial sheaves for the “chaotic” Grothendieck topology on C whose covering
sieves are the representable functors hom ( , U ), U ∈ C (Example 3.8). The injective
model structures, for simplicial presheaves or simplicial sheaves, specialize to the
injective model structure for diagrams of simplicial sets. The injective model structure
for diagrams is the good setting for describing homotopy inverse limits—see [32,
VIII.2]. The existence of this model structure is attributed to Heller [37], but it is
also a consequence of Joyal’s theorem (Theorem 5.9.1) for simplicial sheaves [70].

5.2 Injective Fibrations

Injective fibrant simplicial presheaves are usually only formally defined, but here is
a first simple example:

Lemma 5.11 Suppose that F is a sheaf of sets on C. Then, the associated constant
simplicial sheaf K(F , 0) is injective fibrant.

The object K(F , 0) has n-simplices

K(F , 0)n = F ,

and all simplicial structure maps are the identity on F .

Proof There is a natural bijection

hom(X, K(F , 0)) ∼= hom(π̃0(X), F )
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for all simplicial presheaves X and sheaves F . Any local weak equivalence f : X →
Y induces an isomorphims π̃0(X) ∼= π̃0(Y ), and so f induces a bijection

f ∗ : hom(Y , K(F , 0))
∼=−→ hom(X, K(F , 0)).

Thus, all lifting problems

X ��

f

��

K(F , 0)

Y

��

have unique solutions.
Many of the applications of local homotopy theory are based on the sectionwise

properties of injective fibrations and injective fibrant objects.

Lemma 5.12

1) Every injective fibration p : X → Y is a sectionwise Kan fibration.
2) Every injective fibration is a local fibration.
3) Every trivial injective fibration is a sectionwise trivial Kan fibration.

Proof An injective fibration p : X → Y has the right lifting property with respect
to the trivial cofibrations LUΛn

k → LUΔn. If p is a trivial injective fibration then it
has the right lifting property with respect to the cofibrations LU∂Δn → LUΔn. All
sectionwise Kan fibrations are local fibrations.

Corollary 5.13 Suppose that the map f : X → Y is a local weak equivalence,
and that X and Y are injective fibrant simplicial presheaves. Then f is a sectionwise
weak equivalence.

Proof According to the method of proof of Lemma 5.1, the map f has a factorization

X
s∗ ��

f ���
��

��
��

Z

π

��
Y

where π is an injective fibration and s∗ is a section of a trivial injective fibration. The
map π is then a trivial injective fibration, and it follows from Lemma 5.12 that the
maps s∗ and π are both sectionwise weak equivalences.

An injective fibrant model of a simplicial presheaf X is a local weak equivalence
j : X → Z such that Z is injective fibrant.

Remark 5.14 One can make a functorial choice j : X → GX of injective fibrant
models, since the injective model structure on simplicial presheaves (or on simplicial
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sheaves) is cofibrantly generated. This functoriality means that there is a functor
X �→ GX such that GX is injective fibrant, together with a natural transformation
j : X → GX which consists of local weak equivalences.

The notation is consistent with the usage of [50], where one speaks of global
fibrations (see Remark 5.3)—in that language, one says that the map j : X → GX

is a global fibrant model.
In isolated circumstances, one can use Godement resolutions to construct functo-

rial injective fibrant models—see [50, Prop. 3.3], [56, Th. 5.8], [99, Def. 1.33]. This
is another historical origin for the notation X → GX.

A simplicial presheaf X on a site C is said to satisfy descent (or have the de-
scent property) if some injective fibrant model j : X → Z is a sectionwise weak
equivalence in the sense that the simplicial set maps j : X(U ) → Z(U ) are weak
equivalences for all objects U of C.

All injective fibrant objects Z satisfy descent, since any injective fibrant model
Z → Z′ is a local weak equivalence between injective fibrant objects, and is therefore
a sectionwise weak equivalence by Corollary 5.13.

We also have the following:

Corollary 5.15 Suppose that the simplicial presheaf X satisfies descent, and sup-
pose that the map f : X → W is a local weak equivalence such that W is injective
fibrant. Then the map f is a sectionwise weak equivalence.

In other words, a simplicial presheaf X satisfies descent if and only if all of its
injective fibrant models X → Z are sectionwise weak equivalences.

Proof Suppose that the injective fibrant model j : X → Z is a sectionwise weak
equivalence. We can suppose that the map j is a cofibration by a factorization argu-
ment and Corollary 5.13. Let i : Z ∪X W → W ′ be an injective fibrant model for
the pushout Z ∪X W . Then by left properness of the injective model structure for
simplicial presheaves, all maps in the resulting commutative diagram

X
f

��

j

��

W

��
Z �� W ′

are local weak equivalences, and the objects Z, W and W ′ are injective fibrant. It
follows that the map f is a sectionwise weak equivalence.

Corollary 5.16 Any two injective fibrant models of a simplicial presheaf X are
sectionwise weakly equivalent.

The injective model structure of Theorem 5.8 is a closed simplicial model structure
in which all objects are cofibrant. Suppose that the simplicial presheaf Z is injective
fibrant and that f : X → Y is a morphism of simplicial presheaves. It follows that
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the simplicial set map

f ∗ : hom(Y , Z) → hom(X, Z)

is a weak equivalence if the map f is a local weak equivalence of simplicial
presheaves.

Example 5.17 Suppose that U is an object of the underlying site C and that there
is a simplicial object V• in C, together with a map V• → U which represents a local
weak equivalence of simplicial presheaves.

Such things arise, for example, as Čech resolutions associated to covering mor-
phisms V → U in sites C which have all finite products. More generally the map
V• → U could be a representable hypercover.

If the simplicial presheaf Z is injective fibrant, then the induced simplicial set
map

hom(U , Z) → hom(V•, Z)

is a weak equivalence.
In general, if X is a simplicial presheaf, then there is an isomorphism of simplicial

sets

hom(U , X) ∼= X(U )

since U is simplicially discrete and representable.
Suppose that X is a presheaf of Kan complexes, and let j : X → Z be an

injective fibrant model. By methods of Bousfield and Kan [14], the function complex
hom(V•, X) is naturally the homotopy inverse limit of the cosimplicial space

n �→ hom(Vn, X) = X(Vn).

Injective fibrant objects are also presheaves of Kan complexes, and it follows that
there is a commutative diagram of simplicial set maps

X(U ) ��

j

��

hom(V•, X)

j∗
��

�� 
 �� holim←−−− n X(Vn)

j∗
��

Z(U ) 

�� hom(V•, Z) ��



�� holim←−−− n Z(Vn)

The vertical maps in the diagram are weak equivalences if X satisfies descent, and
so there is a weak equivalence

X(U ) 
 holim←−−− n X(Vn)

in that case. We would then have a means of computing homotopy groups or the
homotopy type of X(U ) from patching data, using the spaces X(Vn). The device
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which is commonly used for computing homotopy groups is the Bousfield–Kan
spectral sequence for a cosimplicial space.

The existence of a weak equivalence

X(U ) 
 holim←−−− n X(Vn)

in the presence of a representable hypercover is an abstraction of the original meaning
of cohomological descent.

The assertion that X satisfies descent in the sense that any injective fibrant model
X → Z is a sectionwise equivalence is much stronger than such cohomological
descent statements.

Example 5.18 Suppose that L/k is a finite Galois extension of fields with Galois
group G. The Čech resolution associated to the covering Sp (L) → Sp (k) on the
étale site et |k for the field k has the form

EG ×G Sp (L) → ∗
as a map of simplicial simplicial sheaves, as in Example 4.17. Recall that the Borel
construction EG ×G Sp (L) is specified in simplicial degree n by the sheaf

(EG ×G Sp (L))n =
⊔

(g1,g2,...,gn

Sp (L).

Suppose that X is a presheaf of Kan complexes X on et |k . The space

hom(EG ×G Sp (L), X)

is the homotopy fixed point space for the action of the group G on the space X(L),
in the sense that there is an isomorphism

holim←−−− G X(L) ∼= hom(EG ×G Sp (L), X).

The Bousfield–Kan spectral sequence for the cosimplicial space

n �→ hom((EG ×G Sp (L))nX) ∼=
∏

g1,g2,...,gn

X(L)

is the homotopy fixed points spectral sequence.
If the simplicial presheaf X satsifies descent for the étale topology on the field k,

then the canonical map

X(k) → holim←−−− G X(L)

is a weak equivalence of simplicial sets, because this is certainly true if X is injective
fibrant.

The problem of determining whether or not the map

X(k) → holim←−−− G X(L)
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is a weak equivalence is called, variously, the finite Galois descent problem or the
homotopy fixed points problem for the simplicial presheaf X.

The existence of solutions to finite descent problems for a simplicial presheaf X

over all finite separable extensions L/k does not imply that X satisfies étale descent
over the field k [69].

Étale descent for fields is often called Galois descent, or Galois cohomological
descent, for the usual reason that the étale and Galois cohomology theories coincide
for all fields.

If U is an object of the Grothendieck site C, recall that the category C/U of inherits
a topology for which a collection of morphisms Vi → V → U is covering for the
object V → U if and only if the morphisms Vi → V cover the object V of C.

For a presheaf F on the site C, recall that the restriction F |U is the composite

(C/U )op
qop−→ (C)op

F−→ Set,

where q : C/U → C is the canonical functor which takes an object V → U to V .
Observe that F |U is a sheaf if F is a sheaf.

If φ : U → U ′ is a morphism of C, then the diagram of functors

C/U
q

����
���

�

φ∗

��
C

C/U ′ q

		







commutes, and so a morphism E|U ′ → F |U ′ restricts to a morphism E|U → F |U
by composition with φ∗.

It follows that there is a presheaf Hom(E, F ) on the site C with

Hom(E, F )(U ) = hom(E|U , F |U ).

The presheaf Hom(E, F ) is a sheaf if E and F are sheaves.
The standard exponential law, applied sectionwise, implies that there is an

adjunction isomorphism

hom(A, Hom(E, F )) ∼= hom(A × E, F ) (5.3)

for all presheaves A. It follows that a map E|U → F |U can be identified with a
presheaf map E ×U → F , where U is identified notationally with the representable
presheaf U = hom( , U ). We can therefore write

Hom(E, F )(U ) = hom(E × U , F ) (5.4)

for all objects U of C and all presheaves E and F .
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If X and Y are simplicial presheaves on C, then the internal function complex
Hom(X, Y ) is the simplicial presheaf whose U -sections are defined in terms of the
function complex on C/U by the assignment

Hom(X, Y )(U ) = hom(X × U , Y ).

There is a corresponding exponential law, meaning an isomorphism

hom(A, Hom(X, Y )) ∼= hom(X × A, Y )

which is natural in simplicial presheaves A, X and Y . This is a consequence of the
identifications

hom(U × Δn, Hom(X, Y )) ∼= Hom(X, Y )(U )n = hom(X × U × Δn, Y ),

and the fact that every simplicial presheaf A is a colimit of objects U × Δn.
The statement of Corollary 4.41 amounts to the existence of an enriched simplicial

model structure on the category sPre(C). The following is an equivalent formulation:

Corollary 5.19 Suppose that p : X → Y is an injective fibration and that i :
A → B is a cofibration of simplicial presheaves. Then the induced map of simplicial
presheaves

Hom(B, X) → Hom(A, X) ×Hom(A,Y ) Hom(A, X)

is an injective fibration which is a local weak equivalence if either i or p is a local
weak equivalence.

We close this section by observing that right properness for local fibrations and
local weak equivalences (Lemma 4.37) has the following useful interpretation within
the injective model structure:

Lemma 5.20 Suppose given a pullback diagram

Z ×Y X ��

��

X

π

��
Z �� Y

in which the map π is a local fibration of simplicial presheaves. Then, the diagram
is homotopy cartesian for the injective model structure on the simplicial presheaf
category sPre(C).

Proof Choose a factorization

X
j

��

π 















 W

q

��
Y
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in the category of simplicial presheaves, such that q is an injective fibration, and
j is a cofibration and a local weak equivalence. The map q is a local fibration by
Lemma 5.12, and then j defines a local weak equivalence between local fibrations.
The induced map j∗ : Z ×Y X → Z ×Y W is a local weak equivalence by Corollary
4.38.

5.3 Geometric and Site Morphisms

Suppose that π : Shv(C) → Shv(D) is a geometric morphism. Then, the inverse
image and direct image functors for π induce adjoint functors

π∗ : sShv(D) � sShv(C) : π∗

between the respective categories of simplicial sheaves.

Lemma 5.21 Suppose that π : Shv(C) → Shv(D) is a geometric morphism. Then
the inverse image functor

π∗ : sShv(D) → sShv(C)

preserves cofibrations and local weak equivalences.

Proof The functor π∗ is exact, and therefore preserves cofibrations since every
monomorphism is an equalizer (Lemma 3.14).

The functor π∗ commutes with the sheaf theoretic Ex∞-functor, up to natural
isomorphism. It therefore suffices to show that π∗ preserves local weak equivalences
between locally fibrant objects. If g : X → Y is a local weak equivalence between
locally fibrant simplicial sheaves, then g has a factorization

X
j

��

g ���
��

��
��

Z

p

��
Y

such that p is a local trivial fibration and the map j is a section of a local trivial fibra-
tion, by Lemma 5.1. The inverse image functor π∗ preserves local trivial fibrations,
by exactness, so that π∗(g) is a local weak equivalence of sShv(C).

Corollary 5.22 Suppose that π : Shv(C) → Shv(D) is a geometric morphism.
Then the adjoint functors

π∗ : sShv(D) � sShv(C) : π∗

form a Quillen adjunction for the injective model structures on the respective cate-
gories of simplicial sheaves. In particular if X is an injective fibrant simplicial sheaf
on C, then its direct image π∗X is injective fibrant.
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Suppose that C and D are Grothendieck sites. Any functor f : C → D induces a
functor

f∗ : Pre(D) → Pre(C)

of presheaf categories, by precomposition with the induced functor f : Cop → Dop.
The functor f∗ has a left adjoint

f p : Pre(C) → Pre(D)

which is the left Kan extension of f∗. Explicitly,

f p(F )(d) = lim−→
d→f (c)

F (c),

where the colimit is defined on the slice category d/f .
Following SGA4 [2, IV.5.9], a site morphism is a functor f : C → D such that

1) the functor f∗ is continuous in the sense that it preserves sheaves, and
2) the functor f p is exact in the sense that it preserves finite colimits.

Every site morphism f : C → D induces a geometric morphism

f : Shv(D) → Shv(C)

with direct image f∗ defined by precomposition with f as above, and with inverse
image f ∗ defined by

f ∗(F ) = L2(f p(F ))

for sheaves F .

Lemma 5.23 Suppose that the functor f : C → D is a site morphism. Then the
inverse image functor

f p : sPre(C) → sPre(D)

preserves cofibrations and local weak equivalences.

Proof The proof is similar to that of Lemma 5.21. Every monomorphism of sPre(C)
is an equalizer and f p preserves equalizers, so that f p preserves monomorphisms.
The functor f p preserves local weak equivalences, since the inverse image functor
f ∗ preserves local weak equivalences of simplicial sheaves by Lemma 5.21.

Corollary 5.24 Suppose that the functor f : C → D is a site morphism. Then the
adjoint functors

f p : sPre(C) � sPre(D) : f∗
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form a Quillen adjunction for the respective injective model structures. In particular,
the functor f∗ preserves injective fibrant objects.

The assertion that the direct image functor f∗ preserves injective fibrant objects
first appeared in [52], with essentially the same proof.

Recall that the forgetful functor q : C/U → C is defined on objects by

q(V
φ−→U ) = V.

This functor is continuous for the topology on C/U which is inherited from the site
C, but it is not necessarily a site morphism. We nevertheless have the following useful
result:

Lemma 5.25 Suppose that C is a Grothendieck site and that U is an object of C.
Then the functor

qp : sPre(C/U ) → sPre(C)

preserves cofibrations and local weak equivalences.

Proof The functor qp is defined, for a simplicial presheaf X on C/U , by

qp(X)(V ) =
⊔

φ:V →U

X(φ)

for V ∈ C. This functor plainly preserves cofibrations.
Suppose that p : X → Y is a locally trivial fibration on C/U and that there is a

commutative diagram

∂Δn ��

��

qpX(V )

p∗
��

Δn �� qpY (V )

The Δn is connected for all n ≥ 0, so that there is a factorization of this diagram

∂Δn ��

��

X(φ)

p

��

inφ
�� �φ:V →U X(φ)

p∗
��

Δn �� Y (φ)
inφ

�� �φ:V →U Y (φ)

for some map φ : V → U , where inφ is the inclusion of the summand corresponding
to the map φ. There is a covering

Vi
��

φi ���
��

��
��

V

φ

��
U
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of φ such that the liftings exist in the diagrams

∂Δn ��

��

X(φ) �� X(φi)

p

��
Δn ��

��

Y (φ) �� Y (φi).

It follows that the liftings exist in the diagrams

∂Δn

��

�� qpX(V ) �� qpX(Vi)

p∗
��

Δn ��

$$

qpY (V ) �� qpY (Vi)

after refinement along the covering Vi → V .
The functor qp therefore preserves local trivial fibrations. It also commutes up

to isomorphism with the Ex∞ functor. It follows from Lemma 5.1 that qp preserves
local weak equivalences.

Corollary 5.26 Suppose that C is a Grothendieck site, U is an object of C and that
q : C/U → C is the forgetful functor. Then the adjoint functors

qp : sPre(C/U ) � sPre(C) : q∗

define a Quillen adjunction for the respective injective model structures. In particular,
the restriction functor

X �→ q∗(X) = X|U
preserves injective fibrant objects.

The presheaf-level restriction functor

q∗ : Pre(C) → Pre(C/U )

is exact (preserves limits and colimits) and preserves local epimorphisms. It follows
that the functor

q∗ : sPre(C) → sPre(C/U )

commutes with the Ex∞ functor up to natural isomorphism and preserves local
fibrations and local trivial fibrations. In particular, the restriction functor q∗ preserves
local weak equivalences, by Lemma 5.1. We also have the following:

Lemma 5.27 A map f : X → Y is a local fibration (respectively local trivial
fibration, respectively, local weak equivalence) if and only if the restrictions f |U :
X|U → Y |U are local fibrations (respectively, local trivial fibrations, respectively,
local weak equivalences) for all objects U ∈ C.
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Proof A map F → G of presheaves on C is a local epimorphism if and only if the
restrictions F |U → G|U are local epimorphisms on C/U for all U ∈ C. The claims
about local fibrations and local trivial fibrations follow immediately. One proves the
claim about local weak equivalences with another appeal to Lemma 5.1.

Example 5.28 The ideas of this section occur frequently in examples.
Suppose that φ : T → S is a morphism of schemes which is locally of finite type.

Then φ occurs as an object of the big étale site (Sch|S)et . Pullback along the scheme
homomorphism φ determines a site morphism

φ : (Sch|S)et → (Sch|T )et .

One can identify the site (Sch|T )et with the slice category (Sch|S)et /φ, and the
presheaf-level inverse image functor

φp : Pre((Sch|S)et ) → Pre((Sch|T )et )

(i.e. the left adjoint of composition with the pullback functor) is isomorphic to
the restriction functor which is induced by composition with φ. It follows from
Corollary 5.26 that the functor

φp : sPre((Sch|S)et ) → sPre((Sch|T )et )

preserves injective fibrations. This functor also preserves local weak equivalences
since it is an inverse image functor for a site morphism. The restriction functor φp

therefore preserves injective fibrant models.
The inclusion i : et |T ⊂ (Sch|T )et of the étale site in the big étale site is a

site morphism for each S-scheme T . Restriction to et |T is exact and preserves
local epimorphisms for presheaves on (Sch|T )et , and it therefore preserves local
weak equivalences. This restriction functor also preserves injective fibrations, by
Corollary 5.24, and therefore preserves injective fibrant models.

It follows that composite restriction functors

sPre((Sch|S)et
φp−→ sPre((Sch|T )et

i∗−→ sPre((et |T ))

preserve local weak equivalences and injective fibrations for all S-schemes φ : T →
S. These functors are exact and commute with the Ex∞ construction. Taken together,
these functors reflect local epimorphisms. Thus, a simplicial presheaf map X → Y

on the big étale site for S is a local weak equivalence if and only if the induced map
i∗φp(X) → i∗φp(Y ) is a local weak equivalence on the ordinary étale site et |T for
each S-scheme φ : T → S.

The foregoing is only a paradigm. Similar arguments and results are available
for the flat, Zariski and Nisnevich topologies (for example), and for variations of
the big site such as the smooth site. These results are very useful for cohomology
calculations.

We close this section with a general result (Proposition 5.29) about simplicial
objects S in a site C; this result is effectively a nonabelian version of a cohomology
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isomorphism which is given by Lemma 8.34 below. In colloquial terms, this result
asserts that cohomological invariants for such an object S can be computed either in
simplicial presheaves on C, or in simplicial presheaves on a site C/S which is fibred
over S. The latter is the usual setting for the classical approach to the cohomology
of simplicial schemes [26].

Suppose that S is a simplicial object in the site C. The site C/S fibred over S has
for objects all morphisms U → Sn, and for morphisms all commutative diagrams

U
φ

��

��

V

��
Sn

θ∗
�� Sm

(5.5)

where θ∗ is a simplicial structure map. The covering families of the site C are the
families

Ui

φi ��

��

U

��
Sn

1
�� Sn

where the family Ui → U is covering for U in C.
There is a simplicial object 1S in C/Y , with n-simplices given by the identity

1 : Sn → Sn, and with the diagrams

Sn

θ∗
��

1
��

Sm

1
��

Sn
θ∗

�� Sm

as structure maps. This simplicial object represents a simplicial presheaf on C/S,
which will also be denoted by 1S .

There is a functor q : C/S → C which takes the morphism (5.5) to the morphism
φ : U → V of C. Composition with q defines a restriction functor

q∗ : sPre(C) → sPre(C/S),

and we write

X|S = q∗(X)
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for simplicial presheaves X on C.
There are obvious inclusions jn : C/Sn → C/S which induce restriction functors

jn∗ : sPre(C/S) → sPre(C/Sn)

by precomposition. The composite

C/Sn

jn−→ C/S
q−→ C

is an instance of the forgetful functor C/Sn → C (see Lemma 5.25). We shall denote
this composite functor by qn.

Precomposition with jn defines a restriction functor

jn∗ : sPre(C/S) → sPre(C/Sn).

The restriction functor jn∗ has a left adjoint

jp
n : sPre(C/Sn) → sPre(C/S)

which is defined for a simplicial presheaf X by

jp
n (X)(U

φ−→ Sm) =
⊔

n
θ−→m

X(U
φ−→ Sm

θ∗−→ Sn).

This functor j
p
n preserves cofibrations. The functors j

p
n and jn∗ both commute with

the Ex∞ functor and preserve local trivial fibrations, and therefore both preserve
local weak equivalences. It follows that the functors jn∗ preserve injective fibrant
models.

We also conclude that a map f : X → Y of simplicial presheaves on C/S is a
local weak equivalence if and only if the restrictions jn∗f : jn∗X → jn∗Y are local
weak equivalences on C/Sn for all n.

Proposition 5.29 Suppose that S is a simplicial object in a site C and that Z

is an injective fibrant simplicial presheaf on C. Choose an injective fibrant model
j : Z|S → W on C/S. Then there is a weak equivalence of simplicial sets

hom(S, Z) 
 hom(∗, W ).

This weak equivalence is natural in the map j : Z|S → W .

Proof There is an isomorphism

1S(U → Sm) ∼= Δm

of simplicial sets. It follows that the map 1S → ∗ is a sectionwise weak equivalence
on C/S.

The restricted object Z|S satisfies descent. In effect, the restricted map

j∗ : jn∗(Z|S) → jn∗(W )
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is a local weak equivalence of simplicial presheaves on C/Sn for all n ≥ 0. The
restriction jn∗(Z|S) = qn∗(Z) is injective fibrant on C/Sn for all n ≥ 0 by Lemma 5.25
and the discussion above. Local weak equivalences of injective fibrant objects are
sectionwise weak equivalences, and it follows that the maps

Z|S(φ) → W (φ)

are weak equivalences of simplicial sets for all objects φ : U → Sn of C/S.
It follows that the maps

Z|S(1Sn
) → W (1Sn

)

are weak equivalences for all n ≥ 0. There is an isomorphism

Z|S(1Sn
) ∼= Z(Sn)

of cosimplicial spaces. It follows from Lemma 5.30 below that there is a weak
equivalence

holim←−−− n Z|S(1Sn
) 
 hom(S, Z).

There are also weak equivalences

holim←−−− n Z|S(1Sn
)


−→ holim←−−− n W (1Sn
) 
 hom(1S , W )


←− hom(∗, W )

since W is injective fibrant on C/S and the map 1S → ∗ is a local weak equivalence.

If the following result looks familiar, it should. Lemma 5.30 generalizes the well-
known theorem of Bousfield–Kan [14] which asserts that there is a natural weak
equivalence of simplicial sets

Tot X 
 holim←−−− n Xn

for all cosimplicial spaces X which are Bousfield–Kan fibrant. The main idea in the
proof of Lemma 5.30 is that, for a cosimplicial object S in the site C, the cosimplicial
space n �→ Z(Sn) is Bousfield–Kan fibrant if the simplicial presheaf Z is injective
fibrant.

Lemma 5.30 Suppose that the simplicial presheaf S is represented by a simplicial
object in the site C, and suppose that Z is an injective fibrant simplicial presheaf.
Then there is a weak equivalence

hom(S, Z) 
 holim←−−− n Z(Sn).

Proof Let Z(S) be the cosimplicial space with

Z(S)n = Z(Sn)

for n ≥ 0.
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We begin by carefully establishing an identification ((5.6) below) which is well-
known [14, X.3.2]. There is a natural bijection

hom (A, Z(S)) ∼= hom (A ⊗ S, Z)

relating morphisms of cosimplicial spaces to morphisms of simplicial presheaves.
Here, A ⊗ S is a coend in the sense that it is described by the coequalizer

⊔

θ :m→n

Am × Sn ⇒
⊔

n

An × Sn → A ⊗ S

in simplicial presheaves. Observe that the simplicial presheaf S also is a coend, in
that there is a coequalizer

⊔

θ :m→n

Δm × Sn ⇒
⊔

n

Δn × Sn → S,

so there is an isomorphism S ∼= Δ ⊗ S.
A cosimplicial space map Δ × Δn → Z(S) therefore corresponds uniquely to a

simplicial presheaf map

S × Δn ∼= (Δ ⊗ S) × Δn → Z,

and it follows that there is a natural isomorphism

Tot Z(S) ∼= hom(S, Z). (5.6)

The degenerate part DSn of the presheaf Sn is a subobject of Sn, and is defined by a
coequalizer

⊔

i<j

Sn−2 ⇒
⊔

i

Sn−1
s−→DSn,

where the map s is induced by the degeneracy si : Sn−1 → Sn on the summand
corresponding to i. The cofibration DSn ⊂ Sn induces a Kan fibration

Z(S)n ∼= hom(Sn, Z) → hom(DSn, Z) = Mn−1Z(S)

since Z is injective fibrant. The cosimplicial space Z(S) is therefore Bousfield–Kan
fibrant [14, X.4.6], and so the canonical map

Tot Z(S) → holim←−−− n Z(Sn)

is a weak equivalence of simplicial sets [14, XI.4.4].

Remark 5.31 The homotopy inverse limit for a cosimplicial space X can be defined
by

holim←−−− n X = lim←−
n

Z,

where j : X → Z is an injective fibrant model for X in the category of cosimplicial
spaces, or diagrams in spaces indexed on the ordinal number category. This follows
from the fact that every injective fibrant cosimplicial space is Bousfield–Kan fibrant.
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5.4 Descent Theorems

Recall from Sect. 5.2 that a simplicial presheaf X satisfies descent if some (hence
any) injective fibrant model j : X → Z for X is a sectionwise weak equivalence.

One can, more concretely, ask for a set of criteria for objects S of the underlying
site such that the induced simplicial set map

j : X(S) → Z(S) (5.7)

is a weak equivalence for all such objects S.
Injective fibrant models do not have explicit constructions. Thus, if one can find a

set of geometric criteria for a simplicial presheaf X and a set of objects S (particularly
schemes, in applications) such that maps of the form (5.7) are weak equivalences,
then one has probably found a major result. This result would then be called a descent
theorem. The outcome of a descent theorem is that one then has available the tools
of sheaf cohomology theory for calculating the homotopy groups of the space X(S).

Variants on this theme are possible, and do occur: one could, for example, ask for
criteria on S such that the induced homomorphisms

j∗ : πpX(S) → πpZ(S)

in homotopy groups are isomorphisms for p sufficiently large.
Two fundamental descent theorems are proved in this section. These are the

Brown–Gersten descent theorem (Theorem 5.33) for the Zariski topology [17], and
the Morel–Voevodsky descent theorem (Theorem 5.39) for the Nisnevich topology
[82]. The latter depends on the former, and is often called “Nisnevich descent”. A
special case of this result was first proved, with a different method, by Nisnevich for
algebraic K-theory with torsion coefficients [83].

The other major early descent statement from K-theory is Thomason’s descent
theorem for Bott periodic algebraic K-theory [99]. The proof of this result involved
the first application of Nisnevich descent outside of Nisnevich’s original paper. Nis-
nevich descent has since become a central feature of motivic homotopy theory [82,
57]. See also [56].

Before the advent of motivic homotopy theory, most attempts to compute algebraic
K-groups by cohomological methods focused on descent questions for the étale
topology, and usually involved trying to prove special cases of the Lichtenbaum–
Quillen conjecture.

The Lichtenbaum–Quillen conjecture, subject to suitable niceness hypotheses on
a scheme S (including finite dimension d), says that if � is a prime which is distinct
from the residue characteristics of S and K/� → Z is a stably fibrant model for the
mod � K-theory presheaf of spectra (see Sect. 10.1), then the induced map

πpK/�(S) → πpZ(S)

in stable homotopy groups is an isomorphism for p ≥ d−1. The stably fibrant model
Z is alternatively called the étale K-theory presheaf of spectra, and is often denoted
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by K/�et . This conjecture, which was the main open problem of its time in algebraic
K-theory, has been discussed at length in the literature—see, for example, [56] and
[99]. The Lichtenbaum–Quillen conjecture is now known to be a consequence of the
Bloch–Kato conjecture [96].

All topological versions of the traditional algebraic K-theory presheaf of spectra
are constructed in this way: start with a variant of the K-theory presheaf of spectra
on a category of schemes or varieties [68], call it K , and then find a stably fibrant
model K → Z for the presheaf of spectra K relative to some topology T, as in
Chap. 10 below. The stably fibrant object

KT := Z

is the “T” K-theory presheaf of spectra. Thus, one speaks of Zariski K-theory,
Nisnevich K-theory, and étale K-theory, according to the topology.

More generally, one can take any simplicial presheaf or presheaf of spectra E,
and take a fibrant model E → ET of E with respect to the topology T, to obtain the
T-topologized version ET of the presheaf E.

We begin with the results of Brown and Gersten for the Zariski topology.

Theorem 5.32 Suppose that S is a Noetherian scheme of finite dimension. Suppose
that X is a simplicial presheaf on the small Zariski site Zar|S such that

1) the space X(∅) is contractible
2) all stalks Xx of X are contractible
3) the diagram

X(U ∪ V ) ��

��

X(U )

��
X(V ) �� X(U ∩ V )

is homotopy cartesian for each pair of open subsets U , V of S.

Then all spaces X(U ) are contractible.

Proof We first show thatX(U ) is nonempty for all openU ⊂ S, under the assumption
that X(U ) is contractible if X(U ) �= ∅.

Suppose that X(U ) = ∅ and pick a maximal open subset V such that X(V ) �=
∅. Such a V exists because all stalks are contractible, hence nonempty, and S is
Noetherian. Pick an element x ∈ U −V . Then x has an open neighbourhood W ⊂ U

such that X(W ) �= ∅. But then the diagram

X(V ∪ W ) ��

��

X(W )

��
X(V ) �� X(V ∩ W )
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is homotopy cartesian, and it follows that X(V ∪ W ) is nonempty. In effect, either
V ∩ W is empty or this is a contradiction to the maximality of V , and so X(U ) �= ∅.

Given α ∈ πkX(U ) there is a maximal open subset V ⊂ U such that α �→ 0 ∈
πkX(V ). If U − V �= ∅ there is a point x ∈ U − V . Pick a data set (α, U , V , x)
which meets these conditions and such that the point x has maximal dimension.

There is an open neighbourhood x ∈ W such that α �→ 0 ∈ πkX(W ) since all
stalks are contractible. From the exact sequence

πk+1X(V ∩ W )
∂−→πkX(V ∪ W ) → πkX(V ) ⊕ πkX(W ),

there is a β ∈ πk+1(V ∩ W ) such that ∂(β) is the restriction of α to V ∪ W .
There is a maximal subset V ′ ⊂ V ∩ W such that β �→ 0 ∈ πk+1X(V ′).
The closure x of the point x is an irreducible component of U −V ′, for otherwise

there is a point y ∈ U − V ′ with corresponding data set (β, U ∩ V , V ′, y) such that
dim (y) > dim (x), contradicting the maximality of the dimension of x.

There is a decomposition

U − V ′ = x ∪ C1 ∪ · · · ∪ Ck

as irreducible components. Write

F = C1 ∪ · · · ∪ Ck.

Then x ∩ V = ∅ by construction, so that

(V ∩ W ) − V ′ ⊂ (U − V ′) ∩ V ⊂ F ,

and it follows that

V ′ ⊂ V ∩ (W − F ) ⊂ V ∩ (U − F ) ⊂ V ′,

and so V ′ = V ∩ (W − F ).
Finally, x ∈ W − F �= ∅, for otherwise x ∈ F and x = Ci for some i. Then

α �→ 0 ∈ πkX(V ∪ (W − F )),

by comparing exact sequences, and this contradicts the maximality of V if U −V �=
∅. Thus, U = V and α = 0 ∈ πkX(U ).

The following result is the Brown–Gersten descent theorem:

Theorem 5.33 Suppose that X is a simplicial presheaf on the Zariski site Zar|S
such that

1) the map X(∅) → ∗ is a weak equivalence, and
2) the diagram

X(U ∪ V ) ��

��

X(U )

��
X(V ) �� X(U ∩ V )



5.4 Descent Theorems 119

which is associated to each pair of open subsets U , V of S is homotopy cartesian.

Let j : X → Z be an injective fibrant model for the Zariski topology. Then j is a
sectionwise equivalence.

Proof It suffices to show that the induced map j : X(S) → Z(S) is a weak equiv-
alence. The map X(U ) → Z(U ) is global sections of the restriction of j |U to the
Zariski site Zar|U , for all open subschemes U ⊂ S, and the restricted map j |U is an
injective fibrant model—see Example 5.28.

We shall also assume that the simplicial set Z(S) is nonempty. Otherwise, if Z(S)
is empty, then so is X(S) and the map X(S) → Z(S) is a weak equivalence.

Following Proposition 2.22, choose a factorization

X
i ��

j ���
��

��
��

Y

p

��
Z

such that i is a sectionwise equivalence and p is a sectionwise Kan fibration. Then, the
simplicial presheaf Y satisfies conditions 1) and 2) of the statement of the Theorem,
and the local weak equivalence p : Y → Z is an injective fibrant model for the
simplicial presheaf Y .

Suppose that x ∈ Z(S) is a vertex of Z(S), and form the pullback diagram

Fx
��

��

Y

p

��
∗

x

�� Z

in simplicial presheaves. Then, the simplicial presheaf Fx satisfies the conditions of
Theorem 5.32, and is therefore sectionwise contractible.

The map Fx(∅) is contractible since Y (∅) is contractible and Z(∅) is contractible.
For the latter claim, use the fact that Z is sectionwise equivalent to an injective fibrant
simplicial sheaf (Theorem 5.9, Corollary 5.13).

The map Fx(S) → ∗ is a weak equivalence, so that the simplicial set Fx(S) is
nonempty, and the vertex x lifts to Y (S). This is true for all vertices of Z(S), so the
induced map π0Y (S) → π0Z(S) is surjective.

All fibres Fp(y) associated to all vertices y ∈ Y (S) are sectionwise contractible. It
follows that the map π0Y (S) → π0Z(S) is injective, and that all homomorphisms

πn(Y (S), y) → πn(Z(S), p(y))

are isomorphisms.



120 5 Local Model Structures

Suppose that T → S is an étale morphism. An elementary distinguished square
is a pullback diagram in (et |S)Nis

φ−1(U ) ��

��

V

φ

��
U

j

�� T

(5.8)

such that j is an open immersion, the morphism φ is is étale, and such that the
induced morphism

φ−1(T − U ) → T − U

of closed subschemes (with reduced structure) is an isomorphism.

Example 5.34 If U and V are open subschemes of T , then the diagram of inclusions

U ∩ V ��

��

V

��
U �� U ∪ V

is an elementary distinguished square.

Example 5.35 Suppose that x ∈ T is a closed point of T , and suppose that the map
φ : U → T is an étale morphism which has finite fibres. Suppose also that there is
a section

U

φ

��
Sp (k(x))

x

��

y
��$$$$$$$$$
T

over the residue field k(x) of x. The set-theoretic fibre φ−1(x) is a finite set of closed
points, of the form

φ−1(x) = {y, y1, . . . , yk}.
Let V be the open subset U − {y1, . . . , yk} of U , and let φ also denote the restriction
of φ to V . Then there is a diagram

V

φ

��
Sp (k(x))

x

��

y

��$$$$$$$$$
T
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The map φ induces an isomorphism

Sp (k(y)) ∼= Sp (k(x)),

and Sp (k(y)) is the reduced closed fibre of φ : V → T over the closed subscheme
Sp (k(x)) of T . Let U be the open subscheme T −{x} of T , with inclusion j : U ⊂ T .
It follows that the pullback diagram

φ−1(U ) ��

��

V

φ

��
U

j

�� T

is an elementary distinguished square.

Every elementary distinguished square defines a Nisnevich cover {j : U ⊂ T , φ :
V → T } of T , because every residue field map Sp (k(x)) → T for T factors through
one of the two maps φ and j .

Following [82], say that a simplicial presheaf X on the Nisnevich site (et |S)Nis

has the BG-property if

1) the space X(∅) is contractible, and
2) the simplicial presheaf X takes elementary distinguished squares (5.8) to

homotopy cartesian diagrams

X(T )
j∗

��

φ∗

��

X(U )

��
X(V ) �� X(φ−1(U ))

of simplicial sets.

If the simplicial presheaf X has the BG-property and U , V are open subschemes of
a scheme T is étale over S, then the diagram

X(U ∪ V ) ��

��

X(V )

��
X(U ) �� X(U ∩ V )

is homotopy cartesian, so that the restriction of X to the Zariski site Zar|T satisfies
the conditions of for Brown-Gersten descent (Theorem 5.33).

Lemma 5.36 Suppose that Z is an injective fibrant simplicial presheaf on the
Nisnevich site (et |S)Nis . Then Z has the BG-property.
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Proof Every open immersion j : U → T is a cofibration of simplicial presheaves,
and all induced inclusions

(U × Δn) ∪ (T × Λn
k ) ⊂ T × Δn

are trivial cofibrations. It follows that the map j ∗ : Z(T ) → Z(U ) is a Kan fibration.
The square (5.8) is a pushout in the category of sheaves (and simplicial sheaves)

on et |S)Nis . Thus, if Z′ is an injective fibrant simplicial sheaf, then the diagram of
simplicial set maps

Z′(T )
j∗

��

φ∗

��

Z′(U )

��
Z′(V ) �� Z′(φ−1(U ))

is a pullback in which both horizontal maps are Kan fibrations, and is therefore
homotopy cartesian.

There is a local weak equivalence η : Z → Z′ such that Z′ is an injective
fibrant simplicial sheaf (Theorem 5.9). The map η is a sectionwise weak equivalence
by Corollary 5.13, and the property of taking elementary distinguished squares to
homotopy cartesian diagrams is an invariant of sectionwise equivalence.

The map η induces a weak equivalence

Z(∅) → Z′(∅) ∼= ∗
of simplicial sets, by assumption.

Here is the analogue of Theorem 5.32 for the Nisnevich topology:

Theorem 5.37 Suppose that S is a Noetherian scheme of finite dimension. Suppose
that X is a simplicial presheaf on the Nisnevich site (et |S)Nis such that

1) X has the BG-property, and
2) the map X → ∗ is a local weak equivalence for the Nisnevich topology.

Then the map X(S) → ∗ is a weak equivalence of simplicial sets.

Proof We prove this result by showing that all Zariski stalks of X on S are
contractible. We then invoke Theorem 5.33.

Write Ox for the local ring Ox,S of x ∈ S, and let x : Sp (Ox) → S be the
canonical map. Let xp be the left adjoint of the direct image functor

x∗ : Pre(et |Sp (Ox ))Nis → Pre(et |S)Nis .

The simplicial set

X(Ox) := xpX(Ox)
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is the Zariski stalk of X at the point x. The functor xp preserves local weak
equivalences for the Nisnevich topology, since it is defined by a site morphism
(Corollary 5.24).

It is a consequence of Lemma 5.38 below that the simplicial presheaf xpX satisfies
the BG-property on the site (et |Sp (Ox ))Nis .

Suppose that the point x has dimension 0, so that Ox is an Artinian local ring.
The functor

U �→ U ×Sp (Ox ) Sp (k(x))

defines an equivalence of categories

et |Sp (Ox ) → et |Sp (k)

(see [79, I.3.23]). Every diagram

U

φ

��
Sp (k(x)) ��

�������������
Sp (Ox)

with φ étale therefore determines a section σ : Sp (Ox) → U of the map φ. It
follows that the global sections functor Y �→ Y (Ox) for simplicial presheaves Y on
et |Sp (Ox ) takes sheaf epimorphisms for the Nisnevich topology to surjections, and
hence is exact. The functor Y �→ Y (Ox) therefore takes local weak equivalences for
the Nisnevich topology on et |Sp (Ox ) to weak equivalences of simplicial sets.

In particular, the simplicial set X(Ox) = xp(Ox) is contractible for points x of
dimension 0.

We show by induction on the dimension of x ∈ S that X(Ox) is contractible for
all points x of S. Take an element x ∈ S and assume that X(Oy) is contractible for
all points y (in all étale S-schemes) of smaller dimension.

Write x for the closed point of Sp (Ox), and suppose given an element α ∈
πkX(Ox). Then α is 0 locally for the Nisnevich topology, so that, following the
prescription of Example 5.35, there is an étale morphism φ : V → Sp (Ox) with a
diagram

V ×Sp (Ox ) Sp (k(x)) ��

∼=
��

V

φ

��
Sp (k(x))

x

�� Sp (Ox)

such that φ∗(α) = 0 in πkx
pX(V ). The simplicial set xpX(V ) is nonempty, since the

simplicial presheaf xpX has contractible (hence nonempty) stalks for the Nisnevich
topology.
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Write U = Sp (Ox) − {x}. Then all points of U and all points of φ−1(U ) have di-
mension smaller than that of x, and the simplicial presheaf xpX has the BG-property.
Brown–Gersten descent (Theorem 5.32) and the inductive assumption together im-
ply that the spaces xpX(U ) and xpX(φ−1(U )) are contractible. It follows that the
map

φ∗ : X(Ox) = xpX(Ox) → xpX(V )

is a weak equivalence, but then α = 0 in πkX(Ox).
All homotopy groups and the set of path components of X(Ox) are therefore trivial

if the space X(Ox). The simplicial set X(Ox) is also nonempty, and it follows that
X(Ox) is weakly equivalent to a point.

Lemma 5.38 Suppose that the simplicial presheaf X on (et |S)Nis has the BG-
property, and let Ox be the local ring of x ∈ S with canonical map x : Sp (Ox) → S.
Then, the inverse image xpX on the site (et |Sp (Ox ))Nis has the BG-property.

Proof Suppose that the morphism f : T → Sp (Ox) is étale. Then, there is an open
affine neighbourhood U of x in S and a U -scheme f ′ : T ′ → U which is étale,
along with an isomorphism of Ox-schemes

T ∼= Sp (Ox) ×U T ′

If f is an open immersion (respectively closed immersion), then the “thickening” f ′
can be chosen to have the same property. In particular, if φ : V → Sp (Ox) is étale
and has étale thickening φ′ : V ′ → U over an open neighbourhood U , then there is
an isomorphism

xpX(V ) = lim−→
x∈W⊂U

X(W ×U V ′),

where W varies over the open neighbourhoods of x which are contained in U .
It follows that every elementary distinguished square

φ−1(U ) ��

��

V

φ

��
U

j

�� T

over Sp (Ox) has a thickening

(φ′)−1(U ′) ��

��

V ′

φ′

��
U ′

j ′
�� T ′
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which is defined over some affine open neighbourhood of x in S, and that the diagram

xpX(T ) ��

��

xpX(U )

��
xpX(V ) �� xpX(φ−1(U ))

(5.9)

is a filtered colimit of homotopy cartesian diagrams

X(T ′) ��

��

X(U ′)

��
X(V ′) �� X(φ′−1(U ′))

The diagram (5.9) is therefore homotopy cartesian.
The space xpX(∅) is isomorphic to the space X(∅), and is therefore contractible.

The following result is the Morel–Voevodsky descent theorem [82, Prop. 1.16]. It
is the analogue for the Nisnevich topology of Theorem 5.33 and has the same proof,
in the presence of Theorem 5.37. It is also, commonly, called the Nisnevich descent
theorem.

Theorem 5.39 Suppose that S is a Noetherian scheme of finite dimension. Suppose
that X is a simplicial presheaf on the Nisnevich site (et |S)Nis which satisfies the
BG-property, and let j : X → Z be an injective fibrant model for the Nisnevich
topology. Then, the induced map X(S) → Z(S) is a weak equivalence of simplicial
sets.

Proof The map j can be replaced up to sectionwise weak equivalence by a sec-
tionwise Kan fibration p : Y → Z. It suffices to show that the induced map
p : Y (S) → Z(S) in global sections is a weak equivalence of simplicial sets. We can
assume that the simplicial set Z(S) is nonempty.

The fibres Fx of the map p over all global vertices x ∈ Z(S) satisfy the conditions
of Theorem 5.37, and are therefore sectionwise equivalent to a point. It follows that
the map π0Y (S) → π0Z(S) is a bijection, and all homomorphisms πn(Y (S), y) →
πn(Z(S), p(y)) are isomorphisms.

Corollary 5.40 Suppose that S is a Noetherian scheme of finite dimension. Suppose
that f : X → Y is a local weak equivalence of simplicial presheaves on the Nisnevich
site (et |S)Nis), and that X and Y have the BG-property. Then, the induced map
f : X(S) → Y (S) is a weak equivalence of simplicial sets.

Corollary 5.40 is equivalent to Theorem 5.39, via Corollary 5.13 and Lemma
5.36.
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5.5 Intermediate Model Structures

Throughout this section, suppose that M is a model structure on the category sPre(C)
of simplicial presheaves on C for which the cofibrations are the monomorphisms.
Suppose that every local weak equivalence is a weak equivalence of M. Every object
is cofibrant in the model structure M, so that M is a left proper model structure.

The class of weak equivalences of M is closed under products with simplicial
sets. In effect, if f : X → Y is a weak equivalence of M then each induced map

f × 1 : X × Δn → Y × Δn

is locally equivalent and hence weakly equivalent to f in M, and is therefore a weak
equivalence of M. It follows by an induction on skeleta (which involves the left
properness of M) that the map

f × 1 : X × K → Y × K

is a weak equivalence of M for each simplicial set K .
The standard function complex construction hom(X, Y ) therefore gives M the

structure of a simplicial model category.
Recall, from Proposition 2.22, that there is a projective model structure on the

category sPre(C) of simplicial presheaves, for which the fibrations are sectionwise
Kan fibrations and the weak equivalences are sectionwise weak equivalences.

The cofibrations for this theory are the projective cofibrations, and this class of
maps has a generating set S0 consisting of all maps LU (∂Δn) → LU (Δn), n ≥ 0,
U ∈ C. The functor LU is the left adjoint of the U -sections functor X �→ X(U ) from
simplicial presheaves to simplicial sets.

Write CP for the class of projective cofibrations, and write C for the full class
of cofibrations, which are the simplicial presheaf monomorphisms. Every projective
cofibration is a cofibration, so there is a relation CP ⊂ C.

Let S be any set of cofibrations which contains S0. Let CS be the saturation of the
set of all cofibrations of the form

(B × ∂Δn) ∪ (A × Δn) ⊂ B × Δn

which are induced by members A → B of the set S. Say that CS is the class of
S-cofibrations.

An S-fibration is a map p : X → Y of simplicial presheaves which has the right
lifting property with respect to all S-cofibrations which are weak equivalences of M.
Observe that every fibration of M is an S-fibration.

Theorem 5.41 Let M be a model structure on the category sPre(C) of simpli-
cial presheaves for which the cofibrations are the monomorphisms, and suppose
that every local weak equivalence is a weak equivalence of M. Then, the category
sPre(C), together with the classes of S-cofibrations, weak equivalences of M, and
S-fibrations, satisfies the axioms for a left proper closed simplicial model category.
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Proof The axioms CM1, CM2 and CM3 are easily verified.
Any map f : X → Y has a factorization

X
j

��

f ���
��

��
��

Z

p

��
Y

where j ∈ CS and p has the right lifting property with respect to all members of
CS . Then p is an S-fibration and is a sectionwise weak equivalence. The map p is
therefore a weak equivalence of M.

The map f also has a factorization

X
i ��

f 















 W

q

��
Y

for which q is a fibration of M and i is a trivial cofibration of M. Then q is an
S-fibration. Factorize the map i as i = p · j where j ∈ CS and p is an S-fibration
and a weak equivalence of M (as above). Then j is a weak equivalence of M, so
f = (qp) ·j factorizes f as an S-fibration following a map which is an S-cofibration
and a weak equivalence of M.

We have therefore proved the factorization axiom CM5.
It is an exercise to prove CM4. One shows that if p : X → Y is an S-fibration

and a weak equivalence of M, then p is a retract of a map which has the right lifting
property with respect to all S-cofibrations.

Suppose that j : K → L is a cofibration of simplicial sets. The collection of all
cofibrations i : C → D of simplicial presheaves such that the induced map

(D × K) ∪ (C × L) → D × L (5.10)

is an S-cofibration is saturated, and contains all generators

(B × ∂Δn) ∪ (A × Δn) ⊂ B × Δn

of the class CS . It follows that the map (5.10) is an S-cofibration if i : C → D is an S-
cofibration. This map is a weak equivalence of M if either i is a weak equivalence of
M or j is a weak equivalence of simplicial sets. The model structure of the statement
of the theorem is therefore a simplicial model structure, with the standard function
complex.

The left properness of this model structure is a consequence of the left properness
for the ambient model category M.
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Example 5.42 The case S = S0 for Theorem 5.41, and where M is the injective
model structure on sPre(C), gives the projective local model structure of Blander [9]
for simplicial presheaves on C.

If M is still the injective model structure on sPre(C), but the set of cofibrations
S is allowed to vary, then Theorem 5.41 gives the intermediate model structures for
simplicial presheaves of [64].

All intermediate model structures are right proper, because all S-fibrations are
local fibrations and pullbacks of local weak equivalences along local fibrations are
local weak equivalences by Lemma 4.37.

Suppose that a simplicial presheaf X is fibrant (ie. S-fibrant) for one of the in-
termediate model structures, and suppose that j : X → Z is an injective fibrant
model for X. Then Z is S-fibrant, and j is a weak equivalence of S-fibrant objects.
The closed simplicial model structure and the properness of the S-structure together
guarantee (via the classical replacement of a map by a fibration) that the map j

can be replaced up to sectionwise weak equivalence by a trivial S-fibration. Trivial
S-fibrations are sectionwise equivalences, so that the map j is a sectionwise weak
equivalence.

In other words, all simplicial presheaves X which are fibrant for one of the
intermediate model structures satisfy descent in the sense of Sect. 5.2.

Example 5.43 Let (Sm/T )Nis be the Nisnevich site of smooth schemes over a
scheme T , and let M be the motivic model structure on the category of simplicial
presheaves on this site (see Example 7.20 below). The case S = S0 of Theorem 5.41
for the motivic model structure gives the projective motivic model structure for
sPre((Sm|T )Nis)—see also [89], [105] and [106]. Theorem 5.41 also gives a large
collection of other motivic model structures which are intermediate between the
projective and standard motivic model structures.

Similar considerations apply to all localizations of injective model structures on
all categories of simplicial presheaves, as in Theorem 7.18 below. There is always a
projective version of such a model structure, and a class of intermediate structures
between the given localized structure and its corresponding projective structure.

The model structure of Theorem 5.41 is cofibrantly generated, under an extra
assumption on the model structure M that is satisfied in the usual examples. This
was proved for the original intermediate model structures of Example 5.42 by Beke
[6], whose method was to verify a solution set condition. Beke’s argument can be
deconstructed (as in [64]) to give a basic and useful trick for verifying cofibrant
generation in the presence of some kind of cardinality calculus. That trick is reprised
here, in the proof of Lemma 5.44 below.

The proof of Lemma 5.44 requires the assumption that the model structure M
satisfies a bounded monomorphism condition. This means that there is a set A of
objects of M (which is closed under subobjects and quotients) such that the following
condition holds:
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Given a diagram

X

i

��
A

j

�� Y

such that i and j are monomorphisms, i is an M-trivial cofibration and A is in A,
there is a subobject B of Y which contains A, such that B is in A and the induced
map B ∩ X → B is a weak equivalence of M.

The bounded monomorphism property for the injective model structure is verified
in Lemma 5.2. In that case, A is the set of α-bounded objects, where α is a regular
cardinal which is bigger than | Mor (C)|.

The use of a cardinality bound to define a set A which appears in a bounded
monomorphism statement is standard practice.

Choose a regular cardinal α such that α > | Mor (C)|, and that |D| < α for
all members C → D of the set of cofibrations generating CS . Let A be the set of
α-bounded simplicial presheaves.

Suppose that u : A → B is a trivial cofibration of M with B in the set A. Then u
has a factorization

A
ju ��

u ��!
!!

!!
!!

C

pu

��
B

such that ju is an S-cofibration, pu is an S-fibration and both maps are weak equiva-
lences of M. Write I for the set of all S-cofibrations ju which are constructed in this
way.

Lemma 5.44 Suppose that, in addition to the assumption of Theorem 5.41, the
model structure M on the category sPre(C) has the bounded monomorphism property.
Then, the members of the set I generate the class of trivial S-cofibrations, and the
S-model structure is cofibrantly generated.

Proof Suppose given a commutative diagram

A ��

i

��

X

f

��
B �� Y
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such that i is a member of CS with B in A, and such that f is a weak equivalence of
M. Then, since B is in A, this diagram has a factorization

A ��

i

��

C

j

��

�� X

f

��
B �� D �� Y

where j is a member of the set of S-cofibrations I .
In effect, by factorizing f = p · u, where u is an trivial cofibration and q is a

trivial fibration of M, we can assume that f is an M-trivial cofibration. The bounded
monomorphism property then implies that there is a factorization

A ��

i

��

E

u

��

�� X

f

��
B �� F �� Y

as above with u a trivial cofibration with B in A. The object F is an extension of
the image of B in Y , which image is in A since A is closed under quotients. Use the
factorization u = puju displayed above. Then pu is a trivial S-fibration and therefore
has the right lifting property with respect to i, and ju is the desired member of the
set I .

Every trivial S-cofibration j : A′ → B ′ has a factorization

A′ β
��

j 














C ′

q

��
B ′

such that β is an S-cofibration in the saturation of the set I and q has the right lifting
property with respect to all members of I . Then q is also a weak equivalence of M,
and therefore has the right lifting property with respect to all members of the class CS

of S-cofibrations by the previous paragraph, since all generators of CS have targets
in the set A. It follows that the lifting problem

A′ β
��

j

��

C ′

q

��
B ′

1
��





B ′

has a solution, so that j is a retract of β.

The argument for Lemma 5.44 is useful in multiple contexts. It reappears, for
example, in the proof of Lemma 7.3 below.
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5.6 Postnikov Sections and n-Types

Recall [32, p. 172] that the nth Postnikov section PnX for a simplicial set X is defined
by PnX = X/ ∼, where two simplices α, β : Δk → X are related if they restrict to
the same map on the subcomplex skn Δk . In more categorical terms, the set PnXm

is the coequalizer of the kernel pair defined by the function Xm → coskn Xm.
It is an exercise to verify the following statements, under the assumption that X

is a Kan complex:

1) the canonical map π : X → PnX is a Kan fibration and PnX is a Kan complex
2) the induced maps π0X → π0(PnX) and all maps πk(X, x) → πk(PnX, x) k ≤ n,

are isomorphisms
3) there are isomorphisms πk(PnX, x) = 0 for k > n

The functor X �→ PnX preserves weak equivalences of Kan complexes X, but must
be derived in general. For an arbitrary simplicial set Y , define PnY by setting

PnY := Pn Ex∞ Y.

The composite

Y

−→ Ex∞ Y

π−→Pn Ex∞ Y = PnY

defines a natural map η : Y → PnY . The object PnY is the nth derived Postnikov
section of the simplicial set Y .

The definitions of the functor Y → PnY and the natural map η : Y → PnY extend
to a functor X �→ PnX and a natural map η : X → PnX, respectively, for simplicial
presheaves X on a site C: the object PnX is defined in sections by

(PnX)(U ) := Pn(X(U ))

for objects U of the underlying site, and the simplicial presheaf map η : X → PnX

is the simplicial set map η in sections.
A map f : X → Y of simplicial presheaves is said to be an local n-equivalence

if the map PnX → PnY is a local weak equivalence. A simplicial presheaf X is an
n-type if the canonical map η : X → PnX is a local weak equivalence.

Remark 5.45 The definition of n-type given here specializes to the usual notion
of n-type in classical homotopy theory, but the description of n-equivalence is non-
standard: the usual definition says that a map f : X → Y is an n-equivalence if all
homotopy fibres of f are n-connected. We shall depart from tradition and use the
above definition of n-equivalence in all contexts, even for simplicial sets. Explicitly,
a map f : X → Y of simplicial sets is an n-equivalence if the map PnX → PnY is
a weak equivalence.
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Lemma 5.46

1) If X is a locally fibrant simplicial presheaf on C, then the natural weak equivalence
X → Ex∞ X induces a local weak equivalence

PnX

−→ PnX.

2) The functor X �→ PnX preserves local weak equivalences of simplicial
presheaves X.

Proof Suppose that p : Shv(B) → Shv(C) is a Boolean localization.
The associated sheaf map X → L2X induces a map PnX → PnL

2X of simplicial
presheaves which induces an isomorphism of simplicial sheaves

L2PnX
∼=−→ L2PnL

2X (5.11)

on account of the kernel pair description of PnX. Similarly, there is a natural
isomorphism

L2Pnp
∗Y ∼= p∗L2PnY (5.12)

of simplicial sheaves on B, for all simplicial sheaves Y on C.
To prove statement 1), first suppose that Z is a locally fibrant simplicial sheaf,

and observe that the composite local weak equivalence

Z → Ex∞ Z → L2 Ex∞ Z

of locally fibrant simplicial sheaves induces a sectionwise weak equivalence

L2Pnp
∗Z 
−→ L2Pnp

∗L2 Ex∞ Z,

which map is isomorphic to the map

p∗L2PnZ → p∗L2Pn Ex∞ Z

via the natural isomorphisms (5.11) and (5.12). It follows that the simplicial presheaf
map

PnZ → Pn Ex∞ Z

is a local weak equivalence.
Suppose that X is a locally fibrant simplicial presheaf. The vertical maps in the

diagram

PnX ��

��

Pn Ex∞ X

��
PnL

2X 

�� Pn Ex∞ L2X
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induce isomorphisms on associated sheaves by (5.11), and the indicated map is a
local weak equivalence since L2X is a locally fibrant simplicial sheaf. It follows that
the map

PnX → Pn Ex∞ X

is a local weak equivalence
For statement 2), it is enough to assume, by statement 1), that f : X → Y is

a local weak equivalence of locally fibrant simplicial presheaves and show that the
induced map PnX → PnY is a local weak equivalence. The associated sheaf map
X → L2X induces an isomorphism L2PnX ∼= L2PnL

2X, by (5.11), so it is enough
to assume that X and Y are locally fibrant simplicial sheaves, and then show that the
induced map L2PnX → L2PnY is a local weak equivalence. But then the induced
map p∗L2PnX → p∗L2PnY is isomorphic to the map L2Pnp

∗X → L2Pnp
∗Y by

(5.12), and the map p∗X → p∗Y is a sectionwise weak equivalence of sheaves of
Kan complexes, so that Pnp

∗X → Pnp
∗Y is a sectionwise equivalence of presheaves

of Kan complexes, and the desired result follows.

Lemma 5.47 Suppose given a pullback diagram

A
α ��

��

X

p

��
B

β

�� Y

(5.13)

in the simplicial presheaf category sPre(C) such that p is a local fibration. Suppose
that Y is an n-type and that the map β is a local n-equivalence. Then the map α is a
local n-equivalence.

Proof First of all, suppose that sPre(C) is the category of simplicial sets. We can
assume that all objects in the diagram (5.13) are Kan complexes and that p is a Kan
fibration. One shows that the function π0A → π0X is surjective. The homotopy
fibres of the map α are homotopy fibres of the map β, and are therefore n-connected
since Y is an n-type. It follows that α is an n-equivalence.

In the more general setting of simplicial presheaves, we can assume that all
objects in the diagram are locally fibrant simplicial sheaves by Lemma 5.46. In
that case, the map α : A → X is a local n-equivalence if and only if the map
α∗ : L2PnA → L2PnX is a local weak equivalence, and this holds if and only
if p∗A → p∗B is an n-equivalence, where p : Shv(B) → Shv(C) is a Boolean
localization. Further, Y is an n-type if and only if p∗Y is an n-type. We can therefore
assume that the diagram (5.12) is in the category of sheaves of Kan complexes on
a complete Boolean algebra B. But then α is a sectionwise n-equivalence by the
simplicial sets case.

Lemma 5.48 The simplicial presheaf PnX is an n-type and the map η : X → PnX

is a local n-equivalence, for all simplicial presheaves X.
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Proof If Y is a Kan complex, it is well known that PnY is an n-type and that
the map Y → PnY is an n-equivalence (in the sense of Remark 5.45). These two
statements mean, respectively, that the natural maps η, Pnη : PnY → PnPnY are
weak equivalences.

In the diagram

X ��

��

Ex∞ X ��

��

Pn Ex∞ X



��

Ex∞ X ��

��

Ex∞ Ex∞ X ��

��

Ex∞ Pn Ex∞ X

η

��
Pn Ex∞ X 


�� Pn Ex∞ Ex∞ X
Pn Ex∞ η

�� Pn Ex∞ Pn Ex∞ X

the indicated maps are sectionwise weak equivalences of presheaves of Kan com-
plexes. The map η is sectionwise weakly equivalent to the map η : Pn Ex∞ X →
PnPn Ex∞ X, and is therefore a sectionwise weak equivalence. The map Pn Ex∞ η

is sectionwise weakly equivalent to the map P nη : Pn Ex∞ X → PnPn Ex∞ X, and
is therefore a sectionwise weak equivalence. The vertical composite on the right is
η : PnX → PnPnX and the bottom horizontal composite is Pnη. Both maps are
sectionwise hence local weak equivalences, and so the Lemma is proved.

To summarize, the functor Pn : sPre(C) → sPre(C) satisfies the following
axioms:

A4 The functor Pn preserves local weak equivalences.
A5 The maps η, Pn(η) : PnY → PnPnY are local weak equivalences.
A6 Suppose given a pullback diagram

A
α ��

��

X

p

��
B

β

�� Y

in simplicial presheaves with p an injective fibration. Suppose that the maps
η : Y → PnY , η : X → PnX and β∗ : PnB → PnY are local weak equivalen-
ces. Then the map α∗ : PnA → PnX is a local weak equivalence.

The statement A4 is part of Lemma 5.46, A6 is a consequence of Lemma 5.47, and
A5 is a restatement of Lemma 5.48.

An n-fibration in sPre(C) is a map which has the right lifting property with respect
to all cofibrations which are local n-equivalences. Then we have the following:
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Theorem 5.49

1) The category sPre(C) of simplicial presheaves, together with the classes of cofi-
brations, local n-equivalences and n-fibrations, satisfies the axioms for a proper
closed simplicial model category.

2) A map p : X → Y is an n-fibration if and only if it is an injective fibration and
the diagram

X
η

��

p

��

PnX

p∗
��

Y
η

�� PnY

is homotopy cartesian for the injective model structure on simplicial presheaves.

This result is due to Biedermann [8]. With the statements A4, A5 and A6 in place,
it is a formal consequence of a result of Bousfield [12]. Bousfield’s proof uses a
refinement of the Bousfield–Friedlander localization technique [13], which was used
in their description of the stable homotopy category. The proof of Theorem 5.49 is
outlined here.

Proof [Proof of Theorem 5.49] We verify the existence of the model structure, prove
statement 2), and then verify right properness. The model structure is easily seen to
be left proper, because every object is cofibrant.

One shows first that p : X → Y is an n-fibration and a local n-equivalence if
and only if p is a trivial injective fibration of simplicial presheaves. In effect, every
map which is an n-fibration and a local n-equivalence is a retract of a trivial injective
fibration.

The next step is to show that if p : X → Y is an injective fibration such that the
maps η : X → PnX and η : Y → PnY are local weak equivalences, then p is an
n-fibration. Suppose given a lifting problem

A

j

��

�� X

p

��
B ��

��

Y

(5.14)

where j is a cofibration and a local n-equivalence. Form the diagram

X∗

η∗
��

�� X

η

��
PnA

i

�� VX
p

�� PnX
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in which p is an injective fibration, i is a trivial cofibration, p · i is the map
PnA → PnX, and the square is a pullback. Then, the map η∗ is a local weak
equivalence by properness for the injective model structure. This construction can
be made functorially, to produce a local weak equivalence X∗ → Y∗ which gives a
factorization

A ��

j

��

X∗ ��

��

X

p

��
B �� Y∗ �� Y

of the diagram (5.14). Then, the desired lift exists, by factoring the map X∗ → Y∗
as a trivial cofibration followed by a trivial injective fibration.

If the map f : PnX → PnY has a factorization

PnX
i ��

f∗ ""%
%%

%%
%%

%
U

p

��
PnY

where i is a trivial cofibration and p is an injective fibration, then the map η : U →
PnU is a weak equivalence, so that p is an n-fibration by the previous paragraph.
Pull such a factorization of f∗ back along the diagram

X
η

��

f

��

PnX

f∗
��

Y
η

�� PnY

to show that f has a factorization f = q · j where j is a cofibration and an n-
equivalence and q is an n-fibration.

This gives the model structure. Explicitly, q = p∗ · θ , where p∗ is the pullback
of p, and the map θ : X → Y ×PnY PnX is factored θ = π · j where π is a trivial
injective fibration. The map θ is an n-equivalence by A6, so the cofibration j is an
n-equivalence.

For statement 2), if p is an injective fibration and the indicated diagram is ho-
motopy cartesian, then p is a retract of an n-fibration which is constructed by the
methods above.
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For the converse, one shows that every n-fibration p is a retract of an n-fibration
q for which the diagram is homotopy cartesian.

To verify right properness, suppose given a pullback diagram

A ×Y X
f∗ ��

��

X

p

��
A

f

�� Y

such that p is an n-fibration and f is a local n-equivalence. Then the composite
square

A ×Y X
f∗ ��

��

X

p

��

η
�� PnX

p∗
��

A
f

�� Y
η

�� PnY

is homotopy cartesian, and so the composite

A ×Y X
f∗−→ X

η−→ PnX

is a local n-equivalence by Lemma 5.47.
The simplicial structure is given by the standard function complex construction.

One shows that if i : A → B is a cofibration of simplicial presheaves and j : C → D

are cofibrations of simplicial presheaves, then the cofibration

(B × C) ∪ (A × D) → B × D

is a local n-equivalence if either i or j is a local n-equivalence. To prove this, observe
that the map i × 1 : A × C → B × C is a local n-equivalence for all simplicial
presheaves C if i is a local n-equivalence, since the functor Pn preserves finite
products.

The model structure of Theorem 5.49 is the n-equivalence model structure for
simplicial presheaves.

Lemma 5.50 The n-equivalence model structure on the category sPre(C) of
simplicial presheaves is cofibrantly generated.

Proof We begin by proving a bounded cofibration statement for localn-equivalences.
To this end, observe that the functor Pn preserves cofibrations, filtered colimits and
regular cardinal bounds. Suppose that α is a regular cardinal such that α > | Mor (C)|.
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Suppose given a cofibration i : X → Y which is a local n-equivalence and an
α-bounded subobject A of Y . Then, in the induced diagram

PnX

i∗
��

PnA �� PnY

all maps are cofibrations, the object PnA is α-bounded, and the map i∗ is a local
weak equivalence. By Lemma 5.2, there is an α-bounded subobject B1 ⊂ PnY with
PnA ⊂ B1 and such that the map B1 ∩ PnX → B1 is a local weak equivalence.
Since Pn preserves filtered colimits, there is an α-bounded subobject A1 of Y such
that A ⊂ A1, B1 ⊂ PnA1, and B1 ∩ PnX ⊂ Pn(A1 ∩ X).

Continue inductively to find a sequence of α-bounded subobjects A1 ⊂ A2 ⊂ . . .

of Y and B1 ⊂ B2 ⊂ . . . of PnY , such that Bi ⊂ PnAi , Bi ∩ PnX ⊂ Pn(Ai ∩ X),
PnAi ⊂ Bi+1, and the maps Bi ∩ PnX → Bi are local weak equivalences. Then the
map Pn( lim−→ Ai ∩ X) → Pn( lim−→ Ai) is isomorphic to the map lim−→ (Bi ∩ PnX) →
lim−→ Bi , which is a local weak equivalence.

Let C = lim−→ Ai . Then C is α-bounded, A ⊂ C ⊂ Y and the induced map
C ∩ X → Y is an n-equivalence.

It follows that the α-bounded cofibrations which are local n-equivalences generate
the class of all trivial cofibrations for the n-equivalence model structure.

We already know that the α-bounded cofibrations generate the class of all
cofibrations, from the proof of Theorem 5.8.



Chapter 6
Cocycles

Classically, cocycles come in two major flavours:

Example 6.1 Suppose that T is a topological space and G is a topological group.
Then G represents a sheaf of groups G on the site op|T , by defining G(U ) for an
open subset U ⊂ T to be the set hom (U , G) of continuous maps U → G.

Suppose that Uα ⊂ T is an open cover of T , and let

U = �α Uα → T

be the resulting covering map. The corresponding Čech resolution C(U ) is
represented by the simplicial space

�α Uα �α,β Uα ∩ Uβ���� �α,β,γ Uα ∩ Uβ ∩ Uγ��
���� . . . ,

where the displayed face maps correspond to inclusions Uα ∩ Uβ ⊂ Uα , Uβ and the
inclusions of Uα ∩ Uβ ∩ Uγ into three double intersections Uα ∩ Uβ , Uα ∩ Uγ and
Uβ ∩ Uγ .

A map C(U ) → BG of simplicial sheaves on the site op|T , by the representability
of C(U ), is therefore defined by a set of elements gα,β ∈ G(Uα ∩ Uβ) such that

a) gα,α = e in the group G(Uα) for all α, and
b) the restrictions of the elements gα,β , gβ,γ and gα,γ to the group G(Uα ∩ Uβ ∩ Uγ )

satisfy

gα,γ = gα,β · gβ,γ .

In other words, a simplicial sheaf map C(U ) → BG can be identified with a
normalized cocycle in G, which is defined with respect to the covering Uα ⊂ T .

There is nothing special about the fact that G is a topological group—G could be
an arbitrary sheaf of groups on the site op|T in the above.

A normalized cocycle in a sheaf of groupsH that is defined with respect to a Zariski
open covering Uα ⊂ S of a scheme S can be similarly represented as morphism of
simplicial sheaves C(U ) → BH on the Zariski site Zar|S of the scheme S, by the
same argument.

© Springer-Verlag New York 2015 139
J. F. Jardine, Local Homotopy Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4939-2300-7_6
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Example 6.2 Suppose that L/k is a finite Galois extension of the field k, with Galois
group G. Suppose that H is a sheaf of groups on the étale site et |k of the field. Of
course, the sheaf of groups H could be represented by an algebraic group.

The Čech resolution corresponding to the étale covering Sp (L) → Sp (k) can be
rewritten as a Borel construction EG×G Sp (L) in the category of simplicial sheaves
on et |k (see Example 4.17), which is representable by a simplicial scheme

Sp (L) �g∈G Sp (L)���� �(g1,g2)∈G×G Sp (L).��
����

In this case, the face map d0 : �g Sp (L) → Sp (L) is the map g : Sp (L) → Sp (L)
defined by the action of g on the summand corresponding to g, and the face map d1 :
�g Sp (L) → Sp (L) is the fold map ∇, meaning the map which restricts to the identity
on Sp (L) on all summands. The face maps d0, d1, d2 : �(g1,g2) Sp (L) → �g Sp (L)
are defined, respectively, on the summand corresponding to the pair (g1, g2) by the
composite

Sp (L)
g1−→ Sp (L)

ing2−−→ �g Sp (L),

the inclusion

ing2·g1 : Sp (L) → �g Sp (L),

of the summand corresponding to the product g2 · g1, and the inclusion

ing1 : Sp (L) → �g Sp (L),

on the summand corresponding to the pair (g1, g2).
It follows that a map

EG ×G Sp (L) → BH

of simplicial sheaves on et |k can be identified with a function σ : G → H (L) such
that

a) σ (e) = e in the group H (L), and
b) σ (g2 · g1) = g∗

1 (σ (g2)) · σ (g1).

The function σ is a normalized cocycle for the Galois group G with coefficients in
the sheaf of groups H .

The cocycles that are described in Examples 6.1 and 6.2 are special cases of a
diagram in simplicial sheaves (or simplicial presheaves) having the form

∗ 
←− U → Y , (6.1)

where the object U is acyclic in the sense that the terminal map U → ∗ is a local
weak equivalence. In effect, both cocycle constructions involve Čech resolutions
associated to covers V → ∗, and we know that all such covers determine local weak
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equivalences C(V ) → ∗ of simplicial presheaves—see Example 4.17. We can say
more: the maps C(V ) → ∗ which are associated to covers V → ∗ are hypercovers.

These examples, while standard, are a bit misleading for the present purposes,
since the point of departure for the theory of cocycles which is presented in this
chapter is that the map U → ∗ in the picture (6.1) is only required to be a local weak
equivalence.

More generally, suppose that X and Y are simplicial presheaves. We define a
cocycle from X to Y as a picture

X
f←−
 U

g−→Y (6.2)

in the simplicial presheaf category such that the map f is a local weak equivalence.
These are the objects of a cocycle category h(X, Y ), with morphisms defined by
refinement.

There is a function

φ : π0h(X, Y ) → [X, Y ]

that is defined on the set of path components of the category h(X, Y ) and takes values
in the set of morphisms from X to Y in the homotopy category Ho (sPre(C)). This
function is defined by sending the cocycle (6.2) to the induced morphism g · f −1

in the homotopy category. Then the category of simplicial presheaves (or simpli-
cial sheaves) is sufficiently well behaved that we can show that the function φ is a
bijection. This statement is a consequence of Theorem 6.5.

Theorem 6.5 gives a different picture of the construction of morphisms in the
homotopy categories for many model structures of practical interest and should be
viewed as a generalization of the Verdier hypercovering theorem.

The Verdier hypercovering theorem appears here as Theorem 6.12. This theorem
is a little stronger than the classical version of the theorem [16], which is a formal
result that holds for all categories of fibrant objects, and hence for locally fibrant
simplicial presheaves by Proposition 4.33. The classical result therefore requires the
use of pictures of the form (6.2) as input data, in which all objects are locally fibrant
and the map g is a hypercover or local trivial fibration. For Theorem 6.12, the only
requirement on the objects of (6.2) is that the target object Y should be locally fibrant.

Much of the utility of cocycle categories results from the fact that we do not
require assumptions about the objects and maps and maps that form a cocycle. There
is a model category theoretic version of Theorem 6.5 that says that the nerve of the
cocycle category h(X, Y ) is a model for the function space hom(X, Y ) if Y is fibrant—
this is a consequence of the Dwyer–Kan theory of hammock localizations [22]—but
that result has limited utility for injective model structures since injective fibrant
objects have such strong descent properties. One can, however, prove a hammock
localization statement for the cocycle category h(X, Y ) if Y is only assumed to be
locally fibrant, and this result appears as Corollary 6.19.

The Verdier hypercovering theorem is important historically, because the co-
homology theory of locally fibrant simplicial sheaves and its relation with sheaf
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cohomology can then be developed using only this result, as in [49]. One of the out-
comes is a theory of cup products in cohomology theories for arbitrary Grothendieck
toposes (such as sheaves on the flat site) that may not have enough points. There is,
however, a technical cost, in that serious use of the classical form of theVerdier hyper-
covering theorem often requires rather delicate formal manipulations of hypercovers
and their homotopy classes.

The generalized Verdier hypercovering statement given by Theorem 6.5 and the
theory of cocycle categories together form a much more flexible and even ubiquitous
device. This theory is a fundamental tool in the proofs of the results comprising
the cohomology theories for simplicial presheaves, abelian and non-abelian, which
appear in Chaps. 8 and 9 below. Cocycle categories are of particular use, in Chap. 9,
in the discussion of torsors, stacks and higher stacks, and in classification results for
gerbes.

6.1 Cocycle Categories

Let M be a closed model category such that

1) M is right proper in the sense that weak equivalences pull back to weak
equivalences along fibrations, and

2) the class of weak equivalences is closed under finite products: if f : X → Y is a
weak equivalence, so is any map f × 1 : X × Z → Y × Z.

Examples include all of the model structures on simplicial presheaves and simplicial
sheaves that we have seen so far, where the weak equivalences are local weak equiv-
alences. In effect, these model structures are proper by Theorems 5.8and 5.9, and the
observations of Example 5.42. The class of local weak equivalences is closed under
finite products by Corollary 4.40.

Suppose that X and Y are objects of M, and write h(X, Y ) for the category whose
objects are all pairs of maps (f , g)

X
f←−
 Z

g−→Y ,

where f is a weak equivalence. A morphism

γ : (f , g) → (f ′, g′)

of h(X, Y ) is a map γ : Z → Z′ which makes the diagram

Zf


%%








g

��&&
&&&

&

γ

��
X Y

Z′f ′


&&&&&&&&
g′

		������
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commute. The category h(X, Y ) is the category of cocycles, or cocycle category,
from X to Y . The objects of h(X, Y ) are called cocycles.

In general, write π0h(X, Y ) for the path components of the cocycle category
h(X, Y ), which is defined in the model category M. There is a function

φ : π0h(X, Y ) → [X, Y ],

which is defined by the assignment (f , g) �→ g · f −1, and where [X, Y ] denotes
morphisms from X to Y in the homotopy category Ho (M).

Lemma 6.3 Suppose that γ : X → X′ and ω : Y → Y ′ are weak equivalences.
Then the function

(γ , ω)∗ : π0h(X, Y ) → π0h(X′, Y ′)

is a bijection.

Proof An object (f , g) of h(X′, Y ′) is a map (f , g) : Z → X′ × Y ′ such that f is a
weak equivalence. There is a factorization

Z
j

��

(f ,g) ��"
""

""
""

""
W

(pX′ ,pY ′ )
��

X′ × Y ′

such that j is a trivial cofibration and (pX′ , pY ′ ) is a fibration. The map pX′ is a weak
equivalence. Form the pullback

W∗
(γ×ω)∗ ��

(p∗
X ,p∗

Y )

��

W

(pX′ ,pY ′ )
��

X × Y
γ×ω

�� X′ × Y ′

Then the map (p∗
X, p∗

Y ) is a fibration and (γ × ω)∗ is a local weak equivalence since
γ × ω is a weak equivalence, by right properness. The map p∗

X is also a weak
equivalence.

The assignment (f , g) �→ (p∗
X, p∗

Y ) defines a function

π0h(X′, Y ′) → π0h(X, Y ),

which is inverse to (γ , ω)∗.

Lemma 6.4 Suppose that the object X is cofibrant and Y is fibrant. Then the
function

φ : π0h(X, Y ) → [X, Y ]
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is a bijection.

Proof The function π (X, Y ) → [X, Y ] relating homotopy classes of maps X → Y

to morphisms in the homotopy category is a bijection since X is cofibrant and Y is
fibrant.

If f , g : X → Y are homotopic, there is a diagram

X
f

""%
%%

%%
%%

%%
1

####
##
##
##
#
d0

��
X X ⊗ I

s�� h �� Y

X

1

''%%%%%%%%% g

��#########
d1

��

where h is the homotopy. Thus, sending f : X → Y to the class of (1X, f ) defines
a function

ψ : π (X, Y ) → π0h(X, Y )

and there is a diagram

π (X, Y )
ψ

��

∼= ��&&
&&&

&&&
&&

π0h(X, Y )

φ

��
[X, Y ]

It suffices to show that ψ is surjective, or that any cocycle

X
f←−
 Z

g−→Y

is in the path component of a cocycle X
1←− X

α−→Y for some map α.
The weak equivalence f has a factorization

Z
j

��

f ���
��

��
��

V

p

��
X

where j is a trivial cofibration and p is a trivial fibration. The object Y is fibrant, so
the dotted arrow θ exists in the diagram

Zf

�����
���

g

����
���

�

j

��
X Y

V
p

((������
θ

��
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The object X is cofibrant, so the trivial fibration p has a section σ , and there is a
commutative diagram

X1

�����
���

θσ

����
���

�

σ

��
X Y

V
p

((������
θ

��������

The composite θσ is the required map α.

We now have the tools to prove the following result.

Theorem 6.5 Suppose that the model category M is right proper and that its class
of weak equivalences is closed under finite products. Suppose that X and Y are
objects of M. Then the function

φ : π0h(X, Y ) → [X, Y ]

is a bijection.

Proof There are weak equivalences π : X′ → X and j : Y → Y ′ such that X′ and
Y ′ are cofibrant and fibrant, respectively, and there is a commutative diagram

π0h(X, Y )
φ

��

(1,j )∗ ∼=
��

[X, Y ]

j∗∼=
��

π0h(X, Y ′)
φ

�� [X, Y ′]

π∗∼=
��

π0h(X′, Y ′)

(π ,1)∗ ∼=
��

φ

∼= �� [X′, Y ′]

The functions (1, j )∗ and (π , 1)∗ are bijections by Lemma 6.3, and the bottom map
φ is a bijection by Lemma 6.4.

Remark 6.6 Cocycle categories have appeared before, in the context of Dwyer–Kan
hammock localizations [20, 22]. One of the main results of the theory, which holds
for arbitrary model categories M, says roughly that the nerve Bh(X, Y ) is a model for
the function space of maps from X to Y if Y is fibrant. This result implies Theorem
6.5 if the target object Y is fibrant.

The statement of Theorem 6.5 must be interpreted with some care because the
cocycle category h(X, Y ) may not be small. The theorem says that two cocycles
are in the same path component in the sense that they are connected by a finite
string of morphisms of h(X, Y ) if and only if they represent the same morphism in
the homotopy category, and that every morphism in the homotopy category can be
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represented by a cocycle. Similar care is required for the interpretation of Lemmas
6.3 and 6.4 in general.

For simplicial presheaves and simplicial sheaves, we have the following alterna-
tive:

Proposition 6.7 Suppose that a simplicial presheaf X is α-bounded, where α is a
regular cardinal such that α > | Mor (C)| and C is the underlying site. Let h(X, Y )α
be the full subcategory of h(X, Y ) on those cocycles

X

←− U → Y

such that U is α-bounded . Then the induced function

π0h(X, Y )α → π0h(X, Y )

is a bijection.

The category h(X, Y )α in the statement of Proposition 6.7 is small. We can there-
fore the category of all cocycles by a small category of bounded cocycles, suitably
defined, for simplicial presheaf categories.

The proof of Proposition 6.7 uses the following technical lemmas:

Lemma 6.8 Suppose that i : A → B is a cofibration such that A is α-bounded.
Then there is an α-bounded subobject C ⊂ B with A ⊂ B such that all presheaf
maps π∗C → π∗B are monomorphisms.

Proof The simplicial presheaf Ex∞ B is a filtered colimit of simplicial presheaves
Ex∞ D, where D varies through the α-bounded subcomplexes of B. Any commuta-
tive diagram

∂Δn+1
(γ ,∗,...,∗)

��

��

Ex∞ A(U )

��

Δn+1 �� Ex∞ B(U )

therefore factors through Ex∞ D(U ), where D is an α-bounded subobject of B. Such
lifting problems are indexed on simplices γ of A which represent homotopy group
elements, so there is an α-bounded subcomplex A1 ⊂ B such that all diagrams
as above factor through A1. Repeat this process inductively to produce a string of
inclusions

A = A0 ⊂ A1 ⊂ A2 ⊂ . . .

of α-bounded subcomplexes of B. Then the subcomplex C = ⋃
i Ai is α-bounded,

and the presheaf maps π∗C(U ) → π∗B(U ) are monomorphisms.
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Lemma 6.9 Suppose given a diagram

X
g

��

h ���
��

��
��

Y

f

��
Z

of simplicial presheaf maps such that h is a local weak equivalence and the induced
maps f∗ : π̃nY → π̃nZ are monomorphisms of sheaves for n ≥ 0. Then the map f

is a local weak equivalence.

Proof The analogous claim for morphisms of Kan complexes is true. In that case,
we can suppose that f is a Kan fibration, and then we show that f has the right
lifting property with respect to all inclusions ∂Δn ⊂ Δn.

In general, we can assume that X, Y and Z are locally fibrant simplicial sheaves
and that f is a local fibration. Take a Boolean localization p : Shv(B) → Shv(C),
and observe that the induced diagram

p∗X
g∗ ��

h∗ ""%
%%

%%
%%

%
p∗Y

f∗
��

p∗Z

of simplicial sheaf maps on B is a map of diagrams of Kan complexes that satisfies
the conditions of the lemma in all sections.

Proof (Proof of Proposition 6.7) Suppose that

X
g←−
 U → Y

is a cocycle, and that X is α-bounded. The map g : U → Y has a factorization

U
i ��

g ���
��

��
��

Z

p

��
X

where i is a trivial cofibration and p is a trivial injective fibration. The map p has a
section σ : X → Z that is a trivial cofibration.

There is an α-bounded subobject X1 of Z that contains X such that the induced
map X1∩U → X1 is a local weak equivalence, by Lemma 5.2. There is an α-bounded
subobject X′

1 of Z which contains X1, and such that the cofibration X′
1 → Z is a

weak equivalence, by Lemmas 6.8 and 6.9.



148 6 Cocycles

Repeat these constructions inductively, to form a sequence of cofibrations

X ⊂ X1 ⊂ X′
1 ⊂ X2 ⊂ X′

2 ⊂ . . .

between α-bounded subobjects of X, and let A be the union of these subobjects.
Then, A is α-bounded, and the map A ⊂ Z is a weak equivalence, as is the map
A ∩ U → A. The induced map A ∩ U → U is also a weak equivalence, and is
therefore a trivial cofibration.

We have therefore found an α-bounded object B = A ∩ U together with a trivial
cofibration i : B → U . It follows that the function

π0h(X, Y )α → π0h(X, Y )

is surjective.
Suppose given a diagram

A

i
 ��
U

g


�����
���

θ

��

f

��''
''

''

X Y

U ′g′


��''''''
f ′

��������

A′
i′


��

where the maps i and i ′ are trivial cofibrations and the objects A and A′ are α-
bounded. Then the subobject θ (A) ⊂ U ′ is α-bounded, as is the union A′ ∪ θ (A).
By Lemma 6.8 (and Boolean localization), there is an α-bounded subobject B of U ′
with A′ ∪ θ (A) ⊂ B and such that B ⊂ U ′ is a weak equivalence. The cocycles
(gi, f i) and (g′i ′, f ′i ′) are therefore in the same path component of h(X, Y )α .

It follows that the function π0h(X, Y )α → π0h(X, Y ) is injective.

We shall also need the following result:

Proposition 6.10 Suppose that the simplicial presheaf X is α-bounded, where α

is a regular cardinal such that α > | Mor (C)|. Suppose that β is a regular cardinal
such that β > α. Then the inclusion functor j : h(X, Y )α ⊂ h(X, Y )β induces a
weak equivalence of simplicial sets

j∗ : Bh(X, Y )α 
 Bh(X, Y )β.

Proof Suppose that

X
f←−
 V

g−→Y
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is a cocycle such that V is β-bounded. We show that the slice category j/(f , g) has a
contractible nerve. The lemma then follows from Quillen’s Theorem B (or Theorem
A) [32, IV.4.6], [87].

The category j/(f , g) is isomorphic to the category weα/V whose objects are
the local weak equivalences θ : U → V with U α-bounded, and whose morphisms
θ → θ ′ are commutative diagrams

U ��

θ ))(
((

((
( U ′

θ ′
  ))
))
))
)

V

of simplicial presheaf morphisms. Write cofα/V for the full subcategory of weα/V

whose objects are the cofibrations, and let i : cofα/V ⊂ weα/V be the inclusion
functor.

The slice category θ/i is non-empty. In effect, the image θ (U ) of the weak
equivalence θ is an α-bounded subobject of V , θ (U ) and is contained in an α-bounded
subobject A of V such that π∗(A) → π∗(V ) is a monomorphism of presheaves by
Lemma 6.8, and then the inclusion A ⊂ V is a weak equivalence by Lemma 6.9.
The category θ/i is also filtered, again by Lemmas 6.8 and 6.9.

This is true for all θ : U → V in the category weα/V , so that the induced map

i∗ : B(cofα/V ) ⊂ B(weα/V )

is a weak equivalence.
Finally, the category cofα/V is non-empty filtered by Lemmas 6.8 and 6.9, and

it follows that the simplicial set B(weα/V ) is contractible.

Corollary 6.11 Suppose thatf : X → X′ is a local weak equivalence ofα-bounded
simplicial presheaves, where α is a regular cardinal such that α > | Mor (C)|. Sup-
pose that g : Y → Y ′ is a local weak equivalence. Then the induced simplicial set
map

(f , g)∗ : Bh(X, Y )α → Bh(X′, Y ′)α

is a weak equivalence.

Proof Following the proof of Lemma 6.3, suppose that (f , g) : Z → X′ × Y ′ is an
α-bounded cocycle, and take the functorial factorization

Z
j

��

(f ,g) ��"
""

""
""

""
W

p=(pX′ ,pY ′ )
��

X′ × Y ′
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such that j is a trivial cofibration and p is an injective fibration. Form the pullback
diagram

W∗
(γ×ω)∗ ��

(p∗
X ,p∗

Y )

��

W

(pX′ ,pY ′ )
��

X × Y
γ×ω

�� X′ × Y ′

as before. Then there is a regular cardinal β > α such that all objects in this diagram
are β-bounded, and the map (p∗

X, p∗
Y ) is a cocycle since the map (γ × ω)∗ is a local

weak equivalence. It follows that there is a homotopy commutative diagram

Bh(X, Y )α
(γ ,ω)∗ ��



��

B(X′, Y ′)α



��%%
















Bh(X, Y )β
(γ ,ω)∗

�� B(X′, Y ′)β

of simplicial set maps in which the vertical maps are weak equivalences by
Proposition 6.10. The statement of the corollary follows.

6.2 The Verdier Hypercovering Theorem

The discussion that follows will be confined to simplicial presheaves. All statements
of this section have exact analogues for simplicial sheaves, which the reader can state
and prove.

Recall that a hypercover p : Z → X is a locally trivial fibration. This means,
equivalently (Theorem 4.32), that p is a local fibration and a local weak equivalence,
or that p has the local right lifting property with respect to all inclusions ∂Δn ⊂ Δn,
n ≥ 0.

The objects of the category T riv/X are the naive simplicial homotopy classes
of maps [p] : Z → X which are represented by hypercovers p : Z → X. The
morphisms of this category are commutative triangles of simplicial homotopy classes
of maps in the obvious sense.

To be completely explicit, suppose that f , g : Z → X are simplicial presheaf mor-
phisms. A simplicial homotopy from f to g is a commutative diagram of simplicial
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presheaf maps

Z
f

��&&
&&&

&&&
&

d1
��

Z × Δ1 �� X

Z
g

�����������
d0

��

In the presence of such a diagram, we say that f and g are simplicially homotopic and
write f ∼ g. The set π (Z, X) is the effect of collapsing the morphism set hom (Z, X)
by the equivalence relation which is generated by the simplicial homotopy relation.
The set π (Z, X) is the set of simplicial homotopy classes of maps from Z to X.

Observe that the simplicial homotopy relation respects local weak equivalences,
in the sense that if f : Z → Y is a local weak equivalence and f ∼ g, then g is a
local weak equivalence.

There is a contravariant set-valued functor that takes an object [p] : Z → X of
T riv/X to the set π (Z, Y ) of simplicial homotopy classes of maps between Z and
Y . There is a function

φh : lim−→
[p]:Z→X

π (Z, Y ) → [X, Y ]

that is defined by sending the diagram of homotopy classes

X
[p]←− Z

[f ]−→ Y

to the morphism f · p−1 in the homotopy category.
The colimit

lim−→
[p]:Z→X

π (Z, Y )

is the set of path components of a category Hh(X, Y ) whose objects are the pictures
of simplicial homotopy classes

X
[p]←− Z

[f ]−→ Y ,

such that p : Z → X is a hypercover, and whose morphisms are the commutative
diagrams

Z[p]

%%








[f ]

��&&
&&&

&

[θ ]

��
X Y

Z′[p′]

&&&&&&&&
[f ′]

		������

(6.3)
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in homotopy classes of maps. The map φh therefore has the form

φh : π0Hh(X, Y ) → [X, Y ]

The following result is the Verdier hypercovering theorem:

Theorem 6.12 The function

φh : π0Hh(X, Y ) → [X, Y ]

is a bijection if the simplicial presheaf Y is locally fibrant.

Remark 6.13 Theorem 6.12 is a generalization of theVerdier hypercovering theorem
of [16, p. 425] and [49], in which X is required to be locally fibrant. The statement
of Theorem 6.12 first appeared in [82].

There are multiple variants of the category Hh(X, Y ):
1) Write H ′

h(X, Y ) for the category whose objects are pictures

X
p←− Z

[f ]−→ Y

where p is a hypercover and [f ] is a homotopy class of maps. The morphisms of
H ′

h(X, Y ) are diagrams

Zp

%%








[f ]

��&&
&&&

&

[θ ]

��
X Y

Z′p′

&&&&&&&&
[f ′]

		������

(6.4)

such that [θ ] is a fibrewise homotopy class of maps over x, and [f ′][θ ] = [f ] as
simplicial homotopy classes. There is a functor

ω : H ′
h(X, Y ) → Hh(X, Y )

that is defined by the assignment (p, [f ]) �→ ([p], [f ]), and which sends the
morphism (6.4) to the morphism (6.3).
2) Write H ′′

h (X, Y ) for the category whose objects are the pictures

X
p←− Z

[f ]−→ Y

where p is a hypercover and [f ] is a simplicial homotopy class of maps. The
morphisms of H ′′

h (X, Z) are commutative diagrams

x Zp

%%








θ

��
X

Z′p′

&&&&&&&&
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such that [f ′ · θ ] = [f ]. There is a canonical functor

H ′′
h (X, Y )

ω′−→ H ′
h(X, Y )

which is the identity on objects, and takes morphisms θ to their associated fibrewise
homotopy classes.
3) Let hhyp(X, Y ) be the full subcategory of h(X, Y ) whose objects are the cocycles

X
p←−
 Z

f−→Y

with p a hypercover. There is a functor

ω′′ : hhyp(X, Y ) → H ′′
h (X, Y )

that takes a cocycle (p, f ) to the object (p, [f ]).

Lemma 6.14 Suppose that the simplicial presheaf Y is locally fibrant. Then the
inclusion functor

i : hhyp(X, Y ) ⊂ h(X, Y )

is a homotopy equivalence of categories.

Proof Objects of the cocycle category h(X, Y ) can be identified with maps (g, f ) :
Z → X × Y such that the morphism g is a local weak equivalence, and morphisms
of h(X, Y ) are commutative triangles in the obvious way. Maps of the form (g, f )
have functorial factorizations

Z
j

��

(g,f ) ""%
%%

%%
%%

%%
V

(p,g′)
��

X × Y

(6.5)

such that j is a sectionwise trivial cofibration and (p, g′) is a sectionwise Kan fi-
bration. It follows that (p, g′) is a local fibration and the map p, or rather the
composite

Z
(p,g′)−−→ X × Y

pr−→ X,

is a local weak equivalence. The projection map pr is a local fibration since Y is
locally fibrant, so the map p is also a local fibration, and hence a hypercover.

It follows that the assignment (u, g) �→ (p, g′) defines a functor

ψ ′ : h(X, Y ) → hhyp(X, Y ).

The local weak equivalences j of (6.5) define natural maps 1 → ψ ′ · i and 1 → i ·ψ ′.
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Proof (Proof of Theorem 6.12) Write ψ for the composite functor

h(X, Y )
ψ ′−→ hhyp(X, Y )

ω′′−→ H ′′
h (X, Y )

ω′−→ H ′
h(X, Y )

ω−→Hh(X, Y ).

The composite function

π0h(X, Y )
ψ ′∗−→ π0hhyp(X, Y )

ω′′∗−→ π0H
′′
h (X, Y )

ω′∗−→ π0H
′
h(X, Y )

ω∗−→ π0Hh(X, Y )
φh−→ [X, Y ]

(6.6)

is the bijection φ of Theorem 6.5. The function ψ ′∗ is a bijection by Lemma 6.14,
and the functions ω′′∗ , ω′∗ and ω∗ are surjective, as is the function φh. It follows that
all of the functions that make up the string (6.6) are bijections.

The following corollary of the proof of Theorem 6.12 deserves independent
mention:

Corollary 6.15 Suppose that the simplicial presheaf Y is locally fibrant. Then the
induced functions

π0hhyp(X, Y )
ω′′∗−→ π0H

′′
h (X, Y )

ω′∗−→ π0H
′
h(X, Y )

ω∗−→ π0Hh(X, Y )

are bijections, and all of these sets are isomorphic to the set [X, Y ] of morphisms
X → Y in the homotopy category Ho (s/Pre(C)).

The bijections of the path component objects in the statement of Corollary 6.15
with the set [X, Y ] all represent specific variants of the Verdier hypercovering
theorem.

Remark 6.16 There is a relative version of Theorem 6.12 which holds for the model
structures on slice category A/sPre(C) which is induced from the injective model
structure. Recall that the objects of this category are the simplicial presheaf maps
x : A → X, and the morphisms f : x → y are the commutative diagrams

A

x

��**
**
** y

��+
++

++
+

X
f

�� Y

In the induced model structure, the morphism f : x → y is a weak equivalence
(respectively, cofibration, fibration) if and only if the underlying map f : X → Y is
a local weak equivalence (respectively, cofibration, injective fibration) of simplicial
presheaves.

In general, if M is a closed model category and A is an object of M, then the slice
category A/M inherits a model structure from M with the same definitions of weak
equivalence, fibration and cofibration as above.
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The slice category A/sPre(C) has a theory of cocycles by Theorem 6.5, and then
the argument for Theorem 6.12 goes through as displayed above in the case where
the target Y of the object y : A → Y is locally fibrant.

These observations apply, in particular, to give a Verdier hypercovering theorem
for pointed simplicial presheaves. More detail can be found in [67].

A pointed simplicial presheaf is a map x : ∗ → X in simplicial presheaves, or
alternatively a choice of global section x of a simplicial presheaf X . The category
∗/sPre(C) of pointed simplicial presheaves is usually denoted by sPre∗(C). See also
Sect. 8.4.

In some respects, Lemma 6.14 is the best statement of the Verdier hypercovering
theorem, although the result is again a little awkward to interpret because the cocycle
categories in the statement might not be small. This situation is easily remedied by
introducing cardinality bounds.

Suppose that α is a regular cardinal such that the simplicial presheaves X and Y

are α-bounded, and write hhyp(X, Y )α for full subcategory of the cocycle category
h(X, Y ) on the cocycles

X
p←− Z

f−→Y

for which p is a hypercover and Z is α-bounded. Then hhyp(X, Y )α is a full
subcategory of the category hα(X, Y ) of Proposition 6.7, and we have the following:

Theorem 6.17 Suppose that α is a regular cardinal such that α > | Mor (C)|.
Suppose that the simplicial presheaves X and Y on the site C are α-bounded and
that Y is locally fibrant. Then the inclusion hhyp(X, Y )α ⊂ h(X, Y )α induces a weak
equivalence of simplicial sets

Bhhyp(X, Y )α

−→ Bh(X, Y )α.

Proof The inclusion hhyp(X, Y )α ⊂ h(X, Y )α is a homotopy equivalence of small
categories, by the same argument as for Lemma 6.14. In particular, the construction
of the homotopy inverse functor

h(X, Y )α → hhyp(X, Y )α

respects cardinality bounds, by the assumptions on the size of the cardinal α.

Theorem 6.17 also leads to “hammock localization” results for simplicial pre-
sheaves. In the following, suppose that X is an α-bounded simplicial presheaf.

As in the proof of Proposition 6.10, write weα/X for the category whose objects
are all local weak equivalences U → X such that U is α-bounded. The morphisms
of weα/X are the commutative diagrams

U 

��		

			
	

��
X

U ′ 

		������
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Suppose that the simplicial presheaf Z is injective fibrant, and consider the functor

hom( , Z) : (weα/X)op → sSet

which is defined by the assignment

U

−→ X �→ hom(U , Z).

Since X is α-bounded, the category weα/X has a terminal object, namely 1X, so
B(weα/X)op is contractible, while the diagram hom( , Z) is a diagram of weak
equivalences since Z is injective fibrant. It follows [32, IV.5.7] that the canonical
map

hom(X, Z) → holim−−−→ U

−→X

hom(U , Z)

is a weak equivalence. At the same time, the horizontal simplicial set

holim−−−→ U

−→X

hom(U , Z)n

is the nerve of the cocycle category h(X, ZΔn

)α and is therefore weakly equivalent to
Bh(X, Z)α , for all n, by Corollary 6.11. It follows that there is a weak equivalence

Bh(X, Z)α → holim−−−→ U

−→X

hom(U , Z).

We have proved the following variant of the hammock localization theorem:

Theorem 6.18 Suppose that the simplicial presheaf Z is injective fibrant and that
X is α-bounded, where α is a regular cardinal such that α > | Mor (C)|. Then there
are weak equivalences of simplicial sets

Bh(X, Z)α

−→ holim−−−→ U


−→X
hom(U , Z)


←− hom(X, Z),

where the homotopy colimit is indexed over all local weak equivalences U → X

such that U is α-bounded.

The assertion that Y → YΔn

is a local weak equivalence holds for any locally
fibrant object Y , and so we have the following:

Corollary 6.19 Suppose that Y is locally fibrant and that j : Y → Z is an injective
fibrant model in simplicial presheaves. Suppose that X is α-bounded. Then the
simplicial set maps

Bh(X, Y )α �� holim−−−→ U

−→X

hom(U , Y )

��
holim−−−→ U


−→X
hom(U , Z) hom(X, Z)��
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are weak equivalences.

Proof The maps Y → YΔn → ZΔn

are local weak equivalences since Y and Z are
locally fibrant. The maps

Bh(X, Y )α → Bh(X, YΔn

)α → Bh(X, ZΔn

)α

are therefore weak equivalences by Corollary 6.11.



Chapter 7
Localization Theories

This chapter establishes the formal basis for all localized homotopy theories that are
derived in this monograph.

The method is to start with a model category M which satisfies a list of assumptions
met in all examples of interest, together with a functor L : M → M that satisfies a
shorter list of assumptions, including preservation of weak equivalences. Then it is
shown, in Theorem 7.5, that there is a model structure on the category underlying
M whose cofibrations are those of the original model structure, and whose weak
equivalences are the L-equivalences. The L-equivalences are those maps X → Y

with induced maps LX → LY that are weak equivalences of M.
Typically, one constructs a localized model structure by formally inverting a set

of cofibrations F which has certain closure properties in the model structure M. The
method for doing so is initiated in the first section, and the result is the production
of an F-injective model functor

L = LF : M → M.

The main point of Sect. 7.1 is that the model category M and the F-injective model
functor L together satisfy all of the assumptions on M (which have not varied),
and all assumptions on the functor L that guarantee Theorem 7.5, with the possible
exception of a “bounded monomorphism condition” for the functor L.

This general setup for formally inverting a set of cofibrations F in a nice model
category M, together with verification of the bounded monomorphism condition
in particular cases, is the method that is used to generate all localized homotopy
theories in this book. These include the traditional f -localization for a cofibration
f : A → B, f -localizations of presheaves of chain complexes (Sect. 8.5), and all
stable homotopy theories of Chaps. 10 and 11.

The bounded monomorphism condition is new. It generalizes the bounded cofi-
bration property for simplicial presheaves of Lemma 5.2, and it is particularly well
suited to contexts where not all monomorphisms are cofibrations, or where the class
of cofibrations might not be stable under pullback. For example, it is certainly true
that not all monomorphisms are cofibrations in the base “strict” model structures
for spectrum objects. The same is true for presheaves of chain complexes, where
pullbacks of cofibrations can also fail to be cofibrations.

© Springer-Verlag New York 2015 159
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The first concrete application appears in Sect.7.2. The line of argument which is
established in the first section is used to give an explicit construction of the F-local
model structure for the category of simplicial presheaves for a set of cofibrations F in
Theorem 7.18. This is a localization of the injective model structure on sPre(C) in the
traditional sense, whose class of trivial cofibrations is effectively the smallest class
of maps, which contains the trivial cofibrations of the injective model structure and
the cofibrations of F. In the case where the set F is generated by a single cofibration
f : A → B, we obtain the f -local model structure for simplicial presheaves. See
Example 7.19.

Examples of f -localizations appear at the end of the section. These include, in
Example 7.20, the motivic homotopy theory of Morel and Voevodsky [82]. Example
7.21 gives a construction of Blander’s local projective model structure (Example
5.42) for the simplicial presheaf category as a localization of the Bousfield–Kan
model structure on the underlying diagram category of Proposition 2.22. The local
projective model structure can itself be localized with the same techniques—the
motivic projective model structure of [89] is an example of such a construction.

The question of when an f -local model structure is right proper can be important
in applications—this was especially so in the original construction of the motivic
stable category [57, 102]—and this is the subject of the third section. Theorem 7.27
says that the f -local model structure is right proper if f has the form ∗ → I of a
global section of a simplicial presheaf I .

Motivic homotopy theory is constructed by formally collapsing the affine line A
1

over a scheme S to a global section ∗ → A
1 in the Nisnevich topology, so that the

motivic model structure is right as well as left proper. Left properness is a formal
statement for all of these theories, and is proved in Lemma 7.8.

The localization method which is presented here is not the most general, and has
a handicrafted flavour by comparison to standard references such as [41], and more
recent discussions of combinatorial model structures [5, 75]. It does, however, have
the benefit of being relatively simple to describe and apply in presheaf-theoretic
contexts.

One of the more interesting and useful variants of the theory appears in Cisin-
ski’s thesis [19]. It is a fundamental insight of that work that one can construct
homotopy theories in the style of localizations without reference to an underlying
model structure. Examples include Joyal’s theory of quasi-categories, which is a
model structure for simplicial sets and has fewer trivial cofibrations than the stan-
dard structure. More generally, Cisinski shows how to construct a panoply of model
structures for presheaves on a Grothendieck test category for which the cofibrations
are monomorphisms, with or without an ambient Grothendieck topology. These
methods apply, for example, to cubical sets and presheaves of cubical sets: examples
include a cubical presheaves model for motivic homotopy theory [63].
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7.1 General Theory

The purpose of this section is to set up a general framework for the localization
constructions that are used for model categories M, which are based on simplicial
presheaves.

We shall also require that the category M and its model structure satisfy the
following conditions:

M1: The category M has a left proper, closed simplicial model structure. This
model structure is cofibrantly generated, with generating sets I and J for the
classes of cofibrations, respectively, trivial cofibrations.

M2: The category M has epi-monic factorizations, and every cofibration of M is a
monomorphism.

M3: We have a set A of objects of M which contains the set of all targets of
morphisms of I and J, and is closed under subobjects and quotients. This
means that if A ⊂ B and B ∈ A then A ∈ A, and if A → C is an epimorphism
with A ∈ A then C ∈ A.

M4: The source objects A are cofibrant for all morphisms A → B in the generating
sets I and J .

M5: The class of weak equivalences is closed under inductive colimits in M. This
means that, if κ is a limit ordinal and α : X → Y is a natural transformation
of diagrams X, Y : κ → M such that all component maps α : Xs → Ys ,
s < κ , are weak equivalences of M, then the induced map

α∗ : lim−→
s<κ

Xs → lim−→
s<κ

Ys

is a weak equivalence of M.
M6: Suppose that the map A → B is a weak equivalence of M and that K is a

simplicial set. Then the map

A ⊗ K → B ⊗ K

is a weak equivalence of M.

We use tensor product notation for the simplicial model structure: in particular, the
function complex hom(X, Y ) is the simplicial set with n-simplices given by the set
of morphisms

X ⊗ Δn → Y

in M.
We do not assume that every monomorphism of M is a cofibration.

Example 7.1 This seems at first like a formidable list of requirements for the model
category M, but the injective model structure on the category of simplicial presheaves
of Theorem 5.8 has all of these properties.
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The fact that inductive colimits preserve local weak equivalences is proved in
Lemma 4.42. All simplicial presheaves are cofibrant for the injective model structure,
and condition M6 follows.

These conditions are also met by the projective local structure and all intermedi-
ate model structures for simplicial presheaves. These model structures all have local
weak equivalences as their weak equivalences, so that conditions M5 and M6 are in-
herited from the injective model structure. Recall that there are simplicial presheaves,
which are not cofibrant for these structures.

Among the listed conditions for the simplicial model structure M, the statement
M6 is perhaps the most brutal categorically, but it is satisfied in simplicial model
structures that are built from simplicial presheaves and local weak equivalences.
In particular, the conditions M1–M6 hold for all model structures of simplicial
modules, spectrum objects and symmetric spectrum objects which are discussed in
that are encountered in later chapters.

Suppose that L : M → M is a functor. Say that a map X → Y of M is an
L-equivalence if it induces a weak equivalence LX → LY .

Here are the additional conditions that we shall require for the functor L:

L1: The functor L : M → M preserves weak equivalences.
L2: The class of cofibrations which are L-equivalences is saturated, meaning that

the class is closed under pushouts, (transfinite) composition and coproducts,
L3: Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

such that i is an L-equivalence, and the subobject A of Y is a member of A.
Then there is a subobject B of Y with A ⊂ B, B is a member of A, and such
that the map B ×Y X → B is an L-equivalence.

We shall say that statement L3 is the bounded monomorphism condition. It is a variant
of the bounded monomorphism property that one finds, for example, in Lemma 5.2.

Say that a map p : X → Y is an L-fibration if it has the right lifting property
with respect to all maps which are cofibrations and L-equivalences. An object Z is
L-fibrant if the map Z → ∗ is an L-fibration.

Weak equivalences are L-equivalences by condition L1, so that every L-fibration
is a fibration of M.

Lemma 7.2 A map p : X → Y is an L-fibration and an L-equivalence if and only
if it is a fibration and a weak equivalence.

Proof If p is a trivial fibration then it has the right lifting property with respect to
all cofibrations and is therefore an L-fibration. It is also an L-equivalence since it is
a weak equivalence.
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Suppose that the morphism p : X → Y is an L-fibration and an L-equivalence.
Then p is a retract of a trivial fibration, by a standard argument.

The collection of monomorphisms m : C → D of M with D ∈ A and such that
m is an L-equivalence forms a set, since A is closed under subobjects. For each such
map m, make a fixed choice of factorization

C
jm ��

m ���
��

��
��

E

pm

��
D

with pm a trivial fibration and jm a cofibration. Write JL for the set of all resulting
cofibrations jm. Each map jm is an L-equivalence.

Lemma 7.3 Suppose that q : X → Y is an L-equivalence which has the right
lifting property with respect to all cofibrations jm in the set JL. Then the map q is a
trivial fibration.

Proof Suppose given a commutative diagram

A ��

i

��

X

q

��
B

β

�� Y

where i is a cofibration with B ∈ A.
The map q has a factorization

X
j

��

q ���
��

��
��

Z

p

��
Y

such that p is a trivial fibration and j is a cofibration. The cofibration j is an L-
equivalence.

The lifting β∗ exists in the diagram

A ��

i

��

X

j

��
Z

p

��
B

β

��

β∗
��

Y
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The image β∗(B) is in A by M3, so there is a subobject D of Z which is in A such
that the induced monomorphism α : D ×Z X → D is an L-equivalence by L3. It
also follows that the original diagram has a factorization

A ��

i

��

D ×Z X ��

m

��

X

q

��
B �� D �� Y

where m is a monomorphism and an L-equivalence, and D is a member of A.
The map m has the factorization m = pm · jm, which is described above, and

there is a commutative diagram

A ��

i

��

D ×Z X ��

jm

��

X

q

��

E

pm

��

��

B ��

��

D �� Y

The dotted arrow lifts exist because pm is a trivial fibration and we assume that q

has the right lifting property with respect to all jm.
It follows that the map q has the right lifting property with respect to the generating

set I for the class of cofibrations, and is therefore a trivial fibration.

Lemma 7.4 A map X → Y is an L-fibration if and only if it has the right lifting
property with respect to all cofibrations in the set JL.

Proof Suppose that the morphism i : A → B is a cofibration and an L-equivalence.
Then i has a factorization

A
j

��

i ���
��

��
��

Z

p

��
B

where j is the saturation of JL and p has the right lifting property with respect to all
members of JL. The cofibration j is an L-equivalence by the assumption (L5) that
the class of L-trivial cofibrations is saturated, so that the map p is an L-equivalence.
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It follows from Lemma 7.3 that the map p is a trivial fibration, and so the lift exists
in the diagram

A
j

��

i

��

Z

p

��
B

1
��

��

B

The map i is therefore a retract of j .
Thus, if a morphism p has the right lifting property with respect to all cofibrations

in the set JL, then it has the right lifting property with respect to all maps, which are
cofibrations and L-equivalences, and is therefore an L-fibration.

Theorem 7.5 Suppose that the model category M and the functor L : M → M
satisfy the conditions above. Then the category M, together with the cofibrations,
L-equivalences and L-fibrations, satisfies the conditions for a cofibrantly generated
closed model category.

Proof The model axioms CM1, CM2 and CM3 are easily verified.
A map p : X → Y is an L-fibration (respectively trivial L-fibration) if and only if

it has the right lifting property with respect to the set of cofibrations JL (respectively
the set I ) by Lemma 7.2 and Lemma 7.4 above. It follows that every map f : X → Y

has factorizations

Z
p



�
��

��
��

�

X

i


�������

j 














f
�� Y

W

q



��������

where i is a cofibration and an L-equivalence and p is an L-fibration, and such
that j is as cofibration and q is an L-fibration and an L-equivalence. This gives the
factorization axiom CM5.

The lifting axiom CM4 follows from the identification of trivial L-fibrations with
trivial fibrations of M in Lemma 7.2.

The sets I and JL generate the classes of cofibrations and L-trivial cofibrations,
respectively.

The functor L : M → M and the set of objects A in M arise, in practice, from a
very specific construction.

Start with a set F of cofibrations A → B of M, and suppose the following:

F1: the set F includes all members of the generating set J of trivial cofibrations
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F2: all cofibrations A → B in F have cofibrant source objects A

F3: if the map A → B is a member of F, then so are all induced cofibrations

(B ⊗ ∂Δn) ∪ (A ⊗ Δn) → B ⊗ Δn (7.1)

The ⊗ construction is part of the simplicial model structure for M. All maps (7.1)
have cofibrant source objects, since the objects A and B are cofibrant.

The set A contains the objects appearing as targets of members of F and of the
members of the set I, and is closed under subobjects and quotients. Typically, the set
A is specified by a cardinality condition, and so closure with respect to subobjects
and quotients is automatic.

Say that a map p : X → Y of M is F-injective if it has the right lifting property
with respect to all members of F, and hence with respect to the saturation of F. An
object Z is F-injective if the map Z → ∗ is F-injective.

The F-injective maps are fibrations of M since F contains the generators for the
class of trivial cofibrations of M, and so the F-injective objects are fibrant. All trivial
fibrations of M are F-injective maps.

Say that a map g : X → Y is an F-equivalence if some (and hence any) cofibrant
replacement Xc → Yc of g induces a weak equivalence of simplicial sets

hom(Yc, Z) → hom(Xc, Z)

for all F-injective objects Z.
A cofibrant replacement of a map g : X → Y is a commutative diagram

Xc
��



��

Yc



��

X
g

�� Y

in M such that the vertical maps are weak equivalences and the objects Xc and Yc

are cofibrant. One can further assume that the map Xc → Yc is a cofibration.
All weak equivalences of M are F-equivalences—the proof of this claim is an

exercise.

Lemma 7.6 A map g : Z → W of F-injective objects is an F-equivalence if and
only if it is a weak equivalence of M.

Proof Suppose that g : Z → W is an F-equivalence. We show that g is a weak
equivalence.

By replacing by cofibrant models Zc → Z and Wc → W which are trivial
fibrations of M, it is enough to assume that the objects Z and W are cofibrant as well
as F-injective.

The map g induces a weak equivalence

g∗ : hom(W , F )

−→ hom(Z, F )



7.1 General Theory 167

for each F-injective object F , and thus induces a bijection

g∗ : [W , F ]
∼=−→ [Z, F ]

of morphisms in the homotopy category for M for each such object F .
The map g induces a bijection

g∗ : [W , Z]
∼=−→ [Z, Z],

so that g has a homotopy left inverse σ : W → Z. The composite g · σ : W → W

and the identity on W restrict to g : Z → W along g up to homotopy, and are
therefore homotopic.

We have shown that the map g is a homotopy equivalence of M. It is therefore a
weak equivalence of M, [33, II.1.14].

All members A → B of the set F induce trivial fibrations

hom(B, Z) → hom(A, Z)

for all F-injective objects Z, by the closure property for F which is specified by
condition L3. The objects A and B are cofibrant, by assumption. It follows that all
members of the set F are F-equivalences.

Lemma 7.7 Suppose that κ is a limit ordinal, and that A, B : κ → M are inductive
systems defined on κ . Suppose that f : A → B is a natural transformation such that
each map f : As → Bs is an F-equivalence. Then the induced map

f∗ : lim−→
s<κ

As → lim−→
s<κ

Bs

is an F-equivalence.

Proof Weak equivalences are closed under inductive colimits in M, by assumption
M5, so we can assume that the diagram {As} is cofibrant in the sense that A0 is
cofibrant, all maps As → As+1 are cofibrations, and the morphisms

lim−→
s<t

As → At

are cofibrations for all limit ordinals t < κ . The objects

lim−→
s<t

As

are cofibrant for all limit ordinals t < κ .
By the same argument, we can assume that the map A0 → B0 is a cofibration,

that all maps

Bs ∪ As+1 → Bs+1
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are cofibrations, and all maps

( lim−→
s<t

Bs) ∪ At → Bt

are cofibrations for all limit ordinals t < κ . Then the map

lim−→
s<t

As → lim−→
s<t

Bs

is a cofibration for each limit ordinal t < κ .
It follows that all maps As → Bs , Bs ∪As+1 → Bt+1 and ( lim−→s<t

Bs)∪At → Bt

are cofibrations and F-equivalences. The claim that the map At → Bt is an F-
equivalence at each limit ordinal t < γ is proved by showing inductively that the
cofibration

lim−→
s<t

As → lim−→
s<t

Bs

(of cofibrant objects) has the left lifting property with respect to all maps

hom(Δn, Z) → hom(∂Δn, Z), n ≥ 0,

which are associated to F-injective objects Z.

Lemma 7.8

1) The class of cofibrations which are F-equivalences is saturated.
2) The class of F-equivalences is stable under pushout along cofibrations.

Proof Suppose given a pushout diagram

C
g

��

j

��

E

j̃

��
D

g̃

�� F

(7.2)

in which the map j is a cofibration. Form the diagram

Dc

π

��

Cc

i�� i′ ��

π

��

Ec

π

��
D C

j

��
g

�� E
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in which the object Cc is cofibrant, the vertical maps π are trivial fibrations, and the
maps i and i ′ are cofibrations. Form the pushout

Cc
��

i

��

Ec

��
Dc

�� Fc

Then the induced map Fc → F is a weak equivalence since the model structure on
M is left proper. We can therefore assume that all objects in the diagram (7.2) are
cofibrant.

The induced diagram of simplicial set maps

hom(F , Z)
g̃∗

��

j̃∗
��

hom(D, Z)

j∗
��

hom(E, Z)
g∗

�� hom(C, Z)

is a pullback in which the map j∗ is a Kan fibration for each F-injective object Z.
Thus, if the cofibration j is an F-equivalence then j̃ is an F-equivalence, and so

the class consisting of cofibrations which are F-equivalences is closed under pushout.
If g is an F-equivalence then g∗ is a weak equivalence and so g̃∗ is a weak

equivalence by properness for simplicial sets. Again, this is true for all F-injective
objects Z, so that g̃ is an F-equivalence if g is an f -equivalence, giving statement
2).

Suppose given an inductive system

A0 → A1 → · · · → As → As+1 → . . .

of morphisms of M with s < κ , where κ is some limit ordinal. Suppose that all maps
As → As+1 and all maps

lim−→
s<γ

As → Aγ

defined by limit ordinals γ < κ are F-equivalences. Then the canonical map

A0 → lim−→
s<κ

As

is an F-equivalence, by Lemma 7.7.

We use the assumption M6 to prove the following result:

Lemma 7.9 Suppose that the map A → B is a cofibration of M and that K → L

is a cofibration of simplicial sets. Then the induced cofibration

(B ⊗ K) ∪ (A ⊗ L) → B ⊗ L (7.3)



170 7 Localization Theories

is an F-equivalence if either A → B is an F-equivalence or the map K → L is a
weak equivalence of simplicial sets.

Proof If A → B is an arbitrary cofibration and the map K → L is a trivial
cofibration of simplicial sets, then the map (7.3) is a weak equivalence, from the
simplicial model structure of M.

Suppose that the map A → B is a cofibration of M with A cofibrant. Then A → B

is an F-equivalence if and only if the dotted arrow lift exists in all diagrams

(B ⊗ K) ∪ (A ⊗ L) ��

��

Z

B ⊗ L

		

for all F-injective objects Z and all cofibrations K → L of simplicial sets. This
is equivalent to the requirement that the map hom(B, Z) → hom(A, Z) is a trivial
fibration of simplicial sets for all such objects Z.

The map (7.3) is a cofibration with cofibrant source since A → B is a cofibration
with cofibrant source. If K ′ → L′ is any second choice of cofibration of simplicial
sets, then the F-injective object Z has the right lifting property with respect to the
map

B ⊗ ((K × L′) ∪ (L × K ′)) ∪ (A ⊗ (L × L′)) → B ⊗ (L × L′).

This holds for all cofibrations K ′ → L′ and all F-injective objects Z, and so the map
(7.3) is an F-equivalence.

More generally we can find a cofibrant replacement

Ac

ic ��



��

Bc



��

A
i

�� B

for the map i in which the vertical maps are weak equivalences of M, the object Ac is
cofibrant, and the map ic is a cofibration. Then the cofibration ic is an F-equivalence,
and there is a commutative diagram

(Bc ⊗ K) ∪ (Ac ⊗ L) ��

��

Bc ⊗ L

��
(B ⊗ K) ∪ (A ⊗ L) �� B ⊗ L

in which the vertical maps are weak equivalences of M by condition M6 and left
properness of M. The top horizontal map is an F-equivalence by the previous
paragraph, and so the bottom horizontal map is an F-equivalence.



7.1 General Theory 171

Every map g : X → Y of M has a functorial factorization

X
η

��

g ���
��

��
��

U

p

��
Y

where p is F-injective and η is in the saturation of the set F, by a small object
argument. In particular, there is a natural map

η : X → LFX

where LFX is F-injective and the map η is a cofibration and an F-equivalence. It is
a consequence of Lemma 7.6 that a map g : X → Y is an F-equivalence if and only
if the induced map LFX → LFY is a weak equivalence of M.

We have our functor L = LF.
Of the list of assumptions which is displayed at the beginning of the section, we

have verified statements L1 and L2 for the functor LF, in Lemmas 7.8 and 7.9,
respectively. It only remains to verify the bounded monomorphism condition L3 for
the functor LF, in order to show that Theorem 7.5 holds for this construction. We do
this in multiple contexts below.

Say that a map X → Y is an F-fibration if it has the right lifting property with
respect to all cofibrations which are F-equivalences. In the language of Theorem 7.5,
the F-fibrations coincide with the LF-fibrations.

In summary, we have the following:

Theorem 7.10 Suppose that M is a closed simplicial model category which satisfies
conditions M1 – M6. Suppose that F is a set of cofibrations A → B of M having
cofibrant source objects A. Suppose that the bounded monomorphism condition L3
holds for the class of F-equivalences.

Then the category M and the classes of cofibrations (of M), F-equivalences and
F-fibrations, together satisfy the axioms for a left proper closed simplicial model
structure. This model structure is cofibrantly generated.

Proof The indicated model structure exists by Theorem 7.5. The left properness for
this model structure is proved in Lemma 7.8. The function complex construction for
the underlying model structure on M gives the simplicial model structure, and the
simplicial model axiom SM7 is verified in Lemma 7.9.

The model structure of Theorem 7.10 is called the F-local model structure, when
it exists. See, for example, Theorem 7.18.

We close this section with some formal consequences of the general construction.

Lemma 7.11 Suppose that the map p : Z → Y is F-injective, and that the object
Y is F-injective. Then the map p is an F-fibration.

Corollary 7.12 An object Z is F-injective if and only if it is F-fibrant.
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Proof [Proof of Lemma 7.11] Suppose given a commutative diagram

A
α ��

i

��

Z

p

��
B

β

�� Y

such that i is a cofibration and an F-equivalence. The object Y is F-injective, so
the map β extends along the canonical map η : B → LFB to a morphism β ′ :
LFB → Y . The map p has the right lifting property with respect to the cofibration
η : A → LFA, so the original diagram has a factorization

A

i

��

η
�� LFA

α′
��

j

��,
,,

,,
,,

,

i∗

��

Z

p

��

V

q**--
--
--
--

��

B

++

η

�� LFB
β ′

�� Y

where the map i∗ is a weak equivalence, j is a trivial cofibration and q is a trivial
fibration. Thus, the dotted arrow liftings exist.

Lemma 7.13 Suppose that the map p : X → Y is a fibration of M, and suppose
that the diagram

X
η

��

p

��

LFX

LFp

��
Y

η

�� LFY

is homotopy cartesian in M. Then p is an F-fibration.

Proof There is a factorization

LFX
j

��

LFp """
""

""
""

"
Z

q

��
LFY
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of the map LFp such that j is an LF-equivalence and the map q is is an F-fibration.
The object Z is F-fibrant, so that j is a weak equivalence of M (Lemma 7.6). By
pulling back q along i, we see from the hypothesis that the induced map

θ : X → Y ×LFY Z

is a weak equivalence of M.
Factorize θ = π · i, where π is a trivial fibration and i is a trivial cofibration of

M. Then π is an F-fibration, and there is a commutative diagram

X
1 ��

i

��

X

p

��
V

q∗·π
��

��

Y

in which the indicated lift exists, since, p is a fibration and i is a trivial cofibration
of M. Here,

q∗ : Y ×LFY Z → Y

is the pullback of the F-fibration q. The map π is an F-fibration, and it follows that
p is a retract of the F-fibration q∗ · π .

In an important class of examples, where the F-local model structure is right
proper, the statement of Lemma 7.13 has a converse:

Lemma 7.14 Suppose that the F-local model structure on M is right proper and
that the map p : X → Y is a fibration of M. Then p is an F-fibration if and only if
the diagram

X
η

��

p

��

LFX

LFp

��
Y

η

�� LFY

is homotopy cartesian in M.

Proof We suppose that the map p is an F-fibration. Take a factorization

LFX
i ��

"""
""

""
""

"
Z

q

��
LFY
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such that q is an F-fibration and i is an F-equivalence of M. Then the induced map

η∗ : Y ×LFY Z → Z

is an F-equivalence by right properness of the F-local structure, and so the map

θ : X → Y ×LFY Z

defines an F-equivalence of F-fibrations.
This map θ is a weak equivalence of M. One proves this with the standard factor-

ization of a map between fibrant objects as a fibration following a section of a trivial
fibration, together with the observation (Lemma 7.2) that the trivial fibrations of M
coincide with the trivial F-fibrations.

Examples of the phenomenon which is described by Lemma 7.14 include the
standard description of stable fibrations that occurs in stable homotopy theory—for
example, see Lemma 10.9 and Corollary 10.37.

7.2 Localization Theorems for Simplicial Presheaves

Suppose that C is a small Grothendieck site. Let α be an infinite cardinal such that
α > | Mor (C)|. Recall that a cofibration C → D is said to be α-bounded if α > |D|.

The injective model structure on the category sPre(C) of simplicial presheaves
given by Theorem 5.8 is an example of the sort of category M which is described in
the previous section. See Example 7.1.

Recall that its weak equivalences are the local weak equivalences, its cofibrations
are the monomorphisms, and its fibrations (injective fibrations) are defined by a
right lifting property. This is a proper, cofibrantly generated, closed simplicial model
structure. The generating sets I and J are, respectively, the α-bounded cofibrations
and α-bounded trivial cofibrations for this theory.

Suppose that F is a set of cofibrations of simplicial presheaves, such that

C1: the set F contains all members of the generating set J of trivial cofibrations
for the injective model structure,

C2: if the map i : A → B is a member of F, and j : C → D is an α-bounded
cofibration, then the cofibration

(B × C) ∪ (A × D) → B × D

is a member of F.

Condition C2 is a closure property. We can construct any such set of cofibrations F
by starting with a set of cofibrations S, adding on the generating set J , and then let
F be the smallest set of cofibrations which contains S and J , subject to satisfying
condition C2. One writes F = 〈S〉 in this case.
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It is an exercise to show that the set F consists of the cofibrations

(F × C) ∪ (E × D) → F × D

which are induced by cofibrations E → F and C → D, where the map E → F

is either in S or in J , and C → D is an α-bounded cofibration. In particular, if the
cofibration C → D is in F, then so are all cofibrations

(D × ∂Δn) ∪ (C × Δn) → D × Δn.

All simplicial presheaves are cofibrant for the injective model structure. The set F
therefore satisfies conditions L1, L2 and L3 of Sect. 7.1.

Example 7.15 Suppose that f : A → B is a cofibration. The set of cofibrations that
is used to construct the f -local theory (see Example 7.19 below) is the set F = 〈f 〉,
which is generated by the singleton set {f } and the set J , in the sense described
above.

The set 〈f 〉 consists of the set of α-bounded trivial cofibrations for the injective
model structure, together with the set of cofibrations

(f , i) : (B × C) ∪ (A × D) → B × D

which are induced by the α-bounded cofibrations i : C → D of sPre(C).

A morphism of simplicial preshseaves p : Z → W is said to be F-injective if
it has the right lifting property with respect to all members of the set F. Every F-
injective map is a fibration for the injective model structure on sPre(C). A simplicial
presheaf Z is said to be F-injective if the map Z → ∗ is F-injective.

The condition C2 in the description of the set of maps F reflects the enriched
simplicial model structure of the simplicial presheaf category. It follows from the
definition of the set F that an object Z is F-injective if and only if Z is injective
fibrant, and the induced map

i∗ : Hom(B, Z) → Hom(A, Z)

of internal function complexes is an injective fibration and a local weak equivalence
for each member i : A → B of a generating set S for F in this context.

Say that a map g : X → Y of simplicial presheaves is an F-equivalence if the
induced map

g∗ : hom(Y , Z) → hom(X, Z)

of ordinary function complexes is a weak equivalence of simplicial sets for all F-
injective objects Z.

All simplicial presheaves are cofibrant for the injective model structure, so there
is no need to use a cofibrant replacement for the map g : X → Y in the definition of
F-equivalence.

Suppose that β is a regular cardinal such that β > |F|, that β > |D| for all
C → D in F, and that β > | Mor (C|.
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Suppose that λ is a cardinal such that λ > 2β.
Every map f : X → Y of simplicial presheaves has a functorial system of

factorizations

X
is ��

f ""�
��

��
��

��
Es(f )

fs

��
Y

for s < λ defined by the lifting property for maps in F, and which form the stages
of a transfinite small object argument.

Specifically, given the factorization f = fsis form the pushout diagram

⊔
D C ��

��

Es(f )

��⊔
D D �� Es+1(f )

where D is the set of diagrams

C ��

i

��

Es(f )

��
D �� Y

with i in F. Then fs+1 : Es+1(f ) → Y is the obvious induced map. Set Et (f ) =
lim−→s<t

Es(f ) at limit ordinals t < λ.

There is an induced natural factorization

X
iλ ��

f ""%
%%

%%
%%

%%
Eλ(f )

fλ

��
Y

with

Eλ(f ) = lim−→
s<λ

Es(f ).

The map fλ has the right lifting property with respect to all maps C → D in F, and
the cofibration iλ is in the saturation of F.

Write

LF(X) = Eλ(X → ∗).
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The assignment X �→ LF(X) is functorial in simplicial presheaves X.

Lemma 7.16

1) Suppose that the assignment t �→ Xt defines a diagram of simplicial presheaves,
indexed by γ > 2β . Then the map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > β, and let Bζ (X) be the family of subobjects

of X having cardinality less than ζ . Then the map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)

is an isomorphism.
3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that A and B are subobjects of X. Then the natural map

LF(A ∩ B) → LF(A) ∩ LF(B)

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

Proof It suffices to prove statements 1)–4) with LF(X) replaced by E1(X). There
is a pushout diagram

⊔
F (C × hom (C, X)) ��

��

X

��⊔
F (D × hom (C, X)) �� E1X

Then, in sections and in a fixed simplicial degree,

E1X(U ) = (
⊔

F
(D(U ) − C(U ))n × hom (C, X)) � X(U )n.

To prove statement 1), one shows that the map

lim−→
t<γ

hom(C, Xt ) → hom (C, lim−→
t<γ

Xt )

is an isomorphism.
For statement 2), show that the map

lim−→
Y∈Bζ (X)

hom (C, Y ) → hom (C, X)



178 7 Localization Theories

is an isomorphism by using the fact that the image of a map C → X is contained in
a subobject Y ⊂ X with |Y | < β < ζ . The object X is also a colimit of subobjects
Y with |Y | < ζ , since ζ > | Mor (C)|.

Statement (3) is a consequence of the fact a monomorphism X → Y induces
injective functions hom (C, X) → hom (C, Y ).

Statement (4) follows from the observation that the functor X �→ hom (C, X)
preserves pullbacks.

For statement 5), one shows inductively that all objects EsX have |EsX| ≤ 2μ for
s < γ . This follows from the fact that the set hom (C, X) has cardinality bounded
by (2μ)β = 2μ·β = 2μ. Then we have

|LF(X)| ≤ λ · 2μ ≤ 2μ · 2μ = 2μ.

Say that a simplicial presheaf map X → Y is an LF-equivalence if the induced
map LFX → LFY is a local weak equivalence.

Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 7.16. Then κ is a regular cardinal, and Lemma 7.16 implies that if a simpli-
cial presheaf X is κ-bounded then LF(X) is κ-bounded. The following result is the
bounded monomorphism property for LF-equivalences:

Lemma 7.17 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

such that i is an LF-equivalence and A is κ-bounded. Then there is a factorization
A ⊂ B ⊂ Y of j by monomorphisms such that B is κ-bounded and the map
B ∩ X → B is an LF-equivalence.

Proof There is an induced diagram of monomorphisms

LFX

i∗
��

LFA
j∗

�� LFY

(statements 3) and 5) of Lemma 7.16) in which the map i∗ is a local weak equivalence
and LFA is κ-bounded. Then, by Lemma 5.2 (the bounded cofibration property for
the injective model structure), there is a κ-bounded subobject A0 ⊂ LFY such that
the map A0 ∩ LFX → A0 is a local weak equivalence.

There is a κ-bounded subobject B0 ⊂ Y such that A ⊂ B0 and A0 ⊂ LFB0. In
effect, LFY is a union of subobjects LFF associated to the κ-bounded subobjects
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F ⊂ Y , by statement 2) of Lemma 7.16, and every section of the κ-bounded object
B0 is in some LFF .

Continue inductively. Find a κ-bounded object A1 such that the map LFB0 ⊂ A1

and A1 ∩LFX → LFY is a local weak equivalence, and find a κ-bounded subobject
B1 of Y with B0 ⊂ B1 and A1 ⊂ LFB1. Repeat the construction λ times, and set
B = lim−→s<λ

Bs .
Then the map

LF(B ∩ X) ∼= LFB ∩ LFX → LFB

(statement 4) of Lemma 7.16) coincides with the map

lim−→
s

(As ∩ LFX) → lim−→
s

As ,

which is a local weak equivalence.

Now let A be the set of κ-bounded simplicial presheaves, where κ is the cardinal
that is chosen above.

All objects LFX are F-injective by construction, and a map X → Y is an LF-
equivalence if and only if it is an F-equivalence.

All F-injective objects are injective fibrant. Corollary 5.13 and Lemma 7.6 there-
fore imply that a map X → Y of simplicial presheaves is an F-equivalence if and
only if the induced map LFX → LFY is a sectionwise weak equivalence.

In the language of Theorem 7.10, a simplicial presheaf map p : X → Y is an
F-fibration if it has the right lifting property with respect to all cofibrations which
are F-equivalences.

We have now assembled a proof of the following theorem, which gives the F-local
model structure for the category of simplicial presheaves. This result is a special case
of Theorem 7.10, in the presence of Lemma 7.17.

Theorem 7.18 Suppose that F is a set of cofibrations of simplicial presheaves
on a small site C which satisfies conditions 1) and 2) above. Then the category
sPre(C) of simplicial presheaves on C, together with the classes of cofibrations, F-
equivalences and F-fibrations, satisfies the axioms for a left proper closed simplicial
model category. This model structure is cofibrantly generated.

If F = 〈S〉 is generated by a set of cofibrations S, together with the generating
set J of the trivial cofibrations in the sense described above, one also says that the
F-local model structure of Theorem 7.18 is the S-local model structure.

Example 7.19 Suppose that f : A → B is a cofibration of simplicial presheaves.
Theorem 7.18 specializes, for the case F = 〈f 〉 to the f -local model structure for
the category of simplicial presheaves.

The 〈f 〉-equivalences are usually called f -equivalences, and the 〈f 〉-fibrations
are called f -fibrations. The 〈f 〉-fibrant objects are said to be f -fibrant. One also
writes Lf X = L〈f 〉X, so that a map X → Y is an f -equivalence if and only if the
induced map Lf X → Lf Y is a local (or even sectionwise) weak equivalence.



180 7 Localization Theories

All F-local theories are f -local theories for some f . In effect, if S is a set of
cofibrations Ai → Bi , then one can add up these cofibrations to form the cofibration

f = � fi : � Ai → � Bi.

If the set F = 〈S〉 is generated by the set S, then the classes F-equivalences and
f -equivalences coincide, so that the f -local and F-local model structures coincide.
To see this, one shows that a simplicial presheaf Z is f -fibrant if and only if it is
F-fibrant, so that there is a natural weak equivalence Lf X 
 LFX for all simplicial
presheaves X.

Aficionados of cellular model structures [41] will recognize that the injective
model structure on the simplicial presheaf category sPre(C) is cellular, for set
theoretic reasons.

In particular, all simplicial presheaves A are compact in a strong sense. Suppose
that β and γ are cardinals such that γ > 2β and |A| < β. Then if s → Xs is a
diagram of monomorphisms indexed by s < γ , it follows that the function

lim−→
s<γ

hom (A, Xs) → hom (A, lim−→
s<γ

Xs)

is a bijection. This observation is the basis for transfinite small object arguments in
categories related to simplicial presheaves.

Theorem 7.18 is a consequence of Hirschhorn’s Theorem 4.1.1, which asserts that
each left proper cellular model structure admits left Bousfield localization at a set of
maps.

The proof of Theorem 7.18 which is displayed here has the same ingredients as
the proof of Hirschhorn’s result, albeit in a rearranged and compressed form. The
formal part of this proof (along with the proofs of all of our other localization results)
amounts to a reduction to the bounded monomorphism condition, which condition
appears as Proposition 4.5.15 of [41].

Example 7.20 (Motivic homotopy theory) Suppose that S is a scheme which is
Noetherian and of finite dimension (typically a field, in practice), and let (Sm|S)Nis

be the category of smooth schemes of finite type over S, equipped with the Nisnevich
topology. The motivic model structure on sPre(Sm|S)Nis is the f -local theory for
the 0-section f : ∗ → A

1 of the affine line, in which the affine line is formally
contracted to a point.

The motivic model structure is called the A
1-model structure in [82], where also

motivic weak equivalences are A
1-weak equivalences and motivic fibrations are A

1-
fibrations. Strictly speaking, the Morel–Voevodsky model structure is defined on the
category of simplicial sheaves on the smooth Nisnevich site, but the model structures
for simplicial sheaves and simplicial presheaves are Quillen equivalent by the usual
argument [57]. There are many other models for motivic homotopy theory, including
model structures on presheaves and sheaves (not simplicial!) on the smooth Nisnevich
site [57], and all of the models arising from test categories [63], including motivic
cubical presheaves.
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Corollary 7.12 implies that a simplicial presheaf Z is motivic fibrant if and only if
Z is injective fibrant for the Nisnevich topology, and all projection maps U×A

1 → U

of S-schemes induce weak equivalences of simplicial sets

Z(U )

−→ Z(U × A

1).

It follows from Theorem 5.39 (Nisnevich descent) that a simplicial presheaf X sat-
isfies motivic descent in the sense that any motivic fibrant model j : X → Z is a
sectionwise weak equivalence if and only if the following criteria are satisfied:

1) The simplicial presheaf X has the BG-property, meaning that X(φ) is contractible
and X takes elementary distinguished squares

φ−1(U ) ��

��

V

φ

��
U

j

�� T

(7.4)

over S to homotopy cartesian diagrams of simplicial sets

X(T ) ��

��

X(U )

��
X(V ) �� X(φ−1(U ))

and
2) The simplicial presheaf X takes all projections U × A

1 → U over S to weak
equivalences of simplicial sets X(U )


−→ X(U × A
1).

Properties 1 and 2 are preserved by filtered colimits in simplicial presheaves X

and it follows that the collections of simplicial presheaves which satisfy, respec-
tively, Nisnevich descent and motivic descent, are closed under filtered colimits.
This observation is very important in applications.

Example 7.21 (Projective model structures) The projective model structure for the
category of simplicial presheaves of Proposition 2.22 has weak equivalences and
fibrations defined sectionwise. This is a closed simplicial model structure which is
cofibrantly generated and proper. In particular, the generating set J for the class of
trivial cofibrations consists of the maps of the form

Λn
k × hom ( , U ) → Δn × hom ( , U ),

all of which have cofibrant source objects. The projective model structure is a can-
didate for a model structure M in the notation of Sect. 7.1, and we use that notation
here.

The cofibrations of M are the projective cofibrations. These maps are monomor-
phisms, but the class of projective cofibrations does not include all monomorphisms.



182 7 Localization Theories

Now consider the set J of all α-bounded monomorphisms f : A → B of sim-
plicial presheaves, which are local weak equivalences, and take projective cofibrant
replacements

Ac

if
��



��

Bc



��

A
f

�� B

for all such maps f , so that if is a projective cofibration between projective cofibrant
objects.

Let F be the set containing all such projective cofibrations if and the members
of the set J, and which satisfies the closure property that if A → B is in F then all
induced projective cofibrations

(B × ∂Δn) ∪ (A × Δn) → B × Δn

are in F.
Define a functor X �→ LFX according to the method displayed above, so that

each object LFX is F-injective. Then Lemma 7.17 and Theorem 7.10 together imply
that there is an model structure on the category of simplicial presheaves, for which
the cofibrations are the projective cofibrations and the weak equivalences are the
LF-equivalences.

One uses a cofibrant replacement technique, as in the proof of Lemma 7.8, to show
that the class of monomorphisms of simplicial presheaves which are LF-equivalences
is saturated. It follows that every trivial cofibration for the injective model stucture
is an LF-equivalence.

Every injective fibrant object Z is F-injective, since all maps jf are trivial cofi-
brations for the injective model structure. Thus, if the map X → Z is an injective
fibrant model for an F-injective (or F-fibrant) simplicial presheaf X, then it is an
LF-equivalence of F-injective objects, and is therefore a sectionwise weak equiv-
alence by Lemma 7.6. All F-injective objects X, therefore, satisfy descent in the
sense of Sect. 5.2.

It also follows that a map X → Y of simplicial presheaves is an LF-equivalence
if and only if it is a local weak equivalence. This F-local model structure therefore
coincides with the local projective model structure of Example 5.42.

We have shown that the local projective structure can be obtained from the pro-
jective structure on the category of simplicial presheaves by formally inverting a set
of local trivial cofibrations.

The f -local projective model structures (eg. the projective motivic model struc-
ture of Example 5.43) can be constructed in the same way, by formally inverting a
generating set of trivial cofibrations for the f -local structure of Theorem 7.18 in the
projective model structure. An alternative is to use Theorem 5.41 directly, starting
from the f -local structure.
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Example 7.22 Suppose that (Sm|S)Nis is the smooth Nisnevich site for a nice scheme
S, as in Example 7.20.

Suppose that F is a set of projective cofibrations of simplicial presheaves on
(Sm|S)Nis which contains the following:

1) The members of the generating set

Λn
k × hom ( , U ) → Δn × hom ( , U )

for the trivial cofibrations of the projective model structure
2) Projective cofibrant replacements of the maps

U ∪φ−1(U ) V → T ,

which are associated to all elementary distinguished squares (7.4)
3) The map

∅ → hom ( , ∅).

from the empty simplicial presheaf to the presheaf which is represented by the
empty scheme

We also state that F is the smallest set which contains the cofibrations listed above
and satisfies the closure property that if A → B is a member of F, then so are all
morphisms

(B × ∂Δn) ∪ (A × Δn) → B × Δn.

Then, as in Example 7.21, we can localize the projective model structure on
sPre(Sm|S)Nis with respect to the set of projective cofibrations F. In this case,
an F-injective (or F-fibrant) object X is precisely a presheaf of Kan complexes on
(Sm|S)Nis which has the BG-property. The object X therefore satisfies Nisnevich
descent in the sense that any injective fibrant model j : X → Z is a sectionwise
equivalence (Theorem 5.39).

The maps A → B of F are local weak equivalences for the Nisnevich topology,
since any such map induces a weak equivalence of simplicial sets

hom(B, Z) → hom(A, Z)

for each injective fibrant simplicial sheaf Z. It follows that the classes of local weak
equivalences and F-equivalences coincide.

We therefore have another construction of the projective local model structure for
the Nisnevich topology—see also Example 5.42.

If one adds the set of 0-sections

U → A
1 × U

of the affine line over all smooth S-schemes U to the set F above, then the corre-
sponding F-injective objects are precisely the presheaves of Kan complexes which
satisfy motivic descent, and the F-equivalences coincide with the motivic weak
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equivalences of simplicial presheaves on the smooth site (Sm|S)Nis . In that case,
the corresponding F-local structure is the projective motivic model structure for the
smooth Nisnevich site. See Example 5.43

We close this section with a return to the setting in which we formally invert a
set F of cofibrations of simplicial presheaves. The following result is the F-local
analogue of Corollary 4.41.

Lemma 7.23 Suppose that the maps i : C → D and j : E → F are cofibrations
of simplicial presheaves. Then the induced cofibration

(i, j ) : (D × E) ∪ (C × F ) → D × F

is an F-equivalence if either i of j is an F-equivalence.

Proof The map (i, j ) is plainly a cofibration.
The set of cofibrations F satisfies the closure property C2, which asserts that if

i : A → B is a member of F and j : C → D is an α-bounded cofibration, then the
cofibration

(i, j ) : (B × C) ∪ (A × D) → B × D

is a member of F, and is therefore an F-equivalence.
It follows that the map (i, j ) is an F-equivalence for all cofibrations j : C → D.

In effect, the class of cofibrations j for which the maps (i, j ) are f -equivalences is
closed under composition, pushouts and retractions, while the class of all cofibrations
is generated by the α-bounded cofibrations under these operations.

It also follows, more generally, that the map (i, j ) is an F-equivalence for any
cofibration j and any map i in the saturation of the set F.

In particular, if j : X → LFX is the standard F-fibrant model and E is any
simplicial presheaf, then the induced cofibration

1 × j : E × X → E × LFX

is an F-equivalence.
It follows that if the map g : X → Y is an F-equivalence, then so is the map

1 × g : E × X → E × Y.

To show this, one uses the commutative diagram

E × X
1×g

��

1×j

��

E × Y

1×j

��
E × LFX

1×g∗
�� E × LFY.

The vertical maps 1 × j are F-equivalences by the previous paragraph, and the map
1 × g∗ is a sectionwise equivalence since g is an F-equivalence of F-fibrant objects.
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Finally, suppose that the cofibration i : C → D is an F-equivalence. Then the
cofibrations i × 1 in the diagram

C × E
1×j

��

i×1

��

C × F

i×1

��
D × E

1×j

�� D × F

are F-equivalences. The desired result follows, since there is a commutative diagram

C × F

(i×1)∗
��

i×1

����
���

���
���

�

(D × E) ∪ (C × F )
(i,j )

�� D × F

and the class of maps which are cofibrations and F-equivalences is closed under
pushout.

We shall need the following consequence of Lemma 7.23 later.

Corollary 7.24 Suppose that the maps i : C → D and j : E → F are cofibrations
of pointed simplicial presheaves. Then the induced cofibration

(i, j ) : (D ∧ E) ∪ (C ∧ F ) → D ∧ F

is an F-equivalence if either i of j is an F-equivalence.

The proof of this result is an exercise.

7.3 Properness

In this section, we establish a condition on the cofibration f : A → B which
guarantees properness of the f -local model structure. Theorem 7.27 says that we
have this property if the map f is a global section ∗ → I of a simplicial presheaf I .

Lemma 7.25 Suppose that every morphism of 〈f 〉 pulls back to an f -equivalence
along all f -fibrations p : X → Y with Y f -fibrant. Then the f -local model structure
on sPre(C) is right proper.

Say that a map g : A → Y pulls back to an f -equivalence along q : Z → W if
for every diagram

Z

q

��
A

g

�� Y �� W
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the induced map g∗ : A ×W Z → Y ×W Z is an f -equivalence.

Proof [Proof of Lemma 7.25] Suppose given a pullback diagram

A ×Y X
g∗ ��

��

X

p

��
A

g

�� Y

with g an f -equivalence and p an f -fibration. We want to show, under the conditions
of the Lemma, that the map g∗ is an f -equivalence.

Form the diagram

A ×Y X
g∗ ��

��

X
j

��

p

��

X′

q

��
A

g

�� Y
η

�� LY

where the cofibration j is in the saturation of 〈f 〉 (and is therefore an f -equiva-
lence) and the map q is f -injective. The map q is an f -fibration by Lemma 7.11. All
cofibrations in the saturation of 〈f 〉 pull back to f -equivalences along f -fibrations
with f -fibrant targets by assumption and exactness of pullback, so the map η∗ :
Y ×LY X′ → X′ is an f -equivalence. The diagram

X

 ��

,,.
..

..
.

Y ×LY X′

����
��
��
�

Y

therefore defines an f -equivalence of f -fibrations, which is a weak equivalence of
f -fibrations. This weak equivalence pulls back along g to a weak equivalence of
f -fibrations

A ×Y X

 ��

��/
//

//
//

X ×LY X′

����
��
��
�

A

over A, by properness of the injective model structure (Lemma 4.37). It follows that g
pulls back to an f -equivalence along p if and only if it pulls back to an f -equivalence
along q.
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Use Lemma 7.11 again to construct a diagram

A
g

��

j

��

Y

η

��
V

q ′
�� LY

where q ′ is an f -fibration, and j is in the saturation of 〈f 〉. Then the map q ′ is a
trivial f -fibration, and it pulls back to an f -equivalence along q. The maps j and η

pull back to a f -equivalences along q by assumption. It follows that g pulls back to
an f -equivalence along q.

Lemma 7.26 Suppose that the cofibration f has the form f : ∗ → I for some
simplicial presheaf I , and that p : X → Y is an f -fibration of simplicial presheaves
such that Y is f -fibrant. Then every map f∗ : A → A × I pulls back to an f -
equivalence along p.

Proof Suppose given the iterated pullback diagram

A ×Y X
f ′

��

��

(A × I ) ×Y X ��

��

X

p

��
A

f∗
�� A × I

g

�� Y

We want to show that the map f ′ is an f -equivalence.
The map g is simplicially homotopic to a composite

A × I
pr−→ A

g′−→ Y

since Y is f -fibrant, so it suffices to assume that g has this form since the injective
model structure is proper. There is an iterated pullback diagram

V
1×f

��

��

V × I
pr

��

��

V ��

��

X

p

��
A

1×f

�� A × I
pr

�� A
g′

�� Y

where f∗ = 1 × f : A → A × I . The map 1 × f : V → V × I is an f -equivalence
by Lemma 7.23.

Theorem 7.27 The f -local model structure for the category sPre(C) of simplicial
presheaves is proper if the cofibration f has the form f : ∗ → I .
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Proof We only need to verify right properness.
On account of Lemma 7.25, it suffices to assume that all maps

B ∪A (A × I )
(i,f )−−→ B × I

pull back to f -equivalences along all f -fibrations p : X → Y with Y f -fibrant.
Lemma 7.26 says that the maps A → A × I and B → B × I pull back to

cofibrations which are f -equivalences along all such p. Pullback preserves pushouts,
and the result follows.

Example 7.28 It is an immediate consequence of Theorem 7.27 that the motivic
model structure of Example 7.21 on the category sPre(Sm|S)Nis of simplicial pre-
sheaves on the smooth Nisnevich site (Sm|S)Nis is proper.

The motivic weak equivalences are the F-equivalences for the F-local model
structure (the motivic projective model structure) which is constructed in Example
7.22.

The projective motivic model structure is right proper. In effect, suppose given a
pullback diagram

Z ×Y X
u∗ ��

��

X

p

��
Z

u
�� Y

in which p is an F-fibration and u is an F-local (hence motivic) equivalence. Take a
factorization

X
i ��

p ���
��

��
��

U

q

��
Y

in which the map q is a motivic fibration and i is a motivic equivalence. Then i is a
F-equivalence between F-fibrant objects of the slice category sPre((Sm|S)Nis)/Y ,
and so i is a sectionwise weak equivalence, by Lemma 7.2 and a standard argument.
The maps p and q are sectionwise Kan fibrations, so that the map

Z ×Y X → Z ×Y U

is a sectionwise weak equivalence. The map Z ×Y U → U is a motivic weak
equivalence since the motivic model structure is proper. It follows that the map

u∗ : Z ×Y X → X

is a motivic weak equivalence.



Part III
Sheaf Cohomology Theory



Chapter 8
Homology Sheaves and Cohomology Groups

The concept of local weak equivalence has its origins in, and restricts to, the classical
notion of quasi-isomorphism of sheaves of chain complexes.

In particular a morphism C → D of ordinary chain complexes of sheaves is a
quasi-isomorphism if and only if the associated map Γ (C) → Γ (D) of simplicial
sheaves of abelian groups is a local weak equivalence of simplicial sheaves when
one forgets the group structure (see Lemma 8.4). Here, Γ is one of the functors of
Dold–Kan correspondence which gives the equivalence of ordinary chain complexes
with simplicial abelian groups. This relation between quasi-isomorphisms and local
weak equivalences is a straightforward generalization of the standard relation be-
tween homology isomorphisms of chain complexes and weak equivalences of their
associated simplicial abelian groups [32].

The classical relation between chain complexes and simplicial abelian groups
is somewhat deceptive, however, in that the Dold–Kan correspondence induces a
Quillen equivalence between the model structure on simplicial abelian groups, which
is induced from the standard model structure on simplicial sets, and the naive model
structure on ordinary chain complexes from basic homological algebra. That naive
model structure for chain complexes has no analogue for sheaves or presheaves of
chain complexes: if one has a map C → D of sheaves of chain complexes which
consists of sheaf epimorphisms Cn → Dn for n > 0, then the corresponding map
Γ (C) → Γ (D) of simplicial abelian sheaves is certainly a local fibration, but it is
usually not an injective fibration.

It is, however, relatively straightforward to show that the injective model structure
on simplicial presheaves induces a model structure on sheaves (or presheaves) of sim-
plicial abelian groups. For this structure, a map A → B is a local weak equivalence
(respectively injective fibration) if the underlying map of simplicial presheaves is a
local weak equivalence (respectively injective fibration). This is the injective model
structure for simplicial abelian presheaves—its existence is a special case of Theorem
8.6, which deals with simplicial R-modules for a presheaf of commutative unitary
rings R.

The most interesting detail in the proof of the simplicial abelian groups variant
of Theorem 8.6 is that the free abelian group functor takes local weak equivalences
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X → Y of simplicial presheaves to local weak equivalences Z(X) → Z(Y ) of sim-
plicial abelian presheaves. This is proved in Lemma 8.2, with a Boolean localization
argument. The corresponding statement for simplicial sheaves is a form of a con-
jecture of Illusie that was first proved by van Osdol [101]. It is, and always was, a
simple exercise to prove this statement for toposes having enough points.

The Dold–Kan correspondence induces an injective model structure for sheaves
of ordinary chain complexes in which the cofibrant objects and cofibrant models (or
resolutions) take the place of chain complexes of projectives and projective reso-
lutions, respectively. This model structure extends to several model structures for
categories based on unbounded complexes, all of which model the full derived cat-
egory. These are effectively stable homotopy theories—the first of these structures
appears in Proposition 8.16, which gives a model structure for spectrum objects in
chain complexes, suitably defined.

The injective model structures for simplicial abelian presheaves and simplicial
abelian sheaves are Quillen equivalent, by analogy with the pattern established for
simplicial presheaves and simplicial sheaves in Theorem 5.9. Lemma 8.2 also implies
that the forgetful and free abelian functor together determine a Quillen adjunction

Z : sPre � sPreZ : u

between the respective injective model structures. There is a corresponding result for
simplicial sheaves and simplicial abelian sheaves. It follows in particular that there
is a relation

[X, K(A, n)] = [X, u(K(A, n))] ∼= [Z(X), K(A, n)],

between morphisms in the respective homotopy categories, where

K(A, n) = Γ (A[−n])

is the Eilenberg–Mac Lane object associated to an abelian presheaf A, given by
the standard method of applying the Dold–Kan correspondence functor to the chain
complex A[−n] which consists of a copy of A concentrated in degree n. This relation
makes possible various descriptions of the cohomology H ∗(X, A) of a simplicial
presheaf X with coefficients in the abelian presheaf A. Most succinctly, one defines

Hn(X.A) := [X, K(A, n)].

One can replace A by an injective resolution J up to local weak equivalence in the
chain complex category, and one shows in Lemma 8.24 that the good truncations of
the shifts of the resolution J satisfy descent. We can, moreover, identify H ∗(X, A)
with the cohomology groups of bicomplex hom (X, J ) which is associated to the
simplicial presheaf X and the cochain complex J , as is done in Theorem 8.25.
It follows, in particular, that sheaf cohomology is representable in the homotopy
category in the sense that there is an isomorphism

Hn(C, Ã) ∼= [∗, K(A, n)],
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where Ã is the sheaf associated to A and ∗ is the terminal sheaf or presheaf—this
statement appears as Theorem 8.26.

The bicomplex hom (X, J ) is a fundamental calculational device. It leads directly
to the universal coefficients spectral sequence

E
p,q
2 = Extq (H̃p(X, Z), Ã) ⇒ Hp+q(X, A)

of Corollary 8.28. There is a corresponding spectral sequence for R-module
categories, in Lemma 8.30.

The universal coefficients spectral sequence was central to the original method
for showing that a map X → Y of simplicial presheaves which induces homology
sheaf isomorphisms

H̃∗(X, R)
∼=−→ H̃∗(Y , R)

must also induce cohomology isomorphisms

H ∗(Y , A)
∼=−→ H ∗(X, A).

for any R-module A. One now uses a trivial model theoretic argument.
This observation about the relation between homology sheaves and cohomology

groups is the heart of the sheaf-theoretic approach to proving Suslin’s rigidity theorem
for the K-theory of algebraically closed fields, which first appeared in [49].

At one time, cup products in sheaf cohomology were defined by using Godement
resolutions, as in [79]. Godement resolutions are defined only in toposes having
enough points, and this means, for example, that there is no way to use this tech-
nique to construct cup products in flat cohomology. We define cup products for the
cohomology of simplicial presheaves on arbitrary Grothendieck sites in Sect. 8.4.
It has been known since [49] that one can construct such cup products for arbitrary
sites, but the method presented in that paper depends on the Verdier hypercovering
theorem. The cup product construction which is displayed here uses cocycle category
methods, and it is straightforward to define and use.

The localization methods of Chap. 7 apply equally well to categories of chain
complex objects, provided that one starts from a simplicial presheaf map, or set of
maps, that is to be formally inverted in the chain complex category. This is the subject
of Sect. 8.5.

The model structure for simplicial R-modules that is obtained by formally invert-
ing a set of maps F in the injective model structure is constructed in Theorem 8.39.
The existence of a motivic model structure for presheaves of chain complexes on the
smooth Nisnevich site is one of the consequences.

One can, alternatively, formally invert a set of maps F in the projective model
structure for simplicial R-modules, and in a projective model structure for a linear
variant of the category of simplicial R-modules. This is done in the last section of
this chapter, with the main result being Theorem 8.48.

Voevodsky’s category of simplicial presheaves with transfers on the smooth Nis-
nevich site for a perfect field k is such a linear variant. These objects are contravariant
additive functors on the category Cork of finite correspondences over k. Formally
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inverting a set of cofibrant replacements for the generating trivial cofibrations for the
injective model structure gives a Nisnevich local model structure for the category of
simplicial presheaves with transfers. Going further, in the sense that one also for-
mally contracts the affine line to a point, gives a model structure whose associated
homotopy category is Voevodsky’s category of effective motives over the field k. See
Example 8.49.

8.1 Chain Complexes

Suppose that C is a fixed Grothendieck site, and suppose that R is a presheaf of
commutative rings with unit on C.

Write PreR = PreR(C) for the category of R-modules, or abelian presheaves
which have an R-module structure. Then sPreR is the category of simplicial R-
modules, Ch+ (PreR) is the category of positively graded (i.e. ordinary) chain
complexes in PreR , and Ch (PreR) is the category of unbounded chain complexes in
PreR .

Much of the time in applications, R is a constant presheaf of rings such as Z or
Z/n. In particular, PreZ is the category of presheaves of abelian groups, sPreZ is
presheaves of simplicial abelian groups, and Ch (Z) and Ch+ (Z) are categories of
presheaves of chain complexes. The category PreZ/n is the category of n-torsion
abelian presheaves, and so on.

All of these presheaf categories have corresponding sheaf categories, based on the
category ShvR of sheaves in R-modules. Explicitly, an object E of the category ShvR

is an R-module which happens to be a sheaf. Thus, sShvR is the category of sim-
plicial sheaves in R-modules, Ch+ (ShvR) is the category of positively graded chain
complexes of sheaves in R-modules, and Ch (ShvR) is the category of unbounded
complexes of sheaves in R-modules.

There is a free R-module functor

R : sPre(C) → sPreR ,

written X �→ R(X) for simplicial presheaves X, where R(X)n is the free R-module
on the presheaf Xn. This functor is left adjoint to the forgetful functor

u : sPreR → sPre(C).

The simplicial sheaf associated to R(X) is denoted by R̃(X).
One also writes R(X) for the presheaf of Moore chains on X, which is the complex

with R(X)n in degree n, with boundary maps

∂ =
n∑

i=0

(−1)idi : R(X)n → R(X)n−1.

The homology sheaf H̃n(X, R) is the sheaf associated to the presheaf Hn(R(X)),
where the latter is the nth homology presheaf of the Moore complex R(X). More
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generally, if A is an R-module, then H̃n(X, A) is the sheaf associated to the presheaf
Hn(R(X) ⊗ A).

Remark 8.1 Despite the notation, the homology sheaves H̃n(X, R) have no relation
to the classical reduced homology of a pointed space. The homology sheaf H̃n(X, R)
has a reduced variant, which can be defined as the nth homology sheaf of the kernel
R•(X) of the map R(X) → R(∗). The simplicial R-module R•(X) is the reduced
free simplicial R-module for the pointed simplicial presheaf X. See also Sects. 8.4
and 10.7.

The normalized chains functor induces a functor

N : sPreR → Ch+ (PreR),

which is part of an equivalence of categories (the Dold–Kan correspondence [32,
III.2.3])

N : sPreR 
 Ch+ (PreR) : Γ.

The normalized chain complex NA is the complex with

NAn = ∩n−1
i=0 ker (di)

and boundary

∂ = (−1)ndn : NAn → NAn−1.

It is well known [32, III.2.4] that the obvious natural inclusion NA ⊂ A of NA in
the Moore chains is split by killing degeneracies, and is a homology isomorphism.
This map induces a natural isomorphism

H∗(NA) ∼= H∗(A)

of homology presheaves, and hence an isomorphism

H̃∗(NA) ∼= H̃∗(A)

of homology sheaves.

Lemma 8.2 Suppose that f : X → Y is a local weak equivalence of simplicial
presheaves. Then the induced map f∗ : R(X) → R(Y ) of simplicial R-modules is a
local weak equivalence.

Proof It is enough to assume that R is a sheaf of rings, and show that if f : X → Y

is a local equivalence of locally fibrant simplicial sheaves, then the induced map
f∗ : R̃(X) → R̃(Y ) is a local equivalence of simplicial abelian sheaves.

We further assume that the map f : X → Y is a morphism of locally fibrant
simplicial sheaves on a complete Boolean algebra B, since the inverse image functor
p∗ for a Boolean localization p : Shv(B) → Shv(C) commutes with the free R-
module functor.
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In this case, the map f : X → Y is a sectionwise weak equivalence, so that
f∗ : R(X) → R(Y ) is a sectionwise weak equivalence, and so the map f∗ : R̃(X) →
R̃(Y ) of associated sheaves is a local weak equivalence.

Remark 8.3 At one time, Lemma 8.2 and its variants were forms of the Illusie
conjecture. There are various proofs of this result in the literature: the earliest, by
van Osdol [101], is one of the first applications of Boolean localization. See also
[49].

Suppose that A is a simplicial abelian group. Then A is a Kan complex, and we
know [32, III.2.7] that there are natural isomorphisms

πn(A, 0) ∼= Hn(NA)

for n ≥ 0. There is a canonical isomorphism

πn(A, 0)
∼=−→ πn(A, a)

which is defined for any a ∈ A0 by [α] �→ [α + a] where we have written a for the
composite

Δn → Δ0 a−→A

The collection of these isomorphisms, taken together, define isomorphisms

πn(A, 0) × A0

∼= ��

pr ""�
��

��
��

�
πnA

  00
00
00

A0

of abelian groups fibred over A0, and these isomorphisms are natural in simplicial
abelian group homomorphisms.

Lemma 8.4 A map A → B of simplicial R-modules induces a local weak equiv-
alence u(A) → u(B) of simplicial presheaves if and only if the induced map
NA → NB induces an isomorphism in all homology sheaves.

Proof The map NA → NB induces an isomorphism in all homology sheaves if and
only if the map π̃0(A) → π̃0(B) and all maps π̃n(A, 0) → π̃n(B, 0) are isomorphisms
of sheaves. The diagram of sheaves associated to the presheaf diagram

πn(A, 0) × A0
��

��

πn(B, 0) × B0

��
A0

�� B0

is a pullback if and only if the map π̃n(A, 0) → π̃n(B, 0) is an isomorphism of
sheaves.
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Corollary 8.5 Suppose given a pushout diagram

A ��

i

��

C

i∗
��

B �� D

in simplicial R-modules, such that the map i is a monomorphism and a homology
sheaf isomorphism. Then the induced map i∗ is a homology sheaf isomorphism.

Proof The cokernel of the monomorphism i∗ is B/A, which is acyclic in the sense
that H̃∗(B/A) = 0. The Moore chains functor is exact, and the short exact sequence

0 → C
i∗−→ D → B/A → 0

of simplicial R-modules induces a long exact sequence

. . . → H̃n(C)
i∗−→ H̃n(D) → H̃n(B/A)

∂−→ H̃n−1(A) → . . .

∂−→ H̃0(C)
i∗−→ H̃0(D) → H̃0(B/A) → 0

in homology sheaves. It follows that all maps

H̃n(C)
i∗−→ H̃n(D)

are isomorphisms.
Say that a map A → B of simplicial R-modules is a local weak equivalence

(respectively injective fibration) if the simplicial presheaf map u(A) → u(B) is a
local weak equivalence (respectively injective fibration).

A cofibration of simplicial R-modules is a map which has the left lifting property
with respect to all trivial injective fibrations.

In view of Lemma 8.4, the morphism A → B is a local weak equivalence if and
only if the induced maps NA → NB and A → B of normalized and Moore chains,
respectively, are homology sheaf isomorphisms. Homology sheaf isomorphisms are
often called quasi-isomorphisms.

Analogous definitions are available for morphisms of sheaves of simplicial R-
modules. Say that a map E → F in sShvR is a local weak equivalence (respectively
injective fibration) if the underlying simplicial sheaf map u(E) → u(F ) is a local
weak equivalence (respectively injective fibration). Cofibrations are defined by a left
lifting property with respect to trivial fibrations.

If the simplicial presheaf map i : A → B is a cofibration, then the induced
map i∗ : R(A) → R(B) of simplicial R-modules is a cofibration. The map i∗ is
a monomorphism, because the free R-module functor preserves monomorphisms.
The corresponding map i∗ : R̃(A) → R̃(B) of associated simplicial sheaves is a
cofibration and a monomorphism of simplicial sheaves in R-modules.
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If A and B are simplicial R-modules, their tensor product A⊗B is the simplicial
R-module which is defined in sections (and in all simplicial degrees) by

(A ⊗ B)(U ) = A(U ) ⊗R(U ) B(U )

for U in the underlying site C.

Theorem 8.6

1) With the definitions of local weak equivalence, injective fibration and cofibration
given above, the category sPreR of simplicial R-modules satisfies the axioms for
a proper closed simplicial model category. This model structure is cofibrantly
generated. Every cofibration is a monomorphism.

2) With the corresponding definitions of local weak equivalence, injective fibration
and cofibration, the category sShvR of simplicial sheaves in R-modules satisfies
the axioms for a proper closed simplicial model category. This model structure is
cofibrantly generated. Every cofibration is a monomorphism.

3) The inclusion and associated sheaf functors define a Quillen equivalence

L2 : sPreR � sShvR : i

between the model structures of parts 1) and 2).

Proof The injective model structure on sPre is cofibrantly generated. It follows
from this, together with Lemma 8.2 and Corollary 8.5, that every map f : A → B

of sPreR has factorizations

C
p

���
��

��
��

A

i
��������� f

��

j ���
��

��
��

B

D

q

���������

such that p is an injective fibration, i is a trivial cofibration which has the left lifting
property with respect to all injective fibrations, q is a trivial injective fibration, j is
a cofibration, and both i and j are monomorphisms. This proves the factorization
axiom CM5. It also follows that every trivial cofibration is a retract of a map of
the form i and therefore has the left lifting property with respect to all injective
fibrations, giving CM4. The remaining closed model axioms for the category sPreR

of simplicial R-modules are easy to verify.
Every cofibration is a retract of a map of the form j above, so that every cofibration

is a monomorphism.
The generating set A → B of cofibrations (respectively trivial cofibrations)

for simplicial presheaves induces a generating set R(A) → R(B) of cofibrations
(respectively trivial cofibrations) for the category of simplicial R-modules.
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The simplicial structure is given by the function complexes hom(A, B), where
hom(A, B)n is the abelian group of homomorphisms

A ⊗ R(Δn) → B.

If A → B is a cofibration of simplicial presheaves and j : K → L is a cofibration
of simplicial sets, then the cofibration

(B × K) ∪ (A × L) ⊂ B × L

induces a cofibration

(R(B) ⊗ R(K)) ∪ (R(A) ⊗ R(L)) ⊂ R(B) ⊗ R(L)

which is a local weak equivalence if either A → B is a local weak equivalence or
K → L is a weak equivalence of simplicial sets, by Lemma 8.2 and Corollary 8.5.
It follows that if C → D is a cofibration of sPreR , then the map

(D ⊗ R(K)) ∪ (C ⊗ R(L)) → D ⊗ R(L)

is a cofibration, which is a local weak equivalence if either C → D is a local weak
equivalence or K → L is a weak equivalence of simplicial sets.

Left properness is proved with a comparison of long exact sequences in homology
sheaves, which starts with the observation that every cofibration is a monomorphism.
Right properness is automatic, from the corresponding property for the injective
model structure for simplicial presheaves.

The proof of statement 2), for simplicial sheaves in R-modules is completely
analogous, and the verification of 3) follows the pattern established in the proof of
Theorem 5.9.

The model structures of Theorem 8.6 are the injective model structures for the
categories of presheaves and sheaves of simplicial R-modules. The Quillen equiva-
lence between the two structures is analogous to and is a consequence of the Quillen
equivalence of Theorem 5.9 between the injective model structures for simplicial
presheaves and simplicial sheaves.

It is an immediate consequence of the definitions that the adjunction

R : sPre(C) � sPreR : u

defines a Quillen adjunction between the respective injective model structures. In
particular, if X is a simplicial presheaf and A is a simplicial R-module, then there is
an isomorphism

[R(X), A] ∼= [X, u(A)]

relating morphisms in the respective homotopy categories, which is natural in X

and A.
If A is a simplicial R-module and K is a simplicial presheaf on C, we shall write

A ⊗ K := A ⊗ R(K). (8.1)
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Then, for example, the n-simplices of the function complex hom(A, B) can be written
as simplicial R-module maps A ⊗ Δn → B.

The Dold–Kan correspondence

N : sPreR 
 Ch+ (PreR) : Γ.

induces an injective model structure on the category Ch+ (PreR) of presheaves of
chain complexes, from the corresponding model structure on the category sPreR of
simplicial modules given by Theorem 8.6.

A morphism f : C → D of Ch+ (PreR) is said to be a local weak equivalence
(respectively cofibration, injective fibration) if the induced map f∗ : Γ C → Γ D is
a local weak equivalence (respectively cofibration, injective fibration) of simplicial
R-modules.

Similar definitions are made for chain complexes in sheaves of R-modules, with
respect to the injective model structure on sheaves of simplicial R-modules.

We then have the following corollary of Theorem 8.6:

Corollary 8.7

1) With the above definitions, the category Ch+ (PreR) of ordinary chain com-
plexes in R-modules satisfies the axioms for a proper closed simplicial model
category. This model structure is cofibrantly generated. All cofibrations are
monomorphisms.

2) With the above definitions, the category Ch+ (ShvR) of ordinary chain com-
plexes in sheaves in R-modules satisfies the axioms for a proper closed simplicial
model category. This model structure is cofibrantly generated. All cofibrations
are monomorphisms.

3) The inclusion and associated sheaf functors define a Quillen equivalence

L2 : Ch+ (PreR) � Ch+ (ShvR) : i

between the (injective) model structures of parts 1) and 2).

Remark 8.8 Every injective fibration p : C → D of Ch+ (PreR) corresponds to an
injective fibration p∗ : Γ C → Γ D of simplicial R-modules. The map p∗ is a Kan
fibration in each section (Lemma 5.12), so that the maps p : Cn → Dn are surjective
in all sections for n ≥ 1 [32, III.2.11]. The traditional identification of fibrations of
simplical abelian groups with chain complex morphisms that are surjective in non-
zero degrees fails for the injective model structures of Theorem 8.6 and Corollary 8.7.
Chain complex morphisms C → D which are local epimorphisms in nonzero degrees
correspond to local fibrations under the Dold–Kan correspondence.

The identification of cofibrant chain complexes with complexes of projective
modules also fails for the injective model structures.

The simplicial model structure of Theorem 8.6 for the category of simplicial
R-modules can be enriched follows:
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Lemma 8.9 Suppose that the maps i : C → D and j : E → F are cofibrations of
simplicial R-modules. Then the induced map

(i, j ) : (D ⊗ E) ∪ (C ⊗ F ) → D ⊗ F

is a cofibration, which is a local weak equivalence if either i or j is a local weak
equivalence.

Proof Fix a choice of cofibration i. The class of cofibrations j for which the
map (i, j ) is a cofibration (respectively trivial cofibration) is closed under pushout,
composition and retract. It follows that it suffices to check that the map

(Ri, Rj ) : (R(B) ⊗ R(U )) ∪ (R(A) ⊗ R(V )) → R(B) ⊗ R(V )

which is induced by cofibrations i : A → B and j : U → V of simplicial presheaves
is a cofibration, which is trivial if either i or j is a trivial cofibration of simplicial
presheaves. The map (Ri, Rj ) is isomorphic to the map R(i, j ) which one obtains
by applying the functor R to the simplicial presheaf map

(i, j ) : (B × U ) ∪ (A × V ) → B × V ,

which map is a cofibration which is trivial if either i or j is trivial, by Corollary 4.41.

Corollary 8.10 The bifunctor

(A, K) �→ A ⊗ K

preserves local weak equivalences in simplicial R-modules A and simplicial pre-
sheaves K .

Proof The functor (A, K) �→ A ⊗ K preserves sectionwise weak equivalences in
A. Thus, for example, it suffices to show that the map dg ⊗ 1 : A ⊗ K → B ⊗ K

is a local weak equivalence if g : A → B is a local weak equivalence of cofibrant
objects A. But this follows from Lemma 8.9.

The map 1 ⊗ g : A ⊗ K → A ⊗ L is a local weak equivalence if g : K → L

is a local weak equivalence of simplicial presheaves, since g∗ : R(K) → R(L) is
a local weak equivalence of cofibrant simplicial R-modules by Lemma 8.2, and we
can assume that the simplicial R-module A is cofibrant.

We close this section with a bounded subobject statement for simplicial R-
modules that will be used later. Observe that there is no requirement for any of
the monomorphisms in the statement of the following Lemma to be cofibrations.

Suppose that α is a regular cardinal such that α > | Mor (C)| and α > |R|.
Lemma 8.11 Suppose that A and X are subobjects of a simplicial R-module Y ,
such that the inclusion X → Y is a local weak equivalence and such that A is α-
bounded. Then there is an α-bounded subobject B of Y such that A ⊂ B and the
map B ∩ X → B is a local weak equivalence.
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Proof The homology sheaves H̃∗(Y/X) are trivial, and there is a presheaf
isomorphism

lim−→
B⊂Y

H∗(B/(B ∩ X))
∼=−→ H∗(Y/X)

where B varies over the filtered category of α-bounded subobjects of Y .
All classes γ ∈ H∗(Y/X)(U ) are locally trivial. It follows that there is an α-

bounded subobject B1 ⊂ Y with A ⊂ B such that all elements of H∗(A/(A∩X))(U )
map to locally trivial classes of H∗(B1/(B1 ∩ X)).

Continue inductively, to produce a countable ascending sequence of subobjects

A ⊂ B1 ⊂ B2 ⊂ . . .

such that all elements of H∗(Bi/(Bi ∩ X) map to locally trivial elements of

H∗(Bi+1/(Bi+1 ∩ X)).

Set B = ∪i Bi . By construction, all elements of the presheaves H∗(B/(B ∩ X)) are
locally trivial, so that the maps

H∗(B ∩ X) → H∗(X)

induce sheaf isomorphisms.

8.2 The Derived Category

Every ordinary chain complex C can be identified with an unbounded chain complex
τ ∗(C) by putting 0 in negative degrees. The right adjoint of the resulting functor τ ∗
is the good truncation D �→ τ (D) at level 0, where

τ (D)n =
{

ker (∂ : D0 → D−1) if n = 0, and

Dn if n > 0.

The functor τ ∗ is fully faithful.
If D is an unbounded complex and n ∈ Z, then the shifted complex D[n] is

defined by

D[n]p = Dp+n.

If C is an ordinary chain complex and n ∈ Z, define the shifted complex C[n] by

C[n] = τ (τ ∗(C)[n]).
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If n > 0, then C[−n] is the complex with C[−n]p = Cp−n for p ≥ n and
C[−n]p = 0 for p < n, while C[n] is the complex with C[n]p = Cp+n for p > 0
and

C[n]0 = ker (∂ : Cn → Cn−1).

There is an adjunction isomorphism

hom (C[−n], D) ∼= hom (C, D[n])

for ordinary chain complexes C and D, and all n > 0.
The functor C �→ C[−1] is a suspension functor for ordinary chain complexes

C, while C �→ C[1] is a loop functor.
A spectrum D in chain complexes consists of ordinary chain complexes Dn, n ≥ 0,

together with chain complex maps

σ : Dn[−1] → Dn+1

called bonding maps. A map of spectra f : D → E in chain complexes consists
of chain complex maps f : Dn → En which respect structure in the sense that the
diagrams

Dn[−1]
σ ��

f [−1]

��

Dn+1

f

��
En[−1]

σ

�� En+1

commute. We shall write Spt(Ch+ ( )) to denote the corresponding category of spec-
tra, wherever it occurs. For example, Spt(Ch+ (PreR)) is the category of spectra in
chain complexes of R-modules.

Example 8.12 Suppose that E is an unbounded chain complex. There is a canonical
map

σ : τ (E)[−1] → τ (E[−1])

which is defined by the diagram

...

��

...

��
E1

��

��

E1

��
ker (∂)

��

�� E0

��
0 �� ker (∂)
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Replacing E by E[−n] gives maps

σ : τ (E[−n]))[−1] → τ (E[ − n − 1]).

These are the bonding maps for a spectrum object τ∗(E) with

τ∗(E)n = τ (E[−n]).

Thus, every unbounded chain complex E defines a spectrum object τ∗(E) in chain
complexes. The assignment E �→ τ∗(E) is functorial.

Example 8.13 If D is a spectrum object in chain complexes, the maps

τ ∗(Dn)[−1] = τ ∗(Dn[−1]) → τ ∗(Dn+1)

have adjoints τ ∗(Dn) → τ ∗(Dn+1)[1] in the category of unbounded complexes.
Write τ ∗(D) for the colimit of the diagram

τ ∗(D0) → τ ∗(D1)[1] → τ ∗(D2)[2] → . . .

in the unbounded chain complex category. Then it is not hard to see that, for the
spectrum object τ∗(τ ∗(D)), the complex τ∗(τ ∗(D))n is naturally isomorphic to the
colimit of the diagram of chain complexes

Dn → Dn+1[1] → Dn+2[2] → . . .

and that the “adjoint bonding maps”

τ∗(τ ∗(D))n → τ∗(τ ∗(D))n+1[1]

are the isomorphisms which are determined by the diagrams

Dn ��

��

Dn+1[1] ��

��

Dn+2[2] ��

��

. . .

Dn+1[1] �� Dn+2[2] �� Dn+3[3] �� . . .

There is a canonical map

η : D → τ∗(τ ∗(D))

that is defined by maps to colimits. One usually writes

Q(D) = τ∗(τ ∗(D)).

Lemma 8.14 The suspension functor C �→ C[−1] preserves cofibrations of pre-
sheaves of chain complexes.
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Proof It is enough to show that the functor X �→ NR(X)[−1] takes cofibrations of
simplicial presheaves X to cofibrations of Ch+ (PreR).

There is an identification

R(X) = R•(X+),

where R•(X+) is the reduced part of the complex R(X+) associated to X+ = X�{∗},
pointed by ∗. The functor Y �→ R•(Y ) is left adjoint to the forgetful functor from
sPreR to pointed simplicial presheaves, and therefore preserves cofibrations.

There is a natural isomorphism

W (R•(Y )) ∼= R•(ΣY ),

where ΣY is the Kan suspension of the pointed simplicial presheaf Y , and the
Kan suspension preserves cofibrations of pointed simplicial sets (or presheaves) [32,
III.5]. The isomorphism

N (W (R•(Y ))) ∼= NR•(Y )[−1]

defines the simplicial R-module W (R•(Y )).
Say that a map f : E → F of spectra in chain complexes is a strict weak

equivalence (respectively strict fibration) if all maps f : En → Fn are local weak
equivalences (respectively injective fibrations).

A cofibration is a map i : A → B of spectrum objects such that

1) the map A0 → B0 is a cofibration of chain complexes, and
2) all induced maps

Bn[−1] ∪An[−1] An+1 → Bn+1

are cofibrations.

It follows from Lemma 8.14 that if i : A → B is a cofibration of spectrum objects
then all component maps i : An → Bn are cofibrations of chain complexes.

Lemma 8.15 With the definitions of strict equivalence, strict fibration and cofibra-
tion given above, the category Spt(Ch+ (PreR)) satisfies the axioms for a proper
closed simplicial model category.
The proof of this result is a formality. The model structure of Lemma 8.15 is the
strict model structure for the category of spectra in chain complexes.

Say that a map f : A → B of spectrum objects in chain complexes is a stable
equivalence if the induced map f∗ : Q(A) → Q(B) is a strict equivalence.

A map f : A → B is a stable equivalence of spectrum objects if and only if
the induced map f∗ : τ ∗(A) → τ ∗(B) of unbounded complexes is a homology
sheaf isomorphism. A map g : E → F of unbounded complexes induces a stable
equivalence g∗ : τ∗(E) → τ∗(F ) if and only if g is a homology sheaf isomorphism.

A map p : C → D of spectrum objects is said to be a stable fibration if it has
the right lifting property with respect to all maps which are cofibrations and stable
equivalences.
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Proposition 8.16 The classes of cofibrations, stable equivalences and stable fibra-
tions give the category Spt(Ch+ (PreR)) the structure of a proper closed simplicial
model category.

Proof The proof uses a method of Bousfield and Friedlander [13], [32, X.4]. The
result is a formal consequence of the following assertions:

A4 The functor Q preserves strict weak equivalences.
A5 The maps ηQC and Q(ηC) are strict weak equivalences for all spectrum objects

C.
A6 The class of stable equivalences is closed under pullback along all stable

fibrations, and is closed under pushout along all cofibrations.

Only the last of these statements requires proof, but it is a consequence of long
exact sequence arguments in homology in the unbounded chain complex category.
One uses Lemma 8.14 to verify the cofibration statement. The fibration statement is
proved by showing that every stable fibration p : C → D is a strict fibration, and so
the induced map τ ∗(C) → τ ∗(D) of unbounded complexes is a local epimorphism
in all degrees.

The model structure of Proposition 8.16 is the stable model structure for the
category of spectrum objects in chain complexes of R-modules. The associated
homotopy category

Ho(Spt(Ch+ (PreR)))

is the derived category for the category of presheaves (or sheaves) of R-modules.
There are multiple models for the stable category, or equivalently for the derived

category of R-modules. Here are two examples:

1) A Kan spectrum object E in simplicial R-modules consists of simplicial
R-modules An, n ≥ 0, together with bonding maps

W (An) → An+1.

A morphism E → F of Kan spectrum objects consists of morphisms En →
Fn of simplicial R-modules, which respect bonding maps in the obvious sense.
The category of Kan spectrum objects is equivalent to the category of spectrum
objects in chain complexes of R-modules via the Dold–Kan correspondence, and
therefore inherits all homotopical structure from that category.

2) A spectrum object F in simplicial R-modules consists of simplicial R-modules
Fn, n ≥ 0, together with bonding maps

S1 ⊗ An → An+1.

Here, S1 = Δ1/∂Δ1 is the simplicial circle. A morphism E → F of spectrum
objects consists of morphisms En → Fn of simplicial R-modules which respect
bonding maps. Write Spt(sPreR) for the corresponding category.
There is a strict model structure on Spt(sPreR), for which the weak equivalences
and fibrations are defined levelwise. A map E → F of spectrum objects is a



8.3 Abelian Sheaf Cohomology 207

stable equivalence if and only if the underlying map u(E) → u(F ) of presheaves
of spectra is a stable equivalence—see Sect. 10.1. The (strict) cofibrations and
the stable equivalences together determine a stable model structure, by standard
methods as in [61], or by using the localization methods of Chap. 10 — see
Example 10.88.

The existence of the natural homotopy equivalence

W (A) 
 S1 ⊗ A

for simplicial R-modules A [61, 4.1] leads to an equivalence of the strict structure for
spectrum objects in simplicial R-modules with spectrum objects in chain complexes
of R-modules, and to a Quillen equivalence of the associated stable model structures.
This is proved in Theorem 4.6 of [61]. It follows that the stable category of spec-
trum objects in chain complexes of R-modules and the stable categories for the two
categories of spectrum objects in simplicial R-modules all give Quillen equivalent
models for the derived category.

There is also a category of symmetric spectrum objects in simplicial R-modules,
with a stable model structure which gives another Quillen equivalent model for the
derived category. See Sect. 11.7 as well as [61]. This category of symmetric spectrum
objects is a good setting for constructing tensor products, just as the category of
symmetric spectra is a good setting for constructing smash products.

8.3 Abelian Sheaf Cohomology

Suppose that C is a chain complex, with associated simplicial abelian object Γ (C),
and that X is a simplicial presheaf. Recall that the cocycle category h(X, Γ (C)) has
for objects all pairs of maps

X
f←−
 U

g−→Γ (C).

The morphisms (f , g) → (f ′, g′) of h(X, Γ (C)) are the commutative diagrams of
simplicial set maps

U
f


--���
��
�

��

g

��		
			

	

X Γ (C)

V
f ′


..������
g′
		







The category h(X, Γ (C)) is isomorphic, via adjunctions, to two other categories:

1) the category whose objects are all pairs

X
f←−
 U , Z(U )

g−→Γ (C),
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where Z(U ) is the free simplicial abelian presheaf on U and g is a morphism of
simplicial abelian presheaves, and

2) the category whose objects are all pairs

X
f←−
 U , NZ(U )

g−→C,

where N is the normalized chains functor and g is a morphism of chain complexes.

Write π (C, D) for the abelian group of chain homotopy classes of maps C → D

between chain complexes C and D, and write [α] for the chain homotopy class of a
morphism α : C → D.

There is a category hM (X, C) whose objects are all pairs

X
f←−
 U , Z(U )

[g]−→ C,

where Z(U ) is the Moore complex associated to the simplicial abelian object Z(U )
(having the same name), and [g] is a chain homotopy class of morphisms of chain
complexes. A morphism θ : (f , [g]) → (f ′, [g′]) is a simplicial presheaf map θ

which makes the diagrams

U
f

�����
���

θ

��

X

V
f ′

��''''''

Z(U )
[g]

��		
			

	

[θ∗]

��

C

Z(V )
[g′]

		







commute.
Recall that there are natural chain maps i : NZ(U ) → Z(U ) and p : Z(U ) →

NZ(U ) such that p · i is the identity on NZ(U ) and that i · p is naturally chain
homotopic to the identity on the Moore complex Z(U ) [32, III.2.4].

The category hM (X, C) can then be identified up to isomorphism, via pre-
composition with the natural map i, with the category whose objects are the
pairs

X
f←−
 U , NZ(U )

[g]−→ C,

and whose morphisms θ : (f , [g]) → (f ′, [g′]) are maps θ of simplicial presheaves
such that the diagrams

U
f

�����
���

θ

��

X

V
f ′

��''''''

NZ(U )
[g]

����
���

�

[θ∗]

��

C

NZ(V )
[g′]

��������

commute.
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Lemma 8.17 Suppose given chain maps α, β : NZ(U ) → C which are chain
homotopic, and suppose that f : U → X is a local weak equivalence of simpli-
cial presheaves. Then the cocycles (f , α) and (f , β) represent the same element of
π0h(X, Γ (C)).

Proof Chain homotopies are defined by path objects for the projective model struc-
ture on the category of simplicial presheaves (with sectionwise weak equivalences).
Choose a projective cofibrant model π : W → U for this model structure. If there is
a chain homotopy α 
 β : NZ(U ) → C, then the composite maps α∗ηπ and β∗ηπ

are left homotopic for some choice of cylinder W ⊗ I for W in the projective model
structure.

This means that there is a diagram

W
π ��

1

##��
��
��
��
�

i0

��

U

α∗η

���
��

��
��

�

W W ⊗ I
h ��s�� Γ (C)

W
π

��
1

''"""""""""
i1

��

U

β∗η

//��������

where the maps s, i0, i1 are all part of the cylinder object structure for W ⊗ I , and
are sectionwise weak equivalences. It follows that

(f , α∗η) ∼ (f π , α∗ηπ ) ∼ (f πs, h) ∼ (f π , β∗ηπ ) ∼ (f , β∗η)

in π0h(X, Γ (C)).

As noted previously, we can identify h(X, Γ (C)) with the category of cocycles

X
f←− U , NZ(U )

α−→C,

where f is a local weak equivalence of simplicial presheaves and α is a chain map.
Every such cocycle determines an object

X
f←− U , NZ(U )

[α]−→ C,

of hM (X, C). This assignment defines a functor

ψ : h(X, Γ (C)) → hM (X, C).

Lemma 8.18 The functor ψ induces an isomorphism

[X, Γ (C)] ∼= π0h(X, Γ (C))
ψ∗−→∼= π0hM (X, C).
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Proof If the chain maps α, β : NZ(U ) → C are chain homotopic and f : U → X

is a local weak equivalence, then the cocycles (f , α) and (f , β) are in the same path
component of h(X, Γ (C)), by Lemma 8.17. The assignment

(f , [α]) �→ [(f , α)]

therefore defines a function

γ : π0hM (X, C) → π0h(X, Γ (C)),

and one checks that γ is the inverse of ψ∗.
The isomorphism

π0hM (X, C) ∼= [X, Γ (C)]

which results from Lemma 8.18 is a chain complex variant of the Verdier hyper-
covering theorem (Theorem 6.12). This result allows one to represent morphisms
in the homotopy category taking values in simplicial abelian presheaves by chain
homotopy classes of maps.

The simplicial presheaf Γ (C) is locally fibrant. As in the proof of Theorem 6.12,
there is a categoryHh(X, C) whose objects are pairs ([q], [α]) where [q] is a simplicial
homotopy class of a hypercover q : U → X and [α] is a chain homotopy class of
a map α : NZ(U ) → C. A morphism ([q], [α]) → ([q ′], [β]) in Hh(X, C) is a
simplicial homotopy class of maps [θ ] : U → V such that the diagrams

U[q]

�����
���

[θ ]

��

X

V
[q ′]

��''''''

NZ(U )
[α]

����
���

�

[θ∗]

��

C

NZ(V )
[β]

��������

commute.
Recall that hhyp(X, Γ (C)) is the full subcategory of h(X, Γ (C)) on those cocycles

X
q←− U

α−→Γ (C)

such that the weak equivalence q is a hypercover, or equivalently those pairs of maps

X
q←− U , NZ(U )

β−→C,

such that β is a chain map and q is a hypercover. There is a functor

γ : hhyp(X, Γ (C)) → Hh(X, C)
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which is defined by (q, β) �→ ([q], [β]), and there is a commutative diagram

π0hhyp(X, Γ (C))
γ∗ ��

∼=
��

π0Hh(X, C)

ω

��
π0h(X, Γ (C)) ∼=

�� [X, Γ (C)]

(8.2)

The isomorphisms of the diagram come from Theorem 6.5 and Lemma 6.14.
The displayed function ω is defined by sending a class [([q], [α])] to the composite

map (Γ (α) · η) · q−1 in the homotopy category. Here, Γ (α) denotes the composite
map

Z(U ) ∼= Γ (NZ(U ))
Γ (α)−−→ Γ (C)

of simplicial abelian presheaves, and h is the canonical simplicial presheaf map
η : U → Z(U ), otherwise known as the Hurewicz homomorphism. This function ω

is well defined by Lemma 8.17.
The function γ∗ in (8.2) is plainly surjective, but it is also injective by the

commutativity of the diagram. It follows that all functions in the diagram are
bijections.

The resulting bijection

π0Hh(X, C) ∼= [X, Γ (C)],

and the observation that the natural chain homotopy equivalence NZ(U ) → Z(U )
induces an isomorphism

π (NZ(U ), C) ∼= π (Z(U ), C)

in chain homotopy classes of maps, together give the following result:

Proposition 8.19 Suppose that X is a simplicial presheaf and that C is a presheaf
of chain complexes. Then there are isomorphisms

[X, Γ (C)] ∼= π0Hh(X, C) = lim−→
[p]:U→X

π (Z(U ), C).

Remark 8.20 The identification

[X, Γ (C)] ∼= lim−→
[p]:U→X

π (Z(U ), C)

of Proposition 8.19 is an older form of Lemma 8.18, which appeared as Theorem 2.1
in [49] with an argument that used the Verdier hypercovering theorem. The displayed
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colimit happens to be filtered by a calculus of fractions argument [16], but that
observation is irrelevant for the proof which is given here.

It is well known that the abelian sheaf category on a small site has enough in-
jectives, as does the abelian presheaf category. For a simple proof, observe that an
abelian presheaf I is injective if and only if it has the right lifting property with
respect to all inclusions of subobjects B ⊂ Z(U ), U ∈ C, so that one can show that
there is is an inclusion A ⊂ I with I injective by using a small object argument.

We shall identify (ordinary) cochain complexes with unbounded chain complexes
which are concentrated in degrees n ≤ 0.

Suppose that A is a sheaf of abelian groups, and let A → J be an injective
resolution of A, where of course J is a cochain complex. As usual, if n ≥ 0, then
A[−n] is the chain complex consisting of A concentrated in degree n. We consider
the shifted chain map A[−n] → J [−n].

The simplicial abelian sheaf

K(A, n) = Γ (A[−n])

which corresponds to the chain complex A[−n] under the Dold–Kan correspondence
is the Eilenberg–Mac Lane object associated to A and n.

It is an abuse, but write

K(D, n) = Γ (τ (D[−n]))

for all chain complexes D, where τ (D[−n]) is the good truncation of D[−n] in
nonnegative degrees. The simplicial abelian object K(D, n) is not an Eilenberg–Mac
Lane object in general, because it potentially has more than one nontrivial sheaf of
homotopy groups.

There are isomorphisms

π (τ ∗(C), D[−n]) ∼= π (C, τ (D[−n])), (8.3)

which are natural in ordinary chain complexes C and unbounded complexes D,
where τ ∗(C) is the unbounded complex which is constructed from C by putting 0 in
all negative degrees.

Suppose that C is an ordinary chain complex and that K is a cochain complex.
Form the bicomplex

hom (C, K)p,q = hom (C−p, Kq)

with the obvious induced differentials:

∂ ′ = ∂∗
C : hom (C−p, Kq) → hom (C−p−1, Kq)

∂ ′′ = (−1)p∂K∗ : hom (C−p, Kq) → hom (C−p, Kq−1).
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Then hom (C, K) is a third quadrant bicomplex with total complex Tot• hom (C, K)
defined by

Tot−n hom (C, K) =
⊕

p+q=−n

hom (C−p, Kq)

=
⊕

0≤p≤n

hom (Cp, K−n+p),

for n ≥ 0. The complex Tot• hom (C, K) is concentrated in negative degrees.

Lemma 8.21 There are natural isomorphisms

H−n( Tot• hom (C, K)) ∼= π (τ ∗(C), K[−n]).

Proof Write (f0, f1, . . . , fn) for a typical element of

Tot−n hom (C, K) =
⊕

0≤p≤n

hom (Cp, K−n+p).

Then

∂(f0, . . . , fn) = (g0, . . . , gn+1),

where

gk =

⎧
⎪⎨

⎪⎩

∂f0 if k = 0,

fk−1∂ + ( − 1)k∂fk if 0 < k < n + 1, and

fn∂ if k = n + 1.

Set

α(k) =
{

1 if k = 0, and
∑k−1

j=1 j if k ≥ 1.

Then the maps (−1)α(k)fk define a chain map τ ∗(C) → K[−n].
Suppose that

∂(s0, . . . sn−1) = (f0, . . . , fn).

Then the maps (−1)α(k)sk define a chain homotopy from the chain map (−1)α(k)fk

to the 0 map.

Lemma 8.22 Suppose that J is a cochain complex of injective sheaves, and that
f : C → D is a homology isomorphism of ordinary chain complexes objects. Then
the induced morphism of cochain complexes

Tot• hom (D, J )
f ∗−→ Tot• hom (C, J )

is a homology isomorphism.
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Proof The functors hom ( , J−q) are exact, and there are isomorphisms

H−p hom (C, J−q) ∼= hom (H̃p(C), J−q),

which are natural in chain complexes C. It follows, using Lemma 8.21, that there is
a spectral sequence with

E
p,q
1

∼= hom (H̃p(C), J−q) ⇒ π (τ ∗(C), J [−p − q]) ∼= H−p−q Tot• hom (C, J ).

which is natural in C. The claim follows from a comparison of such spectral
sequences.

Corollary 8.23 Suppose that J is a cochain complex of injective sheaves. Then
every local weak equivalence f : X → Y of simplicial presheaves induces an
isomorphism

π (NZY , τ (J [−n]))
∼=−→ π (NZX, τ (J [−n]))

in chain homotopy classes for all n ≥ 0.

Proof This result follows from Lemma 8.22 and the existence of the natural
isomorphisms (8.3).

Again, let J be a cochain complex of injective sheaves. As in the proof of
Lemma 8.18, there is a well defined abelian group homomorphism

γ : π (NZX, τ (J [−n])) → π0h(X, K(J , n))

which takes a chain homotopy class [α] to the element [(1, Γ (α) · η], where the
map Γ (α) : Z(X) → K(J , n) is induced by α under the Dold–Kan correspondence,
and η : X → Z(X) is the Hurewicz map. This morphism is natural in simplicial
presheaves X.

Lemma 8.24 Suppose that J is a cochain complex of injective sheaves. Then we
have the following:

1) The map

γ : π (NZX, τ (J [−n])) → π0h(X, K(J , n)).

is an isomorphism.
2) The canonical map

c : π (NZX, τ (J [−n])) → [NZX, τ (J [−n])]

is an isomorphism.
3) The simplicial abelian sheaf K(J , n) = Γ (τ (J [−n])) satisfies descent.

Recall that a simplicial presheaf X on a site C satisfies descent if some (hence
any) injective fibrant model j : X → Z is a sectionwise weak equivalence in the
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sense that the simplicial set maps j : X(U ) → Z(U ) are weak equivalences for all
objects U of C.

A simplicial R-module A satisfies descent (even as a simplicial presheaf) if some
injective fibrant model A → Z in simplicial R-modules is a sectionwise weak
equivalence.

Proof For statement 1), suppose that the pair of morphisms

X
f←−
 U , NZ(U )

g−→ τ (J [−n])

defines an object of the cocycle category h(X, K(J , n)). Then there is a unique chain
homotopy class [v] : NZX → J [−n] such that [v ·f∗] = [g] since f is a local weak
equivalence, by Corollary 8.23. This chain homotopy class [v] is also independent of
the choice of representative for the path component of (f , g) in the cocycle category.
We therefore have a well-defined function

ω : π0h(X, K(J , n)) → π (NZX, τ (J [−n])).

The composites ω · γ and γ · ω are identity morphisms.
For statement 2), observe that there is a commutative diagram

π (NZX, τ (J [−n]))
γ

∼=
��

c

��

π0h(X, K(J , n))

∼= φ

��
[NZX, τ (J [−n])] ∼=

�� [X, K(J , n)]

where φ is the isomorphism of Theorem 6.5, and the bottom isomorphism is induced
by the Dold–Kan correspondence.

Suppose that j : τ (J [−n]) → E is an injective fibrant model for K(J , n) in
sheaves of chain complexes. Statement 3) says that the induced maps j : τ (J [−n])(U )
→ E(U ) of chain complexes are homology isomorphisms, for all U ∈ C.

To prove this, first observe that there is a commutative diagram

π (NZX, τ (J [−n]))
c

∼=
��

j∗
��

[NZX, τ (J [−n])]

j∗∼=
��

π (NZX, E)
c

∼= �� [NZX, E]

for each simplicial presheaf X, in which the top occurrence of the canonical map c is
an isomorphism by statement 2), and the bottom occurrence is an isomorphism since
the chain complex object NZX is cofibrant and E is injective fibrant. It follows that
the map

j∗ : π (NZX, τ (J [−n])) → π (NZX, E)
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of chain homotopy classes is an isomorphism for all simplicial presheaves X. There
is a split short exact sequence

0 → NZ∗ → NZ(Δm/∂Δm) → Z[−m] → 0

of chain complexes for all m ≥ 0, and it follows that the maps

j∗ : π (LU (Z[−m]), τ (J [−n])) → π (LU (Z[−m]), E)

are isomorphisms for all m, n ≥ 0 and U ∈ C. Recall that

LU (A) = A ⊗ hom ( , U )

is the left adjoint of the U -sections functor A �→ A(U ).
The chain complex maps

τ (J [−n])(U ) → E(U )

are therefore homology isomorphisms for all U ∈ C, and statement 3) is proved.
The following result is now a corollary of Lemma 8.24:

Theorem 8.25 Suppose that A is a sheaf of abelian groups on C, and let A → J be
an injective resolution of A in the category of abelian sheaves. Let X be a simplicial
presheaf on C. Then there is an isomorphism

π (NZX, τ (J [−n])) ∼= [X, K(A, n)].

This isomorphism is natural in X.
The sheaf cohomology group Hn(C, A) for an abelian sheaf A on a site C is

traditionally defined by

Hn(C, A) = H−n(Γ∗J )

where A → J is an injective resolution of A concentrated in negative degrees and
Γ∗ is the global sections functor (i.e. inverse limit). But Γ∗Y = hom (∗, Y ) for any
Y , where ∗ is the one-point simplicial presheaf, and there are isomorphisms

Hn(C, A) ∼= π (Z∗, τ (J [−n])) ∼= [∗, K(A, n)].

The second displayed isomorphism is a consequence of Theorem 8.25. We have
proved.

Theorem 8.26 Suppose that A is an abelian sheaf on a site C. Then there is an
isomorphism

Hn(C, A) ∼= [∗, K(A, n)]

which is natural in abelian sheaves A.
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Suppose that A is an abelian presheaf on C and that X is a simplicial presheaf.
Write

Hn(X, A) = [X, K(A, n)] ∼= [Z(X), K(A, n)],

and say that this group is the nth cohomology group of X with coeffients in A.
The associated sheaf map

η : K(A, n) → L2K(A, n) ∼= K(Ã, n)

is a local weak equivalence, so there is a canonical isomorphism

Hn(X, A) ∼= Hn(X, Ã).

Write

H̃n(X, Z) = H̃n(NZX) ∼= H̃n(ZX)

and call this object the nth integral homology sheaf of the simplicial presheaf X. It
is also common to write

H̃n(X) = H̃n(X, Z)

for the integral homology sheaves of X.
If A is an abelian presheaf, write

H̃n(X, A) = H̃n(NZ(X) ⊗ A) ∼= H̃n(Z(X) ⊗ A)

for the nth homology sheaf of X with coefficients in A.
We have the following trivial consequence of the definitions, which is listed for

emphasis.

Lemma 8.27 Suppose that the simplicial presheaf map f : X → Y induces a
homology sheaf isomorphism

H̃∗(X, Z) ∼= H̃∗(Y , Z).

Then f induces an isomorphism

H ∗(Y , A) → H ∗(X, A)

for all presheaves abelian groups A.
The following result is a consequence of Lemma 8.21 and Theorem 8.25:

Corollary 8.28 Suppose that X is a simplicial presheaf and that A is a presheaf of
abelian groups. Then there is a spectral sequence, with

E
p,q
2 = Extq (H̃p(X, Z), Ã) ⇒ Hp+q(X, A). (8.4)
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The spectral sequence (8.4) is the universal coefficients spectral sequence for the
cohomology groups H ∗(X, A).

Example 8.29 Suppose that X is a simplicial set and that A is an abelian sheaf
on a small site C. The cohomology H ∗(Γ ∗X, A) of the constant simplicial presheaf
Γ ∗X with coefficients in A is what Grothendieck would call a mixed cohomology
theory [35]. In this case, the universal coefficients spectral sequence has a particularly
simple form, in that there is a short exact sequence

0 →
⊕

p+q=n

Ext1 (Hp−1(X, Z), Hq(C, A)) → Hp+q(Γ ∗X, A)

→
⊕

p+q=n

hom (Hp(X, Z), Hq(C, A)) → 0.

The existence of this sequence is best proved with the standard argument that leads
to the classical universal coefficients theorem: apply the functor hom ( , Γ∗I ) to the
short split exact sequence of chain complexes

0 → Z(ZX) → ZX → B(ZX)[−1] → 0.

where the complexes Z(ZX) and B(ZX) consist of cycles and boundaries, respec-
tively, with 0 differentials.

Suppose that R is a presheaf of commutative rings with unit. There are R-linear
versions of all results so far encountered in this section. In particular, there is an
R-linear universal coefficients spectral sequence:

Lemma 8.30 Suppose that X is a simplicial presheaf and that A is a presheaf of
R-modules. Then there is a spectral sequence, with

E
p,q
2 = ExtqR (H̃p(X, R̃), Ã) ⇒ Hp+q(X, A).

We also have the following R-linear analogue of Lemma 8.27.

Lemma 8.31 Suppose that the simplicial presheaf map f : X → Y induces a
homology sheaf isomorphism

H̃∗(X, R) ∼= H̃∗(Y , R).

Then f induces an isomorphism

H ∗(Y , A) → H ∗(X, A)

for all presheaves of R-modules A.
Lemma 8.31 is again a trivial consequence of the definitions. This was not so

initially [49]—the sheaf theoretic version of this result was originally derived as a
consequence of a statement analogous to Lemma 8.30.
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Recall that, if X and Y are simplicial presheaves, then the internal function
complex Hom(X, Y ) is the simplicial presheaf with sections defined by

Hom(X, Y )(U ) = hom(X|U , Y |U ) ∼= hom(X × U , Y ).

We then have the following enhancement of Theorem 8.25:

Proposition 8.32 Suppose that A is a presheaf of abelian groups, and that X is a
simplicial presheaf. Suppose that the map

j : K(A, n) → FK(A, n)

is an injective fibrant model of K(A, n). Then there are isomorphisms

πj Hom(X, FK(A, n))(U ) ∼=
{

Hn−j (X|U, A|U ) 0 ≤ j ≤ n

0 j > n.

for all U ∈ C.

Proof There are isomorphisms

π0Hom(X, FK(A, n))(U ) ∼= [X|U , FK(A|U , n)] ∼= Hn(X|U , A|U ),

since FK(A, n)|U is an injective fibrant model of K(A|U , n) by Corollary 5.26 and
Theorem 8.26.

The associated sheaf map

η : K(A, 0) → K(Ã, 0)

is an injective fibrant model for the constant simplicial presheaf K(A, 0) by
Lemma 5.11, and there is an isomorphism

Hom(X, K(Ã, 0)) ∼= Hom(π̃0(X), Ã),

where the latter is identified with a constant simplicial sheaf. It follows that the
sheaves π̃j Hom(X, K(Ã, 0)) vanish for j > 0.

There is a sectionwise fibre sequence

K(A, n − 1) → WK(A, n − 1)
p−→K(A, n)

where the simplicial abelian presheaf WK(A, n − 1) is sectionwise contractible.
Take an injective fibrant model

WK(A, n − 1)
j

��

p

��

FWK(A, n − 1)

q

��
K(A, n)

j

�� FK(A, n)
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for the map p. This means that the maps labelled j are local weak equivalences,
FK(A, n) is injective fibrant and q is an injective fibration. Let F = q−1(0). Then
the simplicial presheaf F is injective fibrant and the induced map

K(A, n − 1) → F

is a local weak equivalence, by Lemma 4.37. Write FK(A, n − 1) for F .
We have injective (hence sectionwise) fibre sequences

Hom(X, FK(A, n − 1)) → Hom(X, FWK(A, n − 1)) → Hom(X, FK(A, n))

by Lemma 5.12 and the enriched simplicial model structure of Corollary 5.19. The
map

Hom(X, FWK(A, n − 1)) → Hom(X, ∗) ∼= ∗
is a trivial injective fibration, and is therefore a sectionwise trivial fibration. It follows
that there are isomorphisms

πj Hom(X, FK(A, n))(U ) ∼= πj−1Hom(X, FK(A, n − 1))(U )

for j ≥ 1 and all U ∈ C, so that

πj Hom(X, FK(A, n))(U ) ∼= Hn−j (X|U , Ã|U )

for 1 ≤ j ≤ n and πj Hom(X, FK(A, n))(U ) = 0 for j > n, by induction on n.

Corollary 8.33 Suppose that A is a presheaf of abelian groups, and that

j : K(A, n) → FK(A, n)

is an injective fibrant model of K(A, n). Then there are isomorphisms

πjFK(A, n)(U ) ∼=
{

Hn−j (C/U , Ã|U ) 0 ≤ j ≤ n

0 j > n.

for all U ∈ C.
We have a Quillen adjunction

τ ∗ : Ch+ (R) � Ch (R) : τ

defined by the good truncation functor τ and its left adjoint, in which both functors
preserve weak equivalences. It follows that there is a natural isomorphism

[τ ∗(C), D[−n]] ∼= [C, τ (D[−n])].

for all ordinary complexes C and unbounded complexes D. We also know that there
is a natural isomorphism

[Z(X), B] ∼= [X, u(B)]
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for all simplicial presheaves X and simplicial abelian group objects B. It follows
that there is an isomorphism

[X, K(A, n)] ∼= [τ ∗(Z(X)), H (A)[−n]]

for all abelian presheaves A, relating morphisms in the simplicial presheaf homotopy
category with morphisms in the full derived category, so that there is a natural
isomorphism

Hn(X, A) ∼= [τ ∗(Z(X)), H (A)[−n]].

More generally, if D is an unbounded complex and X is a simplicial presheaf, we
define

H
n(X, D) = [τ ∗(Z(X)), D[−n]] ∼= [Z(X), τ (D[−n])] ∼= [X, Γ (τ (D[−n]))],

and say that this invariant is the nth hypercohomology group of X with coefficients
in the complex D. In principle, H

n(X, D) is morphisms in a stable category from a
suspension spectrum object τ ∗(Z(X)) to a shifted spectrum D[−n].

If D is an ordinary chain complex and n ≥ 0, then there is an isomorphism

H
n(X, τ ∗(D)) ∼= [Z(X), D[−n]]

where the displayed morphisms are in the derived category of ordinary chain
complexes. It follows that there is a natural isomorphism

H
n(X, H (A)) ∼= [Z(X), H (A)[−n]] = Hn(X, A)

for all presheaves of abelian groups A.
There is a weak equivalence

WA = Γ (NA[−1]) 
 S1 ⊗ A = d(BA)

(see Corollary 9.39 below) which is natural in simplicial abelian presheaves A. It
follows that there are natural weak equivalences

Γ (NA[−n]) 
 Sn ⊗ A

and

Γ (NA[n]) 
 ΩnA

for all n ≥ 0.
Write

ΩnA = A ⊗ S−n
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for n < 0. Then there are natural isomorphisms

H
n(X, τ ∗(NA)) ∼= [Z(X), Γ (NA[−n])] ∼= [Z(X), Ω−nA]

for simplicial presheaves X and simplicial abelian presheaves A.
We also write

H
n(X, A) = [X, Ω−nA] (8.5)

for simplicial presheaves X and simplicial abelian presheaves A. This group is the
nth hypercohomology group of X with coefficients in the simplicial abelian presheaf
A.

Suppose that A → K is a fibrant model in the category of simplicial abelian
presheaves. There are isomorphisms

πphom(X, K) ∼= [X, ΩpK] ∼= [Z(X), K[p]],

and it follows that there is an isomorphism

πphom(X, K) ∼= H
−p(X, A).

The final result of this section gives a large class of calculational examples—it
says that our definition of the cohomology of a simplicial presheaf agrees with the
classical description of the cohomology of a simplicial scheme.

Lemma 8.34 Suppose that S is a simplicial object in C and that A is an abelian
sheaf on C, and let C/S be the site fibred over the simplicial object S. Then there are
isomorphisms

Hn(S, A) ∼= Hn(C/S, A|S).

These isomorphisms are natural in abelian sheaves A.

Proof This result is a consequence of Proposition 5.29.
Suppose that j : K(A, n) → FK(A, n) is an injective fibrant model on C,

and choose an injective fibrant model FK(A, n)|S → W on the site C/S. Then
Proposition 5.29 says that there is a weak equivalence

hom(S, FK(A, n)) 
 hom(∗, W ).

The simplicial presheaf W is an injective fibrant model for the restricted simplicial
presheaf K(A|S , n), and so there are isomorphisms

Hn(S, A) ∼= π0hom(S, FK(A, n)) ∼= π0hom(∗, W ) ∼= Hn(C/S, A|S).

Remark 8.35 Both the statement of Lemma 8.34 and its proof are prototypical.
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A similar argument shows that the étale cohomology group Hn
et (S, A) of a sim-

plicial T -scheme S, which is traditionally defined to be Hn(et |S , A|S) for an abelian
sheaf A on the big étale site [26], can be defined by

Hn
et (S, A) = [S, K(A, n)]

as morphisms in the injective homotopy category of simplical presheaves or sheaves
on the big site (Sch|T )et .

Here, et |S is the fibred étale site whose objects are the étale morphisms φ : U →
Sn, and whose morphisms are diagrams of scheme homomorphisms of the form of
(5.3), where the vertical maps are étale—this is usually what is meant by the étale
site of a simplicial scheme S.

One uses the ideas of Example 5.28 to show that the restriction Z|S of an injective
fibrant object Z to the site et |S satisfies descent. The remaining part of the argument
for the weak equivalence

hom(S, Z) 
 hom(∗, W ),

where Z|S → W is an injective fibrant model on et |S , is formal.
A different argument is available for the étale cohomological analogue of

Corollary 8.34 if one’s sole interest is a cohomology isomorphism: see [49].
Analogous techniques and results hold for other standard algebraic geometric

topologies, such as the flat or Nisnevich topologies.

8.4 Products and Pairings

The category of pointed simplicial presheaves on a site C is the slice category
∗/sPre(C). The objects ∗ → X alternatively be viewed as pairs (X, x), where X

is a simplicial presheaf and x is a choice of vertex in the global sections simplicial
set

Γ∗X = lim←−
U∈C

X(U ).

A pointed map f : (X, x) → (Y , y) is a simplicial presheaf map f : X → Y such
that f∗(x) = y in global sections, or equivalently such that the diagram

∗
x

0011
11
11 y

,,.
..
..
.

X
f

�� Y

commutes. One also writes sPre∗(C) to denote this category.
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All slice categories for sPre(C) inherit injective model structures from the injective
model structure for simplicial presheaves—see Remark 6.16. In the case at hand, a
pointed map (X, x) → (Y , y) is a local weak equivalence (respectively cofibration,
injective fibration) if the underlying map f : X → Y is a local weak equivalence
(respectively cofibration, injective fibration) of simplicial presheaves. The notation
[X, Y ]∗ denotes morphisms in the pointed homotopy category

Ho (sPre∗(C)).

The functor q : sPre∗(C) → sPre(C) forgets the base point. One usually writes
Y = q(Y ) for the underlying simplicial presheaf of an object Y . The left adjoint
X �→ X+ of this functor is defined by adding a disjoint base point: X+ = X � {∗}.
The functor q and its left adjoint form a Quillen adjunction, and there is a bijection

[X+, Y ]∗ ∼= [X, Y ].

Every simplicial abelian presheaf B is canonically pointed by 0, so there is an
isomorphism

[X+, B]∗ ∼= [X, B].

In particular, cohomology groups can be computed in the pointed homotopy category
via the natural isomorphism

Hn(X, A) = [X, K(A, n)] ∼= [X+, K(A, n)]∗,

where the simplicial abelian presheaf K(A, n) is pointed by 0.
The smash product X ∧ Y of two pointed simplicial presheaves is formed as in

pointed simplicial sets:

X ∧ Y := (X × Y )/(X ∨ Y )

where the wedge X ∨ Y is the coproduct of X and Y in the pointed category.
If X is a pointed simplicial presheaf, Z•(X) is the cokernel of the map

Z(∗) → Z(X)

which is defined by the base point of X, as in Remark 8.1. The object Z•(X) is the
reduced free simplicial abelian group associated to X, and the homology sheaves

H̃∗(Z•(X) ⊗ A)

are the reduced homology sheaves of X with coefficients in the abelian presheaf A.
The isomorphism

Z(X) ⊗ Z(Y )
∼=−→ Z(X × Y )



8.4 Products and Pairings 225

of simplicial abelian presheaves induces an isomorphism

Z•(X) ⊗ Z•(Y )
∼=−→ Z•(X ∧ Y ) (8.6)

which is natural in pointed simplicial presheaves X and Y .
Suppose that A is a presheaf of abelian groups, and let Sn⊗A denote the simplicial

abelian presheaf Z•(Sn) ⊗ A. Here, Sn is the n-fold smash power

Sn = S1 ∧ · · · ∧ S1

of the simplicial circle S1 = Δ1/∂Δ1.
The simplicial abelian presheaf Sn⊗A has a unique nontrivial homology presheaf,

namely

Hn(Sn ⊗ A) ∼= A,

and the good truncation functor τn at level n in chain complexes defines homology
presheaf isomorphisms

Sn ⊗ A

←− τn(Sn ⊗ A)


−→ Γ (A[−n])

of chain complex objects. It follows that the simplicial abelian presheaf Sn ⊗ A is
naturally locally equivalent to the Eilenberg–Mac Lane object K(A, n).

The natural isomorphism (8.6) induces a natural isomorphism

(Sn ⊗ A) ⊗ (Sm ⊗ B)
∼=−→ Sn+m ⊗ (A ⊗ B), (8.7)

and a pairing

(Sn ⊗ A) ∧ (Sm ⊗ B) → (Sn ⊗ A) ⊗ (Sm ⊗ B)
∼=−→ Sn+m ⊗ (A ⊗ B)

of pointed simplicial presheaves. This pairing can be rewritten as a map

∪ : K(A, n) ∧ K(B, m) → K(A ⊗ B, n + m) (8.8)

in the pointed homotopy category.
The pairing (8.8), in any of its equivalent forms, is the cup product pairing. It

induces the external cup product

∪ : Hn(X, A) × Hm(Y , B) → Hn+m(X × Y , A ⊗ B), (8.9)

of cohomology groups of simplicial presheaves, which we now describe in terms of
cocycles.

Suppose that E and F are presheaves of simplicial abelian groups. There is a
natural map

∪ : E ∧ F → E ⊗ F
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of pointed simplicial presheaves which takes values in the degreewise tensor product.
Given cocycles

X
u←−
 U

f−→E, Y
v←−
 V

g−→F ,

there is a cocycle

X × Y
u×v←−− U × V

(f ∧g)∗−−−→ E ⊗ F ,

where (f ∧ g)∗ is the composite

U × V → (U × V )+ ∼= U+ ∧ V+
f ∧g−−→ E ∧ F

∪−→E ⊗ F.

The assignment

((f , u), (g, v)) �→ ((f ∧ g)∗, u × v)

is functorial in the cocycles (f , u) and (g, v), and defines a functor

h(X, E) × h(Y , F ) → h(X × Y , E ⊗ F ).

The induced map in path components gives the cup product pairing

∪ : [X, E] × [Y , F ] → [X × Y , E ⊗ F ].

If R is a presheaf of commutative rings with unit, then precomposition with the
diagonal Δ : X → X × X and composition with the multiplication R ⊗ R → R,
applied to the pairing (8.9), together define the pairing

Hn(X, R) × Hm(X, R) → Hn+m(X × X, R ⊗ R) → Hn+m(X, R),

which is the cup product for the cohomology of the simplicial presheaf X with
coefficients in the presheaf of rings R.

The cup product ring structure on H ∗(X, R) is associative, and has a two-sided
multiplicative identity which is defined by the composite

X → ∗ 1−→R,

where the global section 1 is the multiplicative identity of the presheaf of rings R.
The resulting ring structure on the cohomology H ∗(X, R) is graded commutative,
since R is commutative and the twist isomorphism

Sp ∧ Sq τ−→∼= Sq ∧ Sp

is multiplication by (−1)pq in the homotopy category.
In particular, the cohomology H ∗(X, R) of a simplicial presheaf X with coeffi-

cients in a commutative unitary ring R has the structure of a graded commutative
ring.
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Remark 8.36 Note the level of generality. Cup products are defined for cohomology
of simplicial presheaves having all abelian presheaf coefficients, on all Grothendieck
sites.

It is an exercise to show that cup products are preserved by inverse image functors
associated with geometric morphisms.

We can go further. Suppose that E is a presheaf of simplicial abelian groups. It is
an exercise to show that there is a natural pairing

Ω−p(E) ⊗ Ω−q(F ) → Ω−p−q(E ⊗ F )

for all integers p and q and all presheaves of simplicial abelian groups E and F ,
which generalizes the pairings of (8.7). This pairing induces a cup product pairing

H
p(X, E) ⊗ H

q(X, F ) → H
p+q(X, E ⊗ F ) (8.10)

in hypercohomology for all simplicial presheaves X, simplicial abelian presheaves
E and F , and integers p and q.

8.5 Localized Chain Complexes

As in Sect. 7.2, suppose that F is a set of cofibrations of simplicial presheaves, such
that the following conditions hold:

C1: the set F contains all members of the generating set J of trivial cofibrations
for the injective model structure,

C2: if the map i : A → B is a member of F, and j : C → D is an α-bounded
cofibration, then the cofibration

(B × C) ∪ (A × D) → B × D

is a member of F.

In this section, we describe theF-local homotopy theory for simplicialR-modules.
The method of construction is parallel to that for the F-local homotopy theory of
Theorem 7.18, but occurs within the model structure for the category sPreR of
simplicial R-modules which is given by Theorem 8.6.

Of course, model structures on the category of simplicial R-modules give model
structures on the category of presheaves of chain complexes of R-modules, via the
Dold–Kan correspondence.

The injective model structure of Theorem 8.6 is a proper closed simplicial model
structure for the category sPreR of simplicial R-modules, which is cofibrantly
generated. The generating sets I and J for the classes of cofibrations and triv-
ial cofibrations are given by the maps R(A) → R(B) which are induced by the
α-bounded cofibrations, respectively trivial α-bounded cofibrations A → B of
simplicial presheaves.

Every cofibration of sPreR is a monomorphism, and the category has epi-monic
factorizations.
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Write R(F) for the set of cofibrations R(C) → R(D) of sPreR which are associ-
ated to the cofibrations C → D of F. This is the set of cofibrations which is used to
construct a functor

LF := LR(F) : sPreR → sPreR ,

by using the methods of Sect. 7.1.
Recall the notational convention that

E ⊗ K := E ⊗ R(K)

for all simplicial R-modules E and simplicial sets K . The maps A ⊗ Δn → B are
the n-simplices of the function complex hom(A, B).

It is an exercise to show that the map

(F ⊗ ∂Δn) ∪ (E ⊗ Δn) → F ⊗ Δn

is in R(F) if the map E → F is in R(F).
A map p : A → B of simplicial R-modules is said to be F-injective if it has the

right lifting property with respect to all members of the set R(F), or equivalently if
the underlying simplicial presheaf map u(A) → u(B) is F-injective in the sense of
Sect. 7.2.

A simplicial R-module Z is F-injective if and only if the underlying simplicial
presheaf u(Z) is F-injective, or equivalently fibrant (ie. F-fibrant) for the F-local
model structure on the simplicial presheaf category of Theorem 7.18. In particular,
Z is an injective fibrant simplicial R-module, and its underlying simplicial presheaf
u(Z) is injective fibrant.

Following Sect. 7.1, a map g : A → B of simplicial R-modules is an F-
equivalence if the induced map gc : Ac → Bc of cofibrant models induces a weak
equivalence

g∗ : hom(Bc, Z) → hom(Ac, Z)

of function complex objects for all F-injective simplicial R-modules Z.
Choose a regular cardinal β such that β > |R|, β > |F|, β > |B| for all

morphisms A → B in F, and that β > α > | Mor (C)|.
The choice of β is similar to that of Sect. 7.2, except one also insists that it is an

upper bound for the cardinality |R| of the presheaf of rings R.
Suppose that λ is a cardinal such that λ > 2β .
As in Sect. 7.2, every map f : X → Y of simplicial R-modules has a functorial

system of factorizations

X
is ��

f ""�
��

��
��

��
Es(f )

fs

��
Y
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for s < λ which is defined by partial solutions of the lifting property for maps in F.
These factorizations are defined by successive pushouts, by analogy with the system
of factorizations of the same name of Sect. 7.1. The colimit of these factorizations
has the form

X
iλ ��

f ""%
%%

%%
%%

%%
Eλ(f )

fλ

��
Y

where the map fλ has the right lifting property with respect to all R(C) → R(D) in
F, and iλ is in the saturation of F.

Define a functor LF from the category of simplicial R-modules to itself by setting

LF(X) = Eλ(X → 0).

The following result is a version of Lemma 7.16 for simplicial R-modules:

Lemma 8.37

1) Suppose that the assignment t �→ Xt defines a diagram of simplicial R-modules,
indexed by γ > 2β . Then the map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > β, and let Bζ (X) be the family of subobjects

of X having cardinality less than ζ . Then the map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)

is an isomorphism.
3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that A and B are subobjects of X. Then the natural map

LF(A ∩ B) → LF(A) ∩ LF(B)

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

Proof It suffices to prove statements 1)–4) with LF(X) replaced by E1(X), which
is the first stage in the construction. There is a pushout diagram

⊕
F (R(C) ⊗ hom (C, X)) ��

��

X

��⊕
F (R(D) ⊗ hom (C, X)) �� E1X
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To prove statement 1), one shows that the map

lim−→
t<γ

hom(C, Xt ) → hom (C, lim−→
t<γ

Xt )

is an isomorphism, since C is α-bounded.
The proof of statement 2) is similar. One shows that the map

lim−→
Y∈Bζ (X)

hom (C, Y ) → hom (C, X)

is an isomorphism by using the fact that the image of a map C → X is contained in
a subobject Y ⊂ X with |Y | < β < ζ . The object X is also a colimit of subobjects
Y with |Y | < ζ .

Statement 3) is a consequence of the fact a monomorphism X → Y induces
injective functions hom (C, X) → hom (C, Y ). It follows that, for the diagram of
monomorphisms

⊕F R(C) ⊗ hom (C, X) ��

��

⊕F R(D) ⊗ hom (C, X)

��
⊕F R(C) ⊗ hom (C, Y ) �� ⊕F R(D) ⊗ hom (C, Y )

the induced map on cokernels of the vertical maps is a monomorphism, and so the
induced map E1X → E1Y is a monomorphism.

The cokernel C(X) of the monomorphism X → E1X has the form

C1(X) = ⊕F (R(D)/R(C)) ⊗ hom (C, X),

and it follows that the map

C(A ∩ B) → C(A) ∩ C(B)

is an isomorphism. One then uses an element chase to show that the monomorphism

E1(A ∩ B) → E1(A) ∩ E1(B)

is surjective in all sections, and we have proved statement 4).
The proof of statement 5) is the same as for the corresponding statement of

Lemma 7.16: the key point is that the cardinality of the set hom (C, X) is bounded
by

(2μ)β = 2μ·β = 2μ.

Say that a map X → Y of simplicial R-modules is an LF-equivalence if the
induced map of simplicial R-modules LF(X) → LF(Y ) is a local weak equivalence.
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Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 8.37. Then κ is a regular cardinal, and Lemma 8.37 implies that if a simplicial
R-module X is κ-bounded then LF(X) is κ-bounded.

The following result is the bounded monomorphism property for LF-equivalences
of simplicial R-modules.

Lemma 8.38 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

of sPreR such that i is an LF-equivalence and the object A is κ-bounded. Then there
is a κ-bounded subobject B of Y such that A ⊂ B, factorization A ⊂ B ⊂ Y of
j by monomorphisms such that B is κ-bounded and the map B ∩ X → B is an
LF-equivalence.

Proof The proof proceeds by analogy with the proof of Lemma 7.17, using
Lemma 8.11 and various features of Lemma 8.37.

There is an induced diagram of monomorphisms

LFX

i∗
��

LFA
j∗

�� LFY

in which the map i∗ is a local weak equivalence of R-modules and LFA is κ-bounded.
Then, by Lemma 8.11, there is a κ-bounded subobject A0 ⊂ LFX such that the map
A0 ∩ LFX → A0 is a local weak equivalence of simplicial R-modules.

There is a κ-bounded subobject B0 ⊂ Y such that A ⊂ B0 and A0 ⊂ LFB0.
In effect, LFY is a sum of subobjects LFF associated to the κ-bounded subobjects
F ⊂ Y , and every section of the κ-bounded object B0 is in some such LFF .

Continue inductively. Find a κ-bounded object A1 such that LFB0 ⊂ A1 and the
map A1 ∩LFX → LFY is a local weak equivalence, and find a κ-bounded subobject
B1 of Y with B0 ⊂ B1 and A1 ⊂ LFB1. Repeat the construction λ times, and set
B = lim−→s<λ

Bs .
Then the map

LF(B ∩ X) ∼= LFB ∩ LFX → LFB

coincides the map

lim−→
s

(As ∩ LFX) → lim−→
s

As ,
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which is a local weak equivalence.

The natural map η : X → LFX is a cofibration and an F-equivalence by
Lemma 7.8, and the object LF(X) is F-injective. It follows from Lemma 7.6 that a
map X → Y of simplicial R-modules is an F-equivalence if and only if the induced
map LF(X) → LF(Y ) is a local weak equivalence.

Following Sect. 7.1, a map p : X → Y of simplicial R-modules is an F-fibration
if it has the right lifting property with respect to all maps which are cofibrations and
F-equivalences.

We then have a proof of the following result, which gives the F-local model
structure for the category of simplicial R-modules. Theorem 8.39 is a special case
of Theorem 7.10, via Lemma 8.38. The left properness for the F-local structure is a
consequence of Lemma 7.8.

Theorem 8.39 Suppose that R is a presheaf of commutative unitary rings on a
small Grothendieck site C. Let F be a set of cofibrations of simplicial presheaves
which satisfies the conditions C1 and C2. Then the category sPreR of simplicial R-
modules, together with the classes of cofibrations, F-equivalences and F-fibrations,
satisfies the axioms for a cofibrantly generated closed simplicial model category.
This model structure is left proper.

Remark 8.40 The forgetful and free R-module functors

R : sPre(C) � sPreR : u

define a Quillen adjunction for the F-local model structures on the respective
categories.

This is a consequence of the observation that a simplicial R-module Z is F-
injective if and only if the underlying simplicial presheaf u(Z) is F-injective. It
follows that the free R-module functor R preserves F-equivalences, as well as cofi-
brations. It also follows that a simplicial R-module Z is F-fibrant if and only if its
underlying simplicial presheaf u(Z) is F-fibrant.

There is no claim that the forgetful functor u either preserves or reflects F-weak
equivalences in the unstable setting. Something can be said, however, in stable
homotopy theory. See Lemma 10.93 in Sect. 10.7.

The F-local model structure on simplicial R-modules is an enriched structure, in
the sense that we have the following:

Lemma 8.41 Suppose that the maps i : C → D and j : E → F are cofibrations
of simplicial R-modules. Then the induced map

(i, j ) : (D ⊗ E) ∪ (C ⊗ F ) → D ⊗ F

is a cofibration which is an F-equivalence if either i of j is an F-equivalence.

Proof The proof of this result follows that of Lemma 7.23, which is the correspond-
ing result for simplicial presheaves. We must account for the fact that not every
simplicial R-module is cofibrant. It suffices, however, to assume that the objects
C, D, E and F are cofibrant, by a (sectionwise) left properness argument.
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In effect, the cofibrant model π : Ac → A of a simplicial R-module A can be
defined by a trivial injective fibration π , which is a sectionwise weak equivalence.
The map π ⊗1 : Ac ⊗B → A⊗B is then a sectionwise equivalence for all simplicial
R-modules B.

The map (i, j ) is a cofibration by Lemma 8.9. For a fixed cofibration i, one
uses Lemma 7.8 to show that the class of all cofibrations j such that (i, j ) is an
F-equivalence is closed under composition, pushout and retracts.

Suppose that the simplicial presheaf map i : A → B is in F and that j : C → D

is an α-bounded cofibration of simplicial presheaves. Then the simplicial presheaf
map (i, j ) is in F, so that the induced map of simplicial R-modules

(i∗, j∗) : (R(B) ⊗ R(C)) ∪ (R(A) ⊗ R(S)) → R(B) ⊗ R(D)

is an F-equivalence. It follows that the map (i∗, j ) is an F for all cofibrations of
simplicial R-modules j , if i is a member of F. It also follows that the map (i, j ) is
an F-equivalence if i is in the saturation of R(F) and j is a cofibration of simplicial
R-modules.

In particular, the canonical F-fibrant model j : A → LFA is in the saturation of
R(F) so that the map

j ⊗ 1 : A ⊗ C → LF(A) ⊗ C

is a cofibration and an F-equivalence for all cofibrant simplicial R-modules C.
Suppose that g : C → D is an F-equivalence of cofibrant simplicial R-modules,

and that A is a cofibrant simplicial R-module. Form the diagram

A ⊗ C
1⊗g

��

1⊗j

��

A ⊗ D

1⊗j

��
A ⊗ LFC

1⊗g∗
�� A ⊗ LFD

Then the maps 1 ⊗ j are F-equivalences by the previous paragraph, and the map
g∗ : LFC → LFD is a sectionwise equivalence since g is an F-equivalence. It
follows that the map 1 ⊗ g is an F-equivalence.

Finally, for cofibrations i : C → D and j : E → F (between cofibrant objects),
suppose that i is an F-equivalence and form the diagram

C ⊗ F

(i⊗1)∗
��

i⊗1

����
���

���
���

�

(D ⊗ E) ∪ (C ⊗ F )
(i,j )

�� D ⊗ F

Then the maps (i ⊗ 1)∗ and i ⊗ 1 are trivial cofibrations for the F-local structure, so
that the map (i, j ) is an F-equivalence.
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Example 8.42 Following Example 7.19, suppose that f : A → B is a cofibration of
simplicial presheaves, and let F = 〈f 〉 be the smallest set of cofibrations of simplicial
presheaves which contains f and the generating set J of trivial cofibrations, and
satisfies the closure property C2. See also Example 7.15.

The 〈f 〉-equivalences of simplicial R-modules are called f -equivalences, and the
〈f 〉-fibrations are called f -fibrations. The 〈f 〉-model structure of Theorem 8.39 is
the f -local model structure for the category of simplicial R-modules. We shall also
write

Lf (X) := L〈f 〉(X)

for simplicial R-modules X.
We shall focus on the f -local theories for simplicial R-modules henceforth, for

the reason discussed in Example 7.19: each F-local theory is an f -local theory for
some cofibration f .

Example 8.43 Suppose that S is a scheme which is Noetherian and of finite di-
mension, and let (Sm|S)Nis be the category of smooth schemes of finite type over S,
equipped with the Nisnevich topology, as in Example 7.20. Let f : ∗ → A

1 be the
0-section of the affine line over S.

The f -local model structure on the category sPreR(Sm|S)Nis of simplicial R-
modules which is given by Theorem 8.39 is the motivic model structure for the
category of simplicial R-modules, or for the equivalent category of presheaves of
chain complexes of R-modules. The weak equivalences and fibrations for this model
structure are, respectively, the motivic weak equivalences and the motivic fibrations
of simplicial R-modules.

The relationship between motivic weak equivalences of simplicial R-modules
and motivic weak equivalences of simplicial presheaves can be a bit subtle. The free
R-module and forgetful functors determine a Quillen adjunction

R : sPre((Sm|S)Nis) � sPreR((Sm|S)Nis) : u,

by construction, and the free R-module functor preserves motivic weak equivalences,
but it is far from clear that the forgetful functor u either preserves or creates motivic
weak equivalences in general.

That said, suppose that Y is a simplicial R-module whose underlying simplicial
presheaf satisfies motivic descent, and let j : Y → Z be an injective fibrant model
in simplicial R-modules for the Nisnevich topology. Then j is an injective fibrant
model in the simplicial presheaf category, and is therefore a sectionwise equivalence
by the Nisnevich descent theorem. The simplicial presheaf underlying Z is motivic
fibrant, and so Y is sectionwise weakly equivalent to a motivic fibrant model in the
simplicial R-module category.

In other words, there are both Nisnevich and motivic descent theorems for the
simplicial R-module category.

We will need to know later that the map A → A ⊗ R(A1) which is induced by
the 0-section ∗ → A

1 is a motivic weak equivalence for all simplicial R-modules A

on (Sm|S)Nis .
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To see this, observe that there is a projective model structure on sModR for which
the weak equivalences and fibrations are defined sectionwise (prove this directly or
use Corollary 8.45 below). We can therefore assume that the simplicial R-module A

is projective cofibrant.
We then show that the map A → A ⊗ R(A1) has the left lifting property with

respect to all motivic fibrations of simplicial R-modules p : X → Y . Equivalently,
the map

Hom(A1, X) → X ×Y Hom(A1, Y )

has the right lifting property with respect to the projective cofibration 0 → A. But
this is so, since the maps

X(A1 × U ) → X(U ) ×Y (U ) Y (A1 × U )

are trivial fibrations by construction of the motivic model structure: all maps

(∂Δn × A
1 × U ) ∪ (Δn × U ) → Δn × A

1 × U

are trivial cofibrations in the motivic model structure.
Observe that a simplicial R-module X is motivic fibrant if

1) X is injective fibrant for the Nisnevich topology, and
2) all induced maps X(U×A

1) → X(U ) are weak equivalences of simplicial abelian
groups.

The second condition is equivalent (in the presence of condition 1)) to the assertion
that the injective fibration

Hom(U × A
1, X) → Hom(U , X)

is a local weak equivalence for all smooth k-schemes U .

8.6 Linear Simplicial Presheaves

Suppose that R is an ordinary commutative ring with identity. Let ModR denote the
category of R-modules, and write sModR for the category of simplicial R-modules.

Suppose that C is a small category, and that A is a small category which is enriched
in R-modules. Suppose that there is a functor φ : C → A which is the identity on
objects.

The assumption that A is enriched in R-modules means that all hom objects
A(U , V ) are R-modules and that the composition law is defined by a bilinear pairing

A(U , V ) ⊗R A(V , W ) → A(U , W ).



236 8 Homology Sheaves and Cohomology Groups

An A-linear simplicial presheaf X : Aop → sModR consists of simplicial R-
modules X(U ), U ∈ A, together with R-module homomorphisms

X(V ) ⊗R A(U , V ) → X(U )

which satisfy the usual properties: the law of composition in A is respected, as are
all identities.

Write sModA
R for the category of all A-linear simplicial presheaves Aop →

sModR which take values in simplicial R-modules.
The morphisms φ : X → Y of the category sModA

R are the A-linear natural
transformations. Such a morphism φ consists of homomorphisms of simplicial R-
modules φ : X(U ) → Y (U ), U ∈ Ob (A), which respect the action of A.

Say that a map f : A → B of A-linear simplicial presheaves is a sectionwise
equivalence (respectively sectionwise fibration) if the maps f : A(U ) → B(U ) are
weak equivalences (respectively fibrations) of simplicial R-modules for all objects
U ∈ A. A projective cofibration of A-linear simplicial presheaves is a map which
has the left lifting property with respect to all maps which are sectionwise fibrations
and sectionwise equivalences.

Suppose that A is a simplicial R-module and that U ∈ Ob (A). Then the
assignment

LU (A) = A ⊗ homA ( , U )

defines the left adjoint of the U -sections functor sModA
R → sAb, which is defined

by X �→ X(U ).
The functor LU takes weak equivalences of cofibrant simplicial R-modules (which

are homotopy equivalences) to sectionwise weak equivalences of sModA
R , and takes

cofibrations of simplicial R-modules to projective cofibrations of sModA
R .

It follows that a map p : A → B of sModA
R is a sectionwise fibration, respectively

trivial sectionwise fibration, if and only if it has the right lifting property with respect
to all maps

LU (R(Λn
k )) → LU (R(Δn)),

respectively with respect to all maps

LU (R(∂Δn)) → LU (R(Δn)).

It also follows that every cofibration (respectively trivial cofibration) K ⊂ L

of simplicial sets induces projective cofibrations (respectively trivial projective
cofibrations)

LU (R(K)) → LU (R(L))

of sModA
R .
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Suppose that A is an A-linear simplicial presheaf and that K is a simplicial set.
As before, write

A ⊗ K := A ⊗ R(K).

The following result gives the projective model structure for the category of A-linear
simplicial presheaves.

Lemma 8.44 The category sModA
R of A-linear simplicial presheaves, together

with the classes of sectionwise weak equivalences, sectionwise fibrations and pro-
jective cofibrations, has the structure of a proper closed simplicial model category.
This model structure is cofibrantly generated. Every projective cofibration is a
monomorphism.

Proof Limits and colimits for the category sModA
R of A-linear simplicial presheaves

are formed sectionwise, as in the presheaf category sAbC. The category sModA
R is

complete and cocomplete.
The weak equivalence axiom CM2 and the retract axiom CM3 are easily verified.
Every map f : A → B has factorizations

E
p

���
��

��
��

A

i
��������� f

��

j ���
��

��
��

B

F

q

���������

where p is a fibration and the cofibration i is in the saturation of the maps

LU (R(Λn
k )) → LU (R(Δn), (8.11)

and q is trivial fibration and j is a cofibration, by a standard small object argument.
Each of the maps (8.11) is a strong deformation retraction in sections, and strong de-
formation retractions are closed under pushout in the simplicial R-module category.
It follows that the map i is a sectionwise weak equivalence as well as a cofibration.
We have therefore verified the factorization axiom CM5.

The argument for the lifting axiom CM4 is standard: every trivial cofibration is a
retract of a morphism in the saturation of the maps LU (R(Λn

k )) → LU (R(Δn)), and
therefore has the left lifting property with respect to all fibrations.

By the same argument, every cofibration A → B consists of maps A(U ) → B(U )
which are cofibrations of simplicial R-modules. In particular, every cofibration is a
monomorphism.

The function complex hom(A, B) has n-simplices consisting of the homomor-
phisms A ⊗ Δn → B. Given A-linear simplicial presheaf A and a simplicial set K ,
the A-linear simplicial presheaf AK is defined in sections by

AK (U ) = hom(K , A(U )).
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If p : A → B is a fibration of sModA
R and i : K → L is a cofibration of simplicial

sets, then all maps

(i∗, p∗) : AL(U ) → AK (U ) ×BK (U ) BL(U )

are fibrations of simplicial R-modules for all objects U of C, and these fibrations are
trivial if either i or p is trivial. The simplicial model axiom SM7 follows.

Properness follows from properness for the model structure on the category of
simplicial R-modules. It is immediate from the proof of the factorization axiom CM5
that this model structure on sModA

R is cofibrantly generated.
There is an analogous projective model structure for the category sPreR of

presheaves simplicial R-modules on C, which is defined sectionwise. A map A → B

of presheaves of simplicial R-modules is a sectionwise weak equivalence (respec-
tively sectionwise fibration) if all maps A(U ) → B(U ) are weak equivalences
(respectively fibrations) of simplicial R-modules, and a projective cofibration is
a map which has the left lifting property with respect to all trivial fibrations. Then
we have the following:

Corollary 8.45 The category sPreR of presheaves of simplicial R-modules on
C, together with the classes of sectionwise weak equivalences, sectionwise fibra-
tions and projective cofibrations, satisfies the axioms for a proper closed simplicial
model category. This model structure is cofibrantly generated. Every cofibration is
a monomorphism.

Proof The category C determines a category R(C), having the same objects, and
with

R(C)(U , V ) = R(C(U , V )),

the free R-module on C(U , V ), and there is an isomorphism of categories

sPreR
∼= s ModR(C)

R .

Now use Lemma 8.44.
Alternatively, one can give an argument for Corollary 8.45 which is completely

analogous to the proof of Lemma 8.44.
The model structure of Corollary 8.45 is the projective model structure for

presheaves of simplicial R-modules. That structure is defined in such a way that
the free R-module functor X �→ R(X) and the forgetful functor u form a Quillen
adjunction

R : sPre(C) � sPreR : u

between the projective model structures for simplicial presheaves and simplicial
R-modules.

Precomposition with the functor φ : C → A induces a functor

φ∗ : sModA
R → sPreR
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This functor has a left adjoint

φ∗ : sPreR → sModA
R

which is defined by

φ∗(X) = lim−→ LU (R(Δn)),

where the colimit varies over the simplices

R(Δn) ⊗ R( hom ( , U )) → X

of X.
Every projective cofibration A → B of simplicial presheaves induces a projective

cofibration

φ∗R(A) → φ∗R(B)

of A-linear simplicial presheaves, by adjointness.
Suppose that α is a regular cardinal such that α > |R|, α > | Mor (C)| and

α > | Mor (A)|.
If the simplicial presheaf B is α-bounded, then the presheaf of simplicial R-

modules R(B) is α-bounded, and therefore has an α-bounded collection of simplices

R(Δn) ⊗ R( hom ( , U )) → R(B).

The A-linear simplicial presheaves R(Δn) ⊗ homA ( , U ) are also α-bounded. The
A-linear simplicial presheaf φ∗R(B) is therefore α-bounded, since it is a colimit
of α-bounded objects on an α-bounded diagram. All cofibrations of sModA

R are
monomorphisms, so that the cofibration φ∗R(A) → φ∗R(B) is α-bounded if the
projective cofibration A → B is α-bounded.

The localization techniques of Chap. 7 apply, without modification, to the pro-
jective model structure on the category sModA

R of A-linear simplicial presheaves,
in the presence of the functor φ : C → A, where C is a Grothendieck site.

Suppose henceforth (by making the cardinal α sufficiently large) that F is an
α-bounded set of α-bounded projective cofibrations in sPre(C).

We shall also suppose that the set of cofibrations F satisfies the following
conditions:

1) Every member A → B of the set F has a projective cofibrant source object.
2) the set F contains the set of all maps

Λn
k × hom ( , U ) → Δn × hom ( , U ),

which set generates the class of trivial cofibrations for the projective model
structure on sPre(C),

3) if C → D is a member of F, then so are all induced maps

(D × ∂Δn) ∪ (C × Δn) → D × Δn.



240 8 Homology Sheaves and Cohomology Groups

Write φ∗R(F) for the set of morphisms

φ∗R(C) → φ∗R(D),

which are induced by morphisms C → D of F. The members of φ∗R(F) are α-
bounded projective cofibrations of sModA

R with projective cofibrant source objects.
Following Sect. 7.1, say that a map p : X → Y of sModA

R is F-injective if it has
the right lifting property with respect to all members of the set φ∗R(F). An object Z

is F-injective if the map Z → 0 is F-injective.
All F-injective maps are sectionwise fibrations of sModA

R , by construction.
A map E → F of sModA

R is an F-equivalence if some cofibrant replacement
Ec → Fc induces a weak equivalence

hom(Fc, Z) → (Ec, Z)

for all F-injective objects Z.
Start with a cardinal λ > 2α . We repeat the general construction of the F-injective

model X → LF(X) for A-linear simplicial presheaves X, seen most recently in
Sect. 8.5.

Every map g : X → Y of A-linear simplicial presheaves has a functorial
factorization

X
i ��

g
""�

��
��

��
��

Eλ(g)

p

��
Y

such that the map p is F-injective and the map i is a cofibration in the saturation of
the set φ∗R(F), by the usual small object argument. This small object construction
terminates after λ steps.

Write

LF(X) = Eλ(X → 0).

Say that a map X → Y of A-linear simplicial presheaves is an LF-equivalence if it
induces a sectionwise weak equivalence LF(X) → LF(Y ).

The following result is the analogue, for A-linear simplicial presheaves, of
Lemma 8.38, and has the same proof.

Lemma 8.46

1) Suppose that the assignment t �→ Xt defines a diagram of A-linear simplicial
presheaves, indexed by γ > 2α . Then the map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )
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is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > α, and let Bζ (X) be the family of subobjects

of X having cardinality less than ζ . Then the map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)

is an isomorphism.
3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that E and F are subobjects of X. Then the natural map

LF(E ∩ F ) → LF(E) ∩ LF(F )

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

By construction, a map X → Y of sModA
R is an F-equivalence if and only if the

induced map LF(X) → LF(Y ) is a sectionwise weak equivalence—see Sect. 7.1.
Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of

Lemma 8.46. Then κ is a regular cardinal, and Lemma 8.46 implies that if a simplicial
R-module X is κ-bounded then LF(X) is κ-bounded. The following result is a
consequence of Lemma 8.46, in the same way that Lemma 8.38 is a consequence of
Lemma 8.37.

Lemma 8.47 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

of sModA
R such that i is an F-equivalence and A is κ-bounded. Then there is a

factorization A ⊂ B ⊂ Y of j by monomorphisms such that B is κ-bounded and the
map B ∩ X → B is an F-equivalence.

The projective model structure for the category sModA
R of A-linear simplicial

presheaves of Lemma 8.44, with sectionwise weak equivalences and sectionwise
fibrations, satisfies conditions M1—M6 of Sect. 7.1. In particular, the condition M6
says that if A → B is a sectionwise weak equivalence and K is a simplicial set, then
the map

A ⊗ K → B ⊗ K

is a sectionwise weak equivalence. This is a consequence of the corresponding
condition for the standard model structure on the category of simplicial R-modules.

The functor

LF : sModA
R → sModA

R
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satisfies condition L1 and L2 of Sect. 7.1 by construction (Lemma 7.6 and
Lemma 7.8, respectively). The functor LF satisfies condition L3 by Lemma 8.47.

Recall that a map A → B of A-linear simplicial presheaves is an F-equivalence if
and only if it induces a sectionwise weak equivalence LFA → LFB. An F-fibration
of A-linear simplicial presheaves is a map which has the right lifting property with
respect to all projective cofibrations which are F-equivalences.

Theorem 7.10 therefore applies to the projective model structure on the category
of A-linear simplicial presheaves and the functor LF, giving the following:

Theorem 8.48 Suppose that φ : C → A is a functor, where C is a Grothendieck
site and A is a small R-linear category, and such that the functor φ is the identity on
objects. Suppose that F is a set of projective cofibrations of simplicial presheaves
on C which satisfies conditions 1)–3) above.

Then the category sModA
R of A-linear simplicial presheaves, together with the

classes of projective cofibrations, F-equivalences and F-fibrations, satisfies the ax-
ioms for a left proper closed simplicial model category. This model category is
cofibrantly generated.

The model structure of Theorem 8.48 is the F-local model structure for the
category of A-linear simplicial presheaves.

Example 8.49 Suppose that k is a perfect field. Following [78], the category Cork

is the additive category of finite correspondences over k.
The objects of this category are the k-schemes which are smooth and separated

over k. The group of morphisms Cork(X, Y ) is the group of finite correspondences: if
X is connected, Cork(X, Y ) is freely generated as an abelian group by the elementary
correspondences, which are the irreducible closed subsets W ⊂ X × Y whose
irreducible integral subschemes are finite and surjective over X. If f : X → Y is a
morphism of smooth k-schemes (and X is connected), then the graph Γ (f ) ⊂ X×Y

is an elementary correspondence.
The composition law

Cork(X, Y ) ⊗ Cork(Y , Z) → Cork(X, Z)

is defined by intersection pairing. The assignment f �→ Γ (f ) defines a functor

γ : Sm|k → Cork ,

here called the graph functor, which is the identity on objects.
A simplicial presheaf with transfers is a member of the category

sPST(k) := sModCork
Z

of Cork-linear simplicial presheaves. These are simplicial objects in the category
PST(k) of presheaves with transfers.

As in Example 7.22, suppose that F is a set of projective cofibrations of simplicial
presheaves on (Sm|S)Nis which contains the following:
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1) the members of the generating set

Λn
k × hom ( , U ) → Δn × hom ( , U )

for the trivial cofibrations of the projective model structure,
2) projective cofibrant replacements of the maps

U ∪φ−1(U ) V → T

which are associated to all elementary distinguished squares (7.4), and
3) the map

∅ → hom ( , ∅).

from the empty simplicial presheaf to the presheaf which is represented by the
empty scheme.

We further require that the set F is generated by this list of cofibrations, subject to
the closure property that if the map A → B is in F, then all maps

(B × ∂Δn) ∪ (A × Δn) → B × Δn

are in F.
We use Theorem 8.48 to form the F-local model structure on the category sPST(k)

of simplicial presheaves with transfers.
By construction, a presheaf with transfers Z is F-fibrant if and only if the under-

lying simplicial abelian presheaf γ∗(Z) is F-injective, and hence satisfies Nisnevich
descent (Theorem 5.39).

Every map A → B of the set F restricts to a map γ ∗
Z(A) → γ ∗

Z(B) which is a
local weak equivalence for the Nisnevich topology.

This claim is proved by verifying that the maps which generate F have this prop-
erty. For this, one uses the observation that the class of cofibrations A → B of
simplicial presheaves with transfers which induce local weak equivalences γ∗A →
γ∗B of simplicial abelian presheaves is closed under pushout, filtered colimits and
the formation of the maps

(B ⊗ ∂Δn) ∪ (A ⊗ Δn) → B ⊗ Δn.

The interesting part of the argument is verifying that the map

Cork( , U ) ∪Cork ( ,φ−1(U )) Cork( , V ) → Cork( , T )

induces a Nisnevich local equivalence for any elementary distinguished square

φ−1(U ) ��

��

V

��
U �� T
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as in (5.8). This follows from a result of Suslin and Voevodsky [97, Prop. 4.3.9],
which implies that the sequence

0 → Cork( , φ−1(U )) → Cork( , U ) ⊕ Cork( , V ) → Cork( , T ) → 0

induces a short exact sequence of Nisnevich sheaves.
It follows that a map X → Y of simplicial presheaves with transfers is an F-

equivalence if and only if the underlying simplicial abelian presheaf map γ∗(X) →
γ∗(Y ) is a Nisnevich weak equivalence.

Add the set of 0-section maps U → U × A
1 to the generating set for F to form a

new set of cofibrations FA1 . Then all maps

Cork( , U ) → Cork( , U × A
1)

are formally inverted, and the corresponding FA1 -local structure is the motivic or
A

1-local model structure on the category sPST(k) of simplicial presheaves with
transfers. The associated homotopy category for this model structure is Voevodsky’s
category DMeff ,−

Nis (k) of effective motives over the field k. [78, Def. 14.1]
Taking products of elementary correspondences defines a pairing

Cork(U , X) ⊗ Cork(V , Y ) → Cork(U × V , X × Y ), (8.12)

and hence a pairing

Cork(U , X) ⊗ Cork(U , Y ) → Cork(U × U , X × Y )
Δ∗−→ Cork(U , X × Y ),

where Δ : U → U × U is the diagonal map. It follows that there is an algebraic
homotopy

γ∗Cork( , U × A
1) ⊗ Z(A1) → γ∗Cork( , U × A

1 × A
1) → γ∗Cork( , U × A

1)

from the identity on γ∗Cork( , U × A
1) to the self map which is induced by the

composite

U × A
1 pr−→ U

f−→U × A
1.

The maps

γ∗Cork( , U × A
1) → γ∗Cork( , U × A

1) ⊗ Z(A1)

are motivic weak equivalences of simplicial abelian presheaves (see Example 8.43),
and so all maps

γ∗(Cork( , U )) → γ∗(Cork( , U × A
1))

are motivic weak equivalences of simplicial abelian presheaves.
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Again, the class of all cofibrations A → B of simplicial presheaves with trans-
fers which induce motivic weak equivalences γ∗A → γ∗B of simplicial abelian
presheaves is closed under pushout, filtered colimits, and the formation of the maps

(B ⊗ ∂Δn) ∪ (A ⊗ Δn) → B ⊗ Δn.

It follows that the canonical map A → LF
A1 (A) of simplicial presheaves with trans-

fers induces a motivic weak equivalence γ∗(A) → γ∗(LF
A1 (A)) of the underlying

simplicial abelian presheaves.
The object γ∗(LF

A1 (A)) satisfies motivic descent by construction, and is therefore
sectionwise equivalent to any motivic fibrant model of γ∗(A). It follows that a map
E → F of simplicial presheaves with transfers is an FA1 -equivalence if and only
if the underlying map γ∗(E) → γ∗(F ) is a motivic weak equivalence of simplicial
abelian presheaves in the sense of Example 8.43.

The motivic model structure for the category sPST(k) of simplicial presheaves
with transfers first appeared in [89].

Say that a presheaf of simplicial abelian groups X is A
1-local if some (hence any)

Nisnevich fibrant model Z of X is motivic fibrant. A comparison of hypercohomology
spectral sequences shows that X is A

1-local if the maps

H
p

Nis(U , H̃q(X)) → H
p

Nis(U × A
1, H̃q(X))

in Nisnevich cohomology are isomorphisms for all p, q and all S-schemes U . In this
case, one says that the homology sheaves of X are homotopy invariant.

Suppose that K is a simplicial presheaf with transfers. Then K has an associated
singular complex

C∗(K) = d(Hom(A•, K))

in sPST(k), where A
• is the cosimplicial scheme made up of the affine spaces A

n,
n ≥ 0, in the usual way, and d is the diagonal functor from bisimplicial abelian
groups to simplicial abelian groups.

The singular complexC∗(K) is A
1-local, in the sense that the underlying simplicial

presheaf γ∗(C∗(K)) is A
1-local [78, 14.9]. This is a consequence of a nontrivial result

[78, 13.8], which asserts that if a presheaf F with transfers is homotopy invariant, then
all associated Nisnevich cohomology presheaves Hq( , F̃ ) are homotopy invariant.

Suppose that X is a simplicial presheaf on the smooth Nisnevich site for k, and
let x : ∗ → X be a global choice of base point for X.

Define the free simplicial presheaf with transfers Ztr (X) by setting

Ztr (X) := lim−→
Δn×hom ( ,U )→X

Z(Δn) ⊗ Cork( , U )

where the colimit is defined on the category of simplices of X. The object Ztr (X)
is the free simplicial presheaf with transfers on the simplicial presheaf X. The base
point x determines a splitting of the map Ztr (X) → Ztr (∗), and we define Ztr (X, x)
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to be the cokernel of the map Ztr ( ∗ ) → Ztr (X) which is induced by the base point
x.

The motive Z(n) is defined as a chain complex object in presheaves with transfers
by the shifted complex

Z(n) = N (C∗Ztr ((Gm)∧n, e))[−n],

where N is the normalized chains functor and the multiplicative group Gm is pointed
by the identity e. The motive Z(n) can be expressed as a simplicial presheaf with
transfers by

Z(n) = C∗Ztr ((Gm)∧n, e) ⊗ (S1)⊗n,

where we write S1 = Z•(S1) for the reduced free simplicial abelian group associated
to the pointed simplicial set S1.

The motivic cohomology groups Hp(X, Z(q)) are hypercohomology groups,
which are defined by

Hp(X, Z(q)) = H
p(X, γ∗(Z(q))),

with respect to the Nisnevich topology [78, Ex. 13.11].
The pairings (8.12) induce natural pairings

Ztr (X, x) ⊗ Ztr (Y , y) → Ztr (X ∧ Y , ∗)

for pointed simplicial presheaves X and Y . These pairings specialize to pairings of
motives

Z(q) ⊗ Z(q ′) → Z(q + q ′),

which induce the cup product

Hp(X, Z(q)) ⊗ Hr (X, Z(s)) → Hp+r (X, Z(q + s))

in motivic cohomology. This cup product is a special case of the hypercohomology
pairing (8.10).



Chapter 9
Non-abelian Cohomology

The homotopy theoretic approach to non-abelian cohomology had its origins in [53],
in a study of characteristic classes in Galois cohomology for quadratic forms and
orthogonal representations of Galois groups.

Suppose that k is a field such that char(k) �= 2. As of the late 1980s, it was
well known that the set of isomorphism classes of non-degenerate bilinear forms A

over k of rank n could be identified with the set H 1
et (k, On) of étale torsors for the

k-group-scheme On of automorphisms of the trivial form. The point of departure of
[53] was the discovery of an identification

H 1
et (k, On) ∼= [∗, BOn],

of the set of isomorphism classes On-torsors with morphisms [∗, BOn] in the homo-
topy category of simplicial sheaves on the étale site for the field k, so that quadratic
forms become homotopy classes of maps of simplicial sheaves. This isomorphism
was derived as a special case of a general identification

H 1(C, G) ∼= [∗, BG] (9.1)

of isomorphism classes of G-torsors and sheaves of groups G with the set of mor-
phisms [∗, BG] in the homotopy category of simplicial sheaves (or presheaves) on
an arbitrary site C.

To put it in a different way, classical non-abelian H 1 has a homotopy classification
in the simplicial sheaf category. The original proof of this result used the Verdier hy-
percovering theorem in an essential way, and was built on ideas from étale homotopy
theory of Friedlander [27] and Dwyer-Friedlander [24].

We verify the identification (9.1) in the first section of this chapter, with a very
different approach that starts with a homotopy theoretic method of defining G-torsors
for a sheaf of groups G. Explicitly, a G-torsor is a sheaf F with G-action such that
the corresponding Borel construction EG ×G F is acyclic in the sense that the map
EG ×G F → ∗ is a local weak equivalence. It is an exercise to show that this
definition is equivalent to the classical requirement that the G-sheaf F is a G-torsor
if and only if the G-action is principal and transitive.

Every G-torsor F defines a “canonical cocycle”

∗ 
←− EG ×G F → BG,

© Springer-Verlag New York 2015 247
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in simplicial sheaves, while every cocycle

∗ 
←− U
f−→BG

defines a G-torsor F , which is the sheaf of path components of the homotopy fibre
of the map f . One shows that these two constructions are inverse to each other up
to equivalence, so that there is a bijection

H 1(C, G) = π0(G − tors) ∼= π0h(∗, BG) ∼= [∗, BG],

which gives the identification (9.1). This result is Theorem 9.8 below. The well-
known fact that the category G − tors of G-equivariant maps between G-torsors is
a groupoid appears as Lemma 9.4, with a simple homotopy theoretic proof.

One can, more generally, say that an internally defined sheaf-valued functor F on
a sheaf of groupoids H is an H -torsor if the induced map

holim−−−→ H F → ∗
is a local weak equivalence, and then the method of proof of Theorem 9.8 generalizes,
in Corollary 9.15, to give an identification

π0(H − tors) ∼= [∗, BH ],

of the path components of the groupoid of H -torsors with morphisms in the homo-
topy category. This result is a consequence of Theorem 9.14, which asserts that the
canonical cocycle construction defines a weak equivalence

φ : B(H − tors)

−→ Bh(∗, BH )

of simplicial sets between the nerve of the H -torsor groupoid and the nerve of the
cocycle category h(∗, BH ). This map φ is global sections of a weak equivalence of
simplicial presheaves

B(H − Tors) → BH(∗, BH ),

which is later parlayed, in Corollary 9.27, into a cocycle description of the stack
associated to the sheaf of groupoids H .

Stacks have become homotopy theoretic objects, with the introduction of the
injective model structures for both presheaves and sheaves of groupoids on a site
C. The model structure for presheaves of groupoids first appeared in Hollander’s
thesis [43], and is straightforward to define and derive in the presence of the injective
model structures for simplicial presheaves. The corresponding structure for sheaves
of groupoids was introduced by Joyal and Tierney [72].

Say that a map G → H of presheaves of groupoids is a local weak equiva-
lence (respectively injective fibration) if the induced map BG → BH is a local
weak equivalence (respectively injective fibration) of simplicial presheaves, while
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the cofibrations are defined by a lifting property as they must be. The model struc-
tures for presheaves of groupoids and sheaves of groupoids appear in Propositions
9.19 and 9.20 in Sect. 9.2. These model structures are Quillen equivalent.

We show in Proposition 9.28 that a sheaf of groupoids H is a stack in the classical
sense (i.e. satisfies effective descent) if and only if it satisfies descent for the injective
model structure. In the present context, a presheaf of groupoids H satisfies descent
if and only if every injective fibrant model H → H ′ consists of equivalences of
groupoids H (U ) → H ′(U ) in all sections. Given this observation, we can identify
stacks with injective fibrant presheaves of groupoids, or more broadly with homotopy
types of presheaves or sheaves of groupoids.

For example (see Lemma 9.24), the quotient stack for a group action G×X → X

on a sheaf X can be identified with the translation groupoid EGX, and hence with
the Borel construction

EG ×GX = B(EGX)

in simplicial sheaves. We also show, in Lemma 9.25 that sheaves of groupoids G and
H are locally weakly equivalent if and only if they are Morita equivalent.

Opinions vary on what the theory of higher stacks should be. The original circle
of ideas arose in an effort to classify higher order cohomological phenomena in
algebraic geometry. Early formulations by Giraud and others in the 1970s created a
geometric interpretation of the classification of stacks in terms of symmetries in 2-
groupoids. Some modern approaches to the subject start with a definition that is much
less geometric: a higher stack from this point of view is a simplicial presheaf, so that
higher stacks become essentially everything—see [42] and [93], for example. The
theory that is described here is a departure from this point of view, in that symmetries
are again the focus.

The base category for higher stack theory that we use is the category s0Gpd of
groupoids enriched in simplicial sets (or simplicial groupoids with discrete objects).
Categories enriched in simplicial sets have been extensively used in homotopy co-
herence theory, and homotopy theoretic structures have existed for them for some
time. The homotopy theory of groupoids enriched in simplicial sets is the subject of
Sect. 9.3. Local versions of it appear in subsequent sections.

In many instances, the results of Sect. 9.3 come directly from the literature,
for example from [32]. Generally, weak equivalences G → H of groupoids en-
riched in simplicial sets can be measured by the method of Dwyer and Kan [22]
by comparing sets of path components and by showing that all simplicial set maps
G(x,y) → H (f (x), f (y)) are weak equivalences, or by using either the diago-
nal of the classifying space H �→ dB(H ) or the Eilenberg–Mac Lane W functor
H �→ WH .

The Eilenberg–Mac Lane functor W is the easiest thing to use for generating model
structures, because it has a well-behaved left adjoint given by the loop groupoid
functor X �→ G(X). That said, the Eilenberg–Mac Lane functor has a long history
of being fussy to define and manipulate. One can use the cocycle methods of [32],
or say that the n-simplices of WH are the maps G(Δn) → H of s0Gpd subject to
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having a definition of the loop groupoid functor G, but the properties of the functor
W that one needs are rather tricky to derive in both of these approaches.

There is a fix for this problem that has evolved in the category theory literature in
recent years, most recently in the work of Stevenson [94], and which goes back to
ideas that were introduced by Artin-Mazur [3] and Illusie [48]. Specifically, if X is a
simplicial set, there is a bisimplicial set Dec (X) with (p, q)-bisimplices defined by

Dec (X)p,q = hom(B(p ∗ q), X)

where p ∗ q is the poset join of the ordinal numbers p and q. The resulting functor
X �→ Dec (X) is Illusie’s total décalage functor. Its right adjoint is the Artin-Mazur
total simplicial set functor T : if Y is a bisimplicial set then the n-simplices of T (Y )
are the bisimplicial set maps Dec (Δn) → Y . The key point, for us, is that there is a
natural isomorphism

T (BH ) ∼= WH

for groupoids H enriched in simplicial sets. It is easy to see, with this definition, that
there is a natural map

Φ : d(BH ) → T (BH ) = WH.

We show in Proposition 9.38 that this map is a weak equivalence. This result is a
consequence of a more general result for bisimplicial sets (Proposition 9.38) that is
proved in [94], and we reproduce that proof here in somewhat different language.

With these definitions and equivalences in hand, it is relatively painless to show
(Theorem 9.43) that there is a W -model structure on the category of groupoids en-
riched in simplicial sets, in which a map G → H is a weak equivalence (respectively
fibration) if the map WG → WH is a weak equivalence (respectively fibration) of
simplicial sets.

This model structure for groupoids enriched in simplicial sets is promoted in The-
orem 9.50 of Sect. 9.4 to a local W -model structure for presheaves of groupoids
enriched in simplicial sets, with analogous definitions of weak equivalence and fi-
bration: a map G → H is a local weak equivalence (respectively fibration) if the
induced map WG → WH is a local weak equivalence (respectively injective fibra-
tion) of simplicial presheaves. Furthermore, the functor W and the loop groupoid
functor G determine a Quillen equivalence between the injective model structure
on simplicial presheaves and the W -model structure on presheaves of groupoids en-
riched in simplicial sets. The homotopy types of presheaves of groupoids enriched
in simplicial presheaves, for this model structure, are the ∞-stacks.

The W -model structure of Theorem 9.50 specializes to an n-equivalence model
structure for presheaves of groupoids enriched in simplicial sets (Theorem 9.56) and
to an injective model structure for presheaves of 2-groupoids (Theorem 9.57).

We construct a Postnikov section Pn for a groupoid H enriched in simplicial
sets: the simplicial groupoid Pn(H ) has the same set of objects as does H , and
its morphism simplicial set is the nth Moore–Postnikov section Pn Mor (H ) of the
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morphism simplicial set Mor (H ) of H . This construction is functorial, and applies
to presheaves of groupoids enriched in simplicial sets. A map G → H of such
objects is a local n-equivalence if the map PnG → PnH is a local weak equivalence
of presheaves of groupoids enriched in simplicial sets. The cofibrations for the n-
equivalence structure are the cofibrations for the W -structure, and the fibrations are
defined by a lifting property. The homotopy types of presheaves of groupoids enriched
in simplicial sets within the n-equivalence model structure are the (n + 1)-stacks.

In particular, the 1-stacks, or homotopy types within the 0-equivalence model
structure, are equivalent to homotopy types of presheaves of groupoids, or stacks,
by Lemma 9.58. The 2-stacks are equivalent to homotopy types of presheaves of
2-groupoids by Proposition 9.59. See also Remark 9.60.

In the present language, a gerbe is a locally connected homotopy type. The model
structure for presheaves of 2-groupoids of Theorem 9.57 is used in Sect. 9.5 to give
a homotopy classification within presheaves of 2-groupoids for gerbes with auto-
morphism sheaves in a fixed family of groups F in Corollary 9.68, and a homotopy
classification of extensions of sheaves of groups in Corollary 9.72.

These results are elements of Giraud’s theory [31] of non-abelian H 2. They are
consequences of the main result of the section, Theorem 9.66, which is a homotopy
classification within 2-groupoids of extensions of presheaves of groupoids with ker-
nels in a family of sheaves of groups F, suitably defined. The classifying object in
all cases is a 2-groupoid object Iso(F), which consists of the objects of the family
F, the isomorphisms of these objects, and the homotopies of the isomorphisms.

9.1 Torsors

Suppose that G is a sheaf of groups. A G-torsor is traditionally defined to be a sheaf
F with a free G-action such that the canonical map F/G → ∗ is an isomorphism in
the sheaf category, where ∗ is the terminal sheaf.

The Borel construction EG ×GF is the nerve of a sheaf of groupoids, which is
given in each section by the translation category for the action of G(U ) on F (U )—
see Example 2.7. It follows that all sheaves of higher homotopy groups for EG×G F

vanish. The requirement that the action G×F → F is free means that the isotropy (or
stabilizer) subgroups of G for the action are trivial in all sections, which is equivalent
to requiring that all sheaves of fundamental groups for the object EG×GF are trivial.
Finally, there is an isomorphism of sheaves

π̃0(EG ×GF ) ∼= F/G.

These observations together imply the following:

Lemma 9.1 A sheaf F with G-action is a G-torsor if and only if the simplicial
sheaf map

EG ×GF → ∗
is a local weak equivalence.
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Example 9.2 If G is a sheaf of groups, then EG = EG ×G G is contractible in
each section, so that the map

EG ×G G → ∗
is a local weak equivalence, and so G is a G-torsor. This object is often called the
trivial G-torsor.

Example 9.3 Suppose that L/k is a finite Galois extension of fields with Galois
group G. Let C(L) be the Čech resolution for the étale covering Sp (L) → Sp (k),
as in Example 4.17. There is an isomorphism of simplicial schemes

C(L) ∼= EG ×G Sp (L),

while the simplicial presheaf map C(L) → ∗ on Sch|k is a local weak equivalence for
the étale topology. The k-scheme Sp (L) represents a G-torsor for all of the standard
étale sites for the field k.

The category G−tors of G-torsors is the category whose objects are all G-torsors
and whose maps are all G-equivariant maps between them.

Lemma 9.4 Suppose that G is a sheaf of groups. Then the category G− tors of
G-torsors is a groupoid.

Proof If f : F → F ′ is a map of G-torsors, then f is induced as a map of fibres by
the comparison of local fibrations

EG ×GF

 ��

���
��

��
��

EG ×GF ′

11��
��
��
�

BG

The map f : F → F ′ of fibres is a weak equivalence of constant simplicial sheaves
by Lemma 5.20 and properness of the injective model structure for simplicial sheaves,
and is therefore an isomorphism of sheaves.

Remark 9.5 Suppose that F is a G-torsor, and that the map F → ∗ has a (global)
section σ : ∗ → X. Then σ extends, by multiplication, (also uniquely) to a
G-equivariant map

σ∗ : G → F ,

with σ∗(g) = g · σ ( ∗ ) for g ∈ G(U ). This map is an isomorphism of torsors, so that
F is trivial with trivializing isomorphism σ∗. Conversely, if τ : G → F is a map of
torsors, then F has a global section τ (e). Thus a G-torsor F is trivial in the sense
that it is G-equivariantly isomorphic to G if and only if it has a global section.
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Example 9.6 Suppose that X is a topological space. The category of sheaves on
op|X can be identified up to equivalence with the category of local homeomorphisms
Y → X over X.

If G is a discrete group, then G represents the sheaf G × X → X given by
projection. A sheaf with G-action consists of a map Y → X together with a G-
action G × Y → Y such that the map Y → X is G-equivariant for the trivial
G-action on X. Such a thing is a G-torsor if the action G × Y → Y is free and the
map Y/G → X is an isomorphism. The latter implies that X has an open covering
i : U ⊂ X such that there are liftings

Y

��
U

σ
���������

i

�� X

Torsors are stable under pullback along continuous maps, and the map U ×X Y → U

is a G-torsor over U . The map σ induces a global section σ∗ of this map, so that the
pulled back torsor is trivial, and there is a commutative diagram

G × U
∼= ��

pr
����

��
��

��
��

U ×XY

��
U

where the displayed isomorphism is G-equivariant. It follows that a G-torsor over
X is a principal G-bundle over X, and conversely.

Example 9.7 Suppose that U is an object of a small site C. The restriction functor

Shv(C) → Shv(C/U ),

written F �→ F |U , is exact, and therefore takes G-torsors to G|U -torsors. The global
sections of F |U coincide with the elements of the set F (U ), so that a G-torsor F

trivializes over U if and only if F (U ) �= ∅, or if and only if there is a diagram

F

��
U

���������
�� ∗

The map F → ∗ is a local epimorphism, so there is a covering family Uα → ∗ (such
that

⊔
Uα → ∗ is a local epimorphism) with F (Uα) �= ∅. In other words, every

torsor F trivializes over some covering family of the point ∗.

Suppose that the picture

∗ 
←− Y
α−→BG
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is an object of the cocycle category h(∗, BG) in simplicial presheaves, and forms the
pullback

pb (Y ) ��

��

Y

α

��
EG

π

�� BG

where EG = B(G/∗ ) = EG×GG and π : EG → BG is the canonical map. Then
pb (Y ) inherits a G-action from the G-action on EG, and the map

EG ×G pb (Y ) → Y

is a sectionwise weak equivalence (this is a consequence of Lemma 9.9 below). Also,
the square is homotopy cartesian in sections, so there is a local weak equivalence

G|U → pb(Y )|U
where Y (U ) �= ∅. It follows that the natural map pb (Y ) → π̃0 pb(Y ) is a
G-equivariant local weak equivalence, and hence that the maps

EG ×Gπ̃0 pb(Y ) ← EG ×G pb(Y ) → Y 
 ∗
are natural local weak equivalences. In particular, the G-sheaf π̃0 pb (Y ) is a G-torsor.

We therefore have a functor

h(∗, BG) → G − tors,

which is defined by sending ∗ 
←− Y → BG to the object π̃0 pb (Y ). The Borel
construction defines a functor

G − tors → h(∗, BG)

in which the G-torsor X is sent to the (canonical) cocycle

∗ 
←− EG ×GX → BG.

It is elementary to check (see also the proof of Theorem 9.14 below) that these two
functors induce a bijection

π0h(∗, BG) ∼= π0(G − tors).

The set π0(G − tors) is the set of isomorphism classes of G-torsors, while we
know from Theorem 6.5 that there is an isomorphism

π0h(∗, BG) ∼= [∗, BG].
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The non-abelian invariant H 1(C, G) is traditionally defined to be the collection of
isomorphism classes of G-torsors. We have therefore proved the following:

Theorem 9.8 Suppose that G is a sheaf of groups on a small Grothendieck site C.
Then there is a bijection

[∗, BG] ∼= H 1(C, G).

Theorem 9.8 was first proved, by a different method, in [53].
The following result completes the proof of Theorem 9.8:

Lemma 9.9 Suppose that I is a small category and that p : X → BI is a simplicial
set map. Let the pullback diagrams

pb (X)(i) ��

��

X

p

��
B(I/i) �� BI

define the I -diagram i �→ pb (X)(i). Then the resulting map

ω : holim−−−→ i∈I pb (X)(i) → X

is a weak equivalence.

Proof The simplicial set

holim−−−→ i∈I pb (X)(i)

is the diagonal of a bisimplicial set whose (n, m)-bisimplices are pairs

(x, i0 → · · · → in → j0 → · · · → jm)

where x ∈ Xn, the morphisms are in I, and p(x) is the string

i0 → · · · → in.

The map

ω : holim−−−→ i∈I pb (X)(i) → X

takes such an (n, m)-bisimplex to x ∈ Xn. The fibre of ω over x in vertical degree n

can be identified with the simplicial set B(in/I ), which is contractible.

Example 9.10 Suppose that k is a field such that char(k) �= 2. Identify the orthog-
onal group On = On,k with a sheaf of groups on the big étale site (Sch|k)et for k. The
non-abelian cohomology object H 1

et (k, On) coincides with the set of isomorphism
classes of non-degenerate symmetric bilinear forms over k of rank n. Thus, every
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such form q determines a morphism ∗ → BOn in the simplicial (pre)sheaf homo-
topy category on the site (Sch|k)et , and this morphism determines the form q up to
isomorphism.

There is a ring isomorphism

H ∗
et (BOn,k , Z/2) ∼= H ∗

et (k, Z/2)[HW1, . . ., HWn]

where the polynomial generator HWi has degree i (see [53]). The generator HWi is
characterized by mapping to the ith elementary symmetric polynomial σi(x1, . . ., xn)
under the map

H ∗(BOn,k , Z/2) → H ∗(Γ ∗BZ/2×n, Z/2) ∼= H ∗
et (k, Z/2)[x1, . . ., xn],

which is induced by the inclusion Z/2×n ⊂ On(k) of the diagonal subgroup.
Every symmetric bilinear form α determines a map α : ∗ → BOn in the simplicial

presheaf homotopy category, and therefore induces a map

α∗ : H ∗
et (BOn, Z/2) → H ∗

et (k, Z/2),

and HWi(α) = α∗(HWi) is the ith Hasse–Witt class of α.
The ring H ∗

et (k, Z/2) can otherwise be characterized as the mod-2 cohomology
of the absolute Galois group of k.

One can show that HW1(α) is the pullback of the determinant BOn → BZ/2,
and HW2(α) is the classical Hasse–Witt invariant of α.

The Steenrod algebra is used to calculate the relation between Hasse–Witt and
Stiefel–Whitney classes for orthogonal Galois representations. This calculation uses
the Wu formulas for the action of the Steenrod algebra on elementary symmetric
polynomials—see [53, 54].

Example 9.11 Suppose that S is a scheme. The general linear group Gln represents
a sheaf of groups on the étale site (Sch|S)et and the sheaf of groups Gm can be
identified with the centre of Gln via the diagonal imbedding Gm → GLn. There is
a short exact sequence

e → Gm → Gln
p−→PGln → e

of sheaves of groups on (Sch|S)et . The projective general linear group PGln can
be identified with the group scheme of automorphisms Aut(Mn) of the scheme of
(n × n)-matrices Mn, and the homomorphism p takes an invertible matrix A to the
automorphism defined by conjugation by A.

Since Gm is a central subgroup of Gln, there is an induced action

BGm × BGln → BGln

of the simplicial abelian group BGm on the simplicial sheaf BGln, and there is
an induced sectionwise (hence local) fibre sequence associated to the sequence of
bisimplicial objects

BGln → EBGm ×BGm
BGln

π−→BBGm 
 K(Gm, 2)



9.1 Torsors 257

after taking diagonals.
In effect, if A × X → X is an action of a connected simplicial abelian group A

on a connected simplicial set X, then all sequences

X → A×n × X → A×n

are fibre sequences of connected simplicial sets, so that the sequence

X → EA ×A X → BA

of bisimplicial set maps induces a fibre sequence of simplicial sets after taking
diagonals, by a theorem of Bousfield and Friedlander [32, IV.4.9].

The BGm action on BGln is free, so there is a local weak equivalence

EBGm ×BGm
BGln


−→ BPGln.

It follows that the map π induces a function

H 1
et (S, PGln) = [∗, BPGln]

d:=π∗−−−→ [∗, K(Gm, 2)] = H 2
et (S, Gm).

The object H 1
et (S, Gln) is the set of isomorphism classes of vector bundles over

S of rank n, and the set H 1
et (S, PGln) is the set of isomorphisms classes of rank n2

Azumaya algebras. The map

p∗ : [∗, BGln] → [∗, BPGln]

takes a vector bundle E to the Azumaya algebra End(E), which is defined by the
sheaf of endomorphisms of the S-module E.

Recall that the Brauer group Br(S) is the abelian group of similarity classes of
Azumaya algebras over S: the Azumaya algebras A and B are similar if there are
vector bundles E and F such that there are isomorphisms

A ⊗ End(E) ∼= B ⊗ End(F ).

The group structure on Br(S) is induced by tensor product of Azumaya algebras.
In more detail, tensor product of modules induces a comparison of exact sequences

e �� Gm × Gm
��

+
��

Gln × Glm
p×p

��

⊗
��

PGln × PGlm ��

⊗
��

e

e �� Gm
�� Glnm

p

�� PGlnm
�� e

where + is the group structure on Gm, and the induced map

⊗ : [∗, BPGln] × [∗, BPGlm] → [∗, BPGlnm]
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defines the tensor product of Azumaya algebras. We also have induced commutative
diagrams

[∗, BPGln] × [∗, BPGlm]

⊗
��

d×d
�� H 2

et (S, Gm) × H 2
et (S, Gm)

+
��

[∗, BPGlnm]
d

�� H 2
et (S, Gm)

in which the displayed pairing on H 2(S, Gm) is the abelian group addition. It follows
that the collection of morphisms

d : [∗, BPGln] → H 2
et (S, Gm)

defines a group homomorphism

d : Br(S) → H 2
et (S, Gm).

This homomorphism d is a monomorphism: if d(A) = 0 for some Azumaya algebra
A, then there is an isomorphism A ∼= End(E) for some vector bundle E by the
exactness of the sequence

[∗, BGln]
p∗−→ [∗, BPGln]

d−→H 2
et (S, Gm),

so that A represents 0 in the Brauer group.
Finally, if S is connected, then the Brauer group Br(S) consists of torsion ele-

ments. As in [79, IV.2.7], this follows from the existence of the diagram of short
exact sequences of sheaves of groups

e

��

e

��
e �� μn ��

��

Gm

×n
��

��

Gm
��

1��

e

e �� Sln ��

��

Gln
det

��

��

Gm
�� e

PGln
1
��

��

PGln

��
e e

on the étale site (Sch|S)et , where μn is the subgroup of n-torsion elements in Gm.
The vertical sequence on the left is a central extension, so that there is a map d :
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[∗, BPGln] → H ∗
et (S, μn) that fits into a commutative diagram

[∗, BPGln]
d ��

1
��

H 2
et (S, μn)

��
[∗, BPGln]

d

�� H 2
et (S, Gm)

and H 2
et (S, μn) is an n-torsion abelian group. It follows that the Brauer group Br(S)

consists of torsion elements if the scheme S has finitely many components.
The assertion that there is monomorphism

d : Br(S) → H 2
et (S, Gm)tors

into the torsion part of H 2
et (S, Gm) is a well-known theorem of étale cohomology

theory [79, IV.2.5]. The distinctive feature of the present discussion is the use of
easily defined fibre sequences of simplicial sheaves to produce the map d in place of
an appeal to non-abelian H 2 invariants.

Suppose that I is a small category. A functor X : I → Set consists of sets X(i),
i ∈ Ob (I ) and functions α∗ : X(i) → X(j ) for α : i → j in Mor (I ) such that
α∗β∗ = (α · β)∗ for all composable pairs of morphisms in I and (1i)∗ = 1X(i) for all
objects i of I .

The sets X(i) can be collected together to give a set

π : X =
⊔

i∈Ob (I )

X(i) →
⊔

i∈Ob (I )

= Ob (I )

and the assignments α �→ α∗ can be collectively rewritten as a commutative diagram

X ×π ,s Mor (I )
m ��

pr

��

X

π

��
Mor (I )

t

�� Ob (I )

(9.2)

where s, t : Mor (I ) → Ob (I ) are the source and target maps, respectively, and the
diagram

X ×π ,s Mor (I )
pr

��

��

Mor (I )

s

��
X

π

�� Ob (I )

is a pullback.
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The notation is awkward, but the composition laws for the functor X translate
into the commutativity of the diagrams

X ×π ,s Mor (I ) ×t ,s Mor (I )
1×mI ��

m×1

��

X ×π ,s Mor (I )

m

��
X ×π ,s Mor (I )

m

�� X

(9.3)

and

X
e∗ ��

1
��&&

&&&
&&&

&&&
& X ×π ,s Mor (I )

m

��
X

(9.4)

Here, mI is the composition law of the category I , and the map e∗ is uniquely
determined by the commutative diagram

X

1

��

π �� Ob (I )
e �� Mor (I )

s

��
X

π

�� Ob (I )

where the map e picks out the identity morphisms of I .
Thus, a functor X : I → Set consists of a function π : X → Ob (I ) together

with an action m : X ×π ,s Mor (I ) → X making the diagrams (9.2), (9.3) and (9.4)
commute. This is the internal description of a functor, which can be used to define
functors on category objects.

Specifically, suppose that H is a sheaf of groupoids on a site C. Then a sheaf-
valued functor X on H , or more commonly an H -functor, consists of a sheaf map
π : X → Ob (H ), together with an action morphism m : X ×π ,s Mor (H ) → X in
sheaves such that the diagrams corresponding to (9.2), (9.3) and (9.4) commute in
the sheaf category.

Alternatively, X consists of set-valued functors

X(U ) : H (U ) → Sets

with x �→ X(U )x for x ∈ Ob (H (U )), together with functions

φ∗ : X(U )x → X(V )φ∗(x)

for each φ : V → U in C, such that the assignment

U �→ X(U ) =
⊔

x∈Ob (H (U ))

X(U )x , U ∈ C,
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defines a sheaf and the diagrams

X(U )x
α∗ ��

φ∗
��

X(U )y

φ∗
��

X(V )φ∗(x)
(φ∗(α))∗

�� X(V )φ∗(y)

commute for each α : x → y of Mor (H (U )) and all φ : V → U of C.
From this alternative point of view, it is easy to see that an H -functor X defines

a natural simplicial (pre)sheaf homomorphism

p : holim−−−→ H X → BH.

One makes the construction sectionwise.

Remark 9.12 The homotopy colimit construction for H -functors is a direct gener-
alization of the Borel construction for sheaves Y with actions by sheaves of groups
G: the simplicial sheaf EG ×GY is the homotopy colimit holim−−−→ GY .

Say that an H -functor X is an H -torsor if the canonical map

holim−−−→ H X → ∗
is a local weak equivalence.

A morphism f : X → Y of H -torsors is a natural transformation of H -functors,
namely a sheaf morphism

X
f

��

���
��

��
��

Y

2222
22
22
2

Ob (H )

fibred over Ob (H ), which respects the multiplication maps. Write H − tors for the
category of H -torsors and the natural transformations between them.

The diagram

X ��

π

��

holim−−−→ H X

p

��
Ob (H ) �� BH

is homotopy cartesian in each section by Quillen’s Theorem B [32, IV.5.2] (more
specifically, Lemma 9.46) since H is a (pre)sheaf of groupoids, and is therefore
homotopy cartesian in simplicial sheaves. It follows that a morphism f : X → Y of
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H -torsors specializes to a weak equivalence X → Y of constant simplicial sheaves,
which is therefore an isomorphism.

We therefore have the following generalization of Lemma 9.4:

Lemma 9.13 Suppose that H is a sheaf of groupoids. Then the category H − tors
of H -torsors is a groupoid.

Every H -torsor X has an associated cocycle

∗ 
←− holim−−−→ H X
p−→BH ,

called the canonical cocycle, and this association defines a functor

φ : H − tors → h(∗, BH )

taking values in the simplicial sheaf cocycle category.
Now suppose given a cocycle

∗ 
←− Y
g−→BH

in simplicial sheaves, and form the pullback diagrams

pb(Y )(U )x ��

��

Y (U )

g

��
B(H (U )/x) �� BH (U )

of simplicial sets for each x ∈ Ob(H (U )) and U ∈ C. Set

pb(Y )(U ) =
⊔

x∈Ob (H (U ))

pb(Y )(U )x.

Then the resulting simplicial presheaf map pb(Y ) → Ob(H ) specifies an internally
defined functor on H that takes values in simplicial presheaves. There is a sectionwise
weak equivalence

holim−−−→ H pb (Y ) → Y 
 ∗
by Lemma 9.9, and the diagram

pb(Y ) ��

��

holim−−−→ H pb (Y )

��
Ob (H ) �� BH

is a sectionwise homotopy cartesian since H is a sheaf of groupoids. It follows that
the natural transformation

pb(Y ) → π̃0(Y )
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of simplicial presheaf-valued functors on H is a local weak equivalence. In summary,
we have local weak equivalences

holim−−−→ H π̃0 pb(Y ) 
 holim−−−→ H pb(Y ) 
 Y 
 ∗,

so that the sheaf-valued functor π̃0 pb (Y ) on H is an H -torsor. These constructions
are natural on h(∗, BH ) and there is a functor

ψ : h(∗, BH ) → H − tors.

Theorem 9.14 Suppose that H is a sheaf of groupoids. Then the functors φ and ψ

induce a homotopy equivalence

B(H − tors) 
 Bh(∗, BH ).

Corollary 9.15 The functors φ and ψ induce a bijection

π0(H − tors) ∼= [∗, BH ].

For the proof of Theorem 9.14, it is convenient to use a trick for diagrams of
simplicial sets that are indexed by groupoids.

Suppose that Γ is a small groupoid, and let sSetΓ be the category of Γ -diagrams in
simplicial sets. Let sSet/BΓ be the category of simplicial set morphisms Y → BΓ .
The homotopy colimit defines a functor

holim−−−→ Γ : sSetΓ → sSet/BΓ.

This functor sends a diagram X : Γ → sSet to the canonical map holim−−−→ Γ X → BΓ .
On the other hand, given a simplicial set map Y → BΓ , the collection of pullback
diagrams

pb (Y )x ��

��

Y

��
B(Γ/x) �� BΓ

defines an Γ -diagram pb (Y ) : Γ → sSet that is functorial in Y → BΓ .

Lemma 9.16 Suppose that Γ is a groupoid. Then the functors

pb : sSet/BΓ � sSetΓ : holim−−−→ Γ

form an adjoint pair: pb is left adjoint to holim−−−→ Γ .

Proof Suppose that X is a Γ -diagram and that p : Y → BΓ is a simplicial set over
BΓ . Suppose given a natural transformation

f : pb (Y )n → Xn.
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and let x be an object of Γ . An element of ( pb (Y )x)n can be identified with a pair

(y, a0 → · · · → an
α−→ x)

where the string of arrows is in Γ and p(y) is the string a0 → · · · → an. The map
f is uniquely determined by the images of the elements

f (y, a0 → · · · → an
1−→ an)

in Xn(an). Since Γ is a groupoid, an element z ∈ X(an) uniquely determines an
element

(z0, a0) → (z1, a1) → · · · → (zn, an)

with zn = z. It follows that there is a natural bijection

homΓ ( pb (Y )n, Xn) ∼= homBΓn
(Yn,( holim−−−→ Γ X)n).

Extend simplicially to get the adjunction isomorphism

homΓ ( pb (Y ), X) ∼= homBΓ (Y , holim−−−→ Γ X).

Proof (Proof of Theorem 9.14) It follows from Lemma 9.16 that the functor ψ is left
adjoint to the functor φ.

Suppose that K is an ordinary groupoid, and that x ∈ Ob (K). The groupoid K/x

has a terminal object and hence determines a cocycle

∗ 
←− B(K/x) → BK

in simplicial sets.
If a ∈ Ob (K), then in the pullback diagram

pb(B(K/x))(a) ��

��

B(K/x)

��
B(K/a) �� BK

the object pb (B(K/x))(a) is the nerve of a groupoid whose objects are the diagrams

a
α←− b

β−→ x

in K , and whose morphisms are the diagrams

bα

%%���
���

β

����
���

�

��
a x

b′ β ′

		������
α′

&&������
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In the presence of such a picture, β ·α−1 = β ′ ·(α′)−1. There are uniquely determined
diagrams

bα

%%








β

��		
			

	

��
a x

a β·α−1

��������1

((������

for each object a
α←− b

β−→ x. It follows that there is a natural bijection

π0 pb(B(K/x)(a) ∼= homK (a, x)

and that

pb(B(K/x))(a) → π0 pb(B(K/x))(a)

is a natural weak equivalence.
It also follows that there are weak equivalences

holim−−−→ a∈K pb(B(K/x))(a)

 ��



��

B(K/x) 
 ∗

holim−−−→ a∈K homK (a, x)

so that the functor a �→ homK (a, x) defines a K-torsor. Here, the function

β∗ : homK (a, x) → homK (b, x)

induced by β : a → b is precomposition with β−1.
To put it in a different way, each x ∈ K determines a K-torsor a �→ homK (a, x),

which we will call homK ( , x) and there is a functor

K → K − tors,

which is defined by x �→ homK ( , x).
Observe that the maps homK ( , x) → Y classify elements of Y (x) for all functors

Y : K → Set.
In general, every global section x of a sheaf of groupoids H determines an H -

torsor homH ( , x) which is constructed sectionwise according to the recipe above.
In particular, this is the torsor associated by the pullback construction to the cocycle

∗ 
←− B(H/x) → BH.

The torsors homH ( , x) are the trivial torsors for the sheaf of groupoids H .
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There is a functor

j : Γ∗H → H − tors

that is defined by j (x) = homH ( , x). Recall that Γ∗ is the global sections functor,
so that Γ∗H is the groupoid of global sections of the sheaf of groupoids H .

The torsor isomorphisms

homH ( , x) ��

��3
33

33
33

3
X

2222
22
22
2

Ob (H )

(or trivializations) are in bijective correspondence with global sections of X that map
to x ∈ Ob (H ) under the structure map X → Ob (H ).

Torsors and cocycle categories behave well with respect to restriction. If φ : V →
U is a morphism of the underlying site C, then composition with φ defines a functor

φ∗ : C/V → C/U ,

and composition with φ∗ determines a restriction functor

φ∗ : Pre(C/U ) → Pre(C/V ),

which takes F |U to F |V for any presheaf F on C. All restriction functors take sheaves
to sheaves and are exact. Thus, φ∗ takes an H |U -torsor to an H |V torsor. In particular,
there is an identification

φ∗ homH |U ( , x) = homH |V ( , xV )

for all x ∈ H (U ). The functor φ∗ also preserves cocycles.
Every H -torsor X has sections along some cover, since the map holim−−−→ HX → ∗

is a local weak equivalence. It follows that every H -torsor is locally trivial.

Remark 9.17 We have not discussed the size of the objects that are involved in
Theorem 9.14. The statement of that result makes no sense unless the cocycle and
torsor categories are small in some sense.

Suppose that α is a regular cardinal such that α > | Mor (C)| and α > | Mor (H )|.
If the H -torsor F has F (U ) �= ∅, then the restriction F |U has global sections and
hence is isomorphic to some homH |U ( , x), so the set F (U ) is α-bounded. It follows
that F is α-bounded as a sheaf. We can therefore assume that the category H − tors
is small.

The canonical cocycle functor

φ : H − tors → h(∗, BH )

takes values in the full subcategory h(∗, BH )α of cocycles

∗ 
←− Y → BH
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of cocycles that are bounded by α in the sense that |Y | < α.
Thus, it is more correct to assert in Theorem 9.14 that the groupoid H − tors is

small and that there are homotopy equivalences

B(H − tors) 
 Bh(∗, BH )α.

if the cardinal α is larger than | Mor (H )|.
It follows that the map

Bh(∗, BH )α → Bh(∗, BH )γ

is a weak equivalence for all γ ≥ α.
See also Propositions 6.7 and 6.10.

There is a presheaf of groupoids H − Tors on the site C with

H − Tors(U ) = H |U − tors

and a presheaf of categories H(∗, BH ) with

H(∗, BH )(U ) = h(∗, BH |U ).

There are functors

H
j

��

33�
��

��
��

��
H − Tors

φ

��
H(∗, BH )

where φ induces a sectionwise weak equivalence

B(H − Tors)

−→ BH(∗, BH )

by Theorem 9.14, and the composite map φ · j is defined by sending an object
x ∈ H (U ) to the cocycle

∗ 
←− B(H |U/x) → BH |U .

9.2 Stacks and Homotopy Theory

Write

Pre(Gpd) = Pre(Gpd(C))

for the category of presheaves of groupoids on a small site C.
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Say that a morphism f : G → H of presheaves of groupoids is a local weak
equivalence (respectively injective fibration) if and only if the induced map f∗ :
BG → BH is a local weak equivalence (respectively injective fibration) of simplicial
presheaves. A morphism i : A → B of presheaves of groupoids is a cofibration if it
has the left lifting property with respect to all trivial fibrations.

The fundamental groupoid functor X �→ π (X) is left adjoint to the nerve functor.
It follows that every cofibrationA → B of simplicial presheaves induces a cofibration
π (A) → π (B) of presheaves of groupoids. The class of cofibrations A → B is closed
under pushout along arbitrary morphisms A → G, because cofibrations are defined
by a left lifting property.

There is a function complex construction for presheaves of groupoids: the
simplicial set hom(G, H ) has for n-simplices, all morphisms

φ : G × π (Δn) → H.

There is a natural isomorphism

hom (G, H ) ∼= hom (BG, BH )

that sends the simplex φ to the composite

BG × Δn 1×η−−→ BG × Bπ (Δn) ∼= B(G × π (Δn))
φ∗−→ BH.

Note that the fundamental groupoid π (Δn) is the trivial groupoid on the set
{0, 1, . . . , n}.

Preservation of local weak equivalences is a basic property of the fundamental
groupoid functor.

Lemma 9.18 The functor X �→ Bπ (X) preserves local weak equivalences of
simplicial presheaves.

Proof The nerve functor B takes sheaves of groupoids to simplicial sheaves, and
commutes with the formation of associated sheaves. It follows that there is a natural
isomorphism

L2(Bπ (X)) ∼= B(L2π (X)).

It therefore suffices to show that the functor Y �→ Bπ̃Y preserves local weak
equivalences of simplicial sheaves, where π̃Y = L2(π (Y )) is the sheaf theoretic
fundamental groupoid.

The natural composite

Y → Ex∞ Y → L2 Ex∞ Y

induces a local weak equivalence Bπ̃Y → Bπ̃ (L2 Ex∞ Y ), so it is enough to show
that a local weak equivalence f : X → Y of locally fibrant simplicial sheaves
induces a local weak equivalence Bπ̃ (X) → Bπ̃ (Y ).

Suppose that p : Shv(B) → Shv(C) is a Boolean localization.
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The nerve functor B commutes with the direct image p∗ and the inverse image
p∗ functors up to natural isomorphism, for sheaves of groupoids on the sites B and
C, respectively. It follows that there is a natural isomorphism

π̃ (p∗Y ) ∼= p∗π̃ (Y ),

and so we can assume that the map f : X → Y of locally fibrant simplicial sheaves is
defined on B. But f is a sectionwise weak equivalence of sheaves of Kan complexes,
so the simplicial presheaf map Bπ (X) → Bπ (Y ) is a sectionwise weak equivalence.
The map Bπ̃ (X) → Bπ̃ (Y ) of associated simplicial sheaves is therefore a local weak
equivalence.

The following result first appeared in [43]:

Proposition 9.19 With the definitions of local weak equivalence, injective fibration
and cofibration given above, the category Pre(Gpd) satisfies the axioms for a proper
closed simplicial model category.

Proof The injective model structure for the category sPre(C) is cofibrantly
generated. It follows that every morphism f : G → H has a factorization

G
j

��

f 

�
��

��
��

Z

p

��
H

such that j is a cofibration and p is a trivial fibration.
The other factorization statement for CM5 can be proved the same way, provided

one knows that if i : A → B is a trivial cofibration of simplicial presheaves and the
diagram

π (A) ��

i∗
��

G

i′
��

π (B) �� H

is a pushout, then the map i ′ is a local weak equivalence. But one can prove the
corresponding statement for ordinary groupoids, and the general case follows by a
Boolean localization argument.

The claim is proved for ordinary groupoids by observing that in all pushout
diagrams

π (Λn
k ) ��

i∗
��

G

i′

��
π (Δn) �� H
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the map i∗ is an isomorphism for n ≥ 2 and is the inclusion of a strong deformation
retraction if n = 1. The classes of isomorphisms and strong deformation retractions
are both closed under pushout in the category of groupoids.

All other closed model axioms are trivial to verify, as is right properness. Left
properness follows from the fact that all presheaves of groupoids are cofibrant, since
the adjunction map

ε : π (BG) → G

is an isomorphism.
One verifies the simplicial model axiom SM7 by using the natural isomorphism

π (BG) ∼= G,

with Lemma 9.18, and the fact that the fundamental groupoid functor preserves
products.

One can make the same definitions for sheaves of groupoids: say that a map f :
G → H of sheaves of groupoids is a local weak equivalence (respectively injective
fibration) if the associated simplicial sheaf map f∗ : BG → BH is a local weak
equivalence (respectively injective fibration) of simplicial sheaves. Cofibrations are
defined by a left lifting property, as before.

Write Shv(Gpd) for the category of sheaves of groupoids on the site C. The
forgetful functor i and associated sheaf functor L2 induce an adjoint pair

L2 : Pre(Gpd) � Shv(Gpd(C)) : i.

According to the definitions, the forgetful functor i preserves fibrations and trivial
fibrations. The canonical map η : BG → iL2BG is always a local weak equivalence.
The method of proof of Proposition 9.19 and formal nonsense now combine to prove
the following:

Proposition 9.20

(1) With these definitions, the category Shv(Gpd) of sheaves of groupoids satisfies
the axioms for a proper closed simplicial model category.

(2) The adjoint pair

L2 : Pre(Gpd) � Shv(Gpd) : i

forms a Quillen equivalence.

The model structures of Propositions 9.19 and 9.20 are the injective model struc-
tures for presheaves and sheaves of groupoids on a site C, respectively—they are
Quillen equivalent.

Here is a characterization of local weak equivalence of sheaves of groupoids that
is frequently useful:

Lemma 9.21 A map f : G → H of sheaves of groupoids is a local weak
equivalence if and only if the maps

Mor (G) → ( Ob (G) × Ob (G)) ×( Ob (H )×Ob (H ) Mor (H ) (9.5)
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and

π̃0(G) → π̃0(H ) (9.6)

are isomorphisms.

Proof A map G → H of ordinary groupoids induces a weak equivalence BG →
BH if and only if the induced functions

Mor (G) → ( Ob (G) × Ob (G)) ×( Ob (H )×Ob (H ) Mor (H )

and

π0(G) → π0(H )

are isomorphisms.
Suppose that p : Shv(B) → Shv(C) is a Boolean localization. Then the simplicial

sheaf map BG → BH is a local weak equivalence if and only if the map Bp∗G →
Bp∗H is a local weak equivalence. All nerves BG of sheaves of groupoids G are
sheaves of Kan complexes, and are therefore locally fibrant. Thus, the map Bp∗G →
Bp∗H is a local weak equivalence if and only if it is a sectionwise weak equivalence,
and this is true if and only if the inverse image functor p∗ takes the maps (9.5) and
(9.6) to isomorphisms (Proposition 4.28).

Corollary 9.22 A map f : G → H of presheaves of groupoids is a local weak
equivalence if and only if the map

Mor (G) → ( Ob(G) × Ob(G)) ×( Ob (H )×Ob (H )Mor (H ) (9.7)

is a local isomorphism and

π0(G) → π0(H )

is a local epimorphism.

Proof Suppose that the conditions hold for a map f : G → H of presheaves of
groupoids. Then the induced map f∗ : G̃ → H̃ of sheaves of groupoids is fully
faithful in each section since the sheaf map induced by (9.7) is an isomorphism. But
then it follows that the presheaf map π0(G̃) → π0(H̃ ) is a monomorphism, and so
its associated sheaf map π̃0(G̃) → π̃0(H̃ ) is an isomorphism. The map f∗ : G̃ → H̃

is therefore a local weak equivalence by Lemma 9.21, so that the map f : G → H

is a local weak equivalence.
The converse is again a consequence of Lemma 9.21.

Part (1) of Proposition 9.20 was first proved in [71]. This was a breakthrough result,
in that it enabled the definition of stacks as homotopy theoretic objects. Specifically,
a sheaf of groupoids H is said to be a stack if it satisfies descent for the injective
model structure on Shv(Gpd(C)).
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In other words, H is a stack if and only if every injective fibrant model j : H → H ′
is a sectionwise weak equivalence.

Remark 9.23 Classically, stacks are defined to be sheaves of groupoids that satisfy
the effective descent condition. The effective descent condition, which is described
below, is equivalent to the homotopical descent condition for sheaves of groupoids—
this is proved in Proposition 9.28.

Observe that if j : H → H ′ is an injective fibrant model in sheaves (or presheaves)
of groupoids, then the induced map j∗ : BH → BH ′ is an injective fibrant model in
simplicial presheaves. Thus, H is a stack if and only if the simplicial presheaf BH

satisfies descent.
Every injective fibrant object is a stack, because injective fibrant objects satisfy

descent. This means that every injective fibrant model j : G → H of a sheaf of
groupoids G is a stack completion. This model j can be constructed functorially,
since the injective model structure on Shv(Gpd(C)) is cofibrantly generated. We can
therefore speak unambiguously about the stack completion of a sheaf of groupoids
G—the stack completion is also called the associated stack.

Similar definitions can also be made for presheaves of groupoids. In particular,
we say that a presheaf of groupoids G is a stack if it satisfies descent, or equivalently
if the simplicial presheaf BG satisfies descent. This means, effectively, that stacks
are identified with homotopy types of presheaves or sheaves of groupoids, within the
respective injective model structures.

Some of the most common examples of stacks come from group actions. Suppose
that G × X → X is an action of a sheaf of groups G on a sheaf X. Then the
Borel construction EG ×G X is the nerve of a sheaf of groupoids EGX. The stack
completion

j : EGX → X/G

is called the quotient stack.
A G-torsor over X is a G-equivariant map P → X where P is a G-torsor. A

morphism of G-torsors over X is a commutative diagram

P
θ ��

,,4
44

44
4 P ′

����
��
��

X

of G-equivariant morphisms, where P and P ′ are G-torsors. Write G − tors/X for
the corresponding groupoid.

If P → X is a G-torsor over X, then the induced map of Borel constructions

∗ 
←− EG ×G P → EG ×G X
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is an object of the cocycle category

h(∗, EG ×G X),

and the assignment is functorial. Conversely, if the diagram

∗ 
←− U → EG ×G X

is a cocycle, then the induced map

π̃0 pb (U ) → π̃0 pb (EG ×G X)
ε−→∼= X

is a G-torsor over X. Here, as above, the pullback functor pb is defined by pulling
back over the canonical map EG → BG.

The functors

π̃0 pb : h(∗, EG ×G X) � G − tors/X : EG×G ?

are adjoint, and we have proved the following:

Lemma 9.24 There is a weak equivalence

B(G − tors/X) 
 Bh(∗, EG ×G X).

In particular, there is an induced bijection

π0(G − tors/X) ∼= [∗, EG ×G X].

Lemma 9.24 was proved by a different method in [59]. There is a generalization
of this result, having essentially the same proof, for the homotopy colimit holim−−−→ H X

of a diagram X on a sheaf of groupoids H—see [65].

The sheaves of groupoids G and H are said to be Morita equivalent if there is a
diagram

G
p←− K

q−→H

of morphisms of sheaves of groupoids such that the induced maps p∗ and q∗ in the
diagram

BG
p∗←− BK

q∗−→ BH

are local trivial fibrations of simplicial sheaves.
Clearly, if G and H are Morita equivalent, then they are weakly equivalent for

the injective model structure.
Conversely, if f : G → H is a local weak equivalence, take the cocycle

G
(1,f )−−→ G × H
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and find a factorization

G
j

��

(1,f ) ��"
""

""
""

""
K

(p1,p2)

��
G × H

such that j is a local weak equivalence and (p1, p2) is an injective fibration. Then
the induced map

BK
(p1∗,p2∗)−−−−→ BG × BH

is an injective hence local fibration, and the projection maps BG × BH → BG

and BG × BH → BH are local fibrations since BG and BH are locally fibrant. It
follows that the maps

G
p1←− K

p2−→ H

define a Morita equivalence.
We have shown the following:

Lemma 9.25 Suppose that G and H are sheaves of groupoids. Then G and H are
locally weakly equivalent if and only if they are Morita equivalent.

Categories of cocycles and torsors can both be used to construct models for the
associated stack. The precise statement appears in Corollary 9.27, which is a corollary
of the proof of the following:

Proposition 9.26 Suppose that H is a sheaf of groupoids on a small site C. Then
the induced maps

BH
j∗ ��

��''
'''

'''
''

B(H − Tors)

φ∗
��

BH(∗, BH )

(9.8)

are local weak equivalences of simplicial presheaves.

Proof The map φ∗ is a sectionwise equivalence for all sheaves of groupoids H by
Theorem 9.14, and the morphism j is fully faithful in all sections.

Suppose that H is an injective fibrant sheaf of groupoids. We show that the
morphisms in the diagram (9.8) are sectionwise weak equivalences of simplicial
presheaves.

For this, it suffices to show that the maps

j∗ : π0BH (U ) → π0B(H − Tors)(U )
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are surjective under the assumption that H is injective fibrant. By a restriction ar-
gument (which uses Corollary 5.26), we can assume that the site C has a terminal
object t and show that the function

π0BH (t) → π0BH(∗, BH )(t) = π0Bh(∗, BH )

is surjective. Recall that the image of an element x : ∗ → BH under the map
φ∗ · j∗ : BH (t) → h(∗, BH ) is the cocycle

∗ ← B(H/x) → BH.

In every cocycle

∗ s←−U
f−→BH ,

the map s is a local weak equivalence, so there is a homotopy commutative diagram

U f

����
���

�

s

��
BH

∗ x

��������

since BH is injective fibrant. This means that the cocycles (s, f ), (s, xs) and (1, x)
are all in the same path component of the cocycle category h(∗, BH ). Finally, there
is a morphism

∗

44$$
$$
$$
$$
$$

1x

��

x

335
55

55
55

55
5

∗ B(H/x)�� �� BH

in h(∗, BH ).
For the general case, suppose that i : H → H ′ is an injective fibrant model for

H . In the diagram

BH
i∗ ��

j

��

BH ′

j

��

B(H − Tors)

φ∗ 

��

�� B(H ′ − Tors)

φ∗

��

BH(∗, BH )
i∗


 �� BH(∗, BH ′)



276 9 Non-abelian Cohomology

the indicated maps are sectionwise weak equivalences: use the paragraphs above for
the vertical maps on the right, Corollary 6.11 for the bottom i∗ (see also Remark 9.17),
and Theorem 9.14 for φ∗. The map i∗ : BH → BH ′ is a local weak equivalence
since the map i is an injective fibrant model. It follows that the map j∗ : BH →
B(H − Tors) is a local weak equivalence.

Corollary 9.27 Suppose that H is a sheaf of groupoids. Then the maps

j : H → H − Tors

and

φ · j : H → H(∗, BH )

are models for the stack completion of H .

Suppose that R ⊂ hom ( , U ) is a covering sieve, and also write R for the full
subcategory on C/U whose objects are the members φ : V → U of the sieve.
Following Giraud [31], an effective descent datum x : R → H on the sieve R for
the sheaf of groupoids H consists of

(1) objects xφ ∈ H (V ), one for each object φ : V → U of R, and

(2) morphisms xφ
α∗−→ α∗(xψ ) in H (V ), one for each morphism

V
α ��

φ ,,4
44

44
4 W

ψ����
��
��

U

of R,

such that the diagram

xφ

α∗ ��

(βα)∗
��

α∗(xψ )

α∗(β∗)

��
(βα)∗(xζ ) =

�� α∗β∗(xζ )

commutes for each composable pair of morphisms

V
α ��

φ 

�
��

��
��

� W
β

��

ψ

��

W ′

ζ1166
66
66
66

U
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in R.
There is a functor R → Pre(C) that takes an object φ : V → U to the repre-

sentable functor hom ( , V ). The corresponding translation object ER is a presheaf
of categories on C: the presheaf of objects for ER is the disjoint union

⊔

φ:V →U

hom ( , V ),

and the presheaf of morphisms for ER is the disjoint union
⊔

V
α ��

φ






 W

ψ
1166

U

hom ( , V ),

which is indexed over the morphisms of R.
An effective descent datum x : R → H can be identified with a functor x :

ER → H of presheaves of categories. A morphism of effective descent data is a
natural transformation of such functors. Write hom (ER , H ) for the corresponding
groupoid of effective descent data on the sieve R in H .

Any refinement S ⊂ R of covering sieves induces a restriction functor

hom(ER , H ) → hom(ES , H )

and, in particular, the inclusion R ⊂ hom( , U ) induces a functor

H (U ) → hom(ER , H ). (9.9)

One says that the sheaf of groupoids H satisfies the effective descent condition
if an only if the map (9.9) is an equivalence of groupoids for all covering sieves
R ⊂ hom ( , U ) and all objects U of the site C.

The effective descent condition is the classical criterion for a sheaf of groupoids
to be a stack, and we have the following:

Proposition 9.28 A sheaf of groupoids H is a stack if and only if it satisfies the
effective descent condition.

Proof Suppose that H is a stack. The effective descent condition is an invariant of
sectionwise equivalence of groupoids, so it suffices to assume that H is injective
fibrant. The nerve of the groupoid hom(ER , H ) may be identified up to isomor-
phism with the function complex hom(BER , BH ). There is a canonical local weak
equivalence BER → U (see Lemma 9.29 below), and so the induced map

BH (U ) → hom(BER , BH )

is a weak equivalence of simplicial sets. This means, in particular, that the
homomorphism

H (U ) → hom(ER , H )
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is an equivalence of groupoids. It follows that H satisfies the effective descent
condition.

Suppose, conversely, that the sheaf of groupoids H satisfies the effective descent
condition, and let j : H → H ′ be an injective fibrant model in sheaves of groupoids.
We must show that the map j is a sectionwise equivalence of groupoids.

Write Ũ for the sheaf that is associated to the representable presheaf hom ( , U ).
There is a natural function

ψ : π0H (U ) → π0h(Ũ , BH ),

which is defined by sending the homotopy class of a map α : hom ( , U ) → BH to
the path component of the cocycle

Ũ
1←− Ũ

α∗−→ BH ,

where α∗ is the map of simplicial sheaves associated to the presheaf map α. This
function ψ is a bijection if the sheaf of groupoids H is injective fibrant.

The map j is fully faithful in all sections since it is a local equivalence between
sheaves of groupoids. It therefore suffices to show that the induced map π0H (U ) →
π0H

′(U ) is surjective for each U ∈ C. In view of the commutativity of the diagram

π0H (U )
ψ

��

��

π0h(Ũ , BH )

∼=
��

π0H
′(U ) ∼=

ψ
�� π0h(Ũ , BH ′)

it further suffices to show that each function

ψ : π0H (U ) → π0h(Ũ , BH )

is surjective.
Suppose that

Ũ
f←−
 V

g−→BH

is a cocycle in simplicial sheaves.
The fundamental groupoid sheaf π̃ (V ) can be identified up to isomorphism with

the Čech groupoid C(p) for the local epimorphism p : V0 → Ũ (Example 4.17). In
effect, the canonical map π̃ (V ) → C(p) is fully faithful and is an isomorphism on
objects in all sections. It follows that there is a map of cocycles

V
g

55��
���

���

��

f

�����
���

��

Ũ BH

BC(p)

((������
g∗

��������
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Let R ⊂ hom ( , U ) be the covering sieve of all maps φ : V → U that lift to
V0, and pick a lifting σφ : V → V0 for each such φ. The morphisms σφ define a
morphism

σ :
⊔

V
φ−→U∈R

V → V0.

If α : φ → ψ is a morphism of R, then there is a diagram

V
α ��

σφ

��

α∗
��''

'''
W

σψ

��

V0 ×U V0

�����
��

��''
'''

V0

��''
''

''
V0

�����
��
�

U

The collection of these maps α∗ defines a morphism

⊔

φ
α−→ψ

V → V0 ×U V0,

and we have defined a functor σ : ER → C(p). There is a corresponding diagram

BC(p)

�����
���

g∗
����

���
�

Ũ BH

BER
g′

���������

((�������

σ

��

Finally, the assumption that H satisfies effective descent means that there is a
homotopy commutative diagram

BER

g′
��

��

BG

Ũ

��

and it follows that the original cocycle (f , g) is in the path component of a cocycle
of the form

Ũ
1←− Ũ → BH.
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Lemma 9.29 Suppose that R ⊂ hom ( , U ) is a covering sieve. Then the canonical
map

BER → U

of simplicial presheaves is a local weak equivalence.

Proof Suppose that W ∈ C, and consider the induced map of W -sections
⊔

φ0→···→φn

hom(W , V0) → hom(W , U ).

The fibre Fφ over a fixed morphism φ : W → U is the nerve of the category of
factorizations

V

ψ��
W



����

φ

�� U

of φ with ψ ∈ R. If φ : W → U is a member of R, then this category is non-empty
and has an initial object, namely the picture

W

φ��
W

1 //6666

φ

�� U

The fibre Fφ is empty if φ is not a member of R.
In all cases, there is a covering sieve S ⊂ hom( , W ) such that φ · ψ is in R for

all ψ ∈ S.

9.3 Groupoids Enriched in Simplicial Sets

This section presents a collection of basic results from the homotopy theory of
groupoids enriched in simplicial sets, which will be needed later to develop the
local homotopy theory of presheaves of groupoids enriched in simplicial sets.

Write s0Gpd for the category of groupoids enriched in simplicial sets.
Groupoids enriched in simplicial sets can be viewed as simplicial groupoids G

with simplicially discrete objects. A map f : G → H of s0Gpd is the obvious thing:
it is a map of simplicial groupoids. The earliest model structure for this category is
due to Dwyer and Kan [23] who state that

(1) the map f is a weak equivalence if the map

Mor (G) → ( Ob(G) × Ob(G)) ×Ob (H )×Ob (H )Mor (H ) (9.10)
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is a weak equivalence of simplicial sets and the function f∗ : π0G → π0H is an
isomorphism,

(2) the map f is a fibration if the map (9.10) is a Kan fibration and the map f : G0 →
H0 is a fibration of groupoids,

(3) the cofibrations are those maps that have the left lifting property with respect to
all trivial fibrations.

Here, for a groupoid G enriched in simplicial sets, we define π0G to be the set of
path components π0(G0) of the groupoid G0, and call it the path component set of
G. Observe that vertices x, y of G represent the same element of π0(G0) if and only
if the simplicial set G(x, y) is non-empty. It follows that there are isomorphisms

π0G = π0(G0) ∼= π0(Gn)

for n ≥ 0.
Recall that a weak equivalence (respectively fibration) G → H of ordinary

groupoids is a map such that the induced simplicial set map BG → BH is a weak
equivalence (respectively Kan fibration). Most of the lifting properties that are osten-
sibly necessary for a fibration of groupoids are automatic: an argument on coskeleta
shows that a map G → H is a fibration if and only if the map BG → BH has the
path lifting property.

According to the present definition of fibration, all groupoids enriched in simpli-
cial sets are fibrant, since all simplicial groups are Kan complexes and all ordinary
groupoids are fibrant.

Theorem 9.30 (Dwyer–Kan) With the definitions given above, the category s0Gpd
of groupoids enriched in simplicial sets has the structure of a cofibrantly generated,
right proper closed model category.

The model structure of Theorem 9.30 will be called the Dwyer–Kan model struc-
ture for groupoids enriched in simplicial sets. A proof of this result appears in [32,
V.7.6].

In summary, every simplicial set K has an associated free simplicial groupoid
F ′(K) on two objects, and one characterizes the simplicial set map (9.10) associated
to a map p : G → H of s0Gpd as a fibration or trivial cofibration by the map
p : G → H having a right lifting property with respect to maps F ′(K) → F ′(L)
that are induced by the usual sets of cofibrations K → L of simplicial sets. The
question of whether or not the map G0 → H0 is a fibration of groupoids is detected
by a separate lifting property. The cofibrant generation is implicit in this approach.
All objects of s0Gpd are fibrant, since all simplicial groups and the nerves BH of
groupoids are Kan complexes , and right properness follows by a standard result that
is due to [32, II.8.5].

There are various equivalent ways to specify weak equivalences of groupoids
enriched in simplicial sets.

First of all, suppose that f : G → H is a morphism such that the map (9.10)
is a weak equivalence of simplicial sets and the map π0G → π0H is surjective.
Suppose that x, y are objects of G such that [f (x)] = [f (y)] in π0(H ). Then the
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simplicial set H (f (x), f (y)) is non-empty so that G(x, y) is non-empty since the
map G(x, y) → H (f (x), f (y)) is a weak equivalence, and it follows that [x] = [y]
in π0(G).

Thus a map f : G → H is a weak equivalence of s0Gpd, which is a weak
equivalence if and only if the following conditions are satisfied:

(a) the map

Mor (G) → ( Ob(G) × Ob(G)) ×Ob (H )×Ob (H ) Mor (H )

is a weak equivalence of simplicial sets, and
(b) the function

f∗ : π0G → π0H

is surjective.

One says that a morphism f : G → H that satisfies condition (1) is homotopically
full and faithful. We say that f is surjective in path components if it satisfies condition
(2).

The object f ∗H of s0Gpd has Ob(f ∗H ) = Ob(G), while the pullback diagram

Mor (f ∗H ) ��

��

Mor (H )

(s,t)

��
Ob(G) × Ob(G)

f ×f

�� Ob(H ) × Ob (H )

defines the simplicial set Mor (f ∗H ). There is a natural commutative diagram

G
αf

��

f ��,
,,

,,
,,

,
f ∗H

βf

��
H

of groupoids enriched in simplicial sets. The map αf is the identity on objects, while
the map βf is the identity on individual morphism simplicial sets.

It follows that the map f : G → H is a weak equivalence if and only if αf is
a weak equivalence (equivalently, f is homotopically full and faithful) and βf is a
weak equivalence (equivalently, f is surjective in path components).

Every object G of s0Gpd is a simplicial groupoid, and therefore has a functorially
associated bisimplicial set BG.

Recall [32, IV.3.3] that a map X → Y of bisimplicial sets is said to be a diagonal
weak equivalence if the induced map d(X) → d(Y ) of diagonal simplicial sets
is a weak equivalence. We use the diagonal simplicial set d(BG) to measure the
homotopy type of the bisimplicial set BG.
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In all that follows, we say that a commutative square

X ��

��

Z

��
Y �� W

of bisimplicial set maps is homotopy cartesian if the associated diagram

d(X) ��

��

d(Z)

��
d(Y ) �� d(W )

of diagonal simplicial sets is homotopy cartesian in the usual sense.
Suppose again that H is a groupoid enriched in simplicial sets. Write Morl(H ) for

the simplicial groupoid (which is not a groupoid enriched in simplicial sets) whose
objects are the morphisms a → b of H and whose morphisms are the commutative
diagrams

b

��

a

��������

����
���

�

b′

Then Morl(H ) = ⊔
a∈Ob (H ) a/H , and there is a functor Morl(H ) → H that is

defined by taking the diagram above to the morphism b → b′.
There is a similarly defined simplicial groupoid Morr (H ) whose objects are the

morphisms of H again, and whose morphisms are the diagrams

b

����
���

��

��

c

b′

��������

There is again a canonical functor Morr (H ) → H , and there is a decomposition

Morr (H ) =
⊔

c∈Ob (H )

H/c.
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Form the pullback diagram

P (H ) ��

��

Morr (H )

��
Morl(H ) �� H

in simplicial groupoids. It follows from Corollary 9.48 below that the induced
diagram

BP (H ) ��

��

B Morr (H )

��
B Morl(H ) �� BH

is homotopy cartesian.
The simplicial groupoid P (H ) has objects (in the various simplicial degrees)

consisting of strings a → b → c; its morphisms are the commutative diagrams

b

����
���

��

��

a

��������

����
���

� c

b′

��������

The components of P are contractible in each simplicial degree n, and there is an
isomorphism

π0P (H )n
∼=−→ Mor (H )n

that respects the simplicial structure. There are also canonical equivalences

B Morr (H )

−→ Ob (H ) and B Morr (H )


−→ Ob (H ).

We have proved the following:

Lemma 9.31 There is a natural homotopy cartesian diagram

BP (H ) ��

��

B Morr (H )

��
B Morl (H ) �� BH
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and natural diagonal equivalences B Morl (H )

−→ Ob (H ), B Morr (H )


−→ Ob (H ),
and BP (H )


−→ Mor (H ) for groupoids H enriched in simplicial sets.

Lemma 9.31 has the following basic consequence:

Proposition 9.32 A map f : G → H is a weak equivalence of s0Gpd if and only
if it induces a diagonal equivalence BG → BH of bisimplicial sets.

Proof Suppose that the bisimplicial set map BG → BH is a diagonal equivalence.
The map π0G → π0H is isomorphic to the map π0BG → π0BH and is therefore
a bijection. Lemma 9.31 implies that the map Mor (G) → Mor (f ∗H ) is a weak
equivalence, so that f is homotopically full and faithful. It follows that f is a weak
equivalence of s0Gpd.

Conversely, suppose that f : G → H is a weak equivalence of groupoids enriched
in simplicial sets. Then f is homotopically full and faithful, so that map Mor (G) →
Mor (f ∗H ) is a weak equivalence of simplicial sets. The induced maps

Mor (G) ×Ob (G) Mor (G) ×Ob (G) · · · ×Ob (G) Mor (G)

��
Mor (f ∗H ) ×Ob (G) Mor (f ∗H ) ×Ob (G) · · · ×Ob (G) Mor (f ∗H )

of iterated fibre products Ob (G) are therefore weak equivalences, since Ob (G) is a
discrete simplicial set, so that the map BG → Bf ∗H is a diagonal equivalence.

All groupoid maps βf : f ∗Hn → Hn are fully faithful, and are surjective in
path components since f is surjective in path components. These groupoid maps are
therefore weak equivalences. It follows that the map Bf ∗H → BH is a diagonal
weak equivalence, and so the map BG → BH is also a diagonal weak equivalence.

We shall also use the Eilenberg–Mac Lane W construction for simplicial group-
oids. This functor is defined and its basic properties are displayed in [32], but the
purely cocycle-theoretic definition of W that is given there can be rather awkward
to manipulate. We begin here by presenting an alternative description of this functor
that has evolved in recent years in the category theory literature [18, 94], and starts
with a general construction for bisimplicial sets.

To make the notation of the following easier to deal with, observe that for every
finite totally ordered poset P , there is a unique order-preserving isomorphism n ∼= P .
We shall deemphasize the cardinality of such posets P notationally, by writing

ΔP = BP ∼= Bn = Δn,

and say that ΔP is the standard P -simplex. We shall also say that a simplicial set
map ΔP → X is a P -simplex of X.

This notation is particularly useful when discussing poset joins: if P and Q are
finitely totally ordered posets, then the join P ∗Q is the unique finite totally ordered
poset such that every element of P is less than every element of Q. Thus, for example,
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a functor p ∗ q → C, taking values in a small category C, can be identified with a
string of morphisms

a0 → a1 → · · · → ap → b0 → b1 → · · · → bq

in the category C, and can be identified with a p ∗ q-simplex Δp∗q → BC of the
nerve BC. There is an isomorphism of totally ordered posets

p ∗ q ∼= p + q + 1,

which we do not use explicitly.
We shall also steal some notation from the combinatorics literature, and write

[i, j ] ⊂ P for the interval of elements s of a poset P such that i ≤ s ≤ j . This only
makes sense, of course, when i ≤ j in P .

There is a functor

Dec : sSet → s2Set

that is defined for a simplicial set X by

Dec (X)p,q = hom (Δp∗q, X).

The functor Dec is the total décalage functor of Illusie [48].

Example 9.33 Suppose that C is a small category. Then Dec (BC) is the bisimplicial
set whose (p, q)-bisimplices are strings of arrows

a0 → a1 → · · · → ap → b0 → b1 → · · · → bq.

This gadget has been used systematically for a long time since Quillen’s paper [87].
It can be identified with the bisimplicial set underlying the homotopy colimit

holim−−−→ j∈C B(C/j ),

which is weakly equivalent to BC.

Example 9.34 The (p, q)-bisimplices of Dec (Δn) = Dec (Bn) are strings of
relations

a0 �� . . . �� ap

��
b0

�� . . . �� bq

in n with ap ≤ b0. Suppose that r ≤ s ≤ n, and write Fr ,s ⊂ Dec (Δn) for the
subcomplex of all such strings with ap ≤ r and s ≤ b0. Then Fr ,s is generated by
the string

0 �� 1 �� . . . �� r

��
s �� s + 1 �� . . . �� n
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that defines a bisimplex τr ,s : Δ[0,r],[s,n] → Dec (Δn), given by the map [0, r] ∗
[s, n] → n that is defined by the inclusion of the two intervals. The induced map

τr ,s : Δ[0,r],[s,n] → Fr ,s

is an isomorphism of bisimplicial sets.
Suppose that r ′ ≤ r ≤ s ≤ s ′. Then there is an identification

Fr ′,s′ = Fr ,s′ ∩ Fr ′,s .

It follows that for r ≤ s, there is an identification

Fr ,r ∩ Fs,s = Fr ,s .

Thus, there is a coequalizer

⊔
r≤s≤n Δ[0,r],[s,n] ��

��
⊔

r≤n Δ[0,r],[r ,n] τ �� Dec (Δn) (9.11)

in bisimplicial sets.
If a system of bisimplicial set maps fr : Fr ,r → X coincides on all intersections

Fr ,r+1 = Fr ,r ∩ Fr+1,r+1,

then these maps coincide on all intersections

Fr ,s = Fr ,r ∩ Fr+1,r+1 ∩ · · · ∩ Fs,s .

It follows that (9.11) can be rewritten as the coequalizer

⊔
r≤n−1 Δ[0,r],[r+1,n] ��

��
⊔

r≤n Δ[0,r],[r ,n] τ �� Dec (Δn).

A bisimplicial set map f : Dec (Δn) → X can therefore be identified with a
system of bisimplices x[0,r],[r ,n] ∈ X[0,r],[r ,n] such that

dv
0(x[0,r],[r ,n]) = dh

r+1(x[0,r+1],[r+1,n])

for r ≤ n − 1. Observe that the vertical face dv
0 is induced by the inclusion of

intervals [r + 1, n] ⊂ [r , n] and the horizontal face dh
r+1 is induced by the inclusion

of [0, r] ⊂ [0, r + 1].

The total simplicial set T (X) that is associated to a bisimplicial set X is defined
to have n-simplices given by the maps

Dec (Δn) → X.

The resulting total simplicial set functor

T : s2Set → sSet



288 9 Non-abelian Cohomology

is right adjoint to the total décalage functor Dec. The total simplicial set construction
was introduced by Artin and Mazur [3]—see also [18] and [94].

Example 9.35 Suppose that C is a simplicial category, and let BC be the bisimplicial
set consisting of the nerves BCq of the various categories Cq . We identify BCp,q =
(BCq)p with strings of arrows of length p in Cq .

A bisimplicial set map α : Dec (Δn) → BC consists of strings

α[0,r],[r ,n] : a0,[r ,n] → · · · → ar ,[r ,n]

in C[r ,n] such that

dv
0a0,[r ,n] → · · · → dv

0ar ,[r ,n] = a0,[r+1,n] → · · · → ar ,[r+1,n].

It follows that α consists of morphisms

dv
0ar ,[r ,n] → ar+1,[r+1,n] in C[r+1,n], 0 ≤ r ≤ n − 1.

This set of morphisms forms a cocycle in the sense of [32, Sect. V.7], albeit written
backward.

Equivalently, from (9.11), a map σ : Dec (Δn) → BC consists of a collection of
functors σr : [0, r] → C[r ,n], 0 ≤ r ≤ n such that if s ≤ r ≤ n, then the diagram of
functors

[0, r]
σr �� C[r ,n]

[0, s]
σs

��

i

��

C[s,n]

j∗
��

(9.12)

commutes, where i : [0, s] ⊂ [0, r] and j : [r , n] ⊂ [s, n] are the respective segment
inclusions.

If σ : Dec (Δn) → BC is a bisimplical set map and θ : m → n is an ordinal
number map, then θ∗(σ ) is defined by the set of composite functors

[0, s]
θ∗−→ [0, θ (s)]

σθ (s)−−→ C[θ (s),n]
θ∗−→ C[s,m],

where θ induces ordinal number maps θ : [0, s] → [0, θ (s)] and θ : [s, m] →
[θ (s), n].

Example 9.36 Suppose that A is a small category, and identify A with a simplicial
category that is simplicially discrete. Then Ar = A for all r , and a functor σ :
[0, n] → A restricts to functors σr : [0, r] ⊂ A that are defined by the composites

[0, r] ⊂ [0, n]
σ−→A,

and the assignment σ �→ (σr ) defines a natural map

ψ : BA → WA.
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Every such family (σr ) is completely determined by the functor σn : [0, n] → A,
and it follows that the natural map ψ is an isomorphism.

Each (m + 1)-simplex

σ : a0 → a1 → a2 → · · · → am+1

of Δn determines an ordinal number map

σ∗ : [0, 1] ∗ [1, m + 1] → n,

which is defined by the string of morphisms

a0 �� a1

��
a1 �� . . . �� am+1

in n. The map σ∗ is the map a0 → a1 on [0, 1] and is d0σ on [1, m + 1], and defines
an element of Dec (Δn)1,m.

Suppose that H is a groupoid enriched in simplicial sets. A bisimplicial set map
f : Dec (Δn) → BH is specified by the images f (σ∗) of the bisimplices σ∗. If
σ = s0(τ ) for an m-simplex τ , then the image f (σ∗) is an identity of the groupoid
Hm = H[1,m+1].

Suppose that θ : [1, k + 1] → [1, m + 1] is an ordinal number map. Then the
(2, k)-bisimplex

(σ , θ ) : a0
�� a1 �� aθ (1)

��
aθ (1) �� . . . �� aθ (k+1)

defines a 2-simplex of BH[1,k+1]. It follows that there is a commutative diagram

f (a0)
f (d1(σ ,θ )∗)

��

θ∗(f (σ∗))

��

f (aθ (1))

f (a1)

f (d0(σ ,θ )∗)

66         

in the groupoid H[1,k+1], and hence a relation

θ∗(f (σ∗)) = f (d0(σ , θ )∗)−1f (d1(σ , θ )∗)

in H[1,k+1] = Hk .
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Write G(Δn)m for the groupoid enriched in simplicial sets which is the free
groupoid on the graph of (m + 1)-simplices σ : σ (0) → σ (1) of Δn, modulo
the relation that s0τ is the identity on τ (0). If θ : [1, k+1] → [1, m+1] is an ordinal
number map, we specify

θ∗(σ ) = d0(σ , θ )−1d1(σ , θ ),

where (σ , θ ) is the simplex

a0 → a1 → aθ (1) → · · · → aθ (k+1).

Then G(Δn) is a groupoid enriched in simplicial sets, and there is an isomorphism

hom (G(Δn), H ) ∼= hom (Δn, W (H ))

for all objects H of s0Gpd.
The definition of the simplicial groupoids G(Δn) extends to a functor

G : sSet → s0Gpd.

Following [32], we say that G(X) is the loop groupoid of the simplicial set X. This
functor is left adjoint to the Eilenberg–Mac Lane functor

W : s0Gpd → sSet

—see [32, V.7.7].
In view of the adjointness, we can define the Eilenberg–Mac Lane functor for a

groupoid H enriched in simplicial sets by specifying

W (H )n = hom (G(Δn), H ).

By the discussion above, there is an isomorphism

hom (G(Δn), H ) ∼= hom ( Dec (Δn), BH ),

and one can show that this map respects the simplicial structure. We therefore have
the following:

Proposition 9.37 There is an isomorphism of simplicial sets

W (H ) ∼= T (BH ),

which is natural in groupoids H enriched in simplicial sets.

There is a bisimplicial set map

φ : Dec (Δn) → Δn,n

that takes a morphism (θ , τ ) : r ∗ s → n to the pair of maps (θ , τ ) : (r, s) →
(n, n). This map is natural in ordinal numbers n, and hence defines a morphism of
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cosimplicial bisimplicial sets. Precomposing with the map φ determines a natural
simplicial set map

Φ = φ∗ : d(X) → T (X),

which is natural in bisimplicial sets X.
We shall prove the following:

Proposition 9.38 The natural map

Φ : d(X) → T (X)

is a weak equivalence, for all bisimplicial sets X.

Corollary 9.39

(1) The natural map

Φ : d(BH ) → T (BH ) ∼= W (H )

is a weak equivalence for all groupoids H enriched in simplicial sets.
(2) The functor H �→ WH preserves and reflects weak equivalences of groupoids

H enriched in simplicial sets.

Remark 9.40 The definition

W (C) := T (BC)

extends the definition of the Eilenberg–Mac Lane functor W to simplicial categories
C. Statement (1) of Corollary 9.39 is a special case of the assertion that the map

Φ : d(BC) → W (C) = T (BC)

is a weak equivalence for all simplicial categories C.

Proposition 9.38 is a main result of [94], and is called the “generalized Eilenberg–
Zilber theorem” in that paper. We give the same proof here, in somewhat different
language.

Proof Proof of Proposition 9.38. The diagonal functor has a right adjoint

d∗ : sSet → s2Set,

where d∗(X) is the bisimplicial set with

d∗(X)p,q = hom (Δp × Δq , X).

The adjoint Φ∗ : X → d∗T (X) of the map Φ : d(X) → T (X) takes a bisimplex
Δp,q → X to a simplicial set map Δp × Δq → T (X), or equivalently a map

Dec (Δp) × Dec (Δq) ∼= Dec (Δp × Δq) → X.
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This assignment is defined by precomposition with the map

ζ : Dec (Δp) × Dec (Δq) → Δp,q ,

which takes a pair (α1, α2) : r ∗ s → p, (β1, β2) : r ∗ s → q of (r , s)-bisimplices to
the bisimplex α1 × β2 : r × s → p × q. The bisimplex Δp,q has the form

Δp,q = p∗
1Δ

p × p∗
2Δ

q ,

where p∗
1Δ

p
r ,s = Δ

p
r and p∗

2Δ
q
r ,s = Δ

q
s . Furthermore, the map ζ has the form

ζ = ζ1 × ζ2 : Dec (Δp) × Dec (Δq) → p∗
1Δ

p × p∗
2Δ

q ,

where ζ1 takes the bisimplex (α, β) : r ∗ s → p to the simplex α : r → p and ζ2

takes the bisimplex (ω, γ ) : r ∗ s → q to the simplex γ : s → q.
We shall prove that the map Φ∗ : X → d∗T (X) induces a weak equivalence

d(Φ∗) : d(X) → d(d∗T X) of simplicial sets. This suffices to prove the proposition
since there is a commutative diagram

d(X)
d(Φ∗)

��

Φ ����
��

��
��

�
d(d∗T (X))

ε

��
T (X)

and the map ε is a weak equivalence by Lemma 9.49 below.
For each bisimplicial set U , there is a simplicial set homDec(U , X) whose n-

simplices are bisimplicial set maps U × Dec (Δn) → X. The functor Dec has a right
adjoint, namely T , and it follows that there is a natural bijection

hom (K , homDec(U , X)) ∼= hom (U × Dec (K), X).

In particular, every map K × Δ1 → homDec(U , X) can be identified with a map

U × Dec (K) × Dec (Δ1) → X.

The bisimplicial set map ζ1 : Dec (Δp) → p∗
1Δ

p sends the bisimplex (φ, γ ) :
r ∗ s → p to the map φ : r → p. This map has a section σ1 : p∗

1(Δp) → Dec (Δp)
which sends the map φ : r → p to the map (φ, p) : r ∗ s → p which is constant at
the vertex p on the join factor s. The diagrams

φ(0)

��

�� . . . �� φ(r) ��

��

ψ(0) ��

��

. . . �� ψ(s)

��
φ(0) �� . . . �� φ(r) �� p �� . . . �� p
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define a map Dec (Δp) → Dec (hom(Δ1, Δp)), which induces a map

h : Dec (Δp) × Dec (Δ1) → Dec (Δp).

The map h determines a homotopy

homDec( Dec (Δp), X) × Δ1 → homDec( Dec (Δp), X)

from the identity to the map defined by composition with σ1 · ζ1. It follows that the
map

ζ ∗
1 : homDec( Dec (Δp), X) → homDec(p∗

1Δ
p, X)

is a weak equivalence.
This is true for all p, and it follows that the bisimplicial set map

(ζ1 × 1)∗ : hom (p∗
1(Δ) × Dec (Δ), X) → hom ( Dec (Δ) × Dec (Δ), X)

is a weak equivalence. The assertion that the map ζ2 induces a diagonal weak
equivalence

(1 × ζ2)∗ : hom (p∗
1(Δ) × p∗

2(Δ), X) → hom (p∗
1(Δ) × Dec (Δ), X)

has an essentially analogous proof.

If X is a reduced simplicial set in the sense that it has only one vertex, then the
object G(X) is necessarily a simplicial group.

The Dwyer–Kan model structure on the category s0Gpd of groupoids enriched in
simplicial sets is an extension of a model structure on the category sGr of simplicial
groups [32, V.5.2], for which a map f : G → H of simplicial groups is a weak
equivalence (respectively fibration) if the underlying map of simplicial sets is a
weak equivalence (respectively Kan fibration). All maps G(A) → G(B) that are
induced by cofibrations A → B of reduced simplicial sets are cofibrations for this
model structure on simplicial groups [32, V.6.1].

Suppose that X is a reduced simplicial set. It is a fundamental classical result [32,
V.5.10, 94, Theorem 21] that the space Xη in the pullback diagram

Xη
��

��

WG(X)

π

��

X
η

�� WG(X)

is contractible, where π is the universal principal G(X)-bundle over WG(X) in
simplicial sets. The simplicial set X is reduced, and the space WG(X) is connected.
It follows that the adjunction map η : X → WG(X) is a weak equivalence. This
assertion is in fact equivalent to the claim that the space Xη is contractible.
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The space WG(X) is contractible, and it follows that there is a natural weak
equivalence G(X) 
 Ω(X), where Ω(X) is the derived loop space of X. It also
follows that the loop group functor X �→ G(X) preserves weak equivalences of
reduced simplicial sets.

The universal principal G-bundle π : WG → WG for a simplicial group G can
be constructed in a modern way, by setting

W (G) = W (G/ ∗ ).

The simplicial groupoid G/∗ is formed by taking the slice groupoid Gn/∗ in each
simplicial degree n. It is a consequence of Proposition 9.38 that the space WG is
contractible. The map π is a Kan fibration since it is a quotient of principal G-space
by the G-action [32, V.2.7].

We can now prove the following:

Lemma 9.41 Suppose that the simplicial group homomorphism p : G → H is
a fibration (respectively trivial fibration) for the Dwyer–Kan model structure on
s0Gpd. Then the induced map p∗ : WG → WH is a Kan fibration (respectively
trivial Kan fibration) of simplicial sets.

Proof Tbe loop group functor preserves cofibrations and weak equivalences of
reduced simplicial sets. The map p∗ : WG → WH is therefore a fibration of
reduced simplicial sets. We can conclude that p∗ is a Kan fibration if we can show
that the group homomorphism p : G0 → H0 is surjective, by [32, V.6.9], but this is
so since p : G0 → H0 is a fibration of groupoids and therefore has the path lifting
property.

If p is a trivial fibration, then p∗ : WG → WH is a trivial fibration of reduced
simplicial sets, and is therefore weak equivalence.

All groupoids enriched in simplicial sets are fibrant for the Dwyer–Kan model
structure. It therefore follows from Lemma 9.41 that the simplicial set WG is a Kan
complex for each simplicial group G.

Lemma 9.42 The functor W : s0Gpd → sSet preserves fibrations and weak
equivalences.

Proof This result appears in [32, V.7.8]. We give a somewhat different proof of the
fibration statement here.

Suppose that f : G → H is a weak equivalence of s0Gpd. Choose a represen-
tative x for each element [x] ∈ π0(G) ∼= π0H . Choose paths a → x in G for each
a ∈ [x], and then choose paths b → f (x) in H for each object b ∈ H that is outside
the image of f . Do this for all path components [x]. Then these paths, taken together,
define a simplicial homotopy equivalence between the map f and a map

⊔

[x]∈π0G

G(x, x) →
⊔

[x]∈π0G

H (f (x), f (x)).

The functor W takes homotopy equivalences defined by paths to homotopy equiv-
alences, and preserves disjoint unions. All maps WG(x, x) → WH (f (x), f (x))
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are weak equivalences since W preserves weak equivalences of simplicial groups.
It follows that W preserves weak equivalences of groupoids enriched in simplicial
sets.

Suppose that σ : Dec (Δn) → BH is a simplex of W (H ) = T (BH ) in the sense
of (9.12) with image vertices xi , and suppose that there is a path ωi : xi → yi in H0

for each i. The paths ωi define homotopies

hr : [0, r] × 1 → G[r ,n]

that start at various σr : [0, r] → G[r ,n], and such that the diagrams

[0, r] × 1
hr �� G[r ,n]

[0, s] × 1
hs

��

i×1

��

G[s,n]

j∗
��

commute. It follows that the composites

[0, r]
1×1−−→ [0, r] × 1

hr−→ G[r ,n]

form a simplex Dec (Δn) → BG, which (following [32]) is said to be cocycle
conjugate to σ .

Suppose that the map p : G → H is a fibration for the Dwyer–Kan model
structure on the category s0Gpd, and consider the lifting problem

Λn
k

��

��

WG

p∗
��

Δn ��

//

WH

(9.13)

We can assume that the objects G and H are path connected. Pick an object x ∈ G.
Then the map G(x, x) → H (p(x), p(x)) is a strong deformation retract of p, and is
therefore a fibration of s0Gpd. The lifting problem (9.13) is cocycle conjugate to a
lifting problem

Λn
k

��

��

WG(x, x)

��

Δn ��

��

WH (p(x), p(x))

(9.14)

which lifting problem has a solution by Lemma 9.41. The lifting problems (9.13)
and (9.14) are equivalent, so that the lifting problem (9.13) has a solution.
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It follows that the simplicial set map p∗ : WG → WH is a Kan fibration.

Lemma 9.42 and Corollary 9.39 lead to a model structure on the category s0Gpd
of groupoids enriched in simplicial sets, called the W -model structure, for which
the weak equivalences f : G → H are those maps that induce weak equivalences
WG → WH (or are weak equivalences for the Dwyer–Kan structure, or induce
weak equivalences d(BG) → d(BH )), and a W -fibration is a map p : G → H such
that the induced map WG → WH is a Kan fibration.

Theorem 9.43

(1) With the definitions of weak equivalence and W -fibration given above, the cate-
gory s0Gpd of groupoids enriched in simplicial sets has the structure of a right
proper, cofibrantly generated, closed model category.

(2) The adjunction

G : sSet � s0Gpd : W

defines a Quillen equivalence between the W -model structure on s0Gpd and the
standard model structure on the category of simplicial sets.

Proof A map p : G → H of s0Gpd is a W -fibration (respectively trivial W -
fibration) if and only if it has the right lifting property with respect to all maps
G(Λn

k ) → G(Δn) (respectively all maps G(∂Δn) → G(Δn)).
If i : A → B is a cofibration of simplicial sets, then i∗ : G(A) → G(B) is a

cofibration for the Dwyer–Kan structure, on account of Lemma 9.42. If the map i is
a trivial cofibration and the diagram

G(A) ��

i∗
��

G

i′
��

G(B) �� H

is a pushout in s0Gpd, then i ′ has the left lifting property with respect to all Dwyer–
Kan fibrations, and is therefore a weak equivalence. One finishes the proof of
statement (1) with standard small object arguments. The right properness is a conse-
quence of the fact that the functor W preserves pullbacks, along with right properness
for the standard model structure on simplicial sets.

The functor G preserves weak equivalences since it preserves trivial cofibrations.
The functor W preserves weak equivalences by definition.

As noted above, it is a classical fact that the adjunction map η : Y → WG(Y )
is a weak equivalence for reduced simplicial sets Y [32, V.5.10]. The functor X �→
WG(X) preserves weak equivalences of simplicial sets Y , by Lemma 9.42. Every
simplicial set X is weakly equivalent to a disjoint union of reduced simplicial sets,
so it follows that the adjunction map η : X → WG(X) is a weak equivalence for
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all simplicial sets X. A triangle identity argument then shows that the natural map
ε : GW (H ) → H is a weak equivalence for all H in s0Gpd.

Suppose that H is a groupoid enriched in simplicial sets. The path component
groupoid π0(H ) has the same objects as H , and has morphism sets specified by

π0(H )(x, y) = π0(H (x, y))

for all objects x, y of H . There is a canonical map H → π0(H ), and this map is
initial among all morphisms H → K of s0Gpd such that K is a groupoid.

Lemma 9.44 The functor H �→ π0(H ) preserves weak equivalences of groupoids
enriched in simplicial sets.

Proof Suppose that f : G → H is a weak equivalence of s0Gpd. Then all simplicial
set maps G(x, y) → H (f (x), f (y)) are weak equivalences, so the induced functions

π0G(x, y) → π0H (f (x), f (y))

are bijections. The natural groupoid map G0 → π0(G) induces an isomorphism
π0(G0) ∼= π0(π0(G)). It follows that the induced function π0(π0(G)) → π0(π0(H ))
of sets of path components of path component groupoids is a bijection.

Corollary 9.45 There is a natural weak equivalence

π (WH )) 
 π0(H )

relating the fundamental groupoid π (WH ) of the space WH to the path component
groupoid π0(H ) of H , for all groupoids H enriched in simplicial sets.

Proof The natural map ε : G(WH ) → H is a weak equivalence of s0Gpd, by the
proof of Theorem 9.43. The map ε therefore induces weak equivalence

ε∗ : π0G(WH ) → π0H

by Lemma 9.44.
There are natural isomorphisms

hom (π0GX, L) ∼= hom (GX, L) ∼= hom (X, WL) ∼= hom (X, BL) ∼= hom (πX, L)

by adjointness (see also Example 9.36), for all spaces X and groupoids L. It follows
that there is a natural isomorphism

π0GX ∼= πX,

which is natural in simplicial sets X. The composite map

π (WH )) ∼= π0G(WH )
ε∗−→ π0(H )
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is the desired equivalence.

We close this section by proving a few technical results. The first of these is the
enriched version of the central technical lemma behind Quillen’s Theorem B. The
standard form of this result appears, for example, as Lemma IV.5.7 of [32]. The
following result is due to Moerdijk, and first appeared in [80].

Lemma 9.46 Suppose that C is a small category enriched in simplicial sets and
that X : C → sSet is an enriched functor such that all morphisms a → b of C0

induce weak equivalences X(a) → X(b). Then the pullback diagram

X(a) ��

��

holim−−−→ C X

��
∗

a

�� BC

(9.15)

is homotopy cartesian.

Proof We show that the diagram (9.15) induces a homotopy cartesian diagram of
simplicial sets on application of the diagonal functor.

The bisimplicial set BC is a homotopy colimit of its bisimplices, and it suffices
to show [32, IV.5] that every map

Δr ,s
σ ��

θ

��

BC

Δk,l

τ

����������

induces a (diagonal) weak equivalence

σ−1 holim−−−→ X
θ∗−→ τ−1 holim−−−→ X

of pullbacks over the respective bisimplices.
Every bisimplex σ : Δk,l → BC is determined by a string of arrows

σ : a0
α1−→ a1

α2−→ a2 · · · αk−→ ak

of length k in Cl , where Cl is the category in simplicial degree l in the simplicial
category C. In horizontal degree n, this bisimplex determines a simplicial set map

⊔

γ :n→k

Δl → BCn =
⊔

c0,c1,...,cn

C(c0, c1) × · · · × C(cn−1, cn).

On the summand corresponding to γ : n → k, this map resticts to the composite

γ ∗(σ ) : Δl → C(aγ (0), aγ (1)) × · · · × C(aγ (n−1), aγ (n)) → BCn.
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The simplicial set ( holim−−−→ X)n in horizontal degree n has the form

( holim−−−→ X)n =
⊔

c0,c1,...,cn

X(c0) × C(c0, c1) × · · · × C(cn−1, cn).

It follows that (in horizontal degree n) there is an identification

(σ−1 holim−−−→ X)n =
⊔

γ :n→k

X(aγ (0)) × Δl.

The map (1, θ ) : Δk,r → Δk,l induces the simplicial set map
⊔

γ :n→k

X(aγ (0)) × Δr →
⊔

γ :n→k

X(aγ (0)) × Δl

in horizontal degree n which is specified on summands by

1 × θ : X(aγ (0)) × Δr → X(aγ (0)) × Δl.

This map is a weak equivalence, and so there is a diagonal weak equivalence

(σ (1 × θ ))−1 holim−−−→ X → σ−1 holim−−−→ X.

In particular, any vertex Δ0 → Δl determines a weak equivalence
⊔

γ :n→k

X(aγ (0)) →
⊔

γ :n→k

X(aγ (0)) × Δl.

A bisimplicial set map (θ , γ ) : Δr ,s → Δk,l and any choice of vertex v : Δ0 → Δs

together induce a commutative diagram of bisimplicial set maps

Δr ,0
(1,v)

��

(θ ,1)

��

Δr ,s

(θ ,γ )

��
Δk,0

(1,γ (v))
�� Δk,l

It therefore suffices to assume that all diagrams of bisimplices

Δr ,0
σ ��

(θ ,1)

��

BC

Δk,0

τ

//��������

induce diagonal weak equivalences

σ−1 holim−−−→ X
θ∗−→ τ−1 holim−−−→ X.
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The simplicial functor X : C → S restricts to an ordinary functor X0 : C0 → S
via the identification of the category C0 with a discrete simplicial subobject of the
simplicial category C. There is a pullback diagram

holim−−−→ X0 ��

��

holim−−−→ X

��
BC0

�� BC

and all bisimplices Δk,0 → BC factor through the inclusion BC0 → BC. Each
morphism a → b of C0 induces a weak equivalence

X0(a) = X(a)

−→ X(b) = X0(b)

by assumption. It therefore follows from the standard argument for ordinary functors
taking values in simplicial sets that all induced maps

σ−1 holim−−−→ X
θ∗−→ τ−1 holim−−−→ X

are weak equivalences of simplicial sets.

In the setting of Lemma 9.46, write

X =
⊔

a∈Ob (C)

X(a)

and let π : X → Ob (C) be the canonical map. Then Lemma 9.46 implies the
following:

Corollary 9.47 Suppose that C is a category enriched in simplicial sets and that X :
C → sSet is a functor such that all arrows a → b of C0 induce weak equivalences
X(a) → X(b). Then the pullback diagram

X ��

��

holim−−−→ C X

��
Ob (C) �� BC

is homotopy cartesian.

Corollary 9.48 Suppose that f : G → H is a morphism of groupoids enriched in
simplicial sets. Then the pullback diagram

B(f/x) ��

��

BG

f∗
��

B(H/x) �� BH
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is homotopy cartesian for each objects x of H .

Proof This result is a consequence of Quillen’s diagram [87, p.98, 32, (5.12)]GJ

B(f/x) ��

��

holim−−−→ H B(f/x)

 ��

��

BG

f∗
��

B(H/x) ��



��

holim−−−→ H B(H/x)



��



��

BH

∗
x

�� BH

together with Lemma 9.46. The conditions of Lemma 9.46 for the enriched diagram
x �→ B(f/x) are automatically satisfied, since H is a groupoid enriched in simplicial
sets.

Write (Δ × Δ)/X for the category of maps Δp × Δq → X, for a simplicial set
X. The category Δ/X is the simplex category for X.

We use Quillen’s Theorem A [87] in the proof of the following result. Theorem
A says that if f : C → D is a functor between small categories such that either
all spaces B(f/a) or all spaces B(a/f ) are contractible, then the induced map f∗ :
BC → BD of nerves is a weak equivalence. Theorem A is an easy consequence
of the fact that BC is a homotopy colimit of the spaces B(f/a), and of the spaces
B(a/f ).

Lemma 9.49 The natural map

ε : d(d∗(X)) = lim−→
Δp×Δq→X

Δp × Δq → X

is a weak equivalence of simplicial sets, for all simplicial sets X.

This result is proved in [80], under the additional assumption that X is a Kan
complex, by using a different technique.

Proof Suppose that L(X) is the category whose objects are the strings of maps

Δn → Δr × Δs → X, (9.16)

and whose morphisms are the commutative diagrams

Δn ��

��

Δr × Δs

θ×γ

��

����
���

��

X

Δm �� Δp × Δq

���������
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There are functors p : L(X) → Δ/X and q : L(X) → (Δ × Δ)/X that take the
object (9.16) to the composite

Δn → X

and the map

Δr × Δs → X,

respectively.
If σ : Δm → X is an object of the simplex category Δ/X, then the category σ/p

has an initial object of the form

Δm

1

��
Δm

Δ

�� Δm × Δm �� X

and is therefore contractible. It follows from Quillen’s Theorem A that the map
p∗ : B(L(X)) → B(Δ/X) is a weak equivalence.

If σ : Δp × Δq → X is an object of (Δ × Δ)/X, then the category q/σ has
objects consisting of commutative diagrams

Δp × Δq

σ

���
��

��
��

��

Δn �� Δr × Δs

θ×γ

��

�� X

This category is homotopy equivalent to the simplex category Δ/(Δp × Δq), with
the homotopy provided by the family of maps θ × γ , and is therefore contractible.
It follows, again from Quillen’s Theorem A, that the map q∗ : B(L(X)) → B((Δ ×
Δ)/X) is a weak equivalence.

There is a commutative diagram

holim−−−→ Δn→Δr×Δs→X Δn
p∗ ��



��

holim−−−→ Δn→X Δn



��

holim−−−→ Δn→Δr×Δs→X Δr × Δs ��

q∗
��

X

holim−−−→ Δr×Δs→X Δr × Δs

��7777777777777777777



9.3 Groupoids Enriched in Simplicial Sets 303

The maps p∗ and q∗ are weakly equivalent to the weak equivalences p∗ : B(L(X)) →
B(Δ/X) and q∗ : B(L(X)) → B((Δ × Δ)/X), respectively. It follows that the map

holim−−−→ Δr×Δs→X Δr × Δs → X

is a weak equivalence.
The map

holim−−−→ Δp×Δq→X Δp × Δq → lim−→
Δp×Δq→X

Δp × Δq

is a weak equivalence.
To see this, suppose that

Δn (θ ,γ )−−→ Δp × Δq σ−→X (9.17)

is an object of the translation category of n-simplices. Then the diagram

Δn
Δ ��

(θ ,γ ) 33�
��

��
��

��
Δn × Δn

θ×γ

��
Δp × Δq

σ

��
X

commutes, and the composites

Δn × Δn ζ×ω−−→ Δp × Δq σ−→X

coincide for all objects

Δn (ζ ,ω)−−→ Δp × Δq σ−→X

in the component of the object (9.17). It follows that the corresponding object

Δn Δ−→ Δn × Δn → X

is terminal in the component of the object (9.17).
All components of the translation category of n-simplices are therefore con-

tractible, and so the map

holim−−−→ Δp×Δq→X (Δp × Δq)n → lim−→
Δp×Δq→X

(Δp × Δq)n

is a weak equivalence for all n.
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9.4 Presheaves of Groupoids Enriched in Simplicial Sets

Write Pre(s0Gpd) for the category of presheaves of groupoids enriched in simplicial
sets on a site C.

The functors W and G relating simplicial sets and groupoids enriched in simplicial
sets of the previous section define an adjoint pair of functors

G : sPre(C) � Pre(s0Gpd) : W

in the obvious way: if X is a simplicial presheaf, then G(X) is the presheaf of
simplicial groupoids, which is defined in sections by

G(X)(U ) = G(X(U )), U ∈ C.

The presheaf-level functor W has a similar, sectionwise definition.
In what follows, G̃(X) will denote the sheaf of groupoids enriched in simplicial

sets, which is associated to the presheaf object G(X), for a simplicial presheaf X.
Say that a map G → H of such presheaves is a local weak equivalence if the map

holds the following equivalent conditions:

(1) the map WG → WH is a local weak equivalence of simplicial presheaves,
(2) the map BG → BH is a diagonal local weak equivalence of bisimplicial pre-

sheaves.

The equivalence of these two conditions is a consequence of Corollary 9.39.
A map p : G → H of Pre(s0Gpd) is said to be a W -fibration if the map

WG → WH is an injective fibration of simplicial presheaves. Cofibrations for this
category are defined by the left lifting property with respect to trivial fibrations.

If G is a simplicial object in sheaves of groupoids, then the object WG is a
simplicial sheaf. This follows from the description of n-simplices of WG (e.g. as in
(9.12)) as strings of arrows in the sheaves of groupoids Gq which satisfy matching
conditions.

Theorem 9.50

(1) With the definitions of local weak equivalence, W -fibration and cofibration given
above, the category Pre(s0Gpd) of presheaves of groupoids enriched in simpli-
cial sets has the structure of a right proper, cofibrantly generated, closed model
category.

(2) The adjoint functors

G : sPre(C) � Pre(s0Gpd) : W

define a Quillen equivalence of this model structure on Pre(s0Gpd) with the
injective model structure on the category of simplicial presheaves.

The model structure of Theorem 9.50 is the W -model structure for the category
of presheaves of groupoids enriched in simplicial sets. The following lemma is the
key step in its proof:
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Lemma 9.51 Suppose given a pushout diagram

G̃(A) ��

i∗
��

G

i′

��
G̃(B) �� H

(9.18)

in sheaves of groupoids enriched in simplicial sets, where i : A → B is a local
trivial cofibration of simplicial sheaves. Then the map i ′ is a local weak equivalence.

Lemma 9.51 implies that if we have a pushout diagram

G(A) ��

i∗
��

G

i′
��

G(B) �� H

in Pre(s0Gpd) associated to a local trivial cofibration of simplicial presheaves i :
A → B, then the map i ′ is a local weak equivalence.

In effect, the induced map i : Ã → B̃ is a local trivial cofibration of simplicial
sheaves, while G̃(X̃) is naturally isomorphic to the sheaf associated to the presheaf
G(X). It then follows from Lemma 9.51 that the map i ′∗ : G̃ → H̃ is a local weak
equivalence, and so the original map i ′ : G → H is a local weak equivalence.

The proof of Theorem 9.50 follows, according to the method displayed for the
proof of Theorem 9.43. Observe that a map p : G → H is a W -fibration (respectively
trivial W -fibration) if and only if it has the right lifting property with respect to all
maps G(A) → G(B) induced by the set of generators A → B for the class of trivial
cofibrations (respectively cofibrations) of the simplicial presheaf category sPre(C).

Proof (Proof of Lemma 9.51) The functor G �→ d(BG) commutes with the forma-
tion of associated sheaves. It follows that the map dB(G̃A) → dB(G̃B) is locally
weakly equivalent to the map dB(GA) → dB(GB), and is therefore locally weakly
equivalent to the map W (GA) → W (GB), and hence to the map A → B. The map
dB(G̃A) → dB(G̃B) is locally weakly equivalent W (G̃A) → W (G̃B). It follows
that the map W (G̃A) → W (G̃B) is a local weak equivalence.

Suppose that p : Shv(B) → Shv(C) is a Boolean localization (or a suitable
collection of stalks). Recall from Lemma 4.27 that the associated inverse image
functor preserves and reflects local weak equivalences of simplicial sheaves.

There is a natural isomorphism

p∗(dB(G)) ∼= dB(p∗(G))
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for all sheaf objects G, so that in the pushout

p∗G̃(A) ��

i∗
��

p∗G

i′′

��
p∗G̃(B) �� p∗H

the map i∗ is a local weak equivalence. It is enough to show that i ′′ is a local weak
equivalence over B, because the simplicial sheaf map dB(G) → dB(H ) is a local
weak equivalence if and only if the map p∗dB(G) → p∗dB(H ) is a local weak
equivalence. It therefore suffices to assume that our diagram (9.18) lives in sheaves
on the complete Boolean algebra B.

We can also assume that the simplicial sheaves A and B are locally fibrant. To see
this, use the diagram

G̃(A)
G̃η

��

��

G̃WG̃(A)
ε̃ ��

��

G̃(A)

��

G̃(B)
G̃η

��
G̃WG̃B

ε̃

�� G̃(B)

in which the horizontal composites are identities. The map WG̃(A) → WG̃(B) has
a factorization

WG̃(A)
j

��

335
55

55
55

55
X

p

��

WG̃(B)

in simplicial sheaves, where p is a trivial injective fibration and j is a cofibration.
Then the map B → WG̃(B) lifts to X, and it follows that the map i∗ : G̃(A) → G̃(B)
is a retract of the map j∗ : G̃WG̃(A) → G̃(X), which is induced by the trivial
cofibration j : WG̃(A) → X of locally fibrant simplicial sheaves. The fact that the
simplicial sheaf WG̃(A) is locally fibrant is a consequence of Lemma 9.41.

Finally, in the pushout diagram

G(A) ��

i∗
��

G

��
G(B) �� H ′



9.4 Presheaves of Groupoids Enriched in Simplicial Sets 307

of presheaves of groupoids enriched in simplicial sets on B, the map A → B is
a sectionwise trivial cofibration of simplicial sheaves because A and B are locally
fibrant (Lemma 4.24), so that G(A) → G(B) is a sectionwise trivial cofibration of
presheaves of groupoids enriched in simplicial sets. It follows that the map G → H ′
is also a sectionwise trivial cofibration, and so the map i ′ : G → H of associated
sheaves is a local weak equivalence.

We shall also need the local version of Proposition 9.32:

Proposition 9.52 A map f : G → H of Pre(s0Gpd) is a local weak equivalence
if and only if the following conditions hold:

(1) the induced diagram of simplicial presheaf maps

Mor (G) ��

��

Mor (H )

��
Ob (G) × Ob (G) �� Ob (H ) × Ob (H )

(9.19)

is homotopy cartesian for the injective model structure,
(2) the sheaf map

π̃0G → π̃0H

is an isomorphism.

Proof Form the object f ∗H of Pre(s0Gpd) via the pullback

Mor (f ∗H ) ��

��

Mor (H )

(s,t)

��
Ob (G) × Ob (G)

f ×f

�� Ob (H ) × Ob (H )

as in the proof of Proposition 9.32. There is a commutative diagram

G ��

f ��,
,,

,,
,,

,
f ∗H

��
H

in presheaves of groupoids enriched in simplicial sets.
The map G → f ∗H is a local weak equivalence if and only if the map Mor (G) →

Mor (f ∗H ) is a local weak equivalence of simplicial presheaves.
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To verify this claim, suppose that the map BG → B(f ∗H ) is a local weak
equivalence. According to Lemma 9.31, the natural diagram

BP (H ) ��

��

B Morr (H )

��
B Morl (H ) �� BH

is sectionwise homotopy cartesian, and is therefore homotopy cartesian for the in-
jective model structure by Lemma 5.20, for all objects H of Pre(s0Gpd). There are
also natural sectionwise (hence local) weak equivalences

BP (H )

−→ Mor (H ), B Morr (H )


−→ Ob (H ), and B Morl (H )

−→ Ob (H ).

It follows that the simplicial presheaf map Mor (G) → Mor (f ∗H ) is a local weak
equivalence.

Conversely, suppose that the map Mor (G) → Mor (f ∗H ) is a local weak
equivalence. Then the simplicial presheaf maps

BGn → B(f ∗H )n

are finite iterated products of the map Mor (G) → Mor (f ∗H ) over the discrete
object Ob (H ), and are therefore local weak equivalences by Lemma 4.39. It follows
that the map BG → Bf ∗H is a local weak equivalence.

The map f ∗H → H is fully faithful in all simplicial degrees, and there are natural
isomorphisms π̃0(H ) ∼= π̃0(Hn) for all n. It follows that the map B(f ∗Hn) → BHn

is a local weak equivalence for each n if and only if the map π̃0(f ∗H ) → π̃0(H )
is an epimorphism of sheaves (since it is already monic). It follows that the map
f ∗H → H is a local weak equivalence if and only if the sheaf map π̃0(G) → π̃0(H )
is an isomorphism.

It follows from Lemma 5.20 that the map G → f ∗(H ) is a local weak equiva-
lence if and only if the diagram (9.19) is homotopy cartesian for the injective model
structure, since the map

Ob (G) × Ob (G) → Ob (H ) × Ob (H )

of simplicially discrete objects is a sectionwise Kan fibration.
If the map dBG → dBH is a local weak equivalence, then the map π̃0(G) →

π̃0(H ) is a sheaf isomorphism, so that the map f ∗H → H is a local weak equiv-
alence. It follows that the map G → f ∗H is a local weak equivalence so that the
map Mor (G) → Mor (f ∗H ) is a local weak equivalence, and the diagram (9.19) is
homotopy cartesian.

Conversely, suppose that the sheaf map π̃0G → π̃0H is an isomorphism and the
diagram (9.19) is homotopy cartesian. Then the simplicial presheaf map Mor (G) →
Mor (f ∗H ) is a local weak equivalence, and so the map G → f ∗H is a local
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weak equivalence. The assumption that the map π̃0G → π̃0H is an isomorphism of
sheaves implies that the map f ∗H → H is a local weak equivalence, and it follows
that the map f : G → H is a local weak equivalence.

We have the following corollary of the proof of Proposition 9.52:

Corollary 9.53 A map f : G → H of presheaves of groupoids enriched in simpli-
cial sets is a local weak equivalence if and only if the induced maps G → f ∗H and
f ∗H → H are local weak equivalences.

Recall from Sect. 5.6 that the derived Postnikov section PnX of a simplicial
presheaf X is defined by

PnX = Pn( Ex∞ X),

where Y �→ PnY is the classical natural Postnikov section construction for simplicial
sets Y . Lemma 5.46 says, in part, that the functor X �→ PnX preserves local weak
equivalences of simplicial presheaves X.

The canonical map

PnX → Pn( Ex∞ X) = PnX

is a sectionwise equivalence if X is a presheaf of Kan complexes. In particular, if
H is a presheaf of groupoids enriched in simplicial sets, then the morphism object
Mor (H ) is a presheaf of Kan complexes, so that the natural simplicial presheaf map

Pn Mor (H ) → Pn Mor (H )

is a sectionwise, hence local weak equivalence.
Suppose that G is a groupoid enriched in simplicial sets. The object PnG is the

object of s0Gpd with Ob (PnG) = Ob (G), and with

Mor (PnG) = Pn Mor (G).

In other words, Mor (PnG) is the disjoint union

⊔

x,y∈Ob (G)

PnG(x, y),

and the composition laws G(x, y) × G(y, z) → G(x, z) induce composition laws
PnG(x, y)×PnG(y, z) → PnG(x, z) (since the functor Pn preserves finite products),
such that the obvious diagram commutes. This construction is functorial in G, and
the map π : Mor (G) → Pn Mor (G) defines a natural map

η : G → PnG

of groupoids enriched in simplicial sets, which is the identity on objects.
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This construction extends to presheaves of groupoids enriched in simplicial sets:
there is a functor

Pn : Pre(s0Gpd) → Pre(s0Gpd),

with PnH defined in sections by

(PnH )(U ) = Pn(H (U )).

There is a natural map

η : H → PnH

that is defined in sections by the corresponding map for groupoids enriched in
simplicial sets.

Say that a map G → H of Pre(s0Gpd) is a local n-equivalence if the induced
map PnG → PnH is a local weak equivalence of Pre(s0Gpd), and that G is an
n-type if the map η : G → PnG is a local weak equivalence.

An n-fibration is a map that has the right lifting property with respect to all maps
that are cofibrations for the W -model structure and local n-equivalences.

Lemma 9.54

(1) An object H of Pre(s0Gpd) is an n-type if and only if WH is an (n + 1)-type in
simplicial presheaves.

(2) A map G → H is a local n-equivalence if and only if the map WG → WH is a
local (n + 1)-equivalence of simplicial presheaves.

Proof The natural maps

dB(PnG)
p−→Pn+1(dB(PnG))

Pn+1(p)←−−−− Pn+1(dBG)

are weak equivalences for all groupoids G enriched in simplicial sets, on account of
the homotopy cartesian diagrams

dBP (G) ��

��

dB Morr (G)

��
dB Morl (G) �� dBG

and the natural weak equivalences

dBP (G)

−→ Mor (G), dB Morr (G)


−→ Ob (G), and dB Morl (G)

−→ Ob (G)

of Lemma 9.31.
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The maps

dB(PnH )
p−→Pn+1(dB(PnH ))

Pn+1(p)←−−−− Pn+1(dBH )

are therefore local weak equivalences for all presheaves H of groupoids enriched in
simplicial sets. It follows from Corollary 9.39 that the natural maps

W (PnH )
p−→Pn+1(W (PnH ))

W (p)←−−− Pn+1(WH ) (9.20)

are also local weak equivalences for all H in Pre(s0Gpd).
There is a commutative diagram

WH
W (p)

��

p

��

W (PnH )

p

��

Pn+1(WH )
W (p)


 �� Pn+1(W (PnH ))

so that the simplicial presheaf WH is a local (n + 1)-type if and only if H is a local
n-type.

It follows from the naturality of the local equivalences in (9.20) that the map
PnG → PnH is a local weak equivalence of Pre(s0Gpd) if and only if the map
Pn+1(WG) → Pn+1(WH ) is a local weak equivalence of simplicial presheaves.
This proves statement 2).

Lemma 9.55 The following statements hold within the category Pre(s0Gpd) of
presheaves of groupoids enriched in simplicial sets:

A4 The functor Pn preserves local weak equivalences.
A5 The maps η, Pn(η) : PnG → PnPnG are local weak equivalences.
A6 Suppose given a pullback diagram

A
α ��

��

G

p

��
B

β

�� H

in Pre(s0Gpd) such that p is a W -fibration. Suppose that the maps η : H → PnH

and β∗ : PnB → PnH are local weak equivalences. Then the map α∗ : PnA →
PnG is a local weak equivalence.

Proof If f : G → H is a local weak equivalence of presheaves of groupoids
enriched in simplicial sets, then the map π̃0G → π̃0H is an isomorphism of sheaves,
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and the simplicial presheaf map Mor (G) → f ∗ Mor (H ) is a local weak equivalence.
The map

Pn Mor (G) → Pnf
∗ Mor (H ) ∼= f ∗Pn Mor (H )

is a local weak equivalence of simplicial presheaves by Lemma 5.47. It follows from
Proposition 9.52 that the map PnG → PnH is a local weak equivalence, and we
have proved statement A4.

StatementA5 follows from basic properties of the Postnikov section functor X �→
PnX for Kan complexes X: the maps p, Pn(p) : PnG → PnPnG are sectionwise
equivalences since Mor (G) is a presheaf of Kan complexes, and both maps are the
identity on objects.

Statement A6 follows from Lemma 9.54 which implies that the induced diagram

WA ��

��

WG

��

WB �� WH

satisfies the conditions of Lemma 5.47.

Theorem 9.56

(1) The category Pre(s0Gpd), together with the classes of cofibrations, local n-
equivalences and n-fibrations, satisfies the axioms for a right proper, cofibrantly
generated, closed model category.

(2) A map p : G → H is an n-fibration if and only if it is a W -fibration and the
diagram

G
η

��

p

��

PnG

p∗
��

H
η

�� PnH

is homotopy cartesian for the W -structure on Pre(s0Gpd) of Theorem 9.50.

Proof The proof uses the W -model structure of Theorem 9.50 along with Lemma
9.55, and has the same formal structure as the proof of Theorem 5.49.

The generating set for the trivial cofibrations of this model structure are the maps
G(A) → G(B) that are induced by α-bounded cofibrations A → B of simplicial
presheaves that are local (n + 1)-equivalences, by Lemmas 9.54 and 5.50. As usual,
α is a regular cardinal which is larger than the cardinality of the set of morphisms of
the underlying site.
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Say that the model structure of Theorem 9.56 on s0Gpd is the n-equivalence
structure.

A 2-groupoid H is a groupoid object in groupoids, such that the groupoid Ob (H )
is discrete. Write 2 − Gpd for the resulting category of 2-groupoids.

The fundamental groupoid and classifying space (nerve) functors define an adjoint
pair

π : sSet � Gpd : B.

Both functors preserve finite products, and hence induce an adjoint pair of functors

π : s0Gpd � 2 − Gpd : B.

Explicitly, if G is a groupoid enriched in simplicial sets, then π (G) is the 2-groupoid
with

Mor (π (G)) = π ( Mor (G)) and Ob(π (G)) = Ob(G).

If H is a 2-groupoid, then BH is the groupoid enriched in simplicial sets with

Mor (BH ) = B( Mor (H )) and Ob(BH ) = Ob(H ).

Write Pre(2 − Gpd) for the category of presheaves of 2-groupoids. Then the
fundamental groupoid and classifying space functors define an adjoint pair

π : Pre(s0Gpd) � Pre(2 − Gpd) : B (9.21)

relating presheaves of groupoids enriched in simplicial sets with presheaves of 2-
groupoids. The fundamental groupoid functor π is left adjoint to the classifying
space functor B in all contexts.

We will show in Theorem 9.57 that the adjunction (9.21) induces a model structure
on the category Pre(2−Gpd) of presheaves of 2-groupoids.

Say that a map f : G → H of Pre(2−Gpd) is a local weak equivalence (re-
spectively fibration) if the induced map BG → BH is a local weak equivalence
(respectively W -fibration) of Pre(s0Gpd). Cofibrations of Pre(2−Gpd) are defined
by a left lifting property. In particular, every cofibration A → B of Pre(s0Gpd)
induces a cofibration π (A) → π (B) of presheaves of 2-groupoids.

The fundamental groupoid functor π : sPre(C) → Pre(Gpd) preserves local
weak equivalences of simplicial presheaves, by Lemma 9.18, and it follows from
Proposition 9.52 that the functor π : Pre(s0Gpd) → Pre(2 − Gpd) preserves local
weak equivalences.

One forms colimits in 2−Gpd as in s0Gpd. In particular, suppose given a diagram
of 2-groupoids

πA ��

i

��

G

πB
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where i : A → B is a morphism of s0Gpd. Consider the pushout

A ��

i

��

BG

j

��
B �� E

in s0Gpd. Then the diagram

πA

i∗
��

�� G

j∗
��

πB �� πE

(9.22)

is a pushout in 2-groupoids.
The same construction obtains in presheaves of 2-groupoids. It follows that if

the diagram (9.22) is a pushout in Pre(2 − Gpd) and i is a trivial cofibration of
Pre(s0Gpd), then j∗ is a local weak equivalence of presheaves of 2-groupoids, since
the functor π preserves local weak equivalences.

Theorem 9.57

(1) With the definitions of local weak equivalence, fibration and cofibration given
above, the category Pre(2−Gpd) of presheaves of 2-groupoids has the structure
of a right proper closed model category.

(2) The adjoint pair of functors

π : Pre(s0Gpd) � Pre(2 − Gpd) : B

defines a Quillen adjunction.

Theorems 9.50 and 9.57 first appeared in the Ph.D. thesis of Z. Luo [73].

Proof Statement (2) is obvious from the definitions, once statement (1) is proved.
A map p : G → H of Pre(2−Gpd) is a fibration (respectively trivial fibration) if

and only if it has the right lifting property with respect to the maps πA → πB that are
induced by trivial cofibrations (respectively cofibrations) A → B for the W -model
structure on Pre(s0Gpd) of Theorem 9.50. Pushouts of maps πA → πB induced by
trivial cofibrations A → B of Pre(s0Gpd) along arbitrary maps πA → G are trivial
cofibrations of presheaves of 2-groupoids, and it follows that every map f : G → H
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of presheaves of 2-groupoids has factorizations

E
p



�
��

��
��

G

i
��������� f

��

j ���
��

��
��

H

F

q



�������

such that i is a trivial cofibration that has the left lifting property with respect to
all fibrations and p is a fibration, and such that j is a cofibration and p is a trivial
fibration. This gives the factorization axiom CM5, and the lifting axiom CM4 follows
in the usual way.

The model structure on presheaves of 2-groupoids is right proper, since the W -
model structure on Pre(s0Gpd) is right proper.

Various definitions can be made. In particular, the 2-groupoid object πG(X) is
the fundamental 2-groupoid of a space (or simplical presheaf) X.

The path component groupoid functor induces a functor

π0 : Pre(s0Gpd) → Pre(Gpd),

which takes values in presheaves of groupoids. There is a natural weak equivalence

π (WH ) 
 π0H

by Lemma 9.44, so it follows from Lemma 9.18 that the functor H �→ π0H preserves
local weak equivalences of presheaves of groupoids enriched in simplicial sets.

The path component functor π0 has a right adjoint

R : Pre(Gpd) → Pre(s0Gpd)

which takes a groupoid to the associated constant simplicial groupoid. There is a
natural isomorphism

π0H ∼= π0P0H

for groupoids H enriched in simplicial sets, and the functor π0 preserves local weak
equivalences of presheaves of groupoids enriched in simplicial sets. It follows that the
path component functor π0 preserves 0-equivalences. There is a natural isomorphism

π0G(X) ∼= π (X)

from the proof of Corollary 9.45, and it follows that the functor π0 preserves
cofibrations. The adjunction

π0 : Pre(s0Gpd) � Pre(Gpd) : R
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therefore defines a Quillen adjunction between the 0-equivalence model structure
on Pre(s0Gpd) and the injective model structure on the category Pre(Gpd) of
presheaves of groupoids of Proposition 9.19.

The canonical map η : H → R(π0H ) induces an isomorphism of groupoids
π0H ∼= π0R(π0H ), so that the map η∗ : P0H → P0R(π0H ) is a local weak equiva-
lence. The map η is therefore a 0-equivalence. The canonical map ε : π0R(G) → G

is an isomorphism for all groupoids G. It follows that the adjunction defined by the
functors π0 and R defines a Quillen equivalence between the 0-equivalence model
structure on s0Gpd and the ordinary model structure on Gpd.

We have proved the following:

Lemma 9.58 The adjoint pair of functors

π0 : Pre(s0Gpd) � Pre(Gpd) : R

defines a Quillen equivalence between the 0-equivalence model structure on the
category Pre(s0Gpd) of presheaves of groupoids enriched in simplicial sets and the
injective model structure on the category Pre(Gpd) of presheaves of groupoids.

The natural map η : BH → P1BH is a sectionwise equivalence, for all
presheaves of 2-groupoids H . It follows in particular that BH is a local 1-type
for all objects H of Pre(2 − Gpd). This observation extends to the following result:

Proposition 9.59 The adjunction

π : Pre(s0Gpd) � Pre(2 − Gpd) : B

defines a Quillen equivalence between the 1-equivalence structure on Pre(s0Gpd)
and the model structure on Pre(2 − Gpd) of Theorem 9.57.

Proof There is a natural commutative diagram

G
η

��

η

��

P1G

P1η

��

BπG


η

�� P1BπG

for all objects G of Pre(s0Gpd), in which the indicated maps are sectionwise weak
equivalences. It follows that the functor π takes local 1-equivalences to local weak
equivalences of presheaves of 2-groupoids. The functor π also preserves cofibrations,
so that the adjunction is a Quillen adjunction.

The map η : G → BπG is a 1-equivalence for all objects G of Pre(s0Gpd), and
the map ε : πBH → H is an isomorphism for all presheaves of 2-groupoids H .

Remark 9.60 An (n + 1)-stack G is a presheaf of groupoids enriched in simplicial
sets, such that some (hence any) fibrant model G → H in the n-equivalence model
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structure of Theorem 9.56 is a sectionwise equivalence. In other words, G should
satisfy descent with respect to the n-equivalence model structure.

(1) Suppose that G is a fibrant object for the 0-equivalence model structure on
presheaves of groupoids enriched in simplicial sets. Suppose that j : π0G → H

is a fibrant model in presheaves of groupoids. Then all maps in the picture

G → Rπ0G
j∗−→ RH

are 0-equivalences. The composite map G → RH is therefore a 0-equivalence
of fibrant models for G in 0-equivalence model structure. It follows from a
standard argument (i.e. every trivial fibration has the right lifting property with
respect to all cofibrations) that the map G → RH is a sectionwise equivalence of
presheaves of groupoids enriched in simplicial sets. All 1-stacks are represented
by stacks up to sectionwise equivalence in this sense.

(2) Similarly, suppose that K is a fibrant object in the 1-equivalence model structure.
Let j : π (K) → L be a fibrant model in presheaves of 2-groupoids. Then the
composite

K → B(π (K))
j∗−→ BL

consists of 1-equivalences, and the objects BL is fibrant for the 1-equivalence
model structure on presheaves of groupoids enriched in simplicial sets. The
composite map K → BL is therefore a sectionwise weak equivalence. All
2-stacks are therefore represented by fibrant presheaves of 2-groupoids up to
sectionwise equivalence.

We also have the following:

Proposition 9.61 The adjunction

G : sPre(C) � Pre(s0Gpd) : W

induces a Quillen equivalence between the n-equivalence structure on Pre(s0Gpd) of
Theorem 9.56 and the (n+1)-equivalence structure of Theorem 5.49 on the category
sPre(C) of simplicial presheaves.

Proof We have the natural weak equivalences

W (PnG)
η−→Pn+1(W (PnG))

W (η)←−− Pn+1(WG)

from (9.20).
Suppose that X → Y is a map of presheaves of Kan complexes such that the map

Pn+1X → Pn+1Y is a local weak equivalence. Then there is a commutative diagram

Pn+1X ��



��

Pn+1Y



��

Pn+1WGX �� Pn+1WGY
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where the vertical maps are induced by the sectionwise weak equivalences X →
WGX and Y → WGY (see the proof of Theorem 9.43). The map along the bottom
of the diagram is weakly equivalent to the map WPnGX → WPnGY , and so the
map GX → GY is an n-equivalence.

The functor G therefore takes (n + 1)-equivalences of simplicial presheaves to
n-equivalences of Pre(s0Gpd). This functor also preserves cofibrations, so that the
adjoint functors G and W form a Quillen equivalence between the n-equivalence
structure on Pre(s0Gpd) and the (n + 1)-equivalence structure on the simplicial
presheaf category sPre(C). The canonical maps X → WG(X) and GWH → H are
sectionwise equivalences, and are therefore (n+1)-equivalences and n-equivalences,
respectively.

9.5 Extensions and Gerbes

This section is a description of the relation between presheaves of groupoids and
presheaves of 2-groupoids on a small Grothendieck site C. The general idea, which
is central to all discussions of non-abelian H 2 invariants dating from the time of
Giraud’s book [31] in the early 1970s, is that 2-groupoids can be used to classify
various classes of groupoids up to weak equivalence.

Traditionally, although it is not quite said this way in the literature, a gerbe G is
a locally connected stack. This means that G is a sheaf of groupoids which satisfies
descent (a stack), and has a path component sheaf π̃0G that is trivial in the sense that
the canonical map π̃0G → ∗ to the terminal sheaf is an isomorphism. From the point
of view developed in this chapter, stacks are local homotopy types of presheaves of
groupoids, and we broaden the classical definition a bit to say that a gerbe is a locally
connected presheaf of groupoids.

In standard homotopy theory, a connected groupoid G is equivalent as a category
with some group: the group in question is the group π1(BG, x) = G(x, x) of auto-
morphisms of some object x—any object x will do, because G is connected, so that
all automorphism groups G(x, x) are isomorphic.

More generally, if H is a presheaf of groupoids, then the automorphism sheaves
of H (the sheaves of fundamental groups of BH ) are fibred over the presheaf Ob (H )
of objects of H , and could more generally belong to some family of groups, which
we specify up to isomorphism as a group object F → S in sheaves fibred over a
sheaf S. Thus we can speak of gerbes (locally connected presheaves of groupoids)
with automorphism sheaves in a family of sheaves of groups F.

One of the main results of this section gives a homotopy classification of the local
weak equivalence classes of gerbes with automorphism sheaves in a family F as the
set of morphisms

[∗, Iso(F)]

in the homotopy category of presheaves of 2-groupoids, where Iso(F) is the 2-

groupoid object consisting of S, the isomorphisms Fx

∼=−→ Fy , and their homotopies.
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This homotopy classification result is Corollary 9.68—it gives a description of the
non-abelian cohomology object H 2(C, F) for the underlying site C.

Corollary 9.68 is a special case of a more general result that classifies essentially
surjective groupoid homomorphisms q : G → H with kernels K in a family F. We
say that the map q is essentially surjective if the map im (q) → H defined on the
image of q is a local weak equivalence of presheaves of groupoids.

We denote the category of essentially surjective morphisms q : G → H with
kernels in F by Ext(H , F), and then Theorem 9.66 says (this is formally stated in
Corollary 9.67) that there is a natural bijection

[H , Iso(F)] ∼= π0Ext(H , F),

where the morphisms are again in the homotopy category of presheaves of 2-
groupoids. Corollary 9.68 is the case of Theorem 9.66 which corresponds to H

being the trivial groupoid ∗.
The method of proof (and statement) of Theorem 9.66 is cocycle theoretic. Every

object q : G → H in Ext(H , F) determines resolution 2-groupoid R(q)

−→ H and

a cocycle

H

←− R(q) → Iso(F)

in presheaves of 2-groupoids, and every cocycle

H

←− A

F−→ Iso(F)

defines an essentially surjective groupoid homomorphisms EAF → H with kernels
in the family F, where EAF is a Grothendieck construction which is associated to
the map F . Theorem 9.66 is proved by showing that these two constructions are
inverse to each other.

Suppose now that H is a presheaf of groups and that L is a sheaf of groups. Theo-
rem 9.66 has a pointed version, which specializes in Corollary 9.72 to an identification
of isomorphism classes of extensions of sheaves of groups

e → L → G → H̃ → e

with the set of morphisms

[BH , W Iso(L)]∗

in the homotopy category of pointed simplicial presheaves, where we have identified
the sheaf of groups L with the family L → ∗ over a point.

Corollaries 9.68 and 9.72 have been known in some form for quite a while. Corol-
lary 9.68 is the homotopy classification of gerbes—it generalizes a result of Breen
for singleton families [15], while the cocycle theoretic technique for its proof was
introduced in [66]. Corollary 9.72 generalizes the cocycle classification of extensions
of groups that appears in [65]; the classification of extensions of groups is a classical
result.
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The novel feature of the present exposition is the demonstration that these two
streams of results have a common source.

A family of presheaves of groups F → S over a presheaf S is a group object in the
category of presheaves over S. We shall often write F to denote the family F → S.

The fibre Fx of the family F over x ∈ S(U ) is defined by the pullback diagram

Fx
��

��

F|U

��
∗

x

�� S|U

in the category of presheaves on the site C/U . Recall that the restriction F |U of a
presheaf F on C is defined by the composite

(C/U )op → Cop F−→ Set.

The fibre Fx inherits the structure of a presheaf of groups on C/U from the family
F → S.

Example 9.62 The family of presheaves of groups Aut (G) → Ob (G) is defined,
for a presheaf of groupoids G, by the pullback diagram

Aut(G) ��

��

Mor (G)

(s,t)

��
Ob(G)

Δ

�� Ob(G) × Ob(G)

where s and t are source and target, respectively, and Δ is the diagonal map.

A morphismF → F′ of families of presheaves of groups is a commutative diagram
of presheaf maps

F
f

��

��

F′

��
S

f

�� S ′

(9.23)

such that the induced sheaf map

F → S ×S′ F′ (9.24)

defines a morphism of group objects over S.
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If the map (9.24) induces an isomorphism of associated sheaves, or equivalently
if the diagram (9.23) induces a pullback diagram of associated sheaves, then we say
that the morphism of families F → F� is a pseudo-isomorphism.

Example 9.63 If the morphism f : G → H of presheaves of groupoids is a local
weak equivalence, then the induced diagram

Aut(G) ��

��

Aut(H )

��
Ob(G) �� Ob(H )

defines a pseudo-isomorphism of families.

If the family F → S is a morphism of sheaves, we say that it is a family of sheaves
of groups.

Example 9.64 Every family of presheaves of groups has an associated family of
sheaves of groups, and the associated sheaf map

F
η

��

��

F̃

��
S

η

��
S̃

is a pseudo-isomorphism of families.

Every family F → S of presheaves of groups has an associated presheaf of
2-groupoids Iso(F). In sections, the 0-cells are the elements of S(U ), the 1-cells

α : x → y are the isomorphisms α : Fx

∼=−→ Fy of presheaves of groups on C/U ,
and the 2-cells are the homotopies h : α → β. Such homotopies are defined by
conjugation with elements h ∈ Fy(U ).

Suppose given a pseudo-isomorphism

F
f

��

��

G

��
S

f

�� T

where G → T is a family of sheaves of groups. Then this map induces a morphism

f∗ : Iso(F) → Iso(G).
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This map f∗ is the presheaf map f : S → T on 0-cells, and is defined on 1-cells
α : x → y by the conjugation diagrams

F̃x

α ��

f ∼=
��

F̃y

f∼=
��

Gf (x)
f (α)

�� Gf (y)

in the category of sheaves of groups. If h ∈ Fy(U ) defines a homotopy of 1-cells
α, β : x → y, then f (h) ∈ Gf (y)(U ) defines a homotopy of the 1-cells f (α), f (β).

The resolution 2-groupoid R(q) for a groupoid morphism q : E → F is a 2-
groupoid which has the same objects and 1-cells as E, and there is a 2-cell g → h

between morphisms g, h : x → y in R(q) if and only if q(g) = q(h) in F . There is
a canonical morphism

q∗ : R(q) → F

of 2-groupoids which is defined by the morphism q on 0-cells and 1-cells. Here, the
groupoid F is identified with a 2-groupoid that has only identity 2-cells.

The path component groupoid π0R(q) of R(q) is the image of q: its objects are
the same as those of E, and the set of morphisms π0R(q)(x, y) can be identified with
the image of the function

E(x, y) → F (q(x), q(y)).

Write

im (q) = π0R(q),

and observe that the 2-groupoid morphism

R(q) → π0R(q) = im (q)

is a weak equivalence.
There is a canonical morphism E → R(q), and the composite

E → R(q)
q∗−→ F

is the morphism q. The composite

E → R(q) → im (q)

induces an isomorphism π0E ∼= π0( im (q)).
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The resolution 2-groupoid construction is natural in morphisms of groupoids,
so that there is a presheaf R(p) of 2-groupoids for any morphism p : G → H of
presheaves of groupoids, along with a presheaf of groupoids im (p) and natural maps

G �� R(p)
p∗ ��

��!
!!

!!
!!

H

im (p)

772222222

such that the top composite G → R(p) → H is the map p. The presheaf of
groupoids im (p) is the image of p in the category of presheaves of groupoids. The
map R(p) → im (p) is a weak equivalence of 2-groupoids in each section, and the
induced map π0G → π0( im (p)) is an isomorphism of presheaves.

Say that a morphism p : G → H of sheaves of groupoids is essentially sur-
jective if the induced map im (p) → H is a local weak equivalence of presheaves
of groupoids, or equivalently if the induced map p∗ : R(p) → H is a local weak
equivalence of presheaves of 2-groupoids.

It is a consequence of Lemma 9.21 that the morphism im (p) → H of presheaves
of groupoids is a local weak equivalence if and only if it is fully faithful in the sense
that the map

Mor (im (p)) → ( Ob (G) × Ob (G)) ×Ob (H )×Ob (H ) Mor (H ) (9.25)

induces an isomorphism of associated sheaves, and the map π̃0( im (p)) → π̃0(H )
is a sheaf epimorphism. The map (9.25) is a monomorphism by construction, and
so the morphism p : G → H is essentially surjective if and only if the presheaf
morphism

Mor (G) → ( Ob(G) × Ob(G)) ×Ob (H )×Ob (H ) Mor (H )

is a local epimorphism and the map

π̃0(G) → π̃0(H )

is a sheaf epimorphism.
It follows in particular that if the morphism p : G → H is essentially surjective,

then it induces an isomorphism π̃0(G)
∼=−→ π̃0(H ).

A kernel of a morphism p : G → H of presheaves of groupoids is a morphism
of families

K
j

��

888
88

88
88

Aut(G)

1166
66
66
66

Ob(G)
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such that the diagram

K
j

��

��

Aut (G)

p∗
��

Ob(G)
p∗·e

�� Aut(H )

is a pullback. There is a canonically defined section e : Ob (G) → Aut (G) of the
map Aut (G) → Ob (G) which picks out identities in all sections.

Suppose henceforth that F → S is a family of sheaves of groups.
Given a morphism p : G → H , a kernel for p in the family F is a kernel

j : K → Aut (G) together with a pseudo-isomorphism of families α : K → F.
An essentially surjective morphism p : G → H of presheaves of groupoids,

together with a choice of kernel

K
α ��

j

��

F

Aut(G)

in the family F, is a member of the category Ext(H , F). A morphism f : (p, j , α) →
(p′, j ′, α′) of this category is a local weak equivalence f : G → G′ such that the
diagram of morphisms of sheaves of groupoids

G
f

��

p
���

��
��

� G′

p′
  00
00
00

H

commutes and the diagram of family morphisms

K
f∗ ��

α
���

��
��

� K ′

α′
��00
00
00

F

commutes. The induced map f∗ : K → K ′ of families is necessarily a pseudo-
isomorphism.

Suppose that (p, j , α) is an object of Ext(H , F). There is a morphism

F ′(p) : R(p) → Iso(K)
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of presheaves of 2-groupoids which is the identity on 0-cells, takes the 1-cell α :
x → y to the isomorphism Kx → Ky of presheaves of groups which is defined by
conjugation by α, and takes the 2-cell α → β to the element βα−1 of Ky(U ). Write
F (p) for the composite

R(p)
F ′(p)−−→ Iso(K)

α∗−→ Iso(F).

If f : (p, j , α) → (p′, j ′, α′) is a morphism of Ext(H , F), then there is a
commutative diagram of morphisms of presheaves of 2-groupoids

R(p)
p∗


%%








f ∗

��

F ′(p)
�� Iso(K)

f∗

��

α∗
55��

���
�

H Iso(F)

R(p′)
p′∗


&&&&&&&&

F ′(p′)
�� Iso(K ′)

α′∗

++������

It follows that the assignment (p, j , α) �→ (p∗, F (p)) defines a functor

φ : Ext(H , F) → h(H , Iso(F)),

where h(H , Iso(F)) is the category of cocycles from H to Iso(F) in the category of
presheaves of 2-groupoids, for the model structure of Theorem 9.57.

Suppose given a cocycle

H
g←−
 A

F−→ Iso(F)

in presheaves of 2-groupoids, where H is a presheaf of groupoids.
There is a presheaf of 2-groupoids EAF , which is associated to the map

F : A → Iso(F),

whose 0-cells are the 0-cells of A. The 1-cells x → y of EAF (U ) are pairs (α, f )
consisting of a 1-cell α : x → y of A(U ) and an element f of the group FF (y)(U ).
A 2-cell (α, f ) → (β, g) of EAF (U ) is a 2-cell h : α → β of A(U ) such that the
diagram

∗

F (h)

��

f

��''
'''

'

∗

∗ g

��������

commutes in the group FF (y)(U ).
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Given 1-cells

x
(α,f )−−→ y

(β,g)−−→ z,

their composite is the 1-cell (βα, gβ∗(f )) : x → z.
Given 2-cells h : (α, f ) → (α′, f ′) from x to y and k : (β, g) → (β ′, g′) from y

to z, there is a commutative diagram

∗ β∗(f )
��

β∗(F (h))

��

∗ g
��

F (k)

��

∗

∗
β∗(f ′)

��������������

F (k)

��

∗
g′

��������������

∗
β ′∗(f ′)

��������������

in the group FF (z)(U ). The element F (k)β∗(F (h)) ∈ FF (z)(U ) is the image of the hor-
izontal composite k∗h : β ·α → β ′ ·α′ of A(U ) under the 2-groupoid homomorphism
F , and so we have a 2-cell

k ∗ h : (βα, gβ∗(f )) → (β ′α′, g′β ′
∗(f ′)).

This 2-cell is the horizontal composite of the 2-cells k and h of EAF (U ). Vertical
composition of 2-cells x → y in EAF (U ) is easily defined.

Write

EAF = π0(EA(F )).

In other words, EA(F ) is the path component groupoid of the 2-groupoid object
EA(F ). The presheaf of groupoids EAF is the Grothendieck construction for the
map F .

There is a morphism π : EAF → A of presheaves of 2-groupoids which is
the identity on objects, is defined on 1-cells by (α, f ) �→ α, and takes a 2-cell
h : (α, f ) → (β, g) to the underlying 2-cell h : α → β of A. The induced morphism

π∗ : EAF → π0A

of path component groupoids is the identity on objects and is full in all sections.
Write g∗ for the composite

EAF → π0A

−→ H.

This morphism g∗ of presheaves of groupoids is essentially surjective.



9.5 Extensions and Gerbes 327

There is a homomorphism

j : FF (x) → EAFx

of presheaves of groups, which is defined in sections by the assignment
g �→ [(1x , g)]. Set K(F )x = FF (x) for all 0-cells x of A. We therefore have a
pseudo-isomorphism of families αF : K(F ) → F which is defined by pullback
along the presheaf morphism F : Ob (A) → S. We also have a map of families
jF : K(F ) → Aut(G).

Lemma 9.65 The sequence of homomorphisms of presheaves of groups

e → FF (x)
i−→EAFx

π∗−→ π0Ax

is exact.

Proof We show that the composite π∗ · i is trivial and that i is a monomorphism.
An element of the kernel of the map

π∗ : EAFx → π0Ax

is represented by a 1-cell (α, f ) : x → x such that there is a 2-cell h : α → 1x in A.
Form the picture

∗
f

��''
'''

'

F (h)

��

∗

∗ θ

��������

of group elements in FF (x). It follows that [(α, f )] = [(1x , θ )], which is in the image
of i.

If [(1x , g)] = [(1x , g′)] for g, g′ ∈ FF (x), there is a 2-cell h : 1x → 1x such that
the diagram of group elements

∗
g

��''
'''

'

F (h)

��

∗

∗ g′

��������

commutes in FF (x). But there is only one 2-cell 1x → 1x in A, namely the identity,
so that F (h) = e and g = g′.

It follows from Lemma 9.65 that the family maps

K
αF ��

jF

��

F

Aut (EAF )
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define a kernel in the family F for the essentially surjective groupoid homomorphism
g∗ : EAF → H .

The assignment (g, F ) �→ (g∗, jF , αF ) is functorial in cocycles, and hence defines
a functor

ψ : h(H , Iso(F)) → Ext(H , F).

The functors φ and ψ are natural with respect to pseudo-isomorphisms of families
F → F′ in sheaves of groups.

Start with the essentially surjective groupoid morphism p : G → H with kernel

K
α ��

j

��

F

Aut (G)

in F, and form the corresponding cocycle

H

←− R(p)

F ′(p)−−→ Iso(K)
α∗−→ Iso(F).

The 2-groupoid ER(p)F
′(p) has the 0-cells of G as 0-cells, 1-cells (α, f ) : x → y

consisting of 1-cells α : x → y of G, and f ∈ Ky and 2-cells (α, f ) → (β, g)
consisting of those 2-cells h : α → β (p(α) = p(β)) such that the diagram

y
f

33�
��

��
�

βα−1

��

y

y
g

66������

commutes in Ky . The corresponding diagram

y

βα−1

��

f

33�
��

��
�

x

α 66������

β 33�
��

��
� y

y
g

66������

commutes in G, and it follows that the assignment (α, f ) �→ f · α defines a
2-groupoid morphism ER(p)F

′(p) → G. The induced groupoid morphism

ε : ER(p)F
′(p) → G
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is an isomorphism, and there is a commutative diagram

ER(p)F
′(p)

ε

∼=
��

π∗ ��9
99

99
99

9
G

p
����
��
��
�

H

(9.26)

of groupioid homomorphisms. The kernel of the map ER(p)F
′(p) → H is the map

j ′ : K → Aut(ER(p)F
′(p) which is specified by the inclusions f �→ [(e, f )] for

f ∈ Kx . There is a commutative diagram of family morphisms

K

j ′

44$$
$$
$$
$$
$

j

���
��

��
��

Aut(ER(p)F
′(p)

εast

∼= �� Aut(G)

The groupoid homomorphism ε defines a morphism ψφ(p, j , 1) → (p, j , 1) of
Ext(H , K). It follows that

ψ∗φ∗[(p, j , α)] = [(p, j , α)]

in π0Ext(H , F) for any object (p, j , α) of Ext(H , F).
Suppose now that

H
g←−
 A

F−→ Iso(F)

is a cocycle, and form the diagram

EAF

π∗
��

EAF��

π

��
H A

g

��

The map π∗ is defined by the assignment [(α, f )] �→ g(α). There is a commutative
diagram of 2-groupoid morphisms

A
g

%%���
���

��

θ

��

F

55��
���

���

H Iso(F)

R(π∗)
π∗

&&						
F (π∗)

��������

(9.27)
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where θ is the identity on 0-cells, and takes a 1-cell α : x → y to the 1-cell
[(α, e)] : x → y.

For the effect of θ on 2-cells, suppose given 1-cells α, β : x → y of A and a 2-cell
h : α → β. Then α and β have the same image in the path component groupoid π0A,
so that g(α) = g(β). It follows that there is a unique 2-cell h∗ : [(α, e)] → [(β, e)]
in R(π∗), and θ (h) = h∗.

There is an identity

(α, e)(1y , f )(α−1, e) = (1y , α∗(f ))

in 1-cells of EAF , so that F and F (π∗)θ coincide on 1-cells. Also, there is an identity

[(α, F (h))] = [(β, e)]

in EAF for each 2-cell h : α → β of A. It follows that

[(βα−1, e)] = [(1y , F (h))]

so that the 2-cell h has the same image under F and the composite F (π∗)θ .
It follows that

φ∗ψ∗([(g, F )]) = [(g, F )]

for all objects (g, F ) of the cocycle category h(H , Iso(F)).
We have therefore proved the following:

Theorem 9.66 Suppose that H is a presheaf of groupoids and that F is a family of
sheaves of groups, on a fixed Grothendieck site C. Then the functions φ and ψ define
a natural bijection

π0Ext(H , F) ∼= π0h(H , Iso(F)).

Corollary 9.67 Suppose that H is a presheaf of groupoids and that F is a family
of sheaves of groups. Then there are natural bijections

π0Ext(H , F) ∼= [H , Iso(F)] ∼= [BH , W Iso(F)],

where [H , Iso(F)] is morphisms in the homotopy category of presheaves of 2-
groupoids, and [BH , W Iso(F)] is morphisms in the homotopy category of simplicial
presheaves.

Proof There is a natural bijection

π0h(H , Iso(F)) ∼= [H , Iso(F)]

by Theorem 6.5. The bijection

[H , Iso(F)] ∼= [BH , W Iso(F)]
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is induced by the functor W—see Theorem 9.43. There is a natural weak equivalence

BH ∼= dBH

−→ WH

for all presheaves of groupoids H , by Corollary 9.39.

Let ∗ be the trivial presheaf of groupoids with one object—this object is terminal
in the category of presheaves of groupoids.

Suppose that G is a presheaf of groupoids. Then the canonical map G → ∗ is
essentially surjective if and only if G is locally connected in the sense that the sheaf
π̃0(G) is terminal. In other words, the map G → ∗ is essentially surjective if and
only if its associated stack is a gerbe in the traditional sense. This characterization is
invariant of the homotopy type of G in the injective model structure for presheaves of
groupoids, and we shall say, more generally, that a gerbe is a presheaf of groupoids,
which is locally connected.

Suppose that G is a gerbe, and let F be a family of sheaves of groups. A kernel
for the map G → ∗ in the family F is a a pseudo-isomorphism α : Aut (G) → F.
Recall that the map α determines a cocycle

∗ 
←− R(G)
α∗−→ Iso(F).

Here, R(G) has the same 0-cells and 1-cells as G, and there is a unique 2-cell between
any two 1-cells.

From a cocycle-theoretic point of view, the choice of the pseudo-isomorphism α

does not matter, because any two choices α, α′ determine maps of cocycles

R(G)

��
α∗

99:::
::::

::

R(G) × π (1) �� Iso(F)

R(G)
α′∗

��777777777
��

over ∗ relating the cocycles associated to α and α′.
It follows that the set π0Ext(∗, F) can be identified with weak equivalence classes

of locally connected (pre)sheaves of groupoids G admitting a pseudo-isomorphism
Aut (G) → F. These objects are otherwise known as F-gerbes, and the set of weak
equivalence classes of F-gerbes is the non-abelian cohomology object H 2(C, F).

We have proved the following:

Corollary 9.68 There are natural isomorphisms

H 2(C, F) ∼= π0h(∗, Iso(F)) ∼= [∗, W Iso(F)]

for all families of sheaves of groups F on the site C.

There is a pointed version of Theorem 9.66. Suppose in the following that H is a
presheaf of groupoids and that F is a family of sheaves of groups.
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A base point of an object (p, j , α) of Ext(H , F) is a global section x ∈ G, where
p : G → H is the groupoid morphism in the structure. A morphism f : (p, j , α) →
(p′, j ′, α′) is pointed if the groupoid morphism f : G → G′ preserves base points.
Write Ext∗(H , F) for the corresponding pointed category.

A base point for a cocycle

H
g←− A

F−→ Iso(F)

is a choice of 0-cell x in the global sections of A, and a cocycle morphism θ :
(g, F ) → (g′, F ′) is pointed if the morphism θ : A → A′ of presheaves of groupoids
preserves base points. Write h∗(H , Iso(F)) for the corresponding pointed cocycle
category.

If f : (p, j , α) → (p′, j ′, α′) is a pointed map, then the base point x ∈ G

is also a 0-cell of the 2-groupoid R(p), hence a base point, and the induced map
f∗ : R(p) → R(p′) preserve base points. Similarly, if (g, F ) is a cocycle, then the
objects of the groupoid EAF are the 0-cells of A, so that we have a natural choice
of base point for the object Ψ (g, F ) ∈ Ext(H , F). It follows that the functors φ and
ψ restrict to functors

φ : Ext∗(H , F) � h∗(H , Iso(F)) : ψ

on the respective pointed categories. The morphisms in (9.26) and (9.27) preserve
base points, so that the proof of Theorem 9.66 restricts to the pointed case, giving
the following theorem:

Theorem 9.69 Suppose that H is a presheaf of groupoids and that F is a family of
sheaves of groups. Then the functions φ and ψ define a bijection

π0Ext∗(H , F) ∼= π0h∗(H , Iso(F)).

Corollary 9.70 Suppose that H is a presheaf of groupoids and that F is a family
of sheaves of groups. Then there is a natural bijection

π0Ext∗(H , F) ∼= [BH , W Iso(F)]∗

relating π0Ext∗(H , F) to a set of morphisms in the homotopy category of pointed
simplicial presheaves.

Suppose that H is a presheaf of groups and that L is a sheaf of groups. Suppose
x ∈ G is a base point of an object (p, j , α) of Ext∗(H , L), where L is the family of
groups L → ∗ consisting of L alone.

Let px : Gx → H be the local epimorphism of presheaves of groups which is
associated to x, let jx : Kx → Gx be the restricted kernel, and let αx be the restricted
family morphism

Kx ⊂ K
α−→L.
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The map αx is a fixed choice of local isomorphism Kx

−→ L. The unique object of Gx

is a natural choice of base point for the object (px , jx , αx), and there is a canonical
pointed map (px , jx , αx) → (p, j , α), which is natural in pointed morphisms f :
(p, j , α) → (p′, j ′, α′).

It follows that π0Ext∗(H , L) can be identified with isomorphism classes of the
data

e �� K
j

��

α

��

G
p

�� H

L

consisting of exact sequences of presheaves of groups as displayed, with fixed local
isomorphisms α : K → L, and with p a local epimorphism. A morphism of these
data is a local isomorphism θ : G


−→ G′ which respects all choices. In particular, the
induced local isomorphism θ∗ : K → K ′ on kernels sits in a commutative diagram

K
α

��''
''

''

θ

��

L

K ′ α′

��������

The set π0Ext∗(H , L) can therefore be identified with the set of path components of
the category of extensions

e → L → G → H̃ → e.

in the sheaf category. A morphism in this category is a commutative diagram

G

θ

��

����
���

��

e �� L

66�������

33��
��

�� H̃
�� e

G′

��������

in the category of sheaves of groups, where the top and bottom sequences are exact.
The morphism θ is necessarily an isomorphism.

We have proved the following:

Corollary 9.71 Suppose that H is a presheaf of groups and that L is a sheaf of
groups. Then the set π0h∗(H , Iso(L)) of path components of the pointed cocycle
category h∗(H , Iso(L)) can be identified with the set of isomorphism classes of
extensions

e → L → G → H̃ → e
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in the category of sheaves of groups.

Corollary 9.72 Suppose that H is a presheaf of groups and that L is a sheaf of
groups. Then the set of isomorphism classes of extensions

e → L → G → H̃ → e

is naturally isomorphic to the set of morphisms [BH , W Iso(L)]∗ in the homotopy
category of pointed simplicial presheaves.



Part IV
Stable Homotopy Theory



Chapter 10
Spectra and T-spectra

The local stable model structure for presheaves of spectra appeared in [51], soon after
the introduction of the local homotopy theories for simplicial sheaves and presheaves.

A presheaf of spectra E on a site C is a diagram in ordinary spectra, in that it
consists of pointed simplicial presheaves En, n ≥ 0, and pointed maps

S1 ∧ En → En+1,

where S1 = Δ1/∂Δ1 is the simplicial circle, interpreted as a constant simplicial
presheaf. A morphism E → F of presheaves of spectra consists of pointed maps
En → Fn which respect structure.

Elements of local stable homotopy theory were already in place before the
model structure appeared, for example in Thomason’s work on étale descent for
Bott periodic algebraic K-theory [99]. Early outcomes of the theory included a
diagram-theoretic definition of étale K-theory, the identification of sheaf cohomol-
ogy groups as stable homotopy groups of spectra, and the Nisnevich descent theorem
for algebraic K-theory [83].

The sheaf cohomology spectra, for example, are easily constructed with the meth-
ods of the first section of this chapter—see Example 10.2. If A is a sheaf of abelian
groups on a site C and j : H (A) → QH (A) is a stable fibrant model of the Eilenberg–
Mac Lane presheaf of spectra H (A) (which is constructed in the way one would
expect), then the global sections spectrum Γ∗QH (A) for the stable fibrant object
QH (A) has stable homotopy groups given by the sheaf cohomology H ∗(C, A) in
negative degrees, in the sense that

πsΓ∗QH (A) =
{

0 if s > 0,

H−s(C, A) if s ≤ 0.

This statement is the starting point for many calculations that one makes within the
stable homotopy theories of presheaves of spectra, for example with descent spectral
sequences. The moral is, quite generally, that the local stable homotopy type of a
presheaf of spectra is determined by sheaf cohomology.

In the years following its introduction, the homotopy theory of presheaves of
spectra has become a common tool in algebraic K-theory and in some areas of stable

© Springer-Verlag New York 2015 337
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homotopy theory. The latter include elliptic cohomology theories and the theory
of topological modular forms [34, 74], and, to a lesser extent, equivariant stable
homotopy theory [40].

The stable model structure for presheaves of spectra is the subject of Sect. 10.1.
The argument for its existence, which is presented here, is not the original (which
followed the methods of Bousfield and Friedlander [13]), but instead focuses on
cofibrant generation in a way that is consistent with the methods of other parts of
this monograph. The reader will observe that results from the other sections of this
chapter specialize to the basic results for presheaves of spectra in the first section,
but the idea for this exposition is to start with a relatively simple and self-contained
introduction to the early, “naive” form of the theory.

There are multiple forms of local stable homotopy theory, of varying degrees of
complexity. These theories are largely modelled on and specialize to motivic stable
homotopy theory [57]. The prominent formal aspects of motivic stable homotopy
theory are discussed in a series of examples, which appear at various points in this
chapter and in Chap. 11. The motivic stable category was introduced by Voevod-
sky [102], in part as a vehicle to represent motivic cohomology theory within an
appropriate homotopy category.

In motivic stable homotopy theory, one requires that the affine line A
1 should be

a point, as in basic motivic homotopy theory (Examples 7.22, 7.28). In this context,
the simplicial (or topological) circle S1 is replaced by a geometric circle-like object
A

1/(A1 −0), which is a “mixed” 2-sphere in the sense that there is a pointed motivic
weak equivalence

A
1/(A1 − 0) 
 S1 ∧ (A1 − 0) = S1 ∧ Gm,

where Gm is the multiplicative group, with underlying scheme A
1 − 0. There is also

a motivic weak equivalence

A
1/(A1 − 0) 
 P

1,

by a standard argument, where P
1 is the projective line.

Motivic cohomology theory has the additional requirement that transfers should
be built into the theory (Example 8.49), and this is done formally. The motive Z(n)
is a motivic fibrant model of the free simplicial presheaf with transfers

Ztr ((Gm ∧ S1)∧n)

that is associated to the simplicial presheaf (Gm∧S1)∧n on the smooth Nisnevich site.
The motive Z(n) is the object at level n for a motivic Eilenberg–Mac Lane spectrum
object HZ which has “bonding maps”

(S1 ∧ Gm) ∧ Z(n) → Z(n + 1),

which are defined by an adjunction map. This description of the motivic Eilenberg–
Mac Lane spectrum thus involves smashing with a parameter object S1 ∧ Gm which
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is certainly not a circle; it is the smash of the topological circle with a geometric
circle, and is more like a twisted 2-sphere.

We begin a general discussion, in Sect. 10.2, by generalizing the parameter object
S1 to a pointed simplicial presheaf T on a site C. A T -spectrum X consists of pointed
simplicial presheaves Xn, n ≥ 0, together with pointed maps

σ : T ∧ Xn → Xn+1,

called bonding maps. A morphism X → Y of T -spectra is a collection of pointed
maps Xn → Yn which respect bonding maps in the way one would expect from
ordinary stable homotopy theory. The corresponding category of T -spectra is denoted
by SptT (C). In this language, a presheaf of spectra is an S1-spectrum.

As in the early constructions of stable model structures [13], there is a prelimi-
nary strict model structure on the T -spectrum category for which the fibrations and
weak equivalences are defined levelwise in the injective model structure for pointed
simplicial presheaves. All other model structures for T -spectra in this chapter are
constructed by formally inverting a set of maps in the strict structure, by using the
methods of Chap. 7. The main overall existence result is Theorem 10.20.

The stable model structure on SptT (C) is constructed in Example 10.22 by formally
inverting the stablilization maps

(ST ∧ T )[−1 − n] → ST [−n], n ≥ 0.

Here, ST is the sphere T -spectrum

S0, T , T ∧ T , . . . T ∧k , . . . ,

which is composed of the smash powers of the parameter object T , and the displayed
objects are shifted in the usual sense. The stabilization map (ST ∧ T )[−1] → ST is
defined by the identities on the smash powers T ∧k in levels k ≥ 1.

In applications, one typically wants to invert some cofibration of simplicial
presheaves f : A → B within the stable model structure, and one does this by
also inverting a set of maps

(ST ∧ C)[−n] → (ST ∧ D)[−n], n ≥ 0,

which are induced by a set of generators C → D for the trivial cofibrations of the f -
local model structure for pointed simplicial presheaves. The resulting localized model
structure, which appears in Example 10.23, is the stable f -local model structure for
the category of T -spectra.

The motivic stable category over a scheme S is the stable f -local model structure
for T -spectra on the smooth Nisnevich site over S, where f is a rational point ∗ → A

1

in the affine line A
1 over S, and T is the smash S1 ∧ Gm. See Example 10.41. It is

a consequence of Theorem 10.40 that we could use anything motivically equivalent
to S1 ∧ Gm (such as the projective line P

1) as a parameter object T , and be assured
that the localization process produces an equivalent model for the motivic stable
category.
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This localization-theoretic construction of the motivic stable model structure dif-
fers from that of [57], which uses the method of Bousfield and Friedlander. The
approach that is used in this chapter more closely resembles a method which was
displayed by Hovey in [45].

The overall localization construction for the f -local stable model structures for T -
spectra is wildly general, and is not subject to any of the restrictions of the Bousfield–
Friedlander method, such as properness for the underlying model structure or the
assumption of the existence of a stable fibrant model X → QX. One does, however,
have to make some assumptions about both the parameter object T and the f -local
model structure on the underlying category of simplicial presheaves in order for
the f -local stable category of T -spectra to look anything like the ordinary stable
category.

The first of these assumptions is a compactness requirement for the parameter
object T , which makes the T -loops functor behave properly with respect to filtered
colimits in the f -local model category.

This form of compactness is a bit technical; a pointed simplicial presheaf K is
compact up to f -local equivalence if, for any inductive system s �→ Zs of pointed
f -fibrant simplicial presheaves, the composite map

lim−→
s

ΩKZs → ΩK ( lim−→
s

Zs) → ΩKF ( lim−→
s

Zs),

which is induced by an f -fibrant model

lim−→
s

Zs → F ( lim−→
s

Zs)

is an f -local equivalence. Here, the “K-loops” functor Z �→ ΩKZ is the right
adjoint of smashing with K .

It is not at all obvious that the K-loops functor preserves f -local equivalences,
even for ordinary loop objects corresponding to K = S1. This potential failure
is counterintuitive and is one of the more difficult aspects of the theory to work
around. Generally, something interesting must be afoot to show that this sort of
compactness holds in a particular setting. For the motivic case (Example 10.29), one
uses Nisnevich descent (Theorem 5.39) to show that all pointed S-schemes T are
compact up to motivic equivalence, as are the objects S1 ∧ T .

The specific assumption that we make is the following:

A1: The parameter object T is compact up to f -equivalence.

This assumption is powerful and is used almost everywhere, starting in Sect 10.3.
The first major consequence is Theorem 10.32, which says that this assumption
enables the construction

η : X → QT X

of a natural stable f -fibrant model, by analogy with the stable fibrant model
construction for ordinary spectra and presheaves of spectra.



Spectra and T-spectra 341

To go further, we need a second assumption, this time on the underlying f -
local model structure. Say that the f -local model structure satisfies inductive colimit
descent, if given an inductive system s �→ Zs of f -fibrant simplicial presheaves,
then any f -fibrant model

lim−→
s

Zs → F ( lim−→
s

Zs) (10.1)

must be a local weak equivalence, instead of just an f -local equivalence.
Here is the assumption:

A2: The f -local model structure satisfies inductive colimit descent.

In the presence of this assumption on the f -local model structure, any finite
pointed simplicial set is compact up to f -equivalence (Lemma 10.35). The assump-
tion A2 holds in the motivic homotopy category, since maps of the form (10.1) are
sectionwise weak equivalences in that case, by Nisnevich descent. More generally,
if we assume that T is compact up to f -equivalence and that the f -local model
structure satisfies inductive colimit descent, then the object S1 ∧ T is compact up to
f -equivalence.

The special, pleasant features of (S1 ∧T )-spectra are discussed in Sects. 10.5 and
10.6. The f -local stable category of these objects looks most like the ordinary stable
category, thanks to the fact that the parameter object is a suspension in the classical
sense.

The assumptions A1 and A2 imply that fibre and cofibre sequences coincide
in the f -local stable homotopy category of (S1 ∧ T )-spectra (Corollary 10.59,
Lemma 10.62), and that this stable homotopy category has the additivity property
(Lemma 10.67). One can define bigraded sheaves of stable homotopy groups π̃s,t (X)
for (S1 ∧T )-spectra X which reflect stable f -equivalence (Lemma 10.68), and there
is a calculus of long exact sequences in sheaves of stable homotopy groups for fi-
bre/cofibre sequences (Lemma 10.70) which extends known behaviour of the motivic
stable category (Corollary 10.71)

The main technical tool in the proofs of these results is a theory of (S1, T )-
bispectra, which is discussed at the beginning of Sect. 10.5. Lemma 10.56 says that,
if X → Y is a map of (S1, T )-bispectra which is a stable f -equivalence in either the
S1-direction or the T -direction, then it induces a stable f -equivalence of diagonal
(S1 ∧ T )-spectra. This is the mechanism by which theorems from classical stable
homotopy category imply corresponding statements for (S1 ∧ T )-spectra.

The presence of long exact sequences for a fibration guarantees right properness
(Theorem 10.64) for the f -local stable model structure on (S1 ∧ T )-spectra, without
any properness assumption on the underlying f -local model structure for simplicial
presheaves. One can show that the f -local stable model structure of T -spectra is
right proper for unsuspended parameter objects T , but only at the cost of assuming
right properness of the f -local model structure for simplicial presheaves—this is the
content of Theorem 10.36.

Section 10.6 contains a discussion of Postnikov towers and slice filtrations for
(S1 ∧ T )-spectra, again subject to the assumptions A1 and A2. The formation of
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the qth Postnikov section, here denoted by ZLq
, in the T -direction for an object Z

amounts to killing the stable homotopy group sheaves π̃s,tX with t > q in the classical
way. This process is a localization construction, for which the map Z → ZLq

is a
fibrant model. The homotopy fibres of these maps form the slice filtration of Z, for
T -connective objects Z. This general construction specializes to the Postnikov tower
construction for spectra and presheaves of spectra, and to the slice filtration for the
motivic stable category.

We say that the parameter object T is cycle trivial if the shuffle map

c1,2 : T ∧3 → T ∧3

which is defined by

x1 ∧ x2 ∧ x3 �→ x2 ∧ x3 ∧ x1

represents the identity map in the f -local homotopy category of pointed simplicial
presheaves.

The simplicial circle S1 is cycle trivial, by a standard argument on degree. The
projective line P

1 is cycle trivial in the motivic homotopy category since the shuffle
c1,2 is a product of elementary transformations in the special linear group Sl3(Z), and
therefore has a homotopy along the affine line to the identity—see Example 10.45.
The cycle triviality of the projective line P

1 was first observed by Voevodsky [102].
Here is our last major assumption:

A3: The parameter object T is cycle trivial.

This assumption is used to show that the T -suspension functor X �→ X ∧ T is
invertible in the stable f -local category of T -spectra, with inverse given by T -loops
(Theorem 10.50), and that T -suspension, “fake” T -suspension and shift by 1 are
equivalent in the sense that there are natural f -local stable equivalences

X ∧ T 
 ΣT X 
 X[1].

The fake suspension ΣT X is defined in levels by (ΣT X)n = T ∧Xn and has bonding
maps of the form T ∧ σ . The equivalence between the T -suspension and the fake
T -suspension functors is constructed in the category of (T ∧ T )-spectra in Propo-
sition 10.53. The proofs of these results specialize to new demonstrations of some
well known theorems about the ordinary stable category.

The parameter object S1 ∧ Gm and the motivic model structure for pointed sim-
plicial presheaves on the smooth Nisnevich site of a scheme together satisfy the
assumptions A1, A2 and A3. Thus, by the results of Sects. 10.5 and 10.6, the motivic
stable category of (S1 ∧ Gm)-spectra has many of the calculational attributes of the
ordinary stable category. The same can be said, more generally, for the f -local stable
category of (S1 ∧ T )-spectra on an arbitrary site C, provided that the object T and
the underlying f -local model structure of pointed simplicial presheaves satisfy these
three requirements.
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The stabilization philosophy can be imported into the context of simplicial R-
modules, where R is a presheaf of commutative unitary rings, by using an analogy
of the localization technique for simplicial R-modules of Sect. 8.5.

Again, suppose that the parameter object T is a pointed simplicial presheaf. If E

is a simplicial R-module, we write

T ⊗ E = R•(T ) ⊗ E,

where R•(T ) is the free reduced simplicial R-module which is associated to T .
A T -complex A is a T -spectrum object in simplicial R-modules. It consists of

simplicial R-modules An, n ≥ 0, together with bonding maps

σ : T ⊗ An → An+1.

A morphism A → B of T -complexes consists of simplicial R-module maps An →
Bn which respect bonding maps in the obvious way, and we write SptT (sModR) for
the resulting category.

The concept of T -complex is a generalization of S1-spectrum objects in simpli-
cial R-modules, or S1-complexes. Derived categories of unbounded complexes can
be recovered from categories of S1-complexes, with appropriate stabilization maps
inverted.

There is a strict model structure (Proposition 10.80) on the category of T -comp-
lexes, just as for T -spectra, for which the weak equivalences and fibrations are
defined levelwise in the injective model structure for simplicial R-modules of The-
orem 8.6. We proceed by formally inverting sets of maps of T -spectra in the strict
model structure for the category of T -complexes, by following the method used
for simplicial R-modules in Theorem 8.39. The corresponding general localization
result for T -complexes is Theorem 10.84.

The same set of maps which are inverted to construct the f -local stable of T -
spectra can be inverted in T -complexes to produce the f -local stable model structure
for T -complexes. This construction implicitly produces (Remark 10.85) a Quillen
adjunction

R• : SptT (C) � SptT (sModR) : u

between the respective f -local structures, which is defined by the free reduced sim-
plicial R-module functor R• and the forgetful functor u. Further, a T -complex Z is
stable f -fibrant (i.e. fibrant for the f -local stable model structure) if and only if the
underlying T -spectrum u(Z) is stable f -fibrant.

The f -local stable model structure for T -complexes has the same general prop-
erties as does the f -local stable model structure for T -spectra, in the presence of
the assumptions A1, A2 and A3. For example, the usual stabilization construction
X → QT X is a stable f -fibrant model if T is compact (Theorem 10.87), and the
T -suspension functor X �→ X ⊗ T is invertible on the f -local stable category if T

is compact and cycle trivial (Theorem 10.90).
If T is compact and the inductive colimit descent assumption holds, then the

f -local stable category of (S1 ∧ T )-complexes can be analysed with familiar tools
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from ordinary stable homotopy theory, by analogy with the behaviour of the f -local
stable category for (S1 ∧ T )-spectra.

In particular, if

H (R) = R•(SS1∧T )

is the sphere spectrum object for (S1 ∧ T )-complexes and K is a pointed simplicial
presheaf, then the canonical map

u(H (R)) ∧ K → u(H (R) ⊗ K)

is an f -local stable equivalence, by Lemma 10.91. This result is central to the proof
of the assertion, in Proposition 10.94, that a map E → F of (S1 ∧ T )-complexes is
a stable f -equivalence if and only if the underlying map u(E) → u(F ) is a stable
f -equivalence of (S1 ∧ T )-spectra, in the presence of assumptions A1 and A2.

This general theory specializes to a motivic stable model structure for the category
of (S1 ∧Gm)-complexes in simplicial R-modules over a field k, as in Example 10.95.
In particular, a map E → F of (S1 ∧Gm)-complexes is a motivic stable equivalence
if and only if the underlying map u(E) → u(F ) is a motivic stable equivalence of
(S1 ∧ T )-spectra.

The Voevodsky cancellation theorem implies that the motivic cohomology spec-
trum HZ is a stable fibrant object in the category of (S1∧Gm)-complexes in presheaves
of simplicial abelian groups (or simplicial Z-modules), and it represents motivic
cohomology theory in the motivic stable category.

We can go further. The motives which make up the object HZ have a much richer
structure, in that they are simplicial presheaves with transfers. The object HZ can
be formed as an (S1 ∧ Gm)-complex in the category of simplicial presheaves with
transfers over the field k. It is possible to put both a Nisnevich local and motivic stable
model structure on the category of all such objects, by formally inverting suitable
sets of cofibrations of (S1 ∧ Gm)-spectra in a sectionwise strict model structure on
the category. The homotopy category associated to motivic stable model structure on
the category of (S1 ∧ Gm)-complexes is Voevodsky’s big category of motives DMk

over the field k.
The motivic construction is a special case of an f -local stable structure which

can be imposed on a suitably enriched category of T -complexes in simplicial abelian
presheaves. The existence of this model structure follows from Theorem 10.96.

Product theories for the stable categories which are discussed in this chapter form
the subject of Chap. 11.

10.1 Presheaves of Spectra

This section gives a description of the standard model structures for the category
Spt(C) of presheaves of spectra on a Grothendieck site C.

We shall use the injective model structure for the category s∗Pre(C) of pointed
simplicial presheaves. This model structure is inherited from the injective model
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structure on the category of simplicial presheaves of Theorem 5.8 — see Remark
6.16.

A presheaf of spectra X consists of pointed simplicial presheaves Xn, n ≥ 0
together with bonding maps

σ : S1 ∧ Xn → Xn+1, n ≥ 0.

Here, S1 is identified with the constant pointed simplicial presheaf U �→ S1

associated to the simplicial circle

S1 = Δ1/∂Δ1.

One says that the number n is the level of the pointed simplicial presheaf Xn for a
presheaf of spectra X.

A map f : X → Y of presheaves of spectra consists of pointed simplicial presheaf
maps f : Xn → Yn, n ≥ 0, which respect structure in the obvious sense. Write
Spt(C) for the category of presheaves of spectra on C.

The ordinary category of spectra Spt is the category of presheaves of spectra on
the one-object, one-morphism category, so that results about presheaves of spectra
apply to spectra.

More generally, if I is a small category, then the category of I -diagrams X : I →
Spt is a category of presheaves of spectra on I op, where I op has the trivial topology.
Thus, results about presheaves of spectra apply to all categories of small diagrams
of spectra.

Example 10.1 Any spectrum A determines an associated constant presheaf of
spectra Γ ∗A on C, where

Γ ∗A(U ) = A,

and every morphism φ : V → U induces the identity morphism A → A. Write
A = Γ ∗A when there is no possibility of confusion. The sphere spectrum S in
Spt(C) is the constant object Γ ∗S associated to the ordinary sphere spectrum

S : S0, S1, S∧2, . . . .

The functor A �→ Γ ∗A is left adjoint to the global sections functor Γ∗ : Spt(C) →
Spt, where

Γ∗X = lim←−
U∈C

X(U ).

If K is a pointed simplicial set and A is a simplicial abelian group, write K ⊗ A

for the simplicial abelian group which is defined by

K ⊗ A = Z•(K) ⊗ A,
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where Z•(K) is the reduced free simplicial abelian group associated to the pointed
simplicial set K . Recall that this object is defined by the exact sequence

0 → Z(∗)
x−→ Z(K) → Z•(K) → 0,

where x is the base point of K .

Example 10.2 If A is a sheaf (or presheaf) of abelian groups, the Eilenberg–Mac
Lane presheaf of spectra H (A) is the presheaf of spectra underlying the suspension
object

A, S1 ⊗ A, S2 ⊗ A, . . .

in the category of presheaves of spectra in simplicial abelian groups. As a simplicial
presheaf, Sn ⊗ A = K(A, n), and if j : K(A, n) → FK(A, n) is an injective fibrant
model of K(A, n) then there are natural isomorphisms

πjΓ∗FK(A, n) =
{

Hn−j (C, A) 0 ≤ j ≤ n

0 j > n,

by Proposition 8.32. These isomorphisms assemble to give an identification of the
stable homotopy groups of global sections of a stable fibrant model for H (A) with
the cohomology of C with coefficients in A. In other words, all sheaf cohomology
groups are stable homotopy groups.

More generally, every chain complex (bounded or unbounded) D determines a
presheaf of spectra H (D), which computes the hypercohomology of C with coef-
ficients in D, via computing stable homotopy groups of global sections of a stable
fibrant model. See Example 10.88 below, and [61].

Example 10.3 The algebraic K-theory presheaf of spectra K is defined on the
category Sch |S of S-schemes. In sections corresponding to an S-scheme X, the
group πj K(X) is the j th algebraic K-group Kj (X) of X. This object K is actually
a presheaf of symmetric spectra—it is constructed explicitly in [68].

Say that a map f : X → Y of presheaves of spectra is a strict weak equivalence
(respectively strict fibration) if all maps f : Xn → Yn are local weak equivalences
(respectively injective fibrations).

A cofibration i : A → B of Spt(C) is a map for which

1) the map i : A0 → B0 is a cofibration, and
2) all maps

(S1 ∧ Bn) ∪(S1∧An) An+1 → Bn+1

are cofibrations.

The function complex hom(X, Y ) for presheaves of spectra X, Y is defined in
simplicial degree n by the assignment

hom(X, Y )n = hom(X ∧ Δn
+, Y ).



10.1 Presheaves of Spectra 347

The pointed simplicial set K+ = K � {∗} is constructed from a simplicial set K by
freely adjoining a base point ∗. This construction is functorial, and therefore extends
to simplicial presheaves.

Proposition 10.4 The category Spt(C) of presheaves of spectra, together with the
classes of strict weak equivalences, strict fibrations and cofibrations as defined above,
satisfies the axioms for a proper closed simplicial model category.

The model structure of Proposition 10.4 is typically called the strict model
structure for presheaves of spectra. Its proof is an exercise.

A presheaf of spectra X has presheaves πs
nX of stable homotopy groups, defined

by

U �→ πs
nX(U ).

Write π̃ s
nX for the sheaf associated to the presheaf πs

nX. The sheaves π̃ s
nX, n ∈ Z,

are the sheaves of stable homotopy groups of X.
Say that a map f : X → Y of presheaves of spectra is a stable equivalence, if it

induces isomorphisms

π̃ s
nX

∼=−→ π̃ s
nY ,

for all n ∈ Z. Every strict weak equivalence is a stable equivalence.
Say that a map p : Z → W of presheaves of spectra is a stable fibration if it

has the right lifting property with respect to all maps that are cofibrations and stable
equivalences.

Theorem 10.5 With the definitions of cofibration, stable equivalence and stable
cofibration given above, the category Spt(C) of presheaves of spectra satisfies the ax-
ioms for a proper closed simplicial model category. This model structure is cofibrantly
generated.

The model structure of Theorem 10.5 is the stable model structure for the category
of presheaves of spectra.

With the exception of the final sentence in the statement, Theorem 10.5 is the
analogue of a well known result of Bousfield and Friedlander for ordinary spectra
[13]. Theorem 10.5 first appeared in [51], and was proved by extending the methods
of Bousfield and Friedlander to the context of presheaves of spectra. A different
line of argument is presented here, which focuses on the cofibrant generation; this
discussion is presented in a sequence of lemmas.

Lemma 10.6 A map p : X → Y of presheaves of spectra is a stable fibration and
a stable equivalence if and only if all level maps p : Xn → Yn are trivial injective
fibrations of simplicial presheaves.

Proof If all maps p : Xn → Yn are trivial injective fibrations, then p has the right
lifting property with respect to all cofibrations, and is therefore a stable fibration.
The map p is also a stable equivalence because it is a strict equivalence.
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Suppose that p is a stable fibration and a stable equivalence. Then p has a
factorization

X
j

��

p 















 W

q

��
Y

where j is a cofibration and q is a trivial strict fibration. But then j is stable
equivalence as well as a cofibration, so that the lifting exists in the diagram

X
1 ��

j

��

X

p

��
W

q

��





Y

and so p is a retract of q, and is therefore a trivial strict fibration.

Choose a regular cardinal α such that | Mor (C)| < α. Say that a presheaf of spectra
A is α-bounded if all pointed simplicial sets An(U ), n ≥ 0, U ∈ C are α-bounded.
Every presheaf of spectra X is a union of its α-bounded subobjects.

Lemma 10.7 Suppose given a cofibration i : X → Y which is a stable equivalence,
and suppose that A ⊂ Y is an α-bounded subobject. Then there is an α-bounded
subobject B ⊂ Y such that A ⊂ B and the map B ∩X → B is a stable equivalence.

Proof The sheaf π̃ s
nZ is 0 if and only if for all x ∈ πs

nZ(U ) there is a covering sieve
φ : V → U such that φ∗(x) = 0 for all φ in the covering.

The sheaves π̃ s
n(Y/X) are trivial (sheafify the natural long exact sequence for a

cofibration), and

π̃ s
n(Y/X) = lim−→

C

π̃s
n(C/C ∩ X)

where C varies over all α-bounded subobjects of Y . The list of elements of all
x ∈ πs

n(A/A∩X)(U ) is α-bounded. For each such x there is an α-bounded subobject
Bx ⊂ X such that

x �→ 0 ∈ π̃n(Bx/Bx ∩ X).

It follows that there is an α-bounded subobject

B1 = A ∪ ( ∪x Bx)

such that all x �→ 0 ∈ π̃n(B1/B1 ∩ X) for all n and all x.
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Write A = B0. Then inductively, we can produce an ascending sequence

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of α-bounded subobjects of Y such that all sheaf homomorphisms

πs
n(Bi/Bi ∩ X) → π̃ s

n(Bi+1/Bi+1 ∩ X)

are trivial. Set B = ∪iBi . Then the object B is α-bounded and all sheaves π̃n(B/B ∩
X) are trivial.

One of the things which makes the argument for Lemma 10.7 work is that the
maps B ∩ X → B are monomorphisms for all subobjects B of Y (so that the long
exact sequence for a cofibration can be used). It is an exercise to show that the maps
B ∩ X → B are cofibrations since i : X → Y is a cofibration.

The use of long exact sequences simplifies some of the arguments that appear in
this section, but there are alternatives; see the proof of the corresponding result for
T -spectra in Lemma 10.19.

Lemma 10.8 The class of stable trivial cofibrations has a generating set, namely
the set I of all α-bounded stable trivial cofibrations.

Proof The proof of Lemma 5.44 is the prototype for this argument.
The class of cofibrations of Spt(C) is generated by the set J of cofibrations

Σ∞A[−n] → Σ∞B[−n]

which are induced by α-bounded cofibrations A → B of pointed simplicial pre-
sheaves.

Suppose given a diagram

A ��

j

��

X

f

��
B �� Y

where j is a cofibration, B is α-bounded and f is a stable equivalence. Then f has
a factorization f = q · i where i is a cofibration and q is a trivial strict fibration,
hence a stable equivalence, and the lifting exists in the diagram

A ��

j

��

X

i��
Z

q��
B ��

��

Y

The cofibration i : X → Z is a stable equivalence, and the image θ (B) ⊂ Z is
α-bounded, so there is an α-bounded subobject D ⊂ Z with θ (B) ⊂ D such that the
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map D ∩ X → D is a stable equivalence, by Lemma 10.7. It follows that there is a
factorization

A ��

j

��

D ∩ X ��

��

X

f

��
B �� D �� Y

of the original diagram through an α-bounded stable trivial cofibration.
Now suppose that the map i : C → D is a cofibration and a stable equivalence.

Then i has a factorization

C
j

��

i ���
��

��
��

E

p

��
D

where j is a cofibration in the saturation of the set of α-bounded stable trivial cofi-
brations and p has the right lifting property with respect to all α-bounded stable
trivial cofibrations. The map j is a stable equivalence since the class of stable trivial
cofibrations is closed under pushout (by a long exact sequence argument) and com-
position. It follows that p is a stable equivalence, and therefore has the right lifting
property with respect to all α-bounded cofibrations by the previous paragraph. The
map p therefore has the right lifting property with respect to all cofibrations, so p is
a trivial strict fibration, and it follows that i is a retract of the map j .

Proof [Proof of Theorem 10.5] According to Lemma 10.8, a map is a stable fibration
if and only if it has the right lifting property with respect to all α-bounded stable trivial
cofibrations. A small object argument therefore implies that every map f : X → Y

has a factorization

X
j

��

f ���
��

��
��

Z

p

��
Y

where j is a stable trivial cofibration and p is a stable fibration.
Lemma 10.6 says that a map is a stable fibration and a stable weak equivalence if

and only if it is a strict fibration and a strict weak equivalence. There is a factorization

X
i ��

f 















 W

q

��
Y
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for any map f : X → Y , where i is a cofibration and p is a strict fibration and a strict
equivalence—this gives the corresponding factorization for the stable structure.

We have proved CM5. The axiom CM4 is a consequence of Lemma 10.6. The
remaining closed model axioms are immediate.

The closed simplicial model structure is verified by showing that the cofibrations

(B ∧ ∂Δn
+) ∪ (A ∧ Δn

+) → B ∧ Δn
+

induced by a cofibration A → B are stable equivalences if A → B is a stable
equivalence. For this, one shows by induction on n (or otherwise) that the cofibrations

i ∧ ∂Δn
+ : A ∧ ∂Δn

+ → B ∧ ∂Δn
+

are stable equivalences.
Left and right properness are proved with long exact sequences in stable sheaves

of stable groups.

Since the stable model structure on Spt(C) is cofibrantly generated there is a
functorial stable fibrant model construction

j : X → LX,

in which j is a stable trivial cofibration and LX is stable fibrant.
If X and Y are stable fibrant, any stable equivalence f : X → Y must be a strict

equivalence. This is a consequence of Lemma 10.6. It follows that a map f : X → Y

of arbitrary presheaves of spectra is a stable equivalence if and only if the induced
map LX → LY is a strict equivalence.

We also have the following:

A4 The functor L preserves strict equivalences.
A5 The maps jLX, LjX : LX → LLX are strict weak equivalences.
A6′ Stable equivalences are preserved by pullback along stable fibrations.

We then have a formal consequence:

Lemma 10.9 Suppose that the map p : X → Y of Spt(C) is a strict fibration. Then
p is a stable fibration if and only if the diagram

X
j

��

p

��

LX

Lp

��
Y

j

�� LY

(10.2)

is strictly homotopy cartesian.

Proof This result is proved in [13] by manipulating the statements A4, A5 and A6′.
The proof is organized here in a slightly different way, although the ideas are the
same.
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Suppose that p is a stable fibration, and find a factorization

LX
j

��

p∗ ""�
��

��
��

� Z

q

��
LY

of p∗ such that q is a stable fibration and j is a stable equivalence. Then j is a stable
equivalence of stably fibrant objects, so that j is a strict equivalence. The map q is
also a strict fibration.

The map Y ×LY Z → Z is a stable equivalence by right properness (A6′), so that
the map X → Y ×LY Z is a stable equivalence of stable fibrations, and is therefore a
strict equivalence. It follows that the diagram (10.2) is strictly homotopy cartesian.

Suppose, conversely, that the diagram (10.2) is strictly homotopy cartesian, and
find a factorization of p∗ as above. Then the map j is a strict equivalence, and so the
induced map θ : X → Y ×LY Z is a strict equivalence. But then the strict fibration
p is strictly equivalent to a stable fibration q∗, and must be a stable fibration by a
standard argument: factorize θ = π · i where π is a trivial strict fibration, and i is a
trivial strict cofibration, the map i defines p as a retract of the stable fibration q∗ · π .

We finish this section with a series of results that lead to a stable fibrant model
construction X �→ QX for presheaves of spectra X. This is the standard stable
fibrant model construction from ordinary stable homotopy theory, but the following
results show that it arises naturally from the stable model structure in a way that is
useful in other contexts.

Lemma 10.10 Suppose that the map p : X → Y is a stable fibration. Then the
diagrams

Xn
σ∗ ��

p

��

ΩXn+1

Ωp

��
Yn

σ∗
�� ΩYn+1

(10.3)

of simplicial presheaf maps are homotopy cartesian in the injective model structure.

Proof Since p is a stable fibration, any stable trivial cofibration γ : A → B between
cofibrant objects induces a homotopy cartesian diagram of simplicial sets

hom(B, X)
γ ∗

��

p∗
��

hom(A, X)

p∗
��

hom(B, Y )
γ ∗

�� hom(A, Y )

(10.4)
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If γ : A → B is a stable equivalence between cofibrant objects, then the diagram
above is still homotopy cartesian. In effect, γ has a factorization γ = π · j where
j is a stable trivial cofibration and π · i = 1 for some stable trivial cofibration i. It
follows that the diagram (10.4) is a retract of a homotopy cartesian diagram, and is
therefore homotopy cartesian.

The diagrams (10.3) arise in this way from the stable equivalences

Σ∞S1[−1 − n] → S[−n]

associated to the sphere spectrum S.

The maps σ∗ : Xn → ΩXn+1 which are adjoint to the bonding maps S1 ∧ Xn →
Xn+1 for a presheaf of spectra X are called the adjoint bonding maps .

Corollary 10.11 If X is stable fibrant, then all constituent simplicial presheaves
Xn are injective fibrant and all adjoint bonding maps σ∗ : Xn → ΩXn+1 are local
weak equivalences.

The converse of Corollary 10.11 has a more interesting proof.

Proposition 10.12 A presheaf of spectra X is stable fibrant if and only if all Xn are
injective fibrant and all adjoint bonding maps σ∗ : Xn → ΩXn+1 are local weak
equivalences.

Proof Suppose that all Xn are injective fibrant and all σ∗ : Xn → ΩXn+1 are local
weak equivalences. It follows from Lemma 5.12 that all spaces Xn(U ) are fibrant and
that all maps σ∗ : Xn(U ) → ΩXn+1(U ) are weak equivalences of pointed simplicial
sets. All maps

πkX
n(U ) → πs

k−nX(U )

are therefore isomorphisms.
Suppose that j : X → LX is a stable fibrant model for X. Then all spaces

LXn(U ) are fibrant and all maps LXn(U ) → ΩLXn+1(U ) are weak equivalences,
and so all maps

πkLXn(U ) → πs
k−nLX(U )

are isomorphisms. The map j induces an isomorphism in all sheaves of stable
homotopy groups, and so the maps j : Xn → LXn induce isomorphisms

π̃kX
n → π̃kLXn

of sheaves of homotopy groups for k ≥ 0. The level objects Xn and LXn are
presheaves of infinite loop spaces, and so the maps Xn → LXn are local weak
equivalences of simplicial presheaves. In particular, the map j : X → LX is a strict
weak equivalence.
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Now consider the lifting problem

A
α ��

i

��

X

B

��
(10.5)

where i is a stable trivial cofibration. Then the induced map i∗ : LA → LB is a
strict equivalence of stable fibrant objects, by assumption.

Take a factorization

LA
Lα ��

j ′
��(

((
((

( LX

Z

p

::000000

where j ′ is a cofibration and a strict weak equivalence and p is a strict fibration. The
presheaf of spectra LB is strictly fibrant, so there is a map ζ : Z → LB such that
the diagram

LA
j ′

��

Li

��

Z

ζ1166
66
66
66

LB

commutes. The map ζ is therefore a strict equivalence. Form the pullback

Z ×LX X
p∗ ��

j∗
��

X

j

��
Z

p

�� LX

and observe that the map j∗ is a strict weak equivalence since j is a strict weak
equivalence and p is a strict fibration. It follows that the solid arrow diagram (10.5)
has a factorization

A ��

i

��

Z ×LX X
p∗ ��

ζj∗
��

X

B
j

�� LB
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in which the top composite is the map α : A → X. The vertical map ζj∗ is a strict
weak equivalence and X is strictly fibrant, and it is an exercise to show that the lifting
problem can then be solved.

The strict model structure on Spt(C) is cofibrantly generated, so we are entitled
to a natural strict fibrant model construction X → FX for presheaves of spectra X.

The bonding maps σ : S1 ∧ Xn → Xn+1 for a presheaf of spectra X can alter-
natively be described by their adjoints σ∗ : Xn → ΩXn+1. One defines the pointed
simplicial presheaf Ω∞Xn for X by the colimit

Ω∞Xn = lim−→
k

Ωn+kXn.

of the diagram

Xn σ∗−→ ΩXn+1 Ωσ∗−−→ Ω2Xn+1 Ω2σ∗−−→ . . .

The adjoint bonding maps also induce pointed maps

Ω∞Xn → Ω(Ω∞Xn+1),

which maps isomorphisms by a cofinality argument. The canonical maps Xn →
Ω∞Xn induce a natural map X → Ω∞X of presheaves of spectra.

The construction X �→ Ω∞X makes little homotopy theoretic sense unless the
presheaf of spectra X is at least strictly fibrant. If X is strictly fibrant, then the map
X → Ω∞X is a stable equivalence, by a sectionwise argument. Unlike the situation
in standard stable homotopy theory, however, the object Ω∞X might not be strictly
fibrant, even if X is strictly fibrant. We fix the problem, albeit somewhat brutally, in
the following consequence of Proposition 10.12:

Corollary 10.13 The presheaf of spectra

QX = FΩ∞FX

is stable fibrant, for any presheaf of spectra X. The natural map η : X → QX which
is defined by the composite

X → FX → Ω∞FX → FΩ∞FX

is a stable equivalence, so that η : X → QX is a natural stable fibrant model for
presheaves of spectra X.

Example 10.14 Theorem 10.5 specializes to give a construction of stable homotopy
theory for small diagrams I → Spt of spectra, in which the strict equivalences and
strict fibrations, and hence the stable equivalences, are defined sectionwise. The
topology on the index category I that one uses is the “chaotic” topology, for which
every presheaf is a sheaf.

Suppose that G is a finite group. Write BG for the category whose objects are G-
sets (i.e. sets with G-action) and the G-equivariant maps between them. This category
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satisfies the exactness conditions for Giraud’s Theorem (Theorem 3.17), and is thus
equivalent to a Grothendieck topos. The category BG is called the classifying topos
for G. This is a special case of the general theme which is described in Example
3.19.

The method of proof of Giraud’s Theorem, in this case, is to explicitly construct
a site CG such that the corresponding sheaf category Shv(CG) is equivalent to the
category BG. The category BG has a set of generators, which is usually described
as the collection of finite G-sets X, and the category C is the full subcategory of BG

on the generators X. The topology is defined by the families of maps Yi → X such
that the G-equivariant map � Yi → X is surjective. The G-set E represents a sheaf
on BG, which is defined by the assignment

X �→ F (X) = hom(X, E).

It follows that E(G/H ) is the set of H -fixed points EH in E. One recovers the G-set
E from the isomorphism E ∼= E(G).

A presheaf F : Cop

G → Set is a sheaf for this topology if and only if F is additive
in the sense that it takes finite disjoint unions to products, and F (G/H ) = F (G)H for
all subgroups H ⊂ G. In general, the assignment F �→ F (G) defines the associated
sheaf functor.

The additivity property implies that sheaves, or G-sets, are completely determined
by their restrictions to the full subcategory on the objects G/H of the site CG. This
full subcategory is the orbit category OG for G.

In equivariant homotopy theory (as in [39]), a G-equivariant weak equivalence
(respectively G-fibration) X → Y of spaces with G-action is map which induces a
weak equivalence (respectively fibration)

XH = X(G/H ) → Y (G/H ) = YH

for each subgroup H of G. The equivariant homotopy theory of G-spaces is therefore
a subspecies of the sectionwise homotopy theory of presheaves of spaces which are
defined on the orbit category OG, or equivalently on the site CG. The G-equivariant
stable category is constructed from presheaves of spectra, interpreted as ordinary
diagrams of spectra.

Abelian cohomology theories are represented by Eilenberg–Mac Lane spectrum
objects in all stable model structures—see Example 10.88 below. Here are the basic
G-equivariant examples:

1) The presheaves of stable homotopy groups which arise from the sectionwise theory
for G-spectra are the Mackey functors, because transfers are formally defined for
spectra. The Eilenberg–Mac Lane spectrum object H (M), which is associated
to a Mackey functor M , represents Bredon cohomology for G-spaces X with
coefficients in M , in the G-equivariant stable category.

2) The sheaf theoretic cohomology associated to an abelian group A with G-action is
the classical equivariant cohomology H ∗(G, A) for the group G with coefficients
in A. It is represented by the Eilenberg–Mac Lane spectrum object H (A) in the
stable category which is associated to the classifying topos.
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The Bredon and sheaf theoretic cohomology theories are quite different; Bredon
cohomology corresponds to the chaotic topology, while ordinary equivariant coho-
mology is defined by using the topology derived from the classifying topos. They
are related by base change, or change of topology, via the geometric morphism from
sheaves to presheaves which forgets the topology—see Sect. 5.3.

Galois cohomology theory is the sheaf cohomology theory associated to the clas-
sifying topos of a profinite group, and as such is a generalization of the ordinary
cohomology theory for a finite group. The étale cohomology of a field is a special
case. See [33, 56, 79, 92], as well as Example 3.20.

We say that a presheaf of spectra X satisfies descent (for the ambient topology)
if some, hence any, stable fibrant model j : X → QX is a sectionwise stable
equivalence, in the sense that the maps j : X(U ) → QX(U ) are stable equivalences
for all objects U of the underlying site C. All stably fibrant presheaves of spectra
satisfy descent.

A descent problem for a given presheaf of spectra X is question of whether or not
X satisfies descent in this sense.

Variants of descent problems have been major themes in algebraic K-theory. For
example, suppose that k is a field and that � is a prime not equal to the character-
istic of k. Suppose that k has Galois cohomological dimension d with respect to
�-torsion sheaves. Then the Lichtenbaum–Quillen conjecture for the field k asserts
that any stably fibrant model j : K/� → Qet (K/�) on the étale site for k induces
isomorphisms in stable homotopy groups

πsK/�(L) → πsQet (K/�)(L)

for s ≥ d − 1 and for all finite separable extensions L/k.
The fibrant model Qet (K/�) for K/� is the étale mod � K-theory presheaf of

spectra. It is traditional to write

Ks(k, Z/�) = πsQet (K/�)(k),

and call these groups the mod � étale K-groups of k—see [24].
The Nisnevich descent theorem [83] asserts that the algebraic K-theory presheaf

of spectra K satisfies descent for the Nisnevich topology on the category et |S , where
S is a separated, regular Noetherian scheme. In other words, the Nisnevich fibrant
model j : K → QNisK induces a stable equivalence

K(S)

−→ QNisK(S)

for such schemes S. One also writes

KNis
s (S) = πsQNisK(S),

and calls these groups the Nisnevich K-groups of S. The displayed stable equiva-
lence therefore gives an isomorphism between K-theory and Nisnevich K-theory
for regular schemes S.
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One proves the Nisnevich descent theorem (now) by using the localization se-
quence for algebraic K-theory to show that the level objects Kn satisfy the conditions
for the Nisnevich descent theorem (Theorem 5.39). The original proof was more
complicated.

The mod n K-theory presheaf of spectra also satisfies Nisnevich descent for
separated, regular, Noetherian schemes. One uses the cofibre sequence

K
×n−→ K → K/n

to prove this.
For more general schemes T , the Nisnevich K-theory presheaf

KNis = QNisK

may diverge from the K-theory presheaf of spectra, but there is still a major positive
statement. The comparison

K → KT T

with Thomason–Trobaugh K-theory induces isomorphisms

πsK(A)
∼=−→ πsK

T T (A), s ≥ 0,

for all affine schemes A, while Thomason–Trobaugh K-theory satisfies Nisnevich
descent. By comparing simplicial presheaves at level 0, it follows that there are
natural isomorphisms

f KNis
s (S) := πsQNisK(S) ∼= πsK

T T (S), s ≥ 0,

for all schemes S. It follows that the Nisnevich K-theory and the Thomason–
Trobaugh K-theory presheaves of spectra coincide on connective covers. See [68,
100].

The knowledge that a presheaf of spectra satisfies descent can have important
calculational consequences, due to the fact that if Z is stable fibrant, then the functor

K �→ hom(K , Z)

takes local weak equivalences of pointed simplicial presheaves to stable equivalences
of spectra. Thus, for example, if the simplicial presheaf map U → ∗ is a local weak
equivalence, then there is an induced stable equivalence

Γ∗Z = hom(∗, Z) → hom(U , Z).

The simplicial structure of U defines a Bousfield–Kan type spectral sequence for the
stable homotopy groups of the global sections spectrum of Z, which is otherwise
known as a descent spectral sequence.
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Specializing further, suppose that L/k is a finite Galois extension of fields with
Galois group G. Then the hypercover EG ×G Sp (L) → ∗ on the étale site for the
field k (see Example 4.17) determines a spectral sequence

Hs(G, πtQetK/�(L)) ⇒ πt−sQetK/�(k) = Ket
t−s(k, Z/�). (10.6)

This spectral sequence is variously known as the finite Galois descent spectral se-
quence, or the homotopy fixed points spectral sequence for the étale K-theory of
k. The term “homotopy fixed points” arises from the observation that the stable
equivalence

QetK/�(k) ∼= hom(∗, QetK/�)

−→ hom(EG ×G Sp (L), QetK/�)

identifies the étale K-theory spectrum QetK/�(k) for the field k with the homotopy
fixed points spectrum (i.e. the displayed function complex) for the action of the
Galois group G on the spectrum QetK/�(L).

The finite descent spectral sequence can also be constructed by applying the
homotopy fixed points functor

hom(EG ×G Sp (L), ?)

to the Postnikov tower PnQetK/� for the étale K-theory presheaf of spectra QetK/�,
in the presence of a bound on Galois cohomological dimension for �-torsion sheaves.
The Postnikov tower of a presheaf of spectra is described in Sect. 10.6 below.

Taking a suitable fibrant model of the Postnikov tower PnQetK/� and evaluating
in global sections construct the étale (or Galois) cohomological descent spectral
sequence

Hs
et (k, π̃tK/�) ⇒ πt−sQetK/�(k) (10.7)

for the étale K-theory of the field k. For the construction, one uses the observations
in Example 10.2, along with Proposition 8.32. See also Sect. 6.1 of [56].

The descent spectral sequences (10.6) and (10.7) for étale K-theory have straight-
forward derivations in the theory of presheaves of spectra, but the general principle
that étale K-theory can be computed from étale cohomology has been known
for quite some time. This principle was the motivation for the Lichtenbaum–
Quillen conjecture—to derive an étale cohomological calculational device for
algebraic K-theory—from the early days of the subject. It is now known that
the Lichtenbaum–Quillen conjecture holds, as a consequence of the Bloch–Kato
conjecture [96, 107].

Suppose that G is a finite group with subgroup H . Within the classifying topos
for G of Example 10.14, the Čech resolution for the covering G → G/H can be
identified up to isomorphism with the canonical map

G ×H EH → G/H.
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This map is a hypercover, and induces a stable equivalence

Z(G/H ) = hom(G/H , Z)

−→ hom(G ×H EH , Z)

for any stably fibrant object Z in the sheaf theoretic stable model structure for
presheaves of spectra on the orbit category OG.

From the general definition, a G-spectrum E satisfies descent for the sheaf-
theoretic stable model structure if some (hence any) stably fibrant model j : E → Z

induces stable equivalences E(G/H ) → Z(G/H ) for all subgroups H ⊂ G.
The descent condition is independent of sectionwise stable equivalence, so we

can suppose that, as a presheaf of spectra, E is sectionwise stably fibrant. In this
case, the stably fibrant model j : E → Z induces a G-equivariant stable equivalence
E(G) → Z(G) of stably fibrant spectra, and it follows that the induced maps

j∗ : hom(G ×H EH , E) → hom(G ×H EH , Z)

of homotopy fixed point spectra are stable equivalences. Thus, from the diagram

E(G/H ) ��

j

��

hom(G ×H EH , E)

j∗ 

��

Z(G/H ) 

�� hom(G ×H EH , Z)

one concludes that the H -fixed points of the G-spectrum E coincide with the H -
homotopy fixed points of E for all subgroups H of G if E satisfies descent for the
sheaf theoretic stable model structure.

10.2 T-spectra and Localization

The results and methods of ordinary stable homotopy theory admit substantial
generalization, beyond even the case of presheaves of spectra.

Suppose that T is a pointed simplicial presheaf on a small Grothendieck site C.
A T -spectrum X is a collection of pointed simplicial presheaves Xn, n ≥ 0, with

pointed maps

σ : T ∧ Xn → Xn+1,

called bonding maps. The simplicial presheaf Xn for a T -spectrum X is the object
in level n.

One says that the simplicial presheaf T is the parameter object. Presheaves of
spectra are S1-spectra in the present language; the simplicial circleS1 is the parameter
object in that case.
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A map f : X → Y of T -spectra consists of pointed simplicial presheaf maps
f : Xn → Yn which respect structure in the sense that the diagrams

T ∧ Xn
σ ��

T ∧f

��

Xn+1

f

��
T ∧ Yn

σ

�� Yn+1

commute. Write SptT (C) for the category of T -spectra for the site C.
For notational convenience, for pointed simplicial presheaves X, write

ΩT X = Hom(T , X),

where Hom(T , X) is the internal function complex in pointed simplicial presheaves.
This construction is right adjoint to smashing with T , so that there is a natural
bijection

hom(K , ΩT X) ∼= hom(K ∧ T , X)

for pointed simplicial presheaves K and X. The adjoint of a map f : K → ΩT Y is
the composite

K ∧ T
f ∧T−−→ ΩT Y ∧ T

ev−→ Y ,

where ev is the evaluation map. The functor X �→ ΩT X is often called the T -loops
functor.

A T -spectrum X may therefore be defined to be a collection Xn, n ≥ 0, of pointed
simplicial presheaves, together with pointed maps σ∗ : Xn → ΩT Xn+1. The map σ∗
is the “adjoint” of the bonding map σ : T ∧ Xn → Xn+1, and is called an adjoint
bonding map. The map σ∗ is adjoint to the composite

Xn ∧ T
τ−→ T ∧ Xn σ−→Xn+1,

where τ is the isomorphism which flips smash factors.
Say that a map f : X → Y of T -spectra is a strict weak equivalence (respectively

strict fibration) if all maps f : Xn → Yn are local weak equivalences (respectively
injective fibrations) of pointed simplicial presheaves. Another way of saying this is
that a strict weak equivalence is a level weak equivalence, and a strict fibration is a
level fibration.

A cofibration of T -spectra is a map i : A → B such that

a) i : A0 → B0 is a cofibration of simplicial presheaves, and
b) all maps

(T ∧ Bn) ∪(T ∧An) An+1 → Bn+1
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are cofibrations of simplicial presheaves.

If K is a pointed simplicial presheaf and X is a T -spectrum, then X ∧ K has the
obvious meaning:

(X ∧ K)n = Xn ∧ K.

The function complex hom(X, Y ) for T -spectra X and Y is the simplicial set with

hom(X, Y )n = hom(X ∧ Δn
+, Y ).

Proposition 10.15 The category of SptT (C) of T -spectra, together with the classes
of strict weak equivalences, strict fibrations and cofibrations as defined above, satis-
fies the definitions for a proper closed simplicial model category. This model structure
is cofibrantly generated.

The proof is, like that of Proposition 10.4, an exercise—in fact, it is the same
exercise. The model structure for the category of T -spectra of Proposition 10.15 is
called the strict model structure.

The simplicial model structure is defined by the function complex hom(X, Y ).
The usual lemma about cofibrations that gives the simplicial model axiom can either
be proved directly, or as a consequence of the following enriched version:

Lemma 10.16 Suppose that X → Y is a cofibration of T -spectra and that A → B

is a cofibration of pointed simplicial presheaves. Then the induced map

(Y ∧ A) ∪ (X ∧ B) → Y ∧ B

is a cofibration of T -spectra, which is a strict equivalence if either X → Y is a strict
equivalence or A → B is a local weak equivalence.

Proof There is a pointed version of Corollary 4.41: if A → B and C → D are
cofibrations (i.e. monomorphisms) of pointed simplicial presheaves, then the map

(D ∧ A) ∪ (C ∧ B) → D ∧ B

is a cofibration, which is a local weak equivalence if either A → B or C → D is a
local weak equivalence.

Thus, all that we have to prove is the assertion that the map

(Y ∧ A) ∪ (X ∧ B) → Y ∧ B

is a cofibration of T -spectra, but this is an exercise.

Suspension spectrum constructions and shifts have the same formal properties for
T -spectra as for ordinary spectra, up to a point:

1) Given a pointed simplicial presheaf K , the suspension T -spectrum Σ∞
T K is the

T -spectrum

K , T ∧ K , T ∧2 ∧ K , . . .
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where

T ∧n = T ∧ · · · ∧ T

is the n-fold smash power. The functor K �→ Σ∞
T K is left adjoint to the level 0

functor X �→ X0.
The sphere T -spectrum ST for the category of T -spectra is the suspension T -
spectrum Σ∞

T S0 of the 2-point simplicial set S0, and it consists of the objects

S0, T , T ∧2, T ∧3, . . . .

2) Given a T -spectrum X and n ∈ Z, define the shifted T -spectrum X[n] by

X[n]k =
{

Xn+k n + k ≥ 0

∗ n + k < 0

There are natural isomorphisms

hom(Σ∞
T A[−n], X) ∼= hom(Σ∞

T A, X[n]) ∼= hom(A, Xn),

for all pointed simplicial presheaves A and T -spectra X, and n ≥ 0.
The generating sets I and J for the cofibrations, respectively trivial cofibrations

of the strict structures are the sets of maps

Σ∞
T A[−n] → Σ∞

T B[−n]

wheren ≥ 0 andA → B is anα-bounded cofibration (respectively trivial cofibration)
of pointed simplicial presheaves. Here, as always, α is a regular cardinal such that
α > | Mor (C)|.

Every cofibration of T -spectra is a monomorphism, but the converse assertion is
false because not all T -spectra are cofibrant. The cofibrant T -spectra are those objects
X for which the maps T ∧ Xn → Xn+1 are cofibrations of simplicial presheaves.

One often says that a monomorphism of T -spectra is a level cofibration.
The T -suspension of a T -spectrum X, is the T -spectrum X ∧ T , with bonding

maps

σ ∧ 1 : T ∧ Xn ∧ T → Xn+1 ∧ T .

The fake T -suspension ΣT X of X is, by contrast, the T -spectrum with the objects
T ∧ Xn in the various levels, and bonding maps

1 ∧ σ : T ∧ T ∧ Xn → T ∧ Xn+1.

Up to natural isomorphism, the suspension and fake suspension differ from each other
by a twist automorphism τ : T ∧ T ∼= T ∧ T in the bonding maps. The distinction
between T -suspension and fake T -suspension is important, and is encountered in
calculations.
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The T -suspension functor X �→ X ∧ T is left adjoint to the T -loops functor,
while the fake T -suspension functor is left adjoint to a fake T -loops functor.

We construct various model structures on the category of T -spectra, including all
stable model structures, by localizing the strict structure according to the method
presented in Sect. 7.1. As in the construction of localized theories for simplicial
presheaves (Sect. 7.2) or simplicial modules (Sect. 8.5), we begin with the construc-
tion of a functor X �→ LFX, via a small object construction that starts with a set of
monomorphisms F.

Choose a regular cardinal β such that β > α, β > |T |, β > |F| and β > |B| for
any cofibration A → B in the set F. Choose a cardinal λ such that λ > 2β .

By a small object argument (as in Sect. 7.2), every morphism g : X → Y of
T -spectra has a functorial factorization

X
i ��

g ""%
%%

%%
%%

Eλ(g)

p
��

Y

such that i is in the saturation of the set of monomorphisms F and the map p has the
right lifting property with respect to all members of F. The small object argument
has λ steps.

Write

LF(X) = Eλ(X → ∗)

for the result of this construction when applied to the canonical map X → ∗.
Then we have the following. Lemma 10.17 is the analogue for T -spectra of

Lemma 7.16, which is the corresponding result for simplicial presheaves. It is also a
consequence of that result. See also Lemma 8.38, which is the analogous result for
simplicial R-modules.

Lemma 10.17

1) Suppose that the assignment t �→ Xt defines a diagram of monomorphisms,
indexed by a cardinal γ > 2β . Then the natural map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > β, and let Bζ (X) denote the filtered system

of subobjects of X having cardinality less than ζ . Then the natural map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)

is an isomorphism.
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3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that U , V are subobjects of a T -spectrum X. Then the natural map

LF(U ∩ V ) → LF(U ) ∩ LF(V )

is an isomorphism.
5) If |X| ≤ 2μ where μ > β, then |LF(X)| ≤ 2μ.

Say that a map f : X → Y of SptT (C) is an LF-equivalence if it induces a strict
weak equivalence

f∗ : LFX → LFY.

Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 10.17. Then κ is a regular cardinal, and Lemma 10.17 implies that if a T -
spectrum X is κ-bounded then LF(X) is κ-bounded. A T -spectrum X is said to be
κ-bounded if |Xn

m(U )| < κ in all sections, levels and simplicial degrees.
The following Lemma establishes the bounded monomorphism property for the

strict model structure on T -spectra:

Lemma 10.18 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

such that the map i is a strict equivalence and A is β-bounded. Then there is a
factorization of j by monomorphisms A → B → Y such that B is β-bounded and
the map B ∩ X → B is a strict equivalence.

Proof Start with the diagram of cofibrations

X0

i

��
A0 �� Y 0

of pointed simplicial presheaves. Lemma 5.2 implies that there is a subobject B0 ⊂
Y 0 such that B0 is β-bounded, A0 ⊂ B0 and B0 ∩ X0 → B0 is a local weak
equivalence.

Form the diagram

T ∧ A0 ��

σ

��

T ∧ B0 �� T ∧ Y 0

σ

��
A1 �� Y 1
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Then the induced map

A1 ∪T ∧A0 T ∧ B0 → Y 1

factors through a κ-bounded subobject C1 ⊂ Y 1. There is an β-bounded subobject
B1 ⊂ Y 1 such that C1 ⊂ B1 and B1 ∩ X1 → B1 is a local weak equivalence. The
composite

T ∧ B0 → A1 ∪T ∧A0 T ∧ B0 → C1 ⊂ B1

is the bonding map up to level 1 for the object B. Continue inductively to construct
all Bn, n ≥ 1.

The following result establishes the bounded monomorphism property for LF-
equivalences of T -spectra.

Lemma 10.19 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

such that the map i is an LF-equivalence and A is κ-bounded. Then there is a
factorization of j by monomorphisms A → B → Y such that B is κ-bounded and
the map B ∩ X → B is an LF-equivalence.

Proof In the presence of the bounded cofibration condition for the strict structure
(Lemma 10.18) and the list of properties for the functor LF given by Lemma 10.17,
the proof is formally the same as that of Lemma 7.17.

Now suppose that F is a set of cofibrations of T -spectra which satisfies the
following conditions:

C1 The T -spectrum A is cofibrant for all maps i : A → B in F.
C2 The set F includes the set J of generators for the trivial cofibrations for the strict

model structure on SptT (C).
C3 If the map i : A → B is a member of the set F, then the cofibrations

(A ∧ D) ∪ (B ∧ C) → B ∧ D

induced by i and all α-bounded cofibrations C → D of pointed simplicial pre-
sheaves are in F.

Smashing with pointed simplicial presheaves preserves cofibrations of T -spectra,
by Lemma 10.16. In particular, the T -spectrum A ∧ D is cofibrant if A is cofibrant,
for all pointed simplicial presheaves D. It follows that the objects
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(A ∧ D) ∪ (B ∧ C)

appearing in C3 are cofibrant T -spectra.
If the cofibration A → B is in F, then F also contains the cofibrations

(A ∧ Δm
+) ∪ (B ∧ ∂Δm

+) → B ∧ Δm
+, m ≥ 0.

The set F therefore satisfies the requirement F3 for the general localization setup of
Chap. 7.

In the language of Sect. 7.1, a map p : X → Y is said to be F-injective if it has
the right lifting property with respect to all maps of F. An object X is F-injective if
the map X → ∗ is F-injective.

The object LFX is F-injective for every object X. Every F-injective T -spectrum
is strictly fibrant.

A map of T -spectra X → Y is an F-equivalence if and only if the map

hom(Yc, Z) → hom(Xc, Z)

is a weak equivalence of simplicial sets for every F-injective object Z, and where
Xc → X is a natural cofibrant model construction in the strict model category. It is
a consequence of Lemma 7.6 that a map X → Y is an F-equivalence if and only if
it is an LF-equivalence.

An F-fibration is a map that has the right lifting property with respect to all cofi-
brations which are F-equivalences. The F-fibrations coincide with the LF-fibrations
of Theorem 7.10.

The methods in Sect. 7.1 (specifically, Theorem 7.10 with Lemma 10.19) then
give the following:

Theorem 10.20 Suppose that C is a small Grothendieck site, and that F is a set of
cofibrations of T -spectra that satisfies the conditions C1, C2 and C3. Then the cate-
gory SptT (C) of T -spectra, together with the classes of cofibrations, F-equivalences
and F-fibrations, satisfies the axioms for a cofibrantly generated closed simplicial
model category. This model structure is left proper.

The model structure of Theorem 10.20 is the F-local structure for the category of
T -spectra. The left properness of this model structure is a consequence of Lemma 7.8.

Lemma 7.11 implies that if p : X → Y is an F-injective map and Y is
an F-injective object, then the map p is an F-fibration. It follows in particular
(Corollary 7.12) that a T -spectrum Z is F-injective if and only if it is F-fibrant.

The internal function complex Hom(A, X), for T -spectra A and X, is the pointed
simplicial presheaf which is defined in sections by

Hom(A, X)(U ) = hom(A|U , X|U ) = hom(A ∧ U+, Y ),

for U ∈ C (see (5.4)). The functor X �→ Hom(A, X) is right adjoint to the functor
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sPre∗(C) → SptT (C)

which is defined for pointed simplicial presheaves K by K �→ A ∧ K .
Suppose given a subset S of F, and that S contains the generating set J for the

strict trivial cofibrations. Say that S generates the set F if F is the smallest subset
which contains S and has the closure property C3.

The following result will be needed later.

Lemma 10.21 Suppose that the subset S ⊂ F generates F. Then a map p : X → Y

is F-injective if and only if all maps

(i∗, p∗) : Hom(B, X) → Hom(A, X) ×Hom(A,Y ) Hom(B, Y )

are trivial injective fibrations of simplicial presheaves for all members i : A → B

of the set S.

Proof Suppose that the maps (i∗, p∗) are trivial injective fibrations for all i ∈ S.
Suppose that F ′ ⊂ F is the collection of all cofibrations j : A → B in F such that
the map (j∗, p∗) is a trivial fibration. This is the collection of cofibrations j : A → B

in F such that the map p has the right lifting property with respect to all maps

(j , i) : (A ∧ D) ∪ (B ∧ C) → B ∧ D

which are induced by cofibrations i : C → D of pointed simplicial presheaves.
If j : A → B is a member of F ′, then the cofibration (j , i ′) induced by j and

an α-bounded cofibration i ′ : C ′ → D′ is also in F ′. The subset F ′ contains S

by assumption, and S generates F, so that F ′ = F. It follows that p has the right
lifting property with respect to all morphisms of F, and is therefore an F-injective
morphism.

Conversely, if the morphism p is F-injective then the simplicial presheaf map
(i∗, p∗) is a trivial fibration for all morphisms i of S, because the set F satisfies the
condition C3.

10.3 Stable Model Structures for T-spectra

Theorem 10.20 gives an F-model structure for the category SptT (C) in which the
cofibrations in a set F are formally inverted. Recall that this set F is required to
satisfy the following conditions:

C1 The T -spectrum A is cofibrant for all maps i : A → B in F.
C2 The set F includes the set J of generators for the trivial cofibrations for the strict

model structure on SptT (C).
C3 If i : A → B is in the set F, then the cofibrations

(A ∧ D) ∪ (B ∧ C) → B ∧ D
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induced by i and all α-bounded cofibrations C → D of pointed simplicial pre-
sheaves are also in F.

This set F is generated by a subset S containing J if F is the smallest subset which
contains S and is closed under condition C3.

The stabilization maps

Σ∞
T T [−n − 1] = (ST ∧ T )[−n − 1] → ST [−n]

are shifts of the map

(ST ∧ T )[−1] → ST

which consists of canonical isomorphisms

T ∧(m−1) ∧ T → T ∧m

in levels m ≥ 1.
Say that the F-local structure on SptT (C) is stable if the stabilization maps

are F-equivalences. One forces this by insisting that the set F contains cofibrant
replacements of these maps.

Example 10.22 If the set F is generated over the generating set J for the trivial
cofibrations of simplicial presheaves by cofibrant replacements of the stabilization
maps alone, then the corresponding F-local structure is the stable model structure
for the category of T -spectra. The weak equivalences for this model structure are
called stable equivalences, and the fibrations are stable fibrations.

This case specializes to classical stable homotopy theory of spectra, or S1-spectra.

Example 10.23 Suppose that the map f : A → B is a cofibration of pointed
simplicial presheaves.

The f -local model structure for simplicial presheaves of Theorem 7.18 is
cofibrantly generated. Let Jf be the collection of maps

Σ∞
T C+[−n] → Σ∞

T D+[−n]

of T -spectra which are induced by a fixed set of generators C → D for the trivial
cofibrations of the f -local model structure on the category sPre(C) of simplicial
presheaves (Theorem 7.18). We assume that this set of generators C → D for the f -
local structure contains a set of generators for the trivial cofibrations for the injective
model structure on simplicial presheaves, so that J ⊂ Jf .

Suppose that the set of cofibrations Sf is generated by the set Jf , together with
cofibrant replacements of the stabilization maps

(ST ∧ T )[−n − 1] → ST [−n], n ≥ 0.

The model structure on SptT (C) given by Theorem 10.20 for the set Sf is the f -local
stable model structure, and the corresponding L-equivalences and L-fibrations are
called stable f -equivalences and stable f -fibrations, respectively.
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A map p : X → Y is f -injective if it has the right lifting property with respect to
all members of the set Sf , and a T -spectrum Z is f -injective if the map Z → ∗ is
f -injective.

It is a formal result (Corollary 7.12) that the f -injective T -spectra coincide with
the stable f -fibrant T -spectra.

This remainder of this section is a study of f -local stable model structures for
T -spectra. We begin with general theory, but then we make some assumptions on
both the underlying site and the object T to recover some traditional aspects of stable
homotopy theory in the F-local structures. These include an infinite loop space model
for stable fibrant replacement (Theorem 10.32), and properness of the stable model
structure (Theorem 10.36).

Remark 10.24 A strict f -fibration (respectively strict f -equivalence) is a map X →
Y of T -spectra which consists of f -fibrations (respectively f -equivalences) Xn →
Yn of simplicial presheaves in all levels. The cofibrations, strict f -fibrations and strict
f -equivalences together form a closed simplicial model structure on the category of
T -spectra, called the strictf -local model structure —see also Proposition 10.15. This
model structure is cofibrantly generated, and therefore has natural fibrant models. It
is also left proper. The strict f -local model structure is right proper if the f -local
model structure on simplicial presheaves is right proper.

It is an exercise to show that every strict f -equivalence of T -spectra is a stable
f -equivalence.

We shall use the notation X → FX to denote a (natural) strict f -fibrant model
for a T -spectrum X.

We have an analogue of Lemma 10.10 for the stable f -local theory:

Lemma 10.25 Suppose that the T -spectrum Y is strictly f -fibrant. Then a map
p : X → Y is f -injective if and only if p is a strict f -fibration and all diagrams of
pointed simplicial presheaf maps

Xn
σ∗ ��

��

ΩT Xn+1

��
Yn

σ∗
�� ΩT Yn+1

are homotopy cartesian in the f -local model structure.

Proof Lemma 10.21 says that the map p is an f -injective fibration if and only if p

induces trivial fibrations of simplicial presheaves

Hom(B, X) → Hom(A, X) ×Hom(A,Y ) Hom(B, Y ) (10.8)

for all members A → B of the set Sf .
In particular, if p is f -injective then the maps (10.8) are surjective in global

sections so that p has the right lifting property with respect to all members of Sf .



10.3 Stable Model Structures for T-spectra 371

This set includes all cofibrations

Σ∞
T C+[−n] → Σ∞

T D+[−n]

arising from a set of generators C → D for the f -local structure on simplicial
presheaves, so that p : X → Y must be a strict f -fibration. The other members of
the generating set for Sf are cofibrant replacements for the stabilization maps

Σ∞
T T [−n − 1] → ST [−n].

The objects Σ∞
T T [−n − 1] and ST [−n] are cofibrant, and it follows that the

diagram

Hom(ST [−n], X) ��

��

Hom(Σ∞
T T [−n − 1], X)

��
Hom(ST [−n], Y ) �� Hom(Σ∞

T T [−n − 1], Y )

is homotopy cartesian since X and Y are strictly f -fibrant. The map

Xn → Yn ×ΩT Yn+1 ΩT Xn+1

is therefore a local weak equivalence.
The proof of the converse assertion is an exercise.

Corollary 10.26 A T -spectrum X is stable f -fibrant if and only if it is strictly f -
fibrant and all maps σ∗ : Xn → ΩT Xn+1 are sectionwise equivalences of pointed
simplicial presheaves.

Proof The stable f -fibrant objects coincide with the f -injective objects.
Lemma 10.25 implies that these are the objects X that are strictly f -fibrant and such
that the maps σ∗ : Xn → ΩT Xn+1 (of f -fibrant simplicial presheaves) are f -local
weak equivalences, and hence sectionwise weak equivalences. See the preamble to
Theorem 7.18 for the claim about sectionwise weak equivalences.

Corollary 10.27 Every stable f -fibrant T -spectrum is stable fibrant. Every stable
equivalence of T -spectra is a stable f -equivalence.

Proof If a T -spectrum Z is stable f -fibrant, then all component presheaves Zn

are f -fibrant, hence injective fibrant, and all maps Zn → ΩT Zn+1 are sectionwise
equivalences. It follows from Corollary 10.26 that Z is stable fibrant.

If the map X → Y is a stable equivalence, then it has a cofibrant replacement
Xc → Yc in the strict model structure such that the simplicial set map

hom(Yc, W ) → hom(Xc, W )

is a weak equivalence for all stable fibrant T -spectra W . It follows that the map

hom(Yc, Z) → hom(Xc, Z)
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is a weak equivalence for all stable f -fibrant T -spectra Z, and so the map X → Y

is a stable f -equivalence.

An inductive system (or an inductive diagram) is a diagram s �→ Xs which is
indexed by s ∈ β, where β is some limit ordinal. An inductive colimit is a colimit
for an inductive system. Inductive colimits are necessarily filtered colimits.

Say that the pointed simplicial presheaf T is compact up to f -equivalence if,
for any inductive system s �→ Xs of f -fibrant pointed simplicial presheaves, the
composite

lim−→
s

ΩT Xs
c−→ΩT ( lim−→

s

Xs)
ΩT j−−→ ΩT F ( lim−→

s

Xs)

is an f -equivalence, where c is the canonical map.

Lemma 10.28

1) If T and T ′ are compact up to f -equivalence, then the smash product T ∧ T ′ is
compact up to f -equivalence.

2) Suppose that the map T → T ′ is an f -equivalence. If either T or T ′ is compact
up to equivalence, then so is the other.

Proof We prove statement 1). Statement 2) is an exercise.
We have a natural isomorphism

ΩT ∧T ′Y ∼= ΩT (ΩT ′Y ),

and the canonical map

lim−→
s

ΩT ΩT ′Xs → ΩT ΩT ′ ( lim−→
s

Xs)

may be identified with the composite

lim−→
s

ΩT ΩT ′Xs → ΩT ( lim−→
s

ΩT ′Xs) → ΩT (ΩT ′ ( lim−→
s

Xs)).

The composite

lim−→
s

ΩT ′Xs → ΩT ′ ( lim−→
s

Xs) → ΩT ′F ( lim−→
s

Xs)

is a stable fibrant model for lim−→s
ΩT ′Xs since T ′ is compact up to f -equivalence. It

follows that the composite

lim−→
s

ΩT ΩT ′Xs → ΩT ( lim−→
s

ΩT ′Xs) → ΩT (ΩT ′ ( lim−→
s

Xs)) → ΩT ΩT ′F ( lim−→
s

Xs)

is an f -equivalence since T is compact up to f -equivalence.
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Example 10.29 In the motivic model structure (defined over a base scheme S—see
Example 7.20), a filtered colimit lim−→s

Xs of motivic fibrant simplicial presheaves Xs

satisfies motivic descent in the sense that any motivic fibrant model

j : lim−→
s

Xs → F ( lim−→
s

Xs)

is a sectionwise weak equivalence.
We have the following observations:

1) If K is a finite pointed simplicial set, then K is compact up to motivic equivalence.
In the composite

lim−→
s

ΩKXs
c−→ΩK ( lim−→

s

Xs)
ΩKj−−→ ΩKF ( lim−→

s

Xs),

the map c is an isomorphism since K is finite, and the map j : lim−→s
Xs → F ( lim−→s

Xs)
is a sectionwise equivalence of presheaves of pointed simplicial sets by motivic
descent, so that ΩKj is a sectionwise equivalence.

2) If x : ∗ → U is a pointed S-scheme, then U is compact up to motivic equivalence.
In sections, ΩU (V ) is the fibre of the map X(V × U ) → X(V ) which is induced

by the map (1V , x) : V → V × U that is determined by the base point x of U .
In the composite

lim−→
s

ΩUXs
c−→ΩU ( lim−→

s

Xs)
ΩU j−−→ ΩUF ( lim−→

s

Xs),

the map c is an isomorphism, and the map ΩUj is a sectionwise equivalence since
the colimit satisfies motivic descent.

Example 10.30 Suppose that K is a finite pointed simplicial set. Then K is compact
up to equivalence for the injective model structure on pointed simplicial presheaves.

If X is a pointed presheaf of Kan complexes, then there is a pullback square

ΩKX �� ��

��

hom(K , X)

p

��
∗ �� X

The map p is a sectionwise Kan fibration, so that the diagram is homotopy cartesian
in the injective model structure by Lemma 5.20. Properness for the injective model
structure implies that any local weak equivalence X → Y of presheaves of pointed
Kan complexes induces a local weak equivalence ΩKX → ΩKY .

Thus, if s �→ Xs is an inductive system of injective fibrant simplicial presheaves,
then in the composite

lim−→
s

ΩKXs
c−→ΩK ( lim−→

s

Xs)
ΩKj−−→ ΩKF ( lim−→

s

Xs)
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then the map c is an isomorphism and the map ΩKj is a local weak equivalence.

The fake T -loop object ΩT X associated with a T -spectrum X is the T -spectrum
with

(ΩT X)n = ΩT (Xn),

with the maps

ΩT σ∗ : ΩT Xn → ΩT ΩT Xn+1

as adjoint bonding maps. There is a natural map of T -spectra

γ : X → ΩT X[1],

which is defined by the adjoint bonding map

σ∗ : Xn → ΩT Xn+1

in each level n.
The “real” T -loop spectrum is the object Hom(T , X) given by the pointed internal

function complex. Generally, if A is a pointed simplicial presheaf and X is a T -
spectrum, then there is a T -spectrum Hom(A, X) with

Hom(A, X)n := Hom(A, Xn),

given by the pointed internal function complex, with bonding map

T ∧ Hom(A, Xn) → Hom(A, Xn+1)

which is adjoint to the composite

T ∧ Hom(A, Xn) ∧ A
T ∧ev−−→ T ∧ Xn σ−→Xn+1.

It is an exercise to show that the bonding maps for the real and fake T -loop spectra,
Hom(T , X) and ΩT X respectively, have adjoints defined in levels by maps

ΩT Xn ∧ T ∧ T → Xn+1

which differ by a twist τ : T ∧ T → T ∧ T of the smash factor T ∧ T .
There is a natural directed system of maps

X
γ−→ΩT X[1]

ΩT γ [1]−−−−→ Ω2
T X[2]

Ω2
T γ [2]−−−−→ Ω3

T X[3]
Ω3

T γ [3]−−−−→ . . .

We define the T -spectrum QT X by

QT X = F ( lim−→
n

Ωn
T FX[n]),
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where j : Y → FY is the natural strictly f -fibrant model for a T -spectrum Y . The
natural map η : X → QT X is the composite

X
j−→FX → lim−→

n

Ωn
T FX[n]

j−→F ( lim−→
n

Ωn
T FX[n]).

The functor X �→ QT X preserves strict f -equivalences. In effect, if the map
f : X → Y is a strict f -equivalence, then all induced maps

Ωk
T FXn+k → Ωk

T FYn+k

are f -equivalences (even sectionwise equivalences), as is the induced map

lim−→
k

Ωk
T FXn+k → lim−→

k

Ωk
T FY n+k ,

and the claim follows.
More generally, Lemma 7.7 implies that inductive colimits preserve f -equiva-

lences in the category of simplicial presheaves, in the sense that if κ is a limit ordinal
and Xs → Ys is a natural transformation of f -equivalences defined for s < κ , then
the induced map

lim−→
s<κ

Xs → lim−→
s<κ

Ys

is an f -equivalence of simplicial presheaves. It follows that strict f -equivalences of
T -spectra are preserved by inductive colimits, in the same sense.

Lemma 7.7 also implies that stable f -equivalences are preserved by inductive
colimits.

Lemma 10.31 Suppose that T is compact up to f -equivalence. Then the canonical
map

lim−→
s<κ

QT Xs → QT ( lim−→
s<κ

Xs) (10.9)

is a strict f -equivalence.

Proof We can assume that all of the objects Xs are strictly f -fibrant. Then the
composites

lim−→
s<κ

Ωn
T Xs[n] → Ωn

T ( lim−→
s<κ

Xs)[n] → Ωn
T F ( lim−→

s<κ

Xs)[n]

are strict f -equivalences by the compactness assumption, and it follows that the map
(10.9) is a strict f -equivalence.

Theorem 10.32 Suppose that T is compact up to f -equivalence. Then the map

η : X → QT X
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is a natural stable f -fibrant model for all T -spectra X.

Proof The T -spectrum QT X is stably f -fibrant by construction, the compactness
of T, and Corollary 10.26.

Suppose that the map j : X → LX is a natural injective (equivalently, stable
f -fibrant) model. There is a commutative diagram

X
j

��

η

��

LX

η

��
QT X

j∗
�� QT LX

We show that the maps η : LX → QT LX and j∗ : QT X → QT LX are strict
f -equivalences. It then follows that the mapη : X → QT X is a stable f -equivalence.

If Z is stable f -fibrant, the map η : Z → QT Z consists of the maps

Zn σ∗−→ ΩT Zn+1 ΩT σ∗−−→ Ω2
T Zn+2 Ω2

T σ∗−−→ · · · → lim−→ Ωk
t Zn+k j−→F ( lim−→ Ωk

t Zn+k),

all of which are f -equivalences, so that the map η : Z → QT Z is a strict f -
equivalence. In particular, the map η : LX → QT LX is a strict f -equivalence.

Say that a map f : X → Y of T -spectra is an equivalence after level N if the
component maps Xk → Y k are f -equivalences for k > N . If f : X → Y is an
equivalence after level N , then the map Ωk

T FX[k] → Ωk
T FY [k] is a (sectionwise)

strict equivalence for k > N , and so the map QT X → QT Y is a strict f -equivalence.
Each generating cofibration for the set Sf is an equivalence after level N for some

N , as are all of its pushouts. It follows that the stable f -fibrant model j : X → LX

can be written as the composite

X = X0 → X1 → . . .

of maps between objects Xs , s ∈ β for some regular cardinal β such that each
map Xs → Xs+1 induces a strict equivalence QT Xs → QT Xs+1, and where Xt =
lim−→s<t

Xs for all limit ordinals t < β. It follows from Lemma 10.31 that the map

X = X0 → lim−→
s<β

Xs = LX

induces a strict equivalence

j∗ : QT X → QT LX.

Corollary 10.33 Suppose that T is compact up to f -equivalence. Then a map
α : X → Y of T -spectra is a stable f -equivalence if and only if the induced map
α∗ : QT X → QT Y is a strict f -equivalence.
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Say that the f -local model structure on the category of simplicial presheaves
satisfies inductive colimit descent if, given an inductive system s �→ Xs of f -fibrant
pointed simplicial presheaves, and an f -fibrant model

j : lim−→
s

Xs → F ( lim−→
s

Xs),

then the map j is a local weak equivalence.

Example 10.34 The motivic model structure (Example 7.20) satisfies inductive
colimit descent, since an inductive colimit of motivic fibrant simplicial presheaves
satisfies motivic descent.

The injective model structure satisfies inductive colimit descent automatically.

The following result generalizes observations of Examples 10.29 and 10.30:

Lemma 10.35 Suppose that the f -local model structure on the category of simpli-
cial presheaves satisfies inductive colimit descent. Then all finite pointed simplicial
sets K are compact up to f -equivalence.

Proof Suppose that s �→ Xs is an inductive system of f -fibrant pointed simplicial
presheaves. Suppose that the map j : lim−→s

Xs → F ( lim−→s
Xs) is an f -fibrant model,

and consider the composite

lim−→
s

ΩK (Xs)
c−→ΩK ( lim−→

s

Xs)
ΩK (j )−−−→ ΩK (F ( lim−→

s

Xs)).

Here, the map c is an isomorphism since K is finite. The map j is a local weak equiv-
alence by the inductive colimit descent assumption, and it follows from Lemma 5.20
that the map ΩK (j ) is a local weak equivalence.

Theorem 10.36 Suppose that T is compact up to f -equivalence, and that the f -
local model structure for simplicial presheaves satisfies inductive colimit descent.
Suppose also that the f -local structure for simplicial presheaves is right proper.
Then the f -local stable model structure on the category of T -spectra is right proper.

Proof Suppose given a pullback diagram

Z ×Y X
g∗ ��

��

X

p

��
Z

g

�� Y

(10.10)

of T -spectra such that p is a strict f -fibration and g is a stable f -equivalence. We
show that the map g∗ is a stable f -equivalence.

The strict f -local model structure is right proper, on account of the assumption
that the f -local structure on the category of simplicial presheaves is right proper. We
can therefore assume that all objects in the diagram (10.10) are strictly f -fibrant.
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Write

QT X = lim−→
n

Ωn
T X[n].

The induced diagram

QT (Z ×Y X)
QT f∗

��

��

QT X

QT p

��

QT Z
QT f

�� QT Y

is a pullback. The map QT p is a sectionwise Kan fibration and hence a local fibration
in all levels, and the map QT f is a local weak equivalence in all levels by the inductive
colimit descent assumption and Theorem 10.32. It follows from Lemma 5.20 that the
map QT f∗ is a local weak equivalence in all levels, and so the map QT f∗ is a local
weak equivalence in all levels, again by the inductive colimit descent assumption.
The map f∗ : Z ×Y X → X is therefore a stable f -equivalence.

Corollary 10.37 Suppose that T is compact up to equivalence and that the f -
local model structure for simplicial presheaves satisfies inductive colimit descent.
Suppose that the f -local structure for simplicial presheaves is proper. Suppose that
p : X → Y is a strict f -fibration. Then p is a stable f -fibration if and only if the
diagram

X
i ��

p

��

LX

Lp

��
Y

i

�� LY

is strictly homotopy cartesian.

Proof This result is a formal consequence of the right properness given by
Theorem 10.36. See the proof of Lemma 10.9.

Example 10.38 The motivic stable category
Recall the setup for the motivic model structure for simplicial presheaves, over a

base scheme S, from Example 7.20. The motivic model structure is right proper by
Theorem 7.27.

It is common to write T for the projective line P
1 over S, pointed by some global

section. The scheme P
1 (or rather, the sheaf represented by the scheme) is compact

up to f -equivalence, as in Example 10.29.
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The resulting stable category of T -spectra is the motivic stable category of Morel
and Voevodsky [57, 82].

The natural map η : X → QT X defines a natural stable motivic fibrant model for
T -spectra X by Theorem 10.32, and the motivic stable model structure of T -spectra
is proper by Theorem 10.36.

Motivic stable model structures of S1-spectra and Gm-spectra are also in common
use. Both model structures have “standard” natural stable motivic fibrant models and
are proper, by Theorem 10.32 and Theorem 10.36, respectively.

Example 10.39 Presheaves of Spectra
In this example, the underlying model structure for simplicial presheaves is

the injective model structure, and T is the simplicial circle S1. The object S1 is
a finite pointed simplicial set, and is therefore compact up to equivalence as in
Example 10.30.

The category of S1-spectra is the category of presheaves of spectra, and the stable
model structure for the category of S1-spectra arising from Theorem 10.20 coincides
with the standard model structure on presheaves of spectra given by Theorem 10.5.

To see this, observe that the two model structures have the same cofibrations, by
definition. Also, from Theorem 10.32, a map f : X → Y of S1-spectra is a stable
equivalence for Theorem 10.20 if and only if the map

f∗ : QS1X → QS1Y

is a levelwise equivalence, and this is true if and only if f induces isomorphisms
π̃kX → π̃kY in all sheaves of stable homotopy groups.

For this last point, there are natural sheaf isomorphisms

π̃k(QS1Xn, ∗) ∼= π̃k−nX.

There is a potential issue, in that the sheaves of homotopy groups π̃k(QS1Xn, ∗)
involve only a single choice of base point instead of all local choices, but one gets
around this by using the fact that the simplicial presheaves QS1Xn are presheaves of
H -spaces, so that the choice of base point does not matter.

The ordinary stable model structure on presheaves of spectra is proper from
two points of view; one can either use a long exact sequence comparison, or
Theorem 10.36 to prove right properness.

The standard recognition principle for a stable fibration of presheaves of spectra
says that p : X → Y is a stable fibration if and only if it is a strict fibration and the
diagram

X ��

p

��

QS1X

p∗
��

Y �� QS1Y
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is strictly homotopy cartesian. This is proved in both Lemma 10.9 and Corol-
lary 10.37, by using essentially the same argument based on right properness of
the model structure.

More generally, suppose L is a finite pointed simplicial set. Then L is compact up
to equivalence, and there is a stable model structure on L-spectra for which a map
f : X → Y is a stable equivalence if and only if the induced map QLX → QLY is
a levelwise equivalence, by Corollary 10.33. It is, however, rather hard to say more
than this without knowing that each simplicial presheaf QLXn has something like
an H -space structure.

There would be such an H -space structure if L is an S1-suspension L = S1∧K for
some finite pointed simplicial presheaf K . In that case, there is a functorial bigraded
system of sheaves of stable homotopy groups which describes stable equivalence.
See Sect. 10.5.

Every pointed simplicial presheaf map α : T ′ → T induces a functor

α∗ : SptT (C) → SptT ′ (C).

If X is a T -spectrum, then α∗X is the T ′-spectrum with

α∗Xn = Xn

for n ≥ 0, and with bonding maps given by the composites

T ′ ∧ Xn α∧1−−→ T ∧ Xn σ−→Xn+1,

where the morphisms σ are the bonding maps of the T -spectrum X.
The functor α∗ preserves strict f -equivalences and strict f -fibrations in the sense

of Remark 10.24.

Theorem 10.40 Suppose that the map α : T ′ → T is an f -equivalence of pointed
simplicial presheaves. Suppose that the objects T and T ′ are compact up to f -
equivalence. Then the functor

α∗ : SptT (C) → SptT ′ (C)

preserves stable f -equivalences, and the resulting functor

α∗ : Ho (SptT (C)) → Ho (SptT ′ (C))

is an equivalence of f -local stable homotopy categories.

Proof It suffices, by Lemma 10.28, to assume that the map α is a cofibration. In this
case, the functor α∗ preserves cofibrations.

The natural weak equivalences

ΩT Y
α∗−→ ΩT ′Y



10.3 Stable Model Structures for T-spectra 381

for f -fibrant simplicial presheaves Y induce natural f -equivalences

α∗′
: QT Xn 
−→ QT ′ (α∗X)n

for T -spectra X. It follows that the functor α∗ preserves and reflects stable
f -equivalences. The functor α∗ also preserves stably f -fibrant objects.

Every stable f -fibrant T ′-spectrum X is of the form α∗X for some stable f -fibrant
T -spectrum X with X

n = Xn. The bonding maps σ : T ∧Xn → Xn+1 are found by
solving lifting problems

T ′ ∧ Xn
σ ��

α∧1 ��

Xn+1

T ∧ Xn
σ

++

One finishes the proof by showing that the function

α∗ : π (A, X) → π (α∗A, α∗X)

in simplicial homotopy classes of maps is a bijection for all stably f -fibrant T -spectra
X and cofibrant T -spectra A. This is shown by verifying the following; given solid
arrow commutative diagrams

A
β

��

j

��

X

B

g

�� α∗A
α∗β

��

α∗j
��

α∗X

α∗B
f

����������

with A as cofibrant, j a cofibration and X stable f -fibrant, then the dotted arrow g

exists making the diagram of T -spectra commute, and there is a homotopy α∗g 
 f ,
which is constant at α∗β on α∗A. This is proved by induction on levels.

Example 10.41 In motivic homotopy theory (Examples 7.20 and 10.38), the pa-
rameter object T is the projective line P

1 or any of its weakly equivalent compact
models.

The standard Zariski covering of P
1 given by the pushout (and pullback)

A
1 − 0 ��

��

A
1

��
A

1 ��
P

1

defines a homotopy cofibre square in the motivic model structure on the category
of simplicial presheaves on the Nisnevich site. The object A

1 − 0 is the scheme
underlying the multiplicative group-scheme Gm. The contractibility of the affine line
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A
1 implies that P

1 can be identified with either an S1-suspension or a quotient in the
motivic homotopy category, in the sense that there are (zig-zags of) motivic weak
equivalences

P
1 
 S1 ∧ Gm 
 A

1/(A1 − 0)

through compact objects, and all of these interpretations are useful. Theorem 10.40
implies that there is an equivalence of motivic stable categories

Ho (Spt
P1 (Sm/S)Nis)) 
 Ho (SptS1∧Gm

(Sm/S)Nis)).

This equivalence is used to generate both the motivic stable homotopy groups and the
exact sequences relating them, which are found in Sect. 10.5—see Remark 10.73.

The simplicial presheaf S1 ∧ Gm is a nonabelian version of the motive Z(1) of
[78] and Example 8.49. The S1-suspension functor X �→ S1 ∧ X corresponds to the
shift C �→ C[−1] of chain complexes.

Corollary 10.42 Suppose that T is compact up to f -equivalence, and suppose given
pointed simplicial presheaves Y n, together with maps σ , σ ′ : T ∧Y n → Yn+1, n ≥ 0
such that all maps σ and σ ′ coincide in the f -local homotopy category of pointed
simplicial presheaves.

Let Y0 be the T -spectrum with spaces Yn and bonding maps σ : T ∧Y n → Yn+1,
and let Y1 be the T -spectrum with spaces Yn and bonding maps σ ′ : T ∧Yn → Yn+1.
Then the T -spectra Y0 and Y1 are stable f -equivalent.

Proof We can assume that all simplicial presheaves Yn are f -fibrant. All simplicial
presheaves are cofibrant, so there is a collection of naive homotopies

hn : T ∧ Δ1
+ ∧ Yn ∼= T ∧ Yn ∧ Δ1

+ → Yn+1

between the maps σ , σ ′ : T ∧ Yn → Yn+1. These homotopies determine a (T ∧
Δ1+)-spectrum Z which restricts to the T -spectra Y0 and Y1 by composing with the
inclusions i0, i1.

The finite pointed simplicial set Δ1+ is compact up to f -equivalence, since there
is a weak

ΩΔ1+ (X) 
 hom(Δ1, X)

with the unpointed function complex, which is locally weakly equivalent to X for
all locally fibrant pointed simplicial presheaves X. It follows that the smash product
T ∧ Δ1+ is compact up to f -equivalence, by Lemma 10.28.

The inclusions i0, i1 : T ∧ Δ1+ are both split by the projection s : T ∧ Δ1+ → T ,
and all of these maps are f -equivalences.

It is a consequence of Theorem 10.40 that the (T ∧ Δ1+)-spectrum Z is sta-
ble equivalent to an object s∗V , for some T -spectrum V and so there are stable
equivalences

Y0 = i∗0Z 
 i∗0 s∗V = V = i∗1 s∗V 
 i∗1Z = Y1.
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Remark 10.43 Compare the proof of Corollary 10.42 with (for example) the proof
of Corollary 1.15 of [56], which is a similar result for presheaves of spectra. The
latter is far more traditional, in that its proof uses the classical telescope construction.

10.4 Shifts and Suspensions

Suppose, as before, that f : A → B is a cofibraton of pointed simplicial presheaves.
Recall that if X is a T -spectrum and n is an integer, then the shifted T -spectrum

X[n] is defined by

X[n]k =
{

Xn+k if n + k ≥ 0, and

∗ if n + k < 0.

Proposition 10.44

1) The shift functors

[−1] : SptT (C) � SptT (C) : [1]

define a Quillen self-equivalence of the f -local stable model structure on the
category of T -spectra.

2) The shift functors X �→ X[n] preserve and reflect stable f -equivalences.

Proof It is a consequence of Corollary 10.26 that if the T -spectrum Z is stable
f -fibrant, then the shifted T -spectrum Z[1] is stable f -fibrant. It follows that the
left adjoint functor X �→ X[−1] preserves stable equivalences. This functor also
preserves cofibrations.

The functor X �→ X[1] preserves the generators of the set of cofibrations Sf , and
preserves colimits. It follows that if j : X → LX is the stable f -fibrant model (or
f -injective model) for a T -spectrum X, then the shifted map j [1] : X[1] → LX[1]
is a stable f -fibrant model for X[1]. It follows that the functor X �→ X[1] preserves
stable f -equivalences.

The canonical map

ε : X[−1][1] → X

is a natural isomorphism.
Suppose that the T -spectrum Z is stable f -fibrant, and that j : Z[1][−1] →

W is a stable f -fibrant model for the T -spectrum Z[1][−1]. The shifted map (j ·
η)[1] is a stable f -equivalence of stable f -fibrant T -spectra, and is therefore a level
equivalence. It follows that the map j · η is a stable f -equivalence, so that the map
η : Z → Z[1][−1] is a stable f -equivalence. Shifts preserve stable f -equivalences,
so the map

η : X → X[1][−1]
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is a stable f -equivalence for all T -spectra X.
It follows that the shift functors X �→ X[n] preserve and reflect stable f -equiva-

lences for all n = ±1. The claim for general n also follows.

Say that the parameter object T is cycle trivial if the automorphism

c1,2 : T ∧3 → T ∧3,

which permutes smash factors by the shuffle

x1 ∧ x2 ∧ x3 �→ x2 ∧ x3 ∧ x1

is the identity on T ∧3 in the f -local pointed homotopy category for simplicial
presheaves.

Example 10.45

1) The circle S1 is cycle trivial for all local homotopy categories of pointed simplicial
presheaves, since the permutation c1,2 has trivial degree on S3.

2) The projective line T 
 P
1 is cycle trivial in the motivic model structure for

pointed simplicial presheaves on the smooth Nisnevich site of a scheme S. In
effect, there is a motivic weak equivalence

P
1 
 A

1/(A1 − 0),

and an isomorphism

(A1/(A1 − 0))∧3 ∼= A
3/(A3 − 0).

The action of c1,2 on A
3/(A3 − 0) is induced by the action

Gl3 × A
3 → A

3,

of the general linear group Gl3. The element c1,2 ∈ Sl3 ⊂ Gl3 is a product of
elementary transformation matrices, and so there is a path A

1 → Gl3 from c1,2

to the identity matrix. This path induces an algebraic homotopy

A
3/(A3 − 0) × A

1 → A
3/(A3 − 0)

from c1,2 to the identity on A
3/(A3 − 0). See also Lemma 3.13 of [57].

3) If the objects T and T ′ are cycle trivial then the smash product T ∧ T ′ is cycle
trivial. The proof is an exercise.

We show that the T -suspension functor X �→ X ∧ T and the T -loops functor
Y �→ hom(T , F (Y )) are inverse to each other in the stable homotopy category,
subject to the assumptions that the parameter object T is compact up to f -equivalence
and is cycle trivial. This is the substance of Theorem 10.46 below.

The proof of Theorem 10.46 uses the layer filtration LnX, n ≥ 0, for a T -spectrum
X.
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The nth layer LnX of X is defined by the sequence of pointed simplicial
presheaves

X0, . . . , Xn, T ∧ Xn, T ∧ T ∧ Xn, . . . (10.11)

There are natural maps LnX → Ln+1X and maps LnX → X, which together induce
an isomorphism

lim−→
n

LnX
∼=−→ X.

There is a sequence of pushouts

Σ∞
T (T ∧ Xn)[−n − 1] ��

��

LnX

��
Σ∞

T Xn+1[−n − 1] �� Ln+1X

(10.12)

The maps LnX → Ln+1X are level cofibrations if the T -spectrum X is cofibrant.
There is a natural stable equivalence

Σ∞
T Xn[−n]


−→ LnX

for each n and T -spectrum X.

Theorem 10.46 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the composite

X → Hom(T , X ∧ T )
η∗−→ Hom(T , QT (X ∧ T )),

which is defined by the adjunction map and the stable fibrant model η : X ∧ T →
QT (X ∧ T ), is a stable f -equivalence for all T -spectra X.

Proof The map η : X ∧ T → QT (X ∧ T ) factors as a composite

X ∧ T
j−→F (X ∧ T )

η̃−→QT (X ∧ T ),

where the map j is the strictly f -fibrant model and η̃ is a stable equivalence of strictly
f -fibrant T -spectra. The induced map

η̃∗ : Hom(T , F (X ∧ T )) → Hom(T , QT (X ∧ T ))

is a stable f -equivalence by Lemma 10.48 below, so it suffices to show that the
composite

X → Hom(T , X ∧ T )
j∗−→ Hom(T , F (X ∧ T )) (10.13)

is a stable f -equivalence
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The question of whether or not the map (10.13) is a stable f -equivalence is
independent of the choice of representative for the stable homotopy type of X and is
insensitive to shifts. This map also respects filtered colimits in X, by a compactness
argument. A layer filtration argument then implies that it is enough to assume that X

is a suspension spectrum Σ∞
T K for some pointed simplicial presheaf K . This claim

is proved in Lemma 10.47.

In all that follows, we shall write T p for the p-fold wedge T ∧p, for all pointed
simplicial presheaves T . We shall also write Sq for the q-fold wedge (S1)∧q of the
circle S1, when such an object appears.

Lemma 10.47 Suppose given the conditions of Theorem 10.46, and that K is a
pointed simplicial presheaf. Then the composite map

Σ∞
T K → Hom(T , (Σ∞

T K) ∧ T ))
j∗−→ Hom(T , F ((Σ∞

T K) ∧ T ))

is a stable equivalence.

Proof If Y is a T -spectrum, then the homotopy group presheaves πr (QT Y )n(U ) of
the stable fibrant model QT Y are computed by the filtered colimits

[Sr , Yn]U
Σ−→ [T ∧ Sr , Yn+1]U

Σ−→ · · ·
where [K , X]U = [K|U , X|U ] means homotopy classes of maps of the restrictions
to the site over U . The suspension homomorphism Σ is induced by smashing with
T on the left; it takes a morphism θ : T k ∧ Sr → Yn+k to the composite

T ∧ T k ∧ Sr T ∧θ−−→ T ∧ Yn+k σ−→Yn+k+1.

If Y is level f -fibrant, then the adjunction isomorphisms

[T k ∧ Sr , ΩT Yn+k]U ∼= [T k ∧ Sr ∧ T , Yn+k]U

fit into commutative diagrams

[T k ∧ Sr , ΩT Yn+k]U
∼= ��

Σ

��

[T k ∧ Sr ∧ T , Yn+k]U

Σ

��
[T k+1 ∧ Sr , ΩT Yn+k+1]U ∼=

�� [T k+1 ∧ Sr ∧ T , Yn+k+1]U

It follows that the map in presheaves of stable homotopy groups which is induced
by the composite

Σ∞
T K → Hom(T , (Σ∞

T K) ∧ T )
j∗−→ Hom(T , F ((Σ∞

T K) ∧ T ))

is isomorphic to the filtered colimit of the maps
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[T k ∧ Sr , T n+k ∧ K]U
∧T−→ [T k ∧ Sr ∧ T , T n+k ∧ K ∧ T ]U

which are induced by smashing with T on the right.
Suppose that φ : K ∧ T → X ∧ T is a map of pointed simplicial presheaves, and

write ct (φ) for the map T ∧K → T ∧X arises from φ by conjugation with the twist
of smash factors. There is a commutative diagram

T ∧ (T 2 ∧ K)

ct (T 2∧φ)
��

T 2 ∧ K ∧ T
T 2∧t ��

T 2∧φ

��

t�� T 2 ∧ T ∧ K

T 2∧ct (φ)

��
T ∧ (T 2 ∧ X) T 2 ∧ X ∧ T

T 2∧t

��
t

�� T 2 ∧ T ∧ X

and hence a diagram

T 3 ∧ K
c1,2∧K

��

ct (T 2∧φ)
��

T 3 ∧ K

T 2∧ct (φ)
��

T 3 ∧ X
c1,2∧X

�� T 3 ∧ X

We are assuming that the map c1,2 is the identity in the homotopy category, and
it follows that the maps in the homotopy category represented by T 2 ∧ ct (φ) and
ct (T 2 ∧ φ) coincide.

We therefore have commutative diagrams

[T k ∧ Sr, T n+k ∧ K]U
T 2∧ ��

∧T

��

[T 2 ∧ T k ∧ Sr, T 2 ∧ T n+k ∧ K]U

∧T

��
[T k ∧ Sr ∧ T, T n+k ∧ K ∧ T ]U

T 2∧ ��

ct ∼=
��

[T 2 ∧ T k ∧ Sr ∧ T, T 2 ∧ T n+k ∧ K ∧ T ]U

ct∼=
��

[T ∧ T k ∧ Sr, T ∧ T n+k ∧ K]U
T 2∧

�� [T 3 ∧ T k ∧ Sr , T 3 ∧ T n+k ∧ K]U

The vertical composites coincide with the map T ∧ induced by smashing on the left
with T . It follows from a cofinality argument that the induced map on the filtered
colimits is an isomorphism.

Lemma 10.48 Suppose that T is compact up to f -equivalence, and that X and Y

are strictly f -fibrant T -spectra. Then the map α : X → Y is a stable f -equivalence
if and only if the induced map

α∗ : Hom(T , X) → Hom(T , Y )

is a stable f -equivalence.
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Proof There is a commutative diagram

ΩT Xn
σ∗ ��

ΩT σ∗ ��''
'''

'''
''

ΩT ΩT Xn+1

τ∼=
��

ΩT ΩT Xn+1

where τ flips loop factors. The horizontal map σ∗ is the adjoint bonding map

σ∗ : Hom(T , Xn) → ΩT Hom(T , Xn+1)

for the T -spectrum Hom(T , X).
This diagram is natural in strictly fibrant T -spectra X, and it follows that there

are natural f -equivalences

QT (Hom(T , X))n

−→ ΩT (QT Xn)


←− QT Xn−1

for all such X. The claim follows.

Corollary 10.49 Suppose that T is compact up to f -equivalence and is cycle trivial.
Suppose that the T -spectrum Y is strictly f -fibrant. Then the evaluation map

ev : Hom(T , Y ) ∧ T → Y

is a stable f -equivalence.

Proof Take a strictly f -fibrant model j : Hom(T , Y ) ∧ T → F (Hom(T , Y ) ∧ T )
and form the diagram

Hom(T , Y ) ∧ T
j

��

ev

��

F (Hom(T , Y ) ∧ T )

ε

!!���
���

���
���

���
�

Y

in the strict homotopy category. We show that the map ε∗ = Hom(T , ε) is a stable
f -equivalence, and then apply Lemma 10.48.

There is a commutative diagram

Hom(T , Y )
η
��

1 ����
���

���
���

Hom(T , Hom(T , Y ) ∧ T )
j∗ ��

ev∗
��

Hom(T , F (Hom(T , Hom(T , Y ) ∧ T ))

ε∗;;;;;;
;;;;

;;;;
;;;;

;

Hom(T , Y )
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in which the horizontal composite is a stable f -equivalence by Theorem 10.46, so
that ε∗ is a stable f -equivalence.

The following result now has an easy proof:

Theorem 10.50 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the T -suspension and T -loops functors induce a Quillen equivalence

∧T : SptT (C) � SptT (C) : Hom(T , )

for the f -local stable model structure on the category of T -spectra.

Every T -spectrum X determines a (T ∧ T )-spectrum R(X) with

R(X)n = X2n,

and bonding maps

T ∧ T ∧ X2n T ∧σ−−→ T ∧ X2n+1 σ−→X2n+2.

The assignment X �→ R(X) is functorial.
Every (T ∧ T )-spectrum Y determines a T -spectrum L(Y ) with L(Y )2n = Yn,

L(Y )2n+1 = T ∧ Yn, with the bonding maps

T ∧ L(Y )2n → L(Y )2n+1

defined by identity maps (as in a suspension spectrum), and with the map

T ∧ L(Y )2n+1 → L(Y )2n+2

defined to be

T ∧ L(Y )2n+1 = T ∧ T ∧ Yn σ−→Yn+1

where σ is the bonding map if the (T ∧ T )-spectrum Y . The assignment Y �→ L(Y )
is again functorial.

The functor L is left adjoint to the functor R. The unit map

η : Y ∼= RL(Y )

for the adjunction is a natural isomorphism. The counit map

ε : LR(X) → X

is the identity in evenly indexed levels, and is the map σ : T ∧ X2k → X2k+1 in odd
levels.

The following result is a consequence of Theorem 10.32:

Proposition 10.51 Suppose thatT is compact up tof -equivalence. Then the natural
map

ε : LR(X) → X
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is a stable f -equivalence for all T -spectra X, and the functors L and R determine
a Quillen equivalence

L : SptT ∧T (C) � SptT (C) : R.

Proof The object T ∧ T is compact up to f -equivalence, by Lemma 10.28.
The map ε : LR(X) → X is an isomorphism in evenly indexed levels and

therefore induces f -equivalences

ε∗ : QT (LR(X))n → QT Xn

by a cofinality argument. It follows that the map ε is a stable f -equivalence.
The functor R preserves stable f -fibrant objects. The functor L preserves cofi-

brations, and therefore L preserves stable f -trivial cofibrations. The functors L and
R therefore form a Quillen adjunction.

Recall that the fake T -suspension ΣT X of a T -spectrum X is defined by

(ΣT X)n = T ∧ Xn,

and has bonding maps

T ∧ T ∧ Xn T ∧σ−−→ T ∧ Xn+1

where the maps σ : T ∧ Xn → Xn+1 are the bonding maps of X.

Lemma 10.52 The bonding maps for X define a natural stable equivalence

σ : ΣT X → X[1]

for all T -spectra X.

Proof The functors X �→ ΣT X and X �→ X[1] both preserve stable equivalences
and filtered colimits. They also preserve shifts of the form Y �→ Y [n] with n ≥ 0.
Thus, by replacing X by its layers, it is enough to show that the map

σ : ΣT (Σ∞
T K) → Σ∞

T K[1]

is a stable equivalence for each pointed simplicial presheaf K . The map σ is an
isomorphism for all suspension T -spectra.

Lemma 10.52 holds in great generality—there are no conditions on the object T .
The following result is a little more subtle:

Proposition 10.53 Suppose that T is compact up to f -equivalence and is cycle
trivial. Then there is a natural stable equivalence

ΣT X 
 X ∧ T

for all T -spectra X.
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Proof The twist isomorphisms

τ : Xn ∧ T
∼=−→ T ∧ Xn

define bonding maps

T ∧ T ∧ Xn T ∧τ−−→ T ∧ Xn ∧ T
σ∧T−−→ Xn+1 ∧ T

τ−→ T ∧ Xn+1,

which differ from the bonding maps on the fake T -suspension ΣT X by composition
with the twist automorphism τ : T ∧T → T ∧T . The assumption that the permutation

c1,2 : T ∧3 → T ∧3

is the identity map in the f -local homotopy category implies that the (T ∧ T )-
spectra R(ΣT X) and R(X ∧ T ) are naturally stable equivalent, by Corollary 10.42.
It follows from Proposition 10.51 that the T -spectra ΣT X and X ∧ T are naturally
stable equivalent.

Corollary 10.54 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then we have the following:

1) There are natural stable f -equivalences

X ∧ T 
 ΣT X 
 X[1]

for all T -spectra X.
2) There are natural stable f -equivalences

Hom(T , X) 
 ΩT X 
 X[−1]

for all strictly f -fibrant T -spectra X.

Proof Statement 1) is proved in Lemma 10.52 and Proposition 10.53. It follows that
the derived adjoints of the functors in statement 1) are also naturally stable equivalent,
giving statement 2).

10.5 Fibre and Cofibre Sequences

We continue to suppose that the map f : A → B is a cofibration of simplicial
presheaves.

We shall need a suitable theory of bispectra. We begin with an example.
Suppose that S and T are arbitrary pointed simplicial presheaves, and suppose

that X is an (S ∧ T )-spectrum with bonding maps

σ : S ∧ T ∧ Xn → Xn+1.
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In all that follows, let τ : X ∧ Y
∼=−→ Y ∧ X be the automorphism which flips smash

factors.
The (S∧T )-spectrum X determines a T -spectrum object X∗,∗ in S-spectra, which

at T -level n is the S-spectrum

X∗,n : X0 ∧ T ∧n,X1 ∧ T ∧(n−1), . . .,

Xn−1 ∧ T , Xn, S ∧ Xn, S∧2 ∧ Xn, . . .

The bonding maps of the S-spectrum X∗,n are the maps σS which are defined by the
composites

S ∧ Xn−j ∧ T ∧j S∧τ∧T ∧(n−1)−−−−−−−→ S ∧ T ∧ Xn−j ∧ T ∧(j−1)

σ∧T ∧(n−1)−−−−−→ Xn−(j−1) ∧ T ∧(j−1)

up to level n − 1 (i.e. for j ≥ 1) and are the identities

S ∧ S∧k ∧ Xn = S∧(k+1) ∧ Xn

for k ≥ 0. There is a map

σT : X∗,n ∧ T → X∗,n+1

of S-spectra which is the identity map up to level n, and consists of the composites

S∧k ∧ Xn ∧ T
S∧k∧τ−−−→ S∧(k−1) ∧ S ∧ T ∧ Xn S∧(k−1)∧σ−−−−−→ S∧(k−1) ∧ Xn+1

in higher levels.
Formally, a T -spectrum object Y in S-spectra consists of S-spectra Yn and maps

of S-spectra

σT : Yn ∧ T → Yn+1.

The object X∗,∗ which arises from an (S ∧ T )-spectrum X as above is a functorially
defined example.

We also say that a T -spectrum object Y in S-spectra is an (S, T )-bispectrum. One
can specify the (S, T )-bispectrum Y by a list Yp,q of pointed simplicial presheaves
with p, q ≥ 0, together with bonding maps σS : S ∧ Yp,q → Yp+1,q and σT :
Yp,q ∧ T → Yp,q+1 such that the diagrams

S ∧ Xp,q ∧ T
σS∧T

��

S∧σT

��

Xp+1,q ∧ T

σT

��
S ∧ Xp,q+1

σS

�� Xp+1,q+1

commute.



10.5 Fibre and Cofibre Sequences 393

A morphism X → Y of (S, T )-bispectra consists of a family of pointed simplicial
presheaf maps Xp,q → Yp,q which respects bonding maps in both the S and T

directions. Write SptT,S(C) for the corresponding category.
We say that a (T, T )-bispectrum is a T -bispectrum.
Each (S, T )-bispectrum Z has a functorially associated diagonal (S∧T )-spectrum

dZ with

(dZ)n = Zn,n,

and with bonding maps given by the composites

S ∧ T ∧ Zn,n S∧τ−−→ S ∧ Zn,n ∧ T
S∧σT−−→ S ∧ Zn+1,n σS−→ Zn+1,n+1.

There is a natural isomorphism

d(X∗,∗) ∼= X,

which is defined for all (S ∧ T )-spectra X.

Remark 10.55 Say that a map X → Y is a strict f -equivalence of (S, T )-spectra if
all maps Xp,q → Yp,q are f -equivalences. Any strict f -equivalence X → Y induces
a strict f -equivalence dX → dY of (S ∧ T )-spectra.

Say that a map X → Y of (S, T )-bispectra is a strict f -fibration if all maps
Xp,q → Yp,q are f -fibrations. By analogy with Propositions 10.15 and 10.4, there
is a strict model structure on the category of (S, T )-bispectra, for which the weak
equivalences are the strict f -equivalences and the fibrations are the strictf -fibrations.

The cofibrations can be defined within either S-spectra or T -spectra. It is an
exercise to show that an (S, T )-bispectrum A is cofibrant if and only if the bonding
maps σS : S ∧ Ap,q → Ap+1,q and σT : Ap,q ∧ T → Ap,q+1 and all maps

(S ∧ Ap,q+1) ∪(S∧Ap,q∧T ) (Ap+1,q ∧ T ) → Ap+1,q+1

are cofibrations of pointed simplicial presheaves.

Lemma 10.56 Suppose that the parameter objects S and T are compact up to f -
equivalence. Suppose that a map g : X → Y of (S, T )-bispectra consists of stable
f -equivalences of S-spectra X∗,n → Y ∗,n for all n ≥ 0. Then the induced map
dX → dY is a stable f -equivalence of (S ∧ T )-spectra.

Proof We can assume that the (S, T )-bispectra X and Y are strictly f -fibrant in the
sense that all simplicial presheaves Xp,q and Yp,q are f -fibrant.

Consider the natural diagram
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...
...

Ω2
SXn+2,n ��

��

ΩT Ω2
SXn+2,n+1 ��

��

. . .

ΩSX
n+1,n ��

��

ΩT ΩSX
n+1,n+1 ��

��

. . .

Xn,n ��

��

ΩT Xn,n+1 ��

��

. . .

which is associated to a strictly f -fibrant (S, T )-spectrum X. The filtered colimit of
this diagram coincides with the object QS∧T (dX)n up to f -equivalence. The map g

induces f -equivalences

lim−→ Ω
p

S Xn+p,m → lim−→ Ω
p

S Y n+p,m

by assumption, and g therefore induces f -equivalences

lim−→ Ω
q

T Ω
p

S Xn+p,m → lim−→ Ω
q

T Ω
p

S Y n+p,m

by the compactness of T. It follows that g induces f -equivalences

QS∧T (dX)n → QS∧T (dY )n

for all n ≥ 0, so that the induced map dX → dY is a stable f -equivalence of
(S ∧ T )-spectra.

We say that a map g : X → Y of (S, T )-bispectra is a stable f -equivalence if the
induced map g∗ : d(X) → d(Y ) is a stable f -equivalence of (S ∧ T )-spectra.

From this point of view, Lemma 10.56 says that g is a stable f -equivalence of
(S, T )-bispectra if all maps X∗,q → Y ∗,q are stable f -equivalences of S-spectra.
Similarly, the map g is a stable f -equivalence if all maps Xp,∗ → Yp,∗ are stable
f -equivalences of T -spectra.

We now specialize to (S1 ∧ T )-spectra.
We shall also assume that the f -local model for simplicial presheaves satisfies

inductive colimit descent. This assumption implies that finite pointed simplicial sets
are compact up to f -equivalence, by Lemma 10.35.

It follows in particular that the simplicial circle S1 is compact up to f -equivalence.
The class of pointed simplicial presheaves which are compact up to f -equivalence is
closed under finite smash products by Lemma 10.28, and so the simplicial presheaf
S1 ∧ T is compact up to f -equivalence.
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The results of Sect. 10.3, in particular the identification of the object QS1∧T X as
a stable fibrant model of an object X of Theorem 10.32, apply to (S1 ∧ T )-spectra
in this case. We shall make aggressive use of Lemma 10.56.

Suppose that the maps

F
i−→X

p−→Y

form a strict fibre sequence of (S1 ∧T )-spectra, in the sense that p is a strict fibration
(for the unlocalized strict model structure of Proposition 10.15) and F is the pullback
of the canonical base point along p.

Every map g : Z → W of (S1, T )-bispectra has a factorization

Z
j

��

g 

�
��

��
��

� V

q

��
W

where q is a strict fibration and j is a cofibration and a strict weak equivalence, again
unlocalized. Take such a factorization

X∗,∗ j
��

p ""%
%%

%%
%%

% V

q

��
Y ∗,∗

for the map of (S1, T )-bispectra which is induced by the (S1 ∧ T )-spectrum map
p : X → Y , and let F be the fibre of q. Then there are induced comparisons of fibre
sequences of simplicial presheaves

Fn
i ��

��

Xn
p

��



��

Yn

∼=
��

F
n,n �� Xn,n �� Yn,n

for each n ≥ 0, and it follows (by properness for pointed simplicial presheaves) that
the induced map F → dF is a strict weak equivalence.

Recall the following:

Lemma 10.57 Suppose that p : X → Y is a strict fibration of (ordinary) S1-spectra
with fibre F . Then the canonical map X/F → Y is a stable equivalence.

Lemma 10.57 is part of the general, well known yoga which says that fibre and cofi-
bre sequences coincide in ordinary stable homotopy theory. It appears, for example,
as Corollary 4.4 of [56].
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We now show that strict fibre and cofibre sequences coincide up to natural stable
f -equivalence in (S1 ∧ T )-spectra. This claim is the colloquial version of Lemmas
10.58 and 10.62, taken together.

Lemma 10.58 Suppose that p : X → Y is a strict fibration of (S1 ∧ T )-spectra,
with fibre F . Then the canonical map

X/F → Y

is a stable equivalence.

Proof Take a factorization

X∗,∗ j
��

p∗ ""%
%%

%%
%%

% V

q

��
Y ∗,∗

of the corresponding map of bispectrum objects, where q is a strict fibration and j

is a strict trivial cofibration. Let F be the fibre of q in the bispectrum category. Then
the map

V/F → Y ∗,∗

is a stable equivalence of S1-spectra in all T -levels (by Lemma 10.57), and so the
induced map

d(V/F ) → d(Y ∗,∗) = Y

is a stable equivalence of (S1 ∧ T )-spectra by Lemma 10.56. The map

X/F = d(X∗,∗/F ∗,∗) → d(V/F )

is a strict equivalence of (S1 ∧ T )-spectra since the map

F = d(F ∗,∗) → dF

is a strict equivalence.

Corollary 10.59 Suppose that p : X → Y is a strict f -fibration of (S1∧T )-spectra,
with fibre F . Then the canonical map

X/F → Y

is a stable f -equivalence.

Proof The map X/F → Y is a stable equivalence by Lemma 10.58, and is therefore
a stable f -equivalence by Corollary 10.27.

We have, so far, made a project of incorporating standard results from stable
homotopy theory into the f -local stable homotopy theory for (S1 ∧ T )-spectra.
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The following result must be proved in the f -local stable category. It expresses the
fundamental relation between f -local stable equivalences and cofibre sequences of
(S1 ∧ T )-spectra.

Lemma 10.60 Suppose that the diagram

A1
��

g1

��

A2
��

g2

��

A3

g3

��
B1

�� B2
�� B3

is a comparison of level cofibre sequences of (S1 ∧T )-spectra. If any two of the maps
g1, g2 and g3 are stable f -equivalences, then so is the third.

Proof Suppose that A is a cofibrant (S1 ∧ T )-spectrum and that ΣS1∧T A is the fake
(S1∧T )-suspension of A. Then the canonical map ΣS1∧T A → A[1] is a stable equiv-
alence, by Lemma 10.52. Shifting preserves stable equivalences (Proposition 10.44),
so the map ΣS1∧T A[−1] → A is also a stable equivalence.

The bispectrum (ΣS1∧T A)∗,∗ is naturally isomorphic to the fake S1-suspension
ΣS1ΣT A∗,∗ of the fake T -suspension of A∗,∗. The object ΣT A∗,∗ is a T -spectrum
object in S1-spectra, and it follows from classical stable homotopy theory (or
Proposition 10.53) that there are natural S1-stable equivalences

ΣT A∗,∗ ∧ S1 
 ΣS1ΣT A∗,∗,

defined levelwise with respect to T . Lemma 10.56 implies that there is a natural
stable equivalence

d(ΣT A∗,∗) ∧ S1 
 d(ΣS1ΣT A∗,∗) ∼= ΣS1∧T A,

and so there are natural stable equivalences

d(ΣT A∗,∗)[−1] ∧ S1 
 ΣS1∧T A[−1] 
 A. (10.14)

To complete the proof of the Lemma, it suffices to assume that all objects Ai and
Bi are cofibrant.

The natural equivalence (10.14) implies that the comparison of cofibre sequences
in the statement of the Lemma induces a comparison of fibre sequences

hom(B3, Z) ��

f ∗
3

��

hom(B2, Z)

f ∗
2

��

�� hom(B1, Z)

f ∗
1

��
hom(A3, Z) �� hom(A2, Z) �� hom(A1, Z)

of infinite loop spaces, for all stable f -fibrant objects Z. If any two of the vertical
maps in this diagram are weak equivalences, then so is the third.
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Remark 10.61 A simpler proof of Lemma 10.60 is available if we assume that the
object T is cycle trivial. Then the object S1 ∧ T is also cycle trivial, and there are
natural stable equivalences

A 
 ΣS1∧T A[−1] 
 (A ∧ S1 ∧ T )[−1] ∼= (A ∧ T )[−1] ∧ S1,

by Proposition 10.53.

Lemma 10.62 Suppose that the map i : A → B is a level cofibration of (S1 ∧
T )-spectra, and take a factorization

B
j

��

π ��,
,,

,,
,,

, Z

p

��
B/A

of the quotient map π : B → B/A, where j is a strict f -trivial cofibration and p

is a strict f -fibration. Let F be the fibre of p. Then the induced map A → F is a
stable equivalence.

Proof The canonical map p∗ : Z/F → B/A associated to the fibration p : Z →
B/A is a stable equivalence by Lemma 10.58. There is also a commutative diagram

A ��

��

B ��

j

��

B/A

j∗
��

F �� Z �� Z/F

and p∗j∗ = 1 so that j∗ is a stable equivalence. It follows that the map A → F in
the diagram is a stable equivalence, by the unlocalized version of Lemma 10.60.

Corollary 10.63 Suppose that the diagram

F1
��

g1

��

X1
��

g2

��

Y1

g3

��
F2

�� X2
�� Y2

is a comparison of level f -fibre sequences of (S1 ∧ T )-spectra. If any two of the
maps g1, g2 and g3 are stable f -equivalences, then so is the third.

Proof Use Corollary 10.59 and Lemma 10.60.

The following result is an immediate consequence of Corollary 10.63:
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Theorem 10.64 Supppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Then the f -local stable model structure on the category of (S1 ∧ T )-spectra is
right proper.

We already know that the f -local stable model structure is left proper, by
Theorem 7.10.

Properness for the stable model structure has a standard consequence in the ordi-
nary stable category, which appears above as Lemma 10.9 with the traditional proof.
That result is also a consequence of Lemma 7.14.

The following is the analogue of Lemma 10.9 for (S1 ∧T )-spectra, in the f -local
case:

Theorem 10.65 Supppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose that the map p : X → Y is a strict fibration of (S1 ∧ T )-spectra. Then
p is a stable f -fibration if and only if the square

X ��

p

��

QS1∧T X

p∗
��

Y �� QS1∧T Y

(10.15)

is homotopy cartesian in the strict model structure.

Proof Suppose that the diagram (10.15) is homotopy cartesian in the strict model
structure. Find a factorization

QS1∧T X

p∗ ��''
''

''
''

'

j
�� Z

q

��
QS1∧T Y

such that q is a stable f -fibration and j is a stable f -equivalence. Then the map j is a
stable f -equivalence of stable f -fibrant objects, and is therefore a strict equivalence.
The map q is a strict fibration. The assumption that the diagram (10.15) is homotopy
cartesian in the strict model structure implies that the induced map

θ : X → Y ×Q
S1∧T

Y Z

is a strict equivalence. The map θ defines a strict weak equivalence from the strict
fibration p to the stable f -fibration

q∗ : Y ×Q
S1∧T

Y Z → Y.

It follows, by the usual argument (see the proof of Lemma 7.13), that the map p is a
retract of a stable f -fibration, and is therefore a stable f -fibration.
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Suppose that the map p is a stable f -fibration, and use the factorization p∗ = q ·j
of the previous paragraph. Then again, j is a strict equivalence and q is a strict
fibration. The map

Y ×Q
S1∧T

Y Z → Z

is a stable f -equivalence by properness of the f -local stable model structure (The-
orem 10.64), and it follows that the map θ is a stable f -equivalence. This map θ

defines a stable f -equivalence between stable f -fibrations, and must therefore be a
strict equivalence. It follows that the diagram 10.15 is homotopy cartesian for the
strict model structure.

Suppose that the map p : X → Y is a strict f -fibration. Then one can show
that the diagram (10.15) is homotopy cartesian in the strict model structure if and
only if it is homotopy cartesian in the strict f -local model structure. This is done by
replacing the map p∗ by a stable f -fibration q, as in the proof of Theorem 10.65. We
therefore have the following corollary:

Corollary 10.66 Supppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose that the map p : X → Y is a strict f -fibration of (S1 ∧T )-spectra. Then
p is a stable f -fibration if and only if the square

X ��

p

��

QS1∧T X

p∗
��

Y �� QS1∧T Y

is homotopy cartesian in the strict f -local model structure.
The additivity property is also inherited from the ordinary stable category:

Lemma 10.67 [additivity] Supppose that T is compact up to f -equivalence and
that the f -local model structure on simplicial presheaves satisfies inductive colimit
descent.

Suppose that X and Y are (S1 ∧ T )-spectra. Then the canonical map

c : X ∨ Y → X × Y

is a stable equivalence.

Proof Suppose that X′ and Y ′ are (S1, T )-bispectra. The canonical map

c : X′ ∨ Y ′ → X′ × Y ′

is a stable equivalence in all T -levels by the additivity property for the ordinary stable
category. Lemma 10.56 implies that the associated map

d(X′) ∨ d(Y ′) = d(X′ ∨ Y ′) c−→ d(X′ × Y ′) = d(X′) × d(Y ′)
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is a stable equivalence of (S1 ∧ T )-spectra. The desired result follows by setting
X′ = X∗,∗ and Y ′ = Y ∗,∗.

Generally, an (S1 ∧ T )-spectrum X has bigraded presheaves of stable homotopy
groups πs,tX, which are defined for objects U of the site C by setting

πs,tX(U ) = lim−→
n≥0

[Sn+s ∧ T n+t ∧ U+, Xn],

where the homotopy classes of maps are computed with respect to the f -local
model structure for pointed simplicial presheaves. The transition maps are defined
by suspension with S1 ∧ T in the way one expects: a representing map

α : Sn+s ∧ T n+t ∧ U+ → Xn

is sent to the composite

Sn+1+s ∧ T n+1+t ∧ U+
S1∧τ∧T n+t−−−−−−→ S1 ∧ T ∧ Sn+s ∧ T n+t ∧ U+

1∧α−−→ S1 ∧ T ∧ Xn σ−→Xn+1,

provided that X is strictly f -fibrant.
These stable homotopy group presheaves are specializations of bigraded pre-

sheaves of stable homotopy groups πs,t Y which are defined for (S1, T )-bispectra Y

as filtered colimits of morphisms in the f -local homotopy category:

πs,t Y (U ) = lim−→
k,l

[Sk+s ∧ T l+t ∧ U+, Y k,l].

In particular, there are natural isomorphisms of presheaves

πs,t Y ∼= πs,t dY

for (S1, T )-bispectra Y . It follows that there are natural isomorphisms of presheaves

πs,tX
∗,∗ ∼= πs,tX (10.16)

for all (S1 ∧ T )-spectra X.
Write π̃s,tX for the sheaf associated to the presheaf πs,tX, for both (S1 ∧ T )-

spectra and (S1, T )-bispectra. These are the bigraded sheaves of stable homotopy
groups for X.

The bonding maps Yn ∧ T → Yn+1 of S1-spectra in an (S1, T )-bispectrum Y

induce homomorphisms of stable homotopy groups

[S[s] ∧ T n+t ∧ U+, Yn] → [S[s] ∧ T n+t+1 ∧ U+, Yn+1]

→ [S[s] ∧ T n+t+2 ∧ U+, Yn+2] → . . .

for all U ∈ C, and the filtered colimit of this system is naturally isomorphic to
πs,t Y (U ).
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There are natural isomorphisms of sheaves

π̃k−n,−nX ∼= π̃kQS1∧T Xn

for all (S1 ∧T )-spectra X, since the f -local model structure satisfies filtered colimit
descent. In effect, the defining strict f -equivalence

lim−→
n

Ωn
S1∧T

FX[n] → QS1∧T X

is a strict local weak equivalence, by this assumption.

Lemma 10.68 Supppose that T is compact up to f -equivalence and that the f -local
model structure on simplicial presheaves satisfies inductive colimit descent.

Then a map X → Y of (S1 ∧ T )-spectra is a stable f -equivalence if and only if

it induces an isomorphism π̃s,tX
∼=−→ π̃s,t Y of sheaves of stable homotopy groups for

all s, t ∈ Z.

Proof The assumption that g induces an isomorphism in all bigraded sheaves of
stable homotopy groups implies that the maps (QS1∧T X)n → (QS1∧T Y )n induce
isomorphisms

π̃k((QS1∧T X)n)
∼=−→ π̃k((QS1∧T Y )n)

in all sheaves of homotopy groups pointed by the canonical base point. The objects
(QS1∧T X)n and (QS1∧T Y )n are presheaves of H -spaces, so that the maps are local
weak equivalences of simplicial presheaves, for all n, and so g is a stable equivalence.

Conversely, there is an isomorphism

π̃s,tX ∼= π̃n+s(Ω
n+t
T QS1∧T Xn)

provided that s + n, t + n ≥ 0. Thus, any map X → Y of (S1 ∧ T )-spectra which
induces a level weak equivalence QS1∧T X → QS1∧T Y also induces isomorphisms

π̃s,tX
∼=−→ π̃s,t Y for all s and t .

Remark 10.69 The motivic stable category is the primary example for the discussion
of bigraded stable homotopy groups, but it is also quite special thanks to the Nisnevich
descent theorem (Theorem 5.39).

Specifically, given a strictly motivic fibrant (S1 ∧Gm)-spectrum X, the Nisnevich
fibrant model

j : lim−→
k

Ωn+k

S1∧Gm
Xn+k → F ( lim−→

k

Ωn+k

S1∧Gm
Xn+k)

is a sectionwise equivalence by Nisnevich descent, with a target that is motivic
fibrant—see Example 7.20.

It follows that a map X → Y of (S1 ∧Gm)-spectra is a motivic stable equivalence
if and only if all presheaf maps

πs,tX → πs,t Y

are isomorphisms.
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Suppose given a strict f -fibre sequence

F
i−→X

p−→Y

of (S1, T )-bispectra and that Y is strictly f -fibrant in all T -levels. This means in par-
ticular that each map p : Xr ,s → Y r ,s is an f -fibration between f -fibrant simplicial
presheaves, with fibre F r ,s .

Then all induced sequences

Ωt+n
T F n → Ωt+n

T Xn → Ωt+n
T Y n

are strict f -fibre sequences of S1-spectra, and all S1-spectra Ωt+n
T Y n are strictly f -

fibrant. It follows that there is a long exact sequence in presheaves of stable homotopy
groups of the form

· · · → πsΩ
t+n
T F n → πsΩ

t+n
T Xn → πsΩ

t+n
T Y n ∂−→πs−1Ω

t+n
T F n → . . .

There are, as well, comparisons of f -fibre sequences

Ωt+n
T F n ��

��

Ωt+n
T Xn ��

��

Ωt+n
T Y n

��

Ωt+n+1
T F n+1 �� Ωt+n+1

T Xn+1 �� Ωt+n+1
T Y n+1

Taking a filtered colimit in n gives a long exact sequence of presheaves

· · · → πs,tF
i∗−→ πs,tX

p∗−→ πs,t Y
∂−→πs−1,tF → . . . (10.17)

It follows that there is an induced long exact sequence

· · · → π̃s,tF
i∗−→ π̃s,tX

p∗−→ π̃s,t Y
∂−→ π̃s−1,tF → . . . (10.18)

in sheaves of bigraded stable homotopy groups.
Observe that, in the long exact sequence (10.18), the “degree” s changes with the

boundary map while the “weight” t does not. There is one of these exact sequences
for each t ∈ Z.

Suppose that p : X → Y is a strict f -fibration of (S1, T )-bispectra with fibre
F . The map p has a strictly f -fibrant replacement p′ : X′ → Y ′ up to strict f -
equivalence, where Y ′ is strictly f -fibrant in all T -levels, and p′ is a strict f -fibration
in all T -levels. Let F ′ be the fibre of p′. The properness of the stable f -local model
structure on (S1 ∧ T )-spectra (Theorem 10.64) implies that the induced map dF →
dF ′ is a stable f -equivalence, and so the maps

π̃s,tF → π̃s,tF
′



404 10 Spectra and T-spectra

are isomorphisms, via (10.16). Any two such fibrant replacements are strictly
equivalent, and hence equivalent in all sections and all levels.

It follows that there is a long exact sequence of the form (10.18 ) for any strict
fibre sequence

F
i−→X

p−→Y

of (S1, T )-bispectra.
We have proved:

Lemma 10.70 Supppose that T is compact up to f -equivalence and that the f -local
model structure on simplicial presheaves satisfies inductive colimit descent.

Then every strict f -fibre sequence

F
i−→X

p−→Y

of (S1 ∧ T )-spectra induces a natural long exact sequence

· · · → π̃s,tF
i∗−→ π̃s,tX

p∗−→ π̃s,t Y
∂−→ π̃s−1,tF → . . .

in sheaves of bigraded stable homotopy groups, for every t ∈ Z.

Proof Use the discussion preceding Lemma 10.57 to replace the fibre sequence of
(S1 ∧T )-spectra by a fibre sequence of (S1, T )-bispectra. Then the desired long exact
sequence is an instance of the long exact sequence (10.18).

Every cofibre sequence is a fibre sequence by Lemma 10.62, so we have the
following:

Corollary 10.71 Supppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Then every level cofibre sequence

A → B → B/A

of (S1 ∧ T )-spectra has a naturally associated long exact sequence

· · · → π̃s,tA → π̃s,tB → π̃s,t (B/A)
∂−→ π̃s−1,tA → . . . .

of sheaves of stable homotopy groups.

Corollary 10.72 Supppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Then there are natural isomorphisms

π̃s+1,t (Y ∧ S1) ∼= π̃s,t Y

for all (S1 ∧ T )-spectra Y .
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Remark 10.73 As noted in Remark 10.69, the presheaves πs,t (E) completely
determine the motivic stable homotopy types of (S1 ∧ Gm)-spectra E.

In this case, the long exact sequence (10.17) for a strict fibre sequence determines
a corresponding long exact sequence of bigraded presheaves

· · · → πs,tA → πs,tB → πs,t (B/A)
∂−→πs−1,tA → . . .

for a level cofibre sequence

A → B → B/A.

Finally, there are isomorphisms of presheaves

πs+1,t (E ∧ S1) ∼= πs,tE

for all (S1 ∧ Gm)-spectra E.

10.6 Postnikov Sections and Slice Filtrations

Suppose that E is an ordinary spectrum, or S1-spectrum, in pointed simplicial sets.
The nth Postnikov section PnE of E is a functorially assigned spectrum together
with natural map E → PnE such that the map πsE → πsPnE in stable homotopy
groups is an isomorphism for s ≤ n, and πsPnE = 0 for s > n. The diagram

E ��

��

PnE

��
Pn−1E 


�� Pn−1PnE

defines a natural map PnE → Pn−1E in the stable category.
The homotopy fibre fn+1E of the map E → PnE is the n-connected cover of the

spectrum E. There is a natural diagram in the stable category of the form

fn+1E ��

��

E

1

��

�� PnE

��
fnE �� E �� Pn−1E

We say that E is connective if, equivalently, P−1E is contractible or the map f0E →
E is a stable equivalence.

In newer language, the family of maps

· · · → f2E → f1E → f0E = E
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of connected covers is the slice filtration of a connective spectrum E. We write snE

for the homotopy cofibre of the map fn+1E → fnE, and say that snE is the nth

slice of the spectrum E.
Of course, the slice snE is pretty simple in this context; it is a copy of the shifted

Eilenberg–Mac Lane spectrum H (πnE)[−n] that has one nontrivial stable homotopy
group, namely πnE in degree n.

There are various constructions of the Postnikov section functors for spectra.
One can use the Moore–Postnikov section construction X �→ PnX for Kan pointed
complexes X as in [56, Sect. 4.7], or coskeleta, but the oldest, least awkward, and
theoretically most powerful method is to kill stable homotopy groups, in conjunction
with localization techniques.

One formally inverts the cofibrations

∗ → Σ∞(Sq)[−r], q − r > n,

to form a new model structure from the stable model structure for which a spectrum
Z is fibrant, here called n-fibrant, if and only if it is stable fibrant and also satisfies
the requirement that all pointed function complexes

hom(Σ∞(Sq)[−r], Z) 
 ΩqZr

are contractible for q − r > n. Thus, a spectrum Z is n-fibrant if and only if Z is
stable fibrant and the stable homotopy groups πsZ are trivial for s > n.

Say that a map E → F of spectra is an n-equivalence if the induced map πpE →
πpF in stable homotopy groups is an isomorphism for p ≤ n.

To kill a stable homotopy group element α : Σ∞(Sq)[−r] → E, q − r > n, in a
stable fibrant spectrum E, one forms the homotopy cocartesian diagram

Σ∞(Sq)[−r] ��

��

∗

��
E

f

�� E′

in which the spectrum E′ is stable fibrant. Then the map f induces isomorphisms
πpE ∼= πpE′ for p ≤ n ≤ (q − r) − 1 by a long exact sequence argument, so the
map f is an n-equivalence. The map f is also a weak equivalence of the localized
model structure. Repeating this process inductively produces a map of spectra

j : E → Z,

which is an n-equivalence and a weak equivalence of the localized structure, and
where Z is stable fibrant and πpZ = 0 for p > n. In particular, the map f is a fibrant
model for the localized model structure. This map f is the natural model for the nth

Postnikov section

E → PnE.
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It follows, as well, that a map E → F is a weak equivalence for the localized
model structure if and only if it is an n-equivalence, which might therefore be called
the n-equivalence model structure.

The naturality of this construction for spectra immediately leads to a natural
Postnikov section construction X → PnX for presheaves of spectra X on a site C.

We return to the setting and basic assumptions from Sect. 10.5, and approximate
the Postnikov section construction in the category of (S1 ∧ T )-spectra.

Suppose that T is compact up to f -equivalence, where f : A → B is a fixed
choice of cofibration of simplicial presheaves. Suppose that the f -local model struc-
ture satisfies filtered colimit descent. We also assume that the site C has finite
products.

To compress notation, write

Fn(L) = Σ∞
S1∧T

(L)[−n]

for a pointed simplicial presheaf L.
Suppose that L is a set of pointed simplicial presheaves L which are compact up

to f -equivalence, and consider a corresponding set of (S1 ∧ T )-spectra

FnL
(L ∧ U+) = Σ∞

S1∧T
(L ∧ U+)[−nL],

where nL ≥ 0 depends only on L, and where U varies through the objects of C. Let
F be the set of cofibrations

∗ → FnL
(L ∧ U+)

We formally invert these cofibrations within the f -local stable model structure.
To do so, we let the set F , a generating set of trivial cofibrations for the f -local
model structure, and cofibrant replacements of the stabilization maps

Fn+1(T ) → Fn(S0)

together generate a set F of cofibrations in the strict model structure for (S1 ∧ T )-
spectra in the sense of Example 10.23. This gives a model structure on the category
SptS1∧T (C) of (S1 ∧ T )- spectra, via Theorem 10.20. The resulting model structure
is a localization of the f -local stable model structure, and will be called the L-local
model structure.

One says that the fibrant objects for the L-local model structure are the L-fibrant
objects. The L-equivalences are the weak equivalences for this structure.

It is a consequence of Lemma 10.21 that an (S1 ∧ T )-spectrum Z is L-fibrant if
and only if it is stable f -fibrant, and all induced pointed simplicial set maps

hom(L ∧ U+, ZnL ) ∼= hom(FnL
(L ∧ U+), Z) → ∗

are trivial fibrations. It follows that the object Z is L-fibrant if and only if Z is stable
f -fibrant and all simplicial presheaf maps
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Hom(L, ZnL ) → ∗
are sectionwise (or equivalently local) weak equivalences.

Each simplicial set

Hom(L, ZnL )(U ) = hom(L ∧ U+, ZnL )

is an infinite loop space since the map

Zm → ΩS1∧T Zm+1 ∼= ΩS1ΩT Zm+1

is an f -local weak equivalence of f -fibrant simplicial presheaves. It follows that the
Kan complex

Hom(L, ZnL )(U ) = hom(FnL
(L ∧ U+), Z)

is contractible if and only if all maps

α : FnL
(L ∧ U+ ∧ Sp) → Z

are trivial in the f -local stable category.
We construct a sequence of cofibrations

Z = Z0 → Z1 → Z2 → . . .

where each Zi is stable f -fibrant, and Zi+1 is constructed from Zi by taking a cofibre
sequence

∨

α

FnL
(L ∧ U+ ∧ Sp) → Zi → Zi+1 (10.19)

which kills all elements α : FnL
(L ∧ U+ ∧ Sp) → Zi in Zi .

Suppose that the map

j : lim−→
i

Zi → ZL

is a strict f -fibrant model. Then the object ZL is stable f -fibrant by the compactness
of S1 ∧ T .

Consider the induced map

lim−→
i

Hom(FnL
(L), Zi) → Hom(FnL

(L), ZL),

or equivalently the map

lim−→
i

Hom(L, ZnL

i ) → Hom(L, ZnL

L ).
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This map is an f -equivalence of simplicial presheaves by the compactness of L (and
Lemma 10.28). It is therefore a local weak equivalence by the descent condition for
the f -local model structure. The filtered colimit

lim−→
i

Hom(L, ZnL

i )

has trivial presheaves of homotopy groups by construction and the finite products
assumption on the site C, so the simplicial presheaf Hom(L, ZnL

L ) has trivial sheaves
of homotopy groups, and is therefore locally (hence sectionwise) weakly equivalent
to a point.

All maps Zi → Zi+1 in the cofibre sequences (10.19) are L-equivalences by
construction. It follows that the composite map

p : Z → ZL

is an L-equivalence, taking values in an L-fibrant object, and is therefore an L-fibrant
model of Z.

What comes next can be expressed in terms of the modern theory of colocalizations
[41], but for simplicity we use the language of Bousfield’s original paper [11] on
homology localizations.

Write LZ for the (strict) f -local homotopy fibre of the map p : Z → ZL. By
Corollary 10.59, the sequence

LZ
i−→Z

p−→ZL (10.20)

is also a cofibre sequence.
Say that a map X → Y of (S1 ∧ T )-spectra is an L-coequivalence if all induced

simplicial presheaf maps

Hom(FnL
(L), F (X)) → Hom(FnL

(L), F (Y ))

induced by the map F (X) → F (Y ) of stable f -fibrant models are sectionwise weak
equivalences.

The map i : LZ → Z is an L-coequivalence. In effect, all simplicial presheaves
Hom(FnL

(L), ZL) are sectionwise contractible by construction, and we have fibre
sequences

Hom(FnL
(L), LZ)

i∗−→ Hom(FnL
(L), Z) → Hom(FnL

(L), ZL).

Say that an (S1 ∧ T )-spectrum E is L-colocal if E has a cofibrant model Ec such
that the simplicial presheaf map

Hom(Ec, F (X)) → Hom(Ec, F (Y ))

is a sectionwise weak equivalence for all L-coequivalences X → Y .
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All objects FnL
(L ∧ U+) are L-colocal, since we assume that the site C has finite

products. The class of L-colocal objects is closed under wedge sums and filtered
colimits. If

A → B → C

is a cofibre sequence, then if any two of the objects in the sequence are L-colocal, so
is the third. It follows that the object LZ in the cofibre sequence (10.20) is L-colocal.

In effect, if g : X → Y is an L-coequivalence of stable f -fibrant objects, then
the induced map

hom(S1, X) → hom(S1, Y )

is also an L-coequivalence. For this, observe that all maps

Hom(L, XnL ) → Hom(L, YnL )

are sectionwise equivalences of f -fibrant simplicial presheaves, and so the maps

ΩS1 Hom(L, XnL ) → ΩS1 Hom(L.Y nL )

are also sectionwise weak equivalences. It follows that if E is L-colocal, then the
object E ∧ S1 is L-colocal.

It is an exercise to show that, if the map φ : E → E′ is an L-coequivalence of
L-colocal objects, then the map φ : E → E′ is a stable f -equivalence.

We therefore have the following result:

Proposition 10.74 In the presence of the assumptions listed above, there is natural
cofibre sequence

LZ
i−→Z

p−→ZL

in (S1 ∧ T )-spectra such that ZL is L-local and the map p is an L-equivalence, and
the object LZ is L-colocal and the map i is an L-coequivalence.

Example 10.75 Suppose that the family Lq consists of the cofibrations

∗ → Fn(Ss ∧ T ∧t ),

where s, t ≥ n and t−n > q, and that Z is stable f -fibrant. The presheaf of homotopy
groups of the space

Hom(Fn(Ss ∧ T ∧t ), Z)

consists of the groups

πs−n+r ,t−nZ(U ),

where r ≥ 0 and t − n > q. It follows that killing all maps

Fn(Ss+r ∧ T ∧t ∧ U+) → Z

kills all groups πs,tZ(U ) for t > q.
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The corresponding cofibre sequence

Lq
Z

i−→Z
p−→ZLq

therefore consists of a stable f -fibrant object ZLq
with πs,t (ZLq

) = 0 for t > q with
an Lq-equivalence p, and an Lq-colocal object Lq

Z such that the map i induces
isomorphisms

πs,t (Lq
Z) ∼= πs,tZ

for t > q.
For alternate notation, as in [85], set s<qZ := ZLq

and fq+1Z = Lq
Z.

Say that the (S1 ∧T )-spectrum Z is T -connective if the map f0Z → Z is a stable
f -equivalence. The resulting sequence of maps

. . . f2Z → f1Z → f0Z 
 Z

is the slice filtration for a T -connective object Z. The cofibre sequences

fq+1Z → fqZ → sqZ

define the slices sqZ of the object Z.

Example 10.76 The motivic stable category is the category of f -local (S1 ∧ Gm)-
spectra on the smooth Nisnevich site of a scheme S, where f : ∗ → A

1 is the
0-section of the affine line over S.

All assumptions leading to the constructions of Example 10.75 hold for this
category of (S1 ∧ Gm)-spectra, and so we are entitled to a slice filtration

. . . f2Z → f1Z → f0Z 
 Z

for objects Z which are Gm-connective, along with cofibre sequences

fq+1Z → fqZ → sqZ

which define the slices.
The slice filtration for the motivic stable category is due to Voevodsky, and first

appeared in [103]. Pelaez’thesis [85] contains a more homotopy theoretic description,
which he imports into the symmetric spectrum context to study its multiplicative
properties. This passage to symmetric spectra is also possible in the generality of
Example 10.75.

Example 10.77 Suppose that G is a finite group. The slice filtration for G-equi-
variant stable homotopy theory is defined by killing elements in a G-spectrum Z

which are parameterized by real regular representations on subgroups H of G, in
an appropriate range; see [38, 39]. The ideas behind the construction of the G-
equivariant slice filtration are similar to those displayed above, but are implemented
for presheaves of spectra, without the extra complications of (S1 ∧ T )-spectra. See
Example 10.14.
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10.7 T-Complexes

Suppose that R is a presheaf of commutative unitary rings on a small Grothendieck
site C as in Sect. 8.1, and let T be a pointed simplicial presheaf on C. We present,
in this section, a general approach to T -spectrum objects in simplicial R-modules,
their stable homotopy types, and localizations.

In general, if K is a pointed simplicial presheaf, we write R•(K) for the quotient
R(K)/R(∗) that is defined by the base point ∗ → K of T , as in Chap. 8 (Remark
8.1). The object R•(K) is the reduced free simplicial R-module which is associated
to K .

Suppose that A is a simplicial R-module. With a small risk of confusion (compare
with (8.1)), we write

K ⊗ A = R•(K) ⊗ A and A ⊗ K = A ⊗ R•(K).

for pointed simplicial presheaves K . These complexes are naturally isomorphic.
In this notation, there is a natural isomorphism

A ⊗ (L+) ∼= A ⊗ R(L)

for all simplicial presheaves L, where

L+ = L � {∗}
is L with a disjoint base point ∗ formally attached.

If L′ is a second pointed simplicial presheaf, then there is an isomorphism

R•(L ∧ L′) ∼= R•(L) ⊗ R•(L′)

which is natural in L and L′. We shall denote this object by L ⊗ L′.
Write u(A) for the simplicial presheaf underlying a simplicial R-module A. This

object is canonically pointed by 0. There is a natural pointed map K → u(R•(K))
for pointed simplicial presheaves K , which is given by the composite

K → u(R(K)) → u(R(K)/R(∗)),

and is initial among all pointed maps K → u(A) for simplicial R-modules A. We
therefore have an adjoint pair of functors

R• : s∗Pre(C) � sPreR : u,

relating pointed simplicial presheaves and simplicial R-modules.
There is a pointed map

γ : K ∧ u(A) → u(K ⊗ A) (10.21)

that is defined in all degrees and sections by x ∧ a �→ x ⊗ a. This map is natural in
pointed simplicial presheaves K and simplicial R-modules A.
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Theorem 8.6 says that there is a model structure on the category sPreR of sim-
plicial modules for which the weak equivalences, respectively fibrations, are those
maps X → Y whose underlying maps of simplicial presheaves are local weak
equivalences, respectively injective fibrations.

The simplicial R-module R•(K) is a direct summand of R(K), since the base
point ∗ → K splits the canonical simplicial presheaf map K → ∗. It follows from
Lemma 8.2 that the functor K �→ R•(K) preserves local weak equivalences of
pointed simplicial presheaves.

Lemma 10.78 Suppose that K → L is a cofibration of pointed simplicial
presheaves and that A → B is a cofibration of simplicial R-modules. Then the
map

(L ⊗ A) ∪ (K ⊗ B) → L ⊗ B

is a cofibration of simplicial R-modules which is a local weak equivalence if either
K → L or A → B is a local weak equivalence.

Proof The unpointed version of this result is a special case of Lemma 8.9. The
present result follows, by a retraction argument.

It is a consequence of Lemma 10.78 that the functor A �→ K ⊗ A preserves cofi-
brations and trivial cofibrations of simplicial R-modules, for any pointed simplicial
presheaf K .

It is observed in Corollary 8.10 that the functor A �→ R(K) ⊗ A preserves local
weak equivalences in simplicial R-modules A. It follows that the functor A �→ K⊗A

also preserves local weak equivalences in A.

A T -complex A is a collection of simplicial R-modules An, n ≥ 0, together with
simplicial R-module homomorphisms

σ : T ⊗ An → An+1,

called bonding maps. A morphism g : A → B of T -complexes consists of simplicial
R-module homomorphisms g : An → Bn that preserve structure in the sense that
the diagrams

T ⊗ An
σ ��

T ⊗g

��

An+1

g

��
T ⊗ Bn

σ

�� Bn+1

commute.
A T -complex A is what one would call a T -spectrum object in the category

sPreR of simplicial R-modules. Write SptT (sPreR) for the resulting category of
T -complexes and their morphisms.
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Example 10.79 Write

H (R) = R•(ST ),

and call it the sphere T -spectrum object for the category of T -complexes in simplicial
R-modules.

There is a functorial suspension T -spectrum object

H (A) = H (R) ⊗ A

for a simplicial R-module A. This object is defined in levels by the simplicial R-
modules

A, T ⊗ A, T ⊗ T ⊗ A, . . . .

There is a natural bijection

hom(H (A), B) = hom(H (R) ⊗ A, B) ∼= hom(A, B0)

for all simplicial R-modules A and T -complexes B.
The construction A �→ H (R) ⊗ A is the natural source of Eilenberg–Mac Lane

T -spectra, and one says that H (R)⊗A is the Eilenberg–Mac Lane T -complex which
is associated to the simplicial R-module A.

The shift X[n] of a T -complex X is defined by

X[n]k =
{

Xn+k if n + k ≥ 0, and

0 if n + k < 0.

Say that a map X → Y of T -complexes is a strict weak equivalence (respectively
strict fibration) if all of the maps Xn → Yn are local weak equivalences (respectively
injective fibrations) for the model structure on the category of simplicial R-modules
given by Theorem 8.6. A cofibration of T -complexes is a map A → B such that the
map A0 → B0 and all induced maps

(T ⊗ Bn) ∪ An+1 → Bn+1

are cofibrations of simplicial R-modules.

Proposition 10.80 The category SptT (sPreR) of T -complexes, together with the
classes of strict weak equivalences, strict fibrations and cofibrations, satisfies the
axioms for a proper, cofibrantly generated closed simplicial model category.

Proof The proof of this result is an exercise—see also Propositions 10.4 and 10.15.
The key to the proofs of both the factorization axiom CM5 and the lifting axiom

CM4 is that the functor A �→ T ⊗ A preserves cofibrations and trivial cofibrations
in simplicial R-modules A.

The function complex hom(X, Y ) for T -complexes X and Y has n-simplices given
by the T -complex morphisms X ⊗ (Δn+) → Y .
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Suppose that the set I , respectively J , consists of maps of the form

H (A)[−n] → H (B)[−n]

which are induced by members A → B of generating sets for the cofibrations,
respectively the trivial cofibrations, of simplicial R-modules. The sets I and J give
generating sets for the classes of cofibrations and trivial cofibrations for this model
structure.

The properness claim is a consequence of properness for the injective model
structure on the category of simplicial R-modules.

The model structure of Proposition 10.80 is the strict model structure for the
category of T -complexes.

Every T -spectrum X has an associated T -complex R•X, which is defined in levels
by the assignments

(R•X)n = R•(Xn), n ≥ 0.

The bonding maps for R•(X) are the composite maps

T ⊗ R•(Xn) ∼= R•(T ∧ Xn)
σ∗−→ R•(Xn+1).

If A is a T -complex, then the natural composites

T ∧ u(An)
γ−→ u(T ⊗ An)

u(σ )−−→ u(An+1),

which are induced by the bonding maps of A and the natural map γ of (10.21),
give the list of pointed simplicial presheaves u(An) the structure of a T -spectrum.
This T -spectrum is denoted by u(A) and is called the underlying T -spectrum for the
T -complex A. The functor X �→ R•X is left adjoint to the underlying T -spectrum
functor A �→ u(A), and the functors

R• : SptT (C) � SptT (sPreR) : u

form a Quillen adjunction between the respective strict structures.
In particular, the functor X �→ R•X preserves cofibrations and trivial cofibrations

for the strict model structure on T -spectra. The functor R• also commutes with the
shift functors and preserves suspension spectrum objects.

There is a natural isomorphism

R•(X ∧ K) ∼= R•(X) ⊗ K ,

for all T -spectra X and pointed simplicial presheaves K . It follows that the functor
A �→ A ⊗ K preserves cofibrations of T -complexes. In particular, the T -complex
A ⊗ K is cofibrant if A is cofibrant.
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Suppose (as in Sect. 10.2) that F is a set of cofibrations of T -spectra that satisfies
the following:

C1 The T -spectrum A is cofibrant for all maps i : A → B in F.
C2 The set F includes the set J of generators for the trivial cofibrations for the strict

model structure on SptT (C).
C3 If the map i : A → B is in F, then the cofibrations

(A ∧ D) ∪ (B ∧ C) → B ∧ D

induced by i and all α-bounded cofibrations C → D of pointed simplicial pre-
sheaves are also in F.

Write R•(F) for the set of morphisms R•(A) → R•(B) of T -complexes which are
induced by morphisms A → B of F.

Choose a regular cardinal β such that β > α, β > |F|, β > |B| for any cofibration
A → B of F. Finally, suppose that β > |R|. Choose a cardinal λ such that λ > 2β .

Suppose that g : X → Y is a morphism of T -complexes. There is a functorial
factorization

X
i ��

g
""�

��
��

��
��

Eλ(g)

p

��
Y

of g such that the map i is a cofibration which is in the saturation of R•(F) and
the map p has the right lifting property with respect to all members of R•(F). The
construction of this factorization uses a small object argument, which terminates
after λ steps.

Set

LF(X) = Eλ(X → 0)

for all T -complexes X. Say that a map X → Y of T -complexes is an LF-equivalence
if the induced map LFX → LFY is a strict equivalence of T -complexes.

We have the following:

Lemma 10.81

1) Suppose that the assignment t �→ Xt defines a diagram of monomorphisms
indexed by t < γ where γ is a cardinal such that γ > 2β . Then the natural map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
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2) Suppose that ζ is a cardinal with ζ > β, and let Bζ (X) denote the filtered system
of subobjects of X having cardinality less than ζ . Then the natural map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)

is an isomorphism.
3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that U , V are subobjects of a T -complex X. Then the natural map

LF(U ∩ V ) → LF(U ) ∩ LF(V )

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

Proof This result is a consequence of Lemma 8.38.

Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 10.81. Then κ is a regular cardinal, and Lemma 10.81 implies that, if a
T -complex X is κ-bounded, then the T -complex LF(X) is κ-bounded.

The following is the bounded monomorphism statement for the strict model
structure on the category of T -complexes:

Lemma 10.82 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

of T -complexes such that the map i is a strict equivalence and A is κ-bounded.
Then there is a factorization of j by monomorphisms A → B → Y such that B is
κ-bounded and the map B ∩ X → B is a strict equivalence.

Proof One can prove this statement by following the method of Lemma 10.18, by
using the bounded subobject statement Lemma 8.11 for simplicial R-modules in
place of Lemma 5.2. A variant of the argument for Lemma 8.11 can also be applied
directly.

We now have the bounded monomorphism property for LF-equivalences of T -
complexes.

Lemma 10.83 Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y
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of T -complexes such that the map i is an LF-equivalence and A is κ-bounded.
Then there is a factorization of j by monomorphisms A → B → Y such that B is
κ-bounded and the map B ∩ X → B is an LF-equivalence.

Proof The proof of this result is formally the same as that of Lemma 7.17. It uses
the bounded cofibration statement for strict equivalences of Lemma 10.82.

Following the methods of Sect. 7.2, a map of T -complexes X → Y is an F-
equivalence if and only if the map

hom(Yc, Z) → hom(Xc, Z)

is a weak equivalence of simplicial sets for every F-injective object Z, and where
Xc → X is a natural cofibrant model construction in the strict model category of
Proposition 10.80. It is a consequence of Lemma 7.6 that a map X → Y is an
F-equivalence if and only if it is an LF-equivalence.

An F-fibration is a map that has the right lifting property with respect to all
cofibrations which are F-equivalences.

Theorem 7.10 then implies the following:

Theorem 10.84 Suppose that C is a small Grothendieck site, and that F is a set
of cofibrations of T -spectra which satisfies the conditions C1, C2 and C3. Then the
category SptT (sPreR(C)) of T -complexes, together with the classes of cofibrations,
F-equivalences and F-fibrations, satisfies the axioms for a cofibrantly generated
closed simplicial model category. This model structure is left proper.

The model structure of Theorem 10.84 for the category of T -complexes is the
F-local structure. The left properness of this model structure is a consequence of
Lemma 7.8.

Corollary 7.12 implies that a T -complex Z is F-fibrant if and only it is F-injective
in the sense that the map Z → 0 has the right lifting property with respect to all
members of R•(F). It follows that the T -complex Z is F-fibrant if and only if the
underlying T -spectrum u(Z) is F-fibrant, meaning fibrant for the model structure of
Theorem 10.20.

Remark 10.85 The functors

R• : SptT (C) � SptT (sPreR(C)) : u

define a Quillen adjunction between the respective F-local structures on the cate-
gories of T -spectra and T -complexes, since the functor R• preserves F-equivalences
as well as cofibrations. To verify the claim about F-equivalences, observe that the
functor R• preserves strictly cofibrant models, so it suffices to show that R• preserves
F-equivalences X → Y between cofibrant T -spectra.

For this last claim, if Z is an F-fibrant T -complex, then the underlying T -spectrum
u(Z) is F-fibrant, and the simplicial set map

hom(R•(Y ), Z) → hom(R•(X), Z)
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is isomorphic to the map

hom(Y , u(Z)) → hom(X, u(Z)),

which is a weak equivalence.
The cofibrations in the set R•(F) are formally inverted in the F-local model

structure of Theorem 10.84 for T -complexes. Recall that the set F is generated
(over J ) by a subset S that contains J if F is the smallest subset which contains S

and is closed under condition C3.
Recall that the stabilization maps

(ST ∧ T )[−n − 1] → ST [−n], n ≥ 0,

are shifts of the map

(ST ∧ T )[−1] → ST

which consists of the canonical isomorphisms

T ∧(m−1) ∧ T → T ∧m

in levels m ≥ 1.
Say that the F-local structure on SptT (sPreR) is stable if the stabilization maps

induce F-equivalences

(H (R) ⊗ T )[−n − 1] → H (R)[−n].

One forces this by insisting that the set F contains cofibrant replacements of these
maps.

If the set F is generated over J by the cofibrant replacements of the stabilization
maps alone, then the corresponding F-local structure is the stable model structure for
the category of T -complexes. The weak equivalences for this theory are the stable
equivalences, and the fibrations are the stable fibrations.

More generally, given a cofibration f : A → B of pointed simplicial presheaves,
one constructs thef -local stable structure on the category ofT -complexes by forming
the F-local structure for the set F = Sf which is defined in Example 10.23. This set
of cofibrations is generated by the stabilization maps and all maps

(H (R) ⊗ A+)[−n] → (H (R) ⊗ B+)[−n]

induced by members A → B of a generating set of trivial cofibrations for the f -local
model structure on simplicial presheaves.

The model structure on the category SptT (sPreR) which is given by Theo-
rem 10.84 for the set F = Sf is the f -local stable model structure, on the category
of T -complexes, and the corresponding F-equivalences and F-fibrations are called
stable f -equivalences and stable f -fibrations, respectively.
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A T -complex Z is stable f -fibrant if and only if its underlying T -spectrum u(Z)
is stable f -fibrant (see Remark 10.85). This observation has various consequences,
which follow from the results of Sect. 10.3:

Corollary 10.86 A T -complex Z is stable f -fibrant if and only if all level objects
Zn are f -fibrant simplicial R-modules and all maps Zn → ΩT Zn+1 are sectionwise
equivalences of simplicial R-modules.

Proof This result follows from Corollary 10.26.

There is a fake T -loop spectrum functor X �→ ΩT X for T -complexes, just as
there is for T -spectra, along with a natural map

X → ΩT X[1]

that is defined by adjoint bonding maps. There is also a natural directed system

X → ΩT X[1] → Ω2
T X[2] → . . .

of T -complexes. Define

QT X = F ( lim−→
n

Ωn
T (FX)[n]),

where j : Y → FY is the natural strictly f -fibrant model for a T -complex Y (see
Remark 10.24). Then the composite

X
j−→FX → lim−→ Ωn

T (FX)[n]
j−→F ( lim−→ Ωn

T (FX)[n])

defines a natural map η : X → QT X in T -complexes.
We have the following analogue of Theorem 10.32:

Theorem 10.87 Suppose that T is compact up to f -equivalence. Then the natural
map

η : X → QT X

is a stable f -fibrant model for each T -complex X.

Proof All steps in the proof of Theorem 10.32 have analogues in the category of
T -complexes.

Example 10.88 [Stable homotopy theory of S1-complexes] An S1-complex X is a
collection of simplicial R-modules Xn, together with bonding maps S1 ⊗ Xn →
Xn. Alternatively, one says that an S1-complex is a spectrum object in simplicial
R-modules.

The simplicial circle S1 is compact, and the filtered colimit descent is automatic
in the injective model structure for simplicial presheaves. It follows that the map
X → QS1X is a fibrant model for this theory.
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A map X → Y is a weak equivalence for the stable model structure on this
category if and only if the underlying map u(X) → u(Y ) is a stable equivalence
of presheaves of spectra in the usual sense, so that the stable model structure on
S1-complexes that one obtains by formally inverting the stabilization maps

(SS1 ∧ S1)[−n − 1] → SS1 [−n]

in the strict model structure for S1-complexes is the “standard” stable model structure.
This model structure is also proper.

The Dold–Kan correpondence extends to an equivalence of categories

N : SptS1 (sPreR(C)) � Spt( Ch+ (PreR(C))) : Γ.

The functors N and Γ are defined levelwise by the normalized chains functor N and
its inverse Γ , respectively. One uses the natural homotopy equivalence

N (S1 ⊗ A)

−→ NA[−1]

and its natural homotopy inverse

NA[−1]

−→ N (S1 ⊗ A)

in the category of simplicial R-modules to define bonding maps for induced spectrum
objects Γ (B) and N (A), respectively. The first map, in particular, induces a natural
sectionwise weak equivalence

S1 ⊗ Γ (C) → Γ (C[−1])

for all chain complexes C. It is an exercise to show that a map X → Y of S1-
complexes is a stable equivalence if and only if the induced map NX → NY

of spectrum objects in chain complexes is a stable equivalence in the sense of
Proposition 8.16.

The stable category Ho (Spt(sPreR(C))) is therefore equivalent to the derived
category of presheaves or sheaves of R-modules, as described in Sect. 8.2. See [61]
for more detail.

We have the following analogue of Theorem 10.46 for T -complexes:

Theorem 10.89 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the composite

A → Hom(T , A ⊗ T )
η∗−→ Hom(T , QT (A ⊗ T ))

is a stable f -equivalence for all T -complexes A.

The T -complex Hom(T , E) is the “real” T -loop object for a T -complex E. The
underlying T -spectrum of this object is the real T -loop object for the T -spectrum
u(E).
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We shall use the layer filtration of a T -complex A: the nth layer LnA is the
T -complex which is specified by the complexes

A0, A1, . . . , An, T ⊗ An, T ⊗2 ⊗ An, . . . .

There is a natural stable equivalence

(H (R) ⊗ An)[−n]

−→ Ln(A),

where H (R) ⊗ An is the T -suspension object associated to the simplicial R-module
An.

Proof The proof of Theorem 10.89 proceeds by analogy with the proof of
Theorem 10.46.

If A and B are strictly f -fibrant T -complexes then a map A → B is a stable
f -equivalence if and only if the induced map

Hom(T , A) → Hom(T , B)

is a stable f -equivalence. This statement is the analogue for T -complexes of
Lemma 10.48, and has the same proof.

It therefore suffices to show that the composite

A → Hom(T , A ⊗ T )
j∗−→ Hom(T , F (A ⊗ T )) (10.22)

is a stable f -equivalence, where j : A⊗T → F (A⊗T ) is a strictly f -fibrant model
of the T -complex A ⊗ T .

The constructions at both ends of the composite (10.22) are invariants of stable
f -equivalences, shifts and filtered colimits. It therefore suffices to show that the
composite

H (E) → Hom(T , H (E) ⊗ T )
j∗−→ Hom(T , F (H (E) ⊗ T ))

is a stable f -equivalence for each simplicial R-module E. This claim is the T -
complex analogue of Lemma 10.47, and it has a similar proof.

We have already observed that Lemma 10.48 has an analogue for T -complexes
(provided that T is compact up to f -equivalence). As in Corollary 10.49, it follows
that the evaluation map

ev : Hom(T , A) ⊗ T → A

is a stable f -equivalence of T -complexes if A is strictly f -fibrant.
We then have the following analogue of Theorem 10.50. This result asserts that

the T -loops and T -suspension functors are inverse to each other, at the level of
the f -local stable category for T -complexes, in the presence of the usual niceness
conditions on the parameter object T .
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Theorem 10.90 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the T -suspension and T -loops functors induce a Quillen equivalence

⊗T : SptT (s ModR ) � SptT (s ModR) : Hom(T, )

for the f -local stable model structure on the category of T -complexes.

The results and constructions of Sect. 10.5 apply to the f -local stable category of
(S1 ∧ T )-complexes, provided that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

In particular, an (S1 ∧ T )-complex X has a bigraded system of presheaves πs,tX

of stable homotopy groups. These groups are R-modules, whose associated sheaves
measure stable equivalence.

Some things are easier for complexes; the additivity property (Lemma 10.68) is
a complete triviality in the R-module context, where finite coproducts coincide with
finite products.

One can use standard homological algebra to derive an analogue of Lemma 10.58:
ifp : X → Y is a strict fibration of (S1∧T )-complexes with fibreF then the canonical
map

X/F → Y

is a stable equivalence of (S1 ∧ T )-complexes. Similar techniques are used to show
that any (S1 ∧ T )-complex can be desuspended in the S1-direction, in that there is a
natural stable equivalence

A 
 C(A) ⊗ S1

for a functorially constructed cofibrant complex C(A), as in the proof of
Lemma 10.60. The coincidence of fibre and cofibre sequences in the stable f -local
category of (S1 ∧ T )-complexes, culminating in the analogue of Lemma 10.62, is
essentially a formal consequence of these two observations.

Right properness for the f -local stable model structure on (S1 ∧ T )-complexes
also follows, as in Theorem 10.64.

Suppose that K is a pointed simplicial presheaf. There is a natural map

γ : u(H (R)) ∧ K → u(H (R) ⊗ K)

of (S1 ∧ T )-spectra which consists of the maps

γ : (S1 ⊗ T )⊗n ∧ K → (S1 ⊗ T )⊗n ⊗ K.

Lemma 10.91 The map

γ : u(H (R)) ∧ K → u(H (R) ⊗ K)

is a stable equivalence of (S1 ∧ T )-spectra for any pointed simplicial presheaf K .
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Proof The object H (R) is the diagonal of an (S1, T )-bispectrum object H (R)p,q

with

H (R)p,q = (S1)⊗p ⊗ (T )⊗q ,

with obvious S1-bonding map, and with T -bonding map given by the composite

T ⊗ (S1)⊗p ⊗ T ⊗q τ⊗1−−→ (S1)⊗p ⊗ T ⊗ T ⊗q ∼= (S1)⊗p ⊗ T ⊗(q+1),

where the isomorphism

τ : T ⊗ (S1)⊗p → (S1)⊗p ⊗ T

permutes factors. More generally, the object H (R) ⊗ K) is the diagonal of the
(S1, T )-bispectrum object H (R•(K))∗,∗ with

H (R•(K))p,q = (S1)⊗p ⊗ T ⊗q ⊗ K.

The map γ is the diagonal of the (S1, T )-bispectrum map

γ : u(H (R)∗,∗) ∧ K → u(H (R•(K))∗,∗),

which is defined by the canonical maps

u((S1)⊗p ⊗ T ⊗q) ∧ K → u((S1)⊗p ⊗ T ⊗q ⊗ K).

For a fixed q, these maps define the map of S1-spectra

u(H (R) ⊗ T ⊗q) ∧ K → u(H (R) ⊗ T ⊗q ⊗ K))

which is a (sectionwise) stable equivalence: it is an exercise to show that the canonical
map

γ : u(H (R) ⊗ B) ∧ L → u(H (R) ⊗ B ⊗ L))

is a stable equivalence for any simplicial abelian group B and pointed simplicial set
L.

The desired result follows from Lemma 10.56. The map γ is even a sectionwise
stable equivalence.

Corollary 10.92 Suppose that the cofibration K → L is an f -local equivalence
of pointed simplicial presheaves. Then the induced map

u(H (R) ⊗ K) → u(H (R) ⊗ L)

is a stable f -equivalence of (S1 ∧ T )-spectra.

Proof The map

E ∧ K → E ∧ L
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is a strict f -equivalence for any (S1 ∧ T )-spectrum E. This is a consequence of
Corollary 7.24.

Lemma 10.93 Suppose that T is compact up to f -equivalence and that the f -local
model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose thatE is an (S1∧T )-complex in simplicialR-modules, and letE → L(E)
be a stable f -fibrant model for E. Then the induced map u(E) → u(L(E)) is a stable
f -equivalence of (S1 ∧ T )-spectra.

Proof Suppose that the cofibration C → D of simplicial presheaves is an f -equiv-
alence. Suppose given a pushout diagram

R•(Σ∞C+[−n])
i ��

��

R•(Σ∞D+[−n])

��
E

i∗
�� F

in (S1 ∧ T )-complexes. The cofibrations i and i∗ have the same cokernel H , and
there is an induced comparison of strict fibre sequences

u(R•(Σ∞C+[−n]))
u(i)

��

��

u(R•(Σ∞D+[−n]))

��

�� u(H )

1

��
u(E)

u(i∗)
�� u(F ) �� u(H )

of (S1 ∧ T )-spectra. This comparison can be replaced up to stable equivalence by a
comparison of level cofibre sequences, by Corollary 10.59.

The map u(i) is stable equivalent to the map

u(H (R)) ∧ C+[−n] → u(H (R)) ∧ D+[−n]

and is therefore a stable f -equivalence. The object u(H ) is therefore stable f -
equivalent to a point, and so the map u(i∗) is a stable f -equivalence—both claims
follow from Lemma 10.60.

Suppose that X → Y is a cofibration of (S1 ∧ T )-spectra such that the map
Xk → Y k is a weak equivalence for k ≥ N , for some N . Then the induced cofibration
R•(X) → R•(Y ) consists of weak equivalences R•Xk → R•Y k for k ≥ N , and is
therefore a stable equivalence. If we have a pushout diagram

R•(X)
j

��

��

R•(Y )

��
E

j∗
�� F
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in (S1 ∧ T )-complexes, then the induced map u(j∗) consists of weak equivalences
u(Ek) → u(Fk) for k ≥ N , and is therefore a stable equivalence—see the proof of
Theorem 10.32.

Proposition 10.94 Suppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Then a map E → F of (S1 ∧ T )-complexes is a stable f -equivalence if and only
if the induced map u(E) → u(F ) is a stable f -equivalence of (S1 ∧ T )-spectra.

Proof Suppose that j : E → L(E) is a stable f -fibrant model for E in in (S1 ∧ T )-
complexes. Then the induced map u(j ) : u(E) → u(L(E)) is a stable f -fibrant model
for u(E) in the category of (S1 ∧T )-spectra. In effect, u(L(E)) is stable f -fibrant by
formal nonsense and the map u(j ) is a stable f -equivalence by Lemma 10.93.

Then E → F is a stable f -equivalence if and only if the map L(E) → L(F ) is
a levelwise weak equivalence, which is true if and only if u(E) → u(F ) is a stable
f -equivalence.

Example 10.95 Suppose that k is a perfect field, and let f : ∗ → A
1 be the 0-section

of the affine line over k, on the smooth Nisnevich site (Sm|k)Nis . This is the general
setup for Example 8.49, and we continue that discussion here.

Recall that precomposition with the graph functor γ : Sm|k → Cork determines
a forgetful functor

γ∗ : sPST(k) → sModZ(Sm|k)Nis

on the category of simplicial presheaves with transfers, which takes values in
simplicial abelian presheaves.

It is a consequence of Proposition 10.94 that a map E → F of (S1 ∧ Gm)-
complexes is a motivic stable equivalence if and only if the underlying map u(E) →
u(F ) is a motivic stable equivalence of (S1 ∧ Gm)-spectra.

The basic example of an (S1∧Gm)-complex is the object which represents motivic
cohomology. We assume that the multiplicative group Gm is pointed by the identity e.

There is a natural pairing of presheaves with transfers

Ztr (Gm, e) ⊗ Ztr (X) → Ztr (Gm ∧ (X+), ∗),

which is induced by the pairing (8.12). Suppose that

j : Ztr (Gm ∧ (X+), ∗) → F (Ztr (Gm ∧ (X+), ∗))

is a motivic fibrant model in the category of presheaves with transfers. TheVoevodsky
cancellation theorem [104] asserts that the induced composite

γ∗(Ztr (X)) → ΩGm
γ∗(Ztr (Gm ∧ (X+), ∗))

j∗−→ ΩGm
γ∗F (Ztr (Gm ∧ (X+), ∗))

of simplicial abelian presheaves is a motivic weak equivalence for each smooth
k-scheme X.
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One can also show, more easily, that the natural composite

γ∗(Ztr (X)) → ΩS1γ∗(Ztr (X) ⊗ S1)
j∗−→ ΩS1γ∗(F (Ztr (X) ⊗ S1))

is a motivic weak equivalence for all smooth k-schemes X. For this, we use the
natural isomorphism

C∗(K) ⊗ S1 ∼=−→ C∗(K ⊗ S1)

that is defined for all presheaves with transfers K , where C∗(K) is the singular
complex of Example 8.49.

It follows that a strict motivic fibrant model for the bispectrum object

γ∗(Ztr (G∧p
n , ∗) ⊗ (S1)⊗q)

is motivic stably fibrant. In particular, the associated diagonal (S1 ∧ Gm)-spectrum,
which is composed of the objects

Fγ∗(Z(n)) 
 Fγ∗(Ztr (G∧n
n , ∗) ⊗ (S1)⊗n)

is motivic stable fibrant. This object is called the motivic Eilenberg–Mac Lane spec-
trum for the ring Z. There are various notations for this object; Voevodsky denotes
it by HZ.

This object HZ represents motivic cohomology in the motivic stable category.
There are isomorphisms

Hp(X, Z(q)) ∼= [X+, γ∗(Z(q))[−p]]

∼= [X+, Ωn−p

S1 Ωn
Gm

γ∗(Z(q + n))] for n ≥ p

∼= [(S1)∧(n−p) ∧ G
∧n
n ∧ X+, γ∗Z(q + n)]

∼= [(S1)∧(−p−q+(q+n)) ∧ (S1
t )−q+(q+n)) ∧ X+, γ∗Z(q + n)]

∼= π−p−q,−qHZ(X)

for all smooth k-schemes X, where the square brackets denote morphisms in the
motivic homotopy category.

We return to the general setup of Sect. 8.6.
Suppose that R is a commutative ring with identity, and let sModR be the category

of simplicial R-modules. Suppose that A is a small category which is enriched in
R-modules, and suppose that there is a functor φ : C → A which is the identity on
objects, where C is a small site.

Recall that an A-linear simplicial presheaf is a functor X : Aop → sModR which
respects the A-linear structure. The category of A-linear simplicial presheaves and
A-linear natural transformations is denoted by sModA

R .
Lemma 8.44 says that the category sModA

R of A-linear simplicial presheaves,
together with sectionwise equivalence and sectionwise fibrations, satisfies the con-
ditions for a proper closed simplicial model category. This is the projective model
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structure for the category of A-linear simplicial presheaves. The cofibrations for this
model structure are the projective cofibrations.

The class of projective cofibrations includes all map φ∗R(A) → φ∗R(B) which
are induced by projective cofibrations A → B of simplicial presheaves, where φ∗ is
the left adjoint of the forgetful functor

φ∗ : sModA
R → sPreR

which is induced by precomposition with the functor φ : C → A. More generally,
there is a Quillen adjunction

φ∗ · R : sPre(C) � sModA
R : u · φ∗,

between the respective projective model structures, where R is the free R-module
functor and the forgetful functor u is its right adjoint.

Suppose that X is an A-linear simplicial presheaf and that T is a projective
cofibrant pointed simplicial presheaf. Write

X ⊗ T = X ⊗R φ∗R•(T ),

where R•(T ) = R(T )/R(∗) is the reduced free simplicial R-module associated to
T . The functor X �→ X ⊗ T preserves weak equivalences for the projective model
structure on A-linear simplicial presheaves.

A T -spectrum X in the category sModA
R consists of A-linear simplicial presheaves

Xn, n ≥ 0, together with bonding maps

T ⊗ Xn → Xn+1.

A morphism X → Y of T -spectra is the obvious thing. It consists of A-linear maps
Xn → Yn which respect the bonding maps. Write SptT (sModA

R ) for the resulting
category of T -spectra in A-linear simplicial presheaves.

The category SptT (sModA
R ) of T -spectra has a sectionwise strict model structure,

for which the weak equivalences and fibrations are defined levelwise in the projec-
tive model structure for simplicial A-modules, by the usual method (Lemma 8.15,
Proposition 10.15). The category SptT (C) also has a sectionwise strict model struc-
ture, with fibrations and weak equivalences defined levelwise and sectionwise. The
composite functor φ∗ · R and its right adjoint u · φ∗ determine a Quillen adjunction

φ∗ · R : SptT (C) � SptT (sModA
R ) : u · φ∗

between the respective sectionwise strict model structures.
Now suppose that F is a set of cofibrations A → B for the sectionwise strict

model structure on T -spectra. Suppose further that

C1 The T -spectrum A is cofibrant for all maps A → B in F.
C2 If the map A → B is in F, then so are all maps

(A ∧ Δn
+) ∪ (B ∧ ∂Δn

+) → B ∧ Δn
+.
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Say that an object Z of SptT (sModA
R ) is F-injective if the map Z → 0 has the

right lifting property with respect to the maps φ∗R(A) → φ∗R(B) associated to
all members A → B of F. Say that a map E → F of T -spectrum objects is an
F-equivalence if some projective cofibrant replacement Ec → Fc induces a weak
equivalence

hom(Fc, Z) → hom(Ec, Z)

for all F-injective objects Z. The F-fibrations are defined by the right lifting property
with respect to maps which are projective cofibrations and F-equivalences.

Then, by analogy with Theorem 8.48, we have the following:

Theorem 10.96 Suppose that φ : C → A is a functor, where C is a small Grothen-
dieck site, A is a small R-linear category, and the functor φ is the identity on objects.
Suppose that F is a set of cofibrations for the sectionwise strict structure on T -spectra
which satisfies conditions C1 and C2 above.

Then the category SptT (sModA
R ) of T -spectrum objects in A-linear simpli-

cial presheaves, together with the classes of sectionwise strict cofibrations, F-
equivalences and F-fibrations, satisfies the axioms for a left proper closed simplicial
model category. This model structure is cofibrantly generated.

The model structure of Theorem 10.96 is the F-local model structure on the
category of T -spectrum objects in A-linear simplicial presheaves.

Proof One constructs a functor X �→ LFX for T -spectrum objects, by analogy with
the construction in Sect. 8.6. The T -spectrum analogue of Lemma 8.46 is automatic.

One proves a bounded monomorphism property for the strict sectionwise model
structure on T -spectrum objects by using the method of Lemma 10.18. The
bounded monomorphism property for F-equivalences is a formal consequence,
as in Lemma 10.19. The desired result is a formal consequence of this bounded
monomorphism property—see the proof of Theorem 8.48.

Example 10.97 Suppose that k is a perfect field, C is the smooth Nisnevich site
(Sm|k)Nis over k, and that

T = S1 ∧ Gm,

as in Examples 8.49 and 10.95. Recall that the graph functor γ : Sm|k → Cork is
the identity on objects.

Suppose that the set of projective cofibrations F contains the set (ST ∧A)[−n] →
(ST ∧ B)[−n] associated to the set A → B of generators for the motivic model
structure on the category sPST(k) of simplicial presheaves with transfers over k,
together with the set of projective cofibrant replacements of the maps

(ST ∧ T )[−n − 1] → ST [−n], n ≥ 0,

where ST is the sphere spectrum for T -spectra. Suppose that these two sets of maps
generate F in the sense that F is the smallest set of cofibration containing these two
sets, such that the closure property C2 is satisfied.
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The model structure for the category SptT (sPST(k)) which is given by Theo-
rem 10.96 in this case is the motivic stable model structure for spectrum objects
in simplicial presheaves with transfers. The corresponding homotopy category is
Voevodsky’s big category DMk of motives over k. See [89].

An object Z of this category of T -spectra is F-fibrant if and only if the underlying
T -complex γ∗(Z) is motivic stable fibrant. This means that the constituent simplicial
presheaves with transfers Zn are motivic fibrant, and the maps Zn → ΩT Zn+1 are
motivic (hence sectionwise) weak equivalences.

Suppose that X is a T -spectrum object in simplicial presheaves with transfers.
The compactness of T and motivic descent together imply that the T -spectrum object
QT X is stable F-fibrant and that the canonical map X → QT X is an F-equivalence.
It follows that a map X → Y of T -spectra in simplicial presheaves with transfers is
an F-equivalence if and only if the underlying map γ∗(X) → γ∗(Y ) of T -complexes
is a motivic stable equivalence.

Proposition 10.94 then implies that the map X → Y is an F-equivalence if
and only if the induced map uγ∗(X) → uγ∗(Y ) is a motivic stable equivalence of
T -spectra.



Chapter 11
Symmetric T-spectra

The étale topological variants of the algebraicK-theory spectrum that were developed
in the 1980s suffered from two basic technical afflictions:

1) An explicit functorial model for the full algebraic K-theory spectrum did not quite
exist.

2) The theory of products for the K-theory spectrum was difficult to construct. More
generally, there was no good theory of products for the combinatorial machinery
underlying the K-theory spectrum.

At the time, one constructed the K-theory spectrum by extracting a spectrum ob-
ject in pointed simplicial sets from a pseudo-functorial symmetric monoidal category
arising from Quillen’s Q-construction. Thus, to construct the K-theory presheaf of
spectra, particularly if one wanted information about the groups K0(S) for schemes S

at the section level, one had to invoke a homotopy coherence machine, and such ma-
chines tend to complicate geometric section-level calculations. This was the approach
taken in [56]—it worked, but it was awkward. The problem was removed finally [68],
with the realization that Waldhausen’s construction produces a K-theory presheaf of
(symmetric) spectra on big enough sites, provided that one puts in a suitable category
of big site vector bundles.

One cared about this, because the stable homotopy theory of presheaves of spectra
was available early [51] (see also Sect. 10.1), and it was clear by the late 1980s
that fundamental problems in algebraic K-theory, such as the Lichtenbaum–Quillen
conjecture, could be reformulated in terms of maps of presheaves of spectra as descent
questions.

The definition and analysis of multiplication by the Bott element, as in Thomason’s
work on étale descent for Bott periodic K-theory [99], requires an adequate theory of
products for both algebraic K-theory and its topological variants. One early method
for describing such products was based on a theory of presheaves of bispectra. This
technique was adequate for the tasks at hand when it was first introduced, but it was
again awkward.

The theory of bispectra, as it appeared in [56], was a formalization of Adams’
handicrafted smash product construction from classical stable homotopy theory.
Handicrafted smash products were long known to be inadequate for serious work
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with higher order products, and the search for an alternative, homotopically well-
behaved smash product construction for spectra took many years to complete. On the
combinatorial/algebraic side of the subject, a model for the full stable category with
a symmetric monoidal smash product finally appeared in the breakthrough work of
Hovey, Shipley and Smith on symmetric spectra—their paper [46] was published in
2000. A symmetric spectrum X is a spectrum object in pointed simplicial sets (as in
the Bousfield–Friedlander paper [13]), which is also equipped with symmetric group
actions Σn ×Xn → Xn on the level spaces, which actions are compatible with twists
of smash factors in the simplicial spheres

Sp = (S1)∧p

under iterated bonding maps. The smash product X ∧Σ Y of symmetric spectra X

and Y is defined by a coequalizer that is modelled on the tensor product of graded
modules—the underlying ring in this case is the sphere spectrum. The main results
of [46] include the existence of a stable model structure on the category of symmetric
spectra which is Quillen equivalent to the stable model structure of Bousfield and
Friedlander, and that the smash product functor

(X, Y ) �→ X ∧Σ Y

is monoidal for that structure.
The theory of symmetric spectra is a combinatorial model for the ordinary stable

category, with a functorial smash product. As a rule, combinatorial homotopy theory
constructions can be promoted in some form to the topos theoretic level, and it
was obvious when the Hovey–Shipley–Smith paper was first circulated that such a
transport of structure should be done for symmetric spectra.

A local homotopy theory version of the Hovey–Shipley–Smith results for pre-
sheaves of symmetric spectra appeared in [58]. The main features of the results
of [46] survive: there is a stable model structure on the category of presheaves of
symmetric spectra (over any small Grothendieck site) which is Quillen equivalent
to the stable model structure for presheaves of spectra, and the Hovey–Shipley–
Smith smash product defines a monoidal smash product for presheaves of symmetric
spectra.

The local form of the theory of symmetric spectra is now a fundamental device.
A smash product pairing X ∧Σ Y→Z of presheaves of symmetric spectra induces a
smash product pairing for any of the Grothendieck topological variants (i.e. stable
fibrant models) for X, Y and Z. In particular, the symmetric spectrum ring structure
on the algebraic K-theory presheaf of spectra induces ring spectrum structures on
all topologized versions, such as étale K-theory. Presheaves of symmetric spectra
also appear in a foundational role in the theory of derived schemes and topological
modular forms—see the Séminaire Bourbaki talk of Goerss [34] for an introduction
to this subject.

One can similarly define symmetric spectrum objects in presheaves of simplicial
modules [61] (see also Sect. 11.7), and a corresponding stable model structure for
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such objects whose associated homotopy theory is the full derived category of R-
modules. This category of symmetric spectrum objects has a tensor product which is
defined by analogy with the symmetric spectrum smash product, and which is derived
monoidal for that structure. We thus have a homotopy theoretic tensor product for
the derived category that extends the tensor products for simplicial abelian groups
and chain complexes in a natural way.

These are, so far, rather “traditional” uses of symmetric spectra in a presheaf
theoretic setting, in which the parameter object for the spectrum objects is the sim-
plicial circle S1. As we see in Chap. 10, there are also stable homotopy categories
for T -spectra for alternate choices of parameter objects T, in f -local settings where
f is a cofibration of simplicial presheaves which is formally inverted.

The first (and motivating) example is the motivic stable category of Voevodsky
[102] that corresponds to the theory of presheaves of T -spectra on the smooth Nis-
nevich site of a scheme, in which the affine line is formally contracted to a point. In
this case, the parameter object T is the projective line P

1, or equivalently the smash
product S1 ∧ Gm.

Symmetric T -spectra are defined by analogy with the Hovey–Shipley–Smith def-
inition of symmetric spectra. A symmetric T -spectrum X is a T -spectrum which
carries symmetric group actions Σn ×Xn →Xn on the pointed simplicial presheaves
in the various levels, which actions are compatible with twists in the smash products
T ∧p under iterated bonding maps. The smash product X ∧Σ Y of two symmetric
T -spectra is defined as a suitable coequalizer, as is the smash product for symmetric
spectra. There is a motivic stable model structure for the category of such things,
which is Quillen equivalent to the motivic stable category of T -spectra, and such
that the smash (X, Y ) �→ X ∧Σ Y is monoidal for that model structure.

These statements about symmetric T -spectra and the motivic stable category were
proved in [57]. Calculations related to product structures in motivic stable homotopy
theory now usually involve this theory. See, for example, [90], [21] and [84].

The technical issues which appear in the course of producing the theory of motivic
symmetric spectra have already appeared in the description of the motivic stable
category and its generalizations in Chap. 10. Such generalizations of the motivic
stable constructions involve categories of T -spectra and symmetric T -spectra in an
f -local setting on a potentially arbitrary site, such that the following conditions are
satisfied:

A1 The parameter object T is compact for the f -local model structure in a suitable
sense.

A2 The f -local model structure satisfies an inductive colimit descent condition.
A3 The shuffle permutation c1,2 acts trivially on the 3-fold wedge T ∧3 in the f -local

model structure for simplicial presheaves.

These statements are colloquial versions of conditions having the same names, which
appear and are discussed at some length in Chap. 10. The stable f -local model
structure on the category of T -spectra is constructed by formally inverting a set
of maps in a basic strict model structure for T -spectra. The conditions A1–A3 on
the parameter object T and the underlying f -local structure are necessary for the
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resulting stable f -local model structure to behave something like ordinary stable
homotopy theory. The extra assumption that the parameter object is a topological
suspension S1 ∧T of a compact object T leads to a further tightening of that analogy.

These conditions hold in motivic model structures by geometric arguments in-
volving Nisnevich descent for A1 and A2, and the structure of the special linear
group Sl3(Z) for A3. The parameter object P

1 
 S1 ∧ Gm is a topological suspen-
sion in that category. The familiar basic features of the motivic stable category are
consequences of these phenomena.

These same conditions enable the creation of a well-behaved f -local stable model
structure on the category of symmetric T -spectra on a site C. This chapter presents
the formal homotopy theory which is associated with this construction.

The f -local stable model structure on the category of symmetric T -spectra is
constructed by localizing an underlying injective structure (Proposition 11.10) at the
same set of maps that one uses to produce the f -local stable structure on T -spectra.
See Theorem 11.13 and Example 11.15.

Provided that T is compact (assumption A1), the forgetful functor U from sym-
metric T -spectra to T -spectra reflects stable f -equivalences, in the way that one
expects from symmetric spectra and motivic symmetric spectra. This is proved in
Theorem 11.19.

If the parameter object is a suspension S1 ∧T , and if we also assume the compact-
ness assumption A1 for T and the descent assumption A2 (so that, in particular, the
circle S1 is compact), then we have a coincidence of fibre and cofibre sequences which
is displayed in Corollary 11.22. It follows that the f -local stable model structure on
symmetric (S1 ∧ T )-spectra is proper (Theorem 11.23).

Finally, if the compactness condition A1 and the cycle triviality condition A3
hold, then the forgetful functor U and its left adjoint V define a Quillen equivalence
between the f -local stable model structures for T -spectra and symmetric T -spectra.
This statement is Theorem 11.35.

Section 11.6 contains a discussion of the properties of the smash product con-
struction within the f -local stable structure on symmetric T -spectra. Its monoidal
aspects are displayed in Theorem 11.44 and in its corollaries.

The f -local stable model structure on symmetric T -spectra may not itself be
monoidal as the term is normally defined. This stable model structure is constructed
in a way which differs slightly from the stable model structures of [46] and [57], but
it is monoidal in a derived sense.

The section finishes with a comparison of the naive smash product X ∧n Y of T -
spectra (which arises from the T -bispectrum object Xp ∧Y q) and the stable f -fibrant
model (V X∧Σ V Y )s of the smash V X∧Σ V Y of their associated symmetric spectra:
Theorem 11.48 says that these objects coincide in the f -local stable category, in the
presence of assumptions A1 and A3, and if X or Y is cofibrant.

Section 11.7 presents an introduction to the f -local stable homotopy theory of
symmetric T -complexes. A symmetric T -complex X it a T -spectrum object on
presheaves of simplicial R-modules, in other words a T -complex in the language of
Chap. 10, which is equipped with linear symmetric group actions Σn × Xn → Xn
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which respect the twists in the tensor products

T ⊗n = R•(T ∧n)

under iterated bonding maps. As in Chap. 10, the object R•(X) is the free reduced
simplicial R-module which is associated to a pointed simplicial presheaf X.

The motivic cohomology spectrum HZ, which consists of the free presheaves with
transfers

Ztr ((Gm ∧ S1)∧n)

in the various levels (see Example 10.95), defines a symmetric (S1 ∧ Gm)-complex
in presheaves of simplicial abelian groups on the smooth Nisnevich site of a field.

More generally, the Eilenberg–Mac Lane object H (R), which is defined in levels
by

H (R)n = R•(T ∧n),

is a symmetric T -complex. This is the sphere spectrum object for the category of
symmetric T -complexes over the ring object R.

Once again, thef -local stable model structure for such objects is produced in gross
generality by a localization argument applied to a base injective model structure—this
is Theorem 11.54, as interpreted in Example 11.57.

As in the nonabelian case, the forgetful functor to T -complexes reflects stable
f -equivalences if T is compact (Theorem 11.60), and the categories of symmetric
T -complexes and T -complexes have Quillen equivalent f -stable model structures if
the parameter object T is compact and cycle trivial (Theorem 11.61). It is proved in
Theorem 11.66 that the tensor product for symmetric T -complexes, which is defined
by analogy with the smash product for symmetric T -spectra, is monoidal in a derived
sense.

The results of this chapter and of Chap. 10 are quite general, and specialize to
results about T -spectra and symmetric T -spectra in the unlocalized setting where one
does not formally invert a cofibration, as well as to results about the f -local stable
model structure for presheaves of symmetric spectra and presheaves of symmetric
spectra. A presheaf of symmetric spectra is a symmetric S1-spectrum in the language
developed here.

In the unlocalized setting, the compactness of the parameter object T in the
assumption A1 can still be an issue, but not if T is a finite pointed simplicial set, such
as the simplicial circle S1. The injective model structure on simplicial presheaves
automatically satisfies the descent condition A2. The cycle triviality condition A3 is
again an issue for arbitrary parameter objects T, but it is a well known consequence
of a degree calculation for the simplicial circle S1 and for any of the simplicial
spheres Sn = (S1)∧n. We recover, in particular, the results of [58] about the local
stable homotopy theory of presheaves of symmetric spectra.

The only assumption that one needs for presheaves of symmetric spectra in the f -
local setting is the descent condition A2 for the f -local model structure on simplicial
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presheaves. The compactness for the circle S1 follows immediately. The descent
condition can be serious business: it is proved for motivic model structures by using
a Nisnevich descent argument.

11.1 Symmetric Spaces

We start with an arbitrary small Grothendieck site C, and we choose a regular cardinal
α such that α > | Mor (C)|.

A symmetric space X consists of pointed simplicial presheaves Xn, n ≥ 0, on the
site C with symmetric group actions

Σn × Xn → Xn.

A morphism f : X → Y of symmetric spaces consists of pointed simplicial presheaf
morphisms Xn → Yn, n ≥ 0, which respect the symmetric group actions in all levels.
Following [46], the category of symmetric spaces is denoted by sPre(C)Σ∗ . See also
[58].

The pointed simplicial presheaf T is a fixed choice of parameter object, which
we assume to be α-bounded.

Example 11.1 The sequence of pointed simplicial presheaves

S0, T , T ∧ T , T ∧3, . . .

forms a symmetric space, which is denoted by ST . This is the symmetric space
underlying the sphere T -spectrum.

If X is a symmetric space and K is a pointed simplicial presheaf, then the object
X ∧ K which consists of the pointed simplicial presheaves Xn ∧ K is a symmetric
space. In particular, the suspension object

Σ∞
T K = ST ∧ K ,

is the symmetric space which consists of the objects T ∧n ∧ K .

Example 11.2 Write Γ for the category of finite pointed sets and pointed functions
between them. A Γ -space is a functor A : Γ → sPre(C)∗ which is defined on the
category of finite pointed sets and takes values in pointed simplicial presheaves. The
list of spaces

dA(S0), dA(S1), dA(S2), . . .

associated to a Γ -space A forms a symmetric space, where dX is the diagonal of
a bisimplicial (or multisimplicial) set X, and Σn acts on Sn = S1 ∧ · · · ∧ S1 by
permuting smash factors.

Any pair of finite pointed sets K , L determines a canonical map

K ∧ A(L) → A(K ∧ L),
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and it follows that there are canonical maps

Sk ∧ A(Sn) → A(Sk+n),

which induce pointed simplicial presheaf maps

Sk ∧ dA(Sn) → dA(Sk+n). (11.1)

In particular, the list of spaces dA(Sn), n ≥ 0, has the structure of an S1-spectrum.
More is true: the map (11.1) is (Σk × Σn)-equivariant. The list of spaces dA(Sn),

n ≥ 0 therefore forms a symmetric S1-spectrum, in the sense described below. One
writes A(S) for either the S1-spectrum or the symmetric S1-spectrum.

There is a Γ -space Φ(S, Y ) that is associated to a spectrum Y, which is defined by

Φ(S, Y )(n) = hom(S×n, Y ).

The functor Φ(S, ) is right adjoint to the functor A �→ A(S), and for suitable stable
model structures these two functors determine an equivalence of the stable homotopy
category of connective S1-spectra. See also [13].

The stable model structure for Γ -spaces is a special case of the stable model
structure for presheaves of Γ -spaces, with an associated homotopy category which
is equivalent to the stable category of connective presheaves of S1-spectra [7].

Some basic examples of presheaves of S1-spectra arise naturally from presheaves
of Γ -spaces, in the way described here. These include the algebraic K-theory
presheaf of spectra [68].

There is a functorial tensor product construction for symmetric spaces. Given
symmetric spaces X and Y, their tensor product X ⊗ Y is specified in degree n by

(X ⊗ Y )n =
∨

r+s=n

Σn ⊗Σr×Σs
(Xr ∧ Y s).

Here,

Σn ⊗Σr×Σs
(Xr ∧ Y s)

has the Σn-structure which is induced from the (Σr ×Σs)-structure on Xr ∧Y s along
the canonical inclusion

i : Σr × Σs ⊂ Σr+s = Σn

This means that Σn-equivariant maps

Σn ⊗Σr×Σs
(Xr ∧ Y s) → W

can be identified with (Σr × Σs)-equivariant maps

Xr ∧ Y s → i∗W ,
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where i∗W denotes restriction of the Σn-structure of Z to a (Σr × Σs)-structure
along the inclusion i.

A map of symmetric spaces

X ⊗ Y → Z

therefore consists of (Σr × Σs)-equivariant maps

Xr ∧ Y s → i∗Zr+s = Zr+s

for all r , s ≥ 0. An example is the map

⊗ : ST ⊗ ST → ST

which is defined by the canonical isomorphisms

T r ∧ T s
∼=−→ T r+s

Write cr ,s ∈ Σr+s for the shuffle which is defined by

cr ,s(i) =
{

s + i i ≤ r

i − r i > r
(11.2)

The twist automorphism

τ : X ⊗ Y → Y ⊗ X (11.3)

is uniquely determined by the composites

Xr ∧ Y s τ−→Y s ∧ Xr → (Y ⊗ X)s+r cs,r−→ (Y ⊗ X)r+s .

We multiply by the shuffle cs,r to make this composite equivariant for the inclusion
Σr × Σs ⊂ Σr+s . One checks that the composite

X ⊗ Y
τ−→Y ⊗ X

τ−→X ⊗ Y

is the identity.
The tensor product construction (X, Y ) �→ X ⊗ Y is symmetric monoidal. The

map

⊗ : ST ⊗ ST → ST

gives the sphere object ST the structure of an abelian monoid in the category of
symmetric spaces.

A symmetric T -spectrum X is a symmetric space with the structure

mX : ST ⊗ X → X
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of a module over ST . Equivalently, the symmetric space X comes equipped with
bonding maps

σ1,s : T ∧ Xs → X1+s

which are defined by the module structure, such that all composite bonding maps

T r ∧ Xs → Xr+s

are equivariant for the inclusion Σr × Σs ⊂ Σr+s . The symmetric T -spectra,
with structure-preserving maps between them, form a category which we denote
by SptΣ

T (C).
If X is a symmetric T -spectrum and A is a pointed simplicial presheaf then the

levelwise smash product X ∧ A, which is defined by setting

(X ∧ A)n = Xn ∧ A,

is a symmetric space that also has the structure of a symmetric T -spectrum.
The category of symmetric T -spectra has a symmetric monoidal smash product.

Given symmetric T -spectra X, Y , the smash product X ∧Σ Y is defined by the
coequalizer

ST ⊗ X ⊗ Y ⇒ X ⊗ Y → X ∧Σ Y.

in symmetric spaces, where the arrows in the picture

ST ⊗ X ⊗ Y ⇒ X ⊗ Y

are mX ⊗ Y and the composite

ST ⊗ X ⊗ Y
τ⊗Y−−→ X ⊗ ST ⊗ Y

X⊗mY−−−→ X ⊗ Y.

Remark 11.3 The tensor product functor A ⊗ B preserves colimits for symmetric
spaces A and B, and it follows that the smash product X∧Σ Y for symmetric T -spectra
preserves colimits in both X and Y .

If X is a symmetric space, then the tensor product ST ⊗ X has the structure of a
symmetric T -spectrum. The object ST ⊗ X is the free symmetric T -spectrum on X,
and there are natural bijections

homSptΣT (C) (ST ⊗ X, Y ) ∼= homsPre(C)Σ∗ (X, Y ).

If K is a pointed simplicial presheaf and n ≥ 0 there is a symmetric space GnK with

(GnK)r =
{

∗ r �= n

Σn ⊗ K = ∨
Σn

K r = n.

There is a natural bijection

homsPre(C)Σ∗ (GnK , W ) ∼= homsPre(C)∗ (K , Wn).
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It follows that if we define a symmetric T -spectrum FnK by setting

FnK = ST ⊗ GnK ,

then there is a natural bijection

homSptΣT (C) (FnK , Z) ∼= homsPre(C)∗ (K , Zn).

This holds for all n ≥ 0, pointed simplicial presheaves K and symmetric T -spectra
Z.

There is a natural identification

F0K = ST ∧ K = ST ∧ K ,

for pointed simplicial presheaves K .
There is a functor

U : SptΣ
T (C) → SptT (C)

which forgets the symmetric group actions. The functor U has a left adjoint

V : SptT (C) → SptΣ
T (C),

which is constructed inductively, by using the layer filtration of (10.11).
In effect, for a shifted suspension T -spectrum ST ∧K[−n], if the functor V is left

adjoint to the forgetful functor U, then it must be the case that there are isomorphisms

homSptΣT (C) (V (ST ∧ K[−n]), Z) ∼= homSptT (C) (ST ∧ K[−n], U (Z))

∼= homsPre(C)∗ (K , Zn),

so there are natural isomorphisms

V (ST ∧ K[−n]) ∼= FnK.

It follows that the symmetric T -spectra V (LnX) can be inductively specified on the
layers LnX of a T -spectrum X by the pushouts

Fn+1(T ∧ Xn) ��

��

V (LnX)

��
Fn+1(Xn+1) �� V (Ln+1X)

Write

V X = lim−→
n

V (LnX).
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There is an identification

(FnK)n = Σn ⊗ K ,

and the map e : K → Σn ⊗K given by the inclusion of the summand corresponding
to the identity e ∈ Σn induces a natural map

η : ST ∧ K[−n] → U (FnK). (11.4)

The map η satisfies a universal property: given a map f : K → Zn where Z is
a symmetric T -spectrum, there is a unique map f∗ : FnK → Z of symmetric
T -spectra such that the diagram

Σ∞K[−n]
η

��

f∗ ��		
			

			
		

U (FnK)

Uf∗
��

U (Z)

commutes.
The canonical maps η : LnX → UV (LnX) are inductively defined by the maps

(11.4) and the diagrams (10.12), and the unit map

η : X → UV (X)

is defined on the filtered colimit of the layers.

11.2 First Model Structures

A map X → Y of symmetric T -spectra is said to be a level weak equivalence if
all component maps Xn → Yn are local weak equivalences of (pointed) simplicial
presheaves.

A level cofibration is a map A → B of symmetric T -spectra such that all maps
An → Bn are cofibrations of pointed simplicial presheaves.

Say that a map p : X → Y of symmetric T -spectra is a projective fibration if all
maps p : Xn → Yn are injective fibrations of pointed simplicial presheaves. A map
i : A → B is said to be a projective cofibration if it has the left lifting property with
respect to all maps which are projective fibrations and level weak equivalences.

If the map A → B is a cofibration of pointed simplicial presheaves, then the
induced map FnA → FnB is a projective cofibration of symmetric T -spectra for all
n. It is an exercise to show that the map FnA → FnB is a level cofibration.

The induced map FnA → FnB is a level weak equivalence if the map A → B is
a local weak equivalence. It follows that the functors Fn take trivial cofibrations to
trivial projective cofibrations.
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Lemma 11.4 The category SptΣ
T (C), with the projective fibrations, projective cofi-

brations and level weak equivalences, satisfies the conditions for a proper closed
simplicial model category. This model structure is cofibrantly generated. Every
projective cofibration is a level cofibration.

Proof A map p : X → Y of symmetric T -spectra is a projective fibration if and only
if it has the right lifting property with respect to all maps FnA → FnB which are
induced by α-bounded trivial cofibrations A → B of pointed simplicial presheaves.
The map p is a projective trivial fibration if and only if it has the right lifting property
with respect to all maps FnC → FnD which are induced by α-bounded cofibrations
C → D of pointed simplicial presheaves. It follows that any map f : X → Y of
symmetric T -spectra has factorizations

Z
p



�
��

��
��

�

X

j


������� f

��

i 














Y

W

q



��������

such that p is a projective fibration and j is a projective trivial cofibration which has
the left lifting property with respect to all projective fibrations, and q is a projec-
tive trivial fibration and i is a projective cofibration. We have therefore verified the
factorization axiom CM5.

It follows that if i : A → B is a projective trivial cofibration, then i has left lifting
property with respect to all projective fibrations, by the usual argument. This proves
the lifting axiom CM4.

The remaining closed model axioms are easily verified.
The function complex construction hom(X, Y ) is the obvious one, with n-simp-

lices given by the maps

X ∧ Δn
+ → Y.

The axiom SM7 follows from the corresponding axiom for the the injective
model structure on pointed simplicial presheaves—see also Proposition 10.15 and
Lemma 10.16.

Every projective cofibration is in the saturation of the maps FnA → FnB which
are induced by cofibrations A → B of pointed simplicial presheaves. The maps
FnA → FnB are level cofibrations, and so every projective cofibration is a level
cofibration.

Properness is an easy consequence of this last observation, together with
properness of the injective model structure for pointed simplicial presheaves.

The maps FnA → FnB which are induced by α-bounded cofibrations (respec-
tively α-bounded trivial cofibrations) A → B generate the projective cofibrations
(respectively trivial projective cofibrations) of SptΣ

T (C).
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The model structure of Lemma 11.4 is the projective model structure for the
category of T -spectra.

Corollary 11.5 The functor V takes cofibrations (respectively strict trivial cofi-
brations) of T -spectra to projective cofibrations (respectively trivial projective
cofibrations) of symmetric T -spectra.

The various statements of Corollary 11.5 are consequences of the proof of Lemma
11.4. Compare with the proof Lemma 3 of [58].

There is also a model structure, called the injective structure, on the category
SptΣ

T (C) of symmetric T -spectra, for which the cofibrations are the level cofibrations
and the weak equivalences are the level weak equivalences. This result is proved in
Proposition 11.10 below, after some preliminary results. We begin by establishing
the bounded monomorphism property for level cofibrations.

Say that a symmetric T -spectrum X is α-bounded if all component simplicial
presheaves Xn are α-bounded.

Lemma 11.6 Suppose that α is a regular cardinal such that α > | Mor (C)|. Suppose
given level cofibrations

X

i

��
A �� Y

such that the vertical map i is a level equivalence and the object A is α-bounded.
Then there is an α-bounded subobject B ⊂ Y with A ⊂ B such that the induced
map B ∩ X → B is a level equivalence.

The proof of this result is essentially the same as that of the corresponding result
for simplicial presheaves, which is Lemma 5.2.

Given a symmetric T -spectrum X, one can use Kan’s Ex∞-construction (see
Sect. 4.1) to construct a symmetric T -spectrum Ex∞ X with ( Ex∞ X)n = Ex∞ (Xn),
together with a natural level weak equivalence X → Ex∞ X. The maps Xn →
Ex∞ (Xn) are sectionwise equivalences.

Proof There is a natural commutative diagram in symmetric T -spectra

X ��

i

��

Ex∞ X

��

j

55<<
<<<

<<<
<<<

<<

Ex∞ X ×Ex∞ Y ( Ex∞ Y )I

π<<===
===

===
===

=

Y �� Ex∞ Y
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such that the map j is a sectionwise cofibration and weak equivalence and π is
a sectionwise fibration, in all levels. Form the pullback of this factorization of
Ex∞ X → Ex∞ Y along the map Y → Ex∞ Y to find a factorization

X
jY ��

i

��

ZY

πY11��
��
��
��

Y

such that jY is a sectionwise cofibration and a weak equivalence in all levels and πY

is sectionwise fibration in all levels. This construction respects all filtered colimits
of maps i, so that

ZY = lim−→
B⊂Y

ZB ,

where πB : ZB → B is the corresponding replacement for the map B ∩ X → B.
The object ZB is α-bounded if B is α-bounded.

The maps Zn
Y → Yn are local equivalences and local fibrations, and therefore

have the local right lifting property with respect to all inclusions ∂Δm ⊂ Δm. Then
it follows that every lifting problem

∂Δm ��

��

Zn
A(U )

��
Δm �� Am(U )

has a local solution over some α-bounded B ′ ⊂ Y with A ⊂ B ′. There are at most
α such lifting problems, so there is an α-bounded subobject B1 ⊂ Y with A ⊂ B1

such that every lifting problem as above has a local solution over B1.
Repeat inductively to produce a countable sequence

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

such that every lifting problem

∂Δm ��

��

Zn
Bi

(U )

��
Δm �� Bm

i (U )

has a local solution over Bi+1. Let B = ∪iBi . Each map πB : Zn
B → Bn is therefore a

local trivial Kan fibration, so that the map Bn∩Xn → Bn is a local weak equivalence.
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Say that a map p : X → Y of symmetric T -spectra is an injective fibration if it
has the right lifting property with respect to all level trivial cofibrations.

Lemma 11.7

1) The map p : X → Y is an injective fibration if and only if it has the right lifting
property with respect to all α-bounded level trivial cofibrations.

2) A map q : Z → W has the right lifting property with respect to all level cofibra-
tions if and only if it has the right lifting property with respect to all α-bounded
level cofibrations. The map q must also be a projective fibration and a level
equivalence.

Proof Statement 1) is a formal consequence of Lemma 11.6—see the proof of
Lemma 5.4. The first part of statement 2) has a similar proof.

For these arguments, one needs to know that every section σ ∈ Xn(U ) of a
symmetric T -spectrum X is a member of an α-bounded subobject A ⊂ X. This
follows, in part, from the assumption that T is α-bounded.

For the second claim of statement 2), the map q has the right lifting property
with respect to all maps FnA → FnB induced by cofibrations A → B of pointed
simplicial presheaves, so that it is a trivial injective fibration of simplicial presheaves
in all levels.

It follows from Lemma 11.7 that, if a map q : Z → W has the right lifting property
with respect to all α-bounded level cofibrations, then it is an injective fibration and a
level weak equivalence. The following result is the key to the proof of the converse
statement, which appears in Corollary 11.9 below.

Lemma 11.8 Suppose that the map p : X → Y has the right lifting property with
respect to all α-bounded level trivial cofibrations and that p is a level equivalence.
Then p has the right lifting property with respect to all level cofibrations.

The outline of the argument for this result has appeared in multiple contexts, most
explicitly in the proof of Lemma 7.3. We show that the map p has the right lifting
property with respect to all α-bounded level cofibrations, so that we can invoke
statement 2) of Lemma 11.7.

Proof A small object argument based on Lemma 11.7 shows that the map p has a
factorization

X

p 

















i �� W

π

��
Y

where π has the right lifting property with respect to all cofibrations, and i is a level
cofibration. The map π is a level equivalence, again by Lemma 11.7, so that the map
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i is a level equivalence. Given a diagram

E ��

��

X

i

��
W

π

��
F ��

θ




Y

with E → F an α-bounded cofibration, the dotted lifting θ exists, and the image
θ (F ) ⊂ W is α-bounded. By Lemma 11.6 there is an α-bounded object D ⊂ W

with θ (F ) ⊂ D such that the induced map D ∩ X → D is a level equivalence. It
follows that any diagram

E ��

��

X

q

��
F �� Y

with E → F an α-bounded cofibration has a factorization

E ��

��

D ∩ X

��

�� X

p

��
F �� D

��

�� Y

where the dotted lifting exists since D ∩ X → D is an α-bounded trivial level
cofibration.

Corollary 11.9 A map q : Z → W of symmetric T -spectra is an injective fibration
and a level weak equivalence if and only if it has the right lifting property with respect
to all α-bounded level cofibrations.

One forms the function complex hom(X, Y ) for symmetric T -spectra X, Y by
requiring that

hom(X, Y )n = hom (X ∧ Δn
+, Y ).

The argument for the following result is an application of Lemma 11.7 and Corollary
11.9, and is left as an exercise.

Proposition 11.10 The level weak equivalences, level cofibrations and injective
fibrations give the category SptΣ

T (C) of symmetric T -spectra the structure of a proper
closed simplicial model category. This model structure is cofibrantly generated, by
the α-bounded level cofibrations and the α-bounded level trivial cofibrations.

The model structure of Proposition 11.10 is the injective model structure for the
category of symmetric T -spectra.
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11.3 Localized Model Structures

This section gives the method for formally inverting a set of cofibrations within the
injective model structure of Proposition 11.10. This method is based on the definitions
and results of Sect. 7.2.

Suppose that F is a set of level cofibrations of symmetric T -spectra which includes
the set J of α-bounded level trivial cofibrations. Suppose that all induced maps

(E ∧ D) ∪ (F ∧ C) → F ∧ D

are in F for each morphism E → F in F and each α-bounded cofibration C → D

of pointed simplicial presheaves.
Suppose that β is a regular cardinal such that β > | Mor (C)|. Suppose also that

β > |B| for all morphisms i : A → B appearing in the set F and that β > |F|.
Recall the assumption that |T | < α.

Choose a cardinal λ such that λ > 2β .
Every morphism g : X → Y of symmetric T -spectra has a functorial factorization

X
i ��

g ""%
%%

%%
%%

Eλ(g)

p
��

Y

where the cofibration i is in the saturation of the set F, and the map p has the right
lifting property with respect to all members of F. As in Sect. 7.2, one constructs this
factorization with a small object argument which terminates after λ steps.

Write

LF(X) = Eλ(X → ∗)

for the result of this construction when applied to the canonical map X → ∗. Then
we have the following:

Lemma 11.11

1) Suppose that t �→ Xt is a diagram of level cofibrations indexed by any cardinal
γ > 2β . Then the natural map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > β, and let Fζ (X) denote the filtered system

of subobjects of X having cardinality less than ζ . Then the map

lim−→
Y∈Fζ (X)

LF(Y ) → LF(X)
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is an isomorphism.
3) The functor X �→ LF(X) preserves level cofibrations.
4) Suppose that U , V are subobjects of X. Then the natural map

LF(U ∩ V ) → LF(U ) ∩ LF(V )

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

Lemma 11.11 is a consequence of Lemma 7.16, which is the corresponding result
for simplicial presheaves.

A map is said to be F-injective if it has the right lifting property with respect to
all members of F, and an object X is F-injective if the map X → ∗ is F-injective.
All F-injective objects are injective fibrant, ie. fibrant for the model structure of
Proposition 11.10. The object LFX is F-injective.

Say that a morphism f : X → Y of SptΣ
T (C) is an LF-equivalence if it induces

a weak equivalence

f ∗ : hom(Y , Z) → hom(X, Z)

of simplicial sets for all F-injective objects Z. Equivalently, f : X → Y is an
LF-equivalence if and only if the induced map f∗ : LF(X) → LF(Y ) is a level
equivalence of symmetric T -spectra—see the preamble to Theorem 7.10.

Every level equivalence is an LF-equivalence.
Following the pattern of Sect. 7.1, we say that a map X → Y of symmetric T -

spectra is an LF-fibration if it has the right lifting property with respect to all maps
which are level cofibrations and LF-equivalences.

Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 11.11. Then κ is a regular cardinal, and Lemma 11.11 implies that if a
symmetric T -spectrum X is κ-bounded then LF(X) is κ-bounded. The following
result establishes the bounded monomorphism property for LF-equivalences:

Lemma 11.12 Suppose given a level cofibration i : X → Y which is an LF-equiva-
lence, and suppose that A ⊂ Y is a κ-bounded subobject. Then there is a κ-bounded
subobject B ⊂ Y with A ⊂ B, and such that the level cofibration B ∩ X → B is an
LF-equivalence.

Lemma 11.12 is a consequence of Lemma 11.6 (which is the bounded monomor-
phism property for the injective model structure of Proposition 11.10), in the same
way that Lemma 7.17 follows from Lemma 5.2.

The following result is a consequence of Theorem 7.10. The left properness
statement follows from Lemma 7.8.

Theorem 11.13 The category SptΣ
T (C) of symmetric T -spectra, with the classes of

level cofibrations, LF-equivalences and LF-fibrations, satisfies the axioms for a left
proper closed simplicial model category.
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The model structure of Theorem 11.13 is said to be a stable model structure if all
maps of symmetric T -spectra which are obtained by applying the functor V to the
stabilization maps

(ST ∧ T )[−1 − n] → ST [−n], (11.5)

are LF-equivalences. Recall that ST is the sphere spectrum for the T -spectrum
category.

We can force the model structure of Theorem 11.13 to be a stable model structure
by adding cofibrant replacements of the maps

V ((ST ∧ T )[−1 − n]) → V (ST [−n]) (11.6)

to the defining set F.
Every symmetric T -spectrum is cofibrant in the model structure of Theorem 11.13.

A cofibrant replacement of a map α : X → Y of symmetric T -spectra is therefore
found by taking the cofibration i in a factorization

X

α ���
��

��
��

i �� U

θ

��
Y

of the map α, in which i is a level cofibration and the map θ is level weak equivalence.
The T -spectra (ST ∧ T )[−1 − n] and ST [−n] are cofibrant. It follows from

Corollary 11.5 that the functor V takes level weak equivalences between cofibrant
T -spectra to level weak equivalences of symmetric T -spectra. Thus, given a cofibrant
replacement

(ST ∧ T )[−1 − n]
j

��

����
���

���
���

�
W

π

��
ST [−n]

for the stabilization map (11.5) in the strict model structure for T -spectra (with j a
cofibration and π a strict equivalence, then the induced level cofibration V (j ) is a
cofibrant replacement for the map (11.6) in the category of symmetric T -spectra, in
the model structure of Proposition 11.10.

When we say that the set F is generated by a set S of level cofibrations, this
means that F is the smallest set of level cofibrations which contains S and satisfies
the closure property that the map

(E ∧ D) ∪ (F ∧ C) → F ∧ D

is in F for each morphism E → F in F and each α-bounded cofibration C → D of
pointed simplicial presheaves.
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This closure property is analogous to the property C3 for spectra that appears in
Sect. 10.3. The analogue of property C1 is automatic in the present context (specifi-
cally, in the model structure of Proposition 11.10), and the analogue of property C2
is one of the assumptions that we make for the set F.

Example 11.14 The stable model structure for symmetric T -spectra arises, via The-
orem 11.13, by formally inverting the set F of level cofibrations, where F is generated
by the set J of α-bounded level trivial cofibrations, together with a set of cofibrant
replacements of the maps (11.6).

Say that an LF-equivalence for this theory is a stable equivalence, and that an LF-
fibration is a stable fibration. The cofibrations for this theory are the level cofibrations.

Example 11.15 Suppose that f : A → B is a cofibration of simplicial presheaves.
Following Example 10.23, let Jf be the set of all maps

Fn(C+) → Fn(D+)

which are induced by a fixed set of generators C → D for the trivial cofibrations of
the f -local model structure. Let Sf be the set of cofibrations which is generated by the
set Jf , together with cofibrant replacements of the maps (11.6). The corresponding
model structure which is given byTheorem 11.13 is thef -local stable model structure
for symmetric T -spectra.

An LF-equivalence for this theory is a stable f -equivalence, and an LF-fibration
is a stable f -fibration. We shall say that the trivial cofibrations and trivial fibrations
for this theory are stable f -trivial.

If a symmetric T -spectrum Z is stable f -fibrant, then it follows from Corol-
lary 7.12 that the T -spectrum underlying Z must be stable f -fibrant. Corollary 10.26
implies that all level objects Zn are f -fibrant simplicial presheaves and all maps
σ∗ : Zn → ΩT Zn+1 are local (even sectionwise) weak equivalences of pointed
simplicial presheaves.

Example 11.16 Start with the setup of Example 11.15, namely that f : A → B is
a cofibration of simplicial presheaves, and that Jf is the set of all maps Fn(C+) →
Fn(D+) which are induced by a fixed set of generators C → D for the trivial
cofibrations of the f -local model structure.

Let S ′
f be the set of cofibrations which is generated by the set Jf alone.

The corresponding model structure which is given by Theorem 11.13 is the f -
injective structure for symmetric T -spectra. The fibrant objects for this structure, or
the f -injective symmetric T -spectra are those objects Z which are level f -fibrant
in the sense that all constituent simplicial presheaves Zn are f -fibrant. The trivial
fibrations for this theory are trivial fibrations for the injective structure, and are
therefore level weak equivalences.

The weak equivalences for the f -injective model structure are the level f -
equivalences, i.e. maps X → Y such that all maps Xn → Yn are f -equivalences of
simplicial presheaves. This follows from the fact that the set S ′

f consists of cofibra-
tions which are level f -equivalences. Any map g : X → Y of symmetric T -spectra
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then sits in a commutative diagram

X
jX ��

g

��

LFX

g∗
��

Y
jY

�� LFY

in which the horizontal maps are f -injective (or f -fibrant) models, and are there-
fore level f -equivalences. All objects LFXn and LFYn are f -fibrant simplicial
presheaves. Thus, g is a levelwise f -equivalence if and only if the induced map
LFX → LFY of f -injective models is a level equivalence.

11.4 Stable Homotopy Theory of Symmetric Spectra

Suppose that f : A → B is a cofibration of pointed simplicial presheaves, and that
Sf is the set of level cofibrations of Example 11.15. We shall work, throughout this
section, within the resulting f -local stable model structure on the category SptΣ

T (C)
of symmetric T -spectra.

It is an exercise to show that a symmetric T -spectrum Z is stable f -fibrant if and
only if Z is injective (i.e. fibrant for the model structure of Proposition 11.10) and
the underlying T -spectrum UZ is stable f -fibrant.

Lemma 11.17

1) The functor

V : SptT (C) → SptΣ
T (C)

takes cofibrations to level cofibrations, and preserves stable f -trivial cofibrations.
2) The functor V takes strict f -equivalences of cofibrant T -spectra to level

f -equivalences of symmetric T -spectra.

Proof We know from Lemma 11.4 and Corollary 11.5 that the functor V takes
cofibrations to projective cofibrations, and hence to level cofibrations.

There is a natural isomorphism of function complexes

hom(V (A), Z) ∼= hom(A, U (Z)),

and the T -spectrum U (Z) is stable f -fibrant if Z is stable f -fibrant. Thus, if the
map i : A → B is a cofibration and a stable f -equivalence of T -spectra, then the
simplicial set map

V (i)∗ : hom(V (B), Z) → hom(V (A), Z)
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is a weak equivalence for all stable f -fibrant objects Z, and it follows that the map
V (i) is a stable f -equivalence as well as a level cofibration.

For statement 2), the functor V takes the generators (ST ∧A)[−n] → (ST ∧B)[−n]
of the class of trivial cofibrations for the strictf -local model structure (Remark 10.24)
to maps Fn(A) → Fn(B) of symmetric T -spectra which are level f -equivalences and
level cofibrations, and it follows that V takes all trivial cofibrations for the strict f -
local model structure to maps which are level cofibrations and level f -equivalences.

The image V (j ) of a cofibrant replacement j : X → U of a strict f -equivalence
g : X → Y between cofibrant T -spectra is therefore a level f -equivalence. The
functor V takes level equivalences between cofibrant T -spectra to level equivalences
of symmetric T -spectra by Corollary 11.5, so the map V (g) is a level f -equivalence.

Corollary 11.18 The adjoint pair of functors

V : SptT (C) � SptΣ
T (C) : U

defines a Quillen adjunction between the respective f -local stable model structures.

It follows from Lemma 11.17 that every map g : X → Y of symmetric T -spectra
has a natural factorization

X
i ��

g 
















Xs

ps

��
Y

where i is a stable f -trivial cofibration and U (ps) is a stable f -fibration. Applying
this construction to the map X → ∗ determines a natural stable f -trivial cofibration
i : X → Xs such that U (Xs) is stable f -fibrant.

Consider the composite

X
i−→Xs

j−→ I (Xs) (11.7)

where j : Xs → I (Xs) is the natural f -injective model (Example 11.16). The map
j : Xs → I (Xs) is a level equivalence, so that the T -spectrum U (I (Xs)) is stable f -
fibrant by Corollary 10.26. The composite ji is a stable f -equivalence, and therefore
determines a natural stable f -fibrant model for symmetric T -spectra X.

More generally, if Z is a symmetric T -spectrum such that U (Z) is stable f -fibrant,
then the f -injective model I (Z) is a stable f -fibrant model for Z in symmetric
T -spectra.

It follows that a map X → Y of symmetric T -spectra is a stable f -equivalence if
and only if the induced map I (Xs) → I (Ys) is a level f -equivalence, or even a level
sectionwise equivalence.
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We now describe a construction for symmetric T -spectra which has no analogue
for T -spectra, namely a natural map σ̃ : X → ΩT X[1] where ΩT X is a real (not
fake) loop space and ΩT X[1] is a shifted object that is to be defined.

In general, suppose that K is a pointed simplicial presheaf and X is a symmetric
T spectrum. Then ΩKX = Hom(K , X) is the symmetric T -spectrum defined by
internal function complexes, with

ΩKXn = Hom(K , Xn).

The bonding map

T p ∧ Hom(K , Xn)
σ−→ Hom(K , Xp+n)

is defined by its adjoint: it is the unique map such that the diagram

T p ∧ Hom(K , Xn) ∧ K
σ∧K ��

T p∧ev

��

Hom(K , Xp+n) ∧ K

ev

��
T p ∧ Xn

σ

�� Xp+n

commutes. The symmetric group Σn has the evident induced action on the simplicial
presheaf Hom(K , Xn).

There is a bijection

hom (X ∧ K , Y ) ∼= hom (X, ΩKY )

which is natural in symmetric T -spectra X and Y and pointed simplicial presheaves
K .

Suppose that X is a symmetric T -spectrum and that n > 0. The shifted symmetric
T -spectrum X[n] has X[n]k = Xn+k , and α ∈ Σk acts on X[n]k as the element
1 ⊕ α ∈ Σn+k . The bonding map σ : T p ∧ X[n]k → X[n]p+k is defined to be the
composite

T p ∧ Xn+k σ−→Xp+n+k c(p,n)⊕1−−−−→ Xn+p+k

where c(p, n) is the shuffle permutation of Σp+n which moves the first p letters past
the last n letters, in order.

Every element γ ∈ Σn induces an isomorphism γ ⊕ 1 : Xn+k → Xn+k , and all
diagrams

T p ∧ Xn+k
σ ��

T p∧(γ⊕1)

��

Xp+n+k
c(p,n)⊕1

��

1⊕γ⊕1

��

Xn+p+k

γ⊕1⊕1

��
T p ∧ Xn+k

σ

�� Xp+n+k

c(p,n)⊕1
�� Xn+p+k
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commute. It follows that each γ ∈ Σn induces a natural isomorphism

γ : X[n] → X[n]

of shifted symmetric T -spectra.
The map σ̃ : Xn → ΩT X[1]n = ΩT X1+n in level n is the adjoint σ∗ of the

bonding map

σ : T ∧ Xn → X1+n,

in the usual sense that the diagram

T ∧ Xn
T ∧σ∗ ��

σ

==>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>> T ∧ ΩT X1+n

τ

∼=
�� ΩT X1+n ∧ T

ev

��
X1+n

commutes. One shows that the diagram

T p ∧ Xn
T p∧σ∗ ��

σ

��

T p ∧ ΩT X1+n

σ

��

Xp+n

σ∗
�� ΩT X1+p+n

commutes by checking adjoints, and the morphisms σ∗ assemble to define a natural
map

σ̃ : X → ΩT X[1]

of symmetric T -spectra.
Suppose that X is a symmetric T -spectrum. Define a system k �→ (QΣ

T X)(k),
k ≥ 0 of symmetric T -spectra by specifying that

(QΣ
T X)(k) = Ωk

T I (X)[k], k ≥ 0.

In particular, (QΣ
T X)(0) = I (X), where j : X → I (X) is the natural choice of

f -injective model for X. There is a natural map (QΣ
T X)(k) → (QΣ

T X)(k + 1) of
symmetric T -spectra, which is the map

Ωk
T σ̃ [k] : Ωk

T I (X)[k] → Ωk
T ΩT I (X)[1][k]

that is induced by σ̃ . Set

QΣ
T X = I ( lim−→

k

(QΣ
T X)(k)),
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and write η : X → QΣ
T X for the natural composite

X
j−→ I (X) = (QΣ

T X)(0) → lim−→
k

(QΣ
T X)(k)

j−→ I ( lim−→
k

(QΣ
T X(k)).

Theorem 11.19 Suppose that the object T is compact up to f -equivalence. Suppose
that g : X → Y is a map of symmetric T -spectra such that the induced map
g∗ : U (X) → U (Y ) is a stable f -equivalence of underlying T -spectra. Then g is a
stable f -equivalence.

Proof The compactness assumption guarantees that the natural map η : Y → QT Y

is a stable f -fibrant model for each T -spectrum Y, by Theorem 10.32.
In level n, the symmetric T -spectrum lim−→k

(QΣ
T X)(k) is given by the filtered

colimit of the system

I (X)n
σ∗−→ ΩT I (X)n+1 ΩT σ∗−−→ Ω2

T I (X)n+2 Ω2
T σ∗−−→ . . .

The object U (I (X)) is strict f -fibrant and the map U (X) → U (I (X)) is a strict
f -equivalence, so that the comparison F (U (X)) → U (I (X)) is a strict equivalence
and induces a commutative diagram

F (U (X))n ��

��

ΩT F (U (X))n+1 ��

��

Ω2
T F (U (X))n+2 ��

��

. . .

U (I (X))n �� U (ΩT I (X))n+1 �� U (Ω2
T I (X))n+2 �� . . .

in which all the vertical maps are weak equivalences of pointed simplicial presheaves.
It follows that there are induced natural f -equivalences

lim−→k
Ωk

T F (U (X))n+k
j



��



��

QT U (X)n

U ( lim−→k
Ωk

T I (X)n+k)
Uj


 �� U (QΣ
T X)n

Thus if a map of symmetric T -spectra g : X → Y induces a stable f -equivalence
U (g), meaning a level f -equivalence QT U (X) → QT U (Y ) of T -spectra, then the
map of symmetric T -spectra g∗ : QΣ

T X → QΣ
T Y is a level equivalence.

If a symmetric T -spectrum Z is stable f -fibrant then all objects (QΣ
T Z)(k) are

stable f -fibrant and all maps Z → (QΣ
T Z)(k) are level f -equivalences, and it

follows from the compactness of T that the natural map η : Z → QΣ
T Z is a level

f -equivalence.
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Finally, take a stable f -fibrant model X → LFX for a symmetric T -spectrum X

and consider the diagram

X

 ��

η

��

LFX


 η

��
QΣ

T X �� QΣ
T LFX

The indicated maps are stable f -equivalences, so that each symmetric T -spectrum
X is a natural retract of the associated object QΣ

T X in the f -local stable homotopy
category.

Thus, if the map g : X → Y induces a stable f -equivalence g∗ : U (X) → U (Y )
of T -spectra, then the induced map QΣ

T X → QΣ
T Y is a level and hence stable

f -equivalence, so that g is a stable f -equivalence.

Results about stable categories of T -spectra create results for stable categories of
symmetric T -spectra, via Theorem 11.19. In particular, the full calculus of fibre and
cofibre sequences for (S1 ∧T )-spectra from Sect. 10.5 has an analogue in symmetric
(S1 ∧T )-spectra, provided that we assume that T is compact up to f -equivalence and
that the f -local model structure on simplicial presheaves satisfies inductive colimit
descent.

Recall that the inductive colimit descent condition implies that the simplicial
circle S1 is compact up to f -equivalence (Lemma 10.35), so that the smash S1 ∧ T

is compact up to f -equivalence (Lemma 10.28).

Corollary 11.20 Suppose that T is compact up to f -equivalence, and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose that there is a level f -fibre sequence

F
i−→X

p−→Y

of symmetric (S1 ∧ T )-spectra. Then the canonical map X/F → Y is a stable
f -equivalence.

Proof The map U (X/F ) → U (Y ) is a stable f -equivalence of (S1 ∧ T )-spectra by
Corollary 10.59. Now use Theorem 11.19.

Lemma 11.21 Suppose that T is compact up to f -equivalence, and that the f -local
model structure on the category of simplicial presheaves satisfies inductive colimit
descent.

Suppose given a comparison of level cofibre sequences

A1
��

g1

��

B1
��

g2

��

B1/A1

g3

��
A2

�� B2
�� B2/A2
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of symmetric (S1 ∧T )-spectra. If any two of g1, g2 and g3 are stable f -equivalences,
then so is the third.

Proof There is a natural isomorphism

ΩS1∧T Z[1] ∼= ΩS1ΩT Z[1]

and the canonical map Z → ΩS1∧T Z[1] is a level equivalence if Z is stable f -fibrant.
It follows that the induced diagram

hom(B2/A2, Z) ��

��

hom(B2, Z) ��

��

hom(A2, Z)

��
hom(B1/A1, Z) �� hom(B1, Z) �� hom(A1, Z)

is a comparison of fibre sequences of infinite loop spaces for each stable f -fibrant
object Z. Thus, if any two of the vertical maps is a weak equivalence then so is the
third.

Corollary 11.22 Suppose that T is compact up to f -equivalence and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose that the map i : A → B is a cofibration of symmetric (S1 ∧ T )-spectra,
and take a factorization

B
j

��

π ��,
,,

,,
,,

, Z

p

��
B/A

such that j is a cofibration and an f -equivalence and p is an f -injective fibration.
Let F be the fibre of p. Then the induced map A → F is a stable f -equivalence.

Proof It follows from Lemma 10.62 that the map U (A) → U (F ) is a stable f -
equivalence of (S1 ∧ T )-spectra. Use Theorem 11.19.

The following properness result for symmetric (S1 ∧ T )-spectra is now evident:

Theorem 11.23 Suppose that T is compact up to f -equivalence, and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.

Then the f -local stable model structure for symmetric (S1 ∧T )-spectra is proper.

Proof The proof is the same as that of Theorem 10.64. Use Corollary 11.20 and
Lemma 11.21 in place of Corollary 10.59 and Lemma 10.60, respectively.

Generally, a symmetric T -spectrum is stable f -fibrant if and only if is f -injective,
and all simplicial presheaf maps σ∗ : Zn → ΩT Zn+1 are local weak equivalences.
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This observation can be promoted to a recognition principle for stable f -fibrations
of (S1 ∧ T )-spectra, in the presence of the usual assumptions on the object T and
the the f -local structure on simplicial presheaves. The formal statement appears in
Lemma 11.25 below. The proof uses the calculus of fibre and cofibre sequences for
(S1 ∧ T )-symmetric spectra of Corollary 11.20 through Corollary 11.22. The proof
of Lemma 11.25 also requires the following technical result:

Lemma 11.24 Suppose that T is compact up to f -equivalence, and that the f -local
model structure for simplicial presheaves satisfies inductive colimit descent.

Suppose that a map p : X → Y is a stable f -equivalence of symmetric (S1 ∧T )-
spectra and that the underlying map U (p) : U (X) → U (Y ) is a stable f -fibration
of (S1 ∧ T )-spectra. Then p is a level weak equivalence.

Proof The map p is a level f -fibration. Let F be the fibre of p and consider the
fibre sequence

F
i−→X

p−→Y.

The canonical map X/F → Y is a stable f -equivalence of symmetric (S1 ∧ T )-
spectra by Corollary 11.20, so that the map X → X/F is a stable f -equivalence.
Lemma 11.21 and the existence of the comparison of cofibre sequences

F ��

��

X ��

��

X/F

��
∗ �� X/F

1
�� X/F

together show that the map F → ∗ is a stable f -equivalence of symmetric (S1 ∧T )-
spectra. It follows that F is levelwise contractible, since the f -injective model I (F )
is stable f -fibrant (see Example 11.16 and the construction in (11.7)).

The induced map U (X) → U (X/F ) is a stable f -equivalence of (S1 ∧T )-spectra
by Lemma 10.60, so that the map U (p) : U (X) → U (Y ) is a stable f -equivalence
of (S1 ∧ T )-spectra as well as a stable f -fibration. It follows that the map U (p) :
U (X) → U (Y ) is a level equivalence.

Lemma 11.25 Suppose that T is compact up to f -equivalence, and that the f -local
model structure on simplicial presheaves satisfies inductive colimit descent.

Suppose that the map p : X → Y is an injective fibration of symmetric (S1 ∧ T )-
spectra. Then p is a stable f -fibration if and only if the induced map U (p) : U (X) →
U (Y ) is a stable f -fibration of (S1 ∧ T )-spectra.

Proof If the map p : X → Y is a stable f -fibration, then the underlying map
U (p) : U (X) → U (Y ) is a stable f -fibration on account of the Quillen adjunction
of Corollary 11.18.
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Suppose that the map i : A → B is a cofibration and a stable f -equivalence.
Then i has a factorization

A
j

��

i ���
��

��
��

Z

q

��
B

such that q is an injective fibration and U (q) is a stable f -fibration, and j is a
cofibration which is a stable f -equivalence and has the left lifting property with
respect to all maps p such that p is an injective fibration and U (p) is a stable
f -fibration.

In effect, there are two factorizations

A
js ��

i
55��

���
���

���
���

�� As

ps

��9
99

99
99

9

ji �� Asi

psi

��
B

In the first of these, ps is a map such that U (ps) is a stable f -fibration and js is
a stable f -trivial cofibration which has the left lifting property with respect to all
maps p such that U (p) is a stable f -fibration. The map ji is a level trivial cofibration
and psi is an injective fibration. It follows that U (psi) is a strict fibration which
is strict equivalent to a stable f -fibration, so that U (psi) is a stable f -fibration by
Theorem 10.65. Set q = psi and j = jijs .

The map q is also a stable f -equivalence, so it is a level weak equivalence by
Lemma 11.24. Thus, q is a trivial injective fibration, and therefore has the right
lifting property with respect to all cofibrations. But then the map i is a retract of j

and therefore has the left lifting property with respect to all injective fibrations p

such that U (p) is a stable fibration.
It follows that, if p is an injective fibration such that U (p) is a stable f -fibration,

then p has the right lifting property with respect to all maps which are cofibrations
and stable f -equivalences.

In the original description of the stable model structure for symmetric spectra of
[46], a stable fibration is defined to be a map of symmetric spectra p : X → Y such
that the underlying map U (p) : U (X) → U (Y ) of spectra is a stable fibration. The
definition of stable equivalence for symmetric spectra of [46] is a special case of
the definition of stable f -equivalence for symmetric (S1 ∧T )-spectra which appears
here. See also [58]. There is an analogue of the model structure for symmetric spectra
of [46] in the f -local context for (S1 ∧ T )-spectra, called the HSS-structure, which
we now describe. Once it is in place, the HSS-structure is easily seen to be Quillen
equivalent to the stable f -local model structure for symmetric (S1 ∧T )-spectra—this
is discussed below.
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Say that the map p : X → Y of symmetric (S1 ∧T )-spectra is an HSS-fibration if
the underlying map U (p) : U (X) → U (Y ) is a stable f -fibration of (S1∧T )-spectra.
Say that the map i : A → B is an HSS-cofibration if it has the left lifting property
with respect to all maps which are stable f -equivalences and HSS-fibrations.

Lemma 11.24 implies that every map p : X → Y which is both an HSS-fibration
and a stable f -equivalence must be a level f -equivalence, and hence a trivial strict
fibration. It follows that the class of HSS-cofibrations includes all maps FnA → FnB

which are induced by all cofibrations A → B of pointed simplicial presheaves.

Theorem 11.26 Suppose that T is compact up to equivalence and that the f -local
model structure on simplicial presheave satisfies inductive colimit descent.

Then the category SptΣ
S1∧T

(C) of symmetric (S1 ∧ T )-spectra, with the classes
of stable f -equivalences, HSS-fibrations and HSS-cofibrations, satisfies the ax-
ioms for a proper closed simplicial model category. All HSS-cofibrations are level
cofibrations.

Proof The f -local stable model structure on (S1 ∧ T )-spectra is cofibrantly gen-
erated. It follows from Lemma 11.17 that every map g : X → Y of symmetric
(S1 ∧ T )-spectra has factorizations

Z
p



�
��

��
��

�

X
g

��

j


�������

i 














Y

W

q



��������

where p is an HHS-fibration and j is an HSS-cofibration which is a stable f -
equivalence and has the left lifting property with respect to all HHS-fibrations, and i

is an HSS-cofibration and q is an HSS-fibration such that U (q) is a trivial stable f -
fibration. The map q is a stable f -equivalence, by Theorem 11.19. We have verified
the factorization axiom CM5.

The maps i and j are both level cofibrations, by Lemma 11.17. Every
HSS-cofibration is a retract of a map of the form i, and is therefore a level cofi-
bration. Every HSS-cofibration which is a stable f -equivalence is a retract of a map
of the form j , and therefore has the left lifting property with respect to all HSS
fibrations. We have thus proved the lifting axiom CM4.

The function complex construction hom(X, Y ) is the one that we know: an n-
simplex of the simplicial set hom(X, Y ) is a map X ∧ Δn+ → Y of symmetric
(S1 ∧ T )-spectra. The simplicial model property SM7 is inherited from (S1 ∧ T )-
spectra. In effect, if p : X → Y is an HSS-fibration and i : K → L is a cofibration
of simplicial sets, then the map

hom(L, X) → hom(K , X) ×hom(K ,Y ) hom(L, Y )
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is an HSS-fibration, which is a stable f -equivalence if either p is a stable f -
equivalence or i is a trivial cofibration of simplicial sets, because the same is true for
the maps U (p) and i.

Every HSS-fibration is level f -fibration. Right properness for the present model
structure on symmetric (S1 ∧ T )-spectra is is a consequence of Corollary 11.20 and
Lemma 11.21, as in the proof of the corresponding result for the stable f -local model
structure in Theorem 11.23. Left properness for the HSS-structure follows from the
fact that every HSS-cofibration is a level cofibration, along with the left properness
for the f -local stable model structure on symmetric (S1 ∧ T )-spectra.

The model structure of Theorem 11.26 is the (f -local) HSS-structure for the
category of symmetric (S1 ∧ T )-spectra.

It is a consequence of Lemma 11.17 that every stable f -fibration is an HSS-
fibration. The weak equivalences for the stable f -local model structure and the
HSS-structure coincide, by definition. It follows that the identity functor on the
category of symmetric (S1 ∧ T )-spectra defines a Quillen equivalence between the
two model structures. This is subject, of course, to having the compactness and
inductive descent conditions in place.

Example 11.27 Suppose that (Sm|S)Nis is the smooth Nisnevich site of a (decent)
scheme S, and let f : ∗ → A

1 be a rational point of the affine line over S.
Theorem 11.26 specializes to Theorem 4.15 of [57], which establishes the motivic

stable model structure for symmetric (S1 ∧Gm)-spectra on the smooth Nisnevich site
of a Noetherian scheme S of finite dimension. The model structure for symmetric
(S1 ∧ Gm)-spectra on smooth S-schemes of [57] is, in present terms, the motivic (or
f -local) HSS-structure for that category.

The HHS-structure of Theorem 11.26 does not coincide with the stable model
structure of Theorem 11.13 and Example 11.15. In particular, the motivic variant of
the stable model structure for symmetric T -spectra which is given by Theorem 11.13
is different from that of [57]. In the structure of [57], an object X is stable f -fibrant
if and only the underlying T -spectrum UX is stable f -fibrant. The stable f -fibrant
objects for the structure of Theorem 11.13 must also be fibrant for the injective model
structure of Proposition 11.10. The composite ji of (11.7) is a variant of the stable
fibrant model construction of [57, p. 509], which makes implicit use of motivic
descent.

The motivic stable model structure for the category of (S1 ∧ Gm)-spectra on
smooth S-schemes which arises from Theorem 11.13 and Example 11.15 is Quillen
equivalent to the HSS-structure of [57]. One naturally refers to both of these model
structures as “the” motivic stable model structure for the category of symmetric
(S1 ∧ Gm)-spectra on the smooth Nisnevich site.

11.5 Equivalence of Stable Categories

As usual, the map f : A → B is a cofibration of pointed simplicial presheaves which
is formally inverted.
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We shall require the assumption that T is compact up to f -equivalence through-
out this section. Later on, starting with Proposition 11.29, we shall also need
the assumption that the parameter object T is cycle trivial, in the sense that the
automorphism

c1,2 : T ∧3 → T ∧3,

which shuffles smash factors according to the rule

x1 ∧ x2 ∧ x3 �→ x3 ∧ x1 ∧ x2,

induces the identity in the f -local homotopy category on pointed simplicial pre-
sheaves.

Recall that the compactness and cycle triviality of T are the conditions for The-
orem 10.46, which asserts that the T -suspension functor X �→ X ∧ T and and the
T -loops functor Y �→ Hom(T , Y ) are inverse to each other in the f -local stable
category.

We begin with a discussion of T -bispectrum objects. These objects are used in
the proof of Proposition 11.29, which is the key technical step in proving the main
result of this section, which is Theorem 11.36. This theorem asserts, subject to the
compactness and cycle triviality of T, that the forgetful functor U and its left adjoint
V define a Quillen equivalence between the f -local stable structures for T -spectra
and symmetric T -spectra.

A T -bispectrum X is a T -spectrum object in T -spectra, or a (T , T )-bispectrum.
In other words, X consists of T -spectra Xs , s ≥ 0, together with maps of T -spectra
σv : Xs ∧ T → Xs+1.

Each T -spectrum Xs consists of pointed simplicial presheaves Xr ,s , with bonding
maps σh : T ∧ Xr ,s → Xr+1,s , and the diagrams

T ∧ Xr ,s ∧ T
σh∧T

��

T ∧σv

��

Xr+1,s ∧ T

σv

��
T ∧ Xr ,s+1

σh

�� Xr+1,s+1

(11.8)

commute. Following [56], we could write σv∗ for the composite

T ∧ Xr ,s τ−→Xr ,s ∧ T
σv−→ Xr ,s+1,
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and then the commutativity of (11.8) is equivalent to the commutativity of the diagram

T ∧ T ∧ Xr ,s
T ∧σh ��

τ∧Xr ,s

��

T ∧ Xr+1,s

σv∗

��

T ∧ T ∧ Xr ,s

T ∧σv∗
��

T ∧ Xr ,s+1
σh

�� Xr+1,s+1

(11.9)

Thus, a T -bispectrum X can be described as a collection of pointed simplicial
presheaves Xr ,s , together with maps σh and σv∗ such that all diagrams (11.9)
commute. This is consistent with the theory of bispectra which is presented in [56].

Every T -bispectrum X has an associated diagonal (T ∧ T )-spectrum d(X), with
d(X)r = Xr ,r and with bonding maps given by the composites

T ∧ T ∧ Xr ,r T ∧σh−−→ T ∧ Xr+1,r σv∗−→ Xr+1,r+1

A map g : X → Y of T -bispectra consists of pointed simplicial presheaf maps
g : Xr ,s → Y r ,s which respect all structure. Every such map g induces a map
g∗ : d(X) → d(Y ) of diagonal (T ∧ T )-spectra. This construction defines a functor
from T -bispectra to (T ∧ T )-spectra.

As in Sect. 10.5, we say that a map g of T -bispectra is a stable f -equivalence
of T -bispectra if the diagonal map g∗ : d(X) → d(Y ) is a stable f -equivalence of
(T ∧ T )-spectra.

A strict f -equivalence X → Y of T -bispectra consists of f -equivalences
Xr ,s → Y r ,s in all bidegrees. Every strict f -equivalence of T -bispectra is a stable
f -equivalence.

Since we assume that T is compact up to f -equivalence, it follows from
Lemma 10.56 that a map X → Y of T -bispectra is a stable f -equivalence if ei-
ther all maps Xr ,∗ → Y r ,∗ or all maps X∗,s → Y ∗,s are stable f -equivalences of
T -spectra.

Say that a T -bispectrum Z is stable f -fibrant if all simplicial presheaves Xr ,s are
f -fibrant and all adjoint bonding maps Xr ,s → ΩT Xr+1,s and Xr ,s → ΩT Xr ,s+1 are
f -equivalences.

Lemma 11.28 Suppose that g : Z → W is a map of stable f -fibrant T -bispectra.
Then g is a stable f -equivalence if and only if all maps g : Zr ,s → Wr ,s are
f -equivalences.

Proof The diagonal (T ∧T )-spectra d(Z) and d(W ) are stable f -fibrant, and so the
induced map g∗ : d(Z) → d(W ) is a stable f -equivalence if and only if all maps
Zr ,r → Wr ,r are f -equivalences. Every Zr ,s is f -equivalent to an interated T -loop
space Ωk

T Zn,n for some k and n since Z is a stable f -fibrant bispectrum, and this
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identification is natural in Z for all such Z. Thus, if g∗ is a stable f -equivalence of
stable f -fibrant (T ∧ T )-spectra, then all maps Zr ,s → Wr ,s are f -equivalences.

We need another formal observation before proving the main results of this section.
Suppose that

X → LX = LFX

is the stable f -fibrant model construction for T -spectra X which is produced in the
proof Theorem 10.20, where the the set F is generated by Sf . The closure property
C3 for F guarantees that there is a map

γ : L(X) ∧ K → L(X ∧ K)

which is natural in T -spectra X and pointed simplicial presheaves K . There is also
a natural commutative diagram

X ∧ K

j∧K

��

j

��		
			

			
			

L(X) ∧ K
γ

�� L(X ∧ K)

in the category of T -spectra.
Suppose that X is a T -bispectrum, or a T -spectrum object in T -spectra. Then the

composite maps

L(Xr ) ∧ T
γ−→L(Xr ∧ T )

Lσ−→ L(Xr+1)

define aT -bispectrumL(X) withL(X)r = L(Xr ), together with a map ofT -bispectra
j : X → L(X) such that each map Xr → L(Xr ) is a stable f -equivalence.

Proposition 11.29 Suppose that T is compact up to f -equivalence and is cycle
trivial. Suppose that K is a pointed simplicial presheaf, and that j : ST ∧K → Z is
a stable f -fibrant model in the symmetric T -spectrum category. Then the underlying
map U (ST ∧ K) → U (Z) is a stable f -equivalence of T -spectra.

Proof It is enough to find one example of a stable f -fibrant model ST ∧ K → Z

such that the conclusion holds. The proof is achieved by stabilizing the object K in
two directions.

Explicitly, suppose that X(K) consists of the objects

X(K)r ,s = T ∧r ∧ K ∧ T ∧s .

Holding s fixed and letting r vary gives the symmetric spectrum

X(K)∗,s = ST ∧ K ∧ T ∧s ,
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while holding r fixed and letting s vary gives T -spectra

X(K)r ,∗ = T ∧r ∧ K ∧ T ∧∗.

The object X(K) can be interpreted as either a T -spectrum object in symmetric T -
spectra, or a symmetric T -spectrum object in T -spectra. Forgetting the symmetric
spectrum structures gives a T -bispectrum UX(K).

Applying the stable f -fibrant model construction X → L(X) for T -spectra in
each r defines T -spectra L(X(K)r ,∗), together with maps

T ∧k ∧ L(X(K)r ,∗) → L(X(K)k+r ,∗)

which give the object L(X(K)∗,∗) the structure of a symmetric T -spectrum object in
T -spectra. Write

L(X(K)) = L(X(K)∗,∗).

The stable f -equivalences X(K)r ,∗ → L(X(K)r ,∗) assemble to give a map

X(K) → L(X(K))

of symmetric T -spectrum objects in T -spectra. It follows from Lemma 10.56 that
the underlying map

UX(K) → UL(X(K))

is a stable f -equivalence of T -bispectra.
The object L(X(K))∗,0 is a symmetric T -spectrum by construction. It follows

from Theorem 10.46 that the T -bispectrum UL(X(K)) is stable f -fibrant.
By stabilizing in the other index, we construct a stable f -fibrant model for UX(K)

in the T -bispectrum category, by taking stable f -fibrant models

UX(K)∗,s → L(UX(K)∗,s)

in T -spectra for each s. One uses Theorem 10.46 again to conclude that the resulting
T -bispectrum L(UX(K)) is stable f -fibrant.

Form the diagram of T -bispectra

UX(K) ��

��

L(UX(K))

��
U (LX(K)) �� L(U (LX(K)))

All maps in the diagram are stable f -equivalences of T -bispectra, and so there are
level f -equivalences

U (L(X(K))∗,0 
−→ L(U (LX(K)))∗,0 
←− L(UX(K))∗,0
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by Lemma 11.28. The map UX(K)∗,0 → L(UX(K))∗,0 is a stable f -equivalence by
construction. It follows that the map

ST ∧ K = X(K)∗,0 → L(X(K))∗,0

is a map of symmetric T -spectra which induces a stable f -equivalence of underlying
T -spectra.

The underlying T -spectrum U (L(X(K)))∗,0 is also stable f -fibrant. The f -inject-
ive model IL(X(K))∗,0 therefore determines a stable f -fibrant model

ST ∧ K = X(K)∗,0 → L(X(K))∗,0 
−→ IL(X(K))∗,0

in symmetric T -spectra, as in (11.7), such that the underlying map of T -spectra is a
stable f -equivalence.

If Z is a stable f -fibrant symmetric T -spectrum and n ≥ 0, then shifted object
Z[n] is stable f -fibrant, and the canonical map

Z → ΩT Z[1]

is a level f -equivalence.

Lemma 11.30 A map g : X → Y of symmetric T -spectra is a stable f -equivalence
if and only if the induced map g ∧ T : X ∧ T → Y ∧ T is a stable f -equivalence.

Proof There is a natural isomorphism of function complexes

hom(X ∧ T , Z) ∼= hom(X, ΩT Z),

and the T -loops object ΩT Z is stable f -fibrant if Z is stable f -fibrant. Thus, if the
map g : X → Y is a stable f -equivalence and Z is stable f -fibrant, then the induced
simplicial set map

hom(Y , ΩT Z) → hom(X, ΩT Z)

is a weak equivalence, and so the map

hom(Y ∧ T , Z) → hom(X ∧ T , Z)

is a weak equivalence. This is true for all stable f -fibrant objects Z, so that the map
g ∧ T : X ∧ T → Y ∧ T is a stable f -equivalence if g is a stable f -equivalence.

Suppose that g ∧ T is a stable f -equivalence, and form the diagram of simplicial
set maps

hom(Y , Z)
g∗

��



��

hom(X, Z)



��

hom(Y , ΩT Z[1]) ��

∼=
��

hom(X, ΩT Z[1])

∼=
��

hom(Y ∧ T , Z[1])
(g∧T )∗


 �� hom(X ∧ T , Z[1])
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It follows that the map g∗ is a weak equivalence. This is true for all stable f -fibrant
objects Z, so that g is a stable f -equivalence.

We now have the following analogue and consequence of Theorem 10.46 for
symmetric T -spectra:

Lemma 11.31 Suppose that T is compact up to f -equivalence and is cycle trivial,
and let X be a symmetric T -spectrum. Suppose that the map j : X ∧ T → (X ∧ T )s
is a stable f -fibrant model for X ∧ T . Then the composite map

X
η−→ΩT (X ∧ T )

j−→ΩT (X ∧ T )s

is a stable f -equivalence.

Proof Write η∗ for the displayed composite in the statement of the Lemma. It
suffices, by Lemma 11.30, to show that the map η∗ ∧ T is a stable f -equivalence.
There is a commutative diagram

X ∧ T
η∗∧T

��

j ����
���

���
���

ΩT (X ∧ T )s ∧ T

ev

��
(X ∧ T )s

The evaluation map ev induces a stable f -equivalence of the underlying T -spectra by
Corollary 10.49, and is therefore a stable f -equivalence of symmetric T -spectra by
Theorem 11.19. It follows that the map η∗∧T is a stable f -equivalence of symmetric
T -spectra.

Corollary 11.32 Suppose that T is compact up to f -equivalence and is cycle
trivial. Suppose that Z is a stable f -fibrant symmetric T -spectrum. Then any stable
fibrant model j : Z ∧ T → (Z ∧ T )s induces a stable f -equivalence U (Z ∧ T ) →
U ((Z ∧ T )s) of underlying T -spectra.

Proof The composite

η∗ : Z
η−→ΩT (Z ∧ T )

j−→ΩT (Z ∧ T )s

is a stable f -equivalence of stable f -fibrant symmetric T -spectra by Lemma 11.31,
and is therefore a level f -equivalence. In the diagram

Z ∧ T
η∗∧T

��

j ����
���

���
���

ΩT (Z ∧ T )s ∧ T

ev

��
(Z ∧ T )s
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the mapη∗∧T is a levelf -equivalence, and the map ev induces a stablef -equivalence
of underlying T -spectra by Corollary 10.49.

Lemma 11.33 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the map η∗ : X → U ((V X)s) is a stable f -equivalence of T -spectra if and
only if the map η∗ : X ∧ T → U (V (X ∧ T )s) is a stable f -equivalence.

Proof There is a commutative diagram

X ∧ T
η∧T

��

η

���
��

��
��

��
��

��
��

��
�

U (V (X)) ∧ T
U (j )∧T

��

∼=
��

U ((V X)s) ∧ T

∼=
��

U (V (X) ∧ T )
U (j∧T )

��

∼=
��

U ((V X)s ∧ T )

Uj̃

��
U (V (X ∧ T ))

U (j )
�� U (V (X ∧ T )s)

where the map j̃ is chosen such that the diagram

V (X) ∧ T
j∧T

��

∼=
��

V (X)s ∧ T

j̃

��
V (X ∧ T )

j

�� (V (X ∧ T ))s

commutes. It suffices to show that the map Uj̃ is a stable f -equivalence of T -spectra.
The map j̃ is a stable f -fibrant model for the symmetric T -spectrum V (X)s ∧ T

and the object V (X)s is stable f -fibrant, so the desired result follows from
Corollary 11.32.

Corollary 11.34 Suppose that T is compact up to f -equivalence and is cycle trivial.

1) Suppose that K is a pointed simplicial presheaf. Then the map

η∗ : (ST ∧ K)[n] → U (V ((ST ∧ K)[n])s)

is a stable f -equivalence for all n ∈ Z.
2) Suppose that X is a cofibrant T -spectrum. Then the map

η∗ : LnX → U ((V (LnX))s)

is a stable f -equivalence for all n ≥ 0.
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Proof If n ≥ 0, then there is an isomorphism

(ST ∧ K)[n] ∼= ST ∧ T n ∧ K ,

If m > 0 there is a canonical stable equivalence of cofibrant T -spectra

(ST ∧ K)[−m] ∧ T ∧m → ST ∧ K.

Statement 1) therefore reduces to Proposition 11.29 in all cases.
In general, the question of whether or not the map

η∗ : X
η−→U (V (X))

U (j )−−→ U (V (X)s)

can be a stable f -equivalence is insensitive to stable f -equivalences in cofibrant
T -spectra X, since the functor V preserves stable f -equivalences between such
objects by Corollary 11.18. Statement 2) follows, since the layer LnX is cofibrant
and there is a stable f -equivalence

(ST ∧ Xn)[−n] → LnX.

If s �→ Zs is an inductive system of stable f -fibrant symmetric T -spectra, then
the f -injective model I ( lim−→s

Zs) is stable f -fibrant. In effect, there is a commutative
diagram

lim−→s
Zn

s

j
��

σ∗

��

lim−→ σ∗

�����
���

���
��

I ( lim−→s
Zs)n

σ∗

��

lim−→s
ΩT Zn+1

s

c ����
���

���
���

==
ΩT lim−→s

Zn+1
s

ΩT j

�� ΩT I ( lim−→s
Zs)n+1

corresponding to the injective model j : lim−→s
Zs → I ( lim−→s

Zs), in which the dotted
arrow is an f -equivalence (by the compactness of T ), as are the maps lim−→ σ∗ and j .
It follows that the map

σ∗ : I ( lim−→
s

Zs)
n → ΩT I ( lim−→

s

Zs)
n+1

is an f -equivalence.



470 11 Symmetric T-spectra

Theorem 11.35 Suppose that T is compact up to f -equivalence and is cycle trivial.
Suppose that X is a cofibrant T -spectrum. Then the map

η∗ : X
η−→UV (X)

Uj−→ U (V (X)s)

is a stable f -equivalence.

Proof We can choose stable f -fibrant models V (LnX) → V (LnX)s such that the
diagram

V (L0X) ��

��

V (L1X) ��

��

V (L2X) ��

��

. . .

V (L0X)s �� V (L1X)s �� V (L2X)s �� . . .

commutes. The composites

LnX
η−→U (V (LnX)) → U (V (LnX)s)

are stable f -equivalences of T -spectra by Corollary 11.34. It follows that the induced
map

X ∼= lim−→
n

LnX → lim−→
n

U (V (LnX)) → lim−→
n

U (V (LnX)s)

is also a stable f -equivalence. The f -injective model

j : lim−→
n

V (LnX)s → I ( lim−→
n

V (LnX)s)

is a level f -equivalence, and is a stable f -fibrant model for the colimit lim−→n
V (LnX)s

in symmetric T -spectra.
The composite

X → U (V (X)) ∼= U ( lim−→
n

V (LnX)) → U ( lim−→
n

V (LnX)s) → U (I ( lim−→
n

V (LnX)s))

is therefore a stable f -equivalence, while the composite

V (X) ∼= lim−→
n

V (LnX) → lim−→
n

V (LnX)s → I ( lim−→
n

V (LnX)s)

is a stable f -fibrant model for V (X) in symmetric T -spectra.

We now have the main result of this section:

Theorem 11.36 Suppose that the parameter object T is compact up to f -equiva-
lence and is cycle trivial. Then the adjoint functors

V : SptT (C) � SptΣ
T (C) : U
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define a Quillen equivalence between the respective f -stable model structures.

Proof It is shown in Corollary 11.18 that these functors define a Quillen adjunction.
Theorem 11.35 says that the composite

X
η−→U (V (X))

Uj−→ U (Z)

is a stable f -equivalence of T spectra for any cofibrant T -spectrum X and any choice
of stable f -fibrant model j : V (X) → Z in symmetric T -spectra.

Suppose that Z is a stable f -fibrant symmetric T -spectrum, and let π : X →
U (Z) be a cofibrant model for the underlying T -spectrum U (Z). It remains to show
that the composite

V (X)
V (π )−−→ V (U (Z))

ε−→Z

is a stable f -equivalence of symmetric T -spectra.
Suppose that j : Y → Ys is a (natural) stable f -fibrant model in symmetric

T -spectra. Then there is a commutative diagram

V (X)s
V (π )s �� V (U (Z))s

ε∗ �� Z

V (X)

j

��

V (π )
�� V (U (Z))

ε

��          
j

��

and it suffices to show that the top composite is a stable f -equivalence. Applying
the functor U gives a commutative diagram

U (V (X)s)
U (V (π )s )

�� U ((V (U (Z)))s)
U (ε∗)

�� U (Z)

U (V (X))

U (j )

��

U (V (π ))
�� U (V (U (Z)))

U (ε)
		











U (j )

��

X

η

��

π

�� U (Z)

η

�� 1

77??????????????????

The left vertical composite is a stable f -equivalence by Theorem 11.35, and it follows
that the composite

U (V (X)s)
U (V (πs ))−−−−→ U ((V (U (Z)))s)

Uε∗−−→ U (Z)

is a stable f -equivalence of T -spectra. Theorem 11.19 implies that the composite

V (X)s
V (π )s−−−→ (V (U (Z)))s

ε∗−→ Z
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is a stable f -equivalence of symmetric T -spectra.

Example 11.37 The object

P
1 
 S1 ∧ Gm

is compact and cycle trivial for the motivic model structure on the category of
simplicial presheaves on the smooth Nisnevich site (Sm|S)Nis of a scheme. See
Example 10.45.

In this case, Theorem 11.36 implies that the adjoint functors

V : SptS1∧Gm
(Sm|S)Nis � SptΣ

S1∧Gm
(Sm|S)Nis : U

define a Quillen equivalence between the motivic stable categories for (S1 ∧ Gm)-
spectra and symmetric (S1 ∧ Gm)-spectra.

This statement for motivic stable categories originally appeared in [57], and was
the first result having the form of Theorem 11.36.

11.6 The Smash Product

Recall from Sect. 11.1 that the tensor product ST ⊗ X is the free symmetric T -
spectrum associated to symmetric space X.

If Y a symmetric T -spectrum and X is a symmetric space, then the symmetric
space Y ⊗X inherits the structure of an ST -module from that of Y, via the morphism

ST ⊗ Y ⊗ X
σ⊗X−−→ Y ⊗ X,

where the map σ : ST ⊗ Y → Y defines the symmetric T -spectrum structure of Y .

Lemma 11.38 Suppose that Y is a symmetric spectrum and that X is a symmetric
space. Then there is a canonical isomorphism of symmetric spectra

Y ∧Σ (ST ⊗ X) ∼= Y ⊗ X.

In particular, there are natural isomorphisms

ST ∧Σ Y ∼= Y ∧Σ ST
∼= Y

for symmetric spectra Y .

Proof The composite

Y ⊗ ST ⊗ X
τ⊗X−−→ ST ⊗ Y ⊗ X

m−→ Y ⊗ X

induces a natural map Y ∧Σ (ST ⊗ X) → Y ⊗ X. The unit of ST induces a map
of symmetric spaces X → ST ⊗ X which then induces a map of symmetric spectra
Y ⊗ X → Y ∧Σ (ST ⊗ X). These two maps are inverse to each other.
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Suppose that n ≥ 0, and recall the definition of the shift X[n] of a symmetric T -
spectrum X from Sect. 11.4. There is a similarly defined shift Y [n] for a symmetric
space Y, where

Y [n]k = Yn+k ,

and α ∈ Σk acts as the permutation 1 ⊕ α ∈ Σn+k . The forgetful functor from
symmetric T -spectra to symmetric spaces preserves shifts.

Lemma 11.39 Suppose that n ≥ 0. There is a natural bijection

hom (Gn(S0) ⊗ X, Y ) ∼= hom (X, Y [n])

for morphisms of symmetric T -spectra.

Proof A morphism of symmetric T -spectra

h : GnS
0 ⊗ X → Y

can be identified with a sequence of pointed maps h : Xk → Yn+k which are
equivariant for the inclusions Σk → Σn+k defined by α �→ 1 ⊕ α, so that the
diagrams

T p ∧ Xk
T p∧h ��

σ

��

T p ∧ Yn+k

σ

��
Xp+k

h

�� Yn+p+k

c(n,p)⊕1
�� Yp+n+k

(11.10)

commute.
A morphism h : X → Y [n] can be identified with a sequence of pointed maps

h : Xk → Yn+k which are equivariant for the same inclusions Σk → Σn+k , so that
the diagrams

T p ∧ Xk
T p∧h ��

σ

��

T p ∧ Yn+k

σ

��
Yp+n+k

c(p,n)⊕1

��
Xp+k

h

�� Yn+p+k

(11.11)

commute.
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The conditions which are represented by diagrams (11.10) and (11.11) coincide,
since c(n, p) = c(p, n)−1 in the symmetric group Σn+p+k .

The proof of the following result is a manipulation of coequalizers of symmetric
spaces.

Lemma 11.40 There is a natural isomorphism

Fn(A) ∧Σ Fm(B) ∼= Fn+m(A ∧ B).

Proof It follows from Lemma 11.38 that there are isomorphisms

(Gm(S0) ⊗ ST ) ∧Σ X ∼= Gm(S0) ⊗ (ST ∧Σ X) ∼= Gm(S0) ⊗ X,

which are natural in symmetric T -spectra X.
There are isomorphisms

FnA ∧Σ FmB ∼= ((Gn(S0) ⊗ ST ) ∧ A)) ∧Σ ((Gm(S0) ⊗ ST ) ∧ B))

∼= ((Gn(S0) ⊗ Gm(S0)) ⊗ ST ) ∧ (A ∧ B)

There are isomorphisms of maps of symmetric spectra

hom(Gn(S0) ⊗ Gm(S0) ⊗ ST, Y ) ∼= hom(Gm(S0) ⊗ ST, Y [n])

∼= hom(ST, Y [m + n])

∼= hom(Gn+m(S0) ⊗ ST, Y )

by Lemma 11.39. It follows that there is an isomorphism of symmetric T -spectra

Gn(S0) ⊗ Gm(S0) ⊗ ST
∼= Gm+n(S0) ⊗ ST.

Suppose, as before, that f : A → B is a fixed cofibration of pointed simplicial
presheaves.

Corollary 11.41 The functor X �→ X[n] preserves f -injective fibrations and
trivial f -injective fibrations.

Proof The functor Y �→ Gn(S0) ⊗ Y preserves level cofibrations and level f -
equivalences.

Lemma 11.42 There is an isomorphism of symmetric T -spectra

V (E[−n]) ∼= Fn(S0) ∧Σ V (E),
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which is natural in T -spectra E.

Proof There are natural isomorphisms

hom(V (E[−n]), X) ∼=hom(E, U (X)[n])

and

hom(Fn(S0) ∧ V (E), X) ∼=hom(E, U (X[n]))

for T -spectra E and symmetric T -spectra X. It remains to show that there is an
isomorphism of T -spectra

U (X)[n]
∼=−→ U (X[n])

which is natural in symmetric T -spectra X.
The T -spectrum U (X)[n] consists of the spaces Xn+k and has bonding maps

σ : T ∧ Xn+k → Xn+k+1 which come from the symmetric T -spectrum structure
for X. The T -spectrum U (X[n]) consists of the same spaces, but has bonding maps
given by the composites

T ∧ Xn+k σ−→Xn+k+1 θk+1−−→ Xn+k+1

where θk+1 is induced by an element of the same name in the symmetric group
Σn+k+1. The element θk+1 is a shuffle permutation. Write θn for the identity element
of Σn. Then the desired isomorphism U (X)[n] → U (X[n]) is defined in level k by
the composite isomorphism

Xn+k 1⊕θn−−→ Xn+k 1⊕θn+1−−−→ . . .
θn+k−−→ Xn+k ,

which is induced by the indicated members of the symmetric group Σn+k .

Corollary 11.43 The stabilization map

V ((ST ∧ T )[−1 − m]) → V (ST [ − m])

is isomorphic to the map

1 ∧Σ s : Fm(S0) ∧Σ F1(T ) → Fm(S0) ∧Σ ST

where the map s : F1(T ) → ST is induced by the identity on T in level 1.

Recall from Sect. 11.2 that a map p : X → Y of symmetric T -spectra is a
projective fibration if all maps p : Xn → Yn are injective fibrations of pointed
simplicial presheaves, or equivalently if the induced map U (p) : U (X) → U (Y ) is
a strict fibration of T -spectra. A projective cofibration is a map which has the left
lifting property with respect to all maps which are projective fibrations and level
weak equivalences.
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The projective model structure of Lemma 11.4 is cofibrantly generated, and the
morphisms Fn(A) → Fn(B), n ≥ 0, which are induced by α-bounded cofibrations
A → B of pointed simplicial presheaves generate the projective cofibrations.

If the map j : E → F is a cofibration of T -spectra, then the induced map
V (j ) : V (E) → V (F ) is a projective cofibration of symmetric T -spectra.

Theorem 11.44 Suppose that the map i : A → B is a projective cofibration and
that j : C → D is a level cofibration of symmetric T -spectra. Then the map

(j , i)∗ : (D ∧Σ A) ∪(C∧ΣA) (C ∧Σ B) → D ∧Σ B (11.12)

of symmetric T -spectra is a level cofibration. If j is a projective cofibration, then the
map (j , i)∗ is a projective cofibration. If j is a stable f -equivalence (respectively
level f -equivalence), then (j , i)∗ is a stable f -equivalence (respectively level f -
equivalence).

Proof For a fixed level cofibration j , the class of projective cofibrations i such that
the statements of the theorem hold is closed under composition, pushout and retract
(i.e. saturation). These statements are exercises—use Remark 11.3.

It therefore suffices to assume that the projective cofibration i is a map FnK →
FnL which is induced by a cofibration i : K → L of pointed simplicial presheaves,
with n ≥ 0.

The functor

X �→ Gn(S0) ⊗ X

preserves level cofibrations and level trivial cofibrations of symmetric T -spectra X.
There are isomorphisms of symmetric T -spectra

Fn(K) = V ((ST ∧ K)[−n]) ∼= (ST ⊗ Gn(S0)) ∧ K ,

which are natural in pointed simplicial presheaves K . The functor K �→ Fn(K)
therefore takes local weak equivalences in pointed simplicial presheaves K to level
weak equivalences. This functor also takes f -equivalences to level f -equivalences,
by the left properness of the f -local model structure on simplicial presheaves. The
functor K �→ Fn(K) takes cofibrations to level cofibrations.

Lemma 11.40 implies that there are isomorphisms

C ∧Σ FnK ∼= (C ⊗ Gn(S0)) ∧ K

which are natural in symmetric T -spectra C and pointed simplicial presheaves K . It
follows that the map

(j , i)∗ : (D ∧Σ FnK) ∪ (C ∧Σ FnL) → D ∧Σ FnL

is a level cofibration, and that this map is a level f -equivalence if j is a level
f -equivalence (use Corollary 7.24).
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If the map j : C → D is a projective cofibration, then it can be approximated by
cofibrations of the form j : FmA → FmB, in which case the map (j , i)∗ is the result
of applying the functor Fm+n to the cofibration of pointed simplicial presheaves

(B ∧ K) ∪(A∧K) (A ∧ L) → B ∧ L,

by Lemma 11.40, and is therefore a projective cofibration. It follows that the map
(11.12) is a projective cofibration if j : C → D is a projective cofibration.

To show that the map (j , i)∗ is a stable f -equivalence if j is a stable f -equivalence,
we first show that the map (j , i)∗ is a stable f -equivalence if j is in the saturation of
the set Sf .

Suppose that the level cofibration j : C → D induces a stable f -trivial cofibration

(D ∧Σ FnA) ∪ (C ∧Σ FnB) → D ∧Σ FnB,

for all cofibrations A → B of pointed simplicial presheaves and all n ≥ 0. If E → F

is an α-bounded cofibration of pointed simplicial presheaves then the map

((D ∧Σ FnB) ∧ E) ∪ (((D ∧Σ FnA) ∪ (C ∧Σ FnB)) ∧ F ) → (D ∧Σ FnB) ∧ F

coincides with the map

(D ∧Σ Fn((B ∧ E) ∪ (A ∧ F ))) ∪ (C ∧Σ Fn(B ∧ F )) → D ∧Σ Fn(B ∧ F )

up to isomorphism, as well as with the map

((D ∧ F ) ∧Σ FnA) ∪ (((D ∧ E) ∪ (C ∧ F )) ∧Σ FnB) → (D ∧ F ) ∧Σ Fn(B).

It follows that if j : C → D induces a stable f -trivial cofibration

(D ∧Σ FnA) ∪ (C ∧Σ FnB) → D ∧Σ FnB,

for each cofibration A → B of pointed simplicial presheaves and all n ≥ 0, then the
map

(D ∧ E) ∪ (C ∧ F ) → D ∧ F

has the same property, for each cofibration E → F of pointed simplicial presheaves.
Each stabilization map

F1(T ) ∧Σ Fn(S0) → ST ∧Σ Fn(S0) (11.13)

(from Corollary 11.43) is a stable f -equivalence by assumption. If K is a pointed
simplicial presheaf, then the induced map

(F1(T ) ∧Σ Fn(S0)) ∧ K → (ST ∧Σ Fn(S0)) ∧ K ,
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or equivalently the map

F1(T ) ∧Σ Fn(K) → ST ∧Σ Fn(K),

is also a stable f -equivalence.
Suppose that the map F1(T ) → A be a cofibrant replacement of the map F1(K) →

ST . Then all of the level cofibrations

F1(T ) ∧Σ Fn(K) → A ∧Σ Fn(K)

are stable f -equivalences, since the map A → ST is a level equivalence by
construction and the object Fn(K) is projective cofibrant. The map

F1T ∧Σ Fn(S0) → A ∧Σ Fn(S0)

is also a cofibrant replacement of the stabilization map (11.13).
Suppose that K → L is a cofibration of pointed simplicial presheaves. Then the

diagram

F1T ∧Σ Fn(S0) ∧Σ Fm(K) ��

��

F1T ∧Σ Fn(S0) ∧Σ Fm(L)

��
A ∧Σ Fn(S0) ∧Σ Fm(K) �� A ∧Σ Fn(S0) ∧Σ Fm(L)

is isomorphic to a diagram of level cofibrations

F1(T ) ∧Σ Fn+m(K) ��

��

F1(T ) ∧Σ Fn+m(L)

��
A ∧Σ Fn+m(K) �� A ∧Σ Fn+m(L)

in which the vertical maps are stable f -equivalences. It follows from left properness
for the f -local stable model structure that the map

(A ∧Σ Fn(S0) ∧Σ Fm(K)) ∪ (F1(T ) ∧Σ Fn(S0) ∧Σ Fm(L)) →A ∧Σ Fn(S0) ∧Σ Fm(L)

is a stable f -equivalence.
We have shown that the map (j , i)∗ is a stable f -equivalence if the level cofibration

j is in the saturation of the set Sf .
Suppose now that the level cofibration j is a stable f -equivalence. It follows that

all stabilization cofibrations C → LC (which are in the saturation of Sf ) induce
stable f -equivalences

C ∧ FnK → LC ∧ FnK
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for all pointed simplicial presheaves K . These maps induce stable f -equivalences

D ∧ FnK



��

C ∧ FnK��



��

�� C ∧ FnL



��

LD ∧ FnK LC ∧ FnK�� �� LC ∧ FnL

in which the vertical maps are stablef -equivalences and the maps induced by the level
cofibration FnK → FnL are level cofibrations. It follows from left properness for
the f -local stable model structure on symmetric T -spectra that the map of pushouts

(D ∧ FnK) ∪ (C ∧ FnL) → (LD ∧ FnK) ∪ (LC ∧ FnL)

is a stable f -equivalence. There is a commutative diagram

(D ∧ FnK) ∪ (C ∧ FnL) ��



��

D ∧ FnL



��

(LD ∧ FnK) ∪ (LC ∧ FnL) �� LD ∧ FnL

The bottom horizontal map is a level f -equivalence since C → D is a stable f -
equivalence, and the desired result follows.

The map (j , i)∗ associated to the maps j : C → D and i : A → B of
Theorem 11.44 is often called the pushout smash product of j and i [46].

Corollary 11.45 Suppose that the map g : X → Y is a stable f -equivalence and
that A is projective cofibrant. Then the induced map g ∧Σ A : X ∧Σ A → Y ∧Σ A

is a stable f -equivalence.

Proof Any stable f -trivial cofibration j : C → D induces a stable f -equivalence
C ∧Σ A → D ∧Σ A since A is projective cofibrant, by Theorem 11.44. The result
then follows from a standard factorization argument: the map g has a factorization
g = q · j where j is a level cofibration and the map q is a trivial injective fibration.
The map q therefore has a section by a level cofibration which is a level equivalence.

Corollary 11.46 Suppose that the maps i : A → B and j : C → D are projective
cofibrations. Then the induced map

(i, j )∗ : (B ∧Σ C) ∪(A∧ΣC) (A ∧Σ D) → B ∧Σ D

is a projective cofibration which is stable f -trivial if either i or j is a stable f -
equivalence.

Remove the adjective “projective” in the statement of Corollary 11.46, and you
have the description of what it means for a model structure to be monoidal, subject to
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having a symmetric monoidal smash product and provided that the unit is cofibrant
[44].

For example, the pointed simplicial set (or presheaf) category with the obvious
smash product is monoidal.

The sphere spectrum ST is projective cofibrant, and is therefore cofibrant in all of
the model structures for symmetric T -spectra that we have discussed here.

We then have the following:

Corollary 11.47 Suppose that T is compact up to f -equivalence, and that the
f -local model structure on simplicial presheaves satisfies inductive colimit descent.
Then the HSS-stucture on the category of symmetric (S1 ∧ T )-spectra is monoidal.

Proof The cofibrations for the HSS-structure are the projective cofibrations.

The HSS-structure on symmetric T -spectra is monoidal when it exists, which we
have demonstrated (Theorem 11.26) only in the case where T is a suspension of an
object which is compact up to f -equivalence.

On the other hand, both the stable f -local structure for symmetric T -spectra and
Corollary 11.46 obtain in extreme generality, and there is a universal description of
a derived smash product L(X ∧Σ Y ) for symmetric T -spectra X and Y : set

L(X ∧Σ Y ) = Xc ∧Σ Yc

where πX : Xc → X and πY : Yc → Y are projective cofibrant models for X and Y,
respectively.

Suppose that X and Y are T -spectra, and let X ∧n Y be the following particular
choice of naive smash product:

(X ∧n Y )2n = Xn ∧ Yn, (X ∧n Y )2n+1 = Xn+1 ∧ Yn,

and the bonding maps are specified by:

{
T ∧ Xn ∧ Yn σ∧1−−→ Xn+1 ∧ Yn

T ∧ Xn+1 ∧ Yn τ∧1−−→ Xn+1 ∧ T ∧ Yn 1∧σ−−→ Xn+1 ∧ Yn+1

We now formalize a construction from the proof of Lemma 11.42. Suppose that
Z is a symmetric T -spectrum, and choose permutations θn ∈ Σn for n ≥ 1. Then
there is a spectrum θ∗(UZ) with level spaces θ∗(UZ)n = Zn, and having bonding
maps σθ given by the composites

T ∧ Zn σ−→Zn+1 θn+1−−→ Zn+1

There is a natural isomorphism of T -spectra

νθ : UZ → θ∗UZ
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which is defined by finding inductively elements νθ ,n ∈ Σn. We require that νθ ,n is
the identity in levels 0 and 1. Then there is a commutative diagram

T ∧ Zn
σ ��

1∧νθ ,n

��

Zn+1

1⊕νθ ,n

��
T ∧ Zn

σ ��

σθ 33�
��

��
��

��
Zn+1

θn+1

��
Zn+1

and so

νθ ,n+1 = θn+1(1 ⊕ νθ ,n) = θn+1(1 ⊕ θn)(1 ⊕ θn−1) · · · (1 ⊕ θ2).

Suppose now that X and Y are symmetric T -spectra. There are commutative diagrams

T ∧ Xn ∧ Yn
σ∧1 ��

T ∧c

��

Xn+1 ∧ Yn

c

��
T ∧ (X ∧Σ Y )2n

σ

�� (X ∧Σ Y )2n+1

and

T ∧ Xn+1 ∧ Yn
τ∧1 ��

1∧c

��

Xn+1 ∧ T ∧ Yn
1∧σ �� Xn+1 ∧ Yn

c

��
T ∧ (X ∧Σ Y )2n+1

σ

�� (X ∧Σ Y )2n+2

c1,n+1⊕1
�� (X ∧Σ Y )2n+2

Here, c : Xp ∧ Y q → (X ∧Σ Y )p+q is the canonical map, and c1,n+1 ∈ Σn+2 is the
shuffle map which moves the number 1 past the numbers 2, . . . , n + 2 in order.

It follows that the canonical maps c : Xp ∧ Y q → (X ∧Σ Y )p+q determine a
natural map of T -spectra

c : UX ∧n UY → θ∗U (X ∧Σ Y ),

where

θi =
{

1 if i = 2n + 1,

c1,n+1 ⊕ 1 if i = 2n + 2.
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Theorem 11.48 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the natural composite

X ∧n Y → UV X ∧n UV Y
c−→ θ∗U (V X ∧Σ V Y )

θ∗Uj−−→ θ∗U ((V X ∧Σ V Y )s)
(11.14)

is a stable f -equivalence if either of the T -spectra X or Y is cofibrant.

Proof Suppose that X is cofibrant.
The functors on both ends of the composition (11.14) respect stable f -equiva-

lences of cofibrant T -spectra Y, and also preserve filtered colimits in Y . Thus, by
taking a layer filtration for Y, it is enough to verify that the map (11.14) is a stable
f -equivalence when Y = (ST ∧ L)[ − m] for some pointed simplicial presheaf L.

The object Y is now cofibrant, so the same argument says that it suffices to assume
that X = (ST ∧ K)[−n] for some pointed simplicial presheaf K .

It is a consequence of Theorem 10.46 that a map A → B of cofibrant T -spectra
is a stable f -equivalence if and only if the induced map A ∧ T → B ∧ T is a stable
f -equivalence. Thus, by smashing with the object T ∧(n+m) the map (11.14) is a stable
f -equivalence for X = (ST ∧ K)[−n] and Y = (ST ∧ L)[−m] if and only if it is a
stable f -equivalence when X = ST ∧ K and Y = ST ∧ L.

The map (11.14) in this last case is stable equivalent to the smash of the composite

ST ∧n ST → UV (ST ) ∧n UV (ST )
c−→ θ∗U (V (ST ) ∧Σ V (ST ))

θ∗Uj−−→ θ∗U ((V (ST ) ∧Σ V (ST ))s)
(11.15)

with the pointed simplicial presheaf K ∧L, and it suffices to show that the composite
(11.15) is a stable f -equivalence.

The object V (ST ) = ST is the sphere object for symmetric T -spectra, and the
monoid structure of ST defines an isomorphism

m : ST ∧ ST

∼=−→ ST .

The composite

ST ∧ ST
m−→∼= ST

j−→ (ST )s

is a stable fibrant model for the symmetric T -spectrum ST ∧ ST . There is an
identification of T -spectra

θ∗U (ST ) = ST ∧n ST ,

and the composite

θ∗U (ST ) = ST ∧n ST → θ∗U (ST ∧ ST )
θ∗Um−−−→∼= θ∗U (ST )

is the identity. The map

ST = U (ST )
Uj−→ U ((ST )s)

is a stable f -equivalence of T -spectra by Proposition 11.29.
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11.7 Symmetric T-complexes

Suppose, as in Sect. 10.7, that R is a presheaf of commutative rings with identity,
and let T be a pointed simplicial presheaf on the site C.

A simplicial R-module is a simplicial object in the category of presheaves of R-
modules. The category of such things is denoted by sPreR , following the practice
established in Sect. 8.1.

Again as in Sect. 10.7, if A is a simplicial R-module, and K is a pointed simplicial
presheaf, we write

K ⊗ A := R•(K) ⊗ A

and

A ⊗ K := A ⊗ R•(K),

where R•(K) = R(K)/R(∗) is the reduced free simplicial R-module which is
associated to K . There is a canonical isomorphism

K ⊗ L ⊗ A ∼= (K ∧ L) ⊗ A (11.16)

for simplicial R-modules A and pointed simplicial presheaves K and L, which is
natural in all variables.

A symmetric T -complex A consists of simplicial R-modules As , s ≥ 0, together
with bonding morphisms

σ : T ⊗r ⊗ As → Ar+s ,

such that the object As has a Σs-action for s ≥ 0, and the bonding morphisms
σ is equivariant for the block diagonal inclusion Σr × Σs ⊂ Σr+s . A morphism
g : A → B of symmetric T -complexes consists of simplicial R-module maps
g : As → Bs , s ≥ 0, which preserve structure. The resulting category SptΣ

T (sPreR)
is the category of symmetric T -complexes in simplicial R-modules. It is the category
of symmetric T -spectrum objects in simplicial R-modules, in a suitable sense.

The forgetful functor

u : sPreR → sPre∗(C),

taking values in pointed simplicial presheaves, and its left adjoint

R• : sPre(C) → sPreR

together determine an adjoint pair of functors

R• : SptΣ
T (C) � SptΣ

T (sPreR) : u
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In particular, the forgetful functor A �→ u(A) is defined in levels by u(A)s = u(As),
and the bonding maps for the symmetric T -spectrum u(A) are the composites

T ∧r ∧ u(As)
γ−→ u((T ∧r ) ⊗ As) ∼= u(T ⊗r ⊗ As)

u(σ )−−→ u(Ar+s).

Recall from (10.21) that the natural pointed map

γ : K ∧ u(A) → u(K ⊗ A)

is defined, for pointed simplicial presheaves K and simplicial R-modules A, by
the assignment x ∧ a �→ x ⊗ a in sections. The functor R• is defined levelwise
by R•(X)s = R•(Xs) for a symmetric T -spectrum X, and instances of the natural
isomorphism (11.16) are used to define the bonding maps.

Example 11.49 The symmetric T -complex, which is defined by

H (R) := R•(ST )

is the sphere T -spectrum object for the category of symmetric T -complexes.
More generally, suppose that A is a simplicial R-module. Then the Eilenberg–Mac

Lane object H (A) is the symmetric T -complex

H (A) := ST ⊗ A = R•(ST ) ⊗ A.

The object H (A) is the suspension spectrum object associated to A in the category
of symmetric T -complexes, in that there is a natural isomorphism

hom(H (A), B) ∼=hom(A, B0)

for simplicial R-modules and symmetric T -complexes B.
The T -spectrum u(H (A)) is the Eilenberg–Mac Lane T -complex for A, as defined

in Example 10.79.
The category of symmetric T -complexes inherits a model structure from the in-

jective model structure on symmetric T -spectra (Proposition 11.10), by transfer of
structure. We have used similar arguments for simplicial modules (Theorem 8.6) and
T -complexes (Proposition 10.80).

Explicitly, say that a map g : A → B is a level equivalence if the underlying map
u(g) : u(A) → u(B) of symmetric T -spectra is a level equivalence. Say that g is an
injective fibration if the underlying map u(g) is an injective fibration of symmetric
T -spectra. An injective cofibration of T -complexes is a map which has the left lifting
property with respect to all trivial injective fibrations.

Lemma 11.50 The category SptΣ
T (sPreR) of symmetric T -complexes, together with

the classes of level weak equivalences, injective fibrations and injective cofibrations,
satisfies the conditions for a proper closed simplicial model category. This model
structure is cofibrantly generated. Every injective cofibration is a monomorphism.

Proof Suppose that α is a regular cardinal which is sufficiently large that
α > | Mor (C)|, α > |R| for the presheaf of rings R, and α > |T |. Recall
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that the injective model structure on the category of symmetric T -spectra is cofi-
brantly generated, by the α-bounded level cofibrations and the α-bounded level
trivial cofibrations.

The functor

R• : SptΣ
T (C) → SptΣ

T (sPreR)

preserves level weak equivalences, by Lemma 8.2.
The functor R• takes level cofibrations A → B to injective cofibrations, by

an adjointness argument. Each map R•A → R•B also consists of cofibrations
R•(As) → R•(Bs) in the model structure for simplicial R-modules of Theorem
8.6.

Thus, if we suppose that i : A → B is a trivial injective cofibration of symmetric
T -spectra and the diagram

R•A ��

R•(i)

��

X

i∗
��

R•B �� Y

is a pushout of symmetric T -complexes, then the map i∗ is an injective cofibration
and a level equivalence of symmetric T -complexes.

It follows that every mapg : A → B of symmetricT -complexes has factorizations

C
p

���
��

��
��

A

i
��������� g

��

j ���
��

��
��

B

D

q

���������

such that p is an injective fibration, i is a trivial injective cofibration which has the
left lifting property with respect to all injective fibrations, q is an injective fibration
and a level equivalence, and j is an injective cofibration. This proves the factoriza-
tion axiom CM5, and the lifting axiom CM4 follows by a standard argument. The
remaining closed model axioms are easily verified.

The n-simplices of the function complex hom(A, B) are the maps

A ⊗ (Δn
+) → B,

and the simplicial model axiom SM7 is a consequence of the corresponding statement
for the injective model structure on symmetric T -spectra.

This model structure for symmetric T -complexes is cofibrantly generated by the
α-bounded injective cofibrations and the α-bounded trivial injective cofibrations.
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Every injective cofibration A → B of symmetric T -complexes consists of cofi-
brations As → Bs of simplicial R-modules, and is therefore a monomorphism. In
effect, all maps R•C → R•D which are induced by level cofibrations C → D of
symmetric T -spectra have this property, and the class of cofibrations having this
property is closed under pushout, composition and retraction—it therefore includes
all injective cofibrations.

The claim about properness follows from properness for the model structure on
simplicial R-modules of Theorem 8.6.

The model structure of Lemma 11.50 is the injective model structure for symmetric
T -complexes.

We have a bounded monomorphism property:

Lemma 11.51 Suppose that α is a regular cardinal which is sufficiently large in
the sense described above. Suppose given a diagram of monomorphisms

X

i

��
A

j

�� Y

of symmetric T -complexes such that the map i is a level equivalence and A is α-
bounded. Then there is a factorization of j by monomorphisms A ⊂ B ⊂ Y such
that B is α-bounded and the map B ∩ X → B is a strict equivalence.

Proof The proof is essentially the same as that of Lemma 8.11, which is the
corresponding statement for simplicial R-modules.

The quotient symmetric T -complex Y/X is a filtered colimit of the quotients
B/(B ∩ X), where B is α-bounded. Every homology class v ∈ Hk(A/(A ∩ X)(U )
maps to 0 in the sheaf H̃k(Y/X) and therefore maps to 0 (locally) in some group
Hk(A′/(A′ ∩ Y ))(V ) along some covering sieve V → U for U, where A ⊂ A′ ⊂ Y

and A′ is α-bounded.
This is true for all homology classes v ∈ Hk(A/(A ∩ X))(U ), for all k and U .

This is a α-bounded list of elements, so there is a α-bounded subobject A1 of Y with
A ⊂ A1 such that the induced map

H̃∗(A/(A ∩ X)) → H̃∗(A1/(A1 ∩ X))

is the 0-map.
Proceed inductively to find an increasing family

A ⊂ A1 ⊂ A2 ⊂ . . .

of α-bounded subobjects of Y such that the induced maps

H̃∗(Ak/(Ak ∩ X)) → H̃∗(Ak+1/(Ak+1 ∩ X))
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are 0. Set B = lim−→ Ai . Then B is α-bounded and H̃∗(B/(B ∩ X)) = 0, so that the
map B ∩ X → B is a level equivalence of symmetric T -complexes.

Suppose (as in Sect. 10.3) that F is a set of cofibrations of symmetric T -spectra
which includes the set J of α-bounded level trivial cofibrations. Suppose also that
the induced maps

(E ∧ D) ∪ (F ∧ C) → F ∧ D (11.17)

are in F for each morphism E → F in F and each α-bounded cofibration C → D

of pointed simplicial presheaves, as in Sect. 10.3.
Write R•(F) for the set of maps of symmetric T -complexes R•A → R•B which

are induced by members A → B of the set F.
Choose a regular cardinal β which is sufficiently large as above, and such that

β > |F| and β > |B| for any cofibration A → B of F. Choose a cardinal λ such
that λ > 2β .

Every map g : X → Y of symmetric T -complexes has a functorial factorization

X
i ��

g
""�

��
��

��
��

Es(f )

p

��
Y

such that the map i is a cofibration which is in the saturation of R•(F) and the map p

has the right lifting property with respect to all members of R•(F). The construction
of this factorization uses a small object argument which terminates after λ steps.

Set

LF(X) = Eλ(X → 0)

for all symmetric T -complexes X.
Say that a map X → Y of symmetric T -complexes is an LF-equivalence if the

induced map LFX → LFY is a level equivalence of symmetric T -complexes.
Then we have the following:

Lemma 11.52

1) Suppose that the assignment t �→ Xt defines a diagram of monomorphisms
indexed by t < γ where γ is a cardinal such that γ > 2β . Then the natural map

lim−→
t<γ

LF(Xt ) → LF( lim−→
t<γ

Xt )

is an isomorphism.
2) Suppose that ζ is a cardinal with ζ > β, and let Bζ (X) denote the filtered system

of subobjects of X having cardinality less than ζ . Then the natural map

lim−→
Y∈Bζ (X)

LF(Y ) → LF(X)
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is an isomorphism.
3) The functor X �→ LF(X) preserves monomorphisms.
4) Suppose that U , V are subobjects of a T -complex X. Then the natural map

LF(U ∩ V ) → LF(U ) ∩ LF(V )

is an isomorphism.
5) If |X| ≤ 2μ where μ ≥ λ then |LF(X)| ≤ 2μ.

Proof This result is a consequence of Lemma 8.38, just like Lemma 10.81.

Let κ be the successor cardinal for 2μ, where μ is cardinal of statement 5) of
Lemma 11.52. Then κ is a regular cardinal, and Lemma 11.52 implies that if a
symmetric T -spectrum X is κ-bounded then LF(X) is κ-bounded. We now have a
bounded monomorphism property for LF-equivalences:

Lemma 11.53 Suppose given a monomorphism i : X → Y of symmetric T -
complexes which is an LF-equivalence, and suppose that A ⊂ Y is a κ-bounded
subobject. Then there is a κ-bounded subobject B ⊂ Y with A ⊂ B, such that the
map B ∩ X → B is an LF-equivalence.

Proof This result is a consequence of Lemma 11.51 and Lemma 11.52, via a proof
which is formally the same as that of Lemma 7.17. See the proof of Lemma 8.38
also.

A map p : X → Y of symmetric T -complexes is said to be F-injective if it has the
right lifting property with respect to all members of the set R•(F). An adjointness
argument says that p : X → Y is F-injective if and only if the underlying map
p∗ : u(X) → u(Y ) is an F-injective map of symmetric T -spectra. A symmetric
T -complex Z is F-injective if the map Z → 0 is F-injective, or equivalently if the
underlying symmetric T -spectrum u(Z) is F-injective.

Following Sect. 7.2, a map of symmetric T -complexes X → Y is an
F-equivalence if and only if the map

hom(Yc, Z) → hom(Xc, Z)

is a weak equivalence of simplicial sets for every F-injective object Z, and where
Xc → X is a natural injective cofibrant model construction. It is a consequence
of Lemma 7.6 that a map X → Y is an F-equivalence if and only if it is an LF-
equivalence.

An F-fibration is a map which has the right lifting property with respect to all
cofibrations of symmetric T -complexes which are F-equivalences. The F-fibrations
coincide with the LF-fibrations of Theorem 7.10, for the category of symmetric
T -complexes.

We have shown, in Lemma 11.50, that every injective cofibration is a monomor-
phism. We can therefore use the methods of Sect. 7.1 to prove the following:
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Theorem 11.54 Suppose that F is a set of cofibrations of symmetric T -spectra
which satisfies the closure condition of (11.17). Then the category

SptΣ
T (sPreR(C))

of symmetric T -complexes, together with the classes of injective cofibrations, F-
equivalences and F-fibrations, satisfies the axioms for a cofibrantly generated closed
simplicial model category. This model structure is left proper.

Example 11.55 The stable model structure for symmetric T -complexes arises, via
Theorem 11.54, by formally inverting the set F which is generated by the set J

of α-bounded level trivial cofibrations together with a set of injective cofibrant
replacements of the (stabilization) maps of symmetric T -spectra

V (ST ∧ T [−1 − n]) → V (ST [−n]). (11.18)

Generation is with respect to the closure property (11.17), by analogy with the
corresponding property for sets of cofibrations of T -spectra in Sect. 10.3.

An LF-equivalence for this theory is called a stable equivalence, and an LF-
fibration is a stable fibration.

Example 11.56 Suppose that f : A → B is a cofibration of simplicial presheaves.
Following Example 11.15, let Jf be the set of all maps

Fn(C+) → Fn(D+)

which are induced by a fixed set of generatorsC → D for the trivial cofibrations of the
f -local model structure on simplicial presheaves. Let Sf be the set of cofibrations
of symmetric T -spectra which is generated by the set Jf , together with injective
cofibrant replacements of all maps (11.18). The model structure for the set Sf which
is given by Theorem 11.54 is the f -local stable model structure for symmetric
T -complexes.

An LF-equivalence for this theory is called a stable f -equivalence, and an LF-
fibration is a stable f -fibration.

It follows from Corollary 7.12 that the stable f -fibrant symmetric T -complexes
Z are those objects whose underlying symmetric T -spectra are stable f -fibrant. The
underlying T -spectrum of a stable f -fibrant symmetric T -spectrum is also stable
f -fibrant. It follows (see Example 11.15 and Remark 8.40) that all simplicial R-
modules Zn are f -fibrant, and all simplicial R-module maps σ∗ : Zn → ΩT Zn+1

are local (even sectionwise) weak equivalences for such objects Z.

Example 11.57 Following Example 11.16, suppose that S ′
f is the set of cofibrations

of symmetric T -spectra which is generated by the set Jf alone. The model structure
for symmetric T -complex which corresponds to the set S ′

f is the f -injective model
structure. The fibrant objects for this structure and those symmetric T -complexes Z

which are level f -fibrant in the sense that all simplicial R-modules are fibrant for
the f -local model structure of Theorem 8.39. The trivial fibrations for this structure
are level weak equivalences.
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The free module functor

R : sPre(C) → sPreR

preserves f -equivalences (see Remark 8.40). All members of the set S ′
f are level

f -equivalences, so that all members of the set R•(S ′
f ) are level f -equivalences

and level cofibrations of symmetric T -complexes. It follows (see the argument for
Lemma 11.50) that any f -injective model j : A → LA is a level f -equivalence.
One concludes that the weak equivalences for the f -injective model structure on the
category of symmetric T -complexes are the level f -equivalences.

Following Sect. 11.1, say that a symmetric complex X consists of simplicial
R-modules Xn, n ≥ 0, together with R-linear symmetric group actions

Σn × Xn → Xn.

A morphism g : X → Y of symmetric complexes consists of morphisms of simplicial
R-modules Xn → Yn, n ≥ 0, which respect the symmetric group actions.

The tensor product X ⊗ Y of symmetric complexes X and Y is the symmetric
complex which is defined in level n by

(X ⊗ Y )n =
⊕

r+s=n

Σn ⊗Σr×Σs
Xr ⊗ Y s.

There is a natural twist isomorphism

τ : X ⊗ Y
∼=−→ Y ⊗ X

which is defined in bidegree (r , s) by the composite

Xr ⊗ Y s τ−→Y s ⊗ Xr in−→ (Y ⊗ X)s+r cr ,s−→ (Y ⊗ X)r+s ,

where cr ,s ∈ Σr+s is shuffle defined in (11.2).
From this point of view, a symmetric T -complex is a symmetric complex X,

together with an action

H (R) ⊗ X → X

in the category of symmetric complexes.
Every simplicial R-module A determines a symmetric complex Gn(A) with

Gn(A)k =
{

Σn ⊗ A if k = n, and

0 otherwise.

There is a natural isomorphism

hom (Gn(A), X) ∼= hom (A, Xn)

that relates morphisms Gn(A) → X of symmetric complexes to morphisms A → Xn

of simplicial R-modules.
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The symmetric T -complex

Fn(A) := H (R) ⊗ Gn(A)

is the free symmetric T -complex associated to the symmetric complex Gn(A), and
it follows that there is a natural isomorphism

hom (Fn(A), Y ) ∼= hom (A, Yn)

relating morphisms of symmetric T -complexes to morphisms of simplicial
R-modules.

There is a forgetful functor

UR : SptΣ
T (sPreR) → SptT (sPreR)

from symmetric T -complexes to T -complexes. This functor has a left adjoint

VR : SptT (sPreR) → SptΣ
T (sPreR)

which is defined, following the definition of the functor V of Sect. 11.1, by the
requirement that

VR(H (A)[−n]) = Fn(A)

See also Example 10.79.

We shall now focus on the f -local stable model structure for symmetric
T -complexes of Example 11.56.

Lemma 11.58 The adjoint pair of functors

VR : SptT (sPreR) � SptΣ
T (sPreR) : UR

defines a Quillen adjunction between the respective stable f -local model structures.

Proof If the symmetric T -complex Z is stable f -fibrant then underlying T -complex
UR(Z) is stable f -fibrant.

If p : X → Y is an injective fibration of symmetric T -complexes, then the
underlying map of symmetric T -spectra is an injective fibration, which implies that
the pointed simplicial presheaf maps underlying all level maps Xn → Yn are injective
fibrations. This means that all maps Xn → Yn are injective fibrations of simplicial
R-modules, and so the map UR(p) is a strict fibration of T -complexes.

If p is a trivial stable f -fibration of symmetric T -complexes, then all maps Xn →
Yn are local weak equivalences, and so the map UR(p) is a trivial stable f -fibration
of T -complexes. It follows that the functor VR takes cofibrations of T -complexes to
injective cofibrations of symmetric T -complexes.
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Suppose that i : A → B is a cofibration of T -complexes and that Z is a stable
f -fibrant symmetric T -complex. Then the induced map

i∗ : hom(VR(B), Z) → hom(VR(A), Z)

of function complexes is isomorphic to the map

i∗ : hom(B, UR(Z)) → hom(A, UR(Z)),

and so one instance of i∗ is a weak equivalence if and only if the other one is. The
object UR(Z) is stable f -fibrant, so both maps i∗ are weak equivalences if i is a stable
f -trivial cofibration. This is true for all stable f -fibrant symmetric T -complexes Z,
so that the map i∗ : VR(A) → VR(B) is a stable f -trivial cofibration if the map i is
a stable f -trivial cofibration.

Suppose that n > 0. The shift A[n] of a symmetric T -complex A is defined as for
symmetric T -spectra. We have

A[n]k = An+k.

and bonding maps T p ⊗ A[n]k → A[n]p+k defined by the composite

T p ⊗ An+k σ−→Ap+n+k c(p,n)⊕1−−−−→ An+p+k.

The symmetric T -complex ΩT A is also defined by analogy with the corresponding
construction for symmetric T -spectra:

ΩT An = Hom(T , An),

with bonding maps

T p ⊗ Hom(T , An) → Hom(T , Ap+n)

defined by adjunction. The adjoint bonding maps An → ΩT A1+n define a natural
map of symmetric T -complexes

σ̃ : A → ΩT A[1],

by analogy with the corresponding map for symmetric T -spectra in (11.8).
The object QΣ

T A is defined as a symmetric R-complex, by the assignment

QΣ
T A = I ( lim−→

n

Ωn
T (IA)[n]),

where A → IA is a natural choice of f -injective fibrant model as in Example 11.57.
This construction is functorial in symmetric T -complexes A, and there is a natural
map

η : A → QΣ
T A.
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The map η is a level equivalence if A is stable f -fibrant.

Remark 11.59 It is not clear that the natural f -injective fibrant model A → IA for
symmetric T -complexes A restricts to an f -injective fibrant model of the underlying
symmetric T -spectrum u(A). The object u(IA) is certainly f -injective fibrant in
symmetric T -spectra, but the map u(A) → u(IA) may not be a level f -equivalence
of symmetric T -spectra in general. See Remark 8.40.

On the other hand, there are natural isomorphisms of symmetric T -spectra

u(ΩT A) ∼= ΩT (u(A))

and

u(A[n]) ∼= u(A)[n]

for all symmetric T -complexes A, and the canonical map σ̃ : u(A) → ΩT u(A)[1] is
naturally isomorphic to the image of the map of symmetric T -complexes σ̃ : A →
ΩT A[1] under the forgetful functor

u : SptΣ
T (sPreR) → SptΣ

T (C).

We have the following analogue of Theorem 11.19 for symmetric T -complexes:

Theorem 11.60 Suppose that T is compact up to f -equivalence. Suppose that
g : A → B is map of symmetric T -complexes such that the map UR(g) : UR(A) →
UR(B) is a stable f -equivalence of T -complexes. Then g is a stable f -equivalence.

Proof This result has the same proof as does Theorem 11.19. We use Theorem 10.87
in place of Theorem 10.32.

We have the Quillen adjunction

VR : SptT (sPreR) � SptΣ
T (sPreR) : UR

of stable f -local model structures from Lemma 11.58, and we know from Theo-
rem 11.60 that the forgetful functor UR reflects stable f -equivalences if the parameter
object T is compact up to f -equivalence.

We now proceed to demonstrate that this Quillen adjunction is a Quillen equiva-
lence under the additional assumption that T is cycle trivial. More formally, we have
the following result:

Theorem 11.61 Suppose that the parameter object T is compact up to f -equiva-
lence and is cycle trivial. Then the adjoint functors

VR : SptT (sPreR) � SptΣ
T (sPreR) : UR

define a Quillen equivalence between the respective f -stable model structures.
The proof is by analogy with the proof of Theorem 11.36, and will only

be sketched. It follows from Proposition 11.64 below in the same way that
Theorem 11.36 follows from Proposition 11.29.
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There is a category and a theory of T -bicomplexes: a T -bicomplex A is a T -
complex object inT -complexes.AlternativelyA consists ofT -complexesAs together
with bonding maps σv : As ⊗ T → As+1 of T -complexes. The structure therefore
consists of simplicial R-modules Ar ,s together with maps σh : T ⊗ Ar ,s → Ar+1,s

and σv∗ : T ⊗ Ar ,s → Ar ,s+1 such that the diagrams

T ⊗ T ⊗ Ar ,s
T ⊗σh ��

τ⊗Ar ,s

��

T ⊗ Ar+1,s

σv∗

��

T ⊗ T ⊗ Ar ,s

τ⊗σv∗
��

T ⊗ Ar ,s+1
σh

�� Ar+1,s+1

commute, where τ : T ⊗T → T ⊗T is the automorphism which flips tensor factors.
A map A → B of T -bicomplexes is the obvious thing.

The diagonal d(A) is the (T ∧ T )-complex with d(A)n = An,n and with bonding
maps defined by the composites

(T ∧ T ) ⊗ An,n ∼= T ⊗ T ⊗ An,n T ⊗σh−−−→ T ⊗ An+1,n σv∗−→ An+1,n+1.

A map g : A → B of T -bicomplexes is strict f -equivalence if all maps Ar ,s → Br ,s

are f -equivalences of simplicial R-modules. The map g is said to be a stable f -
equivalence if the map d(A) → d(B) is a stable equivalence of (T ∧ T )-complexes.
Every strict f -equivalence of T -bicomplexes is a stable f -equivalence.

We also have the following analogue of Lemma 10.56, with the same proof:

Lemma 11.62 Suppose that T is compact up to f -equivalence. Suppose that g :
A → B is a map of T -bicomplexes such that all constituent maps of T -complexes
As → Bs are stable f -equivalences of T -complexes. Then the map g is a stable
f -equivalence of T -bicomplexes.

A T -bicomplex Z is said to be stable f -fibrant if all simplicial R-modules Zr ,s

are f -fibrant and the adjoint bonding maps Zr ,s → ΩT Zr+1,s and Zr ,s → ΩT Zr ,s+1

are f -equivalences. Then Lemma 11.28 has the following consequence:

Corollary 11.63 Suppose that g : Z → W is a map of stable f -fibrant T -
bicomplexes. Then g is a stable f -equivalence if and only if all simplicial R-module
maps g : Zr ,s → Wr ,s are f -equivalences.

The following result is the R-linear analogue of Proposition 11.29:

Proposition 11.64 Suppose that T is compact up to f -equivalence and is cycle
trivial. Suppose that A is a simplicial R-module, and that j : H (A) → Z is a
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stable f -fibrant model in the symmetric T -complex category. Then the underlying
map UR(H (A)) → UR(Z) is a stable f -equivalence of T -complexes.

Proof The proof is by analogy with the proof of Proposition 11.29.
Let X(A) be the T -bicomplex with

X(A)r ,s = T ⊗r ⊗ A ⊗ T ⊗s ,

and observe that X(A) can be intepreted as a T -spectrum object in symmetric T -
complexes. Specifically, X(A)∗,s is the symmetric T -complex H (A) ⊗ T ⊗s .

The stable f -fibrant models

X(A)r ,∗ → L(X(A)r ,∗)

give a map j : X(A) → L(X(A)) of symmetric T -spectrum objects in T -complexes
which induces a stable f -equivalence of T -bicomplexes by Lemma 11.62. The stable
f -fibrant models X(A)∗,s → L(X(A)∗,s) of T -complexes also define a stable f -
equivalence UR(X(A))L(URX(A)) of T -bicomplexes.

The T -bicomplexes UR(L(A)) and L(UR(X(A))) are stable f -fibrant by Theo-
rem 10.89, and there are stable f -equivalences of T -complexes

UR(L(X(A))∗,0 
−→ L(UR(L(X(A))))∗,0 
←− L(UR(X(A)))∗,0

by Corollary 11.63. The map UR(H (A)) → L(UR(X(A)))∗,0 is a stable f -
equivalence of T -complexes by construction, so the map

UR(H (A)) → UR(L(X(A)∗,0))

is a stable f -equivalence of T -complexes. The map H (A) → L(X(A))∗,0 is therefore
a map of symmetric T -complexes whose underlying map of T -complexes is a stable
f -equivalence. The T -complex underlying L(X(A))∗,0 is stable f -fibrant, so an
f -injective model L(X(A))∗,0 → I (L(X(A))∗,0) defines a stable f -fibrant object
I (L(X(A))∗,0) in symmetric T -complexes. The composite

H (A) → L(X(A))∗,0 → I (L(X(A))∗,0)

has an underlying map of T -complexes which is a stable f -equivalence. This
composite is therefore a stable f -equivalence of symmetric R-complexes by
Theorem 11.60.

One proves the analogue of Theorem 11.35, which asserts that the map

X → URVR(X)
UR (j )−−−→ UR(Vr (X)s)

is a stable f -equivalence of T -complexes for all cofibrant objects X. This result
is a formal consequence of Proposition 11.64 which uses the compactness of T

and the fact that the functor VR preserves stable f -equivalences between cofibrant
T -complexes.
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The final argument for Theorem 11.61 is now formal, as is the corresponding
argument for Theorem 11.36.

The tensor product for symmetric T -complexes is defined by analogy with the
smash product construction for symmetric T -spectra. Specifically, if A and B are
symmetric T -complexes, then the tensor product A ⊗Σ B is defined in the category
of symmetric complexes by the coequalizer

H (R) ⊗ A ⊗ B ⇒ A ⊗ B → A ⊗Σ B.

The two arrows of the picture are mA ⊗ B and the composite

H (R) ⊗ A ⊗ B
τ⊗B−−→ A ⊗ H (R) ⊗ B

A⊗mB−−−→ A ⊗ B

where the maps mA : H (R) ⊗ A → A and mN : H (R) ⊗ B → B define the
symmetric T -complex structures of A and B, respectively.

There is a naive tensor product A⊗n B of T -complexes A and B, which is defined
by analogy with the naive smash product of T -spectra. Explicitly,

(A ⊗ B)2n = An ⊗ Bn, (A ⊗n B)2n+1 = An+1 ⊗ Bn,

and the bonding maps are specified by:

{
T ⊗ An ⊗ Bn σ⊗1−−→ An+1 ⊗ Bn,

T ⊗ An+1 ⊗ Bn τ⊗1−−→ An+1 ⊗ T ⊗ Bn 1⊗σ−−→ An+1 ⊗ Bn+1.

As in the nonabelian case, there is a natural map

c : UR(X) ⊗n UR(Y ) → θ∗U (X ⊗Σ Y )

for symmetric T -complexes X and Y . The map c is defined by the canonical maps
c : Xp ⊗ Y q → (X ⊗Σ Y )p+q , and θ∗UR(X ⊗Σ Y ) is the T -complex with bonding
maps

T ⊗ (X ⊗Σ Y )n → (X ⊗Σ Y )1+n θ1+n−−→ (X ⊗Σ Y )1+n,

where θi is the permutation with

θi =
{

1 if i = 2n + 1,

c1,n+1 if i = 2n + 2.

As in the nonabelian case, there is a natural isomorphism of T -complexes

θ∗UR(X ⊗Σ Y ) ∼= UR(X ⊗Σ Y ).

Then we have the following analogue of Theorem 11.48:
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Theorem 11.65 Suppose that T is compact up to f -equivalence and is cycle trivial.
Then the natural composite

A ⊗n B → URVR(A) ⊗n URVR(B)
c−→ θ∗UR(VR(A) ⊗Σ VR(B))

UR (j )−−−→ θ∗UR((VR(A) ⊗Σ VR(B))s)

is a stable f -equivalence of T -complexes if either A or B is a cofibrant T -complex.
In the statement of Theorem 11.65, the map

j : VR(A) ⊗Σ VR(B) → (VR(A) ⊗Σ VR(B))s

is a stable f -fibrant model in symmetric T -complexes.
The proof of Theorem 11.65 is analogous to that of Theorem 11.48. For this proof,

we need to know that an analogue of Corollary 11.45 holds, namely that the functor
X �→ X ⊗Σ Y preserves stable f -equivalences of symmetric T -complexes if Y is
projective cofibrant in a suitable sense.

In fact, one proves the following symmetric T -complex analogue of Theo-
rem 11.44:

Theorem 11.66 Suppose that i : A → B is a projective cofibration and that
j : C → D is a level cofibration of symmetric T -complexes. Then the map

(j , i)∗ : (D ∧Σ A) ∪(C∧ΣA) (C ∧Σ B) → D ∧Σ B

of symmetric T -complexes is a level cofibration. If j is a projective cofibration then
the map (j , i)∗ is a projective cofibration. If j is a stable f -equivalence (respectively
level f -equivalence), then (j , i)∗ is a stable f -equivalence (respectively level f -
equivalence).

A projective cofibration is a map A → B of symmetric T -complexes which has the
left lifting property with respect to all maps p : X → Y of symmetric T -complexes
such that all maps Xn → Yn are trivial fibrations of simplicial R-modules. If A is a
cofibrant T -complex (in the sense of Proposition 10.80), then VR(A) is a projective
cofibrant symmetric T -complex.

Theorem 11.66 also enables a definition of a derived tensor product L(A ⊗Σ B)
for symmetric T -complexes A and B in the f -local stable model structure. Set

L(A ⊗Σ B) = Ac ⊗Σ Bc,

where Ac → A and Bc → B are projective cofibrant models for A and B, re-
spectively. This construction specializes to a derived tensor product for symmetric
S1-complexes, and hence gives a derived tensor product for presheaves of unbounded
chain complexes, as in [61].
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(S, T )-bispectrum, 392
2-groupoid, 313
H -functor, 260
I , cofibrations, 27, 99
J , trivial cofibrations, 27, 99
K-theory, étale, 357
K(D, n), chain complex D, 212
K+, disjoint base point, 347
L-equivalence, 162
L-fibrant, 162
L-fibration, 162
LU , adjoint of U -sections, 25, 81
P -simplex, 285
S1-spectrum, 360
T -bicomplex, 494
T -bispectrum, 393
T -complex, 413
T -loops, 361
T -spectrum, 360
T -spectrum, underlying, 415
T -suspension, 363
T -suspension, fake, 363
T ∧n, smash power, 363
Ex∞ construction, 62, 65
Γ -space, 436
α-bounded, 94
A

1-homotopy theory, 180
A

1-local, 245
Ext(H , F), 324
Iso(F), 321
F-equivalence, 166, 175, 228, 242, 418
F-fibration, 171, 179, 232, 242, 418
F-injective, 175
W , Eilenberg-Mac Lane functor, 290
W -fibration, 296, 304
π (Z, X), simplicial homotopy classes, 151
cr , s, shuffle permutatation, 438

cd-topology, 32
f -equivalence, 179, 234
f -equivalence, stable, 419, 450
f -equivalences, stable, 369
f -fibration, 179, 234
f -fibration, stable, 369, 419, 450
n-equivalence, 131, 310, 406
n-fibration, 134, 310
n-stack, 316
n-type, 131, 310

A
Axiom of Choice, 49

B
base points, local, 68
BG-property, 121
bonding map, 203, 345, 360, 413, 439, 483
bonding map, adjoint, 353, 361, 420
Boolean algebra, 47
Boolean localization, 30, 49, 77, 196
bounded monomorphism property, 23, 95, 128,

162, 201, 231, 366
Brauer group, 257

C
cardinal, regular, 95
category, cocycle, 143
category, derived, 206
category, orbit, 356
chain complex, Moore, 194
chain complex, normalized, 195
classifying space, nerve, 18
classifying topos, 42, 356
cochain complex, 212
cocycle, 143
cocycle conjugate, 295
cocycle, bounded, 146
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cocycle, canonical, 262
coequivalence, 409
cofibrant replacement, 166
cofibration, 2-groupoids, 313
cofibration, T -complexes, 414
cofibration, T -spectra, 361
cofibration, chain complexes, 200
cofibration, injective, 484
cofibration, level, 363, 441
cofibration, projective, 25, 126, 441
cofibration, simplical modules, 197
cofibration, simplicial presheaves, 84
cofibration, simplicial sheaves, 99
cofibration, spectra, 205, 346
cofibration, trivial, 96
cohomology, mixed, 218
cohomology, sheaf, 216
cohomology, simplicial presheaf, 217
colocal, 409
compact, up to f -equivalence, 372
complex, shifted, 202
constant sheaf, 37
correspondence, Dold-Kan, 195, 200, 421
covering family, 31
cup product, 225

D
décalage functor, 286
degree, stable homotopy groups, 403
descent, 92, 102, 116, 214
descent, Brown-Gersten, 118
descent, cohomological, 104
descent, effective, 277
descent, Galois, 105
descent, motivic, 181
descent, Nisnevich, 116, 125, 357
descent, spectra, 357
diagonal, of a bispectrum, 393, 463
direct image, 43

E
Eilenberg-Mac Lane spectrum, 414
elementary distinguished square, 120
epimorphism, local, 38
equivalence, Morita, 273
equivalence, stable, 205, 419, 463
essentially surjective, 323

F
fake T -loops, 374
family, R-compatible, 34
family, groups, 320, 321
fat point, 49
fibrant model, injective, 101

fibration, 2-groupoids, 313
fibration, W , 296
fibration, injective, 96, 99, 197, 200, 268, 445,

484
fibration, level, 361
fibration, local, 71
fibration, local trivial, 72, 82
fibration, motivic, 234
fibration, projective, 441
fibration, sectionwise, 25, 71, 101
fibration, stable, 205, 347, 369, 419
fibration, strict, 205, 346, 361, 414
finite correspondences, 242
free simplicial module, reduced, 195, 412
free symmetric spectrum, 439
function complex, 19, 99, 199, 346
function complex, internal, 106, 367
functor, internal, 260
fundamental 2-groupoid, 315

G
gerbe, 318, 331
global section, 34
graph functor, 242
Grothendieck construction, 326
group, profinite, 32, 357
groupoid, Čech, 73
groupoid, enriched in simplicial sets, 280
groupoid, of torsors, 252, 261

H
hammock localization, 145
Hasse-Witt class, 256
homology sheaf, 194, 217
homology sheaf, reduced, 224
homotopy category, pointed, 224
homotopy fixed points, 105
homotopy group sheaf, 68
HSS-fibration, 460
Hurewicz homomorphism, 211
hypercohomology, 221, 222
hypercover, 72

I
Illusie conjecture, 196
image, groupoid morphism, 322
inductive colimit descent, 377
interval, in a poset, 286
inverse image, 43
isomorphism, local, 39

K
kernel, groupoid morphism, 323
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L
layer filtration, 384, 422
level, spectrum, 345, 360
loop groupoid, 290

M
model structure, 2-groupoids, 314
model structure, F-local, 179, 232, 242, 367,

418
model structure, W , 296, 304
model structure, f -injective, 489
model structure, f -local, 179, 234, 369, 419,

450, 489
model structure, n-equivalence, 137, 313, 407
model structure, Dwyer-Kan, 281
model structure, enriched, 106
model structure, HSS, 461
model structure, injective, 98–100, 199, 200,

270, 443, 446, 486
model structure, intermediate, 128
model structure, motivic, 180, 234, 244
model structure, projective, 25, 126, 237, 238,

443
model structure, projective local, 128, 183
model structure, projective motivic, 128, 184,

188
model structure, stable, 206, 347, 369, 419,

449, 450, 489
model structure, strict, 205, 347, 362, 370, 393,

415, 428
monomorphism, local, 38
morphism, geometric, 42, 107
morphism, site, 108
motive Z(n), 246
motives, effective, 244
motivic cohomology, 246, 427, 435

O
object, Eilenberg-Mac Lane, 212

P
parameter object, 360
parameter object, cycle trivial, 384
path component groupoid, 297
path component sheaf, 68
point, geometric, 44
point, topos, 44
points, enough, 46
poset join, 285
Postnikov section, simplicial groupoid, 309
Postnikov section, simplicial presheaf, 131
Postnikov section, simplicial set, 131
Postnikov section, spectrum, 405
presheaf of spectra, 345

presheaf with transfers, 242
presheaf, additive, 356

Q
quasi-isomorphism, 197
quotient stack, 272

R
resolution 2-groupoid, 322
resolution, Čech, 73
resolution, Godement, 102
restriction, 66
right lifting property, local, 69

S
sheaf, homotopy invariant, 245
sheaf, of homotopy groups, 68
sheaf, of path components, 68
sheaf, of stable homotopy groups, 347
simplicial presheaf, 33
simplicial circle, 337
simplicial presheaf, linear, 236
simplicial presheaf, pointed, 155, 223
simplicial sheaf, 35
singular complex, 245
site morphism, 45
site, big, 32, 111
site, fibred, 112, 223
site, Grothendieck, 31
slice category, 33
slice filtration, 406, 411
smash product, naive, 480
smash product, pointed simplicial presheaves,

224
smash product, pushout, 479
smash product, symmetric spectra, 439
spectral sequence, descent, 358
spectrum, chain complexes, 203
sphere spectrum, 345, 363, 414
stabilization maps, 369
stable equivalence, 347
stable homotopy groups, bigraded, 401
stack, 271
suspension spectrum, 362
symmetric T -complex, 483
symmetric T -complex, shifted, 492
symmetric T -spectrum, 438
symmetric T -spectrum, bounded, 443
symmetric T -spectrum, shifted, 453
symmetric complex, 490
symmetric space, 436
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T
tensor product, 198
tensor product, symmetric spaces, 437
topology, chaotic, 32
torsor, 251, 261
torsor, trivial, 252, 265, 266
total simplicial set, 287
truncation, good, 202
twist automorphism, 438

U
universal coefficients, 218

V
Verdier hypercovering theorem, 152

W
weak equivalence, level, 361, 441, 484
weak equivalence, local, 64, 99, 197, 200, 268,

304, 313
weak equivalence, motivic, 234
weak equivalence, sectionwise, 25, 64, 72
weak equivalence, strict, 205, 346, 361, 393,

414, 463
weight, stable homotopy groups, 403
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