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Abstract. The last few years have seen a revolution in our understanding
of the foundations of stable homotopy theory. Many symmetric monoidal
model categories of spectra whose homotopy categories are equivalent to the
stable homotopy category are now known, whereas no such categories were
known before 1993. The most well-known examples are the category of S-
modules and the category of symmetric spectra. We focus on the category
of orthogonal spectra, which enjoys some of the best features of S-modules
and symmetric spectra and which is particularly well-suited to equivariant
generalization. We first complete the nonequivariant theory by comparing
orthogonal spectra to S-modules. We then develop the equivariant theory. For
a compact Lie group G, we construct a symmetric monoidal model category of
orthogonal G-spectra whose homotopy category is equivalent to the classical
stable homotopy category of G-spectra. We also complete the theory of SG-
modules and compare the categories of orthogonal G-spectra and SG-modules.
A key feature is the analysis of change of universe, change of group, fixed point,
and orbit functors in these two highly structured categories for the study of
equivariant stable homotopy theory.
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Introduction

There are two general approaches to the construction of symmetric monoidal
categories of spectra, one based on an encoding of operadic structure in the def-
inition of the smash product and the other based on the categorical observation
[4] that categories of diagrams with symmetric monoidal domain are symmetric
monoidal. The first had its origins in the Lewis-May theory of coordinate free spec-
tra [19] and was worked out by Elmendorf, Kriz, and the authors in the theory of
“S-modules” [6]. The second started with Smith’s introduction of symmetric spec-
tra of simplicial sets, the details of which were worked out by Hovey, Shipley, and
Smith [16]. The diagrammatic approach was later worked out by Schwede, Ship-
ley, and the authors in a general topological setting that also includes orthogonal
spectra, among other variants.

Philosophically, orthogonal spectra are intermediate between S-modules and
symmetric spectra, enjoying some of the best features of both. They are defined in
the same diagrammatic fashion as symmetric spectra, but with orthogonal groups
rather than symmetric groups building in the symmetries required to define an
associative and commutative smash product. They were first introduced by the
second author in [24], although he failed to notice their internal smash product.

We prove in Chapter I that the categories of orthogonal spectra and S-modules
are Quillen equivalent and that this equivalence induces Quillen equivalences be-
tween the respective categories of ring spectra, of modules over ring spectra, and of
commutative ring spectra. Combined with the analogous comparison between sym-
metric spectra and orthogonal spectra of [20], this reproves and improves Schwede’s
comparison between symmetric spectra and S-modules [31]. We refer the reader to
I§1 for further discussion. We reinterpret the second author’s approach to infinite
loop space theory in terms of symmetric and orthogonal spectra in I§7, where we
recall the purposes for which orthogonal spectra were first introduced [24].

With this understanding of the nonequivariant foundations of stable homotopy
theory in place, we develop new foundations for equivariant stable homotopy the-
ory in the rest of this monograph. We let G be a compact Lie group throughout,
and we understand subgroups of G to be closed. There is no treatment of diagram
G-spectra in the literature, and we shall provide one. Just as in the nonequivari-
ant case, a major advantage of such a treatment is the simplicity of the resulting
definitional framework.

Orthogonal spectra are far more suitable than symmetric spectra for this pur-
pose. They are defined just as simply as symmetric spectra but, unlike symmetric
spectra, they share two of the essential features of the spectra of [19] that facili-
tate equivariant generalization. First, they are defined in a coordinate-free fashion.
This makes it simple and natural to build in spheres associated to representations,
which play a central role in the theory. Second, their weak equivalences are just the
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2 INTRODUCTION

maps that induce isomorphisms of homotopy groups. This simplifies the equivariant
generalization of the relevant homotopical analysis.

We define orthogonal G-spectra and show that the category of orthogonal G-
spectra is a closed symmetric monoidal category in Chapter II. We prove that
this category has a proper Quillen model structure whose homotopy category is
equivalent to the classical homotopy category of G-spectra in Chapter III. Moreover,
we show that the various categories of orthogonal ring and module G-spectra have
induced model structures.

The original construction of the equivariant stable homotopy category, due to
Lewis and the second author, was in terms of G-spectra, which are equivariant ver-
sions of coordinate-free spectra. These are much more highly structured and much
less elementary objects than orthogonal G-spectra. The Lewis-May construction
was modernized to a symmetric monoidal category of structured G-spectra, called
SG-modules, by Elmendorf, Kriz, and the authors [6, 27]. Those monographs did
not consider model structures on SG-spectra and SG-modules, and we rectify that
omission in Chapter IV.

In fact there are two stable model structures on the categories of G-spectra and
SG-modules, and the difference between them is fundamental to the understanding
of equivariant stable homotopy theory. One has cofibrant objects defined in terms
of spheres of representations and is essential to the comparison with orthogonal G-
spectra. The other has cofibrant objects defined in terms of integer spheres and is
essential for the equivariant versions of classical arguments in terms of CW spectra.
We refer the reader to IV§1 for further discussion of this vital point.

Generalizing our nonequivariant comparison between orthogonal spectra and
S-modules, we prove in Chapter IV that the categories of orthogonal G-spectra
and SG-modules are Quillen equivalent and that this equivalence induces Quillen
equivalences between the respective categories of ring G-spectra, of modules over
ring G-spectra, and of commutative ring G-spectra. We also generalize the model
theoretic framework to deal with families and cofamilies of subgroups of G.

We discuss change of universe functors, change of group functors, orbit func-
tors, and categorical and geometric fixed point functors on orthogonal G-spectra in
Chapter V. We discuss the analogous functors on SG-modules in Chapter VI, and
we prove there that the equivalences among G-spectra, SG-modules, and orthog-
onal G-spectra are compatible with all of these functors interrelating equivariant
and nonequivariant stable homotopy categories. We conclude that all homotopical
results proven in the original stable homotopy category of G-spectra apply verbatim
to the new stable homotopy categories of SG-modules and orthogonal G-spectra.

Implicitly, equivariant orthogonal spectra have already been applied. A global
form of the definition, with orthogonal G-spectra varying functorially in G, was
exploited in the proof of the completion theorem for complex cobordism of Greenlees
and May [13]. In retrospect, orthogonal S1-spectra are intrinsic to the construction
of topological cyclic homology given by Hesselholt and Madsen [14], as is apparent
from a glance at their definitions; we plan to give a conceptual rationale for their
construction elsewhere.



CHAPTER I

Orthogonal spectra and S-modules

1. Introduction and statements of results

We assume that the reader is familiar with the notion of a Quillen equivalence
of model categories (see for example [20, A.1]). This is the most structured kind
of equivalence that ensures an adjoint equivalence of the associated homotopy cat-
egories. With Schwede and Shipley, we proved in [20] that the category ΣS of
symmetric spectra is Quillen equivalent to the category I S of orthogonal spec-
tra. In [31], Schwede proved that ΣS is also Quillen equivalent to the category
M of S-modules. However, these comparisons do not give a satisfactory Quillen
equivalence between the categories of orthogonal spectra and S-modules since the
resulting functor I S −→ M is the composite of the right adjoint I S −→ ΣS
and the left adjoint ΣS −→ M and therefore fails to preserve either q-cofibrations
or q-fibrations.

We shall construct a Quillen equivalence between I S and M such that
Schwede’s left adjoint ΣS −→ M is the composite of the left adjoint ΣS −→ I S
of [20] and our new left adjoint I S −→ M . This shows that orthogonal spec-
tra are mathematically as well as philosophically intermediate between symmetric
spectra and S-modules. The force of our work is the construction of the Quillen
adjunction relating I S and M . That it must be a Quillen equivalence follows
from the Quillen equivalences of [20] and [31]. However, it is simpler to argue the
other way around, deducing Schwede’s Quillen equivalence of [31] from the Quillen
equivalence between ΣS and I S of [20] and our Quillen equivalence between
I S and M . The point is that the weak equivalences in I S , unlike those in ΣS
and like those in M , are just the π∗-isomorphisms. For this reason, our proof that
I S is Quillen equivalent to M is significantly simpler than Schwede’s proof that
ΣS is Quillen equivalent to M . Moreover, our construction of the adjunction gives
a concrete Thom space level understanding of the relationship between orthogonal
spectra and S-modules. To complete the picture, we also point out Quillen equiva-
lences relating coordinatized prespectra, coordinate-free prespectra, and spectra to
S-modules and orthogonal spectra, in §4.

To separate formalities from substance, we begin in §2 by establishing a formal
framework for constructing symmetric monoidal left adjoint functors whose domain
is a category of diagram spaces. In fact, this elementary category theory sheds new
light on the basic constructions that are studied in all work on diagram spectra.
In §3, we explain in outline how this formal theory combines with model theory to
prove the following comparison results. We recall the relevant model structures and
give the homotopical parts of the proofs in §§4 and 5 but we note right away that,
since the sphere S-module is not cofibrant whereas the sphere orthogonal spectrum
is cofibrant in the usual stable model structure, we must use the positive stable

3



4 I. ORTHOGONAL SPECTRA AND S-MODULES

model structure on orthogonal spectra [20, §14] to have any hope of obtaining
Quillen equivalences. We defer the basic construction that gives substance to the
theory to §6.

Theorem 1.1. There is a strong symmetric monoidal functor N : I S −→ M
and a lax symmetric monoidal functor N# : M −→ I S such that (N,N#) is a
Quillen equivalence between I S and M . The induced equivalence of homotopy
categories preserves smash products.

Theorem 1.2. The pair (N,N#) induces a Quillen equivalence between the
categories of orthogonal ring spectra and of S-algebras.

Theorem 1.3. For a cofibrant orthogonal ring spectrum R, the pair (N,N#) in-
duces a Quillen equivalence between the categories of R-modules and of NR-modules.

By [20, 12.1(iv)], the assumption that R is cofibrant results in no loss of gen-
erality. As in [20, §13], this result implies the following one.

Corollary 1.4. For an S-algebra R, the categories of R-modules and of N#R-
modules are Quillen equivalent.

Theorem 1.5. The pair (N,N#) induces a Quillen equivalence between the
categories of commutative orthogonal ring spectra and of commutative S-algebras.

Theorem 1.6. Let R be a cofibrant commutative orthogonal ring spectrum.
The categories of R-modules, R-algebras, and commutative R-algebras are Quillen
equivalent to the categories of NR-modules, NR-algebras, and commutative NR-
algebras.

By [20, 12.1(iv) and 15.2(ii)], the assumption that R is cofibrant results in no
loss of generality. As we shall see, arguments like those in [20, §§13 16] show that
this result implies the following one.

Corollary 1.7. Let R be a commutative S-algebra. The categories of R-
modules, R-algebras, and, if R is cofibrant, commutative R-algebras are Quillen
equivalent to the categories of N#R-modules, N#R-algebras, and commutative N#R-
algebras.

These last results are the crucial comparison theorems since most of the deep-
est applications of structured ring and module spectra concern E∞ ring spectra or,
equivalently by [6], commutative S-algebras. By [20, 22.4], commutative orthog-
onal ring spectra are the same objects as commutative orthogonal FSP’s. Under
the name “I∗-prefunctor”, these were defined and shown to give rise to E∞ ring
spectra in [23]. Theorem 1.5 shows that, up to equivalence, all E∞ ring spectra
arise this way. The second author has wondered since 1973 whether or not that is
the case.

The analogues of the results above with orthogonal spectra and S-modules
replaced by symmetric spectra and orthogonal spectra are proven in [20]. This has
the following immediate consequence, which reproves all of the results of [31].

Theorem 1.8. The analogues of the results above with orthogonal spectra re-
placed by symmetric spectra are also true.

The functor N that occurs in the results above has all of the formal and homo-
topical properties that one might desire. However, a quite different and considerably
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more intuitive functor M from orthogonal spectra to S-modules is implicit in [23].
The functor M gives the most natural way to construct Thom spectra as commu-
tative S-algebras, and its equivariant version was used in an essential way in the
proof of the localization and completion theorem for complex cobordism given in
[13]. We define M and compare it with N in §7.

Orthogonal spectra were first introduced in [24], where they were called “I∗-
prespectra” and were used as intermediaries in the passage from pairings of spaces
with operad actions and pairings of permutative categories to pairings of spectra.
What was missing then was Jeff Smith’s crucial insight that the evident external
smash products of diagram spectra can be internalized by use of left Kan extension.
As we explain in §8, symmetric spectra could have been used for the same purposes
for which orthogonal spectra were used in [24]. The theory of this paper sharpens
the conclusions of [24] by showing how to obtain point-set level rather than ho-
motopy category level pairings of spectra from the given input data: in retrospect,
the weaker conclusions were an artifact of the passage from orthogonal spectra to
Lewis-May spectra that was used there.

It is a pleasure to thank our collaborators Brooke Shipley and Stefan Schwede.
Like Schwede’s paper [31], which gives a blueprint for some of §3 here, this chapter
is an outgrowth of our joint work in [20].

2. Right exact functors on categories of diagram spaces

To clarify our arguments, we first give the formal structure of our construction
of the adjoint pair (N,N#) in a suitably general framework. We consider categories
DT of D-shaped diagrams of based spaces for some domain category D , and we
show that, to construct left adjoint functors from DT to suitable categories C , we
need only construct contravariant functors D −→ C . The proof is an exercise in
the use of representable functors and must be standard category theory, but we do
not know a convenient reference.

Let T be the category of based spaces, where spaces are understood to be
compactly generated (= weak Hausdorff k-spaces). Let D be any based topologi-
cal category with a small skeleton skD . A D-space is a continuous based functor
D −→ T . Let DT be the category of D-spaces. As observed in [20, §1], the
evident levelwise constructions define limits, colimits, smash products with spaces,
and function D-spaces that give DT a structure of complete and cocomplete, ten-
sored and cotensored, topological category. We call such a category topologically
bicomplete. We fix a topologically bicomplete category C for the rest of this section.
We write C∧A for the tensor of an object C of C and a based space A. All functors
are assumed to be continuous.

Definition 2.1. A functor between topologically cocomplete categories is right
exact if it commutes with colimits and tensors. For example, any functor that is a
continuous left adjoint is right exact.

For a contravariant functor E : D −→ C and a D-space X, we have the coend

(2.2) E⊗D X =
∫ d

E(d) ∧X(d)
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in C . Explicitly, E⊗D X is the coequalizer in C of the diagram

∨
d,e E(e) ∧D(d, e) ∧X(d)

ε∧id //

id∧ε
//
∨

d E(d) ∧X(d),

where the wedges run over pairs of objects and objects of skD and the parallel
arrows are wedges of smash products of identity and evaluation maps of E and X.

For an object d ∈ D , we have a left adjoint Fd : T −→ DT to the functor
given by evaluation at d. If d∗ is defined by d∗(e) = D(d, e), then FdA = d∗ ∧ A.
In particular, FdS

0 = d∗.

Definition 2.3. Let D = DD : D −→ DT be the evident contravariant functor
that sends d to d∗.

The following observation is [20, 1.6].

Lemma 2.4. The evaluation maps D(d, e) ∧ X(d) −→ X(e) of D-spaces X
induce a natural isomorphism of D-spaces D⊗D X −→ X.

Together with elementary categorical observations, this has the following im-
mediate implication. It shows that (covariant) right exact functors F : DT −→ C
determine and are determined by contravariant functors E : D −→ C .

Theorem 2.5. If F : DT −→ C is a right exact functor, then (F ◦D)⊗D X ∼=
FX. Conversely, if E : D −→ C is a contravariant functor, then the functor
F : DT −→ C specified by FX = E⊗D X is right exact and F ◦ D ∼= E.

Notation 2.6. Write F ↔ F∗ for the correspondence between right exact
functors F : DT −→ C and contravariant functors F∗ : D −→ C . Thus, given F,
F∗ = F◦D, and, given F∗, F = F∗⊗D (−). In particular, on representable D-spaces,
Fd∗ ∼= F∗d.

Corollary 2.7. Via ξ∗ = Fη ◦D and ξ = ξ∗ ⊗D (−), natural transformations
ξ : F −→ G between right exact functors DT −→ C determine and are determined
by natural transformations ξ∗ : F∗ −→ G∗ between the corresponding contravariant
functors D −→ C .

Proposition 2.8. Any right exact functor F : DT −→ C has the right adjoint
F# specified by

(F#C)(d) = C (F∗d, C)
for C ∈ C and d ∈ D . The evaluation maps

D(d, e) ∧ C (F∗d,C) −→ C (F∗e, C)

of the functor F# are the adjoints of the composites

F∗e ∧D(d, e) ∧ C (F∗d,C) ε∧id−−−→ F∗d ∧ C (F∗d,C)
ζ−→ C,

where ε is an evaluation map of the functor F∗ and ζ is an evaluation map of the
category C .

Proof. We must show that

(2.9) C (FX, C) ∼= DT (X,F#C).

The description of FX as a coend implies a description of C (FX,C) as an end
constructed out of the spaces C (F∗d∧X(d), C). Under the adjunction isomorphisms

C (F∗d ∧X(d), C) ∼= T (X(d), C (F∗d,C)),
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this end transforms to the end that specifies DT (X,F#C). ¤

As an illustration of the definitions, we show how the prolongation and forgetful
functors studied in [20] fit into the present framework.

Example 2.10. A (covariant) functor ι : D −→ D ′ induces the forgetful functor
U : D ′T −→ DT that sends Y to Y ◦ ι. It also induces the contravariant functor
DD′ ◦ ι : D −→ D ′T . Let PX = (DD′ ◦ ι)⊗D X. Then P is the prolongation functor
left adjoint to U.

Now let D be symmetric monoidal with product ⊕ and unit uD . By [20, §21],
DT is symmetric monoidal with unit u∗D . We denote the smash product of DT
by ∧D . Actually, the construction of the smash product is another simple direct
application of the present framework.

Example 2.11. We have the external smash product Z : DT × DT −→
(D × D)T specified by (X Z Y )(d, e) = X(d) ∧ Y (e) [20, 21.1]. We also have the
contravariant functor DD ◦ ⊕ : D × D −→ DT . The internal smash product is
given by

(2.12) X ∧D Y = (DD ◦ ⊕)⊗D×D (X Z Y ).

It is an exercise to rederive the universal property

(2.13) DT (X ∧D Y, Z) ∼= (D ×D)T (X Z Y,Z ◦ ⊕)

that characterizes ∧D from this definition.

Proposition 2.14. Let F∗ : D −→ C be a strong symmetric monoidal con-
travariant functor. Then F : DT −→ C is a strong symmetric monoidal functor
and F# : C −→ DT is a lax symmetric monoidal functor.

Proof. We are given an isomorphism λ : F∗uD −→ uC and a natural isomor-
phism

φ : F∗d ∧C F∗e −→ F∗(d⊕ e).

Since F∗uD
∼= Fu∗D , we may view λ as an isomorphism Fu∗D −→ uC . By (2.9) and

(2.13), we have

C (F(X ∧D Y ), C) ∼= (DT ×DT )(X Z Y,F#C ◦ ⊕).

Commuting coends past smash products and using isomorphisms

(F∗d ∧X(d)) ∧ (F∗e ∧ Y (e)) ∼= F∗(d⊕ e) ∧X(d) ∧ Y (e)

induced by φ, we obtain the first of the following two isomorphisms. We obtain
the second by using the tensor adjunction of C and applying the defining universal
property of coends.

C (FX ∧C FY, C) ∼= C (
∫ (d,e)

F#(d⊕ e) ∧X(d) ∧ Y (e), C)

∼= (DT ×DT )(X Z Y,F#C ◦ ⊕).

There results a natural isomorphism FX ∧C FY ∼= F(X ∧D Y ), and coherence is
easily checked.

The second statement follows formally from the first, but we can describe the
relevant maps for F# concretely. The adjoint u∗D −→ F#uC of λ gives the unit
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map. Taking the smash products of maps in C and applying isomorphisms φ, we
obtain maps

C (F∗(d), C) ∧ C (F∗(e), C ′) −→ C (F∗(d⊕ e), C ∧C C ′)

that together define a map

F#C Z F#C ′ −→ F#(C ∧C C ′) ◦ ⊕.

Using (2.13), there results a natural map

F#C ∧D F#C ′ −→ F#(C ∧C C ′),

and coherence is again easily checked. ¤

3. The proofs of the comparison theorems

We refer to [20] for details of the category I S of orthogonal spectra and to
[6] for details of the category M = MS of S-modules. Much of our work depends
only on basic formal properties. Both of these categories are closed symmetric
monoidal and topologically bicomplete. They are Quillen model categories, and
their model structures are compatible with their smash products. Actually, in [20],
the category of orthogonal spectra is given two model structures with the same
(stable) weak equivalences. In one of them, the sphere spectrum is cofibrant, in the
other, the “positive stable model structure”, it is not. In [20], use of the positive
stable model structure was essential to obtain an induced model structure on the
category of commutative orthogonal ring spectra. It is also essential here, since the
sphere S-module S is not cofibrant. We will review the model structures in §5.

We begin by giving a quick summary of definitions from [20], recalling how
orthogonal spectra fit into the framework of the previous section. Let I be the
symmetric monoidal category of finite dimensional real inner product spaces and
linear isometric isomorphisms. We call an I -space an orthogonal space. The cat-
egory I T of orthogonal spaces is closed symmetric monoidal under its smash
products X ∧ Y and function objects F (X, Y ).

The sphere orthogonal space SI has V th space the one-point compactification
SV of V ; SI is a commutative monoid in I T . An orthogonal spectrum, or I -
spectrum, is a (right) SI -module. The category I S of orthogonal spectra is closed
symmetric monoidal. We denote its smash products and function spectra by X∧I Y
and FI (X, Y ) (although this is not consistent with the previous section).

There is a symmetric monoidal category J with the same objects as I such
that the category of J -spaces is isomorphic to the category of I -spectra; J
contains I as a subcategory. The construction of J is given in [20, 2.1], where it
is denoted IS . Its space of morphisms J (V, W ) is (V ∗∧SI )(W ), where V ∗(W ) =
I (V, W )+. In §6, we shall give a concrete alternative description of J in terms of
Thom spaces, and we shall use it to construct a coherent family of cofibrant (−V )-
sphere S-modules N∗(V ) that give us a contravariant “negative spheres” functor
N∗ to which we can apply the constructions of the previous section. Precisely, we
shall prove the following theorem. Note that the unit of I is 0, the unit of J is
SI , and, as required for consistency, J (0, W ) = SW .

Theorem 3.1. There is a strong symmetric monoidal contravariant functor
N∗ : J −→ M . If V 6= 0, then N∗(V ) is a cofibrant S-module and the evaluation
map

ε : N∗(V ) ∧ SV = N∗(V ) ∧J (0, V ) −→ N∗(0) ∼= S
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of the functor is a weak equivalence.

Here N∗(0) ∼= S since N∗ is strong symmetric monoidal. Propositions 2.8 and
2.14 give the following immediate consequence.

Theorem 3.2. Define functors N : I S −→ M and N# : M −→ I S by
letting N(X) = N∗ ⊗J X and (N#M)(V ) = M (N∗(V ),M). Then (N,N#) is an
adjoint pair such that N is strong symmetric monoidal and N# is lax symmetric
monoidal.

This gives the formal properties of N and N#, and we turn to their homotopical
properties. According to [20, A.2], to show that these functors give a Quillen
equivalence between I S and M , it suffices to prove the following three results.
Thus, since its last statement is formal [15, 4.3.3], these results will prove Theorem
1.1. We give the proofs in §5. A functor F : A −→ B between model categories is
said to create the weak equivalences in A if the weak equivalences in A are exactly
the maps f such that Ff is a weak equivalence in B, and similarly for other classes
of maps.

Lemma 3.3. The functor N# preserves homotopy groups and creates the weak
equivalences in M .

Lemma 3.4. The functor N# preserves q-fibrations.

Proposition 3.5. The unit η : X −→ N#NX of the adjunction is a weak
equivalence for all cofibrant orthogonal spectra X.

In Lemma 3.4, we are concerned with q-fibrations of orthogonal spectra in the
positive stable model structure. To prove Theorem 1.1, we only need Proposition
3.5 for orthogonal spectra that are cofibrant in the positive stable model structure,
but we shall prove it more generally for orthogonal spectra that are cofibrant in
the stable model structure. We refer to positive cofibrant and cofibrant orthogonal
spectra to distinguish these classes.

In the rest of this section, we show that these results imply their multiplicatively
enriched versions needed to prove Theorems 1.2, 1.3, 1.5, and 1.6 and Corollaries 1.4
and 1.7. That is, in all cases, we have an adjoint pair (N,N#) such that N# creates
weak equivalences and preserves q-fibrations and the unit of the adjunction is a
weak equivalence on cofibrant objects. The subtlety is that, to apply Proposition
3.5, we must relate cofibrancy of multiplicatively structured orthogonal spectra and
S-modules with cofibrancy of their underlying orthogonal spectra or S-modules.

The proof of Theorem 1.2. The category of orthogonal ring spectra has
two model structures. The respective weak equivalences and q-fibrations are cre-
ated in the category of orthogonal spectra with its stable model structure or its
positive stable model structure. The category of S-algebras is a model category
with weak equivalences and q-fibrations created in the category of S-modules. Our
claim is that (N,N#) restricts to a Quillen equivalence relating the category of or-
thogonal ring spectra with its positive stable model structure to the category of
S-algebras. It is clear from Lemmas 3.3 and 3.4 that N# creates weak equivalences
and preserves q-fibrations. We must show that η : R −→ N#NR is a weak equiva-
lence when R is a positive cofibrant orthogonal ring spectrum. More generally, if R
is a cofibrant orthogonal ring spectrum, then the underlying orthogonal spectrum
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of R is cofibrant (although not positive cofibrant) by [20, 12.1]. The conclusion
follows from Proposition 3.5. ¤

The proof of Theorem 1.3. The category of R-modules is a model cate-
gory with weak equivalences and q-fibrations created in the category of orthogonal
spectra with its positive stable model structure. The category of NR-modules is
a model category with weak equivalences and q-fibrations created in the category
of S-modules. Again, it is clear that N# creates weak equivalences and preserves
q-fibrations. We must show that η : Y −→ N#NY is a weak equivalence when
Y is a positive cofibrant R-module. We are assuming that R is positive cofibrant
as an orthogonal ring spectrum, and it follows from [20, 12.1] that the underlying
orthogonal spectrum of a cofibrant R-module is cofibrant (although not necessarily
positive cofibrant). The conclusion follows from Proposition 3.5. ¤

The proof of Theorem 1.5. The category of commutative orthogonal ring
spectra has a model structure with weak equivalences and q-fibrations created in
the category of orthogonal spectra with its positive stable model structure [20,
15.1]. The category of commutative S-algebras has a model structure with weak
equivalences and q-fibrations created in the category of S-modules [6, VII.4.8].
Again, it is clear that N# creates weak equivalences and preserves q-fibrations, and
we must prove that η : R −→ N#NR is a weak equivalence when R is a cofibrant
commutative orthogonal ring spectrum. Since the underlying orthogonal spectrum
of R is not cofibrant, we must work harder here. We use the notations and results of
[20, §§15, 16], where the structure of cofibrant commutative orthogonal ring spectra
is analyzed and the precisely analogous proof comparing commutative symmetric
ring spectra and commutative orthogonal ring spectra is given.

We may assume that R is a CF+I-cell complex (see [20, 15.1]), where C is
the free commutative orthogonal ring spectrum functor, and we claim first that η
is a weak equivalence when R = CX for a positive cofibrant orthogonal spectrum
X. Here CX is the wedge over i ≥ 0 of the X(i)/Σi, the term for i = 0 being
S. Therefore, by Lemma 3.3 and Theorems 4.10(ii) and 4.11 below, it suffices to
prove that η : X(i)/Σi −→ N#N(X(i)/Σi) is a weak equivalence for i ≥ 1. On the
right, N(X(i)/Σi) ∼= (NX)(i)/Σi, and NX is a cofibrant S-module. Consider the
commutative diagram

EΣi+ ∧Σi X(i)
η //

q

²²

N#N(EΣi+ ∧Σi X(i)) ∼=

N#Nq

²²

N#(EΣi+ ∧Σi (NX)(i))

N#q

²²
X(i)/Σi η

// N#N(X(i)/Σi) ∼= N#((NX)(i)/Σi).

The q are the evident quotient maps, and the left and right arrows q are weak
equivalences by [20, 15.5] and [6, III.5.1]. The top map η is a weak equivalence by
Proposition 3.5 since an induction up the cellular filtration of EΣi, the successive
subquotients of which are wedges of copies of Σi+ ∧ Sn, shows that EΣi+ ∧Σi X(i)

is positive cofibrant since X(i) is positive cofibrant.
By passage to colimits, as in the analogous proof in [20, §16], the result for

general R follows from the result for a CF+I-cell complex that is constructed in
finitely many stages. We have proven the result when R requires only a single
stage, and we assume the result when R is constructed in n stages. Thus suppose



3. THE PROOFS OF THE COMPARISON THEOREMS 11

that R is constructed in n + 1 stages. Then R is a pushout (in the category
of commutative orthogonal ring spectra) of the form Rn ∧CX CY , where Rn is
constructed in n-stages and X −→ Y is a wedge of maps in F+I. As in the proof of
[20, 15.9], R ∼= B(Rn,CX,CT ), where T is a suitable wedge of orthogonal spectra
FrS

0. The bar construction here is the geometric realization of a proper simplicial
orthogonal spectrum and N commutes with geometric realization. Tracing through
the cofibration sequences used in the proof of the invariance of bar constructions
in [6, X.4], we see that it suffices to show that η is a weak equivalence on the
commutative orthogonal ring spectrum

Rn ∧ (CX)(q) ∧ CT ∼= Rn ∧ C(X ∨ · · · ∨X ∨ T )

of q-simplices for each q. By the definition of CF+I-cell complexes, we see that this
smash product can be constructed in n-stages, hence the conclusion follows from
the induction hypothesis. ¤

The proof of Theorem 1.6. For a cofibrant commutative orthogonal ring
spectrum R, we must prove that the unit η : X −→ N#NX of the adjunction is
a weak equivalence when X is a cofibrant R-module, R-algebra, or commutative
R-algebra. For R-modules X, this reduces as in [20, 10.3 and §16] to the case
when X = R ∧S FV SV , where FV is a shift desuspension functor [20, 1.3]. In
turn, this case reduces as in [20, §16] to an application of [6, III.3.8], which gives
that the functor (NR) ∧ (−) preserves weak equivalences. The case of R-algebras
follows since a cofibrant R-algebra is cofibrant as an R-module [20, 12.1]. The
case of commutative R-algebras follows from the previous proof since a cofibrant
commutative R-algebra is cofibrant as a commutative orthogonal ring spectrum. ¤

The proofs of Corollaries 1.4 and 1.7. Let R be a commutative S-alge-
bra, let γ : Q −→ N#R be a cofibrant approximation of the commutative orthogonal
ring spectrum N#R, and let γ̃ : NQ −→ R be its adjoint. Writing I SQ and MR for
the respective categories of modules, we have the following commutative diagram
of right adjoints in Quillen adjoint pairs:

MNQ

N#

²²

MR
γ̃∗oo

N#

²²
I SQ I SN# .

γ∗
oo

The left adjoints to γ∗ and γ̃∗ are given by extension of scalars. We have simi-
lar diagrams with modules replaced by algebras or by commutative algebras, and
we have a similar diagram of modules in the non-commutative case. Since Q is
cofibrant, the left vertical arrow is the right adjoint of a Quillen equivalence in all
cases, by Theorems 1.3 and 1.6. Thus, to show that the right vertical arrow is the
right adjoint of a Quillen equivalence, it suffices to prove that both extension of
scalars adjunctions are Quillen equivalences in all cases. For the bottom arrow, this
is given by [20, 12.1 and 15.2]. For the top arrow, we use the following result. ¤

Theorem 3.6. Let f : Q −→ R be a map of S-algebras or of commutative
S-algebras. Define f∗ : MQ −→ MR by f∗M = R∧Q M . Then (f∗, f∗) is a Quillen
adjoint pair. If f is a weak equivalence, then (f∗, f∗) is a Quillen equivalence.
Moreover, in the commutative case, (f∗, f∗) then induces a Quillen equivalence
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between the categories of Q-algebras and R-algebras and, if Q and R are cofibrant,
between the categories of commutative Q-algebras and commutative R-algebras.

Proof. Since weak equivalences and q-fibrations are created in the underlying
category of S-modules, it is immediate that all adjoint pairs here are Quillen adjoint
pairs. We need only check that the units of the adjunctions are weak equivalences
on cofibrant objects. For the cases of modules, this is proven in [6, III.4.2]. Thus
restrict to the case when Q and R are commutative. If A is a cofibrant R-algebra,
then [6, III.3.8 and VII.6.2] imply that the unit A ∼= Q ∧Q A −→ R ∧Q A of the
adjunction is a weak equivalence. If Q and R are cofibrant and A is a cofibrant
commutative Q-algebra, then [6, III.3.8 and VII.6.7] give this implication. ¤

Remark 3.7. Consider the diagram

ΣI
P //

I S
N //

U
oo M ,

N#
oo

where ΣS is the category of symmetric spectra and U and P are the forgetful and
prolongation functors of [20] (see Example 2.10). By (6.8) below, we have

N∗(Rn) = (S−1
S )(n),

where S−1
S is the canonical cofibrant (−1)-sphere in the category of S-modules. It

follows that
(U ◦ N#)(M)(n) ∼= M ((S−1

S )(n),M)
as Σn-spaces. This is the right adjoint M −→ ΣS used by Schwede [31], and
N ◦P is its left adjoint. Thus the adjunction studied in [31] is the composite of the
adjunctions (P,U) and (N,N#).

4. Further Quillen equivalences and homotopical preliminaries

Before turning to the promised proofs, we place our results in context by stating
a number of related Quillen equivalences between other model categories of prespec-
tra and spectra and indicating their proofs. We also record some basic results about
weak equivalences of spectra and S-modules that are used in the proofs.

We have two categories of prespectra, coordinatized and coordinate-free. The
former is classical. It was described in [20] as the category of N -spectra, where N
is the discrete category with objects n, n ≥ 0. We denote this category by N S .
It has a stable model structure and a positive stable model structure [20, §§9, 14].

Proposition 4.1. The forgetful functor U : I S −→ N S has a left adjoint
prolongation functor P : N S −→ I S , and the pair (P,U) is a Quillen equivalence
with respect to either the stable or the positive stable model structures.

We shall focus on prespectra in the coordinate-free sense of [19, 6]. Thus a
prespectrum X consists of based spaces X(V ) and a transitive system of based
maps σ : ΣW−V X(V ) −→ X(W ), where V ranges over the finite dimensional sub
inner product spaces of a countably infinite dimensional real inner product space
U , which we may take to be U = R∞. Let P denote the resulting category of
prespectra. A prespectrum X is said to be an Ω-spectrum if its adjoint structure
maps σ̃ : X(V ) −→ ΩW−V X(W ) are weak equivalences; it is a positive Ω-spectrum
if these maps are weak equivalences for V 6= 0. Exactly as in [20, §§9 14], P has
stable and positive stable model structures in which the respective fibrant objects
are the Ω-spectra and the positive Ω-spectra.
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Remark 4.2. We obtain a forgetful functor U : P −→ N S by restricting to
the subspaces Rn of U . We also have an underlying coordinate-free prespectrum
functor U : I S −→ P. The composite of these two functors is the functor U of
Proposition 4.1. All three functors U have left adjoints P given by Example 2.10,
and Proposition 4.1 remains true with U replaced by either of our new functors U.

A prespectrum X is an inclusion prespectrum if its adjoint structure maps
σ̃ : X(V ) −→ ΩW−V X(X) are inclusions. It is a spectrum if the σ̃ are homeomor-
phisms. Let S ⊂ P denote the full subcategory of spectra. The category S has
a stable model structure [6, VII§§4, 5].

Proposition 4.3. The forgetful functor ` : S −→ P has a left adjoint spec-
trification functor L : P −→ S , and the pair (L, `) is a Quillen equivalence with
respect to the stable model structures.

Remark 4.4. This result applies to both the coordinatized and coordinate-
free settings. The restriction of U : P −→ N S to the respective subcategories
of spectra is an equivalence of categories [19, I.2.4]; both U and its restriction to
spectra are the right adjoints of Quillen equivalences of model categories.

Finally, we have a Quillen equivalence relating S-modules to spectra.

Proposition 4.5. There is a “free functor” F : S −→ M that has a right
adjoint V : M −→ S . The pair (F,V) is a Quillen equivalence with respect to the
stable model structures.

Propositions 4.3 and 4.5 depend on results about weak equivalences that we ex-
plain in the rest of the section. There is an underlying spectrum functor M −→ S ;
that is, an S-module is a spectrum with additional structure. Thus we have forgetful
functors from all of our categories to the category of coordinatized prespectra.

Definition 4.6. The homotopy groups of a prespectrum, spectrum, orthogonal
spectrum, or S-module are the homotopy groups of its underlying coordinatized
prespectrum. In any of these categories, a map is a weak equivalence if it induces
an isomorphism of homotopy groups.

The forgetful functor M −→ S is not itself the right adjoint of a Quillen
equivalence, but it is related to V by a natural weak equivalence. The notion of a
tame spectrum required in the following result is defined in [6, I.2.4]; all cofibrant
spectra are tame.

Lemma 4.7. For S-modules M , there is a natural weak equivalence of spectra
λ̃ : M −→ VM . For tame spectra E, the unit η : E −→ VFE is a weak equivalence.

Proof. With the notations of [6, I.4.1, I.5.1, I.7.1],

FE = S ∧L LE and VM = FL (S, M).

The weak equivalence λ̃ : M −→ VM is given by [6, I.8.7]. For tame E, the
unit η is the composite of the homotopy equivalence η : E −→ LE of [6, I.4.6],
the weak equivalence λ̃ : LE −→ FL (S,LE) of [6, I.8.7], and the isomorphism
FL (S,LE) ∼= FL (S, S ∧L LE) of [6, II.2.5]. ¤

The functor L does not preserve all weak equivalences and, for a general pre-
spectrum X, it is hard to determine if η : X −→ `LX is a weak equivalence.
Inclusion prespectra are important because of the following result [19, I.2.2].
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Lemma 4.8. Let X be an inclusion prespectrum. Then

LX(V ) = colimW⊃V ΩW−V X(W ).

The V th map of the unit η : X −→ `LX of the (L, `)-adjunction is the map from
the initial term X(V ) into the colimit, and η is a weak equivalence of prespectra.

Remark 4.9. For later use, we note a variant. We call X a positive inclusion
prespectrum if σ̃ is an inclusion when V 6= 0. The description of LX(V ) is still valid
and η is still a weak equivalence.

We record an omnibus result about weak equivalences of spectra; its analogue
for prespectra is [20, 7.4]. Let Cf and Ff denote the homotopy cofiber and fiber
of a map f , defined as usual (for example, in [20, 6.8]). An h-cofibration of spectra
is a cofibration in the classical sense that the homotopy extension property (HEP)
is satisfied.

Theorem 4.10. (i) If f : X −→ Y is a weak equivalence of tame spectra
and A is a based CW complex, then f ∧ id : X ∧ A −→ Y ∧ A is a weak
equivalence.

(i′) A map of tame spectra is a weak equivalence if and only if its suspension
is a weak equivalence, and the natural map η : X −→ ΩΣX is a weak
equivalence for all tame spectra X.

(ii) The homotopy groups of a wedge of spectra are the direct sums of the ho-
motopy groups of the wedge summands, hence a wedge of weak equivalences
of spectra is a weak equivalence.

(iii) If i : A −→ X is an h-cofibration and a weak equivalence and f : A −→ Y
is any map, where A, X, and Y are tame spectra, then the cobase change
j : Y −→ X ∪A Y is a weak equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are weak equivalences
in the diagram of tame spectra

X

²²

A

²²

ioo // Y

²²
X ′ A′

i′
oo // Y ′,

then the induced map of pushouts is a weak equivalence.
(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1 of spectra,

each of which is a weak equivalence, then the map from the initial term
X0 into X is a weak equivalence.

(vi) For any map f : X −→ Y of tame spectra, there are natural long exact
sequences

· · · −→ πq(Ff) −→ πq(X) −→ πq(Y ) −→ πq−1(Ff) −→ · · · ,

· · · −→ πq(X) −→ πq(Y ) −→ πq(Cf) −→ πq−1(X) −→ · · · ,

and the natural map η : Ff −→ ΩCf is a weak equivalence.

Proof. Colimits of diagrams in S are obtained by applying `, taking the col-
imit in P, and applying L; smash products with spaces are constructed similarly.
By Lemma 4.8, the functor L preserves homotopy groups and weak equivalences
when applied to inclusion prespectra. Since any wedge of inclusion prespectra (such
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as spectra) is an inclusion prespectrum, (ii) follows directly from its prespectrum
analogue in [20, 7.4]. Similarly, an h-cofibration of spectra is a spacewise closed
inclusion by [19, App.3.9] and the colimit of a sequence of closed inclusions of inclu-
sion prespectra is an inclusion prespectrum, so that (v) follows from its prespectrum
analogue in [20, 7.4]. This kind of argument fails for the remaining parts because
of point-set level pathologies, which are circumvented by the tameness hypotheses.
The proof of (i) is similar to the proof of [6, I.3.6], which gives the analogue for a
CW spectrum A. Part (i′) follows from [6, I.3.3]. Part (iii) is a special case of (iv),
stated separately for emphasis, and (iv) is [6, I.3.5]. ¤

Sketch proofs of Propositions 4.1, 4.3, and 4.5. In all of these results,
it is immediate from the definitions of the model structures that the right adjoints
create weak equivalences and preserve q-fibrations. It therefore suffices to show that
the units of the adjunctions are weak equivalences when evaluated on cofibrant
objects. For Proposition 4.1, this is [20, 10.3]. By similar but simpler proofs,
Lemma 4.8 and Theorem [20, 7.4] imply Proposition 4.3, while Lemma 4.7 and
Theorem 4.10 imply Proposition 4.5. ¤

Finally, we record the analogue of Theorem 4.10 for S-modules.

Theorem 4.11. (i) If f : X −→ Y is a weak equivalence of S-modules
and A is a based CW complex, then f ∧ id : X ∧ A −→ Y ∧ A is a weak
equivalence.

(i′) A map of S-modules is a weak equivalence if and only if its suspension
is a weak equivalence, and the natural map η : X −→ ΩΣX is a weak
equivalence for all S-modules X.

(ii) The homotopy groups of a wedge of S-modules are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of weak equiva-
lences of spectra is a weak equivalence.

(iii) If i : A −→ X is an h-cofibration and a weak equivalence of S-modules
and f : A −→ Y is any map of spectra, then the cobase change j : Y −→
X ∪A Y is a weak equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are weak equivalences
in a comparison of pushouts diagram of S-modules as in Theorem 4.10(iv),
then the induced map of pushouts is a weak equivalence.

(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1 of S-
modules, each of which is a weak equivalence, then the map from the initial
term X0 into X is a weak equivalence.

(vi) For any map f : X −→ Y of S-modules, there are natural long exact
sequences

· · · −→ πq(Ff) −→ πq(X) −→ πq(Y ) −→ πq−1(Ff) −→ · · · ,

· · · −→ πq(X) −→ πq(Y ) −→ πq(Cf) −→ πq−1(X) −→ · · · ,

and the natural map η : Ff −→ ΩCf is a weak equivalence.

Proof. Since colimits, homotopy groups, and weak equivalences of S-modules
are created by the forgetful functor to spectra, parts (ii) and (v) follow from the
corresponding parts of Theorem 4.10. The rest is proven in [6, I§6]. It is one of the
most remarkable technical features of [6] that the tameness hypotheses needed on
the spectrum level are no longer necessary on the S-module level. ¤
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5. Model structures and homotopical proofs

Summarizing from the previous section, we see that, even before constructing
the functor N∗, we have Quillen equivalences relating the categories N S , I S ,
P, S , and M , so that all of our homotopy categories are equivalent. Of course,
these equivalences are much less highly structured than the one we are after since
N S , P, and S are not symmetric monoidal under their classical smash products,
as defined in the coordinate-free setting in [19, III§3]. To help orient the reader,
we display our Quillen equivalences in the following (noncommutative) diagram:

N S

P

""DDDDDDDDDDDDDDDDD
P //

P
L //

U
oo

P

²²

S
`

oo

F

²²
I S

U

bbDDDDDDDDDDDDDDDDD

U

OO

N //
M .

N#
oo

V

OO

We recall the definitions of the relevant model structures on these five cate-
gories. We have defined their weak equivalences in Definition 4.6. A map of spectra
is a q-fibration if each of its component maps of spaces is a Serre fibration, and the
functor V creates the q-fibrations of S-modules. The (positive) q-fibrations of pre-
spectra or of orthogonal spectra are the (positive) level Serre fibrations such that
certain diagrams are homotopy pullbacks [20, 9.5]; all that we need to know about
the latter condition is that it always holds for maps between (positive) Ω-spectra.

In all of our categories, the q-cofibrations are the maps that satisfy the LLP (left
lifting property) with respect to the acyclic q-fibrations. Equivalently, they are the
retracts of relative cell complexes in the respective categories. These cell complexes
are defined as usual in terms of attaching maps whose domains are appropriate
“spheres”. We have nth space or V th space evaluation functors from the categories
N S , I S , P, and S to the category T of based spaces. These have left adjoint
shift desuspension functors, denoted

Fn : T −→ N S , FV : T −→ I S , FV : T −→ P, and Σ∞V : T −→ S .

We write Fn = FRn in P and I S and Σ∞n = Σ∞Rn in S . Obvious isomorphisms
between right adjoints imply isomorphisms between left adjoints

PFn
∼= Fn and LFV

∼= Σ∞V .

The domains of attaching maps are the FnSq in N S , I S , and P where, for the
positive stable model structures, we restrict to n > 0. The domains of attaching
maps are the Σ∞n Sq in S and the FΣ∞n Sq in M .

We now return to the proofs promised in §3. In §6, we will obtain the following
description in terms of shift desuspensions and the functor F of the values on objects
taken by the functor N∗.

Lemma 5.1. For an object V 6= 0 of I , the S-module N∗(V ) is non-canonically
isomorphic to FΣ∞V S0.

The subtlety in the construction of N∗ lies in its orthogonal functoriality. We
cannot just define N∗(V ) to be FΣ∞V S0, since that would not give a functor of V .
We begin our proofs with the following observation.
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Lemma 5.2. For S-modules M , N#M is a positive Ω-spectrum.

Proof. We have (N#M)(V ) = M (N∗(V ),M). For V ⊂ W ,

ΩW−V (N#M)(W ) ∼= M (ΣW−V N∗(W ),M)

and the adjoint structure map σ̃ : N#(V ) −→ ΩW−V N#(W ) is induced from the
evaluation map ε : ΣW−V N∗(W ) −→ N∗(V ). Let V 6= 0. Then ε is a weak
equivalence between cofibrant S-modules and σ̃ is thus a weak equivalence. ¤

Proof of Lemma 3.3. By Lemma 5.1 and Theorem 4.5, for an S-module M
and an indexing space V in U , we have

(N#M)(V ) ∼= M (FΣ∞V S0,M) ∼= S (Σ∞V S0,VM) ∼= T (S0, (VM)(V )) = (VM)(V ),

which is weakly equivalent to M(V ). These natural weak equivalences imply a
natural isomorphism π∗N#M ∼= π∗M , and it follows that N# creates the weak
equivalences in M . Alternatively, a map of orthogonal positive Ω-spectra or of
S-modules is a weak equivalence if and only if its map on V th spaces is a weak
equivalence for V 6= 0 in U , hence our weak equivalences of V th spaces show
directly that a map f of S-modules is a weak equivalence if and only if N#f is a
weak equivalence of orthogonal spectra. ¤

Proof of Lemma 3.4. Let f : M −→ N be a q-fibration of S-modules. We
must show that N#f is a positive q-fibration of orthogonal spectra. Since N#f is
a map of positive Ω-spectra, we need only show that the V th space map of N#f is
a Serre fibration for V 6= 0, and it suffices to show this for V = Rn, n > 0. By [6,
VII.4.6], f is a q-fibration if and only if it satisfies the RLP (right lifting property)
with respect to all maps

i0 : FΣ∞n CSq −→ FΣ∞n CSq ∧ I+.

An easy adjunction argument from the isomorphism N∗(Rn) ∼= FΣ∞n S0 and the
fact that F and the Σ∞n are right exact shows that

f∗ : M (N∗(Rn), M) −→ M (N∗(Rn), N)

satisfies the RLP with respect to the maps i0 : CSq −→ CSq ∧ I+ and is therefore
a Serre fibration. ¤

Remark 5.3. In principle, the specified RLP states that f∗ is a based Serre
fibration, whereas what we need to show is that f∗ is a classical Serre fibration,
that is, a based map that satisfies the RLP in T with respect to the maps i0 :
Dq

+ −→ Dq
+ ∧ I. However, when n > 0, f∗ is isomorphic to the loop of a based

Serre fibration, and the loop of a based Serre fibration is a classical Serre fibration.

Proof of Proposition 3.5. We first prove that η : FnA → N#NFnA is a
weak equivalence for any based CW complex A; the only case we need is when A is
a sphere. Here Fn = PFn and it suffices to prove that the adjoint map of prespectra

η̄ : FnA → UN#NFnA

is a weak equivalence. By a check of definitions and use of Lemma 5.1,

NFnA ∼= NFnS0 ∧A ∼= N∗(Rn) ∧A ∼= FΣ∞n S0 ∧A ∼= FΣ∞n A.
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Therefore, using Lemma 5.1 and Proposition 4.5, we have weak equivalences

(N#NFnA)(Rq) ∼= M (FΣ∞q S0,FΣ∞n A) ∼= S (Σ∞q S0,VFΣ∞n A)

' S (Σ∞q S0, Σ∞n A) ∼= (Σ∞n A)(Rq).

Tracing through definitions, we find that, up to homotopy, the structural maps
coincide under these weak equivalences with those of Σ∞n A ∼= LFnA and the map
η̄ induces the same map of homotopy groups as the unit FnA −→ `LFnA of the
adjunction of Proposition 4.3. Therefore η̄ is a weak equivalence. By [20, 7.4]
and Theorem 4.10, we see that the class of orthogonal spectra for which η is a
weak equivalence is closed under wedges, pushouts along h-cofibrations, sequential
colimits of h-cofibrations, and retracts. Therefore η is a weak equivalence for all
cofibrant orthogonal spectra. ¤

6. The construction of the functor N∗

We prove Theorem 3.1 here. Implicitly, we shall give two constructions of the
functor N∗. The theory of S-modules is based on a functor called the twisted
half-smash product, denoted n, the definitive construction of which is due to Cole
[6, App]. The theory of orthogonal spectra is the theory of diagram spaces with
domain category J . Both n and J are defined in terms of Thom spaces associated
to spaces of linear isometries. We first define N∗ in terms of twisted half-smash
products. We then outline the definition of twisted half-smash products in terms
of Thom spaces and redescribe N∗ in those terms. That will make the connection
with the category J transparent, since the morphism spaces of J are Thom spaces
closely related to those used to define the relevant twisted half-smash products.

Here we allow the universe U on which we index our coordinate-free prespectra
and spectra to vary. We write PU and S U for the categories of prespectra and
spectra indexed on U . We have a forgetful functor ` : S U −→ PU with a left
adjoint spectrification functor L : PU −→ S U . We have a suspension spectrum
functor ΣU that is left adjoint to the zeroth space functor ΩU . Let SU = ΣU (S0).
The functors ΣU and ΩU are usually denoted Σ∞ and Ω∞, but we wish to emphasize
the choice of universe rather than its infinite dimensionality. We write Σ∞ and
Ω∞ when U = R∞, and we then write SU = S. More generally, for a finite
dimensional sub inner product space V of U , we have a shift desuspension functor
ΣU

V : T −→ S U , denoted Σ∞V when U = R∞. It is left adjoint to evaluation at V .
For inner product spaces U and U ′, let I (U,U ′) be the space of linear isometries

U −→ U ′, not necessarily isomorphisms. It is contractible when U ′ is infinite
dimensional [23, 1.3]. We have a twisted half-smash functor

I (U,U ′)n (−) : S U −→ S U ′ ,

whose definition we shall recall shortly. It is a “change of universe functor” that
converts spectra indexed on U to spectra indexed on U ′ in a well-structured way.

Now fix U = R∞ and consider the universes V ⊗U for V ∈ I . Identify V with
V ⊗ R ⊂ V ⊗ U . In the language of [6], we define

(6.1) N∗(V ) = S ∧L (I (V ⊗ U,U)n ΣV⊗U
V (S0)).

To make sense of this, we must recall some of the definitional framework of
[6]. We have the linear isometries operad L with nth space L (n) = I (Un, U).
The operad structure maps are given by compositions and direct sums of linear
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isometries, and they specialize to give a monoid structure on L (1), a left action
of L (1) on L (2), and a right action of L (1) × L (1) on L (2). For a spectrum
E ∈ S , L (1)nE is denoted LE. The monoid structure on L (1) induces a monad
structure on the functor L : S −→ S .

Definition 6.2. An L-spectrum is an algebra over the monad L. Let S [L]
denote the category of L-spectra. The functor L takes values in L-spectra and gives
the free L-spectrum functor L : S −→ S [L].

By [6, I§5], we have an “operadic smash product”

(6.3) E ∧L E′ = L (2)nL (1)×L (1) E Z E′

between L-spectra E and E′, where EZE′ is the external smash product indexed on
U2 [6, I§2]. The sphere S is an L-spectrum, and the action of L (1) by composition
on I (V ⊗ U,U) induces a structure of L-spectrum on I (V ⊗ U,U)n ΣV⊗U

V (S0).
An L-spectrum E has a unit map λ : S ∧L E −→ E that is always a weak

equivalence and sometimes an isomorphism [6, I§8 and II§1]; we redescribe it in
VI§6. In particular, λ is an isomorphism when E = S, when E = S ∧L E′ for any
L-spectrum E′, and when E is the operadic smash product of two S-modules [6,
I.8.2, II.1.2].

Definition 6.4. An S-module is an L-spectrum E such that λ is an isomor-
phism. The smash product ∧ in the category M of S-modules is the restriction to
S-modules of ∧L . The functor J : S [L] −→ M specified by

JE = S ∧L E

carries L-spectra to weakly equivalent S-modules. The functor F : S −→ M of
Proposition 4.5 is the composite J ◦ L.

We can rewrite (6.1) as

(6.5) N∗(V ) = J(I (V ⊗ U,U)n ΣV⊗U
V (S0)).

This makes sense of (6.1). It even makes sense when V = {0}. Here we interpret
spectra indexed on the universe {0} as based spaces. The space I ({0}, U) is a point,
namely the inclusion iU : {0} −→ U . The functor iU∗ = iU n (−) : T −→ S U is
left adjoint to the zeroth space functor, hence iU∗ ∼= ΣU . Thus (6.5) specializes to
give N∗(0) = JS and, as we have noted, λ : JS −→ S is an isomorphism.

The evident homeomorphisms

ΣV ′−V A ∧ ΣW ′−W B ∼= Σ(V ′−V )⊕(W ′−W )(A ∧B)

for V ⊂ V ′ in V ⊗ U and W ⊂ W ′ in W ⊗ U , induce an isomorphism

(6.6) ΣV⊗U
V (A) Z ΣW⊗U

W (B) ∼= Σ(V⊕W )⊗U
V⊕W (A ∧B)

upon spectrification, where

Z : S V⊗U ×S W⊗U −→ S (V⊕W )⊗U

is the external smash product. Using the formal properties [6, A.6.2 and A.6.3] of
twisted half-smash products, the canonical homeomorphism

L (2)×L (1)×L (1) (I (V ⊗ U,U)×I (W ⊗ U,U)) ∼= I ((V ⊕W )⊗ U,U)
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given by Hopkins’ lemma [6, I.5.4], and the associative and unital properties of ∧L

of [6, I§§5,8], we see that the isomorphisms (6.6) induce isomorphisms

(6.7) φ : N∗(V ) ∧ N∗(W ) −→ N∗(V ⊕W ).

We may identify Rn⊗U with Un. With the notations of [6, II.1.7], the canon-
ical cofibrant sphere S-modules are Sn

S = FSn, where Sn is the canonical sphere
spectrum. For n ≥ 0, S−n = Σ∞n S0. Thus N∗(R) = S−1

S and, for n ≥ 1,

(6.8) N∗(Rn) ∼= (S−1
S )(n) ∼= S−n

S = FΣ∞n S0,

where the middle isomorphism is only canonical up to homotopy. The first isomor-
phism is Σn-equivariant, which is the essential point of Remark 3.7. If dimV = n,
n > 0, then N∗(V ) is isomorphic to N∗(Rn) and is thus cofibrant. Moreover, Σ∞V is
isomorphic to Σ∞n , so that Lemma 5.1 holds.

Intuitively, (6.5) gives a coordinate-free generalization of the canonical cofi-
brant negative sphere S-modules used in [6]. We must still prove the contravariant
functoriality in V of N∗(V ), check the naturality of φ, and prove that the evaluation
maps ε : N∗(V ) ∧ SV −→ N∗(0) are weak equivalences. While this can be done
directly in terms of the definitions on hand, it is more illuminating to review the
definition of the half-smash product and relate it directly to the morphism spaces
of the category J . We introduce a category Θ of Thom spaces for this purpose.
Its objects will be inclusions V ⊂ U , which we secretly think of as symbols U

V since
these objects are closely related to the functors ΣU

V used in our definition of N∗.
We think of TU,U ′

V,V ′ in the following definition as a slightly abbreviated notation for
the morphism space Θ(U

V , U ′
V ′).

Definition 6.9. Let U and U ′ be finite or countably infinite dimensional real
inner product spaces. Let V and V ′ be finite dimensional sub inner product spaces
of U and U ′. Let I U,U ′

V,V ′ be the space of linear isometries f : U −→ U ′ such that
f(V ) ⊂ V ′. For V ⊂ W , let W − V denote the orthogonal complement of V in W .
Let EU,U ′

V,V ′ be the subbundle of the product bundle I U,U ′

V,V ′ × V ′ whose points are

the pairs (f, x) such that x ∈ V ′− f(V ). Let TU,U ′

V,V ′ be the Thom space of EU,U ′

V,V ′ ; it
is obtained by applying fiberwise one-point compactification and identifying all of
the points at ∞. The spaces TU,U ′

V,V ′ are the morphism spaces of a based topological
Thom category Θ whose objects are the inclusions V ⊂ U . Composition

(6.10) ◦ : TU ′,U ′′

V ′,V ′′ ∧ TU,U ′

V,V ′ −→ TU,U ′′

V,V ′′

is defined by (g, y)◦(f, x) = (g◦f, g(x)+y). Points (idU , 0) give identity morphisms.
If I U,U ′

V,V ′ is empty, TU,U ′

V,V ′ is a point. For any U and any object V ′ ⊂ U ′,

(6.11) TU,U ′

0,V ′ = I (U,U ′)+ ∧ SV ′ .

The category Θ is symmetric monoidal with respect to direct sums of inner product
spaces. On morphism spaces, the map

(6.12) ⊕ : T
U1,U ′1
V1,V ′1

∧ T
U2,U ′2
V2,V ′2

−→ T
U1⊕U2,U ′1⊕U ′2
V1⊕V2,V ′1⊕V ′2

sends ((f1, x1), (f2, x2)) to (f1 ⊕ f2, x1 + x2). Note that we have a trivialization
isomorphism of bundles

EU,U ′

V,V ′ × V ∼= I U,U ′

V,V ′ × V ′
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and thus an “untwisting isomorphism”

(6.13) TU,U ′

V,V ′ ∧ SV ∼= I U,U ′

V,V ′+ ∧ SV ′ .

The theory of orthogonal spectra is based on the full sub-category of Θ whose
objects are the identity inclusions V ⊂ V . If V ⊂ V ′, then it is easily verified that

TV,V ′

V,V ′
∼= O(V ′)+ ∧O(V ′−V ) SV ′−V .

Comparing with the definitions in [20, 2.1, 4.4], we obtain the following result.

Proposition 6.14. The full subcategory of Θ whose objects are the identity
maps V ⊂ V is isomorphic as a based symmetric monoidal category to the category
J such that an orthogonal spectrum is a continuous based functor J −→ T .

We regard this isomorphism of categories as an identification.
In contrast, the twisted half-smash product is defined in terms of the full sub

category of Θ whose objects are the inclusions V ⊂ U in which U is infinite dimen-
sional. The following definition and lemma are taken from [6, A.4.1–A.4.3].

Definition 6.15. Fix V ⊂ U and U ′. Define a prespectrum TU,U ′

V,− indexed on

U ′ by letting its V ′th space be TU,U ′

V,V ′ and letting its structure map for V ′ ⊂ W ′ be
induced by passage to Thom spaces from the evident bundle map

EU,U ′

V,V ′ ⊕ (W ′ − V ′) ∼= EU,U ′

V,W ′ |I U,U′
V,V ′

−→ EU,U ′

V,W ′ .

For V ⊂ W , define a map τ : ΣW−V TU,U ′

W,− −→ TU,U ′

V,− of prespectra indexed on U ′

by letting its V ′th map be induced by passage to Thom spaces from the evident
bundle map

EU,U ′

W,V ′ ⊕ (W − V ) ∼= EU,U ′

V,V ′ |I U,U′
W,V ′

−→ EU,U ′

V,V ′ .

Observe that TU,U ′

V,− is an inclusion prespectrum and define MU,U ′

V,− = LTU,U ′

V,− . (That
is, write M consistently for Thom spectra associated to Thom prespectra T .)

Lemma 6.16. The spectrified map

Lτ : ΣW−V MU,U ′

W,− ∼= L(ΣW−V TU,U ′

W,− ) −→ LTU,U ′

V,− = MU,U ′

V,−
is an isomorphism of spectra indexed on U ′.

The following is a special case of the definition of the twisted half smash product
given in [6, A.5.1].

Definition 6.17. Let E be a spectrum indexed on U . Define

I (U,U ′)n E = colimV MU,U ′

V,− ∧ EV

where the colimit (in S U ′) is taken over the maps

MU,U ′

V,− ∧ EV ∼= ΣW−V MU,U ′

W,− ∧ EV ∼= MU,U ′

W,− ∧ ΣW−V EV −→ MU,U ′

W,− ∧ EW

induced by the structure maps of E.

The following result of Cole [6, A.3.9] is pivotal.

Proposition 6.18. For based spaces A, there is a natural isomorphism

I (U,U ′)n ΣU
V A ∼= MU,U ′

V,− ∧A

of spectra indexed on U ′.
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The proof is simply the observation that, in this case, the defining colimit
stabilizes at the V th stage. Returning to the fixed choice of U = R∞ and taking
A = S0, this gives the alternative description

(6.19) N∗(V ) ∼= JMV⊗U,U
V,− .

We regard this isomorphism as an identification and use it to show the required
functoriality of the N∗(V ).

Definition 6.20. Tensoring linear isometries V −→ W with idU , we obtain a
map µ : TV,W

V,W −→ TV⊗U,W⊗U
V,W . The evaluation maps N∗(W )∧J (W,V ) −→ N∗(V )

of the contravariant functor N∗ are defined to be the maps

JMW⊗U,U
W,− ∧ TV,W

V,W

id∧µ−−−→ JMW⊗U,U
W,− ∧ TV⊗U,W⊗U

V,W

∼= JL(TW⊗U,U
W,− ∧ TV⊗U,W⊗U

V,W )
JL(◦)−−−→ JL(TV⊗U,U

V,− ) = JMV⊗U,U
V,−

induced by composition in the category Θ.

The naturality of the maps φ of (6.7) is now checked by rewriting these maps
in terms of Thom complexes, using (6.12). Finally, we have the following lemma.

Lemma 6.21. The evaluation map ε : N∗(V )∧SV −→ N∗(0) ∼= S of the functor
N∗ is a weak equivalence. When V = R, ε factors as the composite of the canonical
isomorphism N∗(R)∧S1 ∼= SS and the canonical cofibrant approximation SS −→ S.

Proof. Using the untwisting isomorphisms

TV⊗U,U
V,V ′ ∧ SV ∼= I V⊗U,U

V,V ′ ∧ SV ′

and applying L, we obtain an isomorphism of L-spectra

MV⊗U,U
V,− ∧ SV ∼= I (V ⊗ U,U)+ ∧ S.

Applying J and using JS ∼= S, we find by (6.19) that

(6.22) N∗(V ) ∧ SV ∼= J((I (V ⊗ U,U)+ ∧ S) ∼= I (V ⊗ U,U)+ ∧ S.

Under this isomorphism, the evaluation map corresponds to the homotopy equiva-
lence induced by the evident homotopy equivalence I (V ⊗ U,U)+ −→ S0. When
V = R, LS ∼= L (1)+ ∧ S and the isomorphism just given is the cited canonical
isomorphism N∗(R) ∧ S1 ∼= SS . ¤

7. The functor M and its comparison with N

We begin with the underlying prespectrum and spectrification functors:

(7.1) I S
U // P

L // S .

The functor M is the composite of the following three functors:

(7.2) I S
U // P[L] L // S [L]

J // M .

The categories P[L] and S [L] are the categories of L-prespectra and L-spectra.
We have already indicated what L-spectra are, and we shall define L-prespectra
shortly. The functors U and L in (7.2) are restrictions of those of (7.1), and the
functor J is specified in Definition 6.4. Thus, to construct M, we must define L-
prespectra and show that the functors U and L induce functors from orthogonal
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spectra to L-prespectra and from L-prespectra to L-spectra. The arguments are
already implicit in [23].

Definition 7.3. For a prespectrum X and a linear isometry f : U −→ U ,
define a prespectrum f∗X by (f∗X)(V ) = X(fV ), with structure maps

X(fV ) ∧ SW−V id∧Sf
// X(fV ) ∧ Sf(W−V ) σ // X(fW ).

Observe that f∗X is a spectrum if X is a spectrum.

Definition 7.4. An L-prespectrum is a prespectrum X together with maps
ξ(f) : X −→ f∗X of prespectra for all linear isometries f : U −→ U such that
ξ(id) = id, ξ(f ′) ◦ ξ(f) = ξ(f ′ ◦ f), and the function

ξ : TU,U
V,W ∧X(V ) −→ X(W )

specified by
ξ((f, w), x)) = σ(ξ(f)(x), w)

is a continuous.

In Definition 6.2, we defined a L-spectrum to be an algebra over the monad
L. Inspection of the construction of twisted half smash products in §5 (compare
[27, XXII.5.3]) gives the following consistency statement. While this equivalence
of definitions is not difficult, we emphasize that it is central to the mathematics: it
converts structures that are defined one isometry at a time into structures that are
defined globally in terms of spaces of isometries.

Lemma 7.5. An L-spectrum is an L-prespectrum that is a spectrum.

Lemma 7.6. The functor L : P −→ S induces a functor P[L] −→ S [L].

Proof. For a linear isometry f : U −→ U , the functor f∗ : P −→ P and its
restriction f∗ : S −→ S have left adjoints f∗. The functor f∗ on spectra is defined
in terms of the functor f∗ on prespectra by f∗ = Lf∗` [19, II§1]. Let X be an L–
prespectrum. The map ξ(f) has an adjoint map f∗X −→ X; applying L, we obtain
a map f∗LX −→ LX, and its adjoint gives an induced map ξ(f) : LX −→ f∗LX.
The properties ξ(id) = id and ξ(f ′ ◦ f) = ξ(f ′) ◦ ξ(f) are inherited from their
prespectrum level analogues. Since the functor L is continuous and commutes with
smash products with spaces, the continuity and equivariance condition on ξ in
Definition 7.4 are also inherited by LX. ¤

Lemma 7.7. The functor U : I S −→ P takes values in P[L].

Proof. We obtain ξ(f) : X −→ f∗X by applying the functoriality of X and
the naturality of σ to the restrictions of linear isometries f : U −→ U to linear
isometric isomorphisms f : V −→ f(V ) for indexing spaces V . It is clear by
functoriality that ξ(id) = id and ξ(f ′ ◦ f) = ξ(f ′) ◦ ξ(f). The continuity and
equivariance condition on ξ in Definition 7.4 follow from the continuity, naturality
and equivariance of σ. ¤

Remark 7.8. For general L-prespectra, the map ξ(f) : X(V ) −→ X(fV )
depends on the linear isometry f : U −→ U and not just on its restriction V −→
f(V ). For those L-prespectra that come from orthogonal spectra, this map does
depend solely on the restriction of f . For this reason, there is no obvious functor
P[L] −→ I S .
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The following lemmas give the basic formal properties of the functor M.

Lemma 7.9. The functor M is right exact.

Proof. The functors U, L, and J are each right exact. This is obvious for U
from the spacewise specification of colimits and smash products with based spaces,
and it holds for L and J since these functors are continuous left adjoints. ¤

Lemma 7.10. There is a canonical isomorphism λ : M(SI ) −→ S.

Proof. Clearly U(SI ) is the usual sphere prespectrum and thus S = LU(SI ).
As we have already used, JS ∼= S by [6, I.8.2]. ¤

Lemma 7.11. The functor M is lax symmetric monoidal.

Proof. We have MSI
∼= S, and we must construct a natural map

φ : M(X) ∧M(X ′) −→M(X ∧I X ′)

for orthogonal spectra X and X ′. The functor J is strong symmetric monoidal, so

(JE) ∧ (JE′) ∼= J(E ∧L E′)

for L-spectra E and E′. Thus it suffices to construct a map of L-spectra

φ : LU(X) ∧L LU(X ′) −→ LU(X ∧I X ′),

and φ is obtained by passage to coequalizers from a map

ξ : L (2)n LU(X) Z LU(X ′) −→ LU(X ∧I X ′).

To construct ξ, it suffices to construct maps

ξ(f) : LU(X)(V ) ∧ LU(X ′)(V ′) −→ LU(X ∧I X ′)(f(V ⊕ V ′))

for linear isometries f ∈ L (2) such that the ξ(f) satisfy analogues of the conditions
in Definition 7.4 [27, XXII.5.3]. The functoriality of X and X ′ gives maps

X(V ) ∧X ′(V ′) −→ X(f(V )) ∧X ′(f(V ′)).

The universal property (2.13) that relates the external and internal smash product
of orthogonal spectra gives a map of (J ×J )-spaces

X Z X ′ −→ (X ∧I X ′) ◦ ⊕,

and this gives maps

X(f(V )) ∧X ′(f(V ′)) −→ (X ∧I X ′)(f(V ⊕ V ′)).

We obtain the required maps ξ(f) from the composites

X(V ) ∧X ′(V ′) −→ (X ∧I X ′)(f(V ⊕ V ′))

by passing to prespectra and then to spectra, as in the proof of Lemma 7.6. The
coherence properties of the maps φ obtained from these maps ξ are shown by formal
verifications from the properties of the various smash products. ¤

Turning to homotopical properties, we have the following observation. Recall
Remark 4.9.

Lemma 7.12. If X is a positive inclusion orthogonal spectrum, then there are
natural isomorphisms

π∗(X) ∼= π∗(M(X)).
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Proof. We have a natural weak equivalence λ : M(X) = JLU(X) −→ LU(X)
for any X, and the unit map η : UX −→ `LU(X) is also a weak equivalence. ¤

Now the following theorem compares M and N.

Theorem 7.13. There is a symmetric monoidal natural transformation

α : N −→M

such that α : NX −→MX is a weak equivalence if X is cofibrant.

Proof. Recall the definitionM∗ = M◦DJ : J −→ M (see Definition 2.3 and
Notation 2.6). By Corollary 2.7, to construct α, it suffices to construct a natural
transformation α∗ : N∗ −→M∗. Thus consider the orthogonal spectra V ∗ specified
by V ∗(W ) = J (V, W ). By definition, M∗V = MV ∗ = JLUV ∗. By Proposition
6.14, for W ⊂ U ,

UV ∗(W ) ∼= TV,W
V,W .

For V ⊂ W ⊂ Z, the structural map agrees under this isomorphism with

⊕ : TV,W
V,W ∧ SZ−W ∼= TV,W

V,W ∧ T 0,Z−W
0,Z−W −→ TV,Z

V,Z .

We obtain a map of Thom spaces TV⊗U,U
V,W −→ TV,W

V,W by restricting to V the linear
isometries f : V ⊗ U −→ U such that f(V ) ⊂ W . These maps define a map of
prespectra TV⊗U,U

V,− −→ UV ∗. Applying JL and using (6.19), there results a map of
S-modules

α∗ : N∗(V ) = JLTV⊗U,U
V,− −→ JLUV ∗ =M∗(V ).

It is an exercise to verify from Proposition 6.14 and the definitions that these maps
specify a natural transformation that is compatible with smash products. Using
Theorem 2.5, define

α = α∗ ⊗J id : NX = N∗ ⊗J X −→M∗ ⊗J X ∼=MX.

Then α is a symmetric monoidal natural transformation, and it remains to prove
that α : NX −→ MX is a weak equivalence if X is cofibrant. It suffices to show
this when X is an FI-cell complex (see [20, §6]). Since M and N are right exact, it
follows by the usual induction up the cellular filtration of X, using commutations
with suspension, wedges, pushouts, and colimits, that it suffices to prove that α
is a weak equivalence when X = V ∗. In this case, α reduces to α∗. Again by
suspension, it suffices to prove that

ΣV α∗ : ΣV N∗(V ) −→ ΣVM∗(V )

is a weak equivalence. We have an untwisting isomorphism (6.22) for the source of
ΣV α∗ and an analogous isomorphism

M(V ∗) ∧ SV ∼= I (V, U)+ ∧ S

for its target. Under these isomorphisms, ΣV α∗ is the smash product with S of the
map I (V ⊗U,U) −→ I (V, U) induced by restriction of linear isometries, and this
map is a homotopy equivalence since its source and target are contractible. ¤

Remark 7.14. By Proposition 2.8, the functor M has right adjoint M#. How-
ever, M does not appear to preserve cofibrant objects and does not appear to be
part of a Quillen equivalence.
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8. A revisionist view of infinite loop space theory

In 1971 [21], the second author gave an infinite loop space machine for the
passage from space level data to spectra. That machine gave coordinatized spectra
as its output. He improved the machine and showed how to feed category level data
into it a little later [22]. In 1980 [24], he retooled the machine to give coordinate-
free spectra as its output. The main motivation for the retooling was to show that
space level and category level pairing data give rise to pairings X ∧ Y −→ Z of
spectra. Of course, this long preceded the formal introduction of diagram spectra.
Nevertheless, their use was implicit in [21] and explicit in [24], as we now explain.

We first show that the original machine of [21] takes values in symmetric spec-
tra. We retain most of the notations of [21] and refer to it for details. The machine
of [21] was based on the little n-cubes operads Cn, which, in the earlier language
of PROP’s, were introduced by Boardman and Vogt [3]. The jth space Cn(j) con-
sists of j-tuples of little n-cubes with disjoint interiors. A little n-cube is a map
f : In −→ In that is the product of n linear maps fi : I −→ I, fi(t) = (yi−xi)t+xi

with 0 ≤ xi < yi ≤ 1. Obviously Σn acts on In by permuting coordinates and acts
on little n-cubes by conjugation, (σ · f)(t) = σf(σ−1t) for t ∈ In. This means that
the Cn give a symmetric sequence of operads. Therefore they give an associated
symmetric sequence of monads Cn on the category T of based spaces. Given an-
other operad C , in practice an E∞ or at least spacewise contractible operad, one
can form the product operads Dn = C × Cn. Via the action of the symmetric
groups on the Cn, this is another symmetric sequence of operads, and it gives rise
to another symmetric sequence of monads Dn. Let X be a C -space. By pullback
along the projections to C , X is a Dn-space for all n. There is a map of mon-
ads αn : Cn −→ ΩnΣn for each n, and an adjoint right action of the monad Cn

on the n-fold suspension functor Σn. With the evident actions of the symmetric
groups, the αn give a map of symmetric sequences of monads. Via the projections
Dn −→ Cn, these statements remain true with the Cn replaced by the Dn. Define

Tn(X) = B(Σn, Dn, X).

This is a Σn-space. Taking the product of a little n-cube with the identity map
on Im gives a little (n + m)-cube. This gives a map of operads Cn −→ Cn+m, and
thus a map of operads Dn −→ Dn+m. The functor Σm is given by smashing with
Sm, and we obtain a canonical map

σ : ΣmTn(X) ∼= B(Σn+m, Dn, X) −→ B(Σn+m, Dn+m, X).

This map is (Σn × Σm)-equivariant. This proves the following result.

Theorem 8.1. For a C -space X, the spaces Tn(X) and structure maps σ specify
a symmetric spectrum T (X).

The main theorem in this approach to infinite loop space theory can be stated
as follows [21, 22].

Theorem 8.2. If C is spacewise contractible, then the adjoint structure maps
σ̃ : Tn(X) −→ ΩTn+1(X) are weak equivalences for n > 0, and there is a canonical
map η : X −→ ΩnTn(X) that is a group completion for n > 1.

From the point of view of symmetric spectra, this means that T (X) is a positive
Ω-spectrum (a fibrant object in the positive stable model structure), and the zeroth
space of its associated Ω-spectrum (a fibrant approximation in the stable model
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structure) is a group completion of X. Taking the original point of view of [21,
22], we note that the σ̃ are inclusions, so that we can pass to colimits to obtain
a spectrum E(X) with nth space En(X) = colimm ΩmTm+n(X) together with
a group completion η : X −→ E0(X). Implicitly, E(X) is obtained from the
symmetric spectrum T (X) by applying the forgetful functor to prespectra and
then the spectrification functor. We can instead prolong T (X) to an orthogonal
spectrum and apply the functor N (or M) from orthogonal spectra to S-modules,
a process which retains more precise information.

In [28], this machine is generalized to take Ĉ -spaces as input, where Ĉ is the
“category of operators” associated to C . The discussion above applies just as well
to the generalized machine, which again gives symmetric spectra as output. The
generalized machine accepts Segal’s Γ-spaces as special cases of its input. Roughly
speaking, the uniqueness theorem of [28] says that, up to equivalence, the functor
E and natural group completion η : X −→ E(X) from the category of Ĉ -spaces to
the category of Ω-spectra is unique.

There is a (Σm × Σn)-equivariant pairing of operads (Cm,Cn) −→ Cm+n [21,
8.3]. These pairings fit naturally and easily into the theory of external smash prod-
ucts of symmetric spectra. Using the internalization of the smash product obtained
by Kan extension [16, 20], this gives the starting point for an elaboration of infi-
nite loop space theory that shows how to pass from pairings of spaces with operad
actions (or category of operator actions) to pairings X ∧ Y −→ Z of symmetric
spectra.

While Theorem 8.1 is a new observation, its coordinate-free analogue was ex-
plained in detail in 1980 [24, §§5, 6], where orthogonal spectra were introduced
under the name of I∗-prespectra. Moreover, the analogue was used there to give
the elaboration of infinite loop space theory that shows how to pass from pairings of
spaces with operad actions (or category of operator actions) to pairings of orthog-
onal spectra defined in terms of external smash products. Now that we understand
the internalization of the smash product, the arguments given there have stronger
conclusions. Implicitly the passage from orthogonal spectra to spectra in [24] was
obtained by applying the forgetful functor to prespectra and then the spectrification
functor. This does not preserve point-set level smash products, and we can instead
use the functor N (or just M). We conclude that all statements in [24] about the
construction of pairings X ∧Y −→ Z of spectra in the homotopy category actually
give pairings of S-modules that are well-defined and enjoy good algebraic properties
on the point-set level.

We briefly recall how the theory of [24] goes. For a finite dimensional real
inner product space V , there is a Steiner operad KV [33]. The group I (V, V )
acts on it in a similar fashion to the action of Σn on Cn. In fact, the KV give the
object function of a functor K from I to the category of operads [24, 6.7]. We
can mimic the discussion above, but replacing the little cubes operads Cn with the
Steiner operads KV , setting DV = C ×KV . For a Ĉ -space X, we construct spaces

TV (X) = B(ΣV , D̂, X)

and maps
σ : ΣW−V TV (X) −→ TW (X).

(Technically, we have suppressed use of a forgetful functor in writing down the bar
construction [24, p. 325]). We obtain the following conclusion, which is [24, 6.1].
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Theorem 8.3. For a Ĉ -space X, the spaces TV (X) and structure maps σ
specify an orthogonal spectrum T (X).

Pairings of operads, categories of operators, C -spaces, Ĉ -spaces, and permu-
tative categories are studied and interrelated in [24, §§1-4]. There are pairings
(KV ,KW ) −→ KV⊕W analogous to the pairings (Cm, Cn) −→ Cm+n. This mate-
rial provides input for the infinite loop space theory of pairings and is unchanged by
the present revisionist attitude towards the output of that theory. By internalizing
the output external pairings, we obtain the following reinterpretation of [24, 6.2].

Theorem 8.4. Let ∧ : (C , D) −→ E be a pairing of operads. Then pairings
f : (X, Y ) −→ Z of a Ĉ -space X and a D̂-space Y to an Ê -space Z functorially
determine maps Tf : TX ∧ TY −→ TZ of orthogonal spectra.

In particular, by [24, 2.2], this applies to pairings of permutative categories.
There is an analogous result [24, 6.3] for ring spectra. In [24], ring spectra were
thought of in the classical, up to homotopy, sense. While [24, 6.3] can now be rein-
terpreted on the point set level, the result then seems to be without application since
the resulting input data are too stringent to arise in nature; see [24, p. 310]. Thus
the present reinterpretation of output data does not obviate the need for the much
more elaborate multiplicative infinite loop space theory of [25]. That theory shows
how to pass from bipermutative categories to E∞ ring spectra, alias commutative
S-algebras. By the comparisons here and in [20], it follows that bipermutative
categories give rise to commutative symmetric ring spectra and commutative or-
thogonal ring spectra. It is plausible that a different line of argument might give a
direct construction of this sort.

The equivariant generalization of infinite loop space theory shows how to con-
struct G-spectra from equivariant space and category level input. The natural
output of the equivariant version of the machine that we have been discussing is
given by orthogonal G-spectra, which are the objects of study of the rest of this
monograph. We intend to return to equivariant infinite loop space theory elsewhere.



CHAPTER II

Equivariant orthogonal spectra

This chapter parallels [20, Part I], and we focus on points of equivariance. It
turns out that we need to distinguish carefully between topological G-categories
CG, which are enriched over G-spaces, and their G-fixed topological categories GC ,
which are enriched over spaces. After explaining this in §1, we define orthogonal
G-spectra in §2, discuss their smash product in §3, and reinterpret the definition
in terms of diagram spaces in §4. Recall that G is assumed throughout to be a
compact Lie group.

1. Preliminaries on equivariant categories

Recall that T denotes the category of based spaces, where spaces are under-
stood to be compactly generated (= weak Hausdorff k-spaces). Let GT denote the
category of based G-spaces and based G-maps. Then GT is complete and cocom-
plete, and it is a closed symmetric monoidal category under its smash product and
function G-space functors. For based G-spaces A and B, we write F (A,B) for the
function G-space of all continuous maps A −→ B, with G acting by conjugation.
Thus

GT (A,B) = F (A, B)G.

That is, a G-map A −→ B is a fixed point of F (A,B).
It is useful to think of GT in a different fashion. Let TG be the category of

based G-spaces (with specified action of G) and non-equivariant maps, which we
henceforward call “arrows” to avoid confusion between maps and G-maps. Thus

TG(A,B) = F (A,B).

Then TG is enriched over GT : its morphism spaces are G-spaces, and composition
is given by G-maps. The objects of GT and TG are the same. If we think of G as
acting trivially on the collection of objects (after all, gA = A for all g ∈ G), then
we may think of GT as the G-fixed point category (TG)G.

Observe that TG is also closed symmetric monoidal under the smash product
and function G-space functors, with S0 as unit. If we ignore the fact that TG is
enriched over GT , we obtain inverse equivalences of categories TG −→ T and
T −→ TG by forgetting the action of G on G-spaces and by giving spaces the
trivial action by G. Of course, limits and colimits of diagrams of G-spaces (taken
in T ) only inherit sensible G-actions when the maps in the diagrams are G-maps,
so that we are working in GT .

Many of our equivariant categories will come in pairs like this: we will have a
category CG consisting of G-objects and nonequivariant “arrows”, and a category
GC with the same objects and the G-maps between them. We can think of GC as
(CG)G, although the notation would be inconvenient. Formally, CG will be enriched
over GT , so that its hom sets CG(C,D) are based G-spaces and composition is given

29
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by continuous G-maps. We call such a category a topological G-category. As in [20],
when the morphism spaces of CG are given without basepoints, we implicitly give
them disjoint G-fixed basepoints.

In all cases that we will encounter, we will have a faithful underlying based
G-space functor S : CG −→ TG, so that S embeds CG(C, D) as a sub G-space of
F (SC, SD). We can define a G-map C −→ D to be a fixed point of CG(C, D), and
we will have

GC (C,D) = CG(C, D)G ∼= SCG(C, D) ∩ F (SC,SD)G.

We emphasize that it is essential to think in terms of such topological G-categories
CG even when the categories of ultimate interest are the associated categories GC
of G-objects and G-maps between them. Note that, when constructing model
structures, we must work in GC in order to have limits and colimits.

A continuous G-functor X : CG −→ DG between topological G-categories is a
functor X such that

X : CG(C, D) −→ DG(X(C), X(D))

is a map of G-spaces for all pairs of objects of CG. In terms of elementwise actions,
this means that gX(f)g−1 = X(gfg−1). It follows that X takes G-maps to G-
maps. From now on, all functors defined on topological categories are assumed to
be continuous.

A natural G-map α : X −→ Y between G-functors CG −→ DG consists of
G-maps α : X(C) −→ Y (D) such that the evident naturality diagrams

X(C) //

α

²²

X(D)

α

²²
Y (C) // Y (D)

commute in DG for all arrows (and not just all G-maps) C −→ D.
Since the present point of view has not appeared explicitly in previous studies

of equivariant stable homotopy theory, we give the definitions of the categories PG

and GP of G-prespectra and their full subcategories SG and GS of G-spectra.
See [19] or [27] for more details. In fact, we have such categories for any G-universe
U , and we write PU

G , etc, when necessary for clarity.

Definition 1.1. A G-universe U is a sum of countably many copies of each real
G-inner product space in some set of irreducible representations of G that includes
the trivial representation; U is complete if it contains all irreducible representations;
U is trivial if it contains only trivial representations. An indexing G-space in U is a
finite dimensional sub G-inner product space of U . When V ⊂ W , we write W −V
for the orthogonal complement of V in W . Define V (U) to be the collection of all
real G-inner product spaces that are isomorphic to indexing G-spaces in U .

Write SV for the one-point compactification of V , and write ΣV A = A ∧ SV

and ΩV A = F (SV , A) for the resulting generalized loop and suspension functors.

Definition 1.2. A G-prespectrum X consists of based G-spaces X(V ) for
indexing G-spaces V ⊂ U and based G-maps σ : ΣW−V X(V ) −→ X(W ) for
V ⊂ W ; here σ is the identity if V = W , and the evident transitivity diagram
must commute when V ⊂ W ⊂ Z. An arrow f : X −→ Y of prespectra consists of
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based maps f(V ) : X(V ) −→ Y (V ) that commute with the structure maps σ; f is
a G-map if the f(V ) are G-maps. A G-spectrum is a G-prespectrum whose adjoint
structure G-maps σ̃ : X(V ) −→ ΩW−V X(W ) are homeomorphisms of G-spaces.

To fit this into the general framework above, define SX to be the based G-space∏
V⊂U X(V ). Then S : PG −→ TG is a faithful functor, and an arrow f : X −→ Y

of prespectra is a G-map if and only if Sf is a fixed point of F (SX, SY ). In previous
work in this area, the focus is solely on the G-fixed categories GP and GS .

When U is the trivial universe, GS is the category of naive G-spectra, or
spectra with G-actions. When U is a complete universe, GS is the category of
genuine G-spectra (and the adjective is omitted): these G-spectra are the objects
of the equivariant stable homotopy category of [19].

Remark 1.3. The reader experienced in category theory may prefer a different
way of thinking about the material of this section, recasting it all in the language
of enriched category theory. From the point of view of enriched category theory,
we have the category GC of G-objects and G-maps, which we view as enriched
over T : all of our categories are topological, meaning that the categorical hom sets
are based topological spaces and composition is given by continuous based maps.
We can also view the category GC as enriched over the category of G-spaces, with
the enrichment given by the “enriched hom” G-spaces CG(C, D). From that point
of view the “category” CG is a red herring, an artifact of our special situation
rather than something intrinsically relevant to the mathematics. Its “arrows”,
the points of the CG(C, D), are special to the concrete nature of our equivariant
situation and should not be thought of as morphisms in a category of their own.
Our G-functors and natural G-maps are just examples of the category theorists’
GT -enriched functors and GT -enriched natural transformations. The naturality
may be expressed conceptually by the commutative diagram of G-spaces

CG(C, D) X //

Y

²²

DG(X(C), X(D))

α∗
²²

DG(Y (C), Y (D))
α∗

// DG(X(C), Y (D)),

with no mention of arrows at all. For accessibility and to parallel more closely the
nonequivariant theory, we have chosen to avoid introducing the extra language of
enriched category theory and to treat CG concretely. Our orthogonal G-spectra are
G-functors, thought of as objects in a category of diagrams. Their domain categories
are of the form CG and not GC , with arrows as morphisms. We find it generally
more convenient to talk about orthogonal G-spectra concretely as ordinary functors
with additional structure rather than as enriched functors in the category theorists’
preferred language. The reader familiar with this language may view the use of CG

as just a notational device to record the use of the GT enrichment of GC .

2. The definition of orthogonal G-spectra

As with G-spectra, we have several kinds of orthogonal G-spectra, depending
on an initial choice of a set of irreducible representations of G. The reader is warned
that, as explained in [20, 7.1], non-trivial orthogonal G-spectra are never G-spectra
in the sense of the Definition 1.2.
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Definition 2.1. Let V = V (U) for some universe U . Define I V
G to be the

(unbased) topological G-category whose objects are those of V and whose arrows
are the linear isometric isomorphisms, with G acting by conjugation on the space
I V

G (V, W ) of arrows V −→ W . Let GI V be the category with the same objects
and the G-linear isometric isomorphisms between them, so that

GI V (V,W ) = I V
G (V, W )G.

Define a canonical G-functor SV
G : I V

G −→ TG by sending V to SV . Clearly I V
G is

a symmetric monoidal category under direct sums of G-inner product spaces, and
the functor SV

G is strong symmetric monoidal.

Variant 2.2. We could relax the conditions on V by allowing any cofinal
subcollection W of V that is closed under finite direct sums. Here “cofinal” means
that, up to G-isomorphism, every V in V is contained in some W in W . We shall
need the extra generality when we consider change of groups.

We usually abbreviate IG = I V
G and SG = SV

G . The case of central interest
is V = A ``, the collection of all finite dimensional real G-inner product spaces,
but we shall work with the general case until we specify otherwise. From here, the
basic categorical definitions and constructions of [20] go through without essential
change. The only new point to keep track of is which arrows are G-maps and which
are not. We give a quick summary. We shall not spell out diagrams, referring to
[20] instead. We choose and fix a skeleton skIG of IG.

Definition 2.3. An IG-space is a (continuous) G-functor X : IG −→ TG.
Let IGT be the category whose objects are the IG-spaces X and whose arrows are
the natural transformations X −→ Y . Topologize the set IGT (X, Y ) of arrows
X −→ Y as a subspace of the product over V ∈ skIG of the function spaces
F (X(V ), Y (V )) and let G act on it by conjugation; this implicitly specifies an
underlying based G-space functor S : IGT −→ TG. Let GI T be the category of
IG-spaces and natural G-maps, so that

GI T (X, Y ) = IGT (X,Y )G.

It is essential to keep in mind the distinction between arrows and G-maps of
IG-spaces. We are interested primarily in the G-maps.

Definition 2.4. For IG-spaces X and Y , define the “external” smash product
X Z Y by

X Z Y = ∧ ◦ (X × Y ) : IG ×IG −→ TG;
thus (X ZY )(V, W ) = X(V )∧Y (W ). For an IG-space Y and an (IG×IG)-space
Z, define the external function IG-space F̄ (Y, Z) by

F̄ (Y, Z)(V ) = IGT (Y,Z〈V 〉),
where Z〈V 〉(W ) = Z(V, W ).

Remark 2.5. The definition generalizes to give the external smash product
functor

I V
G T ×I V ′

G T −→ (I V
G ×I V ′

G )T .

Definition 2.6. An IG-spectrum, or orthogonal G-spectrum, is an IG-space
X : IG −→ TG together with a natural structure G-map σ : X Z SG −→ X ◦ ⊕
such that the evident unit and associativity diagrams commute [20, §§1,8]. Let
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IGS denote the topological G-category of IG-spectra and arrows f : X −→ Y
that commute with the structure G-maps. Explicitly, the following diagrams must
commute, where the σ are G-maps but the f are non-equivariant in general:

X(V ) ∧ SW σ //

f∧id

²²

X(V ⊕W )

f

²²
Y (V ) ∧ SW

σ
// Y (V ⊕W )

If these diagrams commute, then so do the diagrams obtained by replacing f by gf
for g ∈ G, so that IGS (X,Y ) is indeed a sub G-space of IGT (X, Y ). Let GI S
denote the category of IG-spectra and the G-maps between them, so that

GI S (X, Y ) = IGS (X, Y )G.

IG-spectra are G-prespectra by neglect of structure.

Definition 2.7. Let V = V (U). Define a discrete subcategory (identity mor-
phisms only) of IG whose objects are the indexing G-spaces in U . By restricting
functors IG −→ TG to this subcategory and using structure maps for V ⊕(W−V ),
where V ⊂ W , we obtain forgetful functors

U : IGS −→ PG and U : GI S −→ GP.

Working with orthogonal G-spectra, we have an equivariant notion of a functor
with smash product (FSP). It was used in [13] and, implicitly, [14].

Definition 2.8. An IG-FSP is an IG-space X with a unit G-map η : S −→ X
and a natural product G-map µ : X Z X −→ X ◦ ⊕ of functors IG ×IG −→ TG

such that the evident unit, associativity, and centrality of unit diagrams commute
[20, 22.3]. An IG-FSP is commutative if the evident commutativity diagram also
commutes.

We have the topological G-category of IG-FSP’s and its G-fixed point category
of G-maps of IG-FSP’s. An IG-FSP is an IG-spectrum with additional structure.

Lemma 2.9. An IG-FSP has an underlying IG-spectrum with structure G-map

σ = µ ◦ (idZη) : X Z S −→ X ◦ ⊕.

We emphasize that all structure maps (σ, η, µ) in the definitions above must
be G-maps, while their naturality requires their commutation with arrows.

3. The smash product of orthogonal G-spectra

Just as nonequivariantly, we can reinterpret FSP’s in terms of a point-set level
internal smash product on the category of orthogonal G-spectra that is associative,
commutative, and unital up to coherent natural isomorphism.

Theorem 3.1. The category IGS of orthogonal G-spectra has a smash product
∧SG

and function spectrum functor FSG
under which it is a closed symmetric mon-

oidal category with unit SG.

Passing to G-fixed points on morphism spaces, we obtain the following corollary.

Corollary 3.2. The category GI S is also closed symmetric monoidal under
∧SG

and FSG
.
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After this section, we will abbreviate ∧SG to ∧ and FSG to F , but the more
cumbersome notations clarify the definitions.

Definition 3.3. A G-monoid X in IGS is a monoid in GI S ; that is, the
unit SG −→ X and product X ∧SG

X −→ X must be G-maps. Allowing arrows
of such monoids that are not necessarily G-maps, we obtain the G-category of G-
monoids in IGS ; its associated fixed point category is the category of monoids in
GI S . Similarly, we obtain the G-category of commutative G-monoids in IGS ;
its fixed point category is the category of commutative monoids in GI S .

The external notion of an IG-FSP translates to the internal notion of a G-
monoid in IGS .

Theorem 3.4. The categories of IG-FSP’s and of commutative IG-FSP’s are
isomorphic to the categories of G-monoids in IGS and of commutative G-monoids
in IGS .

We adopt a more familiar language for these objects.

Definition 3.5. A (commutative) orthogonal ring G-spectrum is a (commu-
tative) monoid in GI S .

Theorem 3.4 asserts that (commutative) orthogonal ring G-spectra are the same
as (commutative) IG-FSP’s. That is, they are the same structures, but specified
in terms of the internal rather than the external smash product.

We outline the proof of Theorem 3.1, which is the same as in [20]. We first
construct a smash product ∧ on the category of IG-spaces [20, 21.4]. This in-
ternalization of the external smash product is given by left Kan extension and is
characterized by the adjunction homeomorphism of based G-spaces

(3.6) IGT (X ∧ Y,Z) ∼= (IG ×IG)T (X Z Y, Z ◦ ⊕).

An explicit description of ∧ is given in [20, 21.4]. There is one key subtle point.
The Kan extension is a kind of colimit, and our G-categories of diagrams do not
admit colimits in general. However, the assumption that the maps

X : IG(V, W ) −→ TG(X(V ), X(W ))

given by an IG-space X must be G-maps ensures that the equivalence relation
that defines the Kan extension is G-invariant, producing a well-defined IG-space
X ∧ Y : IG −→ TG from IG-spaces X and Y .

There is a concomitant internal function IG-space functor F constructed from
F̄ [20, 21.6].

Proposition 3.7. The category of IG-spaces is closed symmetric monoidal
under ∧ and F . Its unit object is the functor IG −→ TG that sends 0 to S0 and
sends V 6= 0 to a point.

We can reinterpret orthogonal G-spectra in terms of the internal smash product.

Proposition 3.8. The IG-space SG is a commutative G-monoid in IGT , and
the category of orthogonal G-spectra is isomorphic to the category of SG-modules.

From here, we imitate algebra, thinking of ∧ and F as analogues of ⊗ and Hom.



4. A DESCRIPTION OF ORTHOGONAL G-SPECTRA AS DIAGRAM G-SPACES 35

Definition 3.9. For orthogonal G-spectra X and Y , thought of as right and
left SG-modules, define X∧SG

Y to be the coequalizer in the category of IG-spaces
(constructed spacewise) displayed in the diagram

X ∧ SG ∧ Y
µ∧id //
id∧µ′

// X ∧ Y // X ∧SG
Y,

where µ and µ′ are the given actions of SG on X and Y . Then X ∧SG
Y inherits

an IG-spectrum structure from the IG-spectrum structure on X or, equivalently,
Y . The function orthogonal G-spectrum FSG

(X, Y ) is defined dually in terms of a
suitable equalizer [20, §22]

FSG
(Y,Z) // F (Y, Z) // // F (Y ∧ SG, Z).

Theorem 3.1 follows easily from the definitions and the universal property (3.6).

4. A description of orthogonal G-spectra as diagram G-spaces

As in [20, 2.1], there is a category JG = J V
G constructed from IG and SG

such that if we define JG-spaces exactly as in Definition 2.3, then a JG-space
is the same structure as an IG-spectrum. This reduces the study of orthogonal
G-spectra to a special case of the conceptually simpler study of diagram G-spaces.
Rather than repeat the cited formal definition, we give a more concrete alternative
description of JG in terms of Thom complexes, implicitly generalizing I.6.14 to
the equivariant context.

Definition 4.1. We define the topological G-category J V
G . The objects of

J V
G are the same as the objects of I V

G . For objects V and V ′, let I (V, V ′)
be the (possibly empty) G-space of linear isometries from V to V ′; G acts by
conjugation. Of course, a linear isometry is necessarily a monomorphism, but, in
contrast to our definition of the category IG, we no longer restrict attention to
linear isometric isomorphisms. Let E(V, V ′) be the subbundle of the product G-
bundle I (V, V ′)× V ′ consisting of the points (f, x) such that x ∈ V ′ − f(V ). The
G-space J V

G (V, V ′) of arrows V −→ V ′ in J V
G is the Thom G-space of E(V, V ′); it

is obtained from the fiberwise one-point compactification of E(V, V ′) by identifying
the points at infinity, and it is interpreted to be a point if I (V, V ′) is empty. Define
composition

(4.2) ◦ : J V
G (V ′, V ′′) ∧J V

G (V, V ′) −→ J V
G (V, V ′′)

by (g, y)◦(f, x) = (g◦f, g(x)+y). The points (idV , 0) give identity arrows. Observe
that J V

G is symmetric monoidal under the operation ⊕ specified by V ⊕ V ′ on
objects and

(f, x)⊕ (f ′, x′) = (f ⊕ f ′, x + x′)

on arrows. Let GJ V be the G-fixed category with the same objects, so that

GJ V (V,W ) = J V
G (V, W )G.

We usually abbreviate JG = J V
G . If dimV = dim V ′, then a linear isometry

V −→ V ′ is an isomorphism and JG(V, V ′) = IG(V, V ′)+. This embeds IG as a
sub symmetric monoidal category of JG. If V ⊂ V ′, then

JG(V, V ′) ∼= O(V ′)+ ∧O(V ′−V ) SV ′−V .
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In particular, the functor JG(0,−) : IG −→ TG coincides with SG. The category
of JG-spaces is symmetric monoidal, as in Proposition 3.7 but with unit SG, and
we have the following result.

Theorem 4.3. The symmetric monoidal category of IG-spectra is isomorphic
to the symmetric monoidal category of JG-spaces.

Using this reinterpretation, we see immediately that the category GI S is
complete and cocomplete, with limits and colimits constructed levelwise. The cate-
gory IGS is tensored and cotensored over the category TG of based G-spaces. For
an orthogonal G-spectrum X and a based G-space A, the tensor X ∧A is given by
the levelwise smash product, (X ∧ A)(V ) = X(V ) ∧ A, and the cotensor F (A,X)
is given similarly by the levelwise function space. We have both

(4.4) IGS (X ∧A, Y ) ∼= TG(A,IGS (X, Y )) ∼= IGS (X, F (A, Y ))

and, by passage to fixed points,

(4.5) GI S (X ∧A, Y ) ∼= GT (A, IGS (X,Y )) ∼= GI S (X, F (A, Y )).

From the enriched category point of view of Remark 1.3, these adjunctions give
that GI S is tensored and cotensored over GT . Here the enriched category point
of view is clearly the right one to take. When we specialize these adjunctions
to spaces A with trivial G-action IGS (X, Y ) coincides with the categorical hom
space GI S (X, Y ). Thus the enrichment over T takes a more elementary form.
We define homotopies between maps of orthogonal G-spectra by use of the cylinders
X ∧ I+, and similarly for G-homotopies between G-maps.

We also use JG to define represented orthogonal G-spectra that give rise to
left adjoints to evaluation functors, as in [20, §3].

Definition 4.6. For an object V of IG, define the orthogonal G-spectrum V ∗

represented by V by V ∗(W ) = JG(V,W ). In particular, 0∗ = SG. Define the shift
desuspension spectrum functors FV : TG −→ IGS and the evaluation functors
EvV : IGS −→ TG by FV A = V ∗ ∧ A and EvV X = X(V ). Then FV and EvV

are left and right adjoint:

IGS (FV A,X) ∼= TG(A, EvV X).

In order to mesh with notations in [19, 27], we introduce alternative names
for these functors.

Notations 4.7. Let Σ∞ = F0 and Ω∞ = Ev0. These are the suspension
orthogonal G-spectrum and zeroth space functors. Note that Σ∞A = SG ∧ A.
Similarly, let Σ∞V = FV and Ω∞V = EvV ; we let S−V = Σ∞V S0 and call it the
canonical (−V )-sphere.

As in [20, 1.8], we have the following commutation with smash products.

Lemma 4.8. There is a natural isomorphism

FV A ∧ FW B ∼= FV⊕W (A ∧B).

As in [20, 1.6], but with the tensor product of functors notation of I§2, we have
the following description of general orthogonal G-spectra in terms of represented
ones. Observe that V ∗ varies contravariantly in V , so that we have a contravariant
functor D : JG −→ IGS specified by DV = V ∗.
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Lemma 4.9. The evaluation maps V ∗∧X(V ) −→ X of IG-spectra X, thought
of as JG-spaces, induce a natural isomorphism

D⊗JG
X =

∫ V ∈skIG

V ∗ ∧X(V ) −→ X.

The definitions and results of this section have analogues for prespectra. Recall
Definition 2.7.

Definition 4.10. Let V = V (U). We have a subcategory KG = K V
G of JG

such that a KG-space is the same thing as a G-prespectrum. The objects of KG are
the indexing G-spaces in U ; the G-space KG(V, V ′) of arrows is SV ′−V if V ⊂ V ′

and a point otherwise. The forgetful G-functor U : IGS −→ PG has a left adjoint
prolongation functor P. With the notation of I.2.10, PX = D ◦ ι ⊗KG

X, where
ι : KG −→ JG is the inclusion. See also [20, §3].



CHAPTER III

Model categories of orthogonal G-spectra

We explain the model structures on the category of orthogonal G-spectra and
on its various categories of rings and modules. The material here is parallel to the
material of [20, §§5-12]. However, since we are focusing on orthogonal spectra, some
features that were made more complicated by the inclusion of symmetric spectra
in the theory there become simpler here. We focus on points of equivariance. One
new equivariant feature is the notion of a G-topological model category, which is
an equivariant analogue of the classical notion of a topological (or simplicial) model
category. To make sense of this, we must take into account the dichotomy between
CG and GC : only GC can have a model structure, but use of CG is essential to
encode the G-topological structure, which is used to prove the model axioms.

1. The model structure on G-spaces

We take for granted the generalities on nonequivariant topological model cat-
egories explained in [20, §5]. In particular we have the notion of a compactly
generated model category, for which the small object argument for verifying the
factorization axioms requires only sequential colimits. All of our examples of model
categories will be of this form. However there are a few places where equivariance
plays a role. We discuss these and then describe the appropriate model structure
on the category GT of based G-spaces. This must be known and is largely implicit
in [29], but we include a complete treatment, one that we find amusing, for the
reader’s convenience.

We begin with a topological G-category CG and its G-fixed category GC of
G-maps. We assume that GC is complete and cocomplete and that CG is tensored
and cotensored over GT , so that (II.4.4) and (II.4.5) hold with IGS and GI
replaced by CG and GC . The discussion in [20, §5] applies to GC . One place
where equivariance is relevant is in the Cofibration Hypothesis, [20, 5.3]. That uses
the concept of an h-cofibration in GC , namely a map that satisfies the homotopy
extension property (HEP) in GC . Since the maps in GC are G-maps, the HEP is
automatically equivariant. That is, h-cofibrations in GC satisfy the G-HEP. As in
[20], we write q-cofibration and q-fibration for model cofibrations and cofibrations,
but we write cofibrant and fibrant rather than q-cofibrant and q-fibrant.

A more substantial point of equivariance concerns the notion of a topological
model category. As defined in [20, 5.12], that notion remembers only that GC is
tensored and cotensored over T , which is insufficient for our applications. We shall
return to this point and define the notion of a “G-topological model category” after
giving the model structure on GT .

Definition 1.1. Let I be the set of cell h-cofibrations

i : (G/H × Sn−1)+ −→ (G/H ×Dn)+

38
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in GT , where n ≥ 0 (S−1 being empty) and H runs through the (closed) subgroups
of G. Let J be the set of h-cofibrations

i0 : (G/H ×Dn)+ −→ (G/H ×Dn × I)+
and observe that each such map is the inclusion of a G-deformation retract.

Recall that, for unbased spaces A and B, (A × B)+ ∼= A+ ∧ B+. Recall too
that, for a based H-space A and a based G-space B,

(1.2) GT (G+ ∧H A,B) ∼= HT (A, B).

If A is a G-space, then we have a natural homeomorphism of G-spaces

(1.3) G+ ∧H A ∼= (G/H)+ ∧A,

where G acts diagonally on the right; it sends the class of g ∧ a to gH ∧ ga. Also,
for a based space A regarded as a G-trivial G-space,

(1.4) GT (A,B) ∼= T (A,BG)

and therefore

(1.5) GT ((G/H)+ ∧A,B) ∼= T (A,BH).

As a right adjoint, the G-fixed point functor preserves limits. It also preserves
some, but not all, colimits.

Lemma 1.6. The functor (−)G on based G-spaces preserves pushouts of dia-
grams one leg of which is a closed inclusion and colimits of sequences of inclusions.
For a based space A and a based G-space B, F (A,B)G ∼= F (A,BG). For based
G-spaces A and B, (A ∧B)G ∼= AG ∧BG.

Definition 1.7. A map f : A −→ B of G-spaces is a weak equivalence or Serre
fibration if each fH : AH −→ BH is a weak equivalence or Serre fibration; by (1.5),
f is a Serre fibration if and only if it satisfies the RLP (right lifting property) with
respect to the maps in J . Note that a relative G-cell complex is a relative I-cell
complex as defined in [20, 5.4].

Theorem 1.8. GT is a compactly generated proper G-topological model cate-
gory with respect to the weak equivalences, Serre fibrations, and retracts of relative
G-cell complexes. The sets I and J are the generating q-cofibrations and the gen-
erating acyclic q-cofibrations.

We have not yet defined what it means for GT to be “G-topological”, and we
shall turn to that concept after proving the rest of the theorem. For the proof, we
compare GT to an appropriate model category of diagram spaces. Thus let GO be
the (unbased) topological category of orbit G-spaces G/H and G-maps. We have
the category GOopT of GOop-spaces, namely contravariant functors GO −→ T .
This is an example of a category of diagram spaces, so the theory of [20, §6] applies
to it; see also Piacenza [29]. We have functors

Φ : GT −→ GOopT and Λ : GOopT −→ GT

specified by Φ(A)(G/H) = AH and Λ(D) = D(G/e). It is the contravariance of
Φ(A) as a functor on GO that motivates the use of GOop. Clearly Λ ◦ Φ = Id. In
fact, we have the following elementary observation.

Lemma 1.9. The functor Φ is full and faithful.
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Lemma 1.6 implies the following further properties of Φ.

Lemma 1.10. The functor Φ preserves limits. It also preserves pushouts of dia-
grams one leg of which is a closed inclusion and colimits of sequences of inclusions.
For a based space A and a based G-space B, ΦF (A,B) ∼= F (A, ΦB). For based G-
spaces A and B, Φ(A∧B) ∼= Φ(A)∧Φ(B), where (Φ(A)∧Φ(B))(G/H) = AH∧BH .

Note that Φ(G/H+)(G/K) = (G/H)K
+
∼= GO(G/K,G/H)+, so that Φ(G/H+)

is a represented diagram.

Definition 1.11. A map f : D −→ E of GOop-spaces is a level equivalence or
level fibration if each f(G/H) is a weak equivalence or Serre fibration. Let GOI
and GOJ be the sets of maps of the form Φ(G/H+) ∧ i and Φ(G/H+) ∧ j, where
i ∈ I and j ∈ J . A relative GO-cell complex is a relative GOI-cell complex (see
[20, 5.4]).

The following result is a special case of [20, 6.5]; most of it is in Piacenza [29].

Theorem 1.12. The category GOopT is a compactly generated proper topo-
logical model category with respect to the level equivalences, level fibrations, and
retracts of relative GO-cell complexes. The sets GOI and GOJ are the generating
q-cofibrations and generating acyclic q-cofibrations.

Proof of Theorem 1.8. By definition, a map f of G-spaces is a weak equiva-
lence or Serre fibration if and only if Φf is a level equivalence or level Serre fibration.
The amusing thing is that we have an analogue for cofibrations. By the preservation
properties of Φ already specified, it is clear that Φ carries G-cell complexes to GO-
cell complexes. Moreover, because Φ is full and faithful, it is elementary to check
inductively that if g : Φ(X) −→ D is a relative GO-cell complex, then g = Φ(f)
for a unique relative G-cell complex f ; compare [27, VI.6.2]. We now see that both
lifting axioms, both factorization axioms, and the left and right properness for GT
follow directly from the corresponding results for GOopT . ¤

We must still explain what it means for GT to be a “G-topological” model
category. We revert to our general categories CG and GC , and we suppose that
GC has a given model structure. For maps i : A −→ X and p : E −→ B in GC , let

(1.13) CG(i∗, p∗) : CG(X,E) −→ CG(A,E)×CG(A,B) CG(X, B)

be the map of G-spaces induced by CG(i, id) and CG(id, p) by passage to pullbacks.

Definition 1.14. A model category GC is G-topological if the map CG(i∗, p∗)
is a Serre fibration (of G-spaces) when i is a q-cofibration and p is a q-fibration and
is a weak equivalence (as a map of G-spaces) when, in addition, either i or p is a
weak equivalence.

The point is that we must go beyond the category GC to the category CG

to formulate this equivariant notion. From the point of view of enriched category
theory of Remark 1.3, this is the obviously right enriched version of the standard
definitions of a simplicial or topological model category. It follows on passage to
G-fixed point spaces that GC is also nonequivariantly topological, in the sense of
[20, 5.12], but we need the equivariant version. The nonequivariant version has the
following significance.

Lemma 1.15. The pair (i, p) has the lifting property if and only if GC (i∗, p∗)
is surjective.
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As in [20, §5], we will need two pairs of analogues of the maps CG(i∗, p∗). First,
for a map i : A −→ B of based G-spaces and a map j : X −→ Y in GC , passage to
pushouts gives a map

(1.16) i¤j : (A ∧ Y ) ∪A∧X (B ∧X) −→ B ∧ Y

and passage to pullbacks gives a map

(1.17) F�(i, j) : F (B, X) −→ F (A,X)×F (A,Y ) F (B, Y ),

where ∧ and F denote the tensor and cotensor in CG.
Second, assume that CG is a closed symmetric monoidal category with product

∧C and internal function object functor FC . Then, for maps i : X −→ Y and
j : W −→ Z in GC , passage to pushouts gives a map

(1.18) i¤j : (Y ∧C W ) ∪X∧C W (X ∧C Z) −→ Y ∧C Z,

and passage to pullbacks gives a map

(1.19) F�(i, j) : FC (Y, W ) −→ FC (X, W )×FC (X,Z) FC (Y,Z).

Inspection of definitions gives adjunctions relating these maps.

Lemma 1.20. Let i : A −→ B be a map of based G-spaces and let j : X −→ Y
and p : E −→ F be maps in GC . Then there are natural isomorphisms of G-maps

CG((i¤j)∗, p∗) ∼= TG(i∗,CG(j∗, p∗)∗) ∼= CG(j∗, F�(i, p)∗).

Therefore, passing to G-fixed points, (i¤j, p) has the lifting property in GC if and
only if (i, CG(j∗, p∗)) has the lifting property in GT .

Lemma 1.21. Let i, j, and p be maps in GC , where CG is closed symmetric
monoidal. Then there is a natural isomorphism of G-maps

CG((i¤j)∗, p∗) ∼= CG(i∗, F�(j, p)∗).

Returning to TG and using Lemma 1.20, we see by a formal argument that the
following lemma is equivalent to the assertion that GT is G-topological.

Lemma 1.22. Let i : A −→ X and j : B −→ Y be q-cofibrations of G-spaces.
Then i¤j is a q-cofibration and is acyclic if i or j is acyclic.

Proof. By passage to wedges, pushouts, colimits, and retracts, it suffices to
prove the first part for a pair of generating q-cofibrations. Here the conclusion holds
because products G/H ×G/K with the diagonal action are triangulable as (finite)
G-CW complexes. This is trivial when G is finite and holds for general compact
Lie groups by [17]. It suffices to prove the second part when i is a generating
acyclic q-cofibration, but then i is the inclusion of a G-deformation retract and the
conclusion is clear. ¤

2. The level model structure on orthogonal G-spectra

We here give the category GI S of orthogonal G-spectra and G-maps a level
model structure, following [20, §3]; maps will mean G-maps throughout. We need
three definitions, the first of which concerns nondegenerate basepoints. A G-space
is said to be nondegenerately based if the inclusion of its basepoint is an unbased
h-cofibration (satisfies the G-HEP in the category of unbased G-spaces). As in
[34, Prop. 9], a based h-cofibration between nondegenerately based G-spaces is an
unbased h-cofibration. Each morphism space JG(V,W ) is nondegenerately based.
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Definition 2.1. An orthogonal G-spectrum X is nondegenerately based if each
X(V ) is a nondegenerately based G-space.

Definition 2.2. Define FI to be the set of all maps FV i with V ∈ skIG and
i ∈ I. Define FJ to be the set of all maps FV j with V ∈ skIG and j ∈ J , and
observe that each map in FJ is the inclusion of a G-deformation retract.

Definition 2.3. We define five properties of maps f : X −→ Y of orthogonal
G-spectra.

(i) f is a level equivalence if each map f(V ) : X(V ) −→ Y (V ) of G-spaces is
a weak equivalence.

(ii) f is a level fibration if each map f(V ) : X(V ) −→ Y (V ) of G-spaces is a
Serre fibration.

(iii) f is a level acyclic fibration if it is both a level equivalence and a level
fibration.

(iv) f is a q-cofibration if it satisfies the LLP with respect to the level acyclic
fibrations.

(v) f is a level acyclic q-cofibration if it is both a level equivalence and a
q-cofibration.

Theorem 2.4. The category GI S of orthogonal G-spectra is a compactly
generated proper G-topological model category with respect to the level equivalences,
level fibrations, and q-cofibrations. The sets FI and FJ are the generating q-
cofibrations and the generating acyclic q-cofibrations, and the following identifica-
tions hold.

(i) The level fibrations are the maps that satisfy the RLP with respect to FJ
or, equivalently, with respect to retracts of relative FJ-cell complexes, and
all orthogonal G-spectra are level fibrant.

(ii) The level acyclic fibrations are the maps that satisfy the RLP with re-
spect to FI or, equivalently, with respect to retracts of relative FI-cell
complexes.

(iii) The q-cofibrations are the retracts of relative FI-cell complexes.
(iv) The level acyclic q-cofibrations are the retracts of relative FJ-cell com-

plexes.
Moreover, every cofibrant orthogonal G-spectrum X is nondegenerately based.

The proof is the same as that of [20, 6.5]. As there, the following analogue of
[20, 5.5] plays a role.

Lemma 2.5. Every q-cofibration is an h-cofibration.

The following analogue of [20, 3.7] also holds. The proof depends on II.4.8 and
Lemma 1.22 and thus on the fact that products of orbit spaces are triangulable as
G-CW complexes.

Lemma 2.6. If i : X −→ Y and j : W −→ Z are q-cofibrations, then

i¤j : (Y ∧W ) ∪X∧W (X ∧ Z) −→ Y ∧ Z

is a q-cofibration which is level acyclic if either i or j is level acyclic. In particular,
if Z is cofibrant, then i ∧ id : X ∧ Z −→ Y ∧ Z is a q-cofibration, and the smash
product of cofibrant orthogonal G-spectra is cofibrant.
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Let [X,Y ]`G denote the set of maps X −→ Y in the level homotopy category
Ho`GI S and let π(X,Y )G denote the set of homotopy classes of maps X −→ Y .
Then [X, Y ]`G ∼= π(ΓX, Y )G, where ΓX −→ X is a cofibrant approximation of X.

Fiber and cofiber sequences of orthogonal G-spectra behave the same way as
for based G-spaces, starting from the usual definitions of homotopy cofibers Cf
and homotopy fibers Ff [20, 6.8]. We record the analogue of [20, 6.9]. Most of the
proof is the same as there. Some statements, such as the last clause of (i), are most
easily proven by using (1.5) and Lemma 1.6 to reduce them to their nonequivariant
counterparts by levelwise passage to fixed points.

Theorem 2.7. (i) If A is a based G-CW complex and X is a nondegen-
erately based orthogonal G-spectrum, then X ∧A is nondegenerately based
and

[X ∧A, Y ]`G ∼= [X,F (A, Y )]`G
for any Y . If f : X −→ Y is a level equivalence of nondegenerately based
orthogonal G-spectra, then f ∧ id : X ∧A −→ Y ∧A is a level equivalence.

(ii) For nondegenerately based Xi,
∨

i Xi is nondegenerately based and

[
∨

i

Xi, Y ]`G ∼=
∏

i

[Xi, Y ]`G

for any Y . A wedge of level equivalences of nondegenerately based orthog-
onal G-spectra is a level equivalence.

(iii) If i : A −→ X is an h-cofibration and f : A −→ Y is any map of
orthogonal G-spectra, where A, X, and Y are nondegenerately based, then
X ∪A Y is nondegenerately based and the cobase change j : Y −→ X ∪A Y
is an h-cofibration. If i is a level equivalence, then j is a level equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are level equivalences
in the following commutative diagram of nondegenerately based orthogonal
G-spectra, then the induced map of pushouts is a level equivalence.

X

²²

A

²²

ioo // Y

²²
X ′ A′

i′
oo // Y ′

(v) If X is the colimit of a sequence of h-cofibrations in : Xn −→ Xn+1 of
nondegenerately based orthogonal G-spectra, then X is nondegenerately
based and there is a lim1 exact sequence of pointed sets

∗ −→ lim1[ΣXn, Y ]`G −→ [X, Y ]`G −→ lim[Xn, Y ]`G −→ ∗
for any Y . If each in is a level equivalence, then the map from the initial
term X0 into X is a level equivalence.

(vi) If f : X −→ Y is a map of nondegenerately based orthogonal G-spectra,
then Cf is nondegenerately based and there is a natural long exact se-
quence

· · · → [Σn+1X,Z]`G → [ΣnCf, Z]`G → [ΣnY,Z]`G → [ΣnX, Z]`G → · · · → [X, Z]`G.

We shall also need a variant of the level model structure, called the positive
level model structure, as in [20, §14]. It is obtained by ignoring representations V
that do not contain a positive dimensional trivial representation. We can obtain a
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similar model structure by ignoring only V = 0, but that would not give the right
model structure for some of our applications.

Definition 2.8. Define the positive analogues of the classes of maps specified
in Definition 2.3 by restricting attention to those levels V with V G 6= 0.

Definition 2.9. Let F+I and F+J be the sets of maps in FI and FJ that
are specified in terms of the functors FV with V G 6= 0.

Theorem 2.10. The category GI S is a compactly generated proper G-topo-
logical model category with respect to the positive level equivalences, positive level
fibrations, and positive level q-cofibrations. The sets F+I and F+J are the gen-
erating sets of positive q-cofibrations and positive level acyclic q-cofibrations. The
positive q-cofibrations are the q-cofibrations that are homeomorphisms at all levels
V such that V G = 0.

Proof. As in [20, §14], this is a special case of a general relative version of
Theorem 2.4. For the last statement, the positive q-cofibrations are the retracts of
the relative F+I-cell complexes, and a relative FI-cell complex is a homeomorphism
at levels V with V G 6= 0 if and only if no standard cells FV i with V G 6= 0 occur in
its construction. ¤

Variants 2.11. There are other variants. Rather than using varying categories
I V

G , we could work with orthogonal G-spectra defined with respect to V = A ``
and define a “V -level model structure” by restricting to those levels V that are
isomorphic to representations in V when defining level equivalences, level fibrations,
and the generating sets of q-cofibrations and acyclic q-cofibrations. This allows us to
change V by changing the model structure on a single fixed category of orthogonal
G-spectra; see Remark 1.9.

Remark 2.12. Everything in this section applies verbatim to the category GP
of G-prespectra. Recall II.2.7 and II.4.10. Because KG contains all objects of JG,
the forgetful functor U : GI −→ GP creates the level equivalences and level
fibrations of orthogonal G-spectra. That is, a map f of orthogonal G-spectra is a
level equivalence or level fibration if and only if Uf is a level equivalence or level
fibration of prespectra. In particular (P,U) is a Quillen adjoint pair [20, A.1].

3. The homotopy groups of G-prespectra

By II.2.7, an orthogonal G-spectrum has an underlying G-prespectrum indexed
on a universe U such that V (U) = V . The homotopy groups of orthogonal G-
spectra are defined to be the homotopy groups of their underlying G-prespectra,
and we discuss the homotopy groups of G-prespectra here. We first define Ω-G-
spectra (more logically, prespectra).

Definition 3.1. A G-prespectrum X is an Ω-G-spectrum if each of its adjoint
structure maps σ̃ : X(V ) −→ ΩW−V X(W ) is a weak equivalence of G-spaces. An
orthogonal G-spectrum is an orthogonal Ω-G-spectrum if each of its adjoint struc-
ture maps is a weak equivalence or, equivalently, if its underlying G-prespectrum
is an Ω-G-spectrum.

It is convenient to write

πH
q (A) = πq(AH)

for based G-spaces A.
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Definition 3.2. For subgroups H of G and integers q, define the homotopy
groups πH

q (X) of a G-prespectrum X by

πH
q (X) = colimV πH

q (ΩV X(V )) if q ≥ 0,

where V runs over the indexing G-spaces in U , and

πH
−q(X) = colimV⊃Rq πH

0 (ΩV−Rq

X(V )) if q > 0.

A map f : X −→ Y of G-prespectra is a π∗-isomorphism if it induces isomorphisms
on all homotopy groups. A map of orthogonal G-spectra is a π∗-isomorphism if its
underlying map of G-prespectra is a π∗-isomorphism.

As H varies, the πH
q (X) define a contravariant functor from the homotopy

category hGO of orbits to the category of Abelian groups, but the functoriality
need not be considered in the development of the model structures. We shall later
use the terms “π∗-isomorphism” and “weak equivalence” interchangeably, but we
prefer to use the term π∗-isomorphism here to avoid confusion among the different
model structures on G-prespectra and orthogonal G-spectra. We state the results
of this section for G-prespectra but, since the forgetful functor U preserves all rele-
vant constructions, they apply equally well to orthogonal G-spectra. The previous
section gives GP a level model structure.

Lemma 3.3. A level equivalence of G-prespectra is a π∗-isomorphism.

Proof. Since each SV is triangulable as a finite G-CW complex [17], this
follows from the fact that if A is a G-CW complex and f : B −→ C is a weak
equivalence of G-spaces, then f∗ : F (A, B) −→ F (A, C) is a weak equivalence of
G-spaces. ¤

The nonequivariant version [20, 7.3] of the following partial converse is trivial.
The equivariant version is the key result, [19, I.7.12], in the classical development of
the equivariant stable homotopy category, and it is also the key result here. While
the result there is stated for G-spectra, the argument is entirely homotopical and
applies verbatim to Ω-G-spectra. To make this paper more nearly self-contained,
we will rework the proof in §9.

Theorem 3.4. A π∗-isomorphism between Ω-G-spectra is a level equivalence.

Using that space-level constructions commute with passage to fixed points, as
in Lemma 1.6, all parts of the following equivariant analogue of [20, 7.4] either
follow from or are proven in the same way as the corresponding part of that result.
As there, the nondegenerate basepoint hypotheses in Theorem 2.7 are not needed
here.

Theorem 3.5. (i) A map of G-prespectra is a π∗-isomorphism if and
only if its suspension is a π∗-isomorphism.

(ii) The homotopy groups of a wedge of G-prespectra are the direct sums
of the homotopy groups of the wedge summands, hence a wedge of π∗-
isomorphisms of G-prespectra is a π∗-isomorphism.

(iii) If i : A −→ X is an h-cofibration and a π∗-isomorphism of G-prespectra
and f : A −→ Y is any map of G-prespectra, then the cobase change
j : Y −→ X ∪A Y is a π∗-isomorphism.
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(iv) If i and i′ are h-cofibrations and the vertical arrows are π∗-isomorphisms
in the comparison of pushouts diagram of Theorem 2.7(iv), then the in-
duced map of pushouts is a π∗-isomorphism.

(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1, each of
which is a π∗-isomorphism, then the map from the initial term X0 into X
is a π∗-isomorphism.

(vi) For any map f : X −→ Y of G-prespectra and any H ⊂ G, there are
natural long exact sequences

· · · −→ πH
q (Ff) −→ πH

q (X) −→ πH
q (Y ) −→ πH

q−1(Ff) −→ · · · ,

· · · −→ πH
q (X) −→ πH

q (Y ) −→ πH
q (Cf) −→ πH

q−1(X) −→ · · · ,

and the natural map η : Ff −→ ΩCf is a π∗-isomorphism.

Equivariant stability requires consideration of general representations V ∈ V ,
rather than just the trivial representation as in (i).

Theorem 3.6. Let V ∈ V . A map f : X −→ Y of G-prespectra is a π∗-
isomorphism if and only if ΣV f : ΣV X −→ ΣV Y is a π∗-isomorphism

We prove half of the theorem in the following lemma, which will be used in our
development of the stable model structure.

Lemma 3.7. Let V ∈ V . If f : X −→ Y is a map of G-prespectra such that
ΣV f : ΣV X −→ ΣV Y is a π∗-isomorphism, then f is a π∗-isomorphism.

Proof. By Proposition 3.9 below, ΩV ΣV f is a π∗-isomorphism. The conclu-
sion follows by naturality from the following lemma. ¤

Lemma 3.8. For G-prespectra X and V ∈ V , the unit η : X −→ ΩV ΣV X of
the (ΣV , ΩV ) adjunction is a π∗-isomorphism.

Proof. Up to isomorphism, we may write the universe U as U ′ ⊕ V∞. We
choose an expanding sequence of indexing G-spaces U ′

i in U ′ whose union is U ′.
For q ≥ 0,

πH
q (X) = colimi,j πH

q (ΩU ′i⊕V j

X(U ′
i ⊕ V j))

and
πH

q (ΩV ΣV X) = colimi,j πH
q (ΩU ′i⊕V j

ΩV ΣV X(U ′
i ⊕ V j)).

The unit η induces a map from the first colimit to the second, and the structure
maps ΣV X(U ′

i⊕V j) −→ X(U ′
i⊕V j+1) induce a map from the second colimit to the

first. These are inverse isomorphisms. A similar argument applies when q < 0. ¤
Proposition 3.9. If f : X −→ Y is a π∗-isomorphism of G-prespectra and

A is a finite based G-CW complex, then F (id, f) : F (A, X) −→ F (A, Y ) is a π∗-
isomorphism.

Proof. By inspection of colimits, using the standard adjunctions, we see that

(3.10) πH
∗ (F (A,X)) ∼= πG

∗ (F (G/H+ ∧A,X)).

Thus, since G/H+ ∧A is a finite G-CW complex [17], we may focus on πG
∗ . Since

the functor F (−, X) converts cofiber sequences of G-spaces to fiber sequences of
G-prespectra, we see by the first long exact sequence in Theorem 3.5(vi) and com-
mutation relations with suspension that the result holds in general if it holds when
A = G/K+ for any K. Here (3.10) gives that πG

∗ (F (G/K+, X)) ∼= πK
∗ (X), and the

conclusion follows. ¤
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The analogue for smash products is a little more difficult and gives the converse
of Lemma 3.7 that is needed to complete the proof of Theorem 3.6.

Theorem 3.11. If f : X −→ Y is a π∗-isomorphism of G-prespectra and A is
a based G-CW complex, then f ∧ id : X ∧A −→ Y ∧A is a π∗-isomorphism.

We can reduce this to the case A = G/H+ by use of Theorem 3.5, but that
case seems hard to handle directly. We prove a partial result here. The rest will
drop out model theoretically in the next section.

Lemma 3.12. If f : X −→ Y is a level equivalence of G-prespectra and A is a
based G-CW complex, then f ∧ id : X ∧A −→ Y ∧A is a π∗-isomorphism.

Proof. We consider πH
q for q ≥ 0. The case q < 0 is similar. Let U = R∞⊕U ′,

where (U ′)G = 0. We may write

πH
q (X ∧A) = colimV⊂U ′ colimW⊂R∞ πH

q (ΩV ΩW (X(V ⊕W ) ∧A)).

For fixed V and K ⊂ G, the X(V ⊕W )K for varying W specify a nonequivariant
prespectrum X[V ]K indexed on R∞, and we have

(ΩW (X(V ⊕W ) ∧A))K ∼= ΩW (X(V ⊕W )K ∧AK).

Since f is a level equivalence, it induces a nonequivariant π∗-isomorphism f [V ]K :
X[V ]K −→ Y [V ]K . By the nonequivariant version [20, 7.4(i)] of Theorem 3.11,

f [V ]K ∧ id : X[V ]K ∧AK −→ Y [V ]K ∧AK

is a π∗-isomorphism. Therefore, for each V , the induced map of G-spaces

hocolimW ΩW (X(V ⊕W ) ∧A) −→ hocolimW ΩW (Y (V ⊕W ) ∧A)

is a weak G-equivalence. Applying ΩV to this map still gives a weak G-equivalence.
Passage to homotopy groups πH

q and then to colimits over V gives the result. ¤

4. The stable model structure on orthogonal G-spectra

We give the categories of orthogonal G-spectra and G-prespectra stable model
structures and prove that they are Quillen equivalent. The arguments are like those
in the nonequivariant context of [20], except that we work with π∗-isomorphisms
rather than the equivariant analogue of the stable equivalences used there. As we
explain in §6, that analogue gives a formally equivalent condition for a map to be
a π∗-isomorphism. All of the statements and most of the proofs are identical in
GI S and GP. Definition 2.3 specifies the level equivalences, level fibrations, level
acyclic fibrations, q-cofibrations, and level acyclic q-cofibrations in these categories.

Definition 4.1. Let f : X → Y be a map of orthogonal G-spectra or G-
prespectra.

(i) f is an acyclic q-cofibration if it is a π∗-isomorphism and a q-cofibration.
(ii) f is a q-fibration if it satisfies the RLP with respect to the acyclic q-cofi-

brations.
(iii) f is an acyclic q-fibration if it is a π∗-isomorphism and a q-fibration.

Theorem 4.2. The categories GI S and GP are compactly generated proper
G-topological model categories with respect to the π∗-isomorphisms, q-fibrations,
and q-cofibrations. The fibrant objects are the Ω-G-spectra.
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The set of generating q-cofibrations is the set FI specified in Definition 1.1.
The set K of generating acyclic q-cofibrations properly contains the set FJ specified
there. As nonequivariantly [20, §§8, 9], it is defined in terms of the following maps
λV,W , which turn out to be π∗-isomorphisms.

Definition 4.3. For V,W ∈ V , define λV,W : FV⊕W SW −→ FV S0 to be the
adjoint of the map

SW −→ (FV S0)(V ⊕W ) ∼= O(V ⊕W )+ ∧O(W ) SW

that sends w to the class of e ∧ w, where e ∈ O(V ⊕W ) is the identity element.

Lemma 4.4. For any orthogonal G-spectrum or G-prespectrum X,

λ∗V,W : IGS (FV S0, X) −→ IGS (FV⊕W SW , X)

coincides with σ̃ : X(V ) −→ ΩW X(V ⊕W ) under the canonical homeomorphisms

X(V ) = TG(S0, X(V )) ∼= IGS (FV S0, X)

and
ΩW X(V ⊕W ) = TG(SW , X(V ⊕W )) ∼= IGS (FV⊕W SW , X).

Proof. With X = FV S0, σ̃ may be identified with a map

σ̃ : IGS (FV S0, FV S0) −→ IGS (FV⊕W SW , FV S0),

and λV,W is the image of the identity map under σ̃. ¤
The following result is the equivariant version of [20, 8.6].

Lemma 4.5. For all based G-CW complexes A, the maps

λV,W ∧ id : FV⊕W ΣW A ∼= FV⊕W SW ∧A −→ FV S0 ∧A ∼= FV A

are π∗-isomorphisms.

Proof. We prove this separately in the two cases.

G-prespectra. As in [20, 4.1], we have (FV A)(Z) = SZ−V ∧ A, where
SZ−V = ∗ if V is not contained in Z. Thus FV A is essentially a reindexing of
the suspension G-prespectrum of A. The map λV,W (Z) is the identity unless Z
contains V but does not contain W , when it is the inclusion ∗ −→ SZ−V . Passing
to colimits, we see that λV,W ∧ id is a π∗-isomorphism.

Orthogonal G-spectra. As in [20, 4.4], for Z ⊃ V we have

(FV A)(Z) = O(Z)+ ∧O(Z−V ) SZ−V ∧A.

By Lemma 3.7, it suffices to prove that ΣV (λV,W ∧ id) is a π∗-isomorphism. When
Z contains V ⊕W , ΣV λV,W (Z) can be identified with the quotient map

O(Z)+ ∧O(Z−(V⊕W )) SZ −→ O(Z)+ ∧O(Z−V ) SZ .

Under G-homeomorphisms (1.3), ΣV λV,W (Z) corresponds to the map

π ∧ id : O(Z)/O(Z − (V ⊕W ))+ ∧ SZ −→ O(Z)/O(Z − V )+ ∧ SZ ,

where π is the evident quotient map. Smashing with A, restricting to indexing G-
spaces in a universe U , taking homotopy groups, and passing to colimits, we obtain
an isomorphism between copies of equivariant stable homotopy groups of A. ¤

Recall the operation ¤ from (1.16).
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Definition 4.6. Let MλV,W be the mapping cylinder of λV,W . Then λV,W

factors as the composite of a q-cofibration kV,W : FV⊕W SW −→ MλV,W and a
deformation retraction rV,W : MλV,W −→ FV S0. Let jV,W : FV S0 −→ MλV,W be
the evident homotopy inverse of rV,W . Restricting to V and W in skIG, let K be
the union of FJ and the set of all maps of the form i¤kV,W , i ∈ I.

We need a characterization of the maps that satisfy the RLP with respect to
K. It is the equivariant analogue of [20, 9.5], but we give the proof since this is
the place where we need the new notion of a G-topological model category.

Definition 4.7. A commutative diagram of based G-spaces

D
g //

p

²²

E

q

²²
A

f
// B

in which p and q are Serre fibrations is a homotopy pullback if the induced map
D −→ A×B E is a weak equivalence of G-spaces.

Proposition 4.8. A map p : E −→ B satisfies the RLP with respect to K if
and only if p is a level fibration and the diagram

(4.9)

EV
σ̃ //

pV

²²

ΩW E(V ⊕W )

ΩW p(V⊕W )

²²
BV

σ̃
// ΩW B(V ⊕W )

is a homotopy pullback for all V and W .

Proof. The map p has the RLP with respect to FJ if and only if it is a level
fibration. By Lemma 1.20, p has the RLP with respect to i¤kV,W if and only if
IGS (k∗V,W , p∗) has the RLP with respect to I, which means that IGS (k∗V,W , p∗)
is an acyclic Serre fibration of G-spaces. Since kV,W is a q-cofibration and p is a
level fibration, IGS (k∗V,W , p∗) is a Serre fibration because the level model structure
is G-topological. We conclude that p satisfies the RLP with respect to K if and
only if p is a level fibration and each IGS (k∗V,W , p∗) is a weak equivalence. Since
kV,W ' jV,W λV,W and jV,W is a homotopy equivalence, this holds if and only if
IGS (λ∗V,W , p∗) is a weak equivalence. Using the fact that λV,W corresponds to σ̃

under adjunction, we see that the map IGS (λ∗V,W , p∗) is isomorphic to the map

EV −→ BV ×ΩW B(V⊕W ) ΩE(V ⊕W )

and is thus a weak equivalence if and only if (4.9) is a homotopy pullback. ¤

From here, the proof of Theorem 4.2 is virtually identical to that of its nonequiv-
ariant version in [20, §9]. We record the main steps of the argument since they
give the order of proof and encode useful information about the q-fibrations and
q-cofibrations. Rather than repeat the proofs, we point out the main input. The
following corollary is immediate.

Corollary 4.10. The trivial map F −→ ∗ satisfies the RLP with respect to
K if and only if F is an Ω-G-spectrum.
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It is at this point that the key result, Theorem 3.4, comes into play.

Corollary 4.11. If p : E −→ B is a π∗-isomorphism that satisfies the RLP
with respect to K, then p is a level acyclic fibration.

Proof. If F = p−1(∗), then F is an Ω-G-spectrum and F −→ ∗ is a π∗-
isomorphism. Thus, by Theorem 3.4, F is level acyclic. The rest is proven as in
[20, 9.8]. ¤

Proposition 4.12. Let f : X −→ Y be a map of orthogonal G-spectra.
(i) f is an acyclic q-cofibration if and only if it is a retract of a relative K-cell

complex.
(ii) f is a q-fibration if and only if it satisfies the RLP with respect to K, and

X is fibrant if and only if it is an orthogonal Ω-G-spectrum.
(iii) f is an acyclic q-fibration if and only if it is a level acyclic fibration.

Proof. Lemma 4.5 implies that the maps i¤kV,W in K are π∗-isomorphisms.
Thus all maps in K are π∗-isomorphisms. Now Theorem 3.5 implies that all retracts
of relative K-cell complexes are π∗-isomorphisms. The rest is as in [20, 9.9]. ¤

The proof of the model axioms is completed as in [20, §9]. The properness of
the model structure is implied by the following more general statements.

Lemma 4.13. Consider the following commutative diagram:

A
f //

i

²²

B

j

²²
X g

// Y.

(i) If the diagram is a pushout in which i is an h-cofibration and f is a π∗-
isomorphism, then g is a π∗-isomorphism.

(ii) If the diagram is a pullback in which j is a level fibration and g is a
π∗-isomorphism, then f is a π∗-isomorphism.

The following model theoretical observation leads to the proof of Theorem 3.11.

Lemma 4.14. If A is a based G-CW complex A, then (− ∧ A,F (A,−)) is a
Quillen adjoint pair on GI S or GP with its stable model structure.

Proof. Since the functor F (A,−) preserves fibrations, level equivalences, and
homotopy pullbacks, it preserves q-fibrations and acyclic q-fibrations by their char-
acterizations in Propositions 4.8 and 4.12. ¤

The proof of Theorem 3.11. Let f : X −→ Y be a π∗-isomorphism and A
be a based G-CW complex. We must show that f ∧ idA is a π∗-isomorphism. By
cofibrant approximation in the level model structure and use of Lemma 3.12, we
may assume that X and Y are cofibrant. However, as a Quillen left adjoint, the
functor (−) ∧A preserves weak equivalences between cofibrant objects. ¤

The following result, which is immediate from Lemmas 4.14 and 3.8, implies
that the homotopy category with respect to the stable model structure really is an
“equivariant stable homotopy category”, in the sense that the functors ΣV and ΩV

on it are inverse equivalences of categories for V ∈ V .
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Theorem 4.15. For V ∈ V , the pair (ΣV , ΩV ) is a Quillen equivalence.

Finally, we have the following promised comparison theorem.

Theorem 4.16. The pair (P,U) is a Quillen equivalence between the categories
GP and GI S with their stable model structures.

Proof. In view of III.2.12 and [20, A.2], we need only show that the unit
η : X −→ UPX of the adjunction is a π∗-isomorphism when X is a cofibrant G-
prespectrum. As in [20, 10.3], Theorems 3.5 and 3.6 imply that it suffices to prove
this when X = ΣV FV A for an indexing G-space V and a based G-CW complex
A. The functors FV for PG and IGS are related by FV

∼= PFV , by inspection of
their right adjoints, and these functors commute with smash products with based
G-spaces. We have the commutative diagram

FV ΣV A
λ0,V //

η

²²

F0A

η

²²
UFV ΣV A Uλ0,V

// UF0A.

The right vertical arrow is an isomorphism and the maps λ0,V and Uλ0,V are π∗-
isomorphisms by Lemma 4.5. ¤

5. The positive stable model structure

In §2, we explained the positive level model structure, and we need the con-
comitant positive stable model structure, as in [20, §14].

Definition 5.1. A G-prespectrum or orthogonal G-spectrum X is a positive
Ω-G-spectrum if σ̃ : X(V ) −→ ΩW−V X(W ) is a weak equivalence for V G 6= 0.

Definition 5.2. Define acyclic positive q-cofibrations, positive q-fibrations, and
acyclic positive q-fibrations as in Definition 4.1, but starting with the positive level
classes of maps specified in Definition 2.8.

Theorem 5.3. The categories GI S and GP are compactly generated proper
G-topological model categories with respect to the π∗-isomorphisms, positive q-fibra-
tions, and positive q-cofibrations. The positive fibrant objects are the positive Ω-G-
spectra.

The set of generating positive q-fibrations is the set F+I specified in Definition
2.9. The set of generating acyclic positive q-cofibrations is the union, K+, of the
set F+J specified there and the set of maps of the form i¤kV,W with i ∈ I and
V G 6= 0 from Definition 4.6.

The proof of Theorem 5.3 depends on the positive analogue of Theorem 3.4.

Theorem 5.4. A π∗-isomorphism between positive Ω-G-spectra is a positive
level equivalence.

This can be shown by restricting the proof of Theorem 3.4 in §9 to positive
Ω-G-spectra and positive levels. For orthogonal G-spectra, there is an illuminating
alternative argument. Indeed, for V ∈ V and an orthogonal G-spectrum X, the
map λ = λ0,V : FV SV −→ F0S

0 = S induces a map

(5.5) λ∗ : X ∼= F (S, X) −→ F (FV SV , X).
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Standard adjunctions imply that

F (FV SV , X)(W ) ∼= ΩV X(V ⊕W ),

and this leads to the following relationship between orthogonal Ω-G-spectra and
orthogonal positive Ω-G-spectra.

Lemma 5.6. If E is a positive orthogonal Ω-G-spectrum, then F (F1S
1, E) is

an orthogonal Ω-G-spectrum and λ∗ is a positive level equivalence.

Therefore, for orthogonal G-spectra, Theorem 5.4 can be proven by applying
Theorem 3.4 to F (F1S

1,−). From here, Theorem 5.3 is proven by the same argu-
ments as for the stable model structure, but with everything restricted to positive
levels. Similarly, the proof of the following comparison result is the same as the
proof of Theorem 4.16.

Theorem 5.7. The pair (P,U) is a Quillen equivalence between the categories
GP and GI S with their positive stable model structures.

The relationship between the stable model structure and the positive stable
model structure is given by the following equivariant analogue of [20, 14.6].

Proposition 5.8. The identity functor from GI S with its positive stable
model structure to GI S with its stable model structure is the left adjoint of a
Quillen equivalence, and similarly for GP.

6. Stable equivalences of orthogonal G-spectra

Let [X, Y ]`G and [X, Y ]+`
G denote the set of maps X −→ Y in the homotopy

category of GI S or GP with respect to the level model structure or the positive
level model structure and let [X, Y ]G denote the set of maps X −→ Y in the
homotopy category with respect to the stable (or, equivalently, positive stable)
model structure. The following observation applies to both GI S and GP.

Theorem 6.1. The following conditions on a map f : X −→ Y are equivalent.
(i) f is a π∗-isomorphism.
(ii) f∗ : [Y,E]`G −→ [X, E]`G is an isomorphism for all Ω-G-spectra E.
(iii) f∗ : [Y,E]+`

G −→ [X,E]+`
G is an isomorphism for all positive Ω-G-spectra

E.

Proof. We prove that (i) and (ii) are equivalent. The same proof shows that
(i) and (iii) are equivalent. Since the q-cofibrations are the same in the level and
stable model structures and level equivalences are π∗-isomorphisms, the identity
functor is the left adjoint of a Quillen adjoint pair from the level model structure to
the stable model structure. Since Ω-G-spectra are stably fibrant, this implies that

(6.2) [X, E]G ∼= [X,E]`G
when E is an Ω-G-spectrum. Since every object of the stable homotopy category is
isomorphic to an Ω-G-spectrum, the Yoneda lemma gives that f is an isomorphism
in that category if and only if f∗ : [Y, E]G −→ [X, E]G is an isomorphism for all
Ω-G-spectra E. In view of (6.2), this says that (i) and (ii) are equivalent. ¤

The maps that satisfy (ii) or (iii) are called stable equivalences or positive stable
equivalences. The nonequivariant analogues of the stable equivalences play a cen-
tral role in the theory of symmetric spectra [16, 20], where the previous theorem
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fails, but they need not be introduced explicitly in the study of orthogonal spectra.
An easy formal argument shows that a stable equivalence between Ω-G-spectra
is a level equivalence. Nonequivariantly, there is a direct proof [20, 8.8] that a
π∗-isomorphism of symmetric spectra or orthogonal spectra is a stable equivalence.
That argument precedes the development of the stable model structure there. How-
ever, the argument depends on the trivial nonequivariant version of the key result
Theorem 3.4 and is of no help in the present approach to the equivariant stable
homotopy category.

7. Model categories of ring and module G-spectra

In this section and the next, we study model structures induced by the stable or
positive stable model structure on GI S . We prove here that the categories of or-
thogonal ring spectra and of modules over an orthogonal ring spectrum are Quillen
model categories. The proofs are essentially the same as those in the nonequivariant
case given in [20, §§12, 14], but the inclusion of the case of symmetric spectra there
dictated a more complicated line of argument than is necessary here. We give an
outline.

In the language of [32], we show that the monoid and pushout-product axioms
hold for orthogonal G-spectra. As in [19, 11.2], the following elementary comple-
ment to Lemmas 2.5 and 2.6 is used repeatedly.

Lemma 7.1. If i : X −→ Y is an h-cofibration of orthogonal G-spectra and Z
is any orthogonal G-spectrum, then i ∧ id : X ∧ Z −→ Y ∧ Z is an h-cofibration.

The following lemma is the key step in the proof of the cited axioms. Its
nonequivariant analogue is part of the proof of [20, 12.3].

Lemma 7.2. Let Y be an orthogonal G-spectrum such that π∗(Y ) = 0. Then
π∗(FV SV ∧ Y ) = 0 for any V ∈ V .

Proof. Let γV = λ0,V : FV SV −→ F0S
0 = S be the canonical π∗-isomorphism

of Lemma 4.5. Let α ∈ πH
q (FV SV ∧Y ). Taking q ≥ 0 for definiteness, the proof for

q < 0 being similar, choose a map Sq −→ (ΩW (FV SV ∧Y )(W ))H that represents α.
By standard adjunctions, this map is determined by a map of orthogonal G-spectra

f : FW (G/H+ ∧ Sq ∧ SW ) −→ FV SV ∧ Y.

Since πH
∗ (Y ) = 0, we can choose W large enough that the composite

(γV ∧ id) ◦ f : FW (G/H+ ∧ Sq ∧ SW ) −→ FV SV ∧ Y −→ S ∧ Y ∼= Y

is null homotopic. Let g = (γV ∧ id) ◦ f and let g′ be the map

id∧g : FV⊕W (SV ∧G/H+∧Sq∧SW ) ∼= FV SV ∧FW (G/H+∧Sq∧SW ) −→ FV SV ∧Y

obtained from g by smashing with FV SV . Then g′ is also null homotopic. Now let

f ′ : FV⊕W (SV ∧G/H+∧Sq∧SW ) ∼= FV SV ∧FW (G/H+∧Sq∧SW ) −→ FV SV ∧Y

be the composite f ◦ (γV ∧ id). Then f ′ also represents α. We show that α = 0 by
showing that the maps f ′ and g′ are homotopic. We can rewrite f ′ and g′ as the
composites of the map

id∧f : FV SV ∧ FW (G/H+ ∧ Sq ∧ SW ) −→ FV SV ∧ FV SV ∧ Y
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and the maps FV SV ∧ FV SV ∧ Y −→ FV SV ∧ Y obtained by applying γV to the
first or second factor FV SV . Thus, it suffices to show that the maps γV ∧ id and
id∧γV from FV⊕V SV⊕V ∼= FV SV ∧ FV SV to FV SV are homotopic. The adjoints

SV⊕V −→ (FV SV )(V ⊕ V ) = O(V ⊕ V )+ ∧e×O(V ) SV⊕V

of these two maps are the G-maps that send (v, v′) ∈ SV⊕V to τ ∧ (v′, v) and to
e∧ (v, v′), where τ ∈ O(V ⊕ V ) is the evident transposition on V ⊕ V . Writing out
the homeomorphism of O(V ⊕ V )-spaces

O(V ⊕ V )+ ∧e×O(V ) SV⊕V ∼= O(V ⊕ V )/O(V )+ ∧ SV⊕V

given by (1.3), we see that it is a G-map. Under this homeomorphism, our two G-
maps send s ∈ SV⊕V to τ∧s and to e∧s. The elements e and τ are in O(V⊕V )G. By
writing V as a sum of irreducible representations V ni

i and considering G-invariant
isometries, we find that O(V ⊕ V )/O(V )G is the product of groups O(2ni)/O(ni),
U(2ni)/U(ni) or Sp(2ni)/Sp(ni), depending on the type of Vi (compare for example
[8, 3.6]) and is thus connected. A path connecting e and τ in O(V ⊕ V )/O(V )G

determines a homotopy between our two G-maps. ¤
Proposition 7.3. If X is a cofibrant orthogonal G-spectrum, then the functor

X ∧ (−) preserves π∗-isomorphisms.

Proof. When X = FV SV , this is implied by Lemma 7.2, as we see by using
the usual mapping cylinder construction to factor a given π∗-isomorphism as a
composite of an h-cofibration and a G-homotopy equivalence and comparing long
exact sequences given by Lemma 7.1 and Theorem 3.5(vi). As in the proof of [20,
12.3], the general case follows by use of Theorems 3.5, 3.6, and 3.11. ¤

As in [20, 12.5 and 12.6], this together with other results already proven implies
the monoid and pushout-product axioms. These apply to GI S with both its stable
and its positive stable model structures.

Proposition 7.4 (Monoid axiom). For any acyclic (positive) q-cofibration
i : X −→ Y of orthogonal G-spectra and any orthogonal G-spectrum Z, the map
i ∧ id : X ∧ Z −→ Y ∧ Z is a π∗-isomorphism and an h-cofibration. Moreover,
cobase changes and sequential colimits of such maps are also π∗-isomorphisms and
h-cofibrations.

Proposition 7.5 (Pushout-product axiom). If i : X −→ Y and j : W −→ Z
are (positive) q-cofibrations of orthogonal G-spectra and i is a π∗-isomorphism,
then the (positive) q-cofibration i¤j : (Y ∧ W ) ∪X∧W (X ∧ Z) −→ Y ∧ Z is a
π∗-isomorphism.

As in [20, §§12, 14], the methods and results of [32], together with Proposition
5.8, entitle us to the following conclusions. More explicitly, [20, 5.13] specifies
conditions for the category of algebras over a monad in a compactly generated
topological model category C to inherit a structure of topological model category,
and that result generalizes to G-topological model categories. The pushout-product
and monoid axioms allow the verification of the conditions in the cases on hand.

Theorem 7.6. Let R be an orthogonal ring G-spectrum, and consider the stable
model structure on GI S .

(i) The category of left R-modules is a compactly generated proper G-topological
model category with weak equivalences and q-fibrations created in GI S .
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(ii) If R is cofibrant as an orthogonal G-spectrum, then the forgetful functor
from R-modules to orthogonal G-spectra preserves q-cofibrations, hence
every cofibrant R-module is cofibrant as an orthogonal G-spectrum.

(iii) If R is commutative, the symmetric monoidal category GI SR of R-
modules also satisfies the pushout-product and monoid axioms.

(iv) If R is commutative, the category of R-algebras is a compactly generated
right proper G-topological model category with weak equivalences and q-
fibrations created in GI S .

(v) If R is commutative, every q-cofibration of R-algebras whose source is
cofibrant as an R-module is a q-cofibration of R-modules, hence every
cofibrant R-algebra is cofibrant as an R-module.

(vi) If f : Q −→ R is a weak equivalence of orthogonal ring G-spectra, then
restriction and extension of scalars define a Quillen equivalence between
the categories of Q-modules and of R-modules.

(vii) If f : Q −→ R is a weak equivalence of commutative orthogonal ring G-
spectra, then restriction and extension of scalars define a Quillen equiva-
lence between the categories of Q-algebras and of R-algebras.

Parts (i), (iii), (iv), (vi), and (vii) also hold for the positive stable model structure.

Parts (ii) and (v) do not hold for the positive stable model structure, in which
SG is not cofibrant. As in [20, 12.7], we have the following generalization of Propo-
sition 7.3, which is needed in the proofs of parts (vi) and (vii) of the theorem.

Proposition 7.7. For a cofibrant right R-module M , the functor M ∧R N of
N preserves π∗-isomorphisms.

8. The model category of commutative ring G-spectra

Let C be the monad on orthogonal G-spectra that defines commutative orthog-
onal ring G-spectra. Thus CX =

∨
i≥0 X(i)/Σi, where X(i) denotes the ith smash

power, with X(0) = SG.

Theorem 8.1. The category of commutative orthogonal ring G-spectra is a
compactly generated proper G-topological model category with q-fibrations and weak
equivalences created in the positive stable model category of orthogonal G-spectra.
The sets CF+I and CK+ are the generating sets of q-cofibrations and acyclic q-
cofibrations.

This is a consequence of the following two results, which (together with two
general results on colimits [6, I.7.2, VII.2.10]) verify the criteria for inheritance of
a model structure specified in [20, 5.13].

Lemma 8.2. The sets CF+I and CK+ satisfy the Cofibration Hypothesis.

Proof. The Cofibration Hypothesis is specified in [20, 5.3]. Its verification
here amounts to the following results:

(i) The functor C preserves h-cofibrations.
(ii) The cobase change R −→ R ∧CX CY associated to a wedge X −→ Y

of maps in FI+ and a map CX −→ R of commutative orthogonal ring
G-spectra is an h-cofibration.

(iii) Sequential colimits of maps of commutative orthogonal ring G-spectra
that are h-cofibrations are computed as the colimits of their underlying
orthogonal G-spectra.
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Here (i) and (iii) are easy, but (ii) requires the methods of [6, VII§3], as explained
in the proof of [20, 15.9]. ¤

Lemma 8.3. Every relative CK+-cell complex is a π∗-isomorphism.

Proof. First, one needs that each map in CK+ is a π∗-isomorphism or, more
generally, that the functor C preserves π∗-isomorphisms between positive cofibrant
orthogonal G-spectra. That is a consequence of the second statement of the follow-
ing lemma. From there, as explained in [20, §15], the proof reduces to showing that
if R −→ R′ is a relative CF+I-cell complex, then the functor (−) ∧R R′ preserves
π∗-isomorphisms. In turn, using the methods of [6, VII§4], that reduces to showing
that the functor CFV A ∧ (−) on orthogonal G-spectra preserves π∗-isomorphisms
when A is a based G-CW complex and V G 6= 0. That is a consequence of the first
statement of the following lemma. Compare [20, 15.6, 15.7]. ¤

Lemma 8.4. Let A be a based G-CW complex, X be an orthogonal G-spectrum,
and V G 6= 0. Then the quotient map

q : (EΣi+ ∧Σi (FV A)(i)) ∧X −→ ((FV A)(i)/Σi) ∧X

is a π∗-isomorphism. If X is a positive cofibrant orthogonal G-spectrum, then

q : EΣi+ ∧Σi X(i) −→ X(i)/Σi

is a π∗-isomorphism.

Proof. For the first statement, we show that q is an eventual level G-homotopy
equivalence. Precisely, we prove that the W th map of q is a G-homotopy equivalence
for all W that, up to G-isomorphism, contain V i. We may as well assume that
W ⊃ V i. Then, by [20, 4.4] and inspection of coequalizers,

((FV A)(i) ∧X)(W ) ∼= O(W )+ ∧O(W−V i) (A(i) ∧X(W − V i)).

The action of σ ∈ Σi is to permute the factors in A(i) and to act through σ⊕idW−V i

on O(W ), where σ ∈ O(V i) permutes the i summands of V in V i. Since Σi acts on
O(W ) as a subgroup of O(V i), the action commutes with the action of O(W −V i).
Therefore, the G-map at level W in the first statement is obtained by passing to
orbits over Σi ×O(W − V i) from the projection

(EΣi ×O(W ))+ ∧ (A(i) ∧X(W − V i)) −→ O(W )+ ∧ (A(i) ∧X(W − V i)).

This map is equivariant with respect to the evident actions of the semi-direct prod-
uct Γ = Gn (Σi×O(W −V i)), where G acts on Σi×O(W −V i) through its (right)
action on O(W − V i). Therefore, to show that the level G-map is a G-homotopy
equivalence, it suffices to show that the projection

EΣi+ ∧O(W )+ −→ O(W )+

is a Γ-homotopy equivalence. Since both sides are Γ-CW complexes, it suffices
to observe that this map becomes a homotopy equivalence on passage to Λ-fixed
points for each Λ ⊂ Γ. The Λ-fixed points of the source and target are empty unless
Λ ⊂ Gn O(W − V i), in which case Λ acts trivially on the contractible space EΣi

and the projection is a Λ-homotopy equivalence. This proves the first statement.
For the second statement, we may assume that X is an F+I-cell spectrum, and the
proof then is an induction on i and on the cellular filtration of X that is essentially
the same as the proof of [6, III.5.1]. ¤
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9. Level equivalences and π∗-isomorphisms of Ω-G-spectra

We must prove Theorem 3.4. It asserts that a π∗-isomorphism f : X −→ Y
between Ω-G-spectra indexed on any given universe U is a level equivalence. The
proof is a somewhat streamlined version of the proof of [19, 7.12]. Consider the
fiber Ff . By the long exact sequence of homotopy groups, πH

∗ (Ff) = 0 for all
H. Since Ff is constructed by taking levelwise fibers, it suffices by the level exact
sequences of homotopy groups to prove that Ff is level acyclic. For the case of πH

0 ,
this verification uses that, up to homotopy, the map f(V ) : X(V ) −→ Y (V ) is the
loop of the map f(V +R) : X(V +R) −→ Y (V +R), where R ⊂ U and R∩ V = 0.
Since Ff is again an Ω-G-spectrum, it suffices to prove the following result.

Lemma 9.1. If X is an Ω-G-spectrum such that πH
n (X) = 0 for all integers n

and all H ⊂ G, then πH
n X(V ) = 0 for all n ≥ 0, H ⊂ G, and V ⊂ U .

We need an observation about Ω-G-spectra. It is adapted from [23, p. 30].

Lemma 9.2. Let X be an Ω-G-spectrum and let V and V ′ be indexing G-spaces
in U that are isomorphic as H-inner product spaces. Then the G-spaces X(V ) and
X(V ′) are weakly equivalent as H-spaces.

Proof. Choose an indexing G-space Z that contains V and V ′ and let W and
W ′ be the orthogonal complements of V and V ′ in Z. Then W and W ′ are indexing
G-spaces that are isomorphic as H-inner product spaces. Together with structural
G-equivalences of X, any choice of H-isomorphism gives a diagram

X(V ) //ΩW X(Z) ∼= ΩW ′
X(Z) X(V ′)oo

that displays the claimed weak H-equivalence. ¤
The main tool in the proof of Lemma 9.1 is a familiar fiber sequence. For any

V , let S(V ) be the unit sphere in the unit disk D(V ). We may identify SV with the
G-space D(V )/S(V ) = D(V )+/S(V )+, and the quotient map D(V )+ −→ S0 is a
G-homotopy equivalence. For any G-space A, application of the functor F (−, A) to
the cofiber sequence S(V )+ −→ D(V )+ −→ SV gives a fiber sequence of G-spaces,
and passage to G-fixed points gives a fiber sequence of spaces.

Proof of Lemma 9.1. By cofibrant approximation in the level model struc-
ture, we may as well assume that X is a cell G-prespectrum, so that each X(V )
has the homotopy type of a G-CW complex. We may identify R∞ with UG and
so fix Rd ⊂ U for all d ≥ 0. We observe first that πH

∗ X(Rd) = 0 for all d and H.
Indeed, by the definition of the homotopy groups of an Ω-G-spectrum, we have

πH
n (X) ∼= πH

n ΩdX(Rd) = πH
n+dX(Rd) = 0

if n ≥ 0 and, if 0 < n ≤ d,

πH
−n(X) = πH

0 Ωd−nX(Rd) = πH
d−nX(Rd) = 0.

If V = V G, then V is G-isomorphic to some Rd. Thus, by Lemma 9.2, πH
∗ X(V ) = 0

for all H in this case as well. Similarly, any V is e-isomorphic to some Rd, and thus
π∗X(V ) = πe

∗X(V ) = 0 for all V .
Since G is a compact Lie group, it contains no infinite descending chain of

(closed) subgroups and we can argue by induction over subgroups. Assume induc-
tively that, for all V and all proper subgroups K of H, πK

∗ X(V ) = 0. The inductive
step is to prove that πH

∗ X(V ) = 0, and we have already proven this when H = e.
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Fix V , let W be the orthogonal complement of V G in V , and let Z be the
orthogonal complement of WH in W . Then W is a G-space and Z is an H-space.
Let d = dim(WH). We begin by proving that πH

n ΩW H

X(V ) = πH
n+dX(V ) = 0 for

n > 0. We have the fiber sequence

F (SZ , ΩW H

X(V ))H −→ F (D(Z)+,ΩW H

X(V ))H −→ F (S(Z)+,ΩW H

X(V ))H .

The middle term is equivalent to ΩW H

X(V )H . In the left term, the H-space
F (SZ , ΩW H

X(V )) is H-homeomorphic to the G-space ΩW X(V ). We have a struc-
tural G-equivalence X(V G) −→ ΩW X(V ) since V = V G + W is a direct sum
splitting of G-spaces. Thus, up to homotopy, our fiber sequence may be written

X(V G)H −→ ΩW H

X(V )H −→ F (S(Z)+,ΩW H

X(V ))H .

We have shown that πH
∗ X(V G) = 0. Thus to show that πH

n ΩW H

X(V ) = 0 for
n > 0, it suffices to show that πH

n F (S(Z)+, ΩW H

X(V )) = 0 for n > 0. We
may triangulate S(Z) as a finite (unbased) H-CW complex [17]. By construction,
S(Z)H is the empty set, so the triangulation only has cells of the form Dm×H/K

with K a proper subgroup of H. By the induction hypothesis, πK
n (ΩW H

X(V )) =
πK

n+dX(V ) = 0 for n ≥ 0. It follows by induction on the number of cells in the
chosen triangulation that πH

n F (S(Z)+,ΩW H

X(V )) = 0 for n > 0.
We have proven that πH

n X(V ) = 0 for n > d. Choose a copy of Rd+1 in R∞
such that V ∩Rd+1 = 0. Then V +Rd+1 = (V G +Rd+1)+W . Applied to V +Rd+1,
the argument just given shows that πH

n X(V +Rd+1) = 0 for n > d. Since X(V ) is
G-equivalent to Ωd+1X(V + Rd+1), we conclude that πH

n X(V ) = 0 for all n. This
completes the proof. ¤

Let F be a family of subgroups of G, that is a set of subgroups closed under
passage to subgroups and conjugates. The inductive nature of the argument makes
it clear that the following generalization holds. We shall need it later.

Theorem 9.3. Let f : X −→ Y be a map of Ω-G-prespectra. Assume that
f∗ : πH

∗ (X) −→ πH
∗ (Y ) is an isomorphism for all H ∈ F . Then, for V ⊂ U ,

f(V )∗ : πH
∗ (X(V )) −→ πH

∗ (Y (V )) is an isomorphism for all H ∈ F .



CHAPTER IV

Orthogonal G-spectra and SG-modules

1. Introduction and statements of results

Taking G-spectra and orthogonal G-spectra to be indexed on a complete uni-
verse, we shall prove the following precise analogues of the results stated in I§1.

Theorem 1.1. There is a strong symmetric monoidal functor N : GI S −→
GM and a lax symmetric monoidal functor N# : GM −→ GI S such that (N,N#)
is a Quillen equivalence between GI S and GM . The induced equivalence of ho-
motopy categories preserves smash products.

Theorem 1.2. The pair (N,N#) induces a Quillen equivalence between the
categories of orthogonal ring G-spectra and SG-algebras.

Theorem 1.3. For a cofibrant orthogonal ring G-spectrum R, the pair (N,N#)
induces a Quillen equivalence between the categories of R-modules and of NR-
modules.

Corollary 1.4. For an SG-algebra R, the categories of R-modules and of
N#R-modules are Quillen equivalent.

Theorem 1.5. The pair (N,N#) induces a Quillen equivalence between the cat-
egories of commutative orthogonal ring G-spectra and of commutative SG-algebras.

Theorem 1.6. Let R be a cofibrant commutative orthogonal ring spectrum.
The categories of R-modules, R-algebras, and commutative R-algebras are Quillen
equivalent to the categories of NR-modules, NR-algebras, and commutative NR-
algebras.

Corollary 1.7. Let R be a commutative SG-algebra. The categories of R-
modules, R-algebras, and, if R is cofibrant, commutative R-algebras are Quillen
equivalent to the categories of N#R-modules, N#R-algebras, and commutative N#R-
algebras.

These comparisons shed new light on the original Lewis–May theory of G-
spectra [19]. A subtle and somewhat mysterious aspect of the theory concerns when
to use sequential indexing and when to use coordinate-free indexing. The objects,
G-spectra or, in the modern version, SG-modules, are intrinsically coordinate-free.
However, their homotopy groups can be Z-graded: one can define RO(G)-graded
homotopy groups, but they play no role in the model theoretic foundations. The
theory of CW objects is at the heart of the matter. These are special kinds of cell
objects. There is no explicit model structure on G-spectra in the earlier literature
but, in the model structure that is implicit in [6, 19], the cofibrations are the
retracts of the cell G-complexes, which are “coordinatized” kinds of objects, in the
sense that they are defined in terms of sphere G-spectra G/H+ ∧Sn for integers n,

59
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just as in the theory of G-spaces or in the nonequivariant theory. We call this the
cellular model structure. It is not the model structure relevant to the results above.

It has often been wondered why integers, which implicitly encode trivial vir-
tual representations, appear in the definitions of cells, rather than general virtual
representations. As we shall see in §2, the answer is that there is a choice. There
are two model structures with the same (stable) weak equivalences. The cofibra-
tions in the (implicit) classical model structure are the retracts of the relative cell
G-complexes. We shall present a second model structure, called the generalized
cellular model structure. In this structure, the cofibrations are the retracts of gen-
eralized relative cell G-complexes, which are “coordinate-free” kinds of objects in
the sense that they are are defined in terms of G-spectra G/H+ ∧ Sα for general
virtual representations α of G. These two model structures are Quillen equivalent.
More precisely, the identity functor is the left adjoint of a Quillen equivalence from
GS or GM with its cellular model structure to GS or GM with its generalized
cellular model structure. Of course, these model structures determine the same
homotopy category since that depends only on the weak equivalences. It is the
generalized cellular model structure on GM that is relevant to the results above.

The relevant model structure on the orthogonal G-spectrum side is the positive
stable model structure of III§5. In fact, there is no model structure on the category
of orthogonal G-spectra that corresponds to the cellular, as opposed to the general-
ized cellular, model structure on the category of SG-modules. We cannot expect to
define cell orthogonal spectra with just the G/H+ ∧FmSn as domains of attaching
maps. These only detect the homotopy groups of the G-spaces X(Rm) of an orthog-
onal G-spectrum X. Taking the weak equivalences to be the π∗-isomorphisms, as
we must, these space level homotopy groups do not have enough information built
into them to prove the model axioms. Technically, with such cells, one cannot use
the small object argument to factor a map as the composite of an acyclic relative
cell complex and a fibration. Of course, the G/H+∧FV Sn do detect the homotopy
groups of all of the G-spaces X(V ). This is intrinsic to the mathematics and is
closely related to the change of universe issues discussed in V§1. The problem does
not arise with G-spectra or SG-modules X because the homotopy groups of their
G-spaces X(V ) are equivariant stable homotopy groups: all information has been
built in by use of the spectrification functor L : P −→ S ; compare I.4.8.

We have left adjoints of Quillen equivalences from G-spectra to SG-modules,
both with either the cellular or the generalized cellular model structure, from SG-
modules with the cellular model structure to SG-modules with the generalized cellu-
lar model structure, and from orthogonal G-spectra with the positive stable model
structure to SG-modules with the generalized cellular model structure. Since we
have left adjoints with the same target, these Quillen equivalences cannot be com-
posed. However, all homotopy category level information can be transported back
and forth along the induced equivalences of homotopy categories. In particular,
information proven using the classical cellular model structure on G-spectra can be
transported along the equivalences to give information about orthogonal G-spectra.

Some such proofs can also be carried out using the generalized kind of cell
structure, but others cannot. In view of the prevalence of arguments based on in-
ductive verifications on cell complexes, it is in principle preferable to have a model
structure with as few cofibrations as possible. More fundamentally, very many ar-
guments, both equivariant and nonequivariant, depend on the use of CW complexes
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rather than just cell complexes. It is worth emphasizing that this fundamentally
important refinement of cell theory is invisible to the model category formalities.
This refinement is available with the classical cell complexes but not with the gen-
eralized cell complexes. The refinement makes sense only when one has the cellular
approximation theorem, and one does not have such a result for generalized cell
SG-modules or for cell orthogonal G-spectra, even when one requires cells to be
attached only to cells of lower dimension. The essential point is the space level
fact that if m < n, then every map Sm −→ Sn is null homotopic, hence null G-
homotopic, whereas if V and W are representations of dimensions m < n, then
G-maps SV −→ SW need not be null G-homotopic. In fact, in SG and MG, using
G-CW objects, the statement and proof of the cellular approximation theorem [19,
I.5.8] are virtually identical to their classical space level analogues; similarly, every
object is weakly equivalent to a G-CW object [19, I.5.12].

For this reason, we have made no attempt to rederive the deeper results of
equivariant stable homotopy theory in terms of orthogonal G-spectra; just as with
the nonequivariant theory of diagram spectra, the new category should be viewed as
complementary to the old one, rather than as a replacement for it. For an explicit
example of a result proven with G-CW spectra that we do not know how to prove
directly in the category of orthogonal G-spectra, we cite the theorem of [18] that
an ordinary Z-graded cohomology theory on G-spaces extends to an RO(G)-graded
cohomology theory if and only if its system of coefficients extends to a Mackey
functor. For finite groups G, one can use equivariant infinite loop space theory to
construct the relevant Eilenberg-Mac Lane orthogonal G-spectra, as we intend to
explain elsewhere, but for general compact Lie groups G the only known proof is
the original one. That uses the cellular cochains of G-CW spectra with coefficients
in a Mackey functor to construct a Z-graded cohomology theory on G-spectra.
Application of Brown’s representability theorem to its zeroth term then gives the
Eilenberg-Mac Lane G-spectrum that represents the extension to an RO(G)-graded
cohomology theory.

We construct the functors N and N# of Theorem 1.1 in §3 and prove the
comparison results 1.2 – 1.7 in §4. We show that the functor N is equivalent to a
more intuitive comparison functor M in the brief §5. In §6 we consider families and
cofamilies of subgroups of G. We define and compare new model structures on the
categories of G-spectra, SG-modules, and orthogonal G-spectra whose associated
homotopy categories localize information at or away from a chosen collection of
subgroups. Some of these model structures are given by Bousfield localizations,
which admit a simple model theoretical construction in all of our categories.

2. Model structures on the category of SG-modules

We shall not repeat the basic definitions given in [6, 27] and recalled nonequiv-
ariantly in I§5. The papers [5, 10, 11] give an introductory overview, and the basic
equivariant reference is [27, XXIV]. However, we must modify its perspective on
equivariance, in line with II§1.

As observed in II.1.2, we have categories PG and SG of G-prespectra and
G-spectra. Their arrows are nonequivariant, but their spaces of arrows are G-
spaces; that is, they are enriched over GT . They have associated G-fixed categories
GP and GS , which are enriched over T . There is a spectrification G-functor
L : PG −→ SG that is left adjoint to the evident forgetful functor `.
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There is a sphere G-spectrum SG, and a closed symmetric monoidal category
of SG-modules. Its objects are G-spectra with additional structure, as specified in
[27, XXIV.1.2, 1.5]. We give a summary. There is a monad L on SG (and not
just on GS ). The unit and product maps η : E −→ LE and µ : LLE −→ LE
are G-maps, and the action map ξ : LE −→ E of an L-spectrum is required to be
a G-map. There is a smash product of L-spectra, denoted ∧L , that is associative
and commutative; it has a natural unit G-map λ : SG ∧L E −→ E that is always a
weak equivalence and sometimes an isomorphism. (We redescribe it in VI§6). An
SG-module is an L-spectrum E for which λ is an isomorphism, and ∧L restricts
to a smash product ∧ between SG-modules. We have a G-space of nonequivariant
arrows f : E −→ E′ of L-spectra, where f must satisfy f ◦ ξ = ξ′ ◦ Lf . Its G-fixed
point space is the space of G-maps E −→ E′. Arrows and G-maps of SG-modules
are just arrows and G-maps of the underlying L-spectra.

We let MG denote the category of SG-modules and their arrows. This category
is enriched over GT . We let GM denote its G-fixed category; its objects are the
SG-modules and its morphisms are the G-maps.

All of these categories depend on a choice of a universe U : G-spectra are indexed
on the indexing G-spaces in U , as in II.1.2. When suppressed from the notation, as
above, U is generally assumed to be complete. However, everything in this section
applies verbatim to an arbitrary universe U .

We have defined the stable and positive stable model structures on GP in
Chapter III. We now consider model structures on the categories GS and GM of
G-spectra and SG-modules. We write Σ∞V : TG −→ SG for the shift desuspension
G-spectrum functor LFV , which again is left adjoint to evaluation at V . As in I.4.5
and I.4.6, we have an adjunction (F,V) relating the categories SG and MG. It
induces an adjunction between the G-fixed categories GS and GM .

Proposition 2.1. Define F : SG −→ MG by FE = SG∧L LE and V : MG −→
SG by VM = FL (SG,M). Then F and V are left and right adjoint, and there is a
natural weak equivalence of G-spectra λ̃ : M −→ VM .

Definition 2.2. We define spheres and cells in GS and GM .

(i) A sphere G-spectrum is a G-spectrum of the form Σ∞q (G/H+∧Sn), where
q ≥ 0, n ≥ 0, and H ⊂ G. A generalized sphere G-spectrum is a G-
spectrum of the form Σ∞V (G/H+∧Sn), where V is an indexing G-space V
in U , n ≥ 0, and H ⊂ G. Write Sn

G = Σ∞Sn and S−n
G = Σ∞n S0 if n ≥ 0

and write S−V
G = Σ∞V S0 for an indexing G-space V .

(ii) A sphere SG-module or a generalized sphere SG-module is an SG-module
of the form FE, where E is a sphere G-spectrum or a generalized sphere
G-spectrum.

(iii) A generating q-cofibration or generalized generating q-cofibration in GS
or GM is a map of the form E −→ CE, where E is a sphere object or
generalized sphere object and CE is the cone on E.

(iv) A generating acyclic q-cofibration or generalized generating acyclic q-co-
fibration is a map of the form i0 : CE −→ CE ∧ I+, where E is a sphere
object or generalized sphere object.
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Remark 2.3. It would serve no purpose to consider sphere G-spectra of the
more general form FV (G/H+ ∧ SW ) for G-representations W since SW is trian-
gulable as a finite G-CW complex [17]. The use of functors FV rather than just
functors Fn is the fundamental distinction.

The definition of homotopy groups for G-spectra takes a simpler form than for
G-prespectra, as in [6, I.4.4]. Write π(E, E′)G for the set of homotopy classes of
maps E −→ E′ in GS . Then, for H ⊂ G, n ∈ Z, and E ∈ GS ,

(2.4) πH
n (E) = π(G/H+ ∧ Sn, E)G.

Equivalently, for n ≥ 0,

(2.5) πH
n (E) = πH

n (E(0)) and πH
−n(E) = πH

0 (E(Rn)).

The homotopy groups of an SG-module are the homotopy groups of its underlying
G-spectrum.

Remark 2.6. The homotopy groups of a G-spectrum E are the same as those of
the G-prespectrum `E. A G-prespectrum T is a (positive) inclusion G-prespectrum
if each adjoint structure map T (V ) −→ ΩW−V T (W ) (with V G 6= 0) is an inclusion.
As in I.4.8, the unit T −→ `LT of the adjunction is then a weak equivalence; see
[19, I.2.2]. This applies to cofibrant G-prespectra, for example.

Definition 2.7. Consider the categories GS and GM of G-spectra and SG-
modules.

(i) A map in either category is a weak equivalence if it induces an isomorphism
on all homotopy groups πH

n .
(iia) A map is a q-cofibration if it is a retract of a relative cell G-complex

defined in terms of generating q-cofibrations.
(iib) A map is a generalized q-cofibration if it is a retract of a relative cell

G-complex defined in terms of generalized generating q-cofibrations.
(iiia) A map is a q-fibration if it satisfies the RLP with respect to the generating

acyclic q-cofibrations.
(iiib) A map is a restricted q-fibration if it satisfies the RLP with respect to the

generalized generating acyclic q-cofibrations.

Remark 2.8. Exactly as in I§4, the results of III.3.5 imply the corresponding
statements for weak equivalences of G-spectra and of SG-modules. That is, the
evident equivariant analogues of I.4.10 and I.4.11 hold.

Theorem 2.9. Consider the categories GS and GM of G-spectra and SG-
modules.

(i) These categories are G-topological model categories with respect to the
weak equivalences, q-cofibrations, and q-fibrations; we call this the cellular
model structure.

(ii) These categories are also G-topological model categories with respect to the
weak equivalences, generalized q-cofibrations, and restricted q-fibrations;
we call this the generalized cellular model structure.

(iii) The identity functors of GS and GM are the left adjoints of Quillen
equivalences from the cellular model structure to the generalized cellular
model structure.

(iv) With either the cellular or the generalized cellular model structures on both
categories, the pair (F,V) is a Quillen equivalence between GS and GM .
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(v) With the generalized cellular model structure on GS and the stable model
structure on GP, (L, `) is a Quillen equivalence between GP and GS .

With either model structure, GS is right proper and GM is proper.

Proof. One can mimic the proofs of the model axioms in Chapter III or in [6,
V§5]. With the second strategy, one starts with different definitions. One redefines
the q-fibrations of G-spectra to be the levelwise Serre G-fibrations for levels n
or levels V , and one redefines the q-fibrations of SG-modules to be the maps f
such that Vf is a q-fibration of G-spectra; for both G-spectra and SG-modules,
one redefines the q-cofibrations to be the maps that satisfy the LLP with respect
to the acyclic q-fibrations. With the first proof, this characterization of the q-
fibrations and q-cofibrations follows. The second proof capitalizes on the facts that
the generating acyclic q-cofibrations are inclusions of deformation retracts and that
homotopic maps induce isomorphisms of homotopy groups. These facts make the
proofs of the model axioms almost completely formal. The only point that requires
comment in the equivariant setting is the proof of [6, VII.5.8], where one needs to
know that a map is an acyclic (restricted) q-fibration if and only if it satisfies the
RLP with respect to the (generalized) generating q-cofibrations. The interesting
point is that the same weak equivalences work for both statements, and this is a
direct consequence of III.3.4.

To prove that our adjoint pairs are Quillen equivalences, it suffices to prove that
their right adjoints create weak equivalences and preserve q-fibrations and that the
unit of the adjunction is a weak equivalence on cofibrant objects [20, A.2]. The
statements about right adjoints are immediate; for (iv), the definitions imply that
V creates the q-fibrations in GM . The statement about the unit of the adjunction
is trivial in part (iii), follows as in I.4.6 from [6, I.4.6, I.8.7, II.2.5] in part (iv), and
follows from Remark 2.6 in part (v).

The last statement is proven using long exact sequences of homotopy groups of
fiber and cofiber sequences, as in [20, 9.10] or [6, I.6.6]. ¤

Remark 2.10. It seems unlikely that GS is left proper. The problem is that
a cofiber sequence of G-spectra is only known to give rise to a long exact sequence
of homotopy groups under the mild hypothesis of tameness [6, I.3.4], whereas any
cofiber sequence of SG-modules gives rise to a long exact sequence of homotopy
groups [6, I.6.4], as in I.4.10 and I.4.11.

Note that SG itself is cofibrant as an object of GS but is not cofibrant as an
object of GM , where F(SG) is a cofibrant approximation of SG.

Of course, the reason for the introduction of GM is that, unlike GS , it is
a closed symmetric monoidal category under the smash product, so that we can
define rings, called SG-algebras, and modules over them; see also [7, 26]. Exactly
as in [6, VII§§4,5], we have model categories of such highly structured equivariant
ring and module spectra.

Theorem 2.11. The following categories admit cellular and generalized cellular
G-topological model structures whose weak equivalences and q-fibrations or restricted
q-fibrations are created in GM .

(i) The category of SG-algebras.
(ii) The category of commutative SG-algebras.
(iii) The category of modules over an SG-algebra R.
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(iv) The category of algebras over a commutative SG-algebra R.
(v) The category of commutative algebras over a commutative SG-algebra R.

In all cases, the q-cofibrations are the retracts of relative cellular or generalized
cellular objects in the specified category. All of these categories are right proper,
and the categories in (iii) are also left proper.

A general notion of cellular object that applies in all cases is given in [6,
VII.4.11]. The fact that all of our categories are right proper is inherited from
GM , as is the fact that the categories in (iii) are left proper.

Remark 2.12. The analogues for orthogonal G-spectra of the categories in (ii),
(iii), and (v) are left proper [20, 12.1, 15.2], but not the analogues of the categories
in (i) and (iv). The reason that commutative orthogonal ring G-spectra behave
better than commutative SG-algebras can be seen by comparing [20, 15.5, 15.6]
with [6, III.5.1].

3. The construction of the functors N and N#

The following equivariant analogue of I.3.1 is the essential step in the construc-
tion of the adjoint pair (N,N#). We assume that our given fixed universe U is
complete, but the result holds more generally; see Remark 3.8. Recall that the
G-category IGS of orthogonal G-spectra is isomorphic to the G-category JGT
of JG-spaces, where JG is the category constructed from the category IG and
the IG-space SG in II.4.1.

Theorem 3.1. There is a strong symmetric monoidal contravariant G-functor
N∗ : JG −→ MG. If V G 6= 0, then N∗(V ) is (non-canonically) isomorphic to
FS−V

G , and the evaluation G-map

ε : N∗(V ) ∧ SV = N∗(V ) ∧JG(0, V ) −→ N∗(0) ∼= SG

of the functor is a weak equivalence.

Proof. The proof is similar to the nonequivariant argument in I§6, and we
shall not give full details. Two equivalent constructions of N∗ were given in I§6,
and both apply equivariantly. The first is in terms of twisted half-smash products.
The required equivariant theory of twisted half-smash products is given by Cole in
[27, XXII], except that he writes entirely in terms of G-maps. Reinterpretation in
terms of the equivariant context of II§1 is straightforward.

As in I§6, we use superscripts to denote relevant universes. Consider the uni-
verses V ⊗ U for V ∈ IG, together with their subspaces V ∼= V ⊗ R. We set

(3.2) N∗(V ) = SG ∧L (I (V ⊗ U,U)n ΣV⊗U
V (S0)).

Here, for inner product G-spaces U and U ′, I (U,U ′) is the G-space of linear
isometries U −→ U ′. It is G-contractible when there is a G-linear isometry U −→ U ′

[23, 1.3]. Since U is complete, there is such a G-linear isometry V ⊗ U −→ U for
any V . The functor J given by

(3.3) JE = SG ∧L E

converts L-spectra to weakly equivalent SG-modules; we rewrite

(3.4) N∗(V ) = J(I (V ⊗ U,U)n ΣV⊗U
V (S0)).
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The functoriality in V can be proven directly or by comparison with the alter-
native second construction, which is given in terms of Thom G-spectra. Replacing
inner product spaces in I.6.8-6.18 by G-inner product spaces, still using general
linear isometries but taking the action of G by conjugation into account, we obtain
the alternative description

(3.5) N∗(V ) ∼= JMV⊗U,U
V,− .

With this form of the definition, the functoriality in V is given by I.6.20.
The definition (3.4) makes sense even when V = 0, with G-spectra indexed

on 0 interpreted as G-spaces. Inspection of definitions shows that N∗(0) ∼= SG, as
required for N∗ to be strong symmetric monoidal. The natural isomorphism

(3.6) φ : N∗(V ) ∧ N∗(W ) −→ N∗(V ⊕W )

required of a strong symmetric monoidal functor is constructed as in I.6.7.
The argument for the identification of the N(Rn) for n > 0 given in I§6 does not

generalize to an equivariant identification of the N(V ) for V G 6= 0. However, since
U is complete, V ⊗U is complete when V G 6= 0, and we can choose an isomorphism
of G-universes fV : V ⊗ U −→ U that restricts to the identification V ⊗ R ∼= V .
Then fV induces an isomorphism

I (V ⊗ U,U)n ΣV⊗U
V (S0) ∼= I (U,U)n ΣU

V S0 = LS−V
G .

Applying J and using the definition in (3.4), we obtain the required isomorphism

(3.7) N∗(V ) −→ JLS−V
G = FS−V

G .

Comparing with I.6.21, we see that ε : N∗(V ) ∧ SV −→ SG corresponds under
this isomorphism to the composite of the identification FS−V

G ∧SV ∼= FSG (see [19,
I.4.2]) and the cofibrant approximation FSG −→ SG. Observe that, although fV

and the isomorphism (3.7) depend non-canonically on V , when we suspend (3.7)
by SV and map to SG, the resulting weak equivalence, namely ε, is natural in V .
Concretely, this holds since we are projecting the contractible G-spaces I (V ⊗U,U)
and I (U,U) to a point, which makes the choice of isomorphism between them
invisible. ¤

Remark 3.8. Let U be any universe and let V = V (U) be the collection of all
G-inner product spaces that are isomorphic to indexing G-spaces in U . Taking JG

and MG to be defined with respect to V and U , the construction of the G-functor
N∗ still applies. We say that U is closed under tensor products if the tensor product
of representations in U is isomorphic to a representation in U ; clearly this holds if
and only if V is closed under tensor products. In this case, V ⊗ U ∼= U if V ⊂ U
and V G 6= 0. This implies that we still have the crucial isomorphism (3.7), and
we conclude that Theorem 3.1 remains valid as stated. All of the results in the
introduction hold in this generality. For example, these results hold when U is the
trivial universe.

Remark 3.9. Again, let U be any universe. The following observations, which
are due to the referee, show that the condition V G 6= 0 can be relaxed to the less
restrictive assumption that V 6= 0 in Theorem 3.1 and its generalization in the
previous remark. Assume that V 6= 0.
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(i) Since U contains a copy of V and V is isomorphic to its dual V ∗, V ⊗ U
contains a copy of V ⊗ V ∗ ∼= Hom(V, V ) and hence contains a copy of the
trivial representation. Therefore V ⊗U is a universe in the sense of II.1.1.

(ii) If U is closed under tensor products, then V ⊗ U ∼= U . Indeed, for any
W ⊂ U , there is a Z ⊂ U such that Z ∼= V ⊗W . In view of (i), V ⊗ Z ⊂
V ⊗ U is isomorphic to Hom(V, V ) ⊗W and thus contains a copy of W .
By the definition of a universe in II.1.1, this implies that V ⊗ U ∼= U .

The categorical discussion of I§2 applies verbatim in the equivariant context,
provided that all functors are required to be (continuous) G-functors between “bi-
complete” (topological) G-categories. Here a G-category CG is said to be bicom-
plete if it is tensored and cotensored over the G-category TG of based G-spaces and
if its associated G-fixed category GC is complete and cocomplete. A G-functor
F : CG −→ C ′

G is defined to be “right exact” if it preserves tensors and if its restric-
tion F : GC −→ GC ′ to G-maps is right exact. The cited discussion then gives the
following formal consequence of Theorem 3.1.

Theorem 3.10. Define G-functors N : IGS −→ MG and N# : MG −→ IGS
by letting N(X) = N∗ ⊗JG X and (N#M)(V ) = MG(N∗(V ),M). Then (N,N#) is
an adjoint pair of G-functors such that N is strong symmetric monoidal and N# is
lax symmetric monoidal.

4. The proofs of the comparison theorems

As in I§3, to prove Theorem 1.1 it suffices to prove the following three results.

Lemma 4.1. The functor N# preserves homotopy groups and creates weak
equivalences.

Lemma 4.2. The functor N# preserves q-fibrations.

Proposition 4.3. The unit η : X −→ N#NX of the adjunction is a weak
equivalence for all cofibrant orthogonal G-spectra X.

As in the proof of its nonequivariant analogue in I§5, Lemma 4.1 is implied by
the following result.

Lemma 4.4. For SG-modules M , N#M is a positive Ω-G-spectrum.

Proof. The statement means that if V ⊂ W , V G 6= 0, then the structure map

σ̃ : (N#M)(V ) = M (N∗(V ),M) −→ M (ΣW−V N∗(W ),M) ∼= ΩW−V (N#M)(W )

is a weak equivalence. This holds because σ̃ is induced by the evaluation map
ε : N∗(W ) ∧ SW−V −→ N∗(V ), which is a weak equivalence between cofibrant
SG-modules by Theorem 3.1. ¤

In Lemma 4.2, we are saying that N# carries restricted q-fibrations of SG-
modules to q-fibrations of orthogonal G-spectra in the positive stable model struc-
ture, and the proof is the same formal argument as in I§5.

To prove Theorem 1.1, we only need Proposition 4.3 for orthogonal G-spectra
that are cofibrant in the positive stable model structure, but it holds more generally
for orthogonal G-spectra that are cofibrant in the stable model structure. The proof
is the same as in the nonequivariant case I§5. As there, we first prove the result
when X = FV A for a G-CW complex A, and we then deduce it for cell orthogonal
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G-spectra. For the first step, it is convenient to work on the prespectrum level, using
the Quillen equivalence (P,U) between GI S and GP of III.4.16 and III.5.7.

We display our Quillen equivalences in the following (noncommutative) dia-
gram:

GP
L //

P

²²

GS
`

oo

F

²²
GI S

U

OO

N // GM .
N#

oo

V

OO

As in I§3, to prove Theorems 1.2, 1.3, 1.5, and 1.6, we observe that Lemmas 4.1
and 4.2 and Proposition 4.3 imply their analogues for the adjoint pairs (N,N#) in-
duced on the categories of multiplicatively enriched objects considered in the cited
theorems. Since the weak equivalences and q-fibrations in the multiplicatively en-
riched categories are created in the underlying categories (of orthogonal G-spectra
or of SG-modules), this is obvious for the lemmas. For the proposition, we must
relate cofibrancy of multiplicatively enriched objects with cofibrancy of their un-
derlying orthogonal G-spectra. For Theorems 1.2 and 1.3, III.7.6 gives what is
needed. For Theorem 1.5, we argue as in I§3. The essential point is comparison of
the second statement of III.8.4 with the following analogue for SG-modules, whose
proof is precisely parallel to the proof of its nonequivariant analogue in [6, III.5.1].

Lemma 4.5. For a cofibrant SG-module M (in the generalized cellular model
structure), the quotient map

q : EΣi+ ∧Σi M (i) −→ M (i)/Σi

is a weak equivalence.

Corollaries 1.4 and 1.7 are also proven as in I§3, noting that the result I.3.6
remains valid in the equivariant setting, with the same proof.

5. The functor M and its comparison with N

Exactly as in I§7, there is another G-functor M : IGS −→ MG which, al-
though less convenient for the comparison theorems, is considerably more natural
intuitively. We have the forgetful G-functor U from orthogonal G-spectra to G-
prespectra and the spectrification G-functor L from G-prespectra to G-spectra. As
in I.7.4 and I.7.5, we can define equivariant notions of L-prespectra and L-spectra.
The latter notion is the one that forms the basis for the definition of SG-modules.
Writing PG[L] and SG[L] for the resulting G-categories, we verify as in I.7.6 and
I.7.7 that the forgetful G-functor U takes values in PG[L] and the spectrification
G-functor L induces a G-functor L : PG[L] −→ SG[L]. Moreover, we have the
G-functor J : SG[L] −→ MG specified by JE = SG ∧L E.

Definition 5.1. Define the G-functor M : IGS −→ MG to be the composite

IGS
P // PG[L] L // SG[L] J // MG,

where P denotes the underlying prespectrum functor regarded as taking values in
the category of L-prespectra.
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As in I.7.9–7.11, the functor M has formal properties much like those of N.

Lemma 5.2. The G-functor M is right exact and lax symmetric monoidal, with
MSG

∼= SG (where SG on the left is the sphere orthogonal G-spectrum).

As in I.7.12, although M does not appear to preserve cofibrant objects, it has
the following basic homotopical property. Recall Remark 2.6.

Lemma 5.3. For positive inclusion orthogonal G-spectra X, there is a natural
isomorphism

πH
∗ (X) ∼= πH

∗ (M(X)).

Arguing as in I.7.13, we obtain the following comparison theorem.

Theorem 5.4. There is a symmetric monoidal natural G-map

α : NX −→MX

such that α : NX −→MX is a weak equivalence if X is cofibrant.

One advantage of M over N is that it is quite convenient for the study of
change of groups, as was exploited implicitly by Greenlees and May in [13]. We
turn to considerations of change of group and universe in our new model theoretic
framework after generalizing the theory to families.

6. Families, cofamilies, and Bousfield localization

We discuss in model theoretical terms the familiar idea of concentrating G-
spaces or G-spectra at or away from a family of subgroups. We also relate this
idea to Bousfield localization. The theory works the same way for SG-modules and
for orthogonal G-spectra; we often use the neutral term “object”, and we let GC
stand for either GM or GI S . Similar arguments lead to weaker conclusions in the
category of G-spectra, due to Remark 2.10. We write [X,Y ]G for maps X −→ Y
in the homotopy category HoGC with respect to the stable model structure.

We call weak equivalences G-equivalences in this section. For H ⊂ G, we say
that a G-map is an H-equivalence if it is a weak equivalence when regarded as an H-
map; we will treat restriction to subgroups systematically later. Let F be a family
of subgroups of G, namely a set of subgroups closed under passage to conjugates
and subgroups. There is a universal F -space EF . It is a G-CW complex such
that (EF )H is contractible for H ∈ F and empty for H /∈ F . Of course, its cells
must be of orbit type G/H with H ∈ F . The following definitions make sense for
based G-spaces as well as for objects in GC .

Definition 6.1. (i) A map f : X −→ Y is a F -equivalence if it is an
H-equivalence for all H ∈ F .

(ii) An object X is an F -object if the map π : EF+ ∧X −→ X induced by
the projection EF+ −→ S0 is a G-equivalence.

Definition 6.2. Let E be a cofibrant object of GC or a cofibrant based G-
space.

(i) A map f : X −→ Y is an E-equivalence if id∧f : E ∧X −→ E ∧ Y is a
G-equivalence.

(iii) Z is E-local if f∗ : [Y, Z]G −→ [X, Z]G is an isomorphism for all E-equi-
valences f : X −→ Y .
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(iv) An E-localization of X is an E-equivalence λ : X −→ Y from X to an
E-local object Y .

Consider GM with either the cellular or the generalized cellular model structure
and consider GI S with either the stable or the positive stable model structure.
Indexing can be on any universe. Writing GC for any of these model categories, we
have the following slightly digressive, but important, omnibus theorem. Nonequiv-
ariantly, it is proven for S-modules in [6, VIII§1]. With only minor variations, the
argument there applies equivariantly to all of the model structures we are consid-
ering. It does not apply to G-spectra because it uses that GC is left proper.

Theorem 6.3. Let E be a cofibrant object of GC or a cofibrant based G-space.
Then GC has an E-model structure whose equivalences are the E-equivalences and
whose E-cofibrations are the q-cofibrations of the given model structure. The E-
fibrant objects are the E-local objects, and E-fibrant approximation constructs a
Bousfield localization λ : X −→ LEX of X at E.

Taking E = EF+, we call the resulting model structures Bousfield F -model
structures. Here Bousfield localization takes the following elementary form.

Proposition 6.4. The map ξ : X −→ F (EF+, X) induced by the projection
EF+ −→ S0 is an EF+-localization of X.

Proof. The map ξ is an EF+-equivalence by [12, 17.2], and it is immediate
by adjunction that F (EF+, X) is EF+-local. ¤

Completion theorems in equivariant stable homotopy theory are concerned with
the comparison of this Bousfield localization with another, more algebraically com-
putable, Bousfield localization. See, for example, [9, 4.1], [10]. However, the
Bousfield F -model structures are not the most natural ones to consider in the con-
text of families. In the model structures on GC , the generating q-cofibrations and
generating acyclic q-cofibrations are obtained by applying functors FV or Σ∞V to
certain maps G/H+ ∧ A −→ G/H+ ∧ B of G-spaces. We can restrict attention to
those H ∈ F in all of these definitions. We refer to F -cofibrations rather than
q-cofibrations for the retracts of the resulting relative F -cell complexes. In contrast
with Theorem 6.3, the following theorem, with left properness deleted, applies just
as well to G-spectra as to SG-modules and orthogonal G-spectra.

Theorem 6.5. The category GC is a compactly generated proper G-topological
model category with weak equivalences the F -equivalences and with generating F -
cofibrations and generating acyclic F -cofibrations obtained from the original gen-
erating q-cofibrations and generating acyclic q-cofibrations by restricting to orbits
G/H with H ∈ F .

We refer to these as F -model structures. The proofs of the model axioms are
the same as in the case F = A ``. Following the approach of Chapter III, we
first give GT an F -model structure using its F -equivalences and F -cofibrations.
The F -fibrations are the maps that give Serre fibrations on passage to H-fixed
points for H ∈ F . We then give G-prespectra and orthogonal G-spectra level
F -model structures using level F -equivalences and level F -fibrations; the result-
ing F -cofibrations are as described above. Finally, we give G-prespectra and or-
thogonal G-spectra stable F -model structures using the F -equivalences and F -
cofibrations. Similarly, the approach of [6] applies verbatim to give G-spectra and
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SG-modules cellular and generalized cellular F -model structures. All of our com-
parison theorems have F versions that admit the same proofs.

To relate the F -model structure to the Bousfield F -model structure, we must
show that the two structures have the same weak equivalences. This is not at all
obvious. We need the following lemma in the proof.

Lemma 6.6. If A is a based F -CW complex and X is a cell object of GC , then
A ∧X is an F -cell object.

Proof. This is shown by inspection of the combinatorial structure of cell ob-
jects. The essential point is that, for H ∈ F and any K, we can triangulate the
product G/H × G/K as a finite G-CW complex by [17], and in any such trian-
gulation the only orbit types that can occur are G/L with L ∈ F . While the
details from here are straightforward, the reader should be aware that the under-
lying spaces of F -cell objects in any of our categories are generally not F -spaces,
so that the conclusion is much less obvious than its space level analogue. ¤

Proposition 6.7. The following conditions on a map f : X −→ Y are equiv-
alent.

(i) f is an F -equivalence.
(ii) f∗ : πH

∗ (X) −→ πH
∗ (Y ) is an isomorphism for H ∈ F .

(iii) f is an EF+-equivalence.

Proof. Parts (i) and (ii) are equivalent by definition. For H ∈ F , the G-
map EF+ −→ S0 is an H-homotopy equivalence and therefore (iii) implies (i).
We must prove that (i) implies (iii). Thus let f : X −→ Y be an F -equivalence.
We must show that id∧f : EF+ ∧ X −→ EF+ ∧ Y is a G-equivalence, and it
is certainly an F -equivalence. Since EF+ is a G-CW complex, smashing with it
preserves G-equivalences. Using functorial cofibrant approximation in the original
model structure, we may assume without loss of generality that X and Y are cell
objects. By Lemma 6.6, EF+ ∧X and EF+ ∧ Y are then F -cell objects. In the
case of SG-modules, where all objects are fibrant, we conclude that id∧f is a G-
homotopy equivalence because it is an F -equivalence between F -cofibrant objects.
(In earlier terminology, we are invoking the F -Whitehead theorem [19, II.2.2]). In
the case of GI S , using functorial fibrant approximation we may assume further
that X and Y are orthogonal Ω-G-spectra. Using III.9.3, we conclude that f is
a level F -equivalence. On the space level, it is clear that (i) implies (iii), and we
conclude that id∧f is a level G-equivalence and hence a π∗-isomorphism. ¤

Remark 6.8. For a fibrant object X of GC , we have πH
∗ (X) = π∗(XH), just

as for G-spaces. For orthogonal G-spectra, this is V.3.2 below. For G-spectra (all
of which are fibrant), it is [19, I.4.5], and the analogue for SG-modules follows
(see VI.3.4 below). Thus, when X and Y are fibrant, a map f : X −→ Y is an
F -equivalence if and only fH : XH −→ Y H is a weak equivalence for all H ∈ F .

The Bousfield F -model structures have more cofibrations and the same weak
equivalences as the F -model structures. This implies the following result.

Theorem 6.9. The identity functor GC −→ GC is the left adjoint of a Quillen
equivalence from the F -model structure to the Bousfield F -model structure.

Now return to the notion of an F -object in Definition 6.1. Observe that this
is an intrinsic notion, independent of any model structure.
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Theorem 6.10. An object X is an F -object if and only if its F -cofibrant
approximation γ : ΓX −→ X is a G-equivalence.

Proof. Since EF+∧G/H+ −→ G/H+ is a G-homotopy equivalence if H ∈ F ,
an F -cell complex is an F -object. The standard functorial construction gives
ΓX as an F -cell complex. The conclusion follows from the evident commutative
diagram

EF+ ∧ ΓX
π //

id∧γ

²²

ΓX

γ

²²
EF+ ∧X

π
// X,

in which id∧γ and the top map π are G-equivalences for any X by Lemma 6.6 and
Theorem 6.7. ¤

Observe that, in GM , this holds for both the cellular and the generalized
cellular F -model structures. Let HoFC denote the homotopy category associated
to the F -model structure on GC , or, equivalently, the Bousfield F -model structure,
and write [X, Y ]F for the set of maps X −→ Y in this category. The results above
imply the following description of HoFC .

Theorem 6.11. Smashing with EF+ defines an isomorphism

[X, Y ]F ∼= [EF+ ∧X, EF+ ∧ Y ]G
and thus gives an equivalence of categories from HoFC to the full subcategory of
objects EF+ ∧X in HoGC .

Proof. If ΓX and ΓY are F -cofibrant approximations of X and Y , then

[X, Y ]F ∼= [ΓX, ΓY ]G ∼= [EF+ ∧ ΓX, EF+ ∧ ΓY ]G ∼= [EF+ ∧X,EF+ ∧ Y ]G.

Indeed, the definition of an F -cell object, Lemma 6.6, and Theorem 6.10 imply
that ΓX is an F -object, that ΓX and EF+ ∧ ΓX are cofibrant in our original
model structure, and that EF+ ∧ ΓX is a cofibrant approximation of EF+ ∧ X.
Formally, we are using that the identity functor is the right adjoint of a Quillen
adjoint pair relating the original model structure to the F -model structure. ¤

There is an analogous theory for cofamilies, namely complements F ′ of families.
Thus F ′ is the set of subgroups of G not in F . We define ẼF to be the cofiber
of EF+ −→ S0. Then (ẼF )H is contractible if H ∈ F and is S0 if H /∈ F . In
contrast to the situation for G-spaces, the evident analogue of Proposition 6.7 is
false for G-spectra. This motivates the following variant of Definition 6.1.

Definition 6.12. (i) A map f : X −→ Y is an F ′-equivalence if it is an
ẼF -equivalence.

(ii) An object X is an F ′-object if the map λ : X −→ ẼF ∧X induced by
the inclusion S0 −→ ẼF is a G-equivalence.

Again, take GC to be GM or GI S with one of our usual model structures.
We do not obtain model structures by restricting attention to orbits G/H with
H ∈ F ′, but we do still have the Bousfield F ′-model structure obtained by taking
E = ẼF in Theorem 6.3. We have the following analogue of Theorem 6.10.

Theorem 6.13. The following conditions on an object X are equivalent.
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(i) X is an F ′-object.
(ii) X is an ẼF -local object.
(iii) The ẼF -fibrant approximation λ : X −→ LẼF X is a G-equivalence.
(iv) πH

∗ (X) = 0 for H ∈ F .
For such an X and any Y , λ∗ : [ẼF ∧ Y, X]G −→ [Y, X]G is an isomorphism.

Proof. This is a strengthened version of [19, II.9.2]. Assume (i). Then the
composite

[Y, X]G −→ [ẼF ∧ Y, ẼF ∧X]G −→ [Y, ẼF ∧X]G ∼= [Y, X]G

is the identity, where the first map is given by smashing with ẼF , the second
is λ∗, and the isomorphism is given by λ∗. Therefore, if f : Y −→ Y ′ is an
ẼF -equivalence, then f∗ : [Y ′, X]G −→ [Y,X]G is a retract of the isomorphism
f∗ : [ẼF ∧ Y ′, ẼF ∧X]G −→ [ẼF ∧ Y, ẼF ∧X]G and is thus an isomorphism.
This shows that (i) implies (ii), and (ii) and (iii) are equivalent by Theorem 6.3
and the uniqueness of localizations. If H ∈ F , then G/H+ ∧ ẼF is G-contractible
by a check of fixed point spaces, hence G/H+ ∧ Y −→ ∗ is an ẼF -equivalence for
any Y . Letting Y run through the spheres Sn, this shows that (ii) implies (iv).
Finally, assume (iv). We must prove (i). Smashing with the G-CW complex ẼF
preserves G-equivalences, so by cofibrant approximation we may assume that X is a
cell complex. Clearly (i) holds if and only if EF+∧X is trivial and, by Lemma 6.6,
EF+ ∧X is an F -cell complex. If H ∈ F , then EF+ −→ S0 is an H-homotopy
equivalence, hence πH

∗ (EF+ ∧ X) = 0 by hypothesis. Thus EF+ ∧ X is F -
equivalent to the trivial object and is therefore trivial. Since λ : ẼF −→ ẼF ∧ẼF
is a G-homotopy equivalence by a check on fixed points, λ : Y −→ ẼF ∧ Y is an
F ′-equivalence for any Y . Therefore the last statement follows from (ii). ¤

Again, in GM this holds for both the cellular and the generalized cellular Bous-
field F ′-model structures. Let HoF ′C denote the homotopy category associated
to the Bousfield F ′-model structure on GC and write [X, Y ]F ′ for the set of maps
X −→ Y in this category. The previous theorem implies the following one.

Theorem 6.14. Smashing with ẼF defines an isomorphism

[X, Y ]F ′ ∼= [ẼF ∧X, ẼF ∧ Y ]G
and thus gives an equivalence of categories from HoF ′C to the full subcategory of
objects ẼF ∧X in HoGC .



CHAPTER V

“Change” functors for orthogonal G-spectra

We develop the analogues for orthogonal G-spectra of the central structural
features of equivariant stable homotopy theory: change of universe, change of group,
fixed point and orbit spectra, and geometric fixed point spectra. The last notion
has turned out to be very important in many applications, and its treatment in
[19, II§9] is decidedly ad hoc and conceptually unsatisfactory. The geometric fixed
point functor on orthogonal spectra turns out to be far more satisfactory.

1. Change of universe

Change of universe plays a fundamental role in the homotopical theory of [19],
and, as explained in [7, 26], it takes a precise point-set level form in the theory of
SG-modules. The theory for orthogonal G-spectra takes a similarly precise point-
set level form. The key fact is the following implication of the definition of an
orthogonal G-spectrum.

Lemma 1.1. Let V and W be G-inner product spaces in V of the same dimen-
sion. Then, for orthogonal G-spectra X, the evaluation G-map

JG(V, W ) ∧X(V ) −→ X(W )

of the G-functor X induces a G-homeomorphism

α : JG(V,W ) ∧O(V ) X(V ) −→ X(W ).

Its domain is homeomorphic, but not necessarily G-homeomorphic, to X(V ).

Proof. Since V and W have the same dimension, JG(V, W ) = IG(V, W )+,
and IG(V, W ) is a free right O(V )-space generated by any chosen linear isometric
isomorphism f : V −→ W . We see that α is a homeomorphism, hence a G-
homeomorphism, by noting that the map that sends y in X(W ) to the equivalence
class of (f, X(f−1)(y)) gives the inverse homeomorphism. Mapping x to the equiva-
lence class of (f, x) gives the homeomorphism X(V ) ∼= JG(V,W )∧O(V ) X(V ). ¤

Change of universe appears in several equivalent guises. We could apply the
general theory of prolongation functors left adjoint to forgetful functors, using the
equivariant version of I.2.10 and [20, §3], but we prefer to be more explicit. We
mimic the analogous theory of [7].

Definition 1.2. Let V and V ′ be collections of representations as in II.1.1 and
II.2.1. Thus both collections contain all trivial representations. Define a G-functor
IV
V ′ : I V ′

G S −→ I V
G S by letting

(IV
V ′X)(V ) = J V

G (Rn, V ) ∧O(n) X(Rn)

74
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for X ∈ I V ′
G S and V ∈ V with dim V = n. The evaluation G-maps of the

G-functor IV
V ′X : J V

G −→ TG are given as follows. By II.4.1, we see that

J V ′
G (Rn,Rp) = J V

G (Rn,Rp)

and that, for W ∈ V with dim W = p, composition gives a G-homeomorphism

J V
G (Rp,W ) ∧O(p) J V

G (Rn,Rp) −→ J V
G (Rn,W ).

The evaluation G-map

J V
G (V, W ) ∧ (IV

V ′X)(V ) −→ (IV
V ′X)(W )

is the following composite, in which the first and last map are given by composition
G-maps of J V

G and evaluation G-maps of X, while the isomorphism is given by
the inverse of the G-homeomorphism just noted:

J V
G (V, W ) ∧J V

G (Rn, V ) ∧O(n) X(Rn)

−→ J V
G (Rn,W ) ∧O(n) X(Rn)

∼= J V
G (Rp,W ) ∧O(p) J V ′

G (Rn,Rp) ∧O(n) X(Rn)

−→ J V
G (Rp,W ) ∧O(p) X(Rp).

If V = V (U) and V ′ = V (U ′) for universes U and U ′, then V ⊂ V ′ if and only
if there is a G-linear isometry U −→ U ′. This is the starting point for the change of
universe functors in [19]. By inspection or by [20, 2.1], the inclusion then induces
a full and faithful strong symmetric monoidal functor J V

G −→ J V ′
G , and it is in

this case that the theory of prolongation functors of I.2.10 or [20, §3] applies. Here
we have a more natural looking but equivalent form of the definition of IV

V ′ , namely

(1.3) (IV
V ′X)(V ) = X(V )

for X ∈ I V ′
G S and V ∈ V . Evaluation G-homeomorphisms

J V
G (Rn, V ) ∧O(n) X(Rn) = J V ′

G (Rn, V ) ∧O(n) X(Rn) −→ X(V )

give a natural isomorphism comparing the two descriptions of IV
V ′X. Here Definition

1.2 also gives a functor IV ′
V . By the following theorem, it is an inverse isomorphism

to IV
V ′ , hence is left (and right) adjoint to IV ′

V and therefore coincides with the
prolongation functor given by I.2.10. Writing F V

V A to indicate the universe of
shift desuspension functors, it follows by inspection of right adjoints and use of the
inverse isomorphism property that

(1.4) IV
V ′F

V ′
V A ∼= F V

V A and IV ′
V F V

V A ∼= F V ′
V A

for V ∈ V and any based G-space A.
Returning to general collections, write ΣV : TG −→ I V

G S for the suspension
G-spectrum functor. The following result is analogous to [7, 2.3, 2.4].

Theorem 1.5. Consider collections V , V ′ and V ′′.
(i) IV

V ′ ◦ ΣV ′ is naturally isomorphic to ΣV .
(ii) IV

V ′ ◦ IV ′
V ′′ is naturally isomorphic to IV

V ′′ .
(iii) IV

V is naturally isomorphic to the identity functor.
(iv) The functor IV

V ′ commutes with smash products with based G-spaces.
(v) The functor IV

V ′ is strong symmetric monoidal.
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Therefore IV
V ′ is an equivalence of categories with inverse IV ′

V . Moreover, IV
V ′ is ho-

motopy preserving, hence IV
V ′ and IV ′

V induce inverse equivalences of the homotopy
categories obtained by passing to homotopy classes of maps.

Proof. Evaluation G-homeomorphisms J V
G (Rn, V )∧Sn −→ SV give (i). For

(ii), if dimV = n, we have G-homeomorphisms

(IV
V ′ ◦ IV ′

V ′′)(X)(V ) = J V
G (Rn, V ) ∧O(n) J V ′

G (Rn,Rn) ∧O(n) X(Rn)
∼= J V

G (Rn, V ) ∧O(n) X(Rn)

since J V ′
G (Rn,Rn) = O(n)+. Part (iii) is clear from (1.3). Part (iv) is obvious and

implies the last statement. For (v), consideration of V ∪ V ′ shows that we may
assume without loss of generality that V ′ ⊂ V . Then, as the inverse of I V ′

V , I V
V ′

is a prolongation functor, and (v) holds by I.2.14 or [20, 3.3]. ¤

We turn to the relationship with model structures. It is important to realize
what Lemma 1.1 does not imply: a map f : X −→ Y can be a weak equivalence at
level Rn for all n but still not be a level equivalence. The point is that the H-fixed
point functors do not commute with passage to orbits over O(n).

Similarly, it is important to realize what the last statement of Theorem 1.5
does not imply: the functors IV

V ′ do not preserve either level equivalences or π∗-
isomorphisms in general. Therefore, there is no reason to expect the homotopy
categories associated to the model structures to be equivalent. However, (1.3) and
the characterization of q-fibrations and acyclic q-fibrations given in III.4.12 imply
the following result.

Theorem 1.6. If V ⊂ V ′, then the functor IV
V ′ : GI V ′

G −→ GI V
G preserves

level equivalences, level fibrations, q-fibrations, and acyclic q-fibrations, and simi-
larly for the positive analogues of these classes of maps. Therefore (IV ′

V , IV
V ′) is a

Quillen adjoint pair of functors relating the respective level, positive level, stable,
and positive stable model structures.

There is another way to think about change of universe. For V ⊂ V ′, we can
define new V -model structures on the category of I V ′

G -spectra. For the V -level
model structure (or positive V -level model structure), we define weak equivalences
and fibrations by restricting attention to levels in V ; equivalently, the V -level
equivalences and fibrations are created by the forgetful functor IV

V ′ . We define the
V -cofibrations of GI V ′S to be the G-maps that satisfy the LLP with respect
to the V -level acyclic fibrations. Compare [20, 6.10]. We then let the V -stable
equivalences and the V -fibrations be created by IV

V ′ . Thus the V -stable equivalences
are the V π∗-isomorphisms, that is, the maps that induce isomorphisms of the
homotopy groups defined using only those V ∈ V in the relevant colimits. Arguing
as for the stable model structure, we obtain the following result.

Theorem 1.7. For V ⊂ V ′, the category GI V ′S of I V ′
G -spectra and natural

G-maps has a V -stable model structure in which the functor IV
V ′ creates the V -

stable equivalences and the V -fibrations. The acyclic V -fibrations coincide with the
V -level acyclic fibrations, and the V -cofibrations are the maps that satisfy the LLP
with respect to the acyclic V -fibrations. The pair (IV ′

V , IV
V ′) is a Quillen equivalence

between GI V S with its stable model structure and GI V ′S with its V -stable model
structure. The analogous statements for positive V -stable model structures hold.
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Here the Quillen equivalence is easily proven using the usual characterization
[20, A.2]. It is a rare example of an interesting “Quillen equivalence” of model
categories that is an actual equivalence of underlying categories. There is another
observation to make along the same lines.

Corollary 1.8. For V ⊂ V ′, the identity functor Id : GI V ′S −→ GI V ′S
is the right adjoint of a Quillen adjoint pair relating the (positive) stable model
structure on GI V ′S to the (positive) V -stable model structure on GI V ′S .

Thus the forgetful functor IV
V ′ : GI V ′S −→ GI V S relating the (original)

stable model structures factors through the V -stable model structure on GI V ′S .
That is, the Quillen adjoint pair of Theorem 1.6 is the composite of the Quillen
adjoint pair of Corollary 1.8 and the Quillen adjoint equivalence of Theorem 1.7.

Remark 1.9. There is yet another way to think about change of universe. Fix
IG = I A ``

G . Then, for any V , the (positive) V -stable model structure on the
category GI S is Quillen equivalent to the (positive) stable model structure on
GI V S , and similarly for the various categories of rings and modules. However, to
make sense of some of the constructions in the following sections, we must work with
the more general categories of I V

G -spectra, with their intrinsic model structures.

Remark 1.10. In addition to changes of V , we must deal with changes of the
choice of “indexing G-spaces” within a given V , as in II.2.2. Thus let W ⊂ V be
a cofinal set of G-inner product spaces that is closed under finite direct sums and
contains the Rn. We have a forgetful functor IW

V : I V
G S −→ I W

G S specified as in
(1.3). It can also be specified as in Definition 1.2 and, arguing as in that definition
and Theorem 1.5, IW

V is an equivalence of categories with inverse equivalence IV
W .

We can carry out all of our model category theory in the more general context. The
functor IW

V : GI V S −→ GI W S preserves q-fibrations, and cofinality ensures
that IW

V creates the stable equivalences in GI V S . We conclude that (IV
W , IW

V ) is
a Quillen equivalence.

2. Change of groups

Let H be a subgroup of G and write ι : H −→ G for the inclusion. For a
G-space A, let ι∗A denote A regarded as an H-space via ι. We want analogues for
orthogonal G-spectra of such space level observations as (III.1.2) – (III.1.5).

This involves change of universe as well as change of groups. If V = {V } is a
collection of representations of G, then ι∗V = {ι∗V } is a collection of representa-
tions of H. According to our conventions in II.2.1, G-summands of representations
in V are in V , but this need not be true of H-summands of representations in
ι∗V . For example, not all H-representations are in ι∗A ``(G). However, we can
let W be the collection of H-representations that are isomorphic to summands of
representations in ι∗V . Since ι∗V is cofinal in W and closed under finite direct
sums, Remark 1.10 applies. For example, if V = A ``(G), then W = A ``(H) since
any H-representation is a summand of a G-representation.

To fix ideas and simplify notation, we work with A ``(H) when defining or-
thogonal H-spectra, and we do not introduce notation for the change of universe
functor that passes from orthogonal H-spectra indexed on ι∗A ``(G) to orthogonal
H-spectra indexed on A ``(H).
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Definition 2.1. For an orthogonal G-spectrum X, let ι∗X be the orthogonal
H-spectrum that is specified by (ι∗X)(ι∗V ) = ι∗X(V ) for representations V of G
and is then extended to all representations of H by Remark 1.10.

Lemma 2.2. The functor ι∗ preserves level fibrations, level equivalences, q-co-
fibrations, π∗-isomorphisms, and q-fibrations.

Proof. Most of this is clear from the characterizations of the various classes
of maps. An exception is the assertion that ι∗ preserves q-cofibrations, which is
less obvious. Clearly ι∗ preserves colimits and satisfies ι∗(FV (A)) = Fι∗V (ι∗A).
When A = G/K+ ∧ Sn, ι∗A = ι∗(G/K)+ ∧ Sn. If G is finite, then ι∗(G/K) is
isomorphic to a disjoint union of H-orbits, the choice of isomorphism depending on
a double coset decomposition of H\G/K. Fixing such choices gives a decomposition
of the underlying H-space of a G-cell complex as an H-cell complex. For a general
compact Lie group G, ι∗(G/K) can be decomposed, non-canonically, as a finite
H-CW complex [17]. Again, fixing choices of such decompositions allows us to
decompose the underlying H-space of a G-cell complex as an H-cell complex. ¤

We claim that the functor ι∗ has both a left and a right adjoint. On the space
level, for H-spaces B, the left adjoint of ι∗ is given by G+ ∧H B and the right
adjoint is given by the G-space of H-maps FH(G+, B). For G-spaces A and A′, we
have obvious identifications of H-spaces

ι∗F (A,A′) = F (ι∗A, ι∗A′) and ι∗(A ∧A′) = ι∗A ∧ ι∗A′.

On passage to left and right adjoints, respectively, these formally imply natural
isomorphisms of G-spaces

(G+ ∧H B) ∧A ∼= G+ ∧H (B ∧ ι∗A)

and
F (A,FH(G+, B)) ∼= FH(G+, F (ι∗A,B)),

and it is easy to write down explicit isomorphisms.

Proposition 2.3. Let X be an orthogonal G-spectrum and Y be an orthogonal
H-spectrum. Let G+ ∧H Y be the orthogonal G-spectrum specified by

(G+ ∧H Y )(V ) = G+ ∧H Y (ι∗V )

for representations V of G. Then there is an adjunction

GI S (G+ ∧H Y,X) ∼= HI S (Y, ι∗X),

which is a Quillen adjoint pair relating the respective (positive) level and stable
model structures. Moreover, there is a natural isomorphism

(G+ ∧H Y ) ∧X ∼= G+ ∧H (Y ∧ ι∗X).

In particular,
G/H+ ∧X ∼= G+ ∧H ι∗X.

Proof. The evaluation G-maps of the G-functor G+ ∧H Y : JG −→ TG are
induced from the evaluation H-maps of the H-functor Y via

JG(V, W ) ∧ (G+ ∧H Y (ι∗V )) ∼= G+ ∧H (ι∗JG(V, W ) ∧ Y (ι∗V ))
∼= G+ ∧H (JH(ι∗V, ι∗W ) ∧ Y (ι∗V ))
−→ G+ ∧H Y (ι∗W ).

Lemma 2.2 implies the statement about model structures, and the rest is clear. ¤
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Proposition 2.4. Let X be an orthogonal G-spectrum and Y be an orthogonal
H-spectrum. Let FH(G+, Y ) be the orthogonal G-spectrum specified by

FH(G+, Y )(V ) = FH(G+, Y (ι∗V ))

for representations V of G. Then there is an adjunction

GI S (X, FH(G+, Y )) ∼= HI S (ι∗X, Y ),

which is a Quillen adjoint pair relating the respective (positive) level and stable
model structures. Moreover, there is a natural isomorphism

F (X, FH(G+, Y )) ∼= FH(G+, F (ι∗X, Y )).

In particular,
F (G/H+, X) ∼= FH(G+, ι∗X).

Proof. The adjoints of the evaluation G-maps of the G-functor FH(G+, Y )
are induced from the adjoints of the evaluation H-maps of Y via

FH(G+, Y (ι∗V )) −→ FH(G+, F (JH(ι∗V, ι∗W ), Y (ι∗W )))
∼= FH(G+, F (ι∗JG(V, W ), Y (ι∗W )))
∼= F (JG(V,W ), FH(G+, Y (ι∗W ))). ¤

3. Fixed point and orbit spectra

We relate orthogonal G-spectra to orthogonal spectra via fixed point and orbit
functors, just as for G-spaces.

Definition 3.1. For an orthogonal G-spectrum X, define XG(V ) = X(V )G

for an inner product space V regarded as a trivial representation of G. Regarding a
linear isometry f : V −→ W as a G-linear isometry between trivial representations,
we see that X(f) is a G-map since X is a G-functor. Therefore XG defines a functor
J −→ T . More formally, let GI trivS denote the category of orthogonal G-
spectra indexed only on trivial G-representations. We call the objects of GI trivS
“naive” orthogonal G-spectra, in contrast to the genuine orthogonal G-spectra of
GI S . The G-fixed point functor is the composite of the change of universe functor

GI S = GI A ``S −→ GI trivS

and the G-fixed point functor

GI trivS −→ I S .

For H ⊂ G, define XH = (ι∗X)H .

The following fundamental result relating equivariant and nonequivariant ho-
motopy groups is immediate from the definitions.

Proposition 3.2. Let E be an orthogonal Ω-G-spectrum. Then

πH
∗ (E) ∼= π∗(EH).

For any orthogonal G-spectrum X, πH
∗ (X) ∼= πH

∗ (RX), where RX is a fibrant
approximation of X in the stable or positive stable model structure.

Giving spaces trivial G-action, we obtain a functor

(3.3) ε∗ : I S −→ GI trivS .

We then have the following fixed-point adjunction and its composite with the evi-
dent change of universe adjunction.
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Proposition 3.4. Let X be a naive orthogonal G-spectrum and Y be a non-
equivariant orthogonal spectrum. There is a natural isomorphism

GI trivS (ε∗Y, X) ∼= I S (Y,XG).

For (genuine) orthogonal G-spectra X, there is a natural isomorphism

GI S (i∗ε∗Y,X) ∼= I S (Y, (i∗X)G),

where i∗ = IA ``
triv and i∗ = Itriv

A ``. Both of these adjunctions are Quillen adjoint pairs
relating the respective (positive) level and stable model structures.

The last statement means that passage to fixed points preserves q-fibrations
and acyclic q-fibrations. We have the following observation about q-cofibrations.
In the following two results, we agree to be less pedantic and to write (−)G for the
composite of i∗ and passage to G-fixed points. With this notation, the counit of
the second adjunction is a natural G-map i∗ε∗XG −→ X.

Proposition 3.5. For a representation V and a G-space A, (FV A)G = ∗ unless
G acts trivially on V , when (FV A)G ∼= FV (AG) as a nonequivariant orthogonal
spectrum. The functor (−)G preserves q-cofibrations, but not acyclic q-cofibrations.

Proof. For a trivial representation W , (FV A)G(W ) = GJ (V,W ) ∧ AG.
If V is non-trivial, there are no non-trivial G-linear isometries V −→ W and
GJ (V,W ) = ∗, whereas GJ (V, W ) = J (V, W ) if V is trivial. This gives the
first statement. Since the functor (−)G preserves the colimits used to construct
relative cell orthogonal G-spectra, by III.1.6, it follows that it preserves preserves
q-cofibrations. For non-trivial representations V of G, the maps k0,V of III.4.6 are
acyclic q-cofibrations, whereas kG

0,V is equivalent to ∗ −→ S. ¤
Warning 3.6. The last statement of Proposition 3.5 implies that the functor

(−)G is not a Quillen left adjoint. This functor does not behave homotopically as
one might expect from the results of [19]. The reason is that it does not commute
with fibrant replacement (whereas all objects are fibrant in the context of [19]), and
we must replace orthogonal G-spectra by weakly equivalent orthogonal Ω-G-spectra
before passing to fixed points in order to obtain the correct homotopy groups.

The following two results are in marked contrast to the situation in [19, 27],
where the (categorical) fixed point functor does not satisfy analogous commutation
relations. The point is that these results do not imply corresponding commutation
results on passage to homotopy categories, in view of Warning 3.6.

Taking V = 0, Proposition 3.5 has the following implication.

Corollary 3.7. For based G-spaces A,

(Σ∞A)G ∼= Σ∞(AG).

(This isomorphism of orthogonal spectra does not imply an isomorphism in HoGI S ).

Note that the functors i∗ and ε∗ are strong symmetric monoidal.

Proposition 3.8. For orthogonal G-spectra X and Y , there is a natural map
of (nonequivariant) orthogonal spectra

α : XG ∧ Y G −→ (X ∧ Y )G,

and α is an isomorphism if X and Y are cofibrant. (This isomorphism of orthogonal
spectra does not imply an isomorphism in HoGI S ).
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Proof. The map α is adjoint to the evident natural G-map

i∗ε∗(XG ∧ Y G) ∼= (i∗ε∗XG) ∧ (i∗ε∗Y G) −→ X ∧ Y.

Using the properties of (−)G given in III.1.6, the second statement follows from
Proposition 3.5 and the natural isomorphism

FV A ∧ FW B ∼= FV⊕W (A ∧B)

of Lemma 4.8. ¤

We can obtain a sharper version of Proposition 3.4. Let NH denote the nor-
malizer of H in G and let WH = NH/H. We can obtain an H-fixed point functor
from orthogonal G-spectra to WH-spectra. It factors as a composite

GI S −→ NHI S −→ NHI H-trivS −→ WHI S

of a change of group functor as in Definition 2.1, a change of universe functor, and
a fixed point functor, all three of which are right adjoints.

It is useful to be more general about the last two functors. Thus let N be
any normal subgroup of G, let J = G/N , and let ε : G −→ J be the quotient
homomorphism. In the situation above, we are thinking of the normal subgroup H
of NH with quotient group WH.

Definition 3.9. Let GI N-trivS be the category of orthogonal G-spectra in-
dexed on N -trivial representations of G. Define ε∗ : JI S −→ GI N-trivS by
regarding J-spaces as N -trivial G-spaces. Define (−)N : GI N-trivS −→ JI S by
passage to N -fixed points spacewise, (XN )(V ) = X(V )N for a J-representation V
regarded as an N -trivial G-representation.

Proposition 3.10. Let X ∈ GI N-trivS and Y ∈ JI S . There is a natural
isomorphism

GI N-trivS (ε∗Y, X) ∼= JI S (Y,XN ).

For (genuine) orthogonal G-spectra X, there is a natural isomorphism

GI S (i∗ε∗Y, X) ∼= JI S (Y, (i∗X)N ),

where i∗ = IA ``
N-triv and i∗ = IN-triv

A `` . Both of these adjunctions are Quillen adjoint
pairs relating the respective (positive) level and stable model structures.

Similarly, we can define orbit spectra. Here again, we must first restrict to
trivial representations. However, since this change of universe functor is a right
adjoint and passage to orbits is a left adjoint, the composite functor appears to be
of no practical value (just as in [19]).

Definition 3.11. For X ∈ GI trivS , define X/G by (X/G)(V ) = X(V )/G
for an inner product space V . More generally, for X ∈ GI N-trivS , define X/N ∈
JI S by (X/N)(V ) = X(V )/N for a J-representation V regarded as an N -trivial
G-representation.

Proposition 3.12. Let X ∈ GI N-trivS and Y ∈ JI S . There is a natural
isomorphism

GI N-trivS (X, ε∗Y ) ∼= JI S (X/N, Y ).

This adjunction is a Quillen adjoint pair relating the respective (positive) level and
stable model structures.
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Remark 3.13. The left and right adjoints of ε∗ in this section and of ι∗ in the
previous section can be regarded as special cases of a composite construction that
applies to an arbitrary homomorphism α : H −→ G of compact Lie groups. Let
N = Ker(α) and K = H/N . We have a quotient homomorphism ε : H −→ K and
an inclusion ι : K −→ G induced by α. Since α = ι ◦ ε, α∗ = ε∗ ◦ ι∗. Therefore, if
X ∈ GI S and Y ∈ HI N-trivS , we have the composite adjunctions

GI S (G+ ∧K Y/N,X) ∼= HI N-trivS (Y, α∗X)

and
GI S (X, FK(G+, Y N )) ∼= HI N-trivS (α∗X, Y ).

4. Geometric fixed point spectra

There are actually two G-fixed point functors on orthogonal G-spectra, just
as there are on G-spectra [19, II§9] and [27, XVI§3], namely the “categorical”
one already defined and another “geometric” one. Because the categorical fixed
point functor here seems to enjoy some of the basic properties that motivated
the introduction of the geometric fixed point functor in the classical setting, the
discussion requires some care. We want a version of the G-fixed point functor for
which the commutation relations of Corollary 3.7 and Proposition 3.8 are true, but
which also preserves acyclic q-cofibrations, so that these properties remain true
after passage to fibrant-cofibrant approximation of cofibrant objects.

In this section, we work from the beginning in the general context of a normal
subgroup N of G with quotient group J . The reader may wish to focus on the
special case N = G, in which case J is the trivial group. However, G plays two
quite different roles in that case, and the general case clarifies issues of equivariance.
We need some categorical preliminaries.

Definition 4.1. Let E denote the extension

e // N
ι // G

ε // J // e.

We define a category JE enriched over the category JT of based J-spaces. The
objects of JE are the G-representations V . The J-space JE(V, W ) of arrows
V −→ W is the N -fixed point space JG(V, W )N . Thus, if we ignore the J-action,
then

JE(V, W ) = NJ (ι∗V, ι∗W ).
A non-basepoint arrow (f, x) : V −→ W is an N -linear isometry f : V −→ W
together with a point x ∈ WN − f(V N ). Observe that JE = GJ when N = G
and JE = JG when N = e. Let

φ : JE −→ JJ

be the N -fixed point J-functor. It sends the G-representation V to the J-repre-
sentation V N and sends an arrow (f, x) : V −→ W to the N -fixed point arrow
(fN , x) ∈ JJ(V N ,WN ). Let

ν : JJ −→ JE

be the J-functor that sends a J-representation V to V regarded as a G-representa-
tion by pullback along ε and is given on morphism spaces JJ(V,W ) by identity
maps; this makes sense since every linear isometry V −→ W is an N -map. Observe
that

φ ◦ ν = Id : JJ −→ JJ .
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Definition 4.2. Let JET denote the category of JE-spaces, namely (con-
tinuous) J-functors JE −→ TJ . Note that a JE-space Y has structural J-maps

Y (V ) ∧ SW N−V N −→ Y (W )

for V ⊂ W . Let

Uφ : JJT −→ JET and Uν : JET −→ JJT

be the forgetful functors induced by φ and ν. By I.2.10 or [20, 3.2], left Kan
extension along φ and ν gives prolongation functors

Pφ : JET −→ JJT and Pν : JJT −→ JET

left adjoint to Uφ and Uν . Since φ◦ν = Id, Uν ◦Uφ = Id and therefore Pφ◦Pν
∼= Id .

With these definitions in place, we can define the geometric fixed point functors.

Definition 4.3. Define a fixed point functor FixN : JGT −→ JET by
sending an orthogonal G-spectrum X to the JE-space FixNX with

(FixNX)(V ) = X(V )N

and with evaluation J-maps

X(V )N ∧JG(V,W )N −→ X(W )N

obtained by passage to N -fixed points from the evaluation G-maps of X. Define
the geometric fixed point functor

ΦN : JGT −→ JJT

to be the composite Pφ ◦ FixN . Define a natural J-map γ : XN −→ ΦNX of
orthogonal J-spectra by observing that the categorical fixed point functor can be
reinterpreted as XN = UνFixNX and letting γ be the map

(4.4) Uνη : XN = UνFixNX −→ UνUφPφFixNX = PφFixNX = ΦNX,

where η : Id −→ UφPφ is the unit of the prolongation adjunction.

We have the following analogue of Proposition 3.5.

Proposition 4.5. For a representation V of G and a G-space A,

ΦN (FV A) ∼= FV N AN .

The functor ΦN preserves q-cofibrations and acyclic q-cofibrations.

Proof. By the definitions, we have

(FixNFV A)(W ) = JG(V, W )N ∧AN .

Thus FixNFV A = FV AN where FV on the right is left adjoint to the V th J-space
evaluation functor on the category JET . We have Pφ ◦ FV = FV N by the equal-
ity of their right adjoints, and the first statement follows. By inspection from
III.4.6, the functor ΦN preserves generating q-cofibrations and generating acyclic
q-cofibrations. It also preserves the colimits used to construct relative cell or-
thogonal G-spectra, by III.1.6, and it therefore preserves q-cofibrations and acyclic
q-cofibrations. ¤

Analogues of Corollary 3.7 and Proposition 3.8 follow readily.
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Corollary 4.6. For based G-spaces A,

ΦNΣ∞A ∼= Σ∞(AN ),

where Σ∞ on the left and right are the suspension spectrum functors from G-spaces
to G-spectra and from J-spaces to J-spectra.

The functors Pφ and Pν are strong symmetric monoidal, by I.2.14 or [20, 3.3].

Proposition 4.7. For orthogonal G-spectra X and Y , there is a natural J-map

α : ΦNX ∧ ΦNY −→ ΦN (X ∧ Y )

of orthogonal J-spectra, and α is an isomorphism if X and Y are cofibrant.

Proof. By the definition of internal smash products [20, 21.4], there are
canonical maps of G-spaces

X(V ) ∧ Y (W ) −→ (X ∧ Y )(V ⊕W ).

Passing to N -fixed point spaces, we obtain a natural J-map

FixNX Z FixNY −→ FixN (X ∧ Y ) ◦ ⊕
of (JE ×JE)-spaces. We obtain α by applying Pφ to the adjoint J-map

FixNX ∧ FixNY −→ FixN (X ∧ Y )

of JE-spaces. It follows easily from Proposition 4.5 that α is an isomorphism when
X = FV A and Y = FW B, and it follows inductively that α is an isomorphism when
X and Y are cofibrant. ¤

In the previous section, we interpreted the homotopy groups of the categorical
fixed points of a fibrant approximation of X as the homotopy groups of X. We
now interpret the homotopy groups of the geometric fixed points of a cofibrant
approximation of X as a different kind of homotopy groups of X. For this, we
introduce homotopy groups of JE-spaces.

Definition 4.8. Let Y be a JE-space and X be an orthogonal G-spectrum.
Let K ⊂ J and write K = H/N , where N ⊂ H ⊂ G.

(i) Define
πK

q (Y ) = colimV πK
q ΩV N

Y (V ) if q ≥ 0,

where V runs over the indexing G-spaces in the universe U , and

πK
−q(Y ) = colimV⊃Rq πK

0 ΩV N−Rq

Y (V ) if q > 0.

(ii) Define a natural homomorphism

ζ : πK
∗ (UνY ) −→ πK

∗ (Y )

by restricting colimit systems to N -fixed indexing G-spaces.
(iii) Define

ρK
q (X) = πK

q (FixNX),

so that ρK
q (X) = colimV πK

q ΩV N

X(V )N for q ≥ 0, and similarly for q < 0.
(iv) Define a natural homomorphism

ψ : πK
∗ (XN ) −→ πH

∗ (X)

by restricting colimit systems to N -fixed indexing G-spaces W , using

(ΩW X(W )N )K ∼= (ΩW X(W ))H .
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(v) Define a natural homomorphism

ω : πH
∗ (X) −→ ρK

∗ (X)

by sending an element of πH
q (X), q ≥ 0, that is represented by an H-map

f : Sq ∧SV −→ X(V ) to the element of ρK
q (X) that is represented by the

K-map fN : Sq ∧ SV N −→ X(V )N , and similarly for q < 0.
Define π∗-isomorphisms of JE-spaces and ρ∗-isomorphisms of orthogonal G-spectra
in the evident way.

If X is an orthogonal Ω-G-spectrum, then ψ is a natural isomorphism. In this
case, we may identify ζ and ω in view of the following immediate observation.

Lemma 4.9. The homomorphism

ζ : πK
∗ (XN ) = πK

∗ (UνFixNX) −→ πK
∗ (FixNX) = ρK

∗ (X)

is the composite of ψ : πK
∗ (XN ) −→ πH

∗ (X) and ω : πH
∗ (X) −→ ρK

∗ (X).

We also have the following observation.

Lemma 4.10. For orthogonal J-spectra Z, the homomorphism

ζ : πK
∗ (Z) = πK

∗ (UνUφZ) −→ πK
∗ (UφZ)

is an isomorphism.

Proof. We may rewrite the colimits in Definition 4.8 as iterated colimits by
first considering indexing J-spaces W in UN and then considering indexing G-spaces
V in U such that V N = W . Thus, if q ≥ 0, then

πK
q (Y ) = colim

W⊂UN
colim

V⊂U, V N=W
πK

q ΩW Y (V )

for a JE-space Y . When Y = UφZ, Y (V ) = Z(V N ) and this colimit reduces to

πK
q (Y ) ∼= colimW⊂UN πK

q ΩW Z(W ) = πK
q (Z).

The proof for q < 0 is similar. ¤
Via the naturality of ζ, this leads to the following identification of γ∗, where

γ = Uνη as in (4.4). Observe that the unit η of the prolongation adjunction for φ
induces a natural map

η∗ : ρK
∗ (X) = πK

∗ (FixNX) −→ πK
∗ (UφPφFixNX)

ζ−1

−−→ πK
∗ (PφFixNX) = πK

∗ (ΦNX).

Lemma 4.11. Let K = H/N , where N ⊂ H. For orthogonal Ω-G-spectra X,
the map γ∗ : πK

∗ (XN ) −→ πK
∗ (ΦNX) is the composite

πK
∗ (XN ) ∼= πH

∗ (X) ω−→ ρK
∗ (X)

η∗−→ πK
∗ (ΦNX).

We have the following basic identification of homotopy groups.

Proposition 4.12. The map η∗ : ρK
∗ (X) −→ πK

∗ (ΦNX) is an isomorphism
for cofibrant orthogonal G-spectra X.

Proof. The functor ΦN preserves cofiber sequences, wedges, and colimits of
sequences of h-cofibrations. Therefore both functors ρK

∗ and πK
∗ ◦ΦN convert cofiber

sequences to long exact sequences, convert wedges to direct sums, and convert
colimits of sequences of h-cofibrations to colimits of groups. Thus to show that η∗ is
an isomorphism on all cofibrant objects, it suffices to show that it is an isomorphism
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on objects X = FZA, where Z is a G-representation and A is a G-CW complex.
We treat the case q ≥ 0, the case q < 0 being similar. Here η∗ is the map

colim
W

colim
V N=W

πK
q ΩW (JE(Z, V ) ∧AN ) −→ colimW⊂UN πK

q ΩW (JJ(ZN ,W ) ∧AN )

induced by the functor φ, where W ⊂ UN and V ⊂ U . It suffices to prove that, for
fixed W , the map

hocolim
V N=W

JE(Z, V ) −→ JJ(ZN ,W )

is a J-homotopy equivalence. Via II.4.1, Definition 4.1 leads to explicit descriptions
of the relevant J-spaces. Write Z = ZN ⊕ Z ′ and V = W ⊕ V ′, where V N = W .
The space JE(Z, V ) is the N -fixed point space of the Thom complex of a certain
G-bundle. It can be identified as the Thom complex of an N -fixed point J-bundle
over the base J-space

I (Z, V )N ∼= I (ZN , W )×I (Z ′, V ′)N .

This bundle is just the product of the J-space I (Z ′, V ′)N with the J-bundle over
I (ZN ,W ) whose Thom complex is the J-space JJ (ZN , W ). Using this, we see
that the map

JE(Z, V ) −→ JJ (ZN ,W )
can be identified with the projection

JJ(ZN ,W ) ∧I (Z ′, V ′)N
+ −→ JJ(ZN ,W ).

Thus it suffices to prove that the space hocolim I (Z ′, V ′)N is J-contractible. This
is standard. The maps of the colimit system are h-cofibrations of J-spaces, and

colim I (Z ′, V ′)N ∼= I (Z ′, colim V ′)N

is the J-space of N -linear isometries Z ′ −→ colim V ′. It is J-contractible by the
proof of [19, II.1.5]. ¤

Corollary 4.13. If f : X −→ Y is a π∗-isomorphism of orthogonal G-spectra,
then f is a ρ∗-isomorphism.

Proof. If X and Y are q-cofibrant, this is immediate from Propositions 4.5
and 4.12. Since a level weak equivalence is a ρ∗-isomorphism, the general case
follows by use of cofibrant approximation in the level model structure. ¤

To see that the geometric fixed point functor bears the same homotopical rela-
tionship to the categorical fixed point functor as in the classical case [19, II§3], we
need the following notations and lemmas.

Notations 4.14. Let F = F [N ] be the family of subgroups of G that do
not contain N ; when N = G, this is the family of proper subgroups of G. let
EF be the universal F -space, and let ẼF be the cofiber of the quotient map
EF+ −→ S0 that collapses EF to the non-basepoint. Then (ẼF )H = S0 if
H ⊃ N and (ẼF )H is contractible if H ∈ F . The map S0 −→ ẼF induces a
natural map λ : X −→ X ∧ ẼF of orthogonal G-spectra.

Although trivial to prove, the following lemma is surprisingly precise.

Lemma 4.15. For orthogonal G-spectra X, the map

ΦNλ : ΦNX −→ ΦN (X ∧ ẼF )

is a natural isomorphism of orthogonal J-spectra.
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Proof. For G-spaces A, FixN (X ∧A) ∼= (FixNX)∧AN . Since (ẼF )N = S0,
the conclusion follows. ¤

Lemma 4.16. Let K = H/N , where N ⊂ H. For cofibrant orthogonal G-spectra
X, the map ω : πH

∗ (X ∧ ẼF ) −→ ρK
∗ (X ∧ ẼF ) is an isomorphism.

Proof. For based G-CW complexes A and B, the inclusion AN −→ A and
the map λ : B −→ B ∧ ẼF induce bijections

[A, B ∧ ẼF ]G −→ [AN , B ∧ ẼF ]G ←− [AN , B]G

(e.g. [19, II.9.3]). Here [AN , B]G ∼= [AN , BN ]J and BN ∼= (B ∧ ẼF )N . The
composite isomorphism

[A,B ∧ ẼF ]G −→ [AN , BN ]J
sends a G-map f to the J-map fN . Using that G/H ∼= J/K is N -fixed, this
specializes to show that, for q ≥ 0,

ω : colimV πH
q ΩV (X(V ) ∧ ẼF ) −→ colimV πK

q ΩV N

(X(V ) ∧ ẼF )N

is a colimit of isomorphisms. The argument for q < 0 is similar. ¤
The following analogue of [19, II.9.8] gives an isomorphism in the homotopy

category HoJS between the geometric N -fixed point functor and the composite
of the categorical N -fixed point functor with the smash product with ẼF . Let
ξ : X −→ RX be a fibrant replacement functor on orthogonal G-spectra, so that ξ
is an acyclic cofibration and RX is an orthogonal Ω-G-spectrum.

Proposition 4.17. For cofibrant orthogonal G-spectra X, the diagram

R(X ∧ ẼF )N
γ //ΦNR(X ∧ ẼF ) ΦN (X)

ΦN (ξλ)oo

displays a pair of natural π∗-isomorphisms of orthogonal J-spectra.

Proof. Since ΦNλ is an isomorphism by Lemma 4.15 and ΦNξ is an acyclic
cofibration by Proposition 4.5, we need only consider γ. Let K = H/N and consider
the diagram

πH
∗ (X ∧ ẼF )

ω //

ξ∗
²²

ρK
∗ (X ∧ ẼF )

ξ∗
²²

πK
∗ R(X ∧ ẼF )N ∼= πH

∗ R(X ∧ ẼF ) ω
// ρK
∗ R(X ∧ ẼF ) η∗

// πK
∗ ΦNR(X ∧ ẼF ).

The maps ξ∗ are isomorphisms since ξ is an acyclic cofibration. The top map ω
is an isomorphism by Lemma 4.16, hence the bottom map ω is an isomorphism.
Since R(X ∧ ẼF ) is cofibrant, η∗ is an isomorphism by Proposition 4.12. Since the
bottom composite is γ∗, by Lemma 4.11, this proves the result. ¤



CHAPTER VI

“Change” functors for SG-modules and
comparisons

We explain the analogues for G-spectra and SG-modules of the functors on
orthogonal G-spectra that we discussed in Chapter V. It turns out that passage from
the definitions for G-spectra in [19, II§§1-4] to definitions for SG-modules is not at
all automatic. We show further that the comparisons among G-spectra, orthogonal
G-spectra, and SG-modules respect the change of universe, change of group, fixed
point spectra, and orbit spectra functors. Technically, these comparisons are the
heart of our work. They imply that such fundamental homotopical results as the
Wirthmüller isomorphism and the Adams isomorphism, which are proven for G-
spectra in [19], apply verbatim to orthogonal G-spectra and SG-modules.

1. Comparisons of change of group functors

Let ι : H −→ G be an inclusion of a closed subgroup in G and write ι∗ for
functors that assign H-action to an object with G-action. We fix a G-universe U
throughout this section, and we have the H-universe ι∗U . We may regard G-spectra
indexed on U as H-spectra indexed on ι∗U , thus obtaining a forgetful functor

ι∗ : GS −→ HS

(where we omit the implicit fixed choice of universes from the notation). This
functor has a left and a right adjoint [19, II.4.1]. Because of the action of the groups
on the universes, these functors are given by suitably twisted half-smash product
and function spectra functors, which were denoted by G nH (−) and F [H,−)
in [19]. We change notation and call these functors G+ ∧H (−) and FH(G+,−)
here. This is consistent with the usual notation for these functors on the space level
and with the notation we have used for these functors on the orthogonal spectrum
level. Write SH for the sphere H-spectrum indexed on ι∗U ; it may be identified
with ι∗SG. The corresponding functors relating SG-modules and SH -modules have
not yet been defined in the literature. We first show that the functors relating
G-spectra and H-spectra induce corresponding functors relating SG-modules and
SH -modules, and we then compare these change of group functors on the categories
of G-spectra, SG-modules, and orthogonal G-spectra.

The monad L used in the definition of SG-modules is given by the twisted
half-smash product I (U,U) n (−) on G-spectra, and it has an adjoint comonad
L# given by the twisted function spectrum functor F [I (U,U),−) [6, I§4]. The
category SG[L] of L-spectra is defined to be the category of L-algebras, and it
can be identified with the category of L#-coalgebras [6, I.4.3]. Recall that an SG-
module is an L-spectrum M whose unit map λ : JM −→ M is an isomorphism.

88
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By an abuse of notation, we let ι∗L denote the monad I (ι∗U, ι∗U) n (−) on H-
spectra and let ι∗L# denote its adjoint comonad F [I (ι∗U, ι∗U),−). We continue
to write J for its ι∗L-spectrum version SH ∧L (−), so that an SH -module N is an
ι∗L-spectrum whose unit map λ : JN −→ N is an isomorphism.

Proposition 1.1. The functor ι∗ : GS −→ HS and its left and right adjoints
G+ ∧H (−) and FH(G+,−) induce a functor ι∗ : GM −→ HM and its left and
right adjoints G+ ∧H (−) and FH(G+,−).

Proof. By [19, VI.1.8], we have commutation isomorphisms relating the mon-
ads L and ι∗L to the functors ι∗, G+∧H (−), and FH(G+,−). That is, for G-spectra
D and H-spectra E, we have

ι∗(LD) ∼= (ι∗L)(ι∗D)

G+ ∧H (ι∗LE) ∼= L(G+ ∧H E)

FH(G+, ι∗L#E) ∼= L#FH(G+, E).
Diagram chases show that these isomorphisms are compatible with the monad and
comonad structures and thus ι∗ carries L-algebras to ι∗L-algebras, G+ ∧H (−)
carries ι∗L-algebras to L-algebras, and FH(G+,−) carries ι∗L#-coalgebras to L#-
coalgebras. For L-algebras M and ι∗L-algebras N , we have an isomorphism

ι∗JM ∼= Jι∗M
under which ι∗λ agrees with λ and an isomorphism

G+ ∧H (JN) ∼= J(G+ ∧H N)

under which G+∧Hλ agrees with λ. Therefore ι∗ carries SG-modules to SH -modules
and G+ ∧H (−) carries SH -modules to SG-modules. As is typical in the theory of
SG-modules [6, II§2], the right adjoint to ι∗ : GM −→ HM is obtained as the
composite of the functor FH(G+,−) from SH -modules to L#-coalgebras and the
functor J from L#-coalgebras to SG-modules, the latter being right adjoint to the
evident forgetful functor by [6, II.2.5]. ¤

These functors are compatible with the Quillen equivalence (F,V) relating G-
spectra and SG-modules described in II.2.1. The following result holds for either
the cellular or the generalized cellular model structures.

Theorem 1.2. Consider the following diagram:

HS

F

²²

FH (G+,−)
//

G+∧H(−) //
GS

F

²²

ι∗oo

HM
FH (G+,−)

//

G+∧H(−) //

V

OO

GM .ι∗oo

V

OO

Each square of left adjoints and each square of right adjoints commutes up to natural
isomorphism, and the (G+ ∧H (−), ι∗) and (ι∗, FH(G+,−)) are pairs of Quillen
adjoints. Therefore the induced adjoint pairs on homotopy categories agree under
the induced adjoint equivalences HoHS ' HoHM and HoGS ' HoGM .
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Proof. It is clear from the previous proof that Fι∗ ∼= ι∗F and F(G+∧H (−)) ∼=
(G+ ∧H (−))F, and it follows by adjunction that FH(G+,−)V ∼= VFH(G+,−) and
ι∗V ∼= Vι∗. It is clear from the definitions that the functors ι∗ preserve weak equiv-
alences and q-fibrations. As in V.2.2, because orbit spaces ι∗G/K are triangulable
as finite H-CW complexes [17], the functors ι∗ also preserves q-cofibrations. ¤

Turning to the comparison with orthogonal G-spectra, we have the following
precise analogue of the previous theorem. Recall IV.3.8. We assume that our given
universe U is closed under tensor products. Then ι∗U is also closed under tensor
products. We use the collections V (U) and ι∗V (U) to define the categories GI S
and HI S of orthogonal G-spectra and orthogonal H-spectra; for H, this entails
a change of indexing spaces isomorphism that is discussed at the start of V§2.

Theorem 1.3. Consider the following diagram:

HS S

N

²²

FH (G+,−)
//

G+∧H (−) //
GI S

N

²²

ι∗oo

HM
FH (G+,−)

//

G+∧H (−) //

N#

OO

GM .ι∗oo

N#

OO

Each square of left adjoints and each square of right adjoints commutes up to natural
isomorphism, and the (G+ ∧H (−), ι∗) and (ι∗, FH(G+,−)) are pairs of Quillen
adjoints. Therefore the induced adjoint pairs on homotopy categories agree under
the induced adjoint equivalences HoHI S ' HoHM and HoGI S ' HoGM .

Proof. By inspection, ι∗N∗(V ) ∼= N∗(ι∗V ), naturally in V . It follows that
ι∗N ∼= Nι∗ and N#ι∗ ∼= ι∗N#. Therefore FH(G+,−)N# ∼= N#FH(G+,−) and
N(G+∧H (−)) ∼= (G+∧H (−))N. Again, it is clear that the functors ι∗ preserve weak
equivalences and (restricted) q-fibrations, and it follows from the triangulability of
orbits that ι∗ preserves (generalized) q-cofibrations. ¤

The Wirthmuller isomorphism explains the homotopical behavior of the func-
tors FH(G+, Y ). On homotopy categories, there is a natural isomorphism

(1.4) FH(G+, Y ) ' G+ ∧H Σ−L(H)Y,

where L(H) is the tangent H-representation at the identity coset of G/H. This
is proven for H-spectra Y in [19, II§6], use of H-CW spectra being convenient
in the proof. By the results above, it follows for SH -modules and for orthogonal
H-spectra. Writing [−,−]G for morphisms in homotopy categories, we have

(1.5) [G+ ∧H Y,X]G ∼= [Y, ι∗X]H

and

(1.6) [ι∗X, Y ]H ∼= [X, G+ ∧H Σ−L(H)Y ]G

for G-objects X and H-objects Y .
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2. Comparisons of change of universe functors

Change of universe functors are studied on SG-modules in [7] and [27, XXIV§3].
Let U and U ′ be any two G-universes and let V = V (U) and V ′ = V (U ′). Using
superscripts to identify categories, we have strong symmetric monoidal equivalences
of categories

IV
V ′ : I V ′

G S −→ I V
G S

and
IU
U ′ : M U ′

G −→ M U
G .

Since these functors enjoy virtually identical formal properties, it is to be expected
that the adjoint pairs (N,N#) connecting their sources and targets commute with
them. Unfortunately, this expectation is over-optimistic, and the precise compari-
son is one of the most subtle aspects of the entire theory. In fact, despite the formal
similarity, we have no direct comparison between these change of universe functors
in general.

We focus on the special case that is relevant to the applications. We consider
an inclusion of universes i : U −→ U ′, so that V ⊂ V ′. We write i∗ for the forgetful
functor IV

V ′ . It is specified by

(i∗X)(V ) = X(V ) for X ∈ I U ′
G S and V ∈ V .

We have similar forgetful functors

i∗ : PU ′
G −→ PU

G and i∗ : S U ′
G −→ S U

G

specified by
(i∗T )(V ) = T (iV ) for T ∈ PU ′

G and V ⊂ U.

It is clear that the following diagram commutes up to natural isomorphism:

S U ′
G

` //

i∗

²²

PU ′
G

i∗

²²

I V ′
G

Uoo

i∗

²²
S U

G `
// PU

G I V
G .U

oo

Since the forgetful functors U and ` are the right adjoints of Quillen equivalences,
this implies the compatibility of the three functors i∗ under the induced equivalences
of homotopy categories.

The analogue IU
U ′ of i∗ on M U ′

G is not induced by restriction of the functor i∗

on S U ′
G . Its inverse functor IU ′

U is compared homotopically with the left adjoint i∗
of i∗ in [7] and the comparison suggests adjointly that the functor IU

U ′ is compatible
with the functors i∗ in the diagram above after passage to homotopy categories.
However, it is awkward to construct this derived functor in a way that allows a
direct comparison between IU

U ′ and the functors i∗, and we need such a comparison
in our study of fixed point functors in the next section.

We solve this problem by showing that i∗ : S U ′
G −→ S U

G induces a new forgetful
functor i∗ : M U ′

G −→ M U
G that has a left adjoint i∗ : M U

G −→ M U ′
G and giving a

direct comparison between the new functor i∗ and IU ′
U . To do this, we require that

the universe U ′ be the direct sum of U and the orthogonal complement U⊥ of U
in U ′. This holds in all cases of interest. The following result holds for either the
cellular or the generalized cellular model structures.
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Theorem 2.1. Let U ′ = U ⊕ U⊥. Then there is an adjoint pair of G-functors
with left adjoint i∗ : M U

G −→ M U ′
G and right adjoint i∗ : M U ′

G −→ M U
G . On

passage to G-fixed categories, the functors i∗ and i∗ give a Quillen adjoint pair
such that the following diagrams of left and of right adjoints commute up to natural
isomorphism:

GS U

F

²²

i∗ //
GS U′

F

²²

i∗
oo

GM U
i∗ //

V

OO

GM U′ .

V

OO

i∗
oo

The adjoint pair (i∗, i∗) relating M U
G and M U ′

G is defined in terms of an adjoint
pair (i∗, i∗) relating the respective categories SU

G [L] and SU ′
G [L] of L-spectra. Here

the right adjoint i∗ is defined as the restriction of the functor i∗ : S U ′
G −→ S U

G of
the spectrum level adjoint pair (i∗, i∗) discussed in [19, II.1.3]. We first show that
this restriction makes sense.

Lemma 2.2. The functor i∗ : S U ′
G −→ S U

G carries LU ′-algebras to LU -algebras
and thus restricts to a functor i∗ : S U ′

G [L] −→ S U
G [L].

Proof. Define a map of monoids

α : I (U,U) −→ I (U ′, U ′)

by α(f) = f ⊕ idU⊥ . By the theory of twisted half-smash products [6, App], there
results a monad α n (−) on S U ′

G and an induced map ᾱ from this monad to the
monad LU ′ = I (U ′, U ′)n(−). The following diagram of spaces commutes trivially:

I (U, U)
α //

I (id,i) &&LLLLLLLLLL I (U ′, U ′)

I (i,id)xxqqqqqqqqqq

I (U, U ′).

By [6, A.6.2], this implies an isomorphism of functors i∗LU ∼= αni∗(−). Composing
with ᾱ there results a natural transformation

β : i∗LU −→ LU ′i∗

of functors S U
G −→ S U ′

G . Taking adjoints, we obtain a natural transformation

β̃ : i∗L#
U ′ −→ L#

U i∗

of functors S U ′
G −→ S U

G . If M ′ is an LU ′-algebra and thus an L#
U ′-coalgebra,

say with structure map ν′ : M ′ −→ L#
U ′M

′, then i∗M ′ is an L#
U -coalgebra with

structure map ν = β̃ ◦ i∗ν′. This proves the result. ¤

Definition 2.3. We define the left adjoint i∗ : S U
G [L] −→ S U ′

G [L] of i∗. For
an LU -spectrum M with action ξ : LUM −→ M , let i∗M be the coequalizer of

LU′ i∗LUM
LU′ i∗ξ //LU′ i∗M
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and the composite

LU′ i∗LUM
LU′β //LU′LU′ i∗M

µ′ //LU′ i∗M,

where µ′ is the product of the monad LU ′ . Now easy diagram chases show that
µ′ : LU ′LU ′i∗M −→ LU ′i∗M passes to coequalizers to define an action of L′ on
i∗M and that the resulting functor i∗ is left adjoint to i∗.

To define the functors i∗ and i∗ relating M U
G and M U ′

G , we need the following
lemma. Since the proof is technical and distracting, we defer it to §6.

Lemma 2.4. For any LU -spectrum E, the unit maps

i∗JE Ji∗JE
λoo Ji∗λ //Ji∗E

are isomorphisms.

This has the following immediate consequence.

Lemma 2.5. The functor i∗ : S U
G [L] −→ S U ′

G [L] carries SU
G-modules to SU ′

G -
modules and thus restricts to a functor i∗ : M U

G −→ M U ′
G .

Formally, i∗U = Ui∗, where U : M U
G −→ S U

G [L] is the forgetful functor.

Definition 2.6. Define i∗ : M U ′
G → M U

G to be Ji∗U. Since U is an embedding
of a full subcategory and J is the right adjoint of U [6, II.1.3], we see that i∗ is the
right adjoint of i∗.

Proof of Theorem 2.1. We now pass to fixed point categories. Lemma 2.4
implies the commutativity of the diagrams of left and right adjoints displayed in the
theorem. The adjoint pair (i∗, i∗) on G-spectra is a Quillen pair since the functor i∗

preserve weak equivalences and q-fibrations. It follows that the adjoint pair (i∗, i∗)
on SG-modules is also a Quillen adjoint pair. ¤

The strong symmetric monoidal analogue IU ′
U of i∗ defined in [7] is the functor

appropriate to the study of highly structured ring and module spectra, and we
have the following comparison. There is a class ĒSU

G
of SU

G -modules that contains
all of the cofibrant objects in all of our categories of highly structured ring and
module spectra over cofibrant commutative SG-algebras and enjoys especially good
homotopy theoretic properties. It was defined equivariantly [7, 3.1], following [6,
VII.6.4], but it is best to reinterpret ĒSU

G
to mean the equivariant analogue of the

larger class defined by Basterra [2, 9.3], which enjoys the same good properties.

Proposition 2.7. There is a natural map α : i∗M −→ IU ′
U M of SU ′

G -modules
that is a weak equivalence for all M ∈ ĒSU

G
. Moreover, both maps in the diagram

i∗M ∧ i∗N
α∧α //IU ′

U M ∧ IU ′
U N ∼= IU ′

U (M ∧N) i∗(M ∧N)αoo

are weak equivalences for all M,N ∈ ĒSU
G
. Therefore the induced functor i∗ :

HoGM U −→ HoGM U ′ is strong symmetric monoidal.

Proof. The definition of i∗ on S-modules M can be written concisely as

(2.8) i∗M = I (U ′, U ′)nI (U,U) M,
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where the twisted half-smash product is defined with respect to the map

I (i, id) : I (U ′, U ′) −→ I (U,U ′).

According to [7, 2.3], the functor IU ′
U : M U

G −→ M U ′
G is defined by

(2.9) IU ′
U M = I (U,U ′)nI (U,U) M.

This makes sense because the corresponding functor S U [L] −→ S U ′ [L] carries
SU

G -modules to SU ′
G -modules [7, 2.4]. Therefore I (i, id) induces a natural map of

SU ′
G -modules

(2.10) α : i∗M −→ IU ′
U M.

We have an evident commutative diagram of underlying G-spectra

I (U ′, U ′)nM //

²²

I (U ′, U ′)nI (U,U) M

α

²²
I (U,U ′)nM // I (U,U ′)nI (U,U) M

in which the horizontal arrows are quotient maps. The left vertical arrow is a
homotopy equivalence of G-spectra for all “tame” G-spectra M , in particular for
all SG-modules M ∈ ĒSU

G
, by [6, I.2.5]. The bottom horizontal arrow is proven

to be a weak equivalence for all M ∈ ĒSU
G

in [7, p.148], and essentially the same
argument shows that the top horizontal arrow and thus also α is a weak equivalence.
The proof that α ∧ α is a weak equivalence when applied to SU

G -modules in ĒSU
G

is
similar; compare [6, VII§6] or [2, §9]. ¤

We now assume that our universes U and U ′ = U ⊕U⊥ are closed under tensor
products and consider the resulting Quillen equivalences (N,N#). We have a class
ĒIG

of orthogonal G-spectra parallel to the class ĒSG
of SG-modules. Precisely, let

EIG
be the subclass of objects of IGS consisting of SG together with the orthogo-

nal G-spectra of the form Xj/Σ, where X is a positive cell orthogonal G-spectrum
and Σ is a subgroup of Σj . Let ĒIG be the smallest class of orthogonal G-spectra
that contains EIG and is closed under wedges, pushouts along h-cofibrations, se-
quential colimits of h-cofibrations, finite smash products, and homotopy equiva-
lences. It is clear from the arguments in III§§5, 7, 8 that the class ĒIG

contains all
of the positive cofibrant objects in all of our categories of highly structured ring and
module spectra over cofibrant commutative orthogonal ring spectra. The following
analogue of Theorem 2.1 is technically parallel to Proposition 2.7.

Theorem 2.11. Write i∗ = IV ′
V : I V

G −→ I V ′
G and i∗ = IV

V ′ : I V ′
G −→ I V

G .
There are natural maps of SU ′

G -modules

i∗NX
α //IU ′

U NX Ni∗X
βoo

that are weak equivalences for all X in ĒIG
. Passing to homotopy categories, the

left and right adjoints in the following diagram commute up to natural isomorphism.
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HoGI V

N

²²

i∗ //
HoGI V ′

i∗
oo

N

²²
HoGM U

i∗ //

N#

OO

HoGM U′ .
i∗

oo

N#

OO

Proof. Since N takes positive cell orthogonal G-spectra to cell SG-modules
and is strong symmetric monoidal and a topological left adjoint, N carries the class
ĒIG

into the class ĒSG
. The map α is given by Proposition 2.7, and that result

gives that α is a weak equivalence on objects in ĒIG
.

We construct β by use of observations on “right exact” functors from I§2. Recall
that i∗F V

V S0 ∼= F V ′
V S0, by V.1.4, and that the functors N are defined in terms of

the functors N∗ of IV.3.4. We have the contravariant functors N∗U ′i∗ and IU ′
U N∗U

from J V
G to M U ′

G . The first satisfies

(2.12) NU ′i∗(FV S0) = N∗U ′i∗(V ) = JI (V ⊗ U ′, U ′)n ΣV⊗U ′
V S0.

By [7, 2.2], composition induces a homeomorphism of G-spaces

γ : I (U,U ′)×I (U,U) I (V ⊗ U,U) −→ I (V ⊗ U,U ′).

Via (2.9), this implies that the second satisfies

(2.13) IU ′
U NU (FV S0) = IU ′

U N∗U (V ) ∼= JI (V ⊗ U,U ′)n ΣV⊗U
V S0.

The functors NU ′i∗ and IU ′
U NU are continuous left adjoints and therefore right exact.

Since their composites with the functor that sends V ∈ J V
G to FV S0 are NU ′i∗

and IU ′
U NU , we obtain natural isomorphisms

NU ′i∗X = NU ′i
∗ ⊗J V

G
X and IU ′

U NUX = IU ′
U N∗U ⊗J V

G
X.

For V ∈ V , let i(V ) = id⊗i : V ⊗ U −→ V ⊗ U ′. The functors i(V )∗ΣV⊗U
V and

ΣV⊗U ′
V are isomorphic since both are left adjoint to the V th space functor. By [6,

A.6.2], it follows that the map

I (i(V ), id) : I (V ⊗ U ′, U ′) −→ I (V ⊗ U,U ′)

induces a natural map

β∗ : N∗U ′i∗(V ) −→ IU ′
U N∗U (V ).

By adjunction, β∗ induces the required natural map β : Ni∗X −→ IU ′
U NX. When

X = FV A, where V G 6= 0, we see by use of (2.12), (2.13), and the “untwisting
theorem” of [6, A.5.5] that β is obtained by applying J to a map of L-spectra
whose underlying map of G-spectra is isomorphic to the map

I (i(V ), id)+ ∧ id : I (V ⊗ U ′, U ′)+ ∧ ΣU ′
V A −→ I (V ⊗ U,U ′)+ ∧ ΣU ′

V A.

Since I (V ⊗U ′, U ′) and I (V ⊗U,U ′) are G-contractible G-spaces [6, XI.1.5], this
map is a homotopy equivalence of G-spectra, hence β is a weak equivalence. By
passage to wedges, pushouts, sequential colimits, and retracts, it follows that β is
a weak equivalence when X is positive cofibrant. By III.2.6, finite smash products
of positive cofibrant orthogonal G-spectra are positive cofibrant. We pass to orbit
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orthogonal G-spectra Xj/Σ by use of III.8.4, and we pass to general orthogonal
G-spectra X ∈ ĒIG

by an analysis of their structure that is similar to, but simpler
than, the analogous analysis in the category of S-modules given in [6, VII§6]. ¤

Remark 2.14. On homotopy categories HoGS , HoGM , and HoGI S , the
functors i∗ are all strong symmetric monoidal. For HoGS this is implicit in [19,
II.3.14], for HoGM this is part of Proposition 2.7, and for HoGI S the functor
i∗ on GI S is already strong symmetric monoidal. Diagram chases show that the
isomorphisms i∗X ∧ i∗Y −→ i∗(X ∧ Y ) in these three settings agree under the
equivalences induced by functors F and N.

3. Comparisons of fixed point and orbit G-spectra functors

First assume given a trivial G-universe. We denote it UG and let V G = V (UG),
so that V G is just the collection of all finite dimensional inner product spaces,
with trivial action by G. For G-spectra and SG-modules indexed on UG and for
orthogonal G-spectra indexed on V G, we pass to fixed points and orbits levelwise.
That is, in all three settings, for an object X,

(3.1) XG(V ) = X(V )G and (X/G)(V ) = X(V )/G.

In the case of SG-modules, since G acts trivially on I (UG, UG), it is clear that
XG and X/G inherit S-module structures from the SG-module structure on X.
Formally, for G-spectra X and L-spectra Y , we have isomorphisms of functors

(LX)G ∼= L(XG), (LX)/G ∼= L(X/G), (JY )G ∼= J(Y G), (JY )/G ∼= J(Y/G).

Write ε∗ for functors that assign trivial G-action to nonequivariant objects. For
SG-modules X and S-modules Y , we then have adjunctions

(3.2) GM (ε∗Y, X) ∼= M (Y,XG) and GM (X, ε∗Y ) ∼= M (X/G, Y ).

Since G acts trivially on UG, the cellular and generalized cellular model structures
coincide on GM , and these are Quillen adjoint pairs since in both cases the right
adjoints are easily seen to preserve weak equivalences and q-fibrations. The same
holds for G-spectra, and orthogonal G-spectra work similarly by V§3. Inspections
of definitions give the following elementary comparisons.

Theorem 3.3. Consider the following diagram, in which all spectra are indexed
on a trivial universe:

GS

F

²²

(−)G
//

(−)/G //
S

F

²²

ε∗oo

GM
(−)G

//

N#

²²

(−)/G //

V

OO

Mε∗oo

V

OO

N#

²²
GI S

(−)G
//

(−)/G //

N

OO

I S .ε∗oo

N

OO
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Each square of left adjoints and each square of right adjoints commutes up to natural
isomorphism, and the (ε∗, (−)G) and ((−)/G, ε∗) are pairs of Quillen adjoints.
Therefore the induced adjoint pairs on homotopy categories agree under the induced
adjoint equivalences HoGS ' HoGM ' HoGI S and HoS ' HoM ' HoI S .

Now let U be a complete G-universe, or any G-universe closed under tensor
products, and let V = V (U). We have the G-fixed universe UG, and the theory of
the previous section applies to the inclusion i : UG −→ U .

Definition 3.4. For G-spectra, SG-modules, or orthogonal G-spectra X in-
dexed on the universe U (or on V (U)), define XG = (i∗X)G.

We do not define orbit G-spectra this way, preferring to regard them as defined
only on G-fixed universes. We write ε# = i∗ε∗ in all three contexts; that is, we
interpret ε# as a functor S UG −→ GS U , M UG −→ GM U , or I V G −→ GI V .
In all three contexts, ε# is left adjoint to (−)G. For example, for SU

G -modules X

and SUG

-modules Y ,

(3.5) GM U (ε#Y, X) ∼= M UG

(Y,XG).

In view of Theorem 2.1, this is a Quillen adjoint. Deleting the universes from the
notation and combining Theorems 2.1, 2.11, and 3.3, we obtain somewhat more
precise information than is given in the statement of the following result.

Theorem 3.6. The fixed point functors

HoGS → HoS , HoGM → HoM , HoGI S → HoI S

and their left adjoints ε# agree under the equivalences of their domain and target
categories induced by Quillen equivalences (F,V) and (N,N#).

Remark 3.7. In all three contexts, the counit of the adjunction (ε#, (−)G) is
a natural G-map ε#XG −→ X. It is the analogue of the inclusion AG −→ A for
based G-spaces A. Working in the trivial universe, ε∗ clearly commutes with smash
products, and i∗ commutes with smash products up to natural isomorphism in the
respective homotopy categories by Remark 2.14. For G-spectra, SG-modules, or
orthogonal G-spectra X and Y , there results a natural map

ε#(XG ∧ Y G) ∼= (ε#XG) ∧ (ε#Y G) −→ X ∧ Y

in the respective homotopy category. Its adjoint is a natural map

XG ∧ Y G −→ (X ∧ Y )G.

These maps agree under the equivalences induced by the pairs (F,V) and (N,N#).
We have similarly compatible natural maps

XG ∧AG −→ (X ∧A)G

and
Σ∞(AG) −→ (Σ∞A)G

where Σ∞ on the left and right refer to the universes UG and U . These maps
are not equivalences. They are discussed on G-spectra in [6, 3.14], and we have
nothing new to say about their analogues for SG-modules; we could just as well lift
along the equivalence induced by (F,V). The analogues for orthogonal G-spectra
are surprisingly well-behaved on the point-set level, as explained in V§3.
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If WH = NH/H, we can obtain H-fixed point functors from G-objects to
WH-objects by forgetting down to NH-objects, changing to an H-trivial universe,
and taking H-fixed points. The first step is discussed in §1, and we discuss the
second and third steps more generally. Thus let N be a normal subgroup of G, let
J = G/N , and let ε : G −→ J be the quotient homomorphism. We are thinking of
the normal subgroup H of NH with quotient group WH.

Fix a complete G-universe U and consider its N -fixed subuniverse UN . Write
V N = V (UN ). The universe U is the direct sum of UN and its orthogonal comple-
ment, which is the sum of all irreducible sub G-spaces V of U such that UN 6= 0.
Moreover both universes UN and U are closed under tensor products. Therefore,
using IV.3.8, the results of the previous section apply to the change of universe
functors associated to the inclusion i : UN −→ U . Write ε∗ for any functor that
assigns to J-objects the same objects regarded as N -fixed G-objects.

Definition 3.8. Define ε# = i∗ε∗; this specifies functors

JS UN −→ GS U , JM UN −→ GM U , and JI V N

S −→ GI V S .

For G-objects X indexed on the N -fixed universe UN (or on V N ), define J-objects
XN indexed on UN by (XN )(V ) = X(V )N . For G-objects X indexed on the
complete G-universe U , define XN = (i∗X)N . This specifies N -fixed point functors

GS U −→ JS UN

, GM U −→ JM UN

, and GI V S −→ JI V N

S .

In all three cases, this functor (−)N is right adjoint to ε#, and (ε#, (−)N ) is a
Quillen adjoint pair. For example, for SG-modules X and SJ -modules Y ,

(3.9) GM U (ε#Y,X) ∼= JM UN

(Y, XN ).

Theorem 3.6 generalizes to this situation.

Theorem 3.10. The N -fixed point functors

HoGS → HoJS , HoGM → HoJM , HoGI S → HoJI S

and their left adjoints ε# agree under the equivalences of their domain and target
categories induced by Quillen equivalences (F,V) and (N,N#).

If we start in the N -fixed point universe, we can be more precise. Here we
define orbit J-spectra levelwise, just as we defined fixed point J-spectra.

Definition 3.11. For G-objects X indexed on the N -fixed universe UN , define
the J-object X/N indexed on UN by (X/N)(V ) = X(V )/N .

We have the evident adjunctions, and Theorem 3.3 generalizes directly.

Theorem 3.12. Consider the following diagram, in which all spectra are in-
dexed on the N -fixed universe UN :
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GS

F

²²

(−)N
//

(−)/N //
JS

F

²²

ε∗oo

GM
(−)N

//

N#

²²

(−)/N //

V

OO

JMε∗oo

V

OO

N#

²²
GI S

(−)N
//

(−)/N //

N

OO

JI S .ε∗oo

N

OO

Each square of left adjoints and each square of right adjoints commutes up to natural
isomorphism, and the (ε∗, (−)N ) and ((−)/N, ε∗) are pairs of Quillen adjoints.
The induced adjoint pairs on homotopy categories agree under the induced adjoint
equivalences HoGS ' HoGM ' HoGI S and HoJS ' HoJM ' HoJI S .

4. N-free G-spectra and the Adams isomorphism

Following [19, II§2], which is clarified by our present model theoretic frame-
work, we relate families to change of universe and use this relation to describe and
compare N -free G-spectra, SG-modules, and orthogonal G-spectra. This allows us
to transport the Adams isomorphism, which is perhaps the deepest foundational
result in equivariant stable homotopy theory, from G-spectra to SG-modules and
orthogonal G-spectra.

Theorem 4.1. Let i : U ′ −→ U be an inclusion of G-universes and consider
the family F = F (U,U ′) of subgroups H of G such that there exists an H-linear
isometry U −→ U ′.

(i) H ∈ F if and only if U is H-isomorphic to U ′.
(ii) I (U,U ′) is a universal F -space.
(iii) i∗ : HoFS U ′ −→ HoFS U is an equivalence of categories.

Proof. Parts (i) and (ii) are [19, II.2.4 and II.2.11]. Part (iii) is [19, II.2.6].
We give the idea. First, for an F -cofibrant X ′ ∈ GS U ′ and any Y ′ ∈ GS U ′ ,

i∗ : [X ′, Y ′]F ∼= [X ′, Y ′]G −→ [i∗X ′, i∗Y ′]G ∼= [i∗X ′, i∗Y ′]F

is a bijection. To see this, one uses (i) to prove that the unit Y ′ −→ i∗i∗Y ′ of the
(i∗, i∗) adjunction is an F -equivalence [19, II.1.9]. Second, for an F -cell complex
X in GS U , there is an F -cell complex X ′ ∈ GS U ′ and an equivalence i∗X ′ −→ X.
In fact, using ordinary rather than generalized cell structures, we can construct X
inductively so that its cells are in bijective correspondence with those of X ′. Other
choices of X such that i∗X is weakly equivalent to X ′ are EF+ ∧ i∗X ′ and, using
(ii), I (U,U ′)nX ′; see [19, II.2.14]. ¤

Now return to the consideration of a normal subgroup N of G with quotient
group J . Let U be a complete G-universe and let U ′ = UN . Using these universes,
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the results of the §2 allow us to transport the conclusion of the previous theorem
to both SG-modules and orthogonal G-spectra.

Definition 4.2. Define F (N) to be the family of subgroups H of G such that
H ∩N = e. For G-spectra, SG-modules, or orthogonal G-spectra indexed on either
U or UN , an F (N)-object is called an N -free G-object, and an F (N)-cell complex
is called an N -free G-cell complex.

Thus an N -free G-cell complex is built up out of cells of orbit types G/H such
that H ∩ N = e. This correctly captures the intuition. Note that we are free to
use either the cellular or the generalized cellular interpretation of a G-cell complex
here. The following elementary observation [19, II.2.4] ties things together.

Lemma 4.3. The families F (U,UN ) and F (N) are the same.

Theorem 4.4. For a normal subgroup N of G,

i∗ : HoF (N)S UN −→ HoF (N)S U

is an equivalence of categories, and similarly for SG-modules and for orthogonal
G-spectra.

In either universe, we can identify HoF (N)S with the full subcategory of N -
free G-spectra in HoGS . The previous result is summarized by the slogan that
“N -free G-spectra live in the N -trivial universe”. Using Theorem 3.12, it gives

(4.5) [X/N, Y ]J ∼= [X, ε∗Y ]G ∼= [i∗X, ε#Y ]G

for an N -free G-object X and any G-object Y , both indexed on UN . We can ask
about the behavior with the order of variables reversed, and the Adams isomor-
phism relating the orbit and fixed point functors gives the answer. On homotopy
categories, there is a natural isomorphism

(4.6) X/N ∼= (Σ−Ai∗X)N

for an N -free G-object X indexed on UN , where A is the G-representation given
by the tangent space of N at e. Use of i∗ to pass to the complete universe before
taking fixed points is essential. This result is proven for G-spectra X in [19, II§7].
Here the cellular model structure has a considerable advantage over the generalized
cellular model structure, but the conclusion carries over to our other categories.
Using (3.9), this implies that

(4.7) [Y,X/N ]J ∼= [ε#Y, Σ−Ai∗X]G.

5. The geometric fixed point functor and quotient groups

The geometric fixed point functor was defined on G-spectra in [19, II§9], where
it was shown to commute up to equivalence with smash products and the suspension
spectrum functor; see also [27, XVI§§3,6]. Recall that F [N ] denotes the family
of subgroups H such that H does not contain N . Note that F (N) ⊂ F [N ], with
equality only if N = e. For G-spectra X, there is an equivalence

(5.1) ΦNX ' (ẼF [N ] ∧X)N .

In the case of SG-modules, it seems best to define ΦNX = (X∧ẼF [N ])N , although
this obscures the simple space level intuition behind the notion. On orthogonal
G-spectra, we have given a natural geometric definition of ΦN and have derived
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(5.1) from that definition. Since (5.1) holds in all cases, the ΦN agree under our
equivalences between homotopy categories.

An important role of the original geometric fixed point functor is its use to
prove an equivalence between the homotopy category of J-spectra indexed on UN

and the homotopy category of G-spectra indexed on U that are concentrated over
N , namely G-spectra X such that πH

∗ (X) = 0 unless H contains N . Specialization
of IV.6.13 and IV.6.14 gives the following starting point.

Theorem 5.2. A G-spectrum X is concentrated over N if and only if the map
λ : X −→ ẼF [N ] ∧ X is a weak equivalence. Smashing with ẼF [N ] defines
an equivalence of categories from HoF ′[N ]S to the full subcategory of G-spectra
concentrated over N in HoGS .

Theorem 5.3. There is an adjoint equivalence from HoJS to the full subcat-
egory of G-spectra concentrated over N in HoGS .

By the last statement of Theorem IV.6.13, for a G-spectrum X concentrated
over N and any J-spectrum Y ,

(5.4) λ∗ : [ẼF [N ] ∧ ε#Y, X]G −→ [ε#Y,X]G ∼= [Y, XN ]J

is an isomorphism. This gives the required adjunction, and its unit and counit
are proven to be equivalences in [19, II.§9]. By the comparisons we have given,
Theorems 5.2 and 5.3 apply verbatim to SG-modules and orthogonal G-spectra.

6. Technical results on the unit map λ : JE −→ E

Finally, we return to the proof of Lemma 2.4. The argument relies on the
following lemmas, which are in essence special cases of the fundamental lemmas
of [6] that make the smash product of S-modules associative and unital, namely
“Hopkins’ lemma” [6, I.5.4] and “the accidental isomorphism lemma” [6, I.8.1].

Lemma 6.1. Let U , U1, U2 be G-universes, and let W be a G-inner product
space (either finite or countably infinite dimensional). The G-map

δ : I (U ⊕W,U1)×I (U,U) I (U2, U) −→ I (U2 ⊕W,U1)

specified by δ(g, f) = g ◦ (f ⊕ idW ) is a homeomorphism of G-spaces.

Proof. It suffices to show that δ is a nonequivariant homeomorphism. We can
choose (nonequivariant) isometric isomorphisms between U and U1 and U2. Under
these isomorphisms, we can identify δ with the analogous map

I (U ⊕W,U)×I (U,U) I (U,U) −→ I (U ⊕W,U),

which is clearly a homeomorphism. ¤

Lemma 6.2. Let U , U ′, U1 be G-universes, and let W be a G-inner product
space (either finite or countably infinite dimensional). The G-map

I (U ⊕ U ′ ⊕W,U1)/(I (U,U)×I (U ′, U ′)) −→ I (U ′ ⊕W,U1)/I (U ′, U ′)

induced by restriction of isometries is a G-homeomorphism.

Proof. The previous lemma gives a G-homeomorphism

δ : I (U ′ ⊕W,U1)×I (U ′,U ′) I (U ⊕ U ′, U ′) ∼= I (U ⊕ U ′ ⊕W,U1)
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of right (I (U,U)×I (U ′, U ′))-spaces. We claim that

I (U ⊕ U ′, U ′)/(I (U,U)×I (U ′, U ′))

is the one-point space. Indeed, it suffices to show this nonequivariantly, and after
choosing an isometric isomorphism U ∼= U ′, this is just [6, I.8.1]. Therefore, after
passing to orbits over I (U,U)×I (U ′, U ′), δ induces a homeomorphism

I (U ′ ⊕W,U1)/I (U ′, U ′) −→ I (U ⊕ U ′ ⊕W,U1)/(I (U,U)×I (U ′, U ′)).

Its inverse is induced by restriction of isometries. ¤
The proof of Lemma 2.4 requires a clarification of the definitions of JE and the

unit map λ : JE −→ E given in [6, I.8.3]. We work in a given universe U , using
the linear isometries operad L such that L (j) = I (U j , U). By definition,

JE = S ∧L E = L (2)nL (1)×L (1) SG Z E,

where Z is the external smash product. Here SG
∼= L (0)n S0. The structure map

γ : L (2)×L (0)×L (1) −→ L (1) of L induces a map

γ̂ : L̂ (1) = L (2)×L (1)×L (1) L (0)×L (1) −→ L (1),

which is a G-homotopy equivalence [6, XI.2.2]. Form the orbit space L (2)/L (1)
with respect to the right action of L (1) on L (2) given by (g, e) −→ g ◦ (e ⊕ id),
and let L (1) act on the right of L (2)/L (1) by ([g], f) −→ [g ◦ (id⊕f)]. Then γ̂
factors as the composite of the homeomorphism

γ̄ : L̂ (1) −→ L (2)/L (1)

given by γ̄(g, 0, f) = [g ◦ (id⊕f)] and the map

i2 : L (2)/L (1) −→ L (1)

obtained by restricting isometries U⊕U to the second summand U . These maps are
both G and L (1)-equivariant. Using [6, I.2.2(ii)], which describes iterated twisted
half-smash products, and the isomorphism γ̄, we obtain an identification

JE ∼= L (2)/L (1)nL (1) E.

Under this identification, λ : JE −→ E coincides with the map

i2 nL (1) id : L (2)/L (1)nL (1) E −→ L (1)nL (1) E ∼= E.

The proof of Lemma 2.4. Recall that we are given a universe U ′ = U⊕U⊥.
Using 6.1, the description (2.8) of i∗, and [6, A.6.2], we obtain natural isomorphisms
of i∗JE, Ji∗JE, and Ji∗E with A1nL U (1) E, A2nL U (1) E, and A3nL U (1) E, where
A1, A2, and A3 are the (GnL U (1))-spaces over I (U,U ′) specified by

A1 = I (U ⊕ U ⊕ U⊥, U ′)/L U (1)

A2 = I (U ′ ⊕ U ⊕ U ⊕ U⊥, U ′)/(L U ′(1)×L U (1)), and

A3 = I (U ′ ⊕ U ⊕ U⊥, U ′)/L U ′(1).

The maps

i∗JE Ji∗JE
λoo Ji∗λ //Ji∗E

are induced by appropriate restriction maps A1 ←− A2 −→ A3. By Lemma 6.2,
these maps are G-homeomorphisms. ¤
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inclusion prespectrum, 13

indexing G-space, 30

infinite loop space machine, 26

internal function IG-space, 34

internal smash product, 7, 34

L-prespectrum, 23, 68

L-spectrum, 19, 23, 62, 68

level acyclic fibration, 42

level acyclic q-cofibration, 42

level equivalence, 42

level fibration, 42

level model structure, 41

linear isometries operad, 18
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model category

G-topological, 40

compactly generated, 38

model structure

Bousfield F -, 70

cellular, 60

E-, 70

F -, 70

level, 41

positive level, 43

positive stable, 8, 51

stable, 47

V -, 76

monoid axiom, 54

N -free G-cell complex, 100

N -spectrum, 12

naive, 31

naive orthogonal G-spectrum, 79

natural G-map, 30

nondegenerately based, 41

Ω-G-spectrum, 44

orthogonal, 44

positive, 51

Ω-spectrum, 12

positive, 12

operadic smash product, 19

orthogonal G-spectrum, 32

orthogonal Ω-G-spectrum, 44

orthogonal ring G-spectrum, 34

orthogonal space, 8

orthogonal spectrum, 8

π∗-isomorphism, 45, 85

positive cofibrant, 9

positive inclusion prespectrum, 14

positive level model structure, 43

positive Ω-G-spectrum, 51

positive Ω-spectrum, 12

positive q-cofibration, 44

positive q-fibration, 51

positive stable model structure, 8, 51

prespectrum, 12

inclusion, 13

positive inclusion, 14

prolongation functor, 7

pushout-product axiom, 54

q-cofibration, 38, 42, 63

generalized, 63

positive, 44

q-fibration, 38, 47, 63

level, 42

positive, 51

restricted, 63

restricted q-fibration, 63

ρ∗-isomorphism, 85

right exact, 5, 67

S-module, 19
SG-algebra, 64
SG-module, 62
shift desuspension spectrum, 36
smash product, 7, 33

external, 7, 32
internal, 7, 34
operadic, 19
twisted half-, 18

sphere G-spectrum, 62
sphere SG-module, 62
stable equivalence, 52
stable model structure, 47
symmetric spectrum, 12

tame spectrum, 13
tensor, 36
Thom category, 20
topological G-category, 30
trivial G-universe, 30
twisted half-smash product, 18

unit map, 19, 62
universe, see G-universe

V -model structure, 76

weak equivalence, 13, 63
Wirthmuller isomorphism, 90


