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Abstract. We give a definition of a derivation of an A∞ ring spectrum and relate this notion
to topological Hochschild cohomology. Strict multiplicative structure is introduced into Postnikov
towers and generalized Adams towers of A∞-ring spectra. An obstruction theory for lifting multi-
plicative maps is constructed. The developed techniques are then applied to show that a broad class
of complex-oriented spectra admit structures of MU -algebras where MU is the complex cobordism
spectrum. Various computations of topological derivations and topological Hochschild cohomology
are made.
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1. Introduction

It has long been proved useful in topology to exploit multiplicative structures. The
notion of an A∞ ring spectrum or, in more modern terminology, an S-algebra is
an analogue in stable homotopy theory of the algebraic notion of an associative
ring. The analogue of a commutative ring is the so-called E∞ ring spectrum or
a commutative S-algebra. There has been much interest recently to these objects,
especially after the appearance of the seminal work [7]. For instance, Mandell used
them in [14] to give an algebraic characterization of the category of p-complete
nilpotent spaces. Another prominent example is the Hopkins–Miller theorem (cf.
[16]) asserting the existence of the action of the Morava stabilizer group on the
Johnson–Wilson spectrum Ên.

Until recently only a handful of spectra were known to possess an A∞ or
E∞ structure. Those are K-theoretic spectra arising from permutative categories,
Eilenberg–MacLane spectra, various bordism spectra and their Bousfield localiz-
ations. The main purpose of the present paper is to devise a general method of
proving the existence of A∞-structures.

We give a definition of the topological derivation spectrum of an S-algebra in
the sense of [7] and, more generally, of an R-algebra for an S-algebra R. This
definition is based on the notion of a derivation of an R-algebra. A derivation
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of an R-algebra A with coefficients in an A-bimodule M is a map of R-algebras
A→A∨M commuting with the canonical projection onto A. An analogous theory
for commutative R-algebras was developed by Basterra in [3]. The topological
derivation spectrum and the topological Hochschild (co)homology of an R-algebra
are related via cofibre sequences (2) and in good many cases they can be recovered
from each other. We use these tools to develop an obstruction theory for lifting
R-algebra maps and to introduce (strict) multiplicative structures into Postnikov
towers of R-algebras and generalized Adams towers. We compute the topological
derivations of the Eilenberg–MacLane spectrum HZ/p as an MU -algebra and
compare the result with the classical computation of [8]. A curious consequence is
that the mod p Moore spectrum does not admit a structure of an A∞ ring spectrum
for any p. Further we prove that Morava K-theories (as well as a much broader
class of complex-oriented spectra) admit structures of MU -algebras. By neglect of
structure they also admit an A∞-structure. The problem of introducing multiplic-
ative structures into MU -modules was considered by Elmendorf, Kriz, Mandell
and May in [7] and by Strickland in [18]. However these authors only prove the
existence of such structures up to homotopy whereas the present paper deals with
strict products. Such strict products (for Morava K-theories only) were first stud-
ied in [17]. However, in the cited reference the existence of an A∞ structure on
K(n) was established with a weaker notion of an A∞ ring spectrum (without the
unit condition). Our method involves building up a complex-oriented spectrum
starting from the Eilenberg–MacLane spectrum (which reduces to the Postnikov
tower in the case of Morava K-theories) in the spirit of algebraic deformation
theory.

Finally we compute the topological derivations and topological Hochschild co-
homology of K(n) (modulo additive extensions). We show how to deal with these
extensions in a forthcoming paper. Our interest in topological Hochschild (co)hom-
ology of general spectra was inspired by the work of McClure and Staffeldt [15]
where computations were made for the connective K-theory spectrum.

This paper is based on two preprints of the author [11] and [12], though the
content of these has been considerably revised. Further extensive revisions were
made following suggestions of the referees.

2. Derived Module of Differentials

Let R be a commutative S-algebra (in older terminology, an E∞ ring spectrum), A

a (not necessarily commutative) R-algebra. Without loss of generality we assume
that R is q-cofibrant as a commutative S-algebra and A is q-cofibrant as an R-
algebra in the sense of [7]. Throughout the paper the notation ∧ will mean ∧R.

Denote by �̃A/R the (functorial) homotopy fibre of the multiplication map taken
in the category of A-bimodules

�̃A/R → A ∧ A → A.
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That is, �̃A/R is the pullback A ∧ A×A F(I, A) where I is the unit interval R-
module. The pullbacks of A-bimodules are created in the category of R-modules
and thus �A/R is an A-bimodule.

DEFINITION 2.1. The (derived) module of differentials �A/R or just �A if the
‘ground ring’ R is clear from the context is the canonical cell approximation of
�̃A/R in the category of A-bimodules.

So we still have the homotopy fibre sequence of A-bimodules

�A/R → A ∧ A → A. (1)

The exact triangle (1) is split by the map

A ∼= A ∧ R
id∧1→ A ∧A.

in the homotopy category of left A-modules. Here (and later on in the paper)
1: R → A stands for the unit map of the R-algebra A. Therefore �A is weakly
equivalent as a left A-module to A∧A/R. Symmetrically, �A is weakly equivalent
to A/R ∧ A as a right A-module.

Now let M be a cell A-bimodule. Recall from [7], IX.1 that M is then a left
A ∧ Aop module where Aop is an R-algebra which as an R-module coincides with
A but with opposite multiplication. Define the topological derivation homology
spectrum DerR(A, M) as

DerR(A, M) = �A ∧A∧Aop M

and the topological derivation cohomology spectrum DerR(A, M) as

DerR(A, M) = FA∧Aop(�A, M).

Here Der stands for ‘derivations’, and the meaning of this notation will become
clear shortly.

Recall that the standard definition of Hochschild homology and cohomology
(cf. [7]) is respectively

THHR(A, M) = A ∧A∧Aop M,

THHR(A, M) = FA∧Aop(A, M).

Now from (1) we see that the two definitions are related via cofibre sequences
of R-modules

DerR(A, M) → M → THHR(A, M),

THHR(A, M) → M → DerR(A, M). (2)

Now define the derived module of derivations of A with values in M as

Der(A, M) = [A, A ∨M]R−alg/A. (3)
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The right-hand side of the last formula means homotopy classes of maps in the
category of R-algebras over A, that is, R-algebras B supplied with a map B →
A. This category inherits the structure of a topological model category from the
category of R-algebras and therefore it is legitimate to consider homotopy classes
of maps in R − alg/A. Further, A is an R-algebra over A in the obvious way and
A ∨M is given the structure of an R-algebra as follows:

(A ∨M) ∧ (A ∨M) = A ∧ A ∨ A ∧M ∨M ∧ A ∨M ∧M → A ∨M,

where the last map is induced by the multiplication on the first summand, by the
A-bimodule structure on M on the second and third summands and zero on the last
summand. The structure map A ∨M → A is the usual projection.

We will see shortly that Der(A, M) is an Abelian group and

Der(A, M) = [�A, M]A−bimod.

The right-hand side of the last equality is the homotopy classes of maps from �A to
M in the category of A-bimodules (or, equivalently, in the category of left A∧Aop-
modules). This gives, therefore, another definition of topological derivation groups,
namely

DerR
n(A, M) = Der(A, �nM)

(and explains the notation DerR(A, M)).
Denote the category of R-algebras over A by CR/A and its homotopy category

by hoCR/A. Let B ∈ CR/A and denote the A-bimodule

A ∧B �B ∧B A ∼= A ∧ Aop ∧B∧Bop �B (4)

by �B
A. Since �B is by definition a cell B ∧ Bop-module the smash products in

(4) represent the derived smash product in the category of B-bimodules. Therefore
the functor �B

A could be interpreted as a point-set functor from the category of R-
algebras over A to the category of A-bimodules or as a homotopy functor between
the corresponding homotopy categories.

THEOREM 2.2. There is a natural equivalence

[B, A ∨M]R−alg/A
∼= [�B

A, M]A−bimod.

In other words the functors

B → �B
A : hoCR/A → ho(A− bimod) and

M → A ∨M : ho(A− bimod)− hoCR/A

are adjoint.
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Proof. Replace the R-algebra A∨M by its fibrant cofibrant approximation
A ∨M in the category of R-algebras over A. As a first step we will construct a
‘universal map’ of A ∨M-bimudules

�A∨M
A → M.

Since �A∨M
A =A ∧A∨M �A∨M ∧A∨M A it is enough to construct a map of A ∨M-

bimodules �A∨M →M.
Consider the module �A∨M defined as the cell approximation of the homotopy

fibre of the multiplication map (A ∨M) ∧ (A ∨M) → A ∨M in the category of
A ∨M-bimodules. Even though A ∨M is not a q-cofibrant R-algebra the smash
product (A ∨ M) ∧ (A ∨ M) clearly represents the derived smash product and
therefore �A∨M has the correct homotopy type.

Since the R-algebras (A∨M)∧(A∨M)op and (A ∨M)∧(A ∨M)
op

are weakly
equivalent the homotopy categories of A∨M-bimodules and of A ∨M-bimodules
are also equivalent and therefore it suffices to construct a map of A∨M-bimodules
�A∨M → M.

Consider the following diagram in the homotopy category of A∨M-bimodules:

A ∧ A ∨A ∧M ∨M ∧ A ∨M ∧M → A ∨M


�

∥
∥
∥

A ∨M ∨M → A ∨M

Here the left vertical arrow is determind by the R-algebra structure on A and an
A-bimodule structure on M on the first three summands and is zero on the last
summand. The lower horizontal arrow is zero on A, id on the first summand and
−id on the last summand. The homotopy fibre of the upper row is equivalent to
�A∨M by definition and the homotopy fibre of the lower row is equivalent to M.
There results the map of A ∨M-bimodules �A∨M → M as desired.

Now for a map f : B → A ∨M we have a composite map �B
A → �A∨M

A → M

and therefore a correspondence

D : [B, A ∨M]R−alg/A → [�B
A, M]A−bimod

Notice that D is actually functorial in B on a point-set level. This more precise
result will be used below. We need a special case of the Theorem 2.2 to prove the
general case.

LEMMA 2.3. For

B = T V = {R ∨ V ∨ V ∧2 ∨ . . .
µ→ A} ∈ CR/A,

the free associative algebra on an R-module V over A this correspondence estab-
lishes an isomorphism

[T V, A ∨M]R−alg/A → [�T V
A , M]A−bimod. (5)
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Proof. First compute both sides of (5) separately. Obviously, the left-hand side
is equal to

[V, A ∨M]R−mod/A = [V, M]R−mod.

We have the following homotopy fibre sequence of T V -bimodules:

(T V ) ∧ V ∧ T V
f→ T V ∧ T V

m→ T V, (6)

where f = f1 − f2 and

f1 : T V ∧ V ∧ T V
m∧id→ T V ∧ T V,

f2 : T V ∧ V ∧ T V
id∧m→ T V ∧ T V,

m is the multiplication map. Smashing (6) with A on both sides over T V we get

A ∧ V ∧ A → A ∧ A → A ∧T V A.

Therefore �T V
A =A ∧ V ∧A and

[�T (V )
A , M]A−bimod = [V, M]R−mod = [T (V ), A ∨M]hoCR/A

.

The second equality uses the (obvious) fact that the functor

M → A ∨M : ho(R −mod) → ho(R −mod/A)

is right adjoint to the forgetful functor

ho(R −mod/A) → ho(R −mod).

So we identified each side of (5) with [V, M]R−mod. To prove our lemma we
have to show that D respects this identification. In other words for an R-module
map f : V → M the composite

�T V → �A∨M → M,

should correspond under this identification to the map f .
Consider now the diagram

T V ∧ V ∧ T V −→ �A∨M −→ M


�



�



�

T V ∧ T V −→ A ∧ A ∨ A ∧M ∨M ∧ A ∨M ∧M −→ A ∨M ∨M


�



�



�

T V −→ A ∧M = A ∧M.

Here all three columns are homotopy cofibre sequences. Also recall that the
upper left vertical map is m ∧ id − id ∧m. Clearly the composite

V → T V ∧ V ∧ T V → T V ∧ T V →
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A ∧ A ∨ A ∧M ∨M ∧ A ∨M∧ → A ∨M ∨M → M ∨M,

coincides with the composite

V → V ∨ V → A ∧M ∨M ∧ A → M ∨M,

where the first map is id∨0− 0∨ id, the second map is µ∧ f − f ∧µ and the last
map is induced by the A-bimodule structure on M. Therefore the composite map
V → M ∨M is f ∨ 0− 0 ∨ f . Taking into account that the exact triangle

M → M ∨M → M,

splits we see that there is a unique up to homotopy lifting

V → T V ∧ V ∧ T V → M

and it coincides with f . The lemma is proved.
Return now to the general case. Without loss of generality we assume that B is

a q-cofibrant R-algebra and resolve it by the monadic bar-construction B'. Recall
from [7], Chapter 12 that B'={Bi} is a simplicial R-algebra with Bi = T iB and
there is a weak equivalence |B'| → B where |B'| is the geometric realization of
B'. According to [7], Proposition 3.3, Chapter VII this geometric realization is the
same in the category of R-algebras as in the underlying category of R-modules).

The problem with B' is that its ith simplices need not be q-cofibrant R-algebras
which means that its realization |B'| is not necessarily q-cofibrant. Therefore we
can’t use it to compute the homotopy type of the function space out of B. To
make the cofibrant resolution of B we use the argument due to Basterra, cf. [3].
Namely, replace B' by the simplicial R-algebra (B' that is obtained from B' by the
application of the functorial cell R-algebra approximation functor ( component-
wise. Then each component (Bi is a cell R-algebra, all degeneracy operators are
cell inclusions and the face maps are sequentially cellular. Therefore we conclude
by [7], X, 2.7 that the realization |(B'| is a cell R-algebra. Moreover, the sim-
plicial components of (B' are weakly equivalent to free R-algebras. Also |(B'| is
weakly equivalent to B. That means that we have a weak equivalence of topological
spaces

[B, A ∨M]R−alg/A � [|(B'|, A ∨M]R−alg/A.

Denote FCA/R
(−,−) the topological space of maps between two objects in CA/R

(not homotopy classes of maps). We have

FCA/R
(|(B'|, A ∨M) ∼= FCA/R

((B', A ∨M),

where FCA/R
((B', A∨M) is the topological space of maps between two simplicial

R-algebras (B' and A ∨M, the latter regarded as a constant simplicial algebra.
Next, FCA/R

((B', A∨M) is the total space of the cosimplicial topological space

T ' = {FCA/R
((Bi, A ∨M)}. (7)
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The monadic bar-construction B' is a proper simplicial spectrum and so is (B'.
That ensures that the cosimplicial space (7) is fibrant in the sense that there is a
tower of fibrations

T ot0(T ) ← T ot1(T ) ← . . . ,

where T oti (T ) is the ith cosimplicial approximation of T ' and whose inverse limit
is T ot (T ').

Likewise

FA−bimod(�
(B'

A , M) = F(B'−bimod(�(B'
, M)

is the total space of the cosimplicial space

{T '′} = F(Bi−bimod(�(Bi
, M)}. (8)

The cosimplicial space T '′ does not necesssarily give rise to a tower of fibrations
since the simplicial spectrum �(Bi

need not be proper. (Recall that the definition
of the module of differentials involves taking the homotopy fibre which could
destroy properness). Replace {�(Bi

} functorially by a proper simplicial spectrum
and denote the corresponding cosimplicial space by T̃ '. Then T̃ ' is fibrant and
we still have a map T '→ T̃ '. According to the previous lemma this map induces
an equivalence on the ith cosimplices for all i. It follows that this map induces
an isomorphism of the corresponding spectral sequences. Therefore it is a weak
equivalence and Theorem 2.2 is proved.

Remark 2.4. It will be useful to generalize the notion of the module of differ-
entials a little. Let R′ be a (not necessarily commutative) R-algebra and consider
the category of R′-algebras which means just R-algebras A equipped with a map
R′ →A, not necessarily central as usually required. For an R′-algebra A we can
define �A/R′ just as we did before (replacing ∧ by ∧R′). The analogue of Theorem
(2.2) reads as follows: for an R′-algebra B over an R′-algebra A one has a natural
equivalence

[B, A ∨M]hoCR′/A

∼= [�B
A/R′, M]A−bimod,

where �B
A/R′ :=A ∧B �A/R′ ∧B A.

The proof is the same, one only has to notice that there still are adjunctions

R′ − algebras � R′ − bimodules,

A− bimodules � R′ − bimodules

where the ‘free’ R′-algebra functor is given for an R′-bimodule V as

T V = R′ ∨ V ∨ V ∧R′ V . . .
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and the ‘free’ A-bimodule on a R′-bimodule V is A∧R′ V ∧R′ A. The R′-bimodule
FA−bimod(�A/R′, M) will be called R′-relative topological derivation spectrum of
A with coefficients in M and denoted as Der(A;R′, M). Notice, that even if R′
happens to be commutative Der(A;R′, M) is not the same as DerR′(A, M) since
the latter is relevant to the category of R′-relative A-bimodules, that is, those A-
bimodules whose induced R′-bimodule structure is symmetric.

COROLLARY 2.5. The functor

B → �B
A : CR/A → A− bimod,

respects homotopy colimits.

PROPOSITION 2.6. (Transitivity exact sequence). Let A→B→C be morph-
isms of R-algebras. Then one has the following homotopy cofibre sequence of
C-bimodules:

C ∧B �B/A ∧B C → �C/A → �C/B.

Proof. Without loss of generality we assume that both maps A → B and
B → C are q-cofibration of R-algebras. We have the following homotopy cofibre
sequence of B-bimodules:

�B/A → B ∧A B → B.

Smashing it with C over B on both sides we get the homotopy cofibre sequence of
C-bimodules

C ∧B �B/A ∧B C → C ∧A C → C ∧B C.

Consider the following homotopy commutative diagram:

C ∧B �B/A ∧B C −→ C ∧A C −→ C ∧B C


�



�



�

0 −→ C −→ C.

Here the right and the middle vertical arrows are induced by multiplication on
C. Taking the homotopy fibres of the vertical arrows we get the desired cofibre
sequence.

COROLLARY 2.7. For a C-bimodule M we have the following homotopy cofibre
sequence:

Der(C;B, M) → Der(C;A, M) → Der(B;A, M).

Proof. Apply the functor FC−bimod(?, M) to the transitivity exact sequence.

Remark 2.8. Notice that the transitivity exact sequence is functorial with re-
spect to the strict morphisms of triples {A→B→C} (essentially because the
construction of the modules of differentials is functorial).
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3. Extensions of R-algebras

In this section we define and study extensions of R-algebras. Our results turn out to
be in some ways analogous to the classical theory for associative algebras (cf., for
example, [13], Chapter X). A more modern treatment suitable for operadic algebras
is found in the recent work of Hopkins and Goerss [9].

DEFINITION 3.1. An extension of an R-algebra B by an R-algebra I without unit
is the following homotopy fibre sequence of R-modules:

I → A → B. (9)

where A is an algebra, and both arrows are algebra maps.

Next denote I/I 2 the homotopy cofibre

I ∧A I → I → I/I 2.

(notice that I is naturally an A-bimodule.) Then we have the following.

LEMMA 3.2 (Conormal exact sequence). The R-module I/I 2 is weakly equiv-
alent as an R-module to a B-bimodule (which we will still denote as I/I 2) and
there is a homotopy cofibre sequence of B-bimodules

I/I 2 → B ∧A �A ∧A B → �B. (10)

Proof. We have the following transitivity exact sequence (corresponding to
algebra maps R→A→B):

B ∧A �A ∧A B → �B → �B/A.

So it suffices to show that �(I/I 2)=�B/A. Consider the following diagram:

I ∧A I −→ I −→ I/I 2

↓ ↓ ↓
I −→ A −→ B

↓ ↓ ↓
I ∧A B −→ B −→ B ∧A B.

Here the arrows going to the right lower corner are both equal to 1 ∧ id, the
arrows going out of the left upper corner are multiplication maps on I and the
map from I to I ∧A B is id ∧ 1. This diagram is commutative in the homotopy
category of R-modules and all rows and columns are homotopy cofibre sequences
of R-modules. Indeed, the middle row and column are cofibre sequences by hy-
pothesis, the first column and last row are likewise, since smash product preserves
such sequences, the first row is a cofibre sequence by definition of I/I 2, and the
last column of induced maps is also a cofibre sequence. To be precise, the map
from the first column to the middle column can be rigidified in the category of R-
modules, hence the last column can be considered as the functorial cofibre of the
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relevant maps and is itself therefore a cofibre sequence. Next we have the following
commutative diagram in the homotopy category of R- modules:

I/I 2 −→ 0 −→ �B/A

↓ ↓ ↓
I/I 2 −→ B −→ B ∧A B

↓ ↓ ↓
0 −→ B −→ B.

Here the rightmost column is a cofibre sequence by definition of �B/A, the middle
row is also such by the previous discussion. It follows that the upper row is a cofibre
sequence. Therefore �B/A

∼=�I/I 2 and the lemma is proved.
A derivation d : B→B ∨�I gives rise to an extension as follows.
Consider the diagram

I ∼= I

↓ ↓
X −→ B

↓ ↓
B

d−→ B ∨�I.

(11)

Here the lower vertical map is the canonical inclusion of a retract; the lower square
is a homotopy pullback in the category of R-algebras (which is also the homotopy
pullback of underlying R-modules), therefore the left column is a homotopy cofibre
sequence of R-modules and an extension of an R-algebra B by I . We will call
I →X→B the extension associated with the derivation d.

DEFINITION 3.3. An extension I ′ →X′ →B ′ is called singular if there exists an
extension I →X→ B associated with a derivation d : B→B ∨�I and a strictly
commutative diagram of algebras

I → X → B

↓ ↓ ↓
I ′ → X′ → B,

where the vertical arrows are weak equivalences.

The next proposition explains the analogy with usual singular extensions of
algebras (hence the name); the multiplication map on the ‘ideal’ I (at least up to
homotopy) is zero.

PROPOSITION 3.4. Let I →X→B be a singular extension. Then the multiplica-
tion map I ∧X I → I is homotopic to zero as a map of R-modules, so the homotopy
cofibre sequence

I ∧X I → I → I/I 2,

splits and I/I 2 is weakly equivalent as an R-module to I ∨�(I ∧X I).



254 A. LAZAREV

Proof. Let us consider first the ‘universal’ singular extension

I → B → B ∨�I.

Then the multiplication map I ∧B I → I can be factored up to homotopy as
follows:

I ∧B I → I

↘ ‖
B ∧B I.

Since the map I →B is homotopically zero we conclude that the map I ∧B I → I

is also so.
Next if we have a singular extension I →X→B associated with a derivation

B→B ∨ �I it is clear that the multiplication map I ∧X I → I factors through
I ∧B I → I and is therefore homotopic to zero.

The next proposition describes more concretely the boundary map

�B → �I/I 2

in the case of a singular extension.

PROPOSITION 3.5. Let (9) be a singular extension, so �I/I 2��I ∨�I ∧A �I .
Denote by

d : B → �I

the boundary map in (9). Recall that there is an R-module weak equivalence
�B
∼=B ∧ B/R. Then for the boundary map in (10)

∂ : B ∧ B/R → �I ∨�I ∧A �I,

we have ∂ = ∂1+ ∂2 where

∂1 : B ∧ B/R
id∧d→ B ∧�I → B ∧B �I � �I,

and ∂2 is the composite map

B ∧ B/R
d∧d→ �I ∧�I → �I ∧A �I.

Proof. Consider the following homotopy commutative diagram of R-modules:

B = B ∧A A → B ∧A B
id∧d→ B ∧A �I

‖
�



�

id ∧ d

B = B ∧A A → B ∧ B → B ∧ B/R.

Here both rows are split homotopy cofibre sequences , the R-module B ∧A �I is
homotopy equivalent to �I/I 2 as we saw in the proof of Lemma 3.2 and the right
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vertical map is the map ∂ that we are interested in. Now the proposition follows
from the following diagram, where again both rows are split homotopy cofibre
sequences of R-modules:

�I = A ∧A �I → B ∧A �I → �I ∧A �I
�



�

id ∧ d

�

id ∧ d

A ∧ B/R → B ∧ B/R → �I ∧ B/R.

Remark 3.6. There is a slight catch in the above proposition. We considered the
map

id ∧ d : B ∧ B/R → B ∧�I,

denoting the extension of the map B→�I to B/R by the same letter d. This
extension is not unique, but the indeterminacy vanishes upon smashing with B.

4. The Universal Derivation

In this section we will compute the homotopy type of the ‘universal derivation’,
that is, of the composite map

A → A ∨�A → �A,

where the first map is the algebra map adjoint to the identity map �A→�A and
the second map is the projection.

Let A be an R-algebra. Recall that there is an equivalence of R-modules

�A
∼= A ∧A/R. (12)

THEOREM 4.1. Upon the identification (12) the universal derivation A→�A

coincides with the map

A
id∧d→ A ∧ A/R,

where d is defined by the homotopy cofibre sequence

R → A
d→ A/R.

More symmetrically: the universal derivation is the unique (in the homotopy cat-
egory of R-modules) lifting A→�A in the diagram

�A

�

A ∼= A
f→ A ∧ A,

where f = 1 ∧ id − id ∧ 1.
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Proof. Consider the following extension:

I → R → A,

where the second map is just the unit map and I is the kernel of this map. From the
conormal sequence of this extension we see that there is a map

�A → �I/I 2 (13)

and, consequently, a singular extension with the kernel I/I 2

I/I 2 → X → I. (14)

We have the following homotopy commutative diagram of R-modules:

�A

g−→ �I/I 2 ∨�2I/I 2 ∧X I/I 2

↑ ↗
A .

Here the horizontal row is a fragment of the conormal sequence corresponding
to (13), the vertical arrow is the universal derivation and the slanted arrow is the
boundary map in (13).

We claim that the map g is the canonical inclusion of a retract

f : �A � �I/I 2 → �I/I 2 ∨�2I/I 2 ∧X I/I 2.

To see that observe that there is a map of extensions

I → R → A

↓ ↓ ↓
I/I 2 → X → A

and therefore the following homotopy commutative diagram of R-modules:

�A � I/I 2 → A
1∧id→ A ∧ A

↓ ↓
�A/X � I/I 2 ∨�2I/I 2 ∧X I/I 2 → A

1∧id→ A ∧X A.

Notice that since both rows split there exists only one up to homotopy map

�A → �A/X,

making the diagram commute and this map is obviously the inclusion of a retract.
Our claim is proved. Therefore, our universal derivation is just the boundary map
(14)

A → �I/I 2.
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Next from the diagram

I → R → A → �I = A/R

↓ ↓ ‖ ↓
I/I 2 → R/I 2 → A → �I/I 2 = A ∧ A/R,

we see that the boundary map A→�I/I 2 is the composition

A → A/R � �I → �I/I 2

and the diagram

I → R → A → A/R

↓ ↓ 1 ∧ id ↓ 1 ∧ id ↓
I/I 2 → A

1∧id→ A ∧ A → A ∧ A/R,

tells us that the map �I → �I/I 2 is the same as

A/R
1∧id→ A ∧A/R

and the first part of our theorem is proved.
Consider now the following homotopy commutative diagram

�A → A ∧ A → A ∧ A/R

f ↑ ↗
A .

Here the slanted arrow is id ∧ d and the composite of the two horizontal arrows is
an isomorphism identifying �A with A∧A/R. Clearly the map A→�A fitting in
the above diagram exists and is unique up to homotopy. With this our theorem is
proved.

The universal derivation allows us to define a useful forgetful map

l : DerR(A, M) → FR(A, M)

as the composite

DerR(A, M) = FA−bimod(�A, M) → F(�A, M) → F(A, M),

where the last map is induced by d.
We will also denote by l the corresponding map on homotopy groups

Der•R(A, M) → [A, M]•R.

At the level of homotopy groups the map l has the following simple description:
let d : A→A ∨M be a derivation of A with coefficients in M. Then l(d) is the
homotopy class of the following composite map:

A
d→ A ∨M → M,

where the second map is just the projection onto the wedge summand.
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LEMMA 4.2. Let d ∈ Der•R(A, A). Then l(d) ∈ [A, A]•R is contained in the
subspace of primitive cohomology operations from A into itself.

Proof. Let d have degree i, so it determines a map of algebras A→A ∨ �iA.
Then the following diagram is homotopy commutative:

A ∧ A −→ A

↓ ↓
�iA ∧ A ∨ A ∧�iA → A.

Here the upper arrow is the multiplication map m, the lower arrow is m ∨ m, the
right vertical arrow is d and the left vertical arrow is d ∧ 1 ∨ 1 ∧ d. This is the
definition of a primitive operation and the lemma is proved.

5. Pullbacks and Pushouts of Singular Extensions

Here we will describe some basic constructions with singular extensions. Let

E : I → A → B (15)

be a singular extension and

f : C → B

a map of algebras. Consider the strictly commutative diagram

I → X → C

↓ ↓ ↓
I → A → B,

(16)

where the right vertical map is f and the right square is a homotopy pullback of
R-algebras. It is easy to see that the upper row in (16) is a singular extension (the
associated derivation is induced by the map C→B). We will denote it f '(E).

We have the following simple interpretation of f '(E) in terms of the topological
module of differentials. Let

�B → �I

be the derivation corresponding to the singular extension E. Then it is easy to see
that the composite map

�C → �B → �I,

represents the element in DerR
1(C, I ) that corresponds to f '(E).

Next consider again an extension (15) and a map of B-bimodules

g : I → M.

The map

d : �B → �I → �M,

gives rise to an element in DerR
1(B, M) and, therefore, to a singular extension of

B by M. We will call this extension the pushout of E by g and denote it g'(E).



HOMOTOPY THEORY OF A∞ RING SPECTRA 259

PROPOSITION 5.1. There is a map from E to g'(E) which is the identity on B.

Proof. Consider the diagram

I

↓
A → B ∼= B

↓ ↓ ↓
B

d→ B ∨�I → B ∨�M.

Here the left square is a homotopy pullback, and from the commutativity of the
outer square it follows that there is a map from it to the homotopy pullback diagram

A → B

↓ ↓
B → B ∨�I

and therefore from E to g'(E) and the proposition is proved.

Remark 5.2. Consider the diagram

I → A → B

↓ ↓ ↓
M → Y → B

where the upper row is E and the lower row is g'(E). Since both rows are homo-
topy cofibre sequences of R-modules, Y is homotopically the same as A ∨I M but
it is not clear apriori how to introduce strict multiplication on A ∨I M.

6. Obstruction Theory

In this section we consider the problem of lifting an algebra map. We restrict
ourselves to the case of a singular extension only. However, in the next section
we will see that a fairly broad class of algebra maps can be decomposed as a
sequence of singular extensions, which we call a generalized Adams resolution.
Together these results provide a sequence of obstructions for lifting an arbitrary
map of R-algebras.

THEOREM 6.1. Let I →B/A be a singular extension of R-algebras associated
with a derivation d : A→A∨�I and f : X→A a map of R-algebras where X is
q-cofibrant. Then: (i) f lifts to an R-algebra map X→B iff the induced derivation
d ◦ f ∈ Der1(X, I ) is homotopic to zero. (ii) Assuming that a lifting exists in the
fibration

FR−alg(X, B) → FR−alg(X, A), (17)

the homotopy fibre over the point f ∈FR−alg(X, A) is weakly equivalent to �∞
DerR(X, I ) (the 0th space of the spectrum DerR(X, I )).
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Proof. (i) If a lifting of f exists, then d ◦ f factors as

X
f→ A

ε→ A ∨�I,

which means that the derivation d ◦ f is trivial, Conversely, if d ◦ f is trivial then
the diagram of R-algebras

X
f→ A

f ↓ ↓ ε

A
d→ A ∨�I,

commutes up to homotopy and by the universal property of the homotopy pullback
there is a map f̃ : X→B lifting f .

(ii) Suppose that the lifting of f exists, so the (homotopy) fibre of the map (17)
is nonempty. We have the following diagram of R-algebras:

B −→ A
∣
∣
∣ ↘ ↙

∣
∣
∣

∣
∣
∣ A

∣
∣
∣

↓ ↗ ↖ ↓
A

d−→ A ∨�I.

Here the northwest arrow is the canonical projection onto the wedge summand.
Changing B in its homotopy class if necessary we can arrange that this diagram
be strictly commutative. Notice that the outer square is a homotopy pullback of
R-algebras. Applying the functor FR−alg(X,−) to this diagram we get the diagram
of spaces

FR−alg(X, B) −→ FR−alg(X, A)
∣
∣
∣ ↘ ↙

∣
∣
∣

∣
∣
∣ FR−alg(X, A)

∣
∣
∣

↓ ↗ ↖ ↓
FR−alg(X, A) −→ FR−alg(X, A ∨�I).

Again the outer square is a homotopy pullback (of spaces). Taking the homotopy
fibres of the maps from the outer square to the center (over f ∈ FR−alg(X, A)) we
get the following homotopy pullback of spaces:

hof ibFR−alg(X, B) → FR−alg(X, A) −→ pt

↓ ↓
pt −→ hof ibFR−alg(X, A ∨�I) → FR−alg(X, A).

(18)

Notice that the space in the right lower corner of (18) is canonically weakly equiv-
alent to �∞DerR(X, �I). Since according to our assumption the space

hof ib FR−alg(X, B) → FR−alg(X, A)
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is nonempty the images of the lower and right arrows in (18) coincide and therefore

hof ib FR−alg(X, B) → FR−alg(X, A) ∼= �(�∞DerR(X, �I))

∼= �∞DerR(X, I ).

With this our theorem is proved.

7. Ideals of R-algebras and Generalized Adams Resolutions

Let

I → A → B (19)

be an extension of R-algebras (not necessarily singular.) In such a situation we will
call I an ideal of A. To stress the analogy with algebra we will use the notation A/I

instead of B in the sequel so (19) becomes

I → A → A/I. (20)

One essential feature of ideals is that one can define R-algebras of the form A/I n

for n > 1. More precisely:

THEOREM 7.1. Associated to the extension (20) is a tower of R-algebras (a
generalized Adams resolution) of the form

. . . → A/I n → A/I n−1 → . . . → A/I (21)

such that (i) there are projections pn : A→A/I n compatible with the maps in the
tower and the corresponding extensions

I n → A → A/I n,

where

I n := I ∧A . . . ∧A I,

(ii) each successive stage A/I n is a singular extension of the previous stage A/I n−1

by a certain A/I n−1-bimodule which we denote I n/I n−1.

Proof. We know that there is a weak equivalence

�(A/I)/A � �I/I 2,

where I/I 2 is determined as the homotopy cofibre of the multiplication map I ∧A

I → I . Associated to the (universal) derivation

dA/I : A/I → �(A/I)/A � �I/I 2

is the following singular extension

I/I 2 → X → A/I.
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We claim that there exists a map A→X making the diagram

X

↗ ↓
A

f→ A/I

commute. Indeed, the obstruction to the existence of such a map is an element

f '(dA/I ) ∈ Der(A, �I/I 2),

which is zero by virtue of the transitivity exact sequence corresponding to the
morphisms of algebras

R → A → A/I.

Therefore we have a morphism of extensions

I → A → A/I

↓ ↓ ‖
I/I 2 → X → A/I.

(22)

Now set A/I 2 :=X. From (22) it is easy to see that there is an extension

I ∧A I → A → A/I 2

(which justifies the notation A/I 2).
Proceeding by induction assume that we have constructed the tower {A/I k}

for k � n together with algebra maps pn : A→ A/I n. Consider the following ho-
motopy commutative diagram of A/I n-bimodules where both rows are homotopy
fibre sequences:

? → A/I n ∧A A/I → A/I

g ↑ ↑ ↑
�(A/In)/A → A/I n ∧A A/I n → A/I n.

Here the lower row is the definition of �(A/In)/A and the upper row represents the
(left) action of A/I n on A/I . The right and middle vertical arrows are obvious
maps of A/I n-bimodules. Therefore, we can choose the left vertical arrow (de-
noted by g) to be also a map of A/I n-bimodules. Notice, that despite the choices
made in the underlying category of R-modules this map still remains unique (up to
homotopy).

Further notice that the A/I n-bimodule ? is weakly equivalent as an R-module
to �I n ∧A A/I . Denoting by I n/I n+1 the homotopy cofibre of the multiplication
map I n ∧A I → I n we see that I n/I n+1 is weakly equivalent to I n ∧A A/I . So the
A/I n-bimodule ? is weakly equivalent as an R-module to �I n/I n+1. From now
on we will (slightly abusing notations) use the symbol �I n/I n+1 to denote the
corresponding A/I n-bimodule.
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Now we can construct the singular extension

I n/I n+1 → A/I n+1 → A/I n,

associated with the derivation

g : �(A/In)/A →? = �I n/I n+1.

The induction step is concluded and our theorem is proved.

Remarks. (1) In the special case when A= S, the sphere spectrum, the tower
(21) is just the canonical Adams resolution of S, cf. [1] and its homotopy inverse
limit is the nilpotent completion of S at the ideal I (cf. [5]), which under favorable
circumstances coincides with the localization of S with respect to the spectrum
S/I . This is why we called the tower (21) the generalized Adams resolution.

(2) It is not hard to show that the tower (21) is determined in the homotopy
category of R-algebras up to a (noncanonical) isomorphism. We leave the details
to the interested reader.

EXAMPLES. (1) Take A= k(n), the nth connective Morava K-theory, A/I :=
HZ/p, A→A/I the canonical map inducing an isomorphism on π0. Then the
generalized Adams resolution of k(n) is exactly its Postnikov tower.

(2) Truncated polynomial algebra. Denote R[t] the free associative algebra on
the R-module �dR, that is,

R[t] � R ∨�dR ∨�2dR ∨ . . . .

The parameter t has formal degree d. The coefficient ring of R[t] is then R•[t]
– the polynomial algebra over R• on one generator of degree d. Notice, that the
S-algebra R[t] need not be commutative unless d = 0.

Define the ideal tR[t] from the following homotopy fibre sequence:

tR[t] → R[t] → R.

Then it is easy to see that the nth Adams stage

Rn−1 := R[t]/(tR[t])n,

splits as a spectrum as

Rn−1 � R ∨�dR ∨�2dR ∨ . . . ∨�d(n−1)R

and Rn−1• =R•[t]/tn. Moreover, the homotopy fibre sequence

�d(n−1)R → Rn−1 → Rn−2

is a singular extension.
(3) Let E be a complex-oriented cohomology theory obtained by killing a regu-

lar ideal I• = (xi1 , xi2 , . . .) in MU• =Z[x1, x2, . . .]. By [7], Chapter V and [18] we
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know that E is an MU -module with homotopy associative multiplication (or MU -
ring spectrum). We will see that E possesses the structure of an MU -algebra (i.e.
with strict multiplication). Therefore, we have the generalized Adams resolution

→ MU/I n → . . . → MU/I 2 → MU/I = E,

which is related to the algebraic tower {MU•/I n• } and whose homotopy inverse
limit is the spectrum MU itself.

(4) Let En be the Johnson–Wilson theory with coefficient ring En=Z(p)[v1, v2,

. . . , vn, v−1
n ]. It can be constructed from MU by killing a collection of polynomial

generators and is, therefore, an MU -algebra. We have a canonical MU -algebra
map En→K(n) with the kernel In. Associated with this map is a generalized
Adams resolution

K(n) = En/In ← En/I 2
n ← . . . ,

whose homotopy inverse limit is equivalent to the K(n)-localization of En. This
tower is closely related to the so-called In-adic tower studied in, for Example [2].

8. Postnikov Towers of R-algebras

In this section we prove, as an application of the techniques developed before, that a
Postnikov tower of an R-algebra is a tower of R-algebras. The analogous statement
for commutative R-algebras was proved in [10] and [3]. The proof presented here is
somewhat sketchy since it differs little from the one found in the above mentioned
references.

THEOREM 8.1. Assume that R is a connective commutative S-algebra and A is a
connective R-algebra. Then there exists a tower of R-algebras

. . . ← Ai ← Ai+1 ← . . .

and maps of R-algebras

fi : A → Ai

compatible with the maps in the tower such that (1) πk(Ai)= 0 for k > i and (2) fi

induces an isomorphism πk(A)→πk(Ai) for k � i. Moreover, the homotopy fibre
sequence

K(πi+1(A), i + 1) → Ai+1 → Ai

is a singular extension and the whole construction is functorial in the homotopy
category of R-algebras.

Remark 8.2. The connectivity assumptions on R and A are needed in order to
be able to kill higher homotopy groups.
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Proof. Take A0 to be equal to K(π0(A, )0). This is an R-algebra and according
to [7], Proposition IV, 3.1 there exists an R-algebra map A→A0 realizing the
isomorphism on π0.

Suppose by induction that the map A→Ai has already been constructed. Con-
sider the following diagram:

A → Ai
k→ �K(πi+1(A), i + 1)

↓ ↗
�Ai/A .

Here the vertical map is the canonical derivation, k is the ith k-invariant. The
existence of the diagonal arrow can be seen as follows. The first nontrivial ho-
motopy group of �Ai/A is the same as the single nontrivial homotopy group of
�K(πi+1(A), i + 1), so we could construct a map

�Ai/A → �K(πi+1(A), i + 1),

by attaching cells in the category of Ai-bimodules. This gives a derivation

Ai → Ai ∨�K(πi+1(A), i + 1)

and the corresponding singular extension

K(πi+1(A), i + 1) → Ai+1 → Ai,

which is the (i + 1)th stage of the Postnikov tower and the theorem is proved.

9. The Spectral Sequence for Topological Hochschild Cohomology

In this section we discuss the spectral sequence that relates topological Hoch-
schild cohomology and ordinary Hochschild cohomology of graded algebras. Since
we know of no published source which describes algebraic Hochschild cohomo-
logy the way we need it we begin with an outline of the classical Hochschild
cohomology.

DEFINITION 9.1. Let R• be a commutative graded ring, A• is an algebra over
R•, M• is a graded module over A•. Then Hochschild cohomology of A• with
coefficients in M• is the module

HH •
R•(A•, M•) = ExtA•⊗L

R•A•op
(A•, M•),

where ⊗L
R• denotes derived tensor product over R•.

From now on we will write ⊗ instead of ⊗R• . Notice that if A• is flat over
R• then this definition coincides with the standard one (cf.[6]). There is also a
generalization of the standard complex which computes Hochschild cohomology;
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let Ã• be a differential graded R•-algebra which is quasi-isomorphic to A• and
R•-flat. Then HH •

R•(A•, M•) is the cohomology of the bicomplex

Cij (A•, M•) = Homi
R•(Ã

⊗j
• , M•).

The differentials in C•• are the internal one induced by the differential in Ã• and
the standard bar-differential.

We will be interested mostly in the truncated version of Hochschild cohomo-
logy which will be denoted as Der•R•(A•, M•) (in keeping with the topological
notations).

To define it let us introduce the module of differentials �•
A•/R• from the follow-

ing short exact sequence of complexes:

�•
A•/R• → Ã• ⊗ Ã•

m→ Ã•,

the second arrow being the multiplication map.
Now define the truncated Hochschild cohomology of A• with coefficients in M•

as

Der•R•(A•, M•) = Ext•
Ã•⊗Ã•

(�•
A•/R•, M•).

As in the topological case there is a ‘universal derivation’

d : Ã• → �•
A•/R•,

whose composition with the inclusion

�•
A•/R• ↪→ Ã• ⊗ Ã•

is the map 1 ∧ id − id ∧ 1. It gives, therefore, the forgetful map

l : Der•R•(A•, M•) → Ext•R•(A•, M•).

LEMMA 9.2. Consider the truncated Hochschild complex

C
ij

(A•, M•) = Homi
R•(Ã

⊗j−1
• , M•)

with the same differentials as in C••(A•, M•). Then the cohomology of C
••

(A•, M•)
coincides with DerR•(A•, M•) and the forgetful map l is induced by the projection

C
••

(A•, M•) → C
•0

(A•, M•) = Hom•
R•(Ã•, M•)

times (−1).

Proof. Considering the standard two-sided bar-resolution of Ã•

Ã•
m← Ã• ⊗ Ã• ← Ã⊗3

• ← . . . ,



HOMOTOPY THEORY OF A∞ RING SPECTRA 267

we see that the complex Ã⊗3• ← Ã⊗4• ← . . . maps quasi-isomorphically onto the
complex �•

A•/R• =Ker(m). The universal derivation

d : Ã• → �•
A•/R•

lifts to the map

d̃ : Ã• → Ã⊗3
• ,

d̃(a) = −1⊗ a ⊗ 1.

Now the statement of the lemma becomes clear after we apply the functor
HomÃ•⊗Ã

op• (−, M•) to the complex Ã⊗3• ← Ã⊗4• ← . . ..
We now return to the topological situation; as before A is an R-algebra, M is an

A-bimodule; denote π•(A) as A•, π•(R) as R• and π•(M) as M•.

PROPOSITION 9.3. Suppose that (1) the Kunneth spectral sequence for π•(A ∧
Aop) collapses so we have

π•(A ∧ Aop) = T or•R•(A•, A•);
(2) the algebras A• ⊗L

R• A• and T orR•• (A•, A•) are quasi-isomorphic.
Then there are the following spectral sequences:

1E
ij

2 = Der
ij

R•(A•, M•) =⇒ DerR
i+j (A, M);

2E
ij

2 = Ext
ij

R•(A•, M•) =⇒ πi+j FR(A, M)

and a map

1E
ij

2 → 2E
ij

2 ,

which at the level of E∞ terms gives the forgetful map

l : grDerR•(A, M) → gr[A, M]•.

Proof. There is a spectral sequence (cf. [7], IV, 4.1)

E
•,•
2 = Extπ•(A∧Aop)(π•�A, M•) =⇒ π•FA∧Aop(�A, M) = DerR

•(A, M).

Our assumptions (1) and (2) ensure that

π•(A ∧ Aop) = A• ⊗L
R• A•

and

π•(�A) = �A•/R•,

so we identify the E2-term of our spectral sequence as Der••R•(A•, M•).
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The second spectral sequence is just the hypercohomology spectral sequence
for calculating π•FR(A, M). Next from the naturality of the hypercohomology
spectral sequences it follows that we have the following commutative diagram of
spectral sequences:

Ext•π•(A∧Aop)(π•�A, M•) → Ext•R•(π•�A, M•) → Ext•R•(A•, M•)
‖ ‖ ‖

Der•R•(A•, M•) → Ext•R•(�A•/R•, M•) → Ext•R•(A•, M•)
(23)

and since the composite map

A• → π•�A � �A•/R•

is just the universal derivation of the algebra A•, we conclude that the lower row in
(23) gives us the forgetful map

l : Der••R•(A•, M•) → Ext•R•(A•, M•).

Our proposition is proved.

10. Calculations with HZ/pHZ/pHZ/p

In this section we calculate the topological Hochschild cohomology of the
Eilenberg–MacLane spectrum HZ/p which will be denoted (in this section only)
by H considered as an algebra over the complex cobordism spectrum MU . Before
starting any calculations we record the following result of a general nature. It really
should have belonged to [7], but unfortunately, is not found there. The argument
below was communicated to the author by Mandell.

LEMMA 10.1. Let M and N are R-ring spectra. Then the spectral sequence

T orR•(M•, N•) =⇒ π•(M ∧R N) (24)

is one of differential graded R•-algebras.

Sketch proof. To deal with multiplicative structures we need a slightly different
construction then the one given in [EKMM], IV, Section 5. Let

. . . → Fp

dp→ Fp−1 → . . .
ε→ M•

be an R•-free resolution of M•. Let Q0=Ker ε and Qp= ker dp. For p � 0
denote by Fp the wedge of sphere R-modules with π•(Fp)=Fp. Now let M ′

0=F0

and choose a map φ0 : M ′
0→M that represents ε on the level of homotopy groups.

Let Q0 be the homotopy fibre of φ0. Then π•(Q0)=Q0, so we can choose a map
F1→Q0 the given map on the homotopy groups. Take M ′

1 to be the cofibre of the
composite map

F1 → Q0 → F0.
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Further the map φ0 canonically extends to a map

φ1 : M ′
1 → M.

Denote the homotopy fibre of this map by Q1. Then

π•(�−1Q1) = Q1,

so we can find a map �−1F2→Q1 realizing the given map on the homotopy groups
etc.

Continuing in this way we construct a direct system

M ′
0 → M ′

1 → . . . . (25)

(Notice that we used the notation M ′
p to distinguish it from Mp of [7].) The tele-

scope M ′ of this direct system is weakly equivalent to M and we can assume that all
consecutive maps are inclusions of cell subcomplexes, that is, we have a filtration
on M ′. Smashing this with N we get a filtration on M ′ ∧R N and the associated
spectral sequence (24) converging to π•(M ∧R N).

Now recall that M (and therefore M ′) is an R-ring spectrum. Smashing (25)
with itself we get a filtration on M ′ ∧R M ′

. . . → ∨i+j=kM ′
i ∧M ′

j → ∨i+j=k+1M ′
i ∧M ′

j → . (26)

Proceeding by induction we realize the multiplication map M ′ ∧R M ′ →M ′ as a
map of filtered R-modules so that on the cofibres of (26) it agrees with the pairing
of algebraic resolutions F• ⊗R• F•→F•.

So, we constructed a collection of maps M ′
i ∧R M ′

j →M ′
i+j . Using these maps

and the multiplication on N we construct the maps

M ′
i ∧R N ∧R M ′

j ∧R N → M ′
i+j ∧R N.

This induces the required pairing of spectral sequences and we are done.

THEOREM 10.2.
(i)

THH•
MU (H, H) = Z/pZ[y2, y4, . . . , y2n, . . .],

DerMU(H, H)•−1 = Z/pZ[y2, y4, . . .]/(Z/pZ).

(ii)

[H, H ]•MU = ;Z/pZ(z1, z3, . . . , z2n+1, . . .)

and the map

DerMU(H, H)• → [H, H ]•MU
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sends the elements y2i ∈DerMU(H, H)2i−1 to z2i−1 ∈ [H, H ]MU .
(iii) Under the forgetful map

[H, H ]•MU → [H, H ]•S = Ap (27)

the elements z2pi−1 get mapped to the elements Qi which form the set of primitive
elements in the Steenrod algebra, and all other z’s get mapped to zero.

LEMMA 10.3. Let HZ denote the integral Eilenberg–MacLane spectrum. Then

π•(H ∧MU HZ) = ;(x3, x5, . . . , x2n+1, . . .).

Proof. Consider first the spectrum HZ∧MU HZ. We have a strongly converging
spectral sequence

T orMU •(Z, Z) = ;(x3, . . . x2n+1, . . .) → π•(H ∧MU H). (28)

To prove that it collapses we compare it to the spectral sequence

T orMU •(Z, HQ) = T orMUQ•(HQ, HQ)

= ;Q(x3, . . . x2n+1, . . .)

→ π•(H ∧MU H). (29)

Here HQ is the rational Eilenberg–MacLane spectrum and MUQ is the ra-
tionalization of MU . We see that the integral spectral sequence injects into the
rational one and therefore it is enough to prove the collapse of the latter. This is an
essentially trivial fact and can be seen as follows. The rational spectrum MUQ is
equivalent as a commutative S-algebra to the infinite smash product of S-algebras
of the form HQ[xn] where

HQ[xn] = HQ ∨�2nHQ∨ . . . .

Here xn is a formal symbol of degree 2n which corresponds to the polynomial
generator of MU in degree 2n. Then we have π•HQ[xn]=Q[xn]. Further the
spectral sequence

T orHQ[xn]•(HQ, HQ) = ;Q(yn+1) =⇒ π•(H ∧HQ[xn] H),

collapses for dimensional reasons and it follows that (29) splits as an infinite product
of these little spectral sequence and therefore itself collapses. So we showed that
(28) collapses. The spectral sequence for computing π•(H ∧MU HZ) is just the
reduction of (28) modulo p and the statement of our lemma follows.

Proof of Theorem 10.2. First compute π•(H ∧MU H). We have the following
spectral sequence:

T orMU •(Z/pZ, Z/pZ) = ;Z/pZ(x1, x3, . . . x2n+1, . . .) =⇒ π•(H ∧MU H).

(30)
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We want to show that (30) collapses. To this end consider the following homotopy
cofibre sequence of MU -modules:

H ∧MU HZ
id∧p→ H ∧MU HZ → H ∧MU H.

From this cofibre sequence and taking into account that π•(H ∧MU HZ) is p-
torsion we see that

π•(H ∧MU H) = π•(H ∧MU HZ)⊕�π•(H ∧MU HZ).

Here � means shifting the grading by 1. It follows that (30) collapses (the
permanent cycle x1 in (30) is accountable for the second direct summand in the
last equality). So we conclude that

π•(H ∧MU H) = ;Z/pZ(x1, x3, . . . , x2n+1, . . .).

Next consider the spectral sequence

Ext••π•(H∧MU H)(Z/pZ, Z/pZ) =⇒ THH•
MU (H, H).

Its E2-term is easily computed and equal to

Ext;Z/pZ(x1,x3,...x2n+1,...)(Z/pZ, Z/pZ) = Z/pZ[y2, y4, . . . , y2n . . .].

Again, all higher differentials are zero this time because the spectral sequence is
even. Now we know that our spectral sequence lies in the right half plane and
converges conditionally. Since all higher differentials are zero Boardman’s theorem
(cf. [4], Thm 7.1) tells us that it converges strongly. All extension problems are
clearly trivial and we conclude that

THH•
MU (H, H) = Z/pZ[y2, y4, . . . , y2n . . .].

The formula for Der•MU(H, H) follows from the homotopy cofibre sequence

THHMU (H, H)→ H → DerMU(H, H)

and part (i) of our theorem is proved.
For part (ii) notice that H ∧MU H is a left H -module and we have an equality

FH (H ∧MU H, H) = FMU (H, H)

in the homotopy category of H -modules. Therefore [H, H ]•MU is the Z/pZ dual
of the cooperation algebra π•(H ∧MU H) and (ii) follows.

To compute the image of the map

Der•MU(H, H)→ [H, H ]•MU , (31)

we first look at the map

DerMU•(Z/pZ, Z/pZ)→ ExtMU•(Z/pZ, Z/pZ)
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and then apply Proposition 9.3.
It is an easy exercise in homological algebra to show the elements

y2i ∈ HH
1,2i−1
MU• (Z/pZ, Z/pZ) = Z/pZ[y2, y4 . . .]

correspond to the elements

z2i+1 ∈ Ext
1,2i
Z[x1,x2...](Z/pZ, Z/pZ),

so Proposition 9.3 tells us that the map (31) is as stated at the level of E2-terms.
However, the image of (31) should be contained in the subgroup of primitive co-
homology operations by Lemma 4.2, which is spanned by the elements z2i+1 ∈
[H, H ]MU and therefore no elements of higher bar filtration might appear in this
image. Part (ii) is proved.

To prove part (iii) notice that the MU -Steenrod algebra as well as the usual
Steenrod algebra are Hopf algebras and the map (27) respects this structure. There-
fore, the primitive elements z2i+1 should map to the primitive elements in the
Steenrod algebra. Hence only the elements z2pi−1 could have a nonzero image
(namely, Qi). We will show now that this is indeed the case. Consider the spectrum
k(n), the nth connective Morava K-theory. According to [7], Chapter V, Section 4
the spectrum k(n) is an MU -module. Therefore, the Postnikov tower of k(n) can
be constructed within the category of MU -modules, and in particular the first non-
trivial k-invariant of k(n) (which is just Qn) is given as a map of MU -modules
H →H . In other words the cohomological operation Qn can be lifted as a map of
MU -modules and part (iii) is proved.

Remark 10.4. Recall that for the ordinary topological Hochschild cohomology
of K we have (cf.[8],Thm 7.3)

THH•(H, H) = Sym(e0, e1, . . . eh . . .)/ < (eh)p, h ∈ N >,

where eh ∈ THH2ph

(H, H). It follows that

Der•−1
MU (H, H) = THH•(H, H)/(Z/pZ).

Then under the map

l : Der•MU(H, H)→ [H, H ]•S = Ap, (32)

the elements eh correspond to Qh ∈ Ap and the rest get mapped to zero. Indeed,
the Hochschild cohomology classes should give rise to primitive cohomology op-
erations, therefore only elements eh may have a nonzero image. But we know that
the elements Qi do lift to Hochschild cohomology classes (even in the category of
MU -modules). Therefore the map (32) is as described.

COROLLARY 10.5. The mod p Moore spectrum Mp cannot be given a structure
of an A∞ ring spectrum for any p.
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Indeed, for p= 2 Mp is not even a ring spectrum up to homotopy. For an odd p

the second nontrivial homotopy group of Mp is Z/pZ=π2p−3(Mp) and therefore
the first k-invariant of Mp is a cohomology operation of degree 2p − 2 and cannot
be one of Qi’s which is a cohomology operation of odd degree. (In fact, the first
Postnikov k-invariant of Mp is P∞). We see that already the second Postnikov
stage of Mp cannot be A∞.

11. Morava K-theories as MU-algebras

THEOREM 11.1. For an odd prime p let Ln be the MU -module obtained by
killing the regular ideal generated by (p, x1, x2, . . . , x̂n, . . .) in the ring MU• =
Z[x1, x2, . . .]. Then Ln admits a MU -algebra structure (which extends the MU•-
algebra structure on Ln• =Z/pZ[xn]).

Proof. We will prove this theorem by induction up the Postnikov tower of
Ln. The 1st Postnikov stage of Ln is HZ/p, the Eilenberg–MacLane spectrum
mod p which is, of course, an MU -algebra. Suppose that we proved that L(i)

n , the
2n(i − 1)+ 1st Postnikov stage of Ln, is an MU -algebra and show that L(i+1)

n

is also such. Notice that the MU -module L(i)
n is gotten from MU by killing the

elements xi
n plus all the remaining polynomial generators and the prime p in the

ring MU•, so that

π•L(i)
n = Z/pZ[xn]/xi

n.

LEMMA 11.2.

T HH •
MU(L(i)

n , HZ/p) = Z/pZ[y2, y4, . . .],

where deg y2m= 2m for 2m != 2n+ 2 and deg y2n+2= 2ni + 2.

Proof. The first step is to compute π•(L(i)
n ∧MU L(i)

n ). Consider the spectral
sequence

T or
Z[x1,x2,...]
st (Z/pZ[xn]/xi

n, Z/pZ[xn]/xi
n) =⇒ πs+t (L

(i)
n ∧MU L(i)

n ).

To compute the E2-term of this spectral sequence we introduce a differential graded
algebra

A∗ = Z[x1, x2, . . .]⊗;(z1, z3, . . .),

where

d(z1) = p, d(z3) = x1, . . . , d(z2n−1) = xn−1, d(z2n+1) = xi
n,

d(z2n+2) = xn+1 . . .

Here deg xm= 2m, deg z2m+1= 2m + 1 if m !=n and deg z2n+1= 2ni + 1. Then
A∗ is quasi-isomorphic to Z/pZ[xn]/xi

n and therefore

T orZ[x1,x2,...](Z/pZ[xn]/xi
n, Z/pZ[xn]/xi

n

= A∗ ⊗Z[x1,x2,...] Z/pZ[xn]/xi+1
n

= ;Z/pZ(z1, z3, . . .)⊗ Z/pZ[xn]/xi
n.
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To show that all higher differentials are zero we introduce MU -modules L̃(i)
n

with

π•(L̃(i)
n ) = Z[xn]/xi

n.

The MU -modules L̃(i)
n are obtained from MU similar to L(i)

n but without killing the
prime p. Then the rationalization arguments as in the proof of Lemma (10.3) with
L̃(i)

n in place of the integral Eilenberg–MacLane spectrum show that our spectral
sequence collapses.

Clearly there is no room for no multiplicative extensions in the spectral se-
quence and we have

π•(Ln
(i) ∧MU Ln

(i)) = ;Z/pZ(z1, z3, . . .)⊗ Z/pZ[xn]/xi
n.

Next we have the following spectral sequence:

Est
2 = Extst

;Z/pZ(z1,z3,...)⊗Z/pZ[xn]/xi
n
(Z/pZ[xn]/xi

n, Z/pZ)

=⇒ T HH s+t
MU(L(i)

n , HZ/p).

We have

Est
2 = Extst

;Z/pZ(z1,z3,...)(Z/pZ, Z/pZ) = Z/pZ[y2, y4, . . .],

where deg y2m= 2m for m != n+1 and deg y2n+2= 2ni+2. This spectral sequence
collapses since it is even and our lemma is proved.

Remark 11.3. We don’t claim that the isomorphism of Lemma 11.2 is actually
multiplicative. It is likely to be the case, however the proof of this seems to require
the fact that the Yoneda product in the Ext-spectral sequence is associated with the
composition product. This is claimed in [7], IV, Proposition 4.4 . Unfortunately the
proof of this fact given in the cited reference is incorrect.

The next lemma computes the cohomology operations from Ln to HZ/p in the
category of MU -modules.

LEMMA 11.4.

[L(i)
n , HZ/p]•MU = ;∗

Z/pZ(z1, z3, . . .),

where deg z2m+1= 2m + 1 for m !=n and deg z2n+1= 2ni + 1 and ∗ denotes the
dual vector space (over Z/pZ).

Proof. Notice that both HZ/p and L(i)
n ∧MU L(i)

n are naturally left L(i)
n -modules.

We have the following weak equivalence of MU -modules:

FLi
n
(L(i)

n ∧MU L(i)
n , HZ/p) = FMU (L(i)

n , HZ/p).

Now the statement follows from the computation of L(i)
n ∧MU L(i)

n in Lemma 11.2.
The next step is to compute the module of derivations from L(i)

n into HZ/p and
its image under the forgetful map into [Ln, HZ/p]MU .
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LEMMA 11.5.

Der•MU (L(i)
n , HZ/p) = T HH •−1

MU (L(i)
n , HZ/p)/Z/pZ

= �−1Z/pZ[y2, y4, . . .]/Z/pZ,

where as before deg y2m= 2m for m != n and deg y2n+2= 2ni + 2.

Proof. We have the following homotopy cofibre sequence:

HZ/p → T HHMU(L(i)
n , HZ/p)→ �DerMU(L(i)

n , HZ/p)

from which the result follows.

Remark 11.6. Using this result we can talk unambigously about derivations and
singular extensions corresponding to Hochschild cohomology classes of L(i)

n with
coefficients in HZ/p having positive degree.

Consider now the element �−1(y2n+2) ∈ Der2ni+1
MU (L(i)

n , HZ/p) and its image
l∗(�−1(y2n+2) in the group [Ln, HZ/p]MU , where l is the canonical forgetful map

l : DerMU (L(i)
n , HZ/p)→ [Ln, HZ/p]MU.

LEMMA 11.7.

l∗(�−1(y2n+2)) = z∗2n+1 ∈ ;∗
Z/pZ(z1, z3, . . .) = [L(i)

n , HZ/p]•MU.

Here in the coalgebra [L(i)
n , HZ/p]•MU z∗2n+1 denotes the primitive element dual to

z2n+1.

Proof. This is analogous to the statement (ii) of Theorem 10.2 of and is proved
similarly. First we find by comparing the spectral sequences for Der•MU(L(i)

n , HZ/

p) and [L(i)
n , HZ/p]MU that the image of �−1(y2n) is as stated on the level of the

E∞-terms. Next, this image is contained in the subspace of primitive cohomology
operations from L(i)

n to HZ/p, that is, those operations which are derivations up
to homotopy and therefore no higher filtration terms will appear. The lemma is
proved.

We now begin to perform the inductive step – proving that L(i+1)
n is an MU -

algebra. The cases i= 1 and i > 1 differ and will be considered separately.
(1)When i= 1 L(i)

n =HZ/p. Take the element

y2n+2 ∈ Z/pZ[y2, y4, . . .] = T HH •
MU(L(i)

n , HZ/p)

and consider the associated singular extension of MU -algebras

�2niHZ/p → X → L(i)
n . (33)

We want to prove that (33) is the 2n+ 1th Postnikov stage of Ln. For this it suffices
to show that the MU•-module structure on X• is given by the formula

X• = MU•/(p, x1, x2, . . . , x2
n, xn+1, . . .).
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Notice that (33) gives rise to the following (algebraic) singular extension of
MU• - algebras:

�2nZ/pZ → X• → Z/pZ. (34)

If (34) is nontrivial (as an extension of MU•-algebras) then we are done – it is
elementary to verify that there is only one (up to a scalar) nontrivial singular graded
extension of Z/pZ by �2nZ/pZ, namely

�2nZ/pZ → Z/pZ[xn]/x2
n → Z/pZ

which is what we need. Therefore, we have to eliminate the possibility for (34) to
be trivial, that is split. Suppose, on the contrary, that this is the case. We will deduce
from it that (33) is split in the homotopy category of MU -modules, which would
be a contradiction by Lemma (11.7).

Indeed, consider the spectral sequence

Est
2 = Extst

MU•(Z/pZ, Z/pZ ⊕�2nZ/pZ)

= Extst
MU•(L

(i)
n , X•) ⇒ [L(i)

n , X]•MU .

Then

Est
2 = (;Z/pZ(z1, z3, . . .)⊕�2n;Z/pZ(z1, z3, . . .))∗.

Comparing Est
2 with the spectral sequence for [X, X]•MU we see that the former col-

lapses. The element 1 ∈ E00
2 corresponds the MU -module map L(i)

n →X splitting
the cofibre sequence (33) and we are done.

(2) The case i > 1 is a little harder. We want to obtain the singular extension

�2niHZ/p → Y → L(i)
n ,

where Y• =MU•/(p, x1, . . . , xn−1, xi+1
n , xn+1, . . .).

However, the relevant subspace in T HH •(L(i)
n , HZ/p) is two-dimensional, it

is spanned by the elements

y2n+2, y2ni+2 ∈ T HH •(L(i)
n , HZ/p) = Z/pZ[y2, y4, . . .],

since y2n+2 and y2ni+2 both have degree 2ni+ 2. Take any nonzero element y in
this subspace, that is a linear combination of y2n+2 and y2ni+2. Associated to y is a
certain singular extension of L(i)

n by �2niHZ/p which gives rise to the following
algebraic singular extension of MU -algebras:

�2niZ/pZ → Y• → L(i)
n• . (35)

Just as before, we show that (35) is nontrivial. But now the space of extensions like
(35) is also two-dimensional. The basis in this space corresponds to two different
MU•-algebra structures on Y•. One is given as

Y• = MU•/(p, x1, . . . , xn−1, xi+1
n , xn+1, . . .)
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and the other as

Y• = MU•/(p, x1, . . . , xn−1, xi
n, xn+1, . . . , x2

2ni , x2ni+2, . . .).

Let us denote the corresponding algebraic extensions as E1 and E2 respectively.
We need to choose the element y which gives rise to the extension E1.

CLAIM. The element y2ni+2 ∈ T HH 2ni+2(L(i)
n , HZ/p) gives rise to the extension

E2 (or a multiple of it). Indeed, consider the canonical map L(i)
n → L1

n = HZ/p

and the induced map on T HH :

f : T HH(L(1)
n , HZ/p) = Z/pZ[y2, y4, . . .] → T HH(L(i)

n , HZ/p)

= Z/pZ[y2, y4, . . .]

(here we put bars over the polynomial generators of T HH •(L(1)
n , HZ/p) to dis-

tinguish them from the corresponding elements in T HH •(L(i)
n , HZ/p). Then

f (y2ni+2)= y2ni+2. Indeed, the map f is so on the level of E2-terms of the corres-
ponding spectral sequences. Furthermore, since f (y2ni+2) is primitive no higher
degree correction terms will appear.

The considerations as in the case i= 1 tell us that the element y2ni+2 gives rise
to the algebraic extension (up to a scalar factor)

�2niZ/pZ → Y • → L(1)
n• = Z/pZ, (36)

where

Y • = MU•/(p, x1, . . . , xni , x2
ni+1, . . .).

Therefore the extension corresponding to y2ni+2 is the extension induced from
(36) by the augmentation map Z/pZ[xn]/xi

n→Z/p which is nothing but the
extension E2.

Next take an element y ∈ T HH •(L(i)
n , HZ/p) which is a nonzero linear com-

bination of y2n+2 and y2ni+2 and not proportional to y2ni+2. The corresponding
algebraic extension will have the form αE1+ βE2, where α and β are scalars with
α != 0 and ‘+’ means the Baer sum of extensions. Altering y by adding to it a
multiple of y2ni+2 and perhaps multiplying it by a scalar we obtain an element ỹ

whose corresponding algebraic extension is E1. (we leave it to the reader to check
that addition of elements in T HH •(L(i)

n , HZ/p) corresponds to the Baer sum of
associated extensions.)

We proved that the element ỹ descends to the 2ni+ 1st k-invariant of Ln. With
this our theorem is proved.

COROLLARY 11.8. The spectrum k(n), the nth connective Morava K-theory
admits a structure of an MU -algebra.

Remark 11.9. P. Goerss pointed out to the author that there are in fact uncount-
ably many different MU -algebra structures on Ln. For example, when considering
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case 1) above we could have altered the element y2n+2 by adding to it any decom-
posable element of degree 2n+ 2 in the graded algebra Z/pZ[y2, y4, . . .]= T H

H •
MU (Li

n, HZ/p). In fact, to have a unique MU -algebra structure on Ln we should
fix an A∞-MU•-algebra structure on Ln• which amounts to infinitely many condi-
tions.

Remark 11.10. Let L be an MU -module obtained by killing an arbitrary subset
of polynomial generators of MU• and/or p. Then the exact same method as above
and obvious induction show that L admits a structure of an MU -algebra.

By comparison the results of [7] and [18] give only structures of MU -ring
spectra on various MU -modules, which is an up to homotopy notion. It should be
noted, however, that in contrast with the cited papers we never address the question
of commutativity of our products, up to homotopy or otherwise.

12. Topological Hochschild Cohomology of Morava K-theories

Now we know that the spectra k(n) are MU -algebras (hence so are the noncon-
nective Morava K-theories K(n) as being Bousfield localizations of k(n)’s) and
therefore, we can talk about their topological Hochschild cohomology. The com-
putation of topological Hochschild (co)homology of spectra other than Eilenberg–
MacLane was initiated by McClure and Staffeldt (cf. [15]). In this section we
compute T HHMU(K(n), K(n)) and T HHS(K(n), K(n)) for odd primes modulo
additive extensions. The possibly nontrivial additive extensions might arise be-
cause K(n) is not a commutative MU -algebra. We hope to return to this problem
in a future paper. Apart from this complication the results are similar to the calcu-
lation of topological Hochschild cohomology of the Eilenberg–MacLane spectrum
HZ/p in Section 9.

In the following propsotion gr(?) stands for the associated graded of a filtered
module.

PROPOSITION 12.1.
(i)

grT HH •
MU (K(n), K(n)) = K(n)•[[y2, y4, . . . ŷ2pn, . . .]];

grDer•−1
MU (K(n), K(n)) = K(n)•[[y2, y4, . . . ŷ2pn, . . .]]/K(n)•.

(ii)

[K(n), K(n)]•MU = ;K(n)•(z1, z3, . . . , ẑ2pn−1, . . .).

and the map

Der•MU (K(n), K(n)) → [K(n), K(n)]•MU

sends the (representatives of) elements y2i ∈ grDer2i−1
MU (K(n), K(n)) to z2i−1 ∈

[K(n), K(n)]2i−1
MU .
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(iii) The forgetful map

[K(n), K(n)]•MU −→ [K(n), K(n)]•S,

maps the elements z2pk−1 to the operations Qk ∈ [K(n), K(n)]2pk−1
S (cf., for

instance [2]) and all other z’s go to zero.

Proof. The proof is along the same lines as the proof of Theorem 10.2, and we
will be somewhat sketchy therefore. First compute π•(K(n) ∧MU K(n)). We have
our usual T or-spectral sequence

T orZ[x1,x2,...](K(n)•, K(n)•) = ;K(n)•(z1, z3, . . . , ẑ2pn−1, . . .)

=⇒ π•(K(n) ∧MU K(n))

which collapses so we have multiplicatively

π•K(n) ∧MU K(n) = ;K(n)•(z1, z3, . . . , ẑ2pn−1, . . .).

Next consider the spectral sequence

E
ij

2 = Ext
ij

π•K(n)∧MU K(n)(K(n)•, K(n)•) =⇒ T HH
i+j

MU (K(n), K(n)).

We have

E••
2 = Ext••;K(n)• (z1,z3,...)(K(n)•, K(n)•) = K(n)•[[y2, y4, . . .]].

This spectral sequence collapses since it is even, and so part (i) of Proposition 12.1
is proved. Notice, however, that there could possibly be some nontrivial additive
extensions. Indeed, K(n) is not a commutative MU -algebra, and T HH MU (K(n),

K(n)) need not be a K(n)-module. In particular we don’t know whether T HH •
MU

(K(n), K(n)) is a Z/pZ-algebra.
Part (ii) is proved similarly to Theorem 10.2. An easy calculation shows that

[K(n), K(n)]MU = ;̂K(n)•(z1, z3, . . . , ẑ2pn−1, . . .),

where ˆ;(?) denotes the completed exterior algebra. Next we first show that the
elements y2i can map to either z2i−1 or zero and then considering the induced map
on the corresponding spectral sequences we see, that the image of y2i−1 is not zero.
Part (ii) is proved.

Part (iii) is also proved similarly to the corresponding statement in Theo-
rem 10.2. The only nontrivial thing is to prove that the element z2pi−1 ∈ [K(n),

K(n)]2pi−1
MU considered as a K(n)-operation in the category of S-modules is not ho-

motopic to zero. Denote MU(i, n) the MU -module obtained by killing the prime
p and all polynomial generators in MU• except for xpi−1 and xpi . Consider the
following homotopy cofibre sequence of MU -modules:

�2pi−2MU(i, n)
x

pi−1−→ MU(i, n)
p−→ K(n)

∂−→ �2pi−1MU(i, n).
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Now the map of MU -modules

p ◦ ∂ : K(n) → �2pi−1K(n)

is exactly the K(n)-operaton Qi and we are done.
The next proposition describes topological Hochschild cohomology of K(n) as

an S-algebra.

PROPOSITION 12.2. Let p be an odd prime. Then

grT HH •
S(K(n), K(n)) = K(n)•[[α0, α2, . . . , αn−1]],

where αk ∈ T HH 2pk

(K(n), K(n)). Moreover under the forgetful map

T HH •
MU (K(n), K(n)) → T HH •

S(K(n), K(n)

the image of y2pi for i= 0, 1 . . . , n− 1 is αi and the rest of y2i get mapped to 0 (on
the level of associated graded modules).

Proof. We have a spectral sequence

E••
2 = Ext••K(n)•K(n)(K(n), K(n)) =⇒ T HH •

S(K(n), K(n))

and the calculation of Robinson in [17] shows that

E
ij

2 = K(n)•[[α0, α2, . . . , αn−1]].

This spectral sequence converges strongly to its target and collapses at the E2-term.
To see that the image of y2i is as stated consider the forgetful map

π•(K(n) ∧S K(n) → π•(K(n) ∧MU K(n).

We know (from, e.g., [19]) that

π•(K(n) ∧S K(n) ∼= K(n)•[t1, t2, . . . , ]/(vnt
pn

i − vpi

n ti)

⊗;(a0, a1, . . . an−1),

where the degree of ai is 2pi − 1 and that of ti is 2(pi − 1). It follows that the
exterior generators ai correspond to z2pi−1 ∈ π•(K(n) ∧MU K(n)). After that the
statement about the image of y2i follows from comparing spectral sequences for
T HH •

S(K(n), K(n)) and T HH •
MU (K(n), K(n)).
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