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A1-HOMOTOPY THEORY OF SCHEMES
by FABIEN MOREL, VIADIMIR VOEVODSKY
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1. Preface

In this paper we begin to develop a machinery which we call A1-homotopy theory
of schemes. All our constructions are based on the intuitive feeling that if the category
of algebraic varieties is in any way similar to the category of topological spaces then
there should exist a homotopy theory of algebraic varieties where affine line plays the
role of the unit interval. For a discussion of the main ideas on which our approach is
based we refer the reader to [32].

2. Homotopy category of a site with interval

In this section we prove a number of general results about simplicial sheaves on
sites which will be later applied to our study of the homotopy category of schemes.
In the first part (Section 1) we describe the main features of the homotopy theory
of simplicial sheaves on a site. Many results of this part can be found in [20] and
[17], [18]. Surprisingly, there are some nontrivial things to be proven in relation to
basic functoriality of the homotopy categories of simplicial sheaves. This is done in
Section 1.

In Section 2 we prove a general theorem which shows that there is a "good"
way to invert any set of morphisms in the simplicial homotopy category of a site. Here
"good55 means that the resulting localized category is again the homotopy category for
some model category structure on the category of simplicial sheaves. The results of this



46 FABIEN MOREL, VLADIMIR VOEVODSKY

sections remain valid in a more general context of model categories satisfying suitable
conditions of being "locally small" but we do not consider this generalizations here.

In Section 3 we apply this localization theorem to define a model category
structure on the category of simplicial sheaves on a site with interval (see [31, 2.2]).
We show that this model category structure is always proper (in the sense of [2,
Definition 1.2]) and give examples of how some known homotopy categories can be
obtained using this construction.

All through this section we use freely the standard terminology associated with
Quillen's theory of model categories. The notion of a model category which we use here
first appeared in [9] and is a little stronger than the one originally proposed by Quillen.
To avoid confusion we recall it here.

Definition 0.1. — A category ^ equipped with three classes of morphisms respectively called
weak equivalences, cofibrations and fibrations is called a model category if the following
axioms hold :

• MC1 W has all small limits and colimits;
• MC2 Iff and g are two composabk morphisms and two of f, g or go f are weak

equivalences, then so is the third;
• MC3 If the morphismfis retract of g and g is a weak-equivalence, cojibration orfibration

then so is f;
• MC4 Any jibration has the right lifting property with respect to trivial cofibrations

(cofibrations which are also weak equivalences) and any trivial fibration (afibration which is also a
weak equivalence) has the right lifting property with respect to cofibrations;

• MC5 Any morphism f can be junctorialy (in f) factorised as a composition p o i where p
is afibration and i a trivial cofibration and as a composition q o j where q is a trivial fibration and
j a cofibration,

The only differences between these axioms and Quillen's axioms CM1, .... CM5
of a closed model category are the existence of all small limits and colimits in axiom
MC1 instead of just finite limits and colimits, and the existence ofjunctorial factorisations
in axiom MC5.

Recall that a site is a category with a Grothendieck topology, see [13, II. 1.1.5].
All the sites we consider in this paper are essentially small (equivalent to a small
category) and, to simplify the exposition, we always assume they have enough points
(see [13]).

2.1. Homotopy theory of simplicial sheaves

Simplicial sheaves

Let T be a site. Denote by Shv(T) the category of sheaves of sets on T. We
shall usually use the same letter to denote an object of T and the associated sheaf
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because in our applications the sites we shall consider will have the property that any
representable presheaf is a sheaf, in which case the canonical functor T —^ Shv(T) is a
fully faithfull embedding. Let A°^Az<T) be the category of simplicial objects in Shv(T) ;
this category is a topos (^[13]) and in particular has all small limits and colimits and
internal function objects (the latter means that for any simplicial sheaf J^ the functor
^ ̂  ̂  x ̂  has a right adjoint ^ ^ Hom(^, ̂  )).

An object ̂  of A°^(T), i.e. a functor A°^ -> Shv{T) is determined by a collection
of sheaves of sets J^^ n^O, together with morphisms

^:^^^_1 7 2 ^ 1 Z=0, . . ,7Z

^:jr^jr^ n^o z=o,..,/2
called the faces and degeneracies which satisfy the usual simplicial relations ([22]).

To any set E one may assign the corresponding constant sheaf on T which we
also denote by E. This correspondence extends to a functor from the category A^Sets
of simplicial sets to A^Shi^T). For any simplicial set K the corresponding constant
simplicial sheaf is again denoted K.

The cosimplicial object

A ^ A^6%z<T)
a> o»
n ^ A72

defines as usual a structure of simplicial category on A^Shv^T) (see [26]) with the
simplicial function object S(—, —) given by

S(^T, ̂ )=Hom^T)^ x A', ̂ ).

Observe that for a simplicial sheaf JT and an object U o f T the simplicial set S(U, ^T)
is just the simplicial set of sections of <^T over U.

For any simplicial sheaf J^ and any n ̂  0, let S^^ C ̂  be the union of the
images of all degeneracy morphisms from SK'\_^ to J^, i.e.

qy^deg _ , .n-\ n-\, ̂  .
^ n - ^•=0^ (^ n-i)'

For any simplicial sheaf ^T and any n ̂  0, one defines its n-th skeleton skn(J^) C S^
as the image of the obvious morphism ̂  x A" —^ S^. We extend this definition to
the case n= - 1 by setting sk,^) :=0. For example, (sW\^ is equal to ^T^.

The skeleton functor ̂  ^-> skn{^) has a right adjoint ̂  ^ coskn(J^) which is
called the yz-th coskeleton functor.

A simplicial sheaf ̂  is said to be of simplicial dimension ^ n if ̂  x A" —> 3^
is an epimorphism, or equivalendy if skn{^)=J^. We will identify sheaves of sets
with simplicial sheaves of simplicial dimension zero.
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For any n ^ 0, let <9A" be the boundary of the n-th standard simplicial simplex.
The following straightforward lemma (which can be proven using points of T and the
corresponding lemmas for simplicial sets) provides the basis for skeleton induction and
will be used in Section 3 below.

Lemma 1 .1 . — For any monomorphism of simplicial sheaves f: ̂  —» ̂  denote by skn[f)
the union off(^) and skn{^) in ̂  . Then for any n^O the square

((^U^^)XA-)U(^^^^ —— ^-i(/)
n

1 1y. x a" -^ *,(/)
is cocartesian.

The simplicial model category structure

Recall that a point of a site T is a functor x* : Shv(T) —> Sets which commutes
with finite limits and all colimits.

Definition 1.2. — Let f\ SF —> ̂  be a morphism of simplicial sheaves.

1. f is called a weak equivalence if for any point x of the site T the morphism of simplicial
sets x"{f) : x"(Jy) —> x^(^} is a weak equivalence;

2.fis called a cqfibration if it is a monomorphism;
3. f is called a fibration if it has the right lifting property with respect to any cofibration

which is a weak equivalence (see [26, 1.5] for the definition of the right- (or left-) lifting property).

Denote by W^ (resp. C, FJ the class of (simplicial) weak equivalences (resp. cofibration,
(simplicial) fibrations).

Remark 1.3. — Let JST be a simplicial sheaf. One defines its n-th homotopy
sheaf n^^T) as the sheaf of pointed sets over J%"o associated to the presheaf
{XQ : U —> J%^) i—> 7^(J^T(U)5 XQ) (of course, it is a sheaf of groups (resp. abelian groups)
over J^o for n > 1 (resp. n > 2)). A morphism of simplicial sheaves/: ̂  —> ̂  is a
weak equivalence if and only if for any n ̂  0 the square

nw —> iW)i i
^o —— ^

is cartesian. Using this fact one can see that / is a weak equivalence if and only if x^f
is a weak equivalences for all x in a conservative set of points of T (see [13] for this
notion).
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Theorem 1.4. — For any small site T the triple (W^ C, F^) gives the category ^ShvfT)
the structure of a model category.

Proof. — It was shown in [18, Corollary 2.7] that the triple (W,, C, F,) defines a
closed model structure on A^^A^(T) in the sense of Quillen. The proof of existence of
factorizations given in [18] shows that they are functorial and therefore the stronger
axioms which we use are satisfied.

This model category structure is called the simplicial model category structure on
A^Shv^T). In the sequel, if not otherwise stated, we shall always consider the category
A^6%y(T) endowed with that model category structure. We shall sometimes use the
terminology simplicial weak equivalence (resp. fibration, cofibration) if we want to insist
that we use this model category structure.

We denote the corresponding homotopy category by ^^(T).

Remark 1.5. — The simplicial model category structure on A^»Sfo(T) is proper
{cf[2, Definition 1.2]). This is proven in [19].

By the axiom MC5 of model categories, we know that it is possible to find a
functor Ex : A^Shu^T) —> ^Shv^T) and a natural transformation Id —> Ex such that
for any J^T the object Ex{J^) is fibrant and the morphism SF —> Ex(^) is a trivial
cofibration.

Definition 1.6. — A resolution functor on a site T is a pair (Ex, 9) consisting of a
functor Ex : A^Shv^T) —^ A^Az^T) and a natural transformation 6 : Id —> Ex such that for any
J^T the object Ex(J^) is fibrant and the morphism J%" —> Ex(^>K") is a trivial cofibration.

Remark 1.7. — It is not hard to check that the functor which sends a simplicial
set to the corresponding constant simplicial sheaf preserves weak equivalences. It gives
us for any T an "augmentation35 functor ^^Sets) —^ ^(T). Any point x of T gives
a functor ;c*:<^(T) —> ^^Sets) which splits this augmentation functor.

If we consider the category of simplicial sheaves on T as a symmetric monoidal
category with respect to the categorical product then it is a closed symmetric monoidal
category ((/[21]) because of the existence of internal function objects. In more precise
terms, for any pair of objects (^ , Ss ) 6 {A^Shv^T) )2 the contravariant functor on
A^<T):

JT ̂  Hom^sw^ X ̂  ̂  )

is representable by an object denoted by Hom(^ , §&), and called the internal function
object from ̂  to 3^. The following lemma says that, in the terminology of [16, B.3],
the model category structure we consider on A^Shv^T) is an enriched model category
structure:
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Lemma 1.8.
1. For any pair (i: ̂  —> ^ y j : SK" —> ̂ ) ofcofibrations, the obvious morphism

P(zj) : (̂  x ̂ )IU xjr (̂  x JT) ̂  ̂  x ̂

zj ^ cofibration which is trivial if either i or j is.
2. For any pair of morphisms { i : JK" —> ̂  ,p : S —> ^) such that i is a cofibration

and p a jibration the obvious morphism

Hom(^ , <T) -^ Hom(^, ̂ ) x^jy ,^) Hom(^ , J8)

is a jibration which is trivial if either i or p is.
3. For any pair of morphisms { i : SK" —r ^,j& : S —> ̂ ) such that i is a cofibration

and p a jibration the obvious morphism of simplicial sets

S(^, ̂ ) -^ S( ,̂ ̂ ) xs^ ,^) S(^, ̂ )

is a Kan jibration which is trivial if either i or p is.

Proof. — It is an easy exercise in adjointness to prove that 1) implies 2) and 3).
One proves 1) by reducing to the corresponding lemma in the category of simplicial
sets using points of T.

Remark 1.9. — Lemma 1.8 clearly implies that the model category structure on
A^Shv^T) is a simplicial model category structure : indeed, the third point in this lemma
is precisely axiom SM7 of [26, 11.2].

Lemma 1.10. — Letf: SK' —r ̂  he a morphism between jibrant simplicial sheaves. Then
the following conditions are equivalent:

1. fis a simplicial homotopy equivalence (i.e. there exists g'. ̂  —> J^ such that fog and
go fare simplicially homotopic to identity);

2. f is a weak equivalence;
3. for any object U C T the map of (Kan) simplicial sets:

S(U,/): S(U, JT) ̂  S(U, ̂ )

is a weak equivalence (in fact a homotopy equivalence).

Proof. — The implication (2) => (1) is standard: one factorizes first f as a trivial
cofibration followed by a (trivial) fibration and applies [26, Cor. 11.2.5]. (1) => (3) follows
easily from the canonical isomorphism S(U, Hom(^, J^)) ̂  Hom(/^, 3^{U}\ To prove
(3) =^ (2) we note from [13, IV6.8.2] that any point ^ o f T i s associated to a pro-object
{Ua} of the category T. Then x*(f) is a filtering colimit of weak equivalences and
thus a weak equivalence.
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Local fibrations and resolution lemmas

Besides the classes of cofibrations, fibrations and weak equivalences there is
another important class of morphisms F/,, in ^Shv{T) which is called the class of local
fibrations.

Definition 1 . 1 1 . — A morphism of simplicial sheaves f : JT —> ̂  is called a local
fibration (resp. trivial local fibration) if/or any point xofTthe corresponding morphism of simplicial
sets x*{J^) —> x*{^) is a Kan fibration (resp. a Kan fibration and a weak equivalence).

A list of the most important properties of local fibrations can be found in [17].
We will only recall the following result. For simplicial sheaves ^, ^ denote by
7C(^T, ̂ ) the quotient of Hom{J^, ^)=So(^T, ̂ ) with respect to the equivalence
relation generated by simplicial homotopies, i.e. the set of connected components of
the simplicial function object S(^, ̂ \ and call it the set of simplicial homotopy classes
of morphisms from JT to ^f. One easily checks that the simplicial homotopy relation is
compatible with composition and thus one gets a category nA^Shv^T) with objects the
simplicial sheaves and morphisms the simplicial homotopy classes of morphisms. For
any simplicial sheaf JT denote by nTriv/J^ the category whose objects are the trivial
local fibrations to J^ and whose morphisms are the obvious commutative triangles in
n^Shv(T). From [6, §2] this category is filtering.

Lemma 1.12. — For any simplicial sheaf ̂ , the category nTriv/J^ is essentially small,
i.e. equivalent to a small one.

Proof. — Let's say that a simplicial sheaf ^ is (T, ^-bounded if for each
n ^ 0 and each U € T the cardinal of the set ^(U) is less than or equal to that
of &^veT,meN#^^(V). The full subcategory of (T, ^-bounded simplicial sheaves is
clearly essentially small. Thus to prove the lemma it suffices to prove that for any
trivial local fibration/: (^! -> ̂  there is a (T, ^-bounded simplicial sheaf ̂ ' and
a morphism g : ( ^ ' —> ̂  such that/o^r is a trivial local fibration. This fact is proven
as follows. Let n ̂  1 and S C ̂  a sub-simplicial sheaf which is (T, ^-bounded
and such that for each i G {0,..., n - 1} the morphism of sheaves:

S. , -^ Hom{9A\ §& )o x^^^ ̂

is an epimorphism (observe that & —> ̂  is a trivial local fibration exactly when one
has this property for any i ̂  0). Now there is an (T, ^-bounded subsheaf S, C ̂ ,
whose image by the morphism

^ ̂  Hom(Q^\ ̂ )o x^,^^ ̂
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is Hom(9/^1, c^ )o X^W^A" j^} ^ n' t^lls foll0^ easily from the fact that the latter
sheaf is (T, ^-bounded (observe it is a subsheaf of (^ n-\f ^ ^n)' Gal1 ̂  ' the

sub-simplicial sheaf of ̂  generated by Ss and S^. It is clear that Ss ' is (T, J^T)-
bounded and has the same property as Sy up to i = n. By induction we get the
result.

Proposition 1.13. — For any simplicial sheaves J%^ ,̂ with ̂  locally fibrant, the
canonical map:

colim^^^^rriv/^^(^', ̂ ) -^ Hom^y^ , ̂ )

is a bijection.

For the proof see [65 §2] for sheaves on topological spaces and [18, p. 55] in the
general case.

Remark 1.14. — One of the corollaries of Proposition 1.13 is the fact that for
any pair (X,Y) of sheaves of simplicial dimension zero the map

Homsh^(X, Y) -^ 7^m^(T)(X, Y)

is bijective. In other words, the obvious functor Shv(T) —> ,̂ ^(T) is a full embedding.
An important class of local fibrations can be obtained as follows. Let^: X —> Y

be a morphism of sheaves of sets. Denote by G {f) the simplicial sheaf such that

C(A=X^
and faces and degeneracy morphisms are given by partial projections and diagonals
respectively. Then / factors through an obvious morphism C (/) —> Y which we
denote pf.

Lemma 1.15. — The morphism pf is a local fibration. It is a trivial local jibration if and
only iffis an epimorphism.

Proof. — Since T has enough points, it is sufficient to prove the lemma for T
the category of sets in which case it is obvious.

The following two "resolution lemmas55 will be used below to replace simplicial
sheaves by weakly equivalent simplicial sheaves of a given type.

Lemma 1.16. — Let y be a set of objects in Shv(T) such that for any U in T there
exists an epimorphism F —>• U with F being a sum of elements in y. Then there exists a functor
<&^ : A^<Ste(T) —> A°^»Sfo(T) and a natural transformation <S>y —> Id such that for any ̂  one
has
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1. for any n^O the sheaf of sets ̂ y(^\ is a direct sum of sheaves in y
2. the morphism 0^(^<) —> ̂  is a trivial local fibration.

Proof. — For a morphism f'.^—^^f define 0^(/) by the cocartesian square

U F X ( 9 A " ——> jyi i
U F x A - —— 0^(/)

where the coproduct is taken over the set of all commutative squares of the form

F x <9A" ——> ^

F x A" ——> ^

with n ^ 0 and F in y. Let 0^(/) be the canonical morphism 0^(/) —^ ^<.
Set Ol^C/) to be 0^(0^(/)) and let O^^/) be the corresponding morphism
^y (/) ~^ ^ ' ^e get a sequence of simplicial sheaves 0^(/) and monomor-
phisms 0^(/) —^ ^y[f) and we set 0^(/) to be the colimit of this sequence.
This construction gives a functorial decomposition of any morphism / of the form
jr-.<&^(/)^^.

One verifies easily that the functor ̂  ^-> 0^(0 —> ^f) satisfies the conditions
of the lemma by using the fact ([13, IV6.8] that any point x of T is associated to a
pro-object {FoJ with each Foe G y.

Remark 1.17. — Lemma 1.16 applied to the class of representable sheaves shows,
using Lemma 1.1, that the smallest full subcategory of ^/T) which contains all
representable sheaves and which is closed under isomorphisms, homotopy cofiber and
direct sums is ^(T) itself.

Lemma 1.18. — Let ̂  be a simplicial sheafand ?Q : J^o ~^ ̂ o ^ an epimorphism of
sheaves. Then there exists a trivial local fibration p : JT' —> 3^ such that po is the ^ero component
ofP^

Proof. — Consider ?Q as a morphism of simplicial sheaves J^o —> S^. Then
construct its decomposition in the same way as in the proof of Lemma 1.16 using the
inclusions U X 9^ —^ U x A" with U running through all objects of T and n being
strictly greater than zero.
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Homotopy limits and colimits

Let S^ be a small category. For any functor ̂  : S7 -» A^Shu^T) we may define
by the usual formulas (cf [3, XI.4.5, XII.3.7]) its homotopy limit and its homotopy
colimit which gives us functors

holim^ : ̂ Shv^f -. ̂ Shv{T)
hocolim^ : ̂ Shv^ -^ A^Shv{T)

where holim^J^ is the sheaf of the form

U^Ao&m^(^(U))

and hocolim^jy is the sheaf associated with the presheaf of the form

U ̂  hocolim^{^^S}\

Lemma 1.19. — For any junctor J^ : S7 —> ^Shv(T) and any simplicial sheaf ̂ , there
is a canonical isomorphism

Hom{hocolim^ , ̂ ) ̂  holim^pHom^ , ̂ \

and in particular therms a canonical isomorphism of simplicial sets

^(hocolim^, ̂ ) ̂  holim^S{^, ̂ ).

Similarly, there are canonical isomorphisms

Hom{^f , holim^) ̂  holim^Hom(^f , J^),

and

S(^ , holim^) ̂  holim^^ , ̂ T).

Lemma 1.20. — For any functor ^ : ^ —^ A^Sh^T) and any point x of T, the
simplicial set x'(hocolim^^} is canonically isomorphic to the simplicial set hocolim^{S^\ If ^7
is a finite category the same holds for holim^.

Corollary 1.21. — Let ̂ , ^f be junctors ^ -> ^Shv^T) andfa natural transformation
^T-> ̂ . Then:

1. if for any i G ^ the morphismf(i) is a cofibration (resp. a weak equivalence) then the
morphism hocolim^{f) is cofibration (resp. a weak equivalence);

2. if^ is a right filtering category (cf[3, XII.3.5P, then the obvious morphism:

hocolim^S^ —> colim^S^

is a weak equivalence.
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Proof. — The first point and the third one are easy corollaries of Lemma 1.20
and [3, XII, 3.5, 4.2, 5.2]. The second point is an easy exercise in adjointness using
Lemmas 1.19, 1.10 and [3, XI, 5.5, 5.6].

Proposition 1.22. — Let ^, ̂  be junctors £7 —> A^Shi^T) and f a natural
transformation J%" —> ̂  such that all the simplicial sheaves ^(i), ̂  {i) are pointwise jibrant
and the morphisms f(i} are fibrations. Then holim{f) is afibration. In particular if all the sheaves
J^T(z) are fibrant then holim^jy is jibrant.

Proof. — Follows from [22, XI, 5.5, 5.6], Lemma 1.8(3) and the obvious fact that
9\—, holim^—) = holim^y\—, —).

Unlike the theory of homotopy colimits the theory of homotopy limits for
simplicial sheaves on sites is different from the corresponding theory for simplicial
sets because the analog of Lemma 1.20 does not hold for infinite homotopy limits.
As a result holim functor may not preserve weak equivalences even between systems of
pointwise fibrant objects unless the objects are actually fibrant. An example of such a
situation for an infinite product is given below. A more sophisticated example is given
in 1.30.

Example 1.23. — Let T be a site with precanonical topology i.e. such that
any representable presheaf is a sheaf. Assume that there exists a family of coverings
pi : Vi —> pt of the final object of T such that for any U in T the intersection of
images of Hom(U, Ui) in pt=Hom(U,pf) is empty (such a family can be found for
example in the site associated with any profinite group which is not finite). Consider
the simplicial sheaves ^\=G(U^ —> pt) (see definition prior to Lemma 1.15) and
let Ex be a resolution functor on ^Shv^T). We claim that the canonical morphism
n^\ —> Yl^^i ls not a weak equivalence. Indeed, by Lemma 1.15 each ofJ%"/s is
weakly equivalent to the final object and therefore Y[ExJ^^ is weakly equivalent to the
final object as well. On the other hand our condition on U^s implies that the product
]~[J%T is empty.

Eilenberg-MacLane sheaves and Postnikov towers

In this section we give a reformulation of the main results of [22, Ch. V] for the
case of simplicial sheaves. In this context there are two noticeable differences between
simplicial sheaves and simplicial sets. The first is that the weak homotopy type of a
simplicial sheaf can not be recovered from the weak homotopy type of its Postnikoff
tower unless some finitness assumptions are used (Example 1.30). The second is that
a simplicial abelian group object is not necessarily weakly equivalent to the product of
Eilenberg-MacLane objects corresponding to its homotopy groups (Theorem 1.34).
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We adopt the following convention concerning complexes with values in an
abelian category ̂ : a chain complex G^ is one whose differential has degree —1 and
a cochain complex C* is whose differential has degree +1. If G^ is a chain complex,
we shall denote G* its associated cochain complex with C^ '.=0^.

For a sheaf of simplicial abelian groups ^ on T denote by n^) the presheaf
of the form U i-̂  7C,(^(U), 0). Similarly, for a chain complex of sheaves of abelian
groups C^ denote by H.(C^) the presheaf U ̂  H,(G^(U)).

Let N(^) be the chain complex of sheaves of abelian groups on T obtained
from a simplicial abelian group ̂  by applying the functor of the normalized complex
(see [22, p. 93]) pointwise. Then we have ^(^)=H^.(N(^)). The functor N has a right
adjoint F ([22, p. 95]) and we get the following result ([22, Th. 22.4]).

Proposition 1.24. — (N^ F) is a pair of mutually inverse equivalences between the category
of complexes of sheaves of abelian groups A with A, = 0 for i < 0 and the category of sheaves of
simplicial abelian groups.

Remark 1.25. — For a complex A which does not satisfy the condition A,=0 for
i < 0 the composition N o r maps A to the truncation of A of the form N o r(A), = A,
for i > 0, N o r(A)o = ker{do : AQ -> A_i) and N o r(A), = 0 for i < 0.

One defines the Eilenberg-MacLane objects associated with a sheaf of abelian
groups A as K(A, ri) = r(A[n]) where A[n] is the chain complex of sheaves with the
only nontrivial term being A in dimension n.

Denote the category of chain complexes of sheaves of abelian groups on T
by Compl(AbShv^}. Recall that a morphism of cochain complexes f : C^ —> C^
is called a quasi-isomorphism if the corresponding morphisms of homology sheaves
aH^C'J —» ^H.(G^) are isomorphisms for all i G Z. The localization of the category
Compl{AbShv{T)) with respect to quasi-isomorphisms is called the derived category of
chain complexes of sheaves on T and denoted by D(AbShv(T)).

For any chain complex of sheaves G^ let nTriv/C^ be the category whose objects
are epimorphisms of complexes C^ —^ C* which are quasi-isomorphisms and whose
morphisms are the obvious homotopy commutative triangles of complexes. The same
method as the one used in the proof of Lemma 1.12 shows that nTriv/C is a (left)
filtering category, essentially small. This implies that the derived category D{AbShv(T))
obtained from Comp{AbShv(T)) by inverting all the quasi-isomorphisms is indeed a
category, in which the set of morphisms from C^ to D^ is given by the colimit:

^^C^WT^/C^0^ D*)

where 7c(—, —) denotes the set of homotopy classes of morphisms of chain complexes.
Recall that the hypercohomology H*(U, C*) of an object U o f T with coefficients

in a cochain complex of sheaves G* is the graded group of morphisms Hom{Z, C^)
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in the derived category of (chain) complexes of sheaves on T. The following almost
tautological result provides an interpretation of hypercohomology groups in terms of
simplicial sheaves (for a proof see [6, §3 Theorem 2]).

Proposition 1.26. — Let G* be a cochain complex of sheaves of abelian groups on
T. Then for any integer n and any object U of T one has a canonical isomorphism
IT(U, G*) =Hom^ ^(U, r(C*[7z])). In particular if G* =A is a sheaf of abelian groups we
have IP(U, A) =Hom^ ̂ , K(A, n)\

For a simplicial sheaf ̂  denote by P^(^) the simplicial sheaf associated with
the presheaf U ^ (^T(U))^ where K ^ K^=7m(K -^ ^(K)) is the functor on
simplicial sets defined in [22, p. 32]. The following result is a direct corollary of
[22, 8.2, 8.4].

Proposition 1.27. — Let ̂  be a locally fibrant simplicial sheaf. Then the sheaves P^^
are locally jibrant and the morphisms

^ ^ p(^
P^W -^ p(^

are local fibrations.

Iff: jy —> ̂  is a weak equivalence of locally jibrant simplicial sheaves then for any
n^O the morphism P^/) is a weak equivalence.

Remark 1.28. — Let ̂  be a pointwise fibrant simplicial sheaf i.e. a simplicial
sheaf such that for any U in T the simplicial set ^(U) is a Kan complex. Then the
simplicial sheaf P^^T is pointwise fibrant. For any U and T and a point x € ^(U)
one has

7C,(P^(U), x) = TC^(U), x) for i < n
7C,(P(W(U), x) = colim^ ̂ u^(^(U), ^) -^ ̂ W^ ), ^) for z = n
7l,<P(W(U)^)=0 f o r z > 7 2

where the colimit in the middle row is taken over all coverings W = {Vj —> U} of U
and 7l,W^ ) , x ) = n^<^(U/), x\

Definition 1.29. — The tower of local fibrations (P^, P^1)^ -^ P^^) ^o^W
^ <? locally jibrant simplicial sheaf S^ is called the Postnikov tower ofJ^.

Functors P^ do not take fibrant simplicial sheaves to fibrant simplicial sheaves.
As a result of this fact the homotopy limit holim^Ex^'^T) of the tower of fibrant
objects associated to the Postnikov tower of ̂  is not in general weakly equivalent to
J^ as shown in the following example.
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Example 1.30. — Let T be the site of finite G-sets where G= Y[^Z/2 is the
product of infinitely many copies of Z/2. Consider the constant simplicial sheaf JT
on T which corresponds to the product of Eilenberg-MacLane spaces of the form
n>o^(^/2? i) (it is also the product of the corresponding Eilenberg-MacLane sheaves
in the category of sheaves). Then P^JT is weakly equivalent to rL^>oK(Z/2, i)
and one can easily see that for any resolution functor Ex the homotopy limit
holimn^Ex^^) is weakly equivalent to ^= Y[^Ex{K(Z/2, z)). We claim that the
sheaf associated to the presheaf U i-> 7Co(^(U)) is nontrivial while the corresponding
sheaf for ̂  is clearly trivial. By Proposition 1.26 we have for any U in T

nWV))='[[Hl(U,Z/2)
i>0

Let T be the generator of H1 (Z/2, Z/2) and p,: : G -> Z/2 the projection to the
i-th multiple. Consider the element a= FlA*^) m ^oG^O^)). This element does not
become zero on any covering of the point and therefore gives a nontrivial element in
the sections of the sheaf associated to U »—>- 7lo(^%"(U)).

Definition 1.31. — A site T is called a site of finite type if for any simplicial sheaf ̂  on
T the canonical morphism J%" —> holim^QEx^P^jy) is a weak equivalence.

Our next goal is to show that any site satisfying a fairly weak finiteness condition
on cohomological dimension is a site of finite type in the sense of Definition 1.31. In
order to do it we will need a description of simplicial sheaves with only one nontrivial
"homotopy group55 which is also of independent interest.

Definition 1.32. — Let ̂  be a simplicial sheaf We say that SK" has only nontrivial
homotopy in dimension d^ 0 if the following condition holds:

1. for any U in T, any x € ^T(U) and any n ^ 0, n \d the sheaf of sets on T/U
associated with the presheaf'V/U i-» 7C^(^(V), x) is isomorphic to the point.

We say that ̂  has only one nontrivial abelian homotopy group in dimension d ^ 1 if it
has only nontrivial homotopy in dimension d and for any U in T and any x € (̂U) the sheaf of
groups on T/U associated with the presheaf V/V i—^ TC^(^(V), x) is abelian (this condition is of
course only meaningful for d=\).

The forgetful functor from the category of sheaves of simplicial abelian groups
on T to the category of simplicial sheaves (of sets) on T has a left adjoint which we call
the functor of free abelian group and denote by Z : ^Shv^T) —^ A^AbShv^T). For any
simplicial sheaf J^ the sheaf of simplicial abelian groups Z(J^) is the sheaf associated
with the presheaf U i—^ Z(^(U)) where Z(^T(U)) is the free abelian group generated
by the simplicial set ^(U) (in [22] the functor Z is denoted by C : K ̂  C(K)).
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Proposition 1.33. — Let J^ be a simplicial sheaf which has only one nontrivial abelian
homotopy group in dimension d^ 1. Denote by ^(JK") the fiber product

^W ——> P^(Z(^))

pt ——> Z

Then the obvious morphism J^T —» 3T(J%r) is a weak equivalence.

Proof. — For any point x of T one has ^*(P^(Z(Jr)))=(C(^*^))" (where the
right hand side is written in the notations of [22, Def. 8.1]) which shows that it is
enough to prove the proposition in the case of simplicial sets. For any simplicial set K
the homotopy groups of the simplicial abelian group C(K) are the homology groups of
K and by our assumption on JT, Hurewicz Theorems ([22, Th. §13]) and the main
property of functors K^K1 ([22, Th. 8.4]) we conclude that (G^JT))" ^ x^ x Z
which implies the statement of the proposition.

For jy satisfying the conditions of Definition 1.32 (2) we define a sheaf CT^T) as
the sheaf associated with the presheaf U i—» H^(<^(U);Z). Using Hurewicz Theorems
([22, Th. §13]) one can verify immediately that for any U in T such that ^(U) is not
empty and any x G J%"(U)o there is a canonical isomorphism between <m^(J%")T/u ^d
the sheaf on T/U associated with the presheaf V ^—> 71;̂ %" (V), x).

The simplicial sheaf ̂ ^(J^)) has a canonical structure of a sheaf of simplicial
abelian groups, the morphism P^(Z(J^r)) —> Z is a surjective homomorphism and its
kernel is canonically weakly equivalent to r(<m^(J%r) \d\). Thus the complex of sheaves
N(P^(Z(J^T))) has two nontrivial homology groups namely dH. =Z and aH. =CT^(J^T).
Therefore it defines a morphism in the derived category of complexes of sheaves on T
of the form Z —> aj^(J^)[d+ 1] and the projection P^(Z(^)) —^ Z splits if and only
if this morphism is zero. Combining these observations we get the following result.

Theorem 1.34. — Let J%T be a simplicial sheaf whose only nontrivial homotopy group
OK^(Jy) is abelian and lies in dimension d ^ 1. Any such J%" defines a cohomology class
r\jy C H^fr^ (%(J%T)) and the pair (a7C^(<^)_, T\jy) determines J%" up to a weak equivalence.

If in addition J%" is fibrant then

( 0 if the restriction of V[jy to U is not zero
7io(^(U))=<[^^^ otherwise

Corollary 1.35. — Let j3T be a fibrant simplicial sheaf satisfying the conditions of Definition
1.32 for some d > 1 and let U be an object ofT such that for any sheaf of abelian groups F on
T and any m^d one has H"(U, F) =0. Then jto(^(U)) =pt.
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Sheaves with only one nontrivial homotopy group are related to Postnikov towers
as follows.

Proposition 1.36. — Let ̂  be a locally fibrant simplicial sheaf and p : ̂  —> ̂  be a
local fibration weakly equivalent to the local fibration P^JT —^ P^-1^. Then for any U in T
and any point ^ in S^ (U)o the fiber J^ of p over ^ considered as a sheaf on T/U has only one
nontrivial homotopy group in dimension d (which is abelian if d ^ 2).

Proof. — Follows by the use of points from [22, Cor. 8.7].

Theorem 1.37. — Let T be a site and suppose that there exists a family (A^o of classes
of objects ofT such that the following conditions hold:

1. Any object U in A^ has cohomological dimension ^ d i.e. for any sheaf T on T/U and
any m> d one has H ,̂ F) =0.

2. For any object V ofT there exists an integer dy such that any covering ofV in T has a
refinement of the form {U^ —> V} with U^ being in A^..

Then T is a site of finite type.

Proof. — Let 3^ be a simplicial sheaf on T. Denote by p^ : GP^^) -^
GP^"1^^) a tower of fibrations weakly equivalent to the tower of local fibrations
P^jy —> V^~^^. This tower is then pointwise weakly equivalent to the tower
(Ex^J^)) for any resolution functor Ex on simplicial sheaves and since homotopy
limits preserve pointwise weak equivalences of Kan simplicial sets and homotopy limit
of a tower of fibration is weakly equivalent to the ordinary limit we conclude that to
prove the theorem we have to show that the canonical morphism S^ —> lim^ GP^^T
is a weak equivalence. We may further assume that SK" is a fibrant simplicial sheaf.

It is easy to see that our claim will follow if we show that the sheaves CT()(^)
and CTo(lim^Q GP^^) are isomorphic for all J^ (to deduce the same fact for TC, one
then replaces JT by the simplicial sheaf of pointed maps from any model of the
i-sphere to J%").

By the second condition of the theorem any object in T has a covering consisting
of objects in A^ for some d. Therefore it is sufficient to verify that for any d ^ 0 and
any U C A^ the canonical map CTo(J^)(U) —> CTo(lim^ GP^^)^ is an isomorphism.
By definition of P^ for any i ̂  0 we have

CTo(P^) = CTo(GP^) = CTo(^T)

which immediately implies that the map in question is a monomorphism. The fact that
it is an epimorphism follows from the standard criterion for a map of presheaves to give
an epimorphism of sheaves, Lemma 1.38 below and the exact form of condition (2)
of the theorem.
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Lemma 1.38. — Let U be an object in A^. Then

7io(lim GP^J^U)) -^ 7Co(GP^jr(U))
z>0

^ (272 isomorphism.

Proof. — Let j^ : K^ -^ K^-1), z ^ 1 be a sequence of Kan fibrations of
Kan simplicial sets and d be such that for any m ^ d and any x € K^ one has
^(O^)-1^))^. Then the map 7Co(lim.K^) -^ Tio(K^) is bijective. Combining this
fact with Corollary 1.35 and Proposition 1.36 we get the statement of the lemma.

Remark 1.39. — We do not know of any example of a site where each object has
a finite cohomological dimension but condition (2) of Theorem 1.37 does not hold.

For sites of finite type Corollary 1.35 has the following important generalization
which is the basis for all kinds of convergence theorems for spectral sequences build
out of towers of local fibrations on such sites.

Proposition 1.40. — Let T be a site of finite type and U be an object ofT of cohomological
dimension less than or equal to d ̂  2. Let further ̂  be afibrant simplicial sheaf on T which has
no nontrivial homotopy groups in dimension ^ d i.e. such that the sheaf ̂ ^ is weakly equivalent
to the point. Then no(J^(U))=pt.

Proof. — Let GP^W -^ GPW be a tower of fibrations weakly equivalent
to the tower of local fibrations P ,̂̂  -> P^^\ Since T is a site of finite type one
has ^(U) ^ lim.^ GP^(U). By Corollary 1.35 and Proposition 1.36 the fibers F, of
the maps GP^JTQJ) -^ GP^(U) satisfy the condition Ko(Fi)=pt for i ̂  d. Therefore
7io(lim^oGP(^^(U))=7Co(GP^^(U)) and the latter set is pt by our condition on ^T.

Corollary 1.41. — For any T and U as in Proposition 1.40 and any simplicial sheaf'JT
one has:

1. the map 7lo(^W(U)) -> 7Co(£<P^)(U)) is an epimorphism for i ̂  d- 1 and an
isomorphism for i ̂  d;

2. for any x G ^T(U) the map 7C^(^T)(U), x) -^ 7^(P^)(U), x) is an epimorphism
for i — k ^ d — 1 and an isomorphism for i — k ^ d.

Functoriality
We first recall briefly the standard definitions related to functoriality of sites.

Let /-1 : T2 —> TI be a functor between the underlying categories of sites Ti,
T2. Associated to any such functor we have a pair of adjoint functors between the
corresponding categories of presheaves of sets

^ : PreShv(T,) ̂  PreShv(T,}
/, : PreShv(T^ -^ PreShv(T^)

(where f^ is just the functor given by the composition with/"1).
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Definition 1.42. — A continuous map ofsites f: Ti —> T^ is a functor /-1 : T2 —>• Ti
such that for any sheaf F on Ti the presheaff^F) is a sheaf on T^.

If/is a continuous map of sites, the functor/: Shv{T^) —^ Shv(T<^) has a left adjoint
/*: Shv(T^) —» Shv{Tt) given by the composition of the inclusion Shv(T^) C PreShv(T^) with
the functor/^ and the functor associated sheaf a: PreShv{T^) —^ Shv(T\).

Definition 1.43. — A continuous map of sites f: Ti —> T<^ is called a morphism of sites if
the functor f' : Shv{T^) —> 6%y(Ti) commutes with finite limits.

Remark 1.44. — If the topology on T^ is defined by a pretopology ([13, II.
Definition 1.3]) and the functor/"1 commutes with fiber products then/"1 defines a
continuous map of sites if and only if it takes coverings (of the pretopology on Tg) to
coverings (cf[l3, III. Proposition 1.6]). See [13, III. Exemple 1.9.3] for an example of
a functor/-1 which takes coverings to coverings and which is not continuous.

Remark 1.45. — If the category T2 has fiber products and any representable
presheaf on Ti is a sheaf then a continuous map/is a morphism of sites if and only
if the functor/-1 commutes with fiber products. A more general statement can be
found in (^[13, IV4.9.2]).

Example 1.46. —A typical example of a continuous map which is not a morphism
of sites is given by the inclusion functor Sm/S —^ Sch/S from the category of smooth
S-schemes of finite type to the category of all schemes of finite type over some base
scheme S considered with Zariski (or etale, flat, Nisnevich etc.) topology ((/1.19 below).

Let/: Ti —> T2 be a continuous map of sites. Then we have a pair of adjoint
functors

/* : A^Shv^) -^ A°^(Ti)
/ : A°^^(Ti) -^ ^Shv{T^)

between the corresponding categories of simplicial sheaves. In general neither one of
them preserves weak equivalences.

Choose a resolution functor Ex for T (see 1.6). The functor/ oEx : A^kSte(Ti) —>
^Shv^T^) does preserve weak equivalences because for any weak equivalence / the
morphism Ex{f) is a simplicial homotopy equivalence (cf 1.10) and the functor/
clearly preserves simplicial homotopies. Let us denote by

R/:^(Ti)-^^(T2)

the functor induced by the functor f^oEx. One can easily see that R/, is the total right
derived of/ in the sense of [26, 1.4]; in particular it doesn't depend on the choice of
the resolution functor Ex.
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The following simple result describes the basic functoriality of the simplicial
homotopy categories for morphisms of sites.

Proposition 1.47. — Let f\ Ti —> T^ be a morphism of sites. Then the junctor f* preserves
weak equivalences and the corresponding junctor between homotopy categories is left adjoint to R/,. If

f 8.Ti —> T2 —> Tg is a composable pair of morphisms of sites then the canonical morphism of junctors

R(?°/)*^R^°R/*
is an isomorphism.

For a site T denote by T' the site with the same underlying category considered
with the trivial topology and let n: T —> T' be the canonical morphism of sites. Then
n^ is the inclusion of sheaves to presheaves, TC* is the functor of associated sheaf and
we have the following refinement of Proposition 1.47.

Lemma 1.48. — In the notations given above the junctor

TC* :^(T')-^^(T)

is a localisation, the junctor RTT^ : ̂ \ (T) —> ̂ , (T7) is a full embedding and there is a canonical

isomorphism 7C*R7^ ^ Id.

Iff is not a morphism of sites it is not clear in general whether or not R/,, has
a left adjoint. There are also examples of composable pairs of continuous maps f and
g such that the natural morphism R^ of)^ —> Rg^ o R/^ is not an isomorphism. We
are going to define now a class of continuous maps called reasonable for which a left
adjoint to R/^ always exists and the composition morphisms are isomorphisms.

Recall that for simplicial sheaves J ^ , ^ ' , the simplicial function object
S(J%", j y ' ) is the simplicial set of the form

S(^T, ̂ \ =Hom^h^{^ x A", ̂ '\

Definition 1.49. — Let Ti —> T^ be a continuous map of sites. A simplicial sheaf ̂  on
T2 is said to be f-admissible if for any jibrant simplicial sheaf ̂  on T\ and any simplicial set
K the map :

n(^ x KJW) -^ Hom^^(^ x KJW)

is bijective.
We say that Ts has enough f-admissibks if there is a functor adf: A^Shv^T^) —> ^Shv^T^)

and a natural transformation adf —>• Id such that adf takes values in the full subcategory of objects
admissible with respect to f and for any ^ on Tg the morphism adj(^) —> ̂  is a weak
equivalence. We then say that the pair (adf, adf —> Id) is an f-admissible resolution.
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Remark 1.50. — Observe that a simplicial sheaf ^ on Ts is ^admissible if
and only if for any fibrant simplicial sheaf ̂  on Ti and for any weak equivalence
f^) -^ ^1 with S F ' fibrant the induced map of simplicial sets S(^,/,(^)) ->
S(^, ̂ ') is a weak equivalence.

The following two results follow immediately from the definitions (and the formal
fact that for any simplicial sheaves S^ on Ti, ̂  on Ts, the map n(^f xK,^(^)) —>
</W) x K, JT) is bijective).

Proposition 1.51. — Z^ Ti —> T^ be a continuous map of sites such thatT2 has enough
admissibks with respect to f and (adf, adf —f Id) be an f-admissible resolution. Then the junctor
/* o adf preserves weak equivalences and the induced junctor L/* : S^^Y^) —> J%^(Ti) is left
adjoint to R/^ (in particular this induced functor is independent of the/-admissible resolution).

Proposition 1.52. — Let Ti —> T^ be a continuous map of sites such that T2 has enough
f-admissibks. Then a simplicial sheaf SK" on T2 is f-admissible if and only if the canonical
morphismf^^adf^)} —^/*(^) is a weak equivalence.

Lemma 1.53. — Let Ti —» T2 be a continuous map of sites and Ay be the class of
f-admissibk simplicial sheaves on Tg. Then one has:

1. Ay is closed under sums;

2. for any diagram of the form ^o ̂  ̂ i -^ - "r>l ̂ n —> - such that ^n € A/ and

all the morphisms u^f*{Un) are monomorphisms one has colwin^n ^ A/̂ *
3. for any cocartesian square of the form

^o —— îi i
^2 ——— ^3

such that ̂ ^, ̂ ^ ^2 G Ay and both u and f^(u) are monomorphisms one has ^3 G Ay.

Proof. — The first statement is obvious. The second follows from the fact that an
inverse limit of a tower of weak equivalences of simplicial sets is a weak equivalence
at least if all the morphisms in the towers are fibrations.

To prove the third one, one notes that for any fibrant ^ on Ti we have
a morphism of Cartesian squares of simplicial sets consisting of S(^,^(J%T)) and
S(^,&(/^(^r))) respectively such that three out of four morphisms are weak
equivalences and all we have to show is that the fourth one is also a weak equivalence.
This follows immediately from the fact that the maps

s(^i,./W)^S(^/*W)
s( î, £</*W)) ̂  s(^o, ̂ </*W))
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induced by u are fibrations - the first one since/*(^) is a monomorphism and JT is
fibrant and the second since u is a monomorphism and Ex{f^(J^)) is fibrant.

Proposition 1.54. — Let ̂  be a simplidal sheaf on T2 such that all its terms ̂  are
f-admissibk. Then so is ̂  .

Proof. — Let JT be a fibrant simplicial sheaf on Tp We have to show that the
morphism of simplicial sets S(^< ,/*(^)) —^ S(^, ̂ /) is a weak equivalence for any
weak equivalence ^ —> ^ ' with JT' fibrant. This morphism can be obtained by
applying the total space functor to the morphism of the corresponding cosimplicial
simplicial sets {cf [3, X.3]) which is a weak equivalence in the sense of [3] by the
conditions of the proposition.

For any simplicial sheaf ̂  and any fibrant simplicial sheaf S^ the cosimplicial
simplicial set S(^,<^) is fibrant (in the sense of [3, X]). Since S(^,/,(^))=
S( /*(^)? ̂ ) we conclude that both cosimplicial simplicial sets we consider are
fibrant and our result follows now from [3, X.5.2].

Definition 1.55. — A continuous map Ti —> Tg is called reasonable if any representabk
sheaf on r!^ is f-admissibk.

Example 1.56. — One may get an "unreasonable" map of sites as follows. Let
/: Ti —> TS be any continuous map which is not a morphism of sites. Consider Shv{Ti)
and Shv(T^) as sites with the canonical topologies. Then the functor of inverse image
Shv(T^) —» Shv(T\) is an unreasonable continuous map. Note that this example also
confirms that the notion of a reasonable map actually depends on sites and not just
on the corresponding topoi.

Let/: Ti —> TS be a reasonable continuous map of sites. By Lemma 1.16 applied
to the set y of representable sheaves there exists a functor d^ : ̂ Shv^P) —> ^Shv^T)
and a natural transformation e^ —^ Id such that for any S^ and any n ^ 0 the
sheaf of sets C^G^)^ is a direct sum of representable sheaves and the morphism
$T2(^) ~^ ̂  is a trivial local fibration. Proposition 1.54 then implies that T2 has
enough ̂ admissibles. We may sum up the situation as follows using Propositions 1.51,
1.52 and keeping previous notations.

Proposition 1.57. — Letf: Ti —>' T^ be a reasonable continuous map of sites:

1. the Junctor /* o 0^ : ^Shv^^) —^ A°^(Ti) preserves weak equivalences and the
induced junctor L/* : ̂ (Ts) -> ̂ (Ti) is left adjoint to R/,;

2. if^ is a simplicial sheaf such that any term ̂  of ̂  is a direct sum of representabk
sheaves then the canonical morphism f*(^{F)) —>/*(F) is a weak equivalence;
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3. tfT\ "-̂  T2 —^ TS is a composabk pair of reasonable continuous maps of sites then there
are canonical isomorphisms

L(?°/)*=L/*oL^*

R(?°/)*=R?*°R/*
of functors between the corresponding homotopy categories.

Remark 1.58. — An example of a reasonable continuous map/: Ti —> T2 and
a simplicial sheaf ^ on Ts such the morphism L/*(^) —»/*(^) is not a weak
equivalence is given in 1.22.

Godement resolutions

The main result of this section is Theorem 1.66 below which asserts that for any
site of finite type there exists a resolution functor on the category of simplicial sheaves
which commutes with finite limits and takes local fibrations to global fibrations. We do
not know whether the finite type assumption is really necessary for this result or not.

For any set of points cS? of T define a functor ^^ from sheaves on T to
cosimplicial sheaves on T as follows. Let S be the product of 3S copies of the
category of sets. A point of T is a morphism of sites Sets —> T and a set of points =S?
defines a morphism of sites p : S —> T. The corresponding adjoint pair of functors p*
and p^ gives in a standard way a cosimplicial functor with terms of the form Q^*)^1

which we denote by ^^. In most places below we omit cS? from our notations.

Proposition 1.59. — For any local fibration of locally fibrant simplicial sheaves f: J^ —> ̂
the morphism

holim^[f): holim^jy -^ holim^^

is a fibration.

Proof. — By definition of local fibration the functor j&* takes local fibrations to
fibrations in ^Shv^}. Since direct images preserve fibrations the composition p^
takes local fibrations to fibrations and in particular locally fibrant sheaves to fibrant
sheaves. The statement of the proposition follows now from Proposition 1.22.

Proposition 1.60. — The junctor ̂  ^-> holim^9^) takes weak equivalences of locally
fibrant simplicial sheaves to weak equivalences of simplicial sheaves.

Proof. — One can easily see that the functors (p^}^ take weak equivalences to
pointwise weak equivalences. The statement of the proposition follows now from the
fact that holim preserves pointwise weak equivalences between pointwise fibrant sheaves
by its definition and the corresponding result for simplicial sets (see [3, XI.5.6]).
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Proposition 1.61. — Let ̂ 9 be a cosimplicial simplicial sheaf such that all of its simplicial
terms are locally jibrant and there exists s ^ 0 such that the canonical morphisms

^ -_, p^)^

are weak equivalences for all n ̂  0. Then for any point xofT the canonical morphism

x\holim^} -^ holim^^9

is a weak equivalence.

Proof. — Let E^ be a resolution functor on the category of cosimplicial simplicial
sets (with respect to the standard closed model structure described in [3]). Below we
use the equality sign instead of specifying explicit weak equivalences. Unless otherwise
specified functors on cosimplicial simplicial sets are extended to functors on cosimplicial
simplicial presheaves pointwise. The functor of associated sheaf is denoted by a. We
have

x^holim^9) = xa(holim^9) = x " a(holim^E^(^9))

since the functor x*a takes pointwise weak equivalences of simplicial presheaves to weak
equivalences of simplicial sets. We have

x'a(holim^E^(^^) = xa(To1{E^(^9}))

since the homotopy limit is weakly equivalent to Tot for fibrant cosimplicial simplicial
sets. By Lemma 1.62 we have

x'a(Tol{E^(^9))) = x^a(Tot^{E^(^9})).

Since Tot^\ involves only finite limits and functors x* and a commute with such limits
we have

x^a(Tot^{E^{J^)))= Tot^a{E^{^9))).

The functor x " a commutes with finite limits and takes pointwise fibrations of simplicial
presheaves to Kan fibrations of simplicial sets. In addition x^a commutes with
pointwise P^. Therefore cosimplicial simplicial set x*a{E^{J^9)) satisfies the condition
of Lemma 1.62 and we have

Tot^(x'a(E^(^9))) = Tol(x'a(E^{^))) = holim^xa(E^(J^))).

Finally x*a takes pointwise weak equivalences to weak equivalences and therefore

holim^a(E^(^^ = holim^a^9 = holim^^\
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Lemma 1.62. — Let K* be a fibrant cosimplicial simplicial set and s ^ 0 be an integer
such that for any n ^ 0 the map of simplicial sets K" —> P^K^ is a weak equivalence. Then the
canonical map

TotK9 -^ Tot^K9

is a weak equivalence of simplicial sets.

Proof. — Let cosks+\K^ be the cosimplicial simplicial set obtained from K* by
applying the coskeleton functor to each simplicial term. Under our assumptions on K*
the canonical morphism K* —> cosks+\K.9 is a weak equivalence of cosimplicial simplicial
sets. In addition, the cosimplicial simplicial set cosks+\K* is fibrant i.e. all the maps
cosks+iK^1 —^ M^o^+iK* are fibrations (see [3]). To prove this fact observe that the
functor cosks+\ commutes with finite limits which implies that Mncosks+\K* = cosks+\Mn¥^.
Although the coskeleton functor does not in general take Kan fibrations to Kan
fibrations the following simple result holds.

Lemma 1.63. — Letf'. E —> B be a Kan jibration of Kan simplicial sets and s be an
integer such that for any point x in B one has 7Ty+i(B_, x) =0. Then cosks+\{f} is again a Kan
jibration.

Under our assumptions on K* we have ns+\(MnK9, x) = 0 for any point x in
M^K*. This can be shown by induction on n using the intermediate objects M^K*
as in [3, Lemma 5.3, p. 278]. Therefore the maps cosks+iK^1 —> cosks+\MnK9 are
fibrations and cosks+\JK' is fibrant.

For any cosimplicial simplicial set K* the canonical map 7ot(cosks+\K9) —>
Tots+\{cosks+\K*) is an isomorphism of cosimplicial simplicial sets. Since both functors
Tot and Tots+\ preserve weak equivalences between fibrant objects we conclude that

Tot{K9) ̂  Tot{cosk^K9)=Tot^{cosk^K9) ̂  Tot^{K9).

Lemma 1.64. — For any simplicial sheaf J%T the composition

p^ ->p\holim^^) -^ holim^(^^)

is a weak equivalence of simplicial sheaves on S.

Proof. — This is a particular case of [23, Cor. 3.5]. In the notations of that paper
one takes V=Id, F=j&* and T=j^j&*.

Recall that a set cS? of points of T is called conservative if any morphism
/: F —> G of sheaves on T for which all the maps of sets x"{f) : x*F —> x^G are
isomorphisms is an isomorphism.
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Proposition 1.65. — Let T be a site of finite type and 5§ be a conservative set
of points of T. Then for any locally jibrant simplicial sheaf JT the canonical morphism
gjy : jy —> holim^*(^) is a weak equivalence.

Proof. — We will prove this fact in several steps.
1. For any s the canonical morphism ^J^ —> holim^^jy is a weak

equivalence.

Proof. — Since SS is a conservative set of points it is sufficient to show that the
morphism

^(P^jT) ̂ p\holim^^^}

is a weak equivalence. This follows from Proposition 1.61 and Lemma 1.64.
2. The canonical morphism

holim^9^ -> holim^holim^^^)

is a weak equivalence.

Proof. — By Proposition 1.59 all the simplicial sheaves hoUm^^S^ are fibrant
and the morphisms between them are fibrations. Thus by [3, XI.4.1] the right hand
side is pointwise weakly equivalent to Vm^holim^9^^}. We further have

lm{holim^ g^P^) = holim^ lim^P^)
^0 s^O

since holim commutes with limits. On the other hand for any n we have

lim^^^jr) = (^^(limP^) = (p.p^^)
s^O s^O

since the towers of sheaves of sets (P^^), stabilize after finitely many steps for each i
which implies that

lim^P^) ̂  ̂ ^.
s^O

3. By step 1 holim^^J^ is weakly equivalent to P^J^ and since it is
fibrant (by Proposition 1.59) it is pointwise weakly equivalent to JE^P^^T) for any
resolution functor Ex on A^67w(T). Since holim^o preserves pointwise weak equivalences
between pointwise fibrant objects step 2 implies that holim^9^ is weakly equivalent
to holim^oEx^J^) which is weakly equivalent to ^T by definition of site of finite
type.

Theorem 1.66. — Let T be a site of finite type. Then there exists a junctor

Ex^ '. A°^(T) -^ A^CT)
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and a natural transformation Id —> Ex^ with the following properties:

1. Ex^ commutes with finite limits and in particular takes the final object to the final object;
2. Ex^ takes any simplicial sheaf to afibrant simplicial sheaf;
3. Ex takes local fibrations to fibrations;
4. for any JT the canonical morphism ̂  —> Ex^ (J^T) is a weak equivalence.

Proof. — For a simplicial sheaf JT denote by E^J^ the simplicial sheaf
associated to the simplicial presheaf of the form U i—^ Ex°°(Jy(U)) where Ex00 is
a resolution functor on the category of simplicial sets satisfying the conditions of
Lemma 1.67 below (note that when the topology on T can be defined by a pretopology
whose covering families are all finite U H^ £^°°(^(U)) is already a simplicial sheaf
since Ex00 commutes with finite limits). Let S be a conservative set of points of T.
We set

Ex^ W = holim^^E^J^).

The properties (1)-(4) for this functor follow immediately from Propositions 1.59, 1.65
and the fact that all the functors involved in the construction of Ex^ commute with
finite limits.

Lemma 1.67. — There exists a functor Ex00 : A^Sets —^ ^Sets and a natural
transformation Id —> Ex00 such that the following conditions hold:

1. Ex00 commutes with finite limits and in particular takes the final object to the final object;
2. Ex00 takes Kan fibrations to Kan fibrations;
3. for any simplicial set X the map X —^ Ex°°X. is a monomorphism and a weak equivalence

and £y°°X is a Kan simplicial set.

Proof. — A purely combinatorial construction of Ex00 as a filtered colimit of func-
tors right adjoint to certain subdivision functors can be found in [11, pp. 212-215].

2.2. A localisation theorem/or simplicial sheaves

Basic definitions and main results

Let T be a small site and let A be a set of morphisms in J^y (T). Let us recall
the standard notions ofA-local objects and A-weak equivalences ((/[10] and [4, §7]).

Definition 2.1. — An object ̂  of^,{T) is called A-local if for any ̂  in ̂ (T)
and, any f\ S&^ —^ cS^ in A the map

Hom^^(^ x &^ JT) -^ Hom^^ x ̂  JT)

is a bijection.
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We write ^^(T) for the full subcategory ofA-local objects in ^(T).

Definition 2.2. —^ morphismf: ̂  -^ ̂ 3 m A°^Shv(T) is called an A-weak equivalence
if for any A-local object ̂  the map

Hom^^{^ ̂ ) -^ Hom^^^ ̂ )

induced by f is a bijection.

Denote the class of A-weak equivalences by WA and define the class of A-
fibrations FA as the class of morphisms with the right lifting property with respect to
C n WA. Observe that for any ̂  and any/: ̂  —> ̂  in A the map

^ X ^ i -^^ Xc^2

is an A-weak equivalence by definition.

Remark 2.3. — An object S is A-local if and only if for any A-weak equivalence
/: ̂ T -^ ̂  the induced map Hom^^^f , ̂ ) -^ Hom^^(^, ̂ ) is bijective.

Remark 2.4. — Let/' be the coproduct of all member of A and A' = {/'}. Then
the notions of A'-local objects, A'-weak equivalences and A'-fibrations coincides with
the corresponding notions associated to A. So that it is always possible to assume A
has exactly one element.

The main result of this section is the following theorem.

Theorem 2.5. — For any set A the classes (WA, FA, C) define a model category structure
on A°^<r). The inclusion junctor ^^(T) -^ ^(T) has a left adjoint LA which identifies
^s,?SX) wtt^ ̂  localisation of^^T) with respect to A-weak equivalences.

If A consists of one element/ the functor LA will also be denoted by L/.

Remark 2.6. — This theorem appears in [5, Th. 4.6] for T the category of sets.
See also [10, §G. 2].

We also investigate the question of whether or not the A-model structure
(WA, FA, C) is proper in the sense of [2, Definition 1.2]. We do not know the answer in
general but we are able to prove the following result which is sufficient to demonstrate
properness in the case of sites with intervals. We shall give a proof of the following
result in §2.

Theorem 2.7. — For any set of morphisms A in ^(T) the closed model structure

(WA, FA, C) is right proper. It is left proper if there exists a set A ofmonomorphisms in ^Shv^T)
such that:
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1. the image of A in Mor{^^(T)) coincides with A "up to isomorphisms";

2. for any SK" in ^Shv^T), any morphism f : ̂  —» Sy in A and any morphism
p : S —^ JT x ̂  in FA the projection

^ X(JTx^)(^X^)->^

is in WA.

Elementary properties of classes WA and FA

All through this section A denotes a set of monomorphisms in A^Shv^T) such
that the image of A in Mor{^^T)) coincides with A (up to isomorphisms).

Lemma 2.8. — Let 3F be a simplicially fibrant object. Then the following conditions are
equivalent:

1. SK' is A-local;
2. for any f: ̂  —> Ss in A the morphism of simplicial sheaves

Hom(^ , J^) -^ Hom{^f , J^)

induced by f is a simplicial weak equivalence;

3. for any f: ̂  —> SZ> in A the morphism of simplicial sheaves

Hom(^ , ̂ ) -^ Hom^ , J^)

induced by f is a simplicial trivial jibration;

4. for any f: ̂  —> Ss in A and any object U ofT the map of simplicial sets

S(U x ̂  , ̂ ) -^ S(U x ̂  , ̂ )

is a trivial Kan jibration.

Proof — The equivalence of the first three conditions is clear from definitions.
The fact that the last one is equivalent to the second one follows from Lemma 1.10.

Proposition 2.9. — A morphism ̂  —> SK'1 is an A-weak equivalence (resp. an A-weak
equivalence and a cojibration) if and only if for any simplicially fibrant, A-local ̂  the morphism :

Hom(^', ̂ ) -^ Hom{J^, ̂ )

is a simplicial weak equivalence (resp. a trivial jibration).

Proof. — This is an easy reformulation (using adjointness) of the fact that if ̂
is simplicially fibrant, A-local then so is Hom(§& , ̂ ) for any simplicial sheaf Ss .
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Lemmas 2.10 and 2.11 below which describe some basic properties of A-weak
equivalences follow immediately from the criterion given in Proposition 2.9, Theo-
rem 1.4, Remark 1.5 and standard facts about fibrations in proper model categories.

Lemma 2.10. — Consider a cocartesian square

JT —^ ^•i i-
^ _^ ^'

where a is a monomorphism. Then if b is an A-weak equivalence so is d and if a is an A-weak
equivalence so is c.

Lemma 2.11. — Consider cocartesian squares

«•, ^ y ,
.,1 1<
^ ———^ ^\

i=\,2 such that a\,a^ are monomorphisms and let fjy ,fy sfj^'yf^' be a morphism from
the first square to the second such that fj^ ,fy yfj^' are A-weak equivalences. Then fy ' is an
A-weak equivalence.

The following lemma is an easy consequence of Proposition 2.9 and Lem-
mas 1.19, 1.21.

Lmma 2.12. — Let ^ be a (small) category, ̂ , ̂ f be junctors from ̂  to A t̂o(T)
and f a natural transformation 3K' —> ̂  such that all the morphisms fi are in WA. Then the
morphism hocolim^^K" —> hocolim^^ is in WA.

Corollary 2.13. — Let ^7 be a right filtering (small) category, 3K", ^ be junctors
S^ —> ^Shv(T) andfa natural transformation 3F —>• ̂ '. Then one has:

1. if for each morphism i —> j in ^7 the morphism ̂  —> SF. is in WA^ then for each
i € S^ the obvious morphisms ̂  —> colim^S^ are also in WA;

2. if for each i' € S^ the morphisms fi are in WA, then the morphism colim^ : colim^^ —>
colim^^ is in WA.

Proof. — It is clear that the first point is a particular case of the second one (with
JfT a constant functor). By Corollary 1.21 the morphisms hocolim^^ —> colim^^ and
hocolim^^ —> colim^^ are weak equivalences and therefore our result follows from
Lemma 2.12.
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Proposition 2.14. — Let J3T —> ̂  be a morphism of simplicial sheaves such that for any
n ^ 0 the corresponding morphism of sheaves of sets fn : J%^ —> ̂  is an A-weak equivalence.
Then f is an A-weak equivalence.

Proof. — Consider ^ and ^ as diagrams of simplicial sheaves of simplicial
dimension zero indexed by A0^. The obvious morphisms

hocolim^op^ —> SK"

hocolim^op^ —> ̂

are weak equivalences by [3, XII.3.4] and our result follows from Lemma 2.12.

Lemma 2.15. — 1. Let JT —> ̂  be an A-weak equivalence and Ss a simplicial sheaf.
Then the morphism ̂  x S^ —> ̂  x <^ is an A-weak equivalence.

2. For any pair { i : ̂  —> Jgf.j: ̂  —> ̂ ) of cojibrations with either i o r j in WA, the
obvious morphism:

PM : (̂  x ̂ )IU xjr (̂  x JT) ̂  JS x ̂

is in C n WA.

Proof. — The first point follows formally from Proposition 2.9 and the fact that
for any fibrant A-local S then Hom(S& , ^T) is again fibrant and A-local (which in
turn follows directly from Definition 2.1). The second point is an easy exercice using
the first point and Lemma 2.10.

The following simple result will be used in computations in Section 4.

Lemma 2.16. — Let C be a set of objects of Shv^T) satisfying the condition of Lemma 1.16
andf'. F —> G be a morphism of sheaves of sets on T such that for any X in C and any morphism
X —> G the projection F x o U — ^ X ^ ^ A-weak equivalence. Then f is an A-weak equivalence.

Proof. — By Lemma 1.16 we get a trivial local fibration (thus a weak equivalence)
^c(G) —> G such that each of the terms Oc(G)^ is a direct sum of sheaves in C. By
the assumption the morphism FxoOc^G) —> Oc(G) is an A-weak equivalence termwise
and thus is an A-weak equivalence by Proposition 2.14 which implies the statement of
the lemma since the morphism F x G ̂ (G) —> F is a weak equivalence.

A-model category structure theorem

We still assume throughout this section that A denotes a set of monomorphisms
in A^Shv^T) such that the image of S in Mor{^!j^T)) coincides with A (up to
isomorphisms).
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For any/: ̂  —> Si in A, any object U and n ̂  0 in T, write (U,/ /z) for the
object given by the cocartesian square

U x ̂  x <9A" ^^ U x ̂  x 9A"i i
U x ̂  x A- —— (U,/ TZ)

and by i^j^n} '- (U,/, n) -^ U x <^ x A" be the obvious monomorphism. Denote
the set of morphisms of the form i^jj,n) by Bi. Note that Lemma 2.10 implies that
B i c c n W A .

Lemma 2.17. — Let J5T be a fibrant simplicial sheaf Then the following conditions are
equivalent

1. SK" is A-local

2. the projection JK" —> pt has the right lifting property with respect to morphisms in Bp

Proof — Observe that the second condition holds if and only if for any U G T
and any (/: ^f —^ S^ ) C A the morphism of simplicial sets S(U X Ss , J^) —>
S(U x ̂  , JfT) has the right lifting property with respect to embeddings <9A" —^ A",
i.e. if and only if this morphism is a trivial fibration of simplicial sets. Since JT is
fibrant and/is a monomorphism this morphism is always a fibration which implies
the required equivalence by Lemma 2.8.4).

Corollary 2.18. — There exists a set (as opposed to a class) B of morphisms in C n WA
such that for any simplicial sheaf ̂ , if the projection ̂  —> pt has the right lifting property with
respect to morphisms in B then J%T is A-local.

Proof — As was shown byjardine ([18, Lemma 2.4]) there exists a subset Bo in
C D Wy such that JT is simplicially fibrant if and only if the projection J3T —^ pt has
the right lifting property with respect to morphisms in Bo. In view of Lemma 2.17 it
is sufficient to take B to be Bo U Bi.

Let B be a set of morphisms in C D WA. For a morphism / denote by Sy its
source and by Ty its target. Define a functor 0^ : A^A^T) -> A^AfofT) such that for
a simplicial sheaf JST the object O^(^) is given by the cocartesian square

HfeB \lg(EHom{Sj-, J^ ) S/ ———^ ^

llfeB VigCHom^, jr) T/' ———> °B(̂ )
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and denote \^ : J^T —>• Og(^") the canonical morphism. Observe that Vjy is an
A-weak equivalence by 2.10.

For any ordinal number co let's define as usual the iteration (O^)00 of the previous
functor; in fact one defines a functor from the ordered set of ordinal numbers y ^ co
to the "category93 of functors. One proceeds by transfinite induction, requiring that if
y=Y + 1 then (O^O^^)7') and if y is a limit ordinal then (<&^= coli^<^Y .
Observe that for ordinals Y' < Y one has a natural transformation (O^)7 —> (O^)7 whose
value on a simplicial sheaf is an A-weak equivalence (2.13).

Let a be a cardinal number and S7 an ordered set ; we shall write Sf ^ a if
any subset of S7 of cardinal ^ a has an upper bound. Denote Seq[a] the well-ordered
set consisting of ordinal numbers y whose cardinality is strictly less than a. Then if P
is a cardinal number < a the ordered set &^[a] satisfies ^[a] ^ P.

Recall [13, I. Definition 9.3] the notion of accessible object in A^iSTw(T) (this notion
is stronger than the notion of ^-definite object from [4, §4.2]). A simplicial sheaf J^T
is called accessible if there is an cardinal number ajy such that for any functor
^ : S7 -> A^6%<T), with ^ an ordered set ^ ajy, the map:

colimi^Hom^ops^T)^^ ̂  z) -> ^^Pshv^T^\ colim^^f}

is bijective. Any object in A^Shv^T) is accessible by [13, I. Rem. 9.11.3]. Let co be a
cardinal number such that, for any^C: B, as. < co. Then &^[co] ^ as. for any^C B.
Set

OB,.:̂ ) .̂

The following result follows easily from 2.17 and from what we said above (it is
essentially a restatement of [4, Corollary 7.2]).

Proposition 2.19. — Let B be a set of morphisms satisfying the conclusion of lemma 2J8.
Then for co as above, the junctor Og ^ : A^Shv^T) —> A^Shvf^T) takes values in the subcategory
of A-local fibrant objects and for any ^ the canonical morphism i : J%" —>• Og ^ (̂ Q ls a

cofibration and an A-weak equivalence.
The functor OB sends an A-weak equivalence to a weak equivalence and the induced functor

LA : ̂ (T) -> <^(T)

is left adjoint to the inclusion ̂ ^W —> ̂ (T)-

Observe now that the functor Og commutes with (filtering) colimits of functors
^ : ̂  —^ A^^T), with S7 an ordered set such that ^ ^ ̂  for any/G B. Thus
OB, co does also (as any ordinal composition ofOg). Check this by transfinite induction.
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Using Proposition 2.19 and this observation, one deduces the following technical
result using an argument similar to the one in the proof of [18, Lemma 2.4] (see
also [4, 4.7]).

Corollary 2.20. — There exists a set (as opposed to a class) B' of morphisms in C D WA
such that a morphism J%" —> ̂  is in FA if and only if it has the right lifting property with
respect to morphisms in B'.

Theorem 2.21. — The triple (WA^ C, FA) is a model category structure on ^Shv^T).

Proof. — The axioms MC1-MC3 are obvious from the definitions. The (trivial
cofibration)/(fibration) part of MC4 is the definition of FA. The (cofibration)/(trivial
fibration) part of MC5 follows immediately from the corresponding fact in the simplicial
case since an trivial fibration is a trivial A-fibration. The (trivial cofibration)/(fibration)
part of the axiom MC5 follows by the transfinite analog of the small object
argument from Corollary 2.20 in exactly the same way as in [18, Lemma 2.5]. The
(cofibration)/(trivial fibration) part of MC4 follows from MC5 and Lemma 2.10 by
Joyal trick (see [18, p. 64]).

Theorem 2.21 finishes the proof of Theorem 2.5.

Remark 2.22. — The A-model category structure (WA, C, FA) is an enriched
structure (cf [16, B.3]) for the monoidal structure given by the categorical product by
Lemma 2.15(1).

Properness theorem

In this section we shall prove Theorem 2.7. Again, let A be a set of
representatives for morphisms in A which satisfies the conditions of this theorem.
We begin by establishing a number of technical results describing different properties
of the classes WA and FA which are necessary for the proof of Theorem 2.7.

Proposition 2.23. — Let p : S —> J^ be a fibration such that ̂  is jibrant and suppose
that for any commutative diagram of the form

^ Id op
G ———> Q

•\ 1'4, ^

^ —> ^3

in ^^y(T) such that i is in WA^ there exists a morphism ̂  —^ S which makes the corresponding
two triangles commutative. Then p is an A-fibration.
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Proof. — Consider a commutative square

^ ——> S•i i'
^ —— ^3

in A^Shv^T) such that i is in WA Fl C. We have to construct a morphism ̂  —> S
which makes the two triangles commutative. By Lemma 2.10 we may replace ̂  by
the coproduct S Y[jy ̂  and assume that the upper horizontal arrow is identity. By
our condition on p there exists a morphism ̂  —> S in ^^(T) which makes the two
triangles commutative. Applying Lemma 2.24 below to the corresponding diagram in
the opposite category (A^Shv^T))^ we get a morphism with the required property in
A°^Az<T).

Lemma 2.24. — Consider a commutative square in a model category ^ of the form

X —— E•i i''V 'V

B ^ B

such that p is afibration, i is a cafibration, X is cofibrant and B isjibrant. Suppose that there exists
a morphism f: B —> E in ^S(^) which makes the corresponding two triangles commutative. Then
f can be represented by a morphism with the same property in ̂ .

Proof. — It follows from our conditions that B is cofibrant and E is fibrant and
therefore/can be represented by a morphism in W. Let

XlJX^ Cyl(X)^X

be a decomposition of the morphism Id\[Id into a cofibration and a trivial fibration
(i.e. Cyl(X) is a "good cylinder" object for X, see [26]). Then there is a morphism
G : C^/(X) —> E such that the diagrams

X —. E x —^ B

4 ^G -4 1^
Cyl(X) Cyl(X) ^ E
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commute (because a is, by hypothesis, homotopic to g o i). Define X' and X" by the
cocartesian squares

X —^ B x —^ B
il! 1 jo^[ [^
tyl(X) —^ X' X' ——> X".

We have a canonical morphism X' —> X" —> B which is a weak equivalence since
it splits the trivial cofibration B —> X'. Decompose the last arrow into a cofibration
X" —> X'" and a trivial fibration X'" —> B. We have a commutative diagram

X' ——> E

X" j[

X'" ——> B

where the composition of the two left vertical arrows is a trivial cofibration. Therefore
there exists a morphism X'" —> E which makes the corresponding two triangles
commutative. One can easily see now that the composition B -^ X" —> X'" —> E
is a morphism in ^ with the required property.

Corollary 2.25. — Let p : S —^ JS be a fibration such that the objects S\ J? are A-local
andfibrani Then p is a A-fibration.

Proposition 2.26. — Let p : S —> ̂  be an A-fibration. Then for any commutative diagram
in ̂ (T) of the form

^ ——> S•i i'
^ ——> ^5

such that i is in WA there exists a morphism ̂  —> S which makes the corresponding two triangles
commutative.

Proof. — Let j^ : JS^ —> ^ ' be a trivial cofibration such that B' is fibrant.
Taking a decomposition of JB ° p into a trivial cofibration and a fibration we get a
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commutative square
ap JE ap i
€5 ——> Q

'l [ ' ••^ -4/

Jg> _^ jg*/

where the vertical arrows are fibrations and the horizontal ones are trivial cofibrations.
Our diagram in <^^(T) may be represented now by a diagram of the form

^ —^ S'

•I 1^''V ^

^ _L^ jg^

in ^Shv^T) such that i is in C HWA. We have to construct a morphism ̂  —> S ' in
^"/T) which makes the two triangles commutative. By Lemma 2.10 we may replace
^ be the coproduct ^ Ujr ^ ' and thus assume that/is the identity morphism.
We may also decompose g into a trivial cofibration and a fibration and further assume
that g is a fibration. Considering the base change along the morphism JB we get the
diagram

^ -^ ^\ i
Id _, -

S' X^/J^ ———. ^ 'X jg> /J

^x^j^ ——. ^S

where the right vertical arrow is p. Since ^Shv^T) is a proper model category the big
square of this diagram is isomorphic to the original one in .̂ y(T) and in particular the
left vertical arrow is in WA. Decomposing it into a cofibration and a trivial fibration
and using the fact that p is an A-fibration we get a morphism ̂  —> S in .̂ /T)
with the required property.

Combining Propositions 2.23 and 2.26 we get the following corollary.

Corollary 2.27. — Let p : S —> ̂  be a fibration such that B is fibrant and suppose that
p is isomorphic in <-̂ (T) to an A-fibration. Then p is an \-fibration.

Proposition 2.28. — Let S be a fibrant simplicial sheaf. Then the following conditions are
equivalent:
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1. ?§' is A-fibrant;
2. S is A-local.

Proof. — The fact that the second condition implies the first is a particular case
of Corollary 2.25. To show that the first one implies the second it is sufficient in view
of Lemma 2.8 to verify that if we have a morphism i: J^T —> ̂  in C D WA then the
morphism Hom(^ , S ' } —> Hom(^, 3T) is a trivial fibration. This follows from Lemma
2.15, by adjointness.

Let us now assume that A satisfies the conditions of theorem 2.7.

Lemma 2.29. — Let J%" be a simplicial sheaf and 3T —> <I>(J%") be a morphism in FA.
Then the projection SK" XQ(^) ^T —> S is in WA H C.

Proof. — Consider the class G of morphisms J%" —^ ^< in WA Ft C such that for
any A-fibration ^T —» ̂  the projection JT x^ S —» S is in WA H C. This class
has the following properties:

1. if two out of three morphisms f, g,f° g e C ft WA are in G then so is the
third;

2. G is closed under filtering colimits (by Corollary 2.13);
3. G is closed under arbitrary direct sums;
4. G is closed under cobase change (by Lemma 2.10);
5. G contains CHW^ (since the simplicial model structure is proper and FA C F^);
6. G contains A (by assumption).

The statement of the proposition follows easily from these properties, the
construction of the functor 0 and the definition of the class B given in the proof
of Corollary 2.18.

Lemma 2.30. — Let p : S —> ̂  be an A-fibration. Then there exists an A-fibration
S' —> O(J )̂ such that p is an ^-deformational retract of^' x^ <&(̂ ).

Proof. — By Theorem 2.21 we can construct a commutative square of the form

S ——^ S 1

^3 ——> 0(J )̂

such that the upper horizontal arrow is in C n WA and the right vertical one is an
A-fibration. Using Lemma 2.29 we conclude immediately that the canonical morphism
s : S —> S ' x<D(jg» )J^ is in CnWA. Since both objects are fibrant over ̂  we conclude
that there is a morphism/: S ' XQ^)^ —> S over ̂  such tha,tfos=Id. Applying
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the right lifting property of the A-fibration/: S 1 XQ^) ̂  —> JSf to the A-acyclic
cofibration P(J, <9A1 C A1) we get a homotopy (over J9) from s o p to I d ^ ' ^ ^ (cf
Lemma 2.15).

To finish the proof of Theorem 2.7 we have to show that for any cartesian
square

»-̂ & ^ —————^ 3f) n

1 1
J%g ———>• J^4

such that the right vertical arrow is in FA and the lower horizontal one is in WA, the
upper horizontal one is also in WA. Using Lemma 2.30 we see it is sufficient to prove
the result in the case when there exists a cartesian square of the form

^2 ———> S

1 1
^4 ———> 0(^4).

The morphism ̂ 3 —> 0(^4) factors through the morphism 0(^*3) —» ^(^4) which
is a simplicial weak equivalence since both objects are A-local. Our result follows now
from the fact that the simplicial model structure is proper and Lemma 2.29.

Localization of loop spaces

Let Shv(T). (resp. A^5%z/(T),) be the category of pointed sheaves (resp. simplicial
pointed sheaves) of sets on T whose objects are pairs (X, x) consisting of a sheaf (resp.
simplicial sheaf) of sets X together a morphism x : pt —> X. Note that pointed sheaves
of sets and sheaves of pointed sets are two different names for the same type of objects.

Let us say that a morphism of pointed simplicial sheaves is a fibration, cofibration
or weak equivalence (simplicial) if it belongs to the corresponding class as a morphism
of sheaves without base points. This definition clearly provides us with a model category
structures which we will call the simplicial model category structures on A^Shv^Sm/S)..
We denote the corresponding homotopy categories by ^"^(T).

Recall that the left adjoint to the forgetfuU functor A .̂Sfo(T). —^ ^Shv^T) is the
functor ^T i—^ J^+ where JK"+ is the simplicial sheaf J^Vipt pointed by the canonical
embedding pt —> J^ II pt. Both functors preserve weak equivalences and thus induce a
pair of adjoint functors between ^.{{Sm/S)j^) and ^^(Sm/S)^).

For pointed simplicial sheaves (^, x\ (^f , y ) define their wedge (J^, ^)V(^ ,j/)
and their smash product (JST, x) A (^/ ^ y ) in the usual way

(^^) V (^)=(^T 11̂ , x^y)
(^^)A(^^)=(^x^/(^^)V(^^)^xj/).



A'-HOMOTOPY THEORY OF SCHEMES 83

Note that (JT, x) V (^ ,y) is the sheaf associated to the presheaf which takes an
object U o f T t o the wedge of pointed simplicial sets (^(U), x^) and (^(U),^u) and
(^T, x) A (^< ,j/) is the sheaf associated to the presheaf which takes an object U of T
to the smash product of pointed simplicial sets (^(U), x^) and (^<(U),j/u).

The functor ^Shv{T). -^ A°^(T)., (JT,;,) ̂  (JT, x) A (^^) has as right
adjoint the functor (^ , ^ \-^ Hom^(^f , y ) , ( ,̂ ^)) whose value is the fiber over the
base point of S^ of the evaluation morphism y : Hom^ , Sy ) —» Hom(pt, S^) ^ ̂  .

Let S^ denote the constant pointed simplicial sheaf corresponding to the simplicial
circle A^^A1 (pointed by the image of <9A1). We define the suspension functor on the
category A^Shv^Sm/S). of pointed simplicial sheaves setting:

^(^^S^AG^T,^).

Let ^(-) :=Hom^S^ -) be the right adjoint to £,(-). We denote R^(-) the total
right derived functor of t2y (—) which is given by i^ o Ex for a choosen resolution
functor Ex (1.6); it is right adjoint to the suspension functor in the pointed simplicial
homotopy category.

Let / : A —^ B be a morphism of simplicial sheaves. Denote by 2^( f+) the
suspension of the pointed morphism^ : A+ —^ B+. The proof of the following lemma
is straightforward.

Lemma 2.31. — Let S be a pointed connected jibr ant simplicial sheaf. The following
conditions are equivalent:

1. S is 'Ls{f+)-local;

2. the (pointed) simplicial sheaf ̂ (^) is f-local.

Moreover, if f is pointed, these conditions are also equivalent to the following one:

S is "Ls[fYlocal.

As a corollary, we see that any^local pointed connected simplicial sheaf S is
also I^/+ -local. Indeed, RI^(^) is again ̂ local.

Lemma 2.32. — For any simplicial sheaf of groups S^ there is a morphism of simplicial
sheaves of groups q^1 —> S^ which is a weak equivalence (as morphism of simplicial sheaves of sets)
and a morphism of simplicial sheaves of groups ^' —> 3^ which is an f-weak equivalence (as
morphism of simplicial sheaves of sets) and such that ̂  is f-local (as a simplicial sheaf of sets),

This lemma is just [10, 3 Lemma A.3] in the case T=Sets.

Remark 2.33. — The statement of the lemma could be made more functorial, as
one can see by looking at the proof.
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Proof. — Denote B(G) the bisimplicial sheaf of sets (n, m) h— B(G^ (so that
B(G)^* ^ G"). Then applying the functor 0 : =OB from Proposition 2.19 (applied
with A= {/}) we get a new bisimplicial sheaf 0(B(G)) with 0(B(G))o,* =^(fit) weakly
equivalent to pt, and such that for each n ^ 2, the morphisms: —

"•=1,...,.°^): WG).) -^ (0(B(G))^

are simplicial weak equivalences because the localization functor obviously commutes
with finite products in the homotopy category From [27, Proposition 1.5], the fact that
0(G) is a group object in the homotopy category (because the ^localization functor
commutes to finite products in the homotopy category) and the fact that the functor
R^ commutes with restriction to points of the site, we get that the morphism of
simplicial sheaves

0(G)^R^(2)z^O(B(G))))

(induced by the morphisms Z/€>(G)) —^ Diag{9{B(G))), where Diag means the diagonal
simplicial sheaf of a bisimplicial sheaf) is a simplicial weak equivalence.

Denote Gr(T) the category of sheaves of groups on T, A°^/b(T)o that of
0-reduced simplicial sheaves (meaning simplicial sheaves JT with J^Q =pt) and
G(-) : A^Ay(T)o —^ A^G^T) the (obvious analogue of the) Kan construction func-
tor [22]. Then £)^0(B(G))) is pointed connected, thus weakly equivalent to a
0-reduced simplicial sheaf .IT, so that the canonical morphism B(G) —^ Z)z^g(0(B(G))) is
isomorphic in the pointed homotopy category of simplicial sheaves to a (pointed) mor-
phism B(G) —^ ^T (thus G(JT) is weakly homotopy equivalent to RQ^Z^O^G))))).
Moreover there is a morphism (of simplicial sheaves of groups) G(B(G)) —> ̂  which
is a weak equivalence and the induced morphism (in the pointed homotopy category)
G —> RI^ (£)^0(B(G)))) is the previous one, as required.

Theorem 2.34. — For any pointed morphism f and any pointed connected simplicial sheaf
^\ the simplicial sheaf \^^(S^} is connected. From Lemma 2.31 RÎ L^y^^*) is thusf-local.
Then the canonical induced morphism:

L/RQ^)) ̂  R^L (̂Jr).

is a weak equivalence.

In the case T = Sets this theorem was proven by Bousfield and independently by
Dror [10, 3. Theorem A.I].

Proof. — One may assume JT 0-reduced and set G : = G(^). Let G' —^ G and
G' —> H be given by Lemma 2.32. From Lemma 2.31 BH is S,(/)-local and moreover,
using Lemma 2.35 below, one knows that the morphism B(G') —> B(H) is a S,(/)-weak
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equivalence which thus gives the ^(/^localization of B(G'), which is the same as that
of^T.

Lemma 2.35. — Letf: Mi —> M<^ be a homomorphism of simplicial monoids which is
a f-weak equivalence as a morphism of simplicial sheaves of sets. Then the corresponding morphism
B(Mi) —> B(M2) is a ̂ {f)-w^k equivalence (of simplicial sheaves of sets).

Proof. — Indeed for any monoid M the successive quotients in the skeletal
filtration of B(M) have obviously the following form:

^B(M)/<_iB(M) ^ AV<9A" A M^.

For a simplicial monoid M we thus get a functorial filtration on the bisimplicial
sheaf (p, q) \—> B^(My) whose successive quotients are isomorphic for each n ^ 0 to
t^/Q^ A'^ M^ (exterior smash-product which take two pointed simplicial sheaves to
the obvious bisimplicial sheaf). The realization of this filtration of bisimplicial sheaves
gives us a natural filtration of B(M) with quotients of the form:

A79A' A M^

which easily implies the result.
We end with the following result:

Lemma 2.36. — Letf'. Mi —> M^ be a morphism of simplicial sheaves of monoids which
is a f-weak equivalence as a morphism of simplicial sheaves of sets. Then the corresponding morphism
Ra^B(Mi) —> R^B(M2) is a f-weak equivalence.

Proof. — Using previous lemma, we see that the morphism:

L^)(B(Mi))^L^)(B(M2))

is a simplicial weak equivalence. The lemma follows now from Theorem 2.34.

2.3. Homotopy category of a site with interval

Definitions, examples and the main theorem

Let us first recall the definition of a site with interval given in [31, 2.2]. Let
T be site (with enough points, as usual). Write pt for the final object of Shv(T). An
interval in T is a sheaf of sets I together with morphisms:

U : I x I - ^ I
io,n \pt—>l

satisfying the following two conditions:



86 FABIEN MOREL, VLADIMIR VOEVODSKY

- let p be the canonical morphism I —> pt then

H(?o x l d ) = \Ji{Id x io) = i^p
H(zi x Id) = |Ll(/</ x zi) = Id

- the morphism ZoLhi ^Uj^—^ I is a monomorphism.

Definition 3.1. — Z^ (T, I) be a site with interval A simplicial sheaf ̂  is called I-local
if for any simplicial sheaf ̂  the map

Hom^^ x I, ̂ ) -^ Hom^^ , JT)

induced by io : pt—>I is a bijection.
A morphism f '. ̂  —^ ̂  is called an I-weak equivalence if for any 1-local Ss the

corresponding map

Hom^^(^ , ̂ ) -> Hom^^(^, ̂ )

is a bijection.

The homotopy category ̂  (T, I) of a site with interval (T, I) is the localisation of^Shvf^)
with respect to the class ofl-weak equivalences.

Denote the class of I-weak equivalences by Wi and define a class Fi of
I-fibrations as the class of morphisms with the right lifting property with respect
to C H Wi. Clearly these definitions are a particular case of general definitions of
Section 2 for A = {^}. We will show in the next section that the morphism ^ satisfies
the conditions of Theorem 2.7, which implies the following result.

Theorem 3.2. — Let (T, I) be a site with interval. Then the category of simplicial sheaves
on T together with the classes of morphisms (Wi, C, Fi) is a proper model category. The inclusion
of the category of 1-local objects ̂ j(T) to ̂ (T) has a left adjoint Li which identifies ̂  i(T)
with the homotopy category 3^ (T, I).

Remark 3.3. — It is an easy exercise to show that the I-model category structure
on A^Shv^T) only depends on the object I and not on the morphism io and coincides
with the A-model category structure of Theorem 2.5 with A = { I —>pt}.

Examples.

1. Let T be the standard simplicial category A with the trivial topology Then
Shv(T) is the category of simplicial sets. If we take I to be the simplicial inter-
val A1 the corresponding homotopy category is canonically equivalent to the
usual homotopy category of simplicial sets.
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2. Let T be the category of locally contractible topological spaces with the
usual open topology and I be the sheaf represented by the unit interval.
Again the corresponding homotopy category is the usual homotopy category
((/Proposition 3.3).

3. Let G be a finite group and T be the category of good G-spaces (see
Definition 3.1). We may consider two different topologies c and / on T. A
covering in the first one is a morphism X —> Y which locally splits as a morphism
of topological spaces without G-action. A covering in the second is a morphism
X —> Y which has a G-equivariant splitting over a G-equivariant open covering
of Y. Take I to be the sheaf represented by the unit interval with the trivial G-
action. The category S^ (T,, I) is equivalent to the "coarse59 homotopy category
of G-spaces where a morphism/: X —> Y is defined to be a weak equivalence if
and only if it is a weak equivalence of topological spaces. The category ̂  (Ty, I)
is equivalent to the "fine95 homotopy category of G-spaces where a morphism
/: X —» Y is defined to be a weak equivalence if and only if the corresponding
morphisms X" —> Y" are weak equivalences for all subgroups H of G (see
Section 3).

4. Let T be the category Sm/S of smooth schemes over a base S considered with
the Nisnevich topology (see Definition 1.2) and I be the sheaf represented by the
affine line A1 over S. The corresponding homotopy category ^{{Sm/S)j^s, A1)
which is called the homotopy category of schemes over S is the main object we
are interested in this paper.

5. More generally, any ringed site (T, ̂ ) defines a site with interval. In particular
we may consider the homotopy category associated with any subcategory in the
category of schemes (over a base) which contains affine line.

The functor Sing^

In this section we prove that the conditions of Theorem 2.7 hold for the
morphism io : p t — ^ I m any site with interval (T, I). In order to do it we construct an
endofunctor Sin^ on the category of simplicial sheaves on a site with interval together
with a natural transformation s : Id —> Sin^ such that one has

1. Sin^ commutes with limits;
2. Sin^ takes the morphism io : pt —> I to a weak equivalence;
3. for any ̂  the morphism sjy : JfT —> Sin^J^) is a monomorphism and an

I-weak equivalence;
4. Sin^, takes I-fibrations to I-fibrations.

Provided that a functor Sin^ satisfying these properties exists, the proof of the
required condition goes as follows. Let JK" be an object ofA^Shv^T) mdp : S —> JTxI
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be a morphism in Fi. We have to show that the upper horizontal arrow in the cartesian
square

^ x^ (̂  x I) — gr

1 1
Idxinjr -4 jr xi

is an I-weak equivalence. Applying the functor Sin^ to this diagram we get a cartesian
square (by (1)) which is I-weak equivalent to the original one (by (4)). By (2) the
morphism Sin^(p) is an I-fibration and in particular a fibration and by (3) and (1)
the morphism Sing^{Id x io) is a simplicial weak equivalence. Therefore the morphism
^^(^ x^ (^ x I)) —> Sin^(S') is a simplicial weak equivalence since the simplicial
model structure is proper.

Define a cosimplicial object A^ : A —> Shv^T) as follows. On objects we set A^ = P.
Let/: (0,... n) —^ (0,..., m) be a morphism in the standard simplicial category A. Define
a morphism of sets ())(/) : {1,..., m} —> {0,..., n + 1} setting

. ,, f wm{/ G {0,..., n}\f(t) ^ z} if this set is not empty
^u)w = 1 , i , .(n + 1 otherwise.

Denote by prj,: P —^ I the A-th projection and by j& : P —> ̂  the canonical morphism
from I" to the finial object of T. Then A^/) : P —^ P is given by the following rule

(pr^ it </)(A:) €{ ! , . . ,77}
^o</)=^oj& if ^(/)(A:)=^+1

I z i o ^ if ^f){k)=0.

For a simplicial sheaf J^ let Sin^(^) be the diagonal simplicial sheaf of the
bisimplicial sheaf with terms of the form Hom{/^, -^\). We shall often forget to
mention the interval in the previous notation and denote Sm^^K"} simply by Sing^(^).
There is a canonical natural transformation s \ Id —> Sing^ such that for any JT the
morphism sjy : J^ —> Sing^{^} is a monomorphism. We are going to show now that
the functor Sing^ satisfies the conditions (1)-(4) listed above.

The first of them is obvious from the construction of Sing^. The second one
is proven in Corollary 3.5, the third one in Corollary 3.8 and the fourth one in
Corollary 3.13.

Let/,^ : ^—>^ be two morphisms of simplicial sheaves. An elementary
I-homotopy from / to g is a morphism H : JfT x I —^ ^ such that H o ZQ =/
and H o ^ =g. Two morphisms are called I-homotopic if they can be connected by
a sequence of elementary I-homotopies. A morphism/: j^—»^< is called a strict
I-homotopy equivalence if there is a morphism g : ^'—>^ such that fog and gof
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are I-homotopic to U(y and Idjy respectively. Replacing I in these definitions by
A1 one gets the corresponding notions of elementary simplicial homotopy, simplicially
homotopic morphisms and strict simplicial homotopy equivalences.

Proposition 3.4. — Let f, g : jy—>^ be two morphisms and H be an elementary
I-homotopy from f to g. Then there exists an elementary simplicial homotopy from Sing^f) to
Sing^g).

Proof. — Since Sing^ commutes with products it is sufficient to show that
the morphisms Sing^(io)^ Sing^(i\) : pt=^Sing^(pt) —> Smg^(T) are elementary simplicially
homotopic. The required homotopy is given by the morphism pt—^ Singt(l)=Hom(l, I)
which corresponds to the identity of I.

Corollary 3.5. — For any simplicial sheaf ̂  the morphism

Idxin
SmgW -. Smg^ x I)

is a simplicial homotopy equivalence.

Proof. — By Proposition 3.4 it is sufficient to show that the compostion
pf Idx iQ

^ x A —> ̂  —> ̂  x I is elementary I-homotopic to the identity. This homotopy
is given by the morphism I d x ^ ' . ^ T x I x I — ^ J ^ x l .

Lemma 3.6. — Any strict I-homotopy equivalence is an 1-weak equivalence.

Proof. — Let f : J%^—>^ be a strict I-homotopy equivalence and g be a
I-homotopy inverse to f. We have to show that the compositions fo g and gof
are equal to the corresponding identity morphisms in the I-homotopy category. By
definition these compositions are I-homotopic to identity and it remains to show that
two elementary I-homotopic morphisms coincide in the I-homotopy category which
follows immediately from definitions.

Lemma 3.7. — For any S? the canonical morphism SK" —> Hom{l, J^) is a strict
I-homotopy equivalence, and thus an 1-weak equivalence.

Proof. — The morphism Hom(l, ^T) x I —> Hom{l, JT) whose adjoint corresponds
to n defines a strict I-homotopy from Hom(p, J^) o Hom(iQ^ J^T) to Idf{om(i,J^)' Since
Hom{iQ, J^T) o Hom(p, J^T) = Idjy , the lemma is proven.

Corollary 3.8. — For any 3F the canonical morphism J%" —> Sing^^) is an 1-weak
equivalence.

Proof. — One observes easily that the i-th term of the simplicial sheaf G^(J%")
is isomorphic to Hom(l\ ̂ \) and the canonical morphism J^T —> Sing^(JK') coincides
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termwise with the canonical morphisms S^\ —> Hom(l\ ̂ \) from Lemma 3.7. Our
result follows now from Proposition 2.14.

It remains to show that the functor Sing^ preserves I-fibrations. In order to do it
we will show that it has a left adjoint which preserves cofibrations (i.e. monomorphisms)
and I-weak equivalences.

For any cosimplicial object D* in A°^y(T) and any simplicial sheaf JT denote
by |̂ |D. the coend (^[21, p. 222]) of the functor

^ x A -> A°^(T)
<^ w

(n, ni) ^ ^\ x D^.

Any morphism of cosimplicial objects D* —> D" induces in the obvious way a
morphism of realization functors | — ID* —^ | — ID^.

One can observe easily that the functor J^ ^ |^|A*XA* is left adjoint to Sing^.
For a cosimplicial simplicial sheaf D* and n ^ 0 let us denote by OXY the simplicial
sheaf IQA^ID*. We shall say that a cosimplicial simplicial sheaf D* is unaugmentable if the
morphism D^D0 —> D1 induced by the cofaces morphisms is a monomorphism. For
example, A', A^ and A* X A^ are unaugmentable cosimplicial simplicial sheaves.

Lemma 3.9. — For any unaugmentable cosimplicial object D* the obvious morphisms
9Dn —> D" are monomorphisms.

Lemma 3.10. — For any unaugmentable cosimplicial simplicial sheaf D9 the junctor \ — \^.
preserves monomorphisms.

Proof. — Using Lemma 1.1 one can reduce the problem to the case of
monomorphisms of the form P(^T -> ̂  , <9A" C A") for monomorphisms 3^ —^ ̂
of sheaves of simplicial dimension zero (see Lemma 1.8 for the notation P(—, —)).
Then \^ x A"|D« is isomorphic to the simplicial sheaf ̂  x D" and the morphism
[P(J^ -^ ̂ , (9A" C A")|D. is isomorphic to the monomorphism P(^ -^ ̂ , 9D" C
D") which proves the lemma.

Remark 3.11. — Looking at the morphism I^A^D- —> IA^D* one can see that the
property that the functor I — I D * preserves monomorphisms characterizes unaugmentable
cosimplicial simplicial sheaves.

Lemma 3.12. — For any ̂  the morphisms

WA-XA^^T

I^IA.XA^ -^ m^
induced by the projections A* x A^ —> A* and A* x A^ —> A^ are 1-weak equivalences.



A1-HOMOTOPY THEORY OF SCHEMES 91

Proof. — To prove that the first type of morphisms are I-weak equivalences we
use Lemmas 1.1, Lemma 2.11 and Corollary 2.13 to reduce the problem to the case
when J^ is of the form ^f x A" for some ^ of simplicial dimension zero and
n ^ 0. Then the morphism |̂  x A"] -> ^ x A" is isomorphic to the projection
^ x A^ x A^ ̂ f x A" which is an I-weak equivalence by Lemma 2.15. The proof
for the second type is similar.

Corollary 3.13. — The functor Sing^ preserves 1-fibrations.

Proof. — By definition of I-fibrations it is sufficient to show that the left adjoint
functor | — |A*XA* preserves monomorphisms and I-weak equivalences. The first fact is
proven in Lemma 3.10. The second follows immediately from Lemma 3.12.

Note that the realization functor | - \^ : ̂ Shv(T) -^ A^Shv{T) takes values in the
full subcategory of simplicial sheaves of simplicial dimension zero, i.e. factors through
a functor | - \^ : A^6%z<T) —> Shv{T) which is left adjoint to the restriction of C^
to Shv(T). Together with Lemma 3.12 this fact can be used to obtain an alternative
description of the homotopy category .^(T, I) as follows.

Let us say that a morphism in Shv{T) is a I-weak equivalence if it is a I-weak
equivalence in ^Shv^T). Let W^ be the class of I-weak equivalences in Shv(T), C' the
class of monomorphisms in Shv(T) and T{ the class of morphisms which have the right
lifting property with respect to W^ DC'. One can prove in the same way as we proved
Theorem 2.5 that the triple (W^, C', F^) gives Shv(T) a structure of model category

Proposition 3.14. — The adjoint functors

Sing^ : Shv(T) —^ A° (̂T)

| - |A .̂ : A^<r) -^ Shv{T)

take I-weak equivalences to I-weak equivalences and the corresponding functors between homotopy
categories are mutually inverse equivalences.

Proof. — Follows formally from Lemma 3.12.

Functoriality

We consider the functoriality of homotopy categories of sites with intervals only
in the case of reasonable continuous maps of sites (cf 1.55). We have the following
obvious lemma.

Lemma 3.15. — Let (Ti.Ii), (T2,12) be sites with intervals and f: Ti —> T^ be a
reasonable continuous map. Then the following conditions are equivalent:

1. R/, takes Ii- local objects to 1^-local objects;
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2. L/̂  takes 1^ -weak equivalences to \\-weak equivalences;
^. for any J%" on T2 ̂  morphism L/'*(J%" x Ig) —^ L/'*(JS^T) zj ̂  Ii-^aA equivalence.

Definition 3.16. —^4 reasonable continuous map of sites with intervals

(Ti,Ii)^(T2,l2)

is a reasonable continuous map of sites f : Ti —> T^ satisfying the equivalent conditions of
Lemma 3.15.

For any reasonable continuous map of sites with intervals (Ti, Ii) —> (Tg, Is) the
functor L/^ induces by definition a functor on the localized categories

LiT:^(T2,l2)^^(Ti,Ii)

and the functor R/^ induces (first by restriction to the subcategories J^ j (T^) defined

in Theorem 3.2, and then using the isomorphisms ^^ i(T^) ^ J^(T^ 1̂ ) of the same
Theorem 3.2) a functor:

Ry,:^(Ti,Ii)^J^(T2,l2).

Using Theorem 3.2, Proposition 1.57 and Lemma 3.15 we get the following result.

Proposition 3.17. — Let f : (Ti,Ii) —> (T2,12) be a reasonable continuous map of
sites with intervals. Then the junctor L^* : ^{T^,l^ -^ ^(Ti, Ii) is left adjoint to
Ry,:J^(Ti,Ii)^J^(T2,l2).

Iff^ g is a composabk pair of reasonable continuous maps of sites with interval then there are
canonical isomorphisms of junctors

Li(?o/)*^V*oL^*

RW)*^*0^1/*

An "explicit" I-resolution functor

Definition 3.18. — A I-resolution functor on a site with interval (T, I) is a pair (Ex\, 9)
consisting of a junctor Ex\ : A^ShvfT) —^ A^Shv^T) and a natural transformation 9 : Id —> Ex
such that for any JK" the object Ex{JK") is I-fibrant and the morphism ̂  —> Ex(^} is an
1-trivial cqftbration.

Let (T, I) be a site with interval. From theorem 2.21 we know that such
I-resolution functors do exist. The purpose of this section is to give a construction
of such an I-resolution functor which emphasizes the role of the interval. As an
application we get corollary 3.22 below.
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Proposition 3.19. — Let ̂  be a fibrant simplicial sheaf Then the following conditions are
equivalent:

1. jy is I- local (or equivalent I-fibrant by 2.28);

2. for any object U in T the morphism of simplicial sets ^T(U) —> JT(U x I) is a weak
equivalence;

3. for any object U in T and any element x € ^oO-O the homomorphisms 7i;,(^(U), x) -^
ni{J^(U X I), x) induced by the projection U x I —> U are epimorphisms for all i ̂  0.

Proof — The third condition is equivalent to the second one since the morphisms
in question are always monomorphisms (use the zero section of the projection
U x I —> U). The equivalence of the first two conditions follows clearly from Lemma
2.8(4) and Proposition 2.28.

Choose a resolution functor {Ex,Q) (see 1.6) corresponding to the simplicial
model category structure on A^*Ste(T). Thus for any simplicial sheaf JT the morphism
Sy —> Ex(J^) is a (simplicial) weak equivalence and Ex{J^) is (simplicially) fibrant.

The composition 6 o s (remember 3 that s is a natural transformation Id —> Sing^)
defines a natural transformation Id —> Exo Sing^. The functor Ex o Sing^ can thus be
iterated to any ordinal number power (see 2).

Lemma 3.20. — For any sufficiently large ordinal number co, the junctor Ex\ : = (Ex o
Sing^ o Ex together with the canonical natural transformation Id —> Ex^ form an 1-resolution
junctor,

By Lemma 2.13 and Corollary 3.8, for any ̂  and any ordinal number co the
canonical morphism J%" —> Ex^JfT) is a monomorphism and an I-weak equivalence.
It thus suffices to establish:

Lemma 3.21. — For any sufficiently large ordinal number 0) then for any simplicial sheaf ̂
the object Ex^JK") is 1-local.

Proof — Choose a to be a cardinal large enough to ensure:

- any filtering colimit of (simplicially) fibrant objects indexed by the ordered set
Seq[a] is again fibrant;

- for any U € T and any functor ^ : Seq[a] —> A^Shv^T) the map
colim^^seqw^^(U) —> colimseq[a\^(U) is bijective.

(This is possible using corollary 2.18 and the fact that any object of Shv^T) is
accessible.) Then choose co to be the smallest ordinal number of cardinality a. It is
sufficient (using 3.19) to show that for any simplicial sheaf J^ the fibrant simplicial
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sheaf Ex\^y satisfies the third of the equivalent conditions of Proposition 3.19. By
construction (and the choice of co), for any U € T one has:

ExW(\J) = coRm^^w(Ex o Sing^{Exm)(U).

Let Y ^ •&?[cx] and x be an element of (Ex o Sing^(^)Q(\J) for some n and

P € TL^EX o Sing^W(U x I), x).

Let further Po =j^*^(P) where io means Id^j X i^ : U —» U x I and p : U X I —> U is
the projection. It is sufficient to show that P = Po in the colimit of homotopy groups.
We may assume that (Ex o Sing^(Jy)(\J x I) is a Kan simplicial set; indeed if not, we
replace y by Y~1" 1 ^ &y[a]. Thus P is represented by a morphism

b: U x I x <9A^1 -^ (Ex o Sing^W

in A^ShvfT) and Po is represented by bo = P o ^ o p. One can easily see that the
composition ZQ ° P '- U X I x <9A^ —» U x I x <9A^ is I-homotopic to the identify.
Therefore b is I-homotopic to bo and by Proposition 3.4 we conclude that P = Po in
n^ExoSing^m^xT)^).

Corollary 3.22. — Let J^T be a simplicial sheaf and J%T —^ j^T' be an 1-weak equivalence
with SK'1 1-local. Then the canonical morphism of sheaves CTo(^T) —> ^oG^O ls an ^pimorphism.
In particular, if 31^ is connected fl%(̂ *) =P^ ^en so ls ^' •

3. The A1-homotopy category of schemes over a base

In this section we study the basic properties of A1-homotopy category of smooth
schemes over a base. Modulo the conventions of the previous section the definition of
the A1-homotopy category S^S (S) of smooth schemes over a base scheme S takes one
line — S^ (S) is the homotopy category of the site with interval ((iSm/S)^, A1), where
Sm/ S is the category of smooth schemes (of finite type) over S and Nis refers to the
Nisnevich topology.

Nisnevich topology was introduced by Y. Nisnevich in [25]. We recall its
definition and some of its basic properties in Section 1. This topology is strictly
stronger (i.e. has more coverings) than the Zariski one and strictly weaker (i.e. has less
coverings) than the etale one. Miraculously, it seems to have the good properties of
both while avoiding the bad ones. Here are some examples.

• the Nisnevich cohomological dimension of a scheme of Krull dimension d is d
(similar to the Zariski topology);

• algebraic K-theory has Nisnevich descent (similar to the Zariski topology);
• spectrum of a field has no notrivial Nisnevich cohomology (similar to the

Zariski topology);



A^HOMOTOPY THEORY OF SCHEMES 95

• the functor of direct image for finite morphisms is exact (similar to the etale
topology);

• Nisnevich cohomology can be computed using Gech cochains (similar to the
etale topology);

• any smooth pair (Z, X) is locally equivalent in the Nisnevich topology to a
pair of the form (A", A"") (similar to the etale topology).

In the rest of Section 1 we discuss the properties of the homotopy category of
simplicial sheaves on {Sm/S)^' The fact that Nisnevich topology can be generated by
a set of elementary coverings of very special type implies that in many cases fibrant
simplicial sheaves can be replaced by simplicial sheaves satisfying a much weaker
condition which we call the E.G. — property after K.S. Brown and S.M. Gersten who
considered it in the context of Zariski topology in [7].

In Section 2 we first recall the most important definitions and results of Section 3
in the context of the site with interval {{Sm/S)j^s, A1). We then discuss briefly the
functoriality of our constructions with respect to S.

In Section 2 we prove three theorems which play major role in further
applications of our constructions.

In the final section we discuss some examples of topological realizations functors.

3.1. Simplicial sheaves in the .Nisnevich topology on smooth sites

Nisnevich topology
Let S be a Noetherian scheme of finite dimension. Denote by Sch/S (resp. Sm/S)

the category of schemes (resp. smooth schemes) of finite type over S. Let (^x x O^P-
^^ ^) be the local ring (resp. the henselisation of the local ring) of x in X (cf [15,
18.6]). One has the following proposition.

Proposition 1 .1 . — Let X be a scheme of finite type over S and {Uj —> X a finite family
of etale morphisms in Sch/S. The following conditions are equivalent:

1. For any point xof\. there is an i and a point u ofVi over x such that the corresponding
morphism of residue fields is an isomorphism which maps to x with the same residue field;

2. for any point x o^X, the morphism ofS-schemes

U,(U, Xx Spec ̂ J -^ Spec ̂ ,

admits a section.

The following definition of the Nisnevich topology on Sm/S is equivalent to the
original definition given in [25].

Definition 1.2. — The collection of families of etak morphisms {Uj —> X in Sm/S
satisfying the equivalent conditions of the proposition forms a pretopology on the category Sm/S (in
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the sense of [13, II. Definition 1.3]^. The corresponding topology is called the Nisnevich topology.
The corresponding site will be denoted (Sm/S)^is.

The presheaf on Sm/S represented by a scheme over S is always a Nisnevich sheaf
(see [13, VII.2] or [24, 1.2.17]). In particular the canonical functor Sm/S -^ Shv(Sm/S)Ms
is a fully faithfull embedding and we'll often identify the category Sm/S with its image
by this functor. A familly of morphisms in Sm/S satisfying the conditions of 1.1 will be
called a Nisnevich covering and we shall call a morphism in Sm/S a Nisnevich cover if the
corresponding morphism of representable sheaves is an epimorphism in the Nisnevich
topology.

The Nisnevich topology is clearly stronger than the Zariski one and weaker than
the etale. In practice, it means that it behaves as the Zariski one in some regards and
as the etale one in others.

Definition 1.3. — An elementary distinguished square in {Sm/S)^ is a cartesian square of
the form

U x x V ——> Vi i'-4- -^
u — ^ x

such that p is an etale morphism, j is an open embedding and ^^(X — U) —> X — U is an
isomorphism (we put the reduced induced structure on the corresponding closed sets).

Clearly, for any elementary distinguished square as in Definition 1.3 the
morphisms j and p form a Nisnevich covering of X. The following lemma shows
that the Nisnevich topology is generated by coverings of this form. A similar statement
holds in Zariski topology (with elementary distinguished squares being replaced by
coverings by two Zariski open subschemes) but not in the etale.

Proposition 1.4. — A presheaf of sets F on Sm/S is a sheaf in the Nisnevich topology zf
and only if for any elementary distinguished square as in 1.3 the square of sets

F(X) —^ F(U)

1 1
F(V) ——. F(UxxV)

is cartesian.

Proof. — To prove the "only if" part observe first that for any elementary
distinguished square as in Definition 1.3 the pair of morphisms {U —> X, V —>• X} is
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a Nisnevich covering of X. Thus for any Nisnevich sheaf F the square

F(X) —— F(VUU)i i
F(VUU) ——> F( (VUU)Xx(VUU))

is cartesian. On the other hand we have

(VlIU)Xx(VnU)=(VxxV)n(UxxV)U(VxxU)U(UxxU)

and, in view of the definition of an elementary distinguished square, we see that the
pair of morphisms { V — ^ V x x V , U x x V x x V — ^ V x x V } i s a Nisnevich covering
o f V x x V . By diagram search we conclude that the square of the lemma is cartesian
for any Nisnevich sheaf.

Let now F be a presheaf such that for any elementary distinguished square the
corresponding square of sets of sections of F is cartesian. To prove that F is a Nisnevich
sheaf we have to show that for any Nisnevich covering ^/'= {W^ —» X} the sequence
of sets F(X) -> nF(W,) =t r[F(W, Xx W^) is exact. A sequence of closed subsets of X
of the form

0=Z,+i CZnCZn-i C. . .CZo=X

is called a splitting sequence for a covering W if the morphisms (UA)"1^ ~ Zi+i) —>

7.i — Z^-i split. We are going to prove the required exactness by induction on the
minimal length of a splitting sequence for ^^.

Lemma 1.5. — Let ^/' be a Nisnevich covering of a noetherian scheme S. Then there exists
a splitting sequence for ^/*.

Proof. — Set p= \[pi. By the definition of Nisnevich topology there exists a dense
open subset Ui of X such that p splits over Up Set Zi =X — Up Since p~l{7.\) —> Zi
is again a Nisnevich covering there exists a dense open subset U^ of Zi such that
p~^^L\) —> Zi splits over Us. Set Z2=Zi — U2. The sequence Zi, Z2 etc. is a strictly
decreasing sequence of closed subsets of X which must stabilize since X is noetherian.

If (W has a splitting sequence of length zero this means that ]_[j^ splits as a
morphism in which case the exactess is a formality. Let (X=Zo, ...,Z^, Z^+i =0) be
a splitting sequence of minimal length for (W. Let us choose a splitting s for the
morphism p~^^Ln) ~^ Z^. Since p is etale we have a decomposition J&-l(Z„)=/w(.5•)]JY
where Y is a closed subset of [JW,. Let U=X - Z, and let V=(UW,) - Y. Clearly
U and V form an elementary distinguished square over X and family of morphisms
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^^Xx U —> U is a Nisnevich covering of U with a splitting sequence of length n — 1.
Therefore, by induction and our assumption of F the sequences

F(X) -^ F(U) x F(V) ^ F(U Xx V)
F(U) ̂  nF(W, XxU) ^ nF(W, XxW, XxU)

are exact. Since both morphisms U —> X and V —> X factor through ]J W^ this implies
the required exactness by diagram chase.

Lemma 1.6. — Any elementary distinguished square (cf Definition 13) is a cocartesian
square in the category Shv{Sm/S)j^s. In particular, the canonical morphism of Nisnevich sheaves
V/(U Xx V) —> X/U is an isomorphism.

Proof. — This is a formal consequence of the fact that the morphism UIIV—»X
is an epimorphism of sheaves, the fact that U —» X is a monomorphism and that the
Nisnevich sheaf associated to the fibre product U X x V is indeed the fibre product in
the category of sheaves.

Remark 1.7. — Let F be a sheaf of abelian groups on the small Nisnevich site X^j
ofX. IfU is an object ofXyvzj and Z^[U] is the sheaf of abelian groups on X^y freely
generated by the sheaf of sets represented by U then the adjointness implies that for
any i G Z one has a canonical isomorphism 2?;rf(Z^[U], F)=H^(U, F). Lemma 1.6
implies that for any elementary distinguished square the sequence of sheaves of abelian
groups

o -^ z^[u xx V] ̂  Z [̂D] © ZM,[V] -^ z^pq -^ o
is exact. Combining this fact with the previous remark on cohomology groups we
conclude that for any F and any elementary distinguished square we have the following
"generalized" Mayer-Vietoris long exact sequence:

... ̂  H^(X, F) ̂  H^(U, F) C H^(V, IQ ̂  H^(U Xx V, F)
Tl+lH^'(X,F)^...

Proposition 1.8. — Let S be a noetherian scheme of dimension ^ d, then for any sheaf of
abelian groups F on Sm/Sj^s one has H^y(S^ F) =0 for i > d.

Proof. — (Sketch) See [30, Lemma E.6.(c)] By induction assume that the
proposition is known for schemes of dimension less than d. The Leray spectral sequence
applied to the obvious morphism of sites {Sm/S)^ —> (Sm/S)^ar together with the
cohomological dimension theorem for Zariski topology implies that it is sufficient to
prove the proposition for local S. Let s be the closed point of S. Since the Nisnevich
sheaves associated with the cohomology presheaves I-P are zero for i> 0 we conclude
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that for any element a in H^(S) there exists an etale morphism V —> S such that
U = S — s and V form an elementary distinguished square and a\\ = 0. It follows now
from Remark 1.7 and the inductive assumption that for i > dim(S) we have a=0.
Finally let us mention the following fact.

Proposition 1.9. — For any sheaf of abelian groups F on {Sm/S)j^s and any n ^ 0 the
canonical morphism H .̂(S^ F) —> H^y(S^ ¥), where the left hand side refers to the Cech cohomology
groups, is an isomorphism.

Proof. — The proof is identical to the one given in [24, III. 2.17] for the
etale topology with the reference to [1, Th. 3.4(iii)] replaced by the reference to
[1, Th. 3.4(i)].

Example 1.10. — Let us give an example which shows that Proposition 1.9 is
false for Zariski topology. Let XQ , x\ be two closed points of A2 over a field k. Let S
be the spectrum of the semilocal ring of XQ , x\. Any Zariski open covering for S has a
refinement which consists of exactly two open subsets and therefore H^(S, F)=0 for
any F and any i> 1.

Let us show that there exists a sheaf F such that H^S, F) =|=0. Choose two
irreducible curves Cq, €3 on S such that Gi D C^ = {xQ, x\} and let U= S — (Cq U G2),
V=S — {xQy x\}. Denote the open embedding U — » S b y j and the open embedding
U —> V by j ' . We clain that H^S^Z)) ^O. Looking at the Mayer-Vietoris exact
sequence for the covering V = ( V — V n G i ) U ( V — V D €3) we get a canonical element
in ^(V.j^Z)) (since the intersection of these two open subsets is U) and looking at
the Mayer-Vietoris exact sequence for the covering S = (S — {^o}) U (S — {x\}) we get a
canonical element in H^S^Z)) =)=0 (since the intersection of these two open subsets
is V). One verifies easily that since the curves Cq, €3 are irreducible this element is
not zero.

Simplicial presheaves with the B.G.-property

For any presheaf F on {Sm/S)^ and any left filtering diagram Xa of smooth
schemes over S with affine transition morphisms and the limit scheme X we denote
by F(X) the set colimaF^Ka). For example, for any smooth S-scheme X and any point
x of X the set F{Spec ^x x) (^P- ^(Spec (9^ ^j) is the filtering colimit of the sets
F(U) over the categories of Zariski and Nisnevich neighborhoods of x respectively. The
family of functors F i—^ ¥{Spec ̂ ^) parameterized by all pairs (X, x) with X £ Sm/S
and x € X forms a conservative family of points of (&n/S)^ (use [13, IV6.5]). This
observation leads to the following "explicit" description of simplicial weak equivalences
in A°^((6m/S)^).
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Lemma 1.11. — A morphism F —» G of simplicial sheaves on Sm/S is a simplicial
weak equivalence if and only if for any smooth X over S and any point x of X the map
F(Spec (^^)) —^ G{Spec (^^)) is a weak equivalence of simplicial sets.

Definition 1.12. — A E.G. class of objects in Sm/S is a class ̂  of objects in Sm/S
such that:

1. for any X in ̂  and any open immersion U —> X we have U € ̂ ;
2. any smooth ^-scheme X has a Msnevich covering (see 1.2) which consists of objects in ̂ .

The basic examples we have in mind is the class of quasi-affine smooth S-scheme
and that of quasi-projective smooth S-schemes. If not otherwise stated, it will always
be understood that we consider the E.G. class of quasi-affine smooth S-schemes. Let
^ be any E.G. class of objects in Sm/S.

Definition 1.13. — A simplicial presheaf ̂  on {Sm/S)j^ is said to have the B.G.-property
with respect to ̂  if for any elementary distinguished square as in 1.3 such that X and V belong
to ̂  the square of simplicial sets

^T(X) ——> ^T(V)i i
(̂U) ——> ^(UxxV)

is homotopy cartesian.

Remark 1.14. — Note that the property of having the E.G.-property is invariant
with respect to weak equivalences of presheaves, i.e. if JK" —> J^' is a morphism of
simplicial presheaves on {Sm/S) such that for any U G ̂  the map of simplicial sets
^(U) —> <^'(U) is a weak equivalence then J^ has the E.G.-property with respect to
^& if and only if JT' has.

Remark 1.15. — For any simplicial sheaf ̂  and an elementary distinguished
square as in 1.3 the corresponding square of simplicial sets is cartesian (see Proposi-
tion 1.4). Thus if JT is a simplicial sheaf such that for any open embedding U —^ V
with V C ̂  the map of simplicial sets J^(V) —^ ^(U) is a fibration then JT has
the E.G.-property with respect to ̂ . For example a simplicially fibrant JT has this
property.

Proposition 1.16. — A simplicial sheaf ̂  on the category {Sm/S)^ has the B.G.-property
with respect to ^& if and only if for any trivial cofibration JT —> 3^' such that S^' is fibrant
and any U in ̂  the morphism of simplicial sets JT(U) —> ̂ '(U) is a weak equivalence.
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Proof. — The "if" part is trivial (see Remarks 1.14, 1.15). To prove the "only
if55 part we need an analog of [7, Theorem 1'] for Nisnevich topology. Let X be a
Noetherian scheme of finite dimension. Denote by X^, the small Nisnevich site of X
(i.e. the category of etale schemes over X considered with the Nisnevich topology).

A B.G.-functor on X^y is a family of contravariant functors T^ q ^ 0 from X^y to
the category of pointed sets, together with pointed maps <9^ : T^+i(U Xx V) -> T^(X)
given for all elementary distinguished squares in Xyv-y, such that the following two
conditions hold:

1. the morphisms Q(^ are natural with respect to morphisms of elementary
distinguished squares;

2. for any q ^ 0 the sequence of pointed sets

T^i(U Xx V) -. T,(X) -. T,(U) x T,(V)

is exact.

Lemma 1.17. — Let (T<p Qq) be a B.G.-junctor on X^, such that the Nisnevich sheaves
associated with T^ are trivial (i.e. isomorphic to the point sheaf pt) for all q. Then T =pt for
allq.

Proof. — Restricting Tg to the small Zariski site of X we get a family of
functors satisfying the conditions of [7, Theorem 1']. Thus it is sufficient to show
that Zariski sheaves associated to Ty's are trivial i.e. that for any point x on X we have
T^^(^x,.))=*- Let t<E T^c(^xJ) be an element and let V =Spec{^^ ,)-{x}.
Then dim(U) < dim(X) and by obvious induction by dimension we may assume that
T^(U)=* for all q. On the other hand since the Nisnevich sheaves associated to T.
are zero there exists an etale morphism p : V —> Speciex ^ which splits over x and
such that j&*(^) = *. Shrinking V we may assume that p~\x) —> x is an isomorphism and
therefore U and V form an elementary distinguished square which implies the result
we need.

The following lemma finishes the proof of Proposition 1.16.

Lemma 1.18. — Let S^ —^ ^ be a morphism of simplicial presheaves such that the
associated morphism of simplicial sheaves is a weak equivalence and suppose that both JT and ̂
ham the B.G.-property with respect to ^&. Then for any U in ^& the morphism of simplicial sets
^T(U) —> ^(U) is a weak equivalence.

Proof. — Consider the (simplicial) model category structure on the category of
simplicial presheaves A^Preshv^T) given by applying Theorem 1.4 to the site T with



102 FABIEN MOREL, VLADIMIR VOEVODSKY

the same underlying category as T but with trivial topology The axiom MC5 implies
that there exists a commutative square of simplicial presheaves

^ —— ^

S^' ——> ^'

such that for any smooth scheme U over S, the maps ^(U) —> ^'(U) and ^(U) —^
^<'(U) are weak equivalences of simplicial sets and the map ^T'(U) —^ ^'(U) is a
Kan fibration of Kan simplicial sets. Replacing JT, ̂  by JT', ^/ we may assume
that the maps JT(U) —> ^<(U) are Kan fibrations between Kan simplicial sets.

It is sufficient to prove that for any U in ̂  and x G ^<(U) the fiber K^(U)
of the map ^(U) —^^(U) over x is contractible (i.e. weakly equivalent to point
and in particular non empty). The simplicial presheaf V/U i-> K(V/U) on (6m/U)^,
clearly has the E.G.-property with respect to ̂ /^ which means that we may further
replace ^f by pt in which case we have to show that the (Kan) simplicial set JT(S) is
contractible.

Assume first that <^(S) =^0 and let a C ^(S) be an element. Consider the family
of functors T^ on S^y of the form

U^7C^(U)^|u).

It is a E.G.-functor and the associated Nisnevich sheaves are trivial since SK" —^ pt is
a weak equivalence. Contractibility of ^T(S) follows now from Lemma 1.17.

It remains to prove that ^(S) is not empty We already know that for any V/S
such that ^T(V) is not empty it is contractible. Let s be a point of S. Let us show first
that there exists an open neighborhood V of s such that ^(V) =t=0. We may clearly
assume that S is local and s is the closed point of S. Using induction by dimension of
S we may assume that ^(S — s) =f=0. Since the map J^ —> pt is a weak equivalence
there exists a Nisnevich neighborhood V of s in S such that ^T(V) =^0. Shrinking V
we may assume that the pair {S - s C S, V —> S} gives an elementary distinguished
square and therefore J^(S) =[=0 by the corresponding homotopy cartesian square.

To finish the proof of the lemma take U to be a maximal Zariski open subset
of S such that <^(U) ̂  (it always exist since S is noetherian). Assume that there
is a point s e S outside U. Then there exists an open neighbourhood V of s in S
such that ^(V) =)=0. Using the fact that J^ has the E.G.-property for the elementary
distinguished square formed by U and V we conclude that ^T(U U V) =^0, which
contradicts the maximality of U.

Functoriality in S

For any morphism of schemes/: Si —^ S2 the functor of base change gives a
continuous map of sites/: (6m/Si)^ —^ {Sm/S^. The following example shows that
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this map is not in general a morphism of sites, i.e. the corresponding functor of the
inverse image does not have to commute with fiber products.

Example 1.19. — Let A; be a field. Consider the morphism f\ Spec(k) —> A^ which
corresponds to the point 0. Let us show that the corresponding functor of inverse
image

/* : Shv^is(Sm/A1) —> Shvj^(Sm/K)

does not commute with fiber products. Let X=A2 which is considered as a smooth
scheme over A1 by means of the second coordinate. Let Y+, Y- be closed subschemes
of X given by the equations x-^-jy=0 and x—j=0 respectively. Note that there are
smooth over A1. Then Y+ XxY_ is the sheaf on Sm/A^ represented by the A ̂ scheme
of equation x=0, j /=0 in A2 which is empty. On the other hand/*(Y+)=/*(Y_)=^
and therefore/*(Y+) Xy^(x)y*(Y_) =pt which proves our claim.

(Note that the same setup may be used to show that the continuous map of sites
{Sch/k)j^s —> {Sm/fc)j^s is not a morphism of sites.)

Proposition 1.20. — For any morphism ofschemes f\ S\ —> 83 the corresponding continuous
map of sites (Sm/S\)j^s —> {Sm/S^is is reasonable (see 1.55). In particular the corresponding
junctor

R/, : J^((^/Si)^) -^ ^,{(Sm/S^)

has a left adjoint I^f* and for a composable pair of morphisms of schemes f, g one has canonical
isomorphisms of junctors between homotopy categories of the form

R(?o/)^R^oR/.
L^/r^LToL?*.

Proof. — It is clear that for any f and any simplicial sheaf J%" on (Sm/S\)^s
with the E.G.-property the sheaf^(Ji^T) on {Sm/S^)j^s also has the B.G.-property which
implies that f is reasonable by Proposition 1.16 in view of Definition 1.49.

Remark 1.21. — One can verify easily that the statement of Propositions 1.20
also holds in the Zariski and etale topologies. A general proof working for all three
cases can be obtained using the fact that in all of them there is a notion of the small
site over a smooth scheme X (Zariski, Nisnevich or etale) which has fiber products
preserved by the base change functors for arbitrary morphisms of base schemes.

Example 1.22. — In the notations of Example 1.19 consider the quotient sheaf
F=X/(Y_ UY+). We claim that the canonical morphism L/*(F) —> /*(F) is not a
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weak equivalence. Since the morphism Y_ UY+ —> X is a monomorphism on Sm/A^
the canonical morphism cone(Y_ ]JY+ —^ X) —> F is a weak equivalence. By Lemma
1.53 and Proposition 1.57(2) this implies that we have an isomorphism I/*(F) ^
^(/*(Y_[JY+) -^/*(X)) (in the homotopy category). Since/* (Y_ ]JY+) ->/*(X) is
clearly not a monomorphism the simplicial sheaf I/*(F) has a nontrivial Tli and in
particular is not weakly equivalent to/*(F).

Proposition 1.23. — L e t f : S ^ — > S ^ b e a smooth morphism. Then there exists a junctor
f# : Shv^{Sm/S\) —> Shv^is{Sm/S^) left adjoint to /* which has the following properties:

1. for a smooth scheme U over Si the sheaf f#(V) is represented by the smooth scheme U
over Sg;

2. for any sheaves F on Sm/S^ and G on Sm/S^ the canonical morphism f#{F x/*(G)) -^
/#(F) X G is an isomorphism.

Proof — Let (|)-V) : Sm/S^ -^ Sm/S^ denote the functor

(7C : V ̂  Si) ̂  (/O 7C : V -^ Sz).

This defines a continuous map of sites ())(/) : (6'm/S2)^ -^ GSm/Si)^ (cf 1) because
for any sheaf F on {Sm/S^ the presheaf U ̂  F^-V)^) is a sheaf on (5'm/Si)^
(the functor ^~\f) : Sm/S\ —> Sm/S^ sends covering families to covering families).
Correspondingly we have a pair of adjoint functors ((()(/))* and (())(/))* acting between
the corresponding categories of sheaves. One can easily see that (<))(/))*=/* and
therefore f# =((()(/))* is left adjoint to the inverse image functor/*. The properties of
f# stated in the proposition follow immediately from definitions.

Corollary 1.24. — Let f : S/ —> S be a scheme over S which is a filtering limit of
a diagram of smooth schemes over S with qffine transition morphisms (cf [15, 8.2]/ Then
f: {Sm/S^ —> (Sm/S)^is is a morphism of sites, and in particular (cf 1.47) the junctor /*
preserves weak equivalences.

Same argument as in the proof of Proposition 1.20 implies that the continuous
map of sites (()(/) : {Sm/S^ -> {Sm/S^ associated to a smooth morphism of schemes
/: Si —^ S2 is reasonable (^1.55). Therefore, the functor of inverse image /*=(())(/) )„
between the corresponding homotopy categories of simplicial sheaves has a left adjoint
which we denote by L/#. Note that the continuous map (|)(/) is not a morphism of
sites unless/is an isomorphism. The following example shows that the functor/^ does
not have to preserve weak equivalence.

Example 1.25. — Keep the notations of examples 1.19, 1.22. Let (|) denote the
morphism Y+[JY_ —^ X over A1 and \y : cone(^) —^ F the obvious morphism (of
simplicial sheaves); recall that \y is a simplicial weak equivalence. Consider now the
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projection p : A1 —^ Spec(K). The functor j&# commutes with colimits and therefore we
have

p^F)=A2/(AiUAl)

p#(cone(^) = cone{A111 A1 -^ A2).

Thus the morphism p#(^y) is not a simplicial weak equivalence since p#{^) is not a
monomorphism of sheaves on Sm/Spec(k) and therefore p#(cone(^)) has a nontrivial n^
while j^#(F) does not.

Proposition 1.26. — Z^j& : Si —> 83 ^ ̂  etale morphism. Then the junctor p# preserves
simplicial weak equivalences.

Proof. — For any site T and an object X in T the base change functor T/X —> T
is a morphism of sites and the corresponding inverse image functor Shv(T) —> 6%y(T/X)
has a left adjoint^ which preserves simplicial weak equivalences. It remains to observe
that for an etale p we have Sm/S\ ^ (Sm/S^)/S\.

The following proposition is a simplicial analog of the fact that the functor of
direct image for Nisnevich sheaves of abelian groups associated to a finite morphism
is exact.

Proposition 1.27. — Letf: S\ —> 83 be a finite morphism. Then the junctor f^ preserves
weak equivalences of simplicial sheaves. Thus, for any simplicial sheaf ̂  on {Sm/S^is the
canonical morphism f^(J^) —> R/̂ (J%") is a weak equivalence.

Proof. — Let a: J^ —> J^ be a weak equivalence. Let's show that the morphism
f^(d) is again a weak equivalence. Let U be a smooth scheme over 83 and u be a point
of U. Consider the point (U, %)* : F ^—> F(Spec^^ J of {Sm/S^is associated to the pair
(U, u). By Lemma 1.11 all we have to check is that the morphism

(u, «yv^)): (u, «r(/,(JTi)) ̂  (u, «rv,(̂ ,))
is a weak equivalence of simplicial sets. Since a scheme finite over a henselian local
scheme is a disjoint union of henselian local schemes one verifies immediately that for
any simplicial sheaf SK" one has (U, M)*(^(J5T)) = (U x^ Si, ^)*(^*) which implies that
the morphism in question is a weak equivalence.

3.2. The A^-homotopy categories

The A1-model category structure on ^Shv^Sm/S)

Let us recall the basic definitions of Section 3 in the context of the site with
interval {{Sm/S)^is? A1).
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Definition 2.1. — A simplicial sheaf ̂  on {Sm/S)^s u called A1 -local if for any simplicial
sheaf ̂  the map

Hwn^^/^' ̂  - ̂ w/s)J^ x Al- ̂ )

induced by the projection ̂  x A1 —» ̂  is a bijection.
A morphism of simplicial sheaves f\ '^ —> ̂  is called an A^-weak equivalence if for any

A}-local, simplicially jibrant sheafSs the map of simplicial sets

S(^ 3. ) ̂  S(J^ ̂ )

induced by f is a weak equivalence.
A morphism of simplicial sheaves f\ J%T —> ̂  is called an A^-fibration ifit has the right

lifting property with respect to monomorphisms which are A}-weak equivalences.

As was shown in Section 3 the classes of A1-weak equivalences, monomorphisms
and A^fibrations form a proper simplicial model structure on the category of simplicial
sheaves on {Sm/S)^s- The corresponding homotopy category, i.e. the localization of
the category of simplicial sheaves on {Sm/S)^ with respect to the class of A1-weak
equivalences is called the homotopy category of smooth schemes over S. We denote
this category by S^ (S).

Example 2.2. — For any vector bundle S over a smooth scheme X the morphism
S —> X is an A1-weak equivalence since it is a strict A ̂ homotopy equivalence.

Example 2.3. — Let T be a Zariski torsor for a vector bundle S over the smooth
scheme X over S. Then the morphism T —> X is an A1-weak equivalence. It follows
from Lemma 2.16 applied to the class C of sheaves represented by smooth schemes
over S which are affine (over Spec(Zi))y Example 2.2 and the fact that any such torsor
is trivial when the base is affine over Spec^E). More generally any smooth morphism
Y —> X of schemes which is a locally trivial fibration in the Nisnevich topology with
an A^contractible fiber is an A1-weak equivalence.

Example 2.4. — Let X be any scheme over S which is A1-rigid in the sense
that for any smooth scheme U over S the map Homs(U, X) —> Homs(U X A1, X) is a
bijection. Then the (simplicial) sheaf represented by X is A1-local and for any smooth
S-scheme U the map Hom^(\J, X) —> [U 5 X] is a bijection (use 1.14). For example any
smooth morphism X —> S whose fibers are either smooth curves of genus ^ 1 or the
affine line minus a point, is A1-rigid in this sense when S is integral.

Remark 2.5. — Assume S is local henselian (for example a field). Then it follows
from corollary 3.22 that for any simplicial sheaf J%", the map ^o(S) —> [S, ̂ ] is
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surjective. Thus to have an S-point is a property on a simplicial sheaf J^T which is
invariant under A1-weak equivalences.

Let A*i be the cosimplicial object in Sm/S given by

A!1 = s XSpec{Z} SpecZ[Xo, ..., Xn]/(^ Xi = 1)

with usual coface and codegeneracy morphisms. As was shown in [31] it is isomorphic
to the cosimplicial object constructed from the interval A1 by the procedure described
in Section 3. In particular the results of this section can be applied to the functor
Sing^(—) constructed by means ofA*i .

Choose a resolution functor (Ex(—)^ 6) (for the simplicial model category struc-
ture 1.6). Then set:

Ex^i = Ex o (Ex o Sing^ o Ex.

By Lemma 2.13 and Lemma 3.12 for any J^T the canonical morphism
J%" —> Ex^\(^r) is a monomorphism and an A1-weak equivalence. The following
lemma shows that this functor is indeed an A ̂ resolution functor.

Lemma 2.6. — For any simplicial sheaf ̂  the object Ex^\(^) is A^-jibrant.

Observe the difference with Lemma 3.20: co is choosen to be N and one has to
compose one more time with Ex to make sure the result is fibrant.

Proof. — It is sufficient to check the fourth condition of Proposition 3.19. Since
the site (iSm/S)^ is Noetherian and since all the objects (Ex o Sing^(Ex(JK")) have the
B.G.-property with respect to the class Sm/S, so does ^ ' :={ExoSing^(Ex(^)). Thus
from Proposition 1.16 it is sufficient to show that for any smooth S-scheme U and any
x : U —» JT' the maps TI;,(^'(U), x) —> ^(^'(U x A1), x) induced by the morphism
Id x {0} : U —> U x A1 are epimorphisms for all i^ 0. One then finishes exactly in
the same way as in the proof of Lemma 3.21.

The following example shows that for a sheaf of sets F the simplicial sheaf
Sing^(F) does not have to be A1-local.

Example 2.7. — Let S = Spec(K) where A; is a field. Consider the covering of
A^ by two open subsets Uo=A1 - {0}, Ui=A 1 - {1} and let Uoi=Uo H Up
Choose a closed embedding j' : Uoi — ^ A ^ for some n. Define F as the coproduct
F=(Uo x A") Uuoi (Ui x A") where the morphism Uoi —> U, x A" is the product ofj
with the open embedding Uoi —^ U,. Let X be a connected smooth scheme over k.
Then

F(X) = Hom(X, Uo x A") L^ ̂  Hom(K, V, x A")
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and since Hom(X x A1, Ui)=Hom(K, Ui) and the same holds for Uoi we conclude that
that Sing^(¥) is weakly equivalent to the sheaf A1 and therefore is not A1-local.

Let /: Si —^ 83 be a morphism of base schemes. For any smooth scheme U
over 82 we have^*(U X Al)=f*(^J) x A1. Therefore the functor L/* preserves A1-weak
equivalences and induces a functor on A^homotopy categories which we again denote
L/\ We also know that the functor R/, preserves A1-local objects and we denote the
induced functor on A^homotopy categories by R^^^e. Proposition 3.17 gives us the
following result.

Proposition 2.8. — For any morphism f: Si —> 83 the junctor RA^ is right adjoint to
L/'*. For any composable pair f, g ofmorphisms of base schemes there is a canonical isomorphism of
Junctors bewteen A^-homotopy categories of the form

R^o/^R^oR^.

Proposition 2.9. — Let f: Si —> 82 be a smooth morphism of schemes. Then the junctor
L/# preserves A}-weak equivalences and the corresponding functor between A^-homotopy categories is

left adjoint to the functor L î/* ^/*. In addition in this case the functor /* preserves A1 -local
objects.

Proof. — The projection formula for f# (1.23(2)) implies that for any simplicial
sheaf J^T on Si one has f#(^ x A{)=f#(Jy) x A1. Since ^{f) is a reasonnable
continuous map of sites (cf 3.16) Proposition 3.17 ((/also 1.23 and 3.15) implies our
result.

Example 2.10. — It is not true in general that the functor L/'* takes A1-
local objects to A1-local objects. Consider for example the canonical morphism
p : Spec(k[E]/{e2=0)) -^ Spec{k). The sheaf Gm represented by A1 - {0} on Sm/k
is A1-local. On the other hand Lj&*(G^) ^ p"(Gm) is the sheaf represented by
A1 - {0} on Sm/Spec{k[e\/(^=0)) which is not A^local since ^*(%^[£]/(e2 =0)))
^^*(^(yl[£]/(£2 = 0)) x A1).

The following example shows that the functors RA^ and R/, can be different
even for smooth morphisms^ i.e. the functor R^ does not preserve in general A1-weak
equivalences.

Example 2.11. — Let p : S\ —> S^ be a smooth morphism. Observe that for a
simplicially fibrant sheaf JST the sheaf Rj^*(Jir) is given by Hom(Sj, J3T). Thus to
show that the functor Rj^ does not preserve A1-weak equivalences it is sufficient to
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construct an A1-weak equivalence of fibrant simplicial sheaves J^TI —^ JS^ such that
Hom(S\, SK\) —> Hom(S\, £K\) is not an A^weak equivalence. Set 83 = Spec(K)^ Si = P1,
J^2 =PI . Let i: P1 — {0, oo} —> A2 be a closed embedding and

jo : P1 - {0, 00} -^ P1 - {0}
^ : P1 - {0, 00} ̂  P1 - {00}

be the obvious open embeddings. Set

^i =((P1 - {0}) x A2)^,,^,^1 - {oo}) x A2).

The obvious map J%^ —> P1 is an A1-weak equivalence but the map

Hom(P\ ̂ i) -^ 7fem(P1, ̂ 3)

is not since Ji^ is affine and thus Hom^P\ J%^)=J%"p

Proposition 2.12. — Let f'. Si —-^82 ^ a finite morphism. Then for any simplicial sheaf
J^T on Si ̂  canonical morphism R/̂ J^T) ̂  RA^(^%") zly (27Z A1 -weak equivalence.

Proof. — It is sufficient to show that R/,(^) —^ R/^.E^G^)) ls an A1-weak
equivalence. By 1.27 we may replace R/^ by^ and the right hand side is simplicially
weakly equivalent to colim^{{Exo Sing^1}. Using again 1.27 we see that it is sufficient
to show that for any J^T the map^(J%") —> f^{Sing^(^)) is an A1-weak equivalence. By
2.14 we reduce the problem to showing that^(J%") —>f^(Hom{An, ̂ *)) is an A^weak
equivalence which follows from the fact that this morphism is a strict A^homotopy
equivalence 3.7.

Consider the category ^Shv^Sm/S). of pointed simplicial sheaves in the
Nisnevich topology on Sm/S. Recall from 2 that a morphism of pointed sheaves is
said to be a fibration, cofibration or weak equivalence (simplicial or A1-) if it belongs
to the corresponding class as a morphism of sheaves without base points. Clearly this
definition provides us with model category structures which we will call respectively
the simplicial and A1-model structures on ^Shv^Sm/S). (see 2 for the simplicial
structure). We denote the corresponding homotopy categories by ^S »((<Sm/S)^) and
J^,(S) respectively.

Recall that the left adjoint to the forgetful functor A^Shv^Sm/S). —> A^Shv^Sm/S)
is the functor J^T i-̂  J^^. where <^+ is the simplicial sheaf J^T ]J S pointed by
the canonical embedding S —> J^ ]_[ S. Both functors preserve weak equivalences (as
well as weak A1-equivalences) and thus induce a pair of adjoint functors between
^.{(Sm/S)^) and ^((&n/S)^) (as well as between ^?.(S) and J^(S)).

For pointed simplicial sheaves ( ,̂ x), (^5^)5 recall from Section 2 that (J%^ x) V
(^^y} denotes their wedge and (J%^ x) A (^5^) their smash-product.
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The following lemma is an obvious corollary of the basic properties of A1-weak
equivalences.

Lemma 2.13. — Let f: (J%^ x) —>- (^,y) be a simplicial (resp. A1-) weak equivalence.
Then for any (Si, )̂ the morphism f A Id^ )̂ is a simplicial (resp. A}-) weak equivalence.

Lemma 2.13 implies in particular that the smash product defines a structure of
a symmetric monoidal category on «^^,(S).

For any pointed simplicial sheaf (J%", x) and any i > 0 we get three types of
presheaves of homotopy groups (or sets):

- the naive homotopy groups (or sets) 7C^(J3r, x)(U) = Ki(Jy(U), x)
- the simplicial homotopy group ^-(J^T, ^)(U) = 7C,(£^(^)(U), x)

- the A1-homotopy group nf\^ x)(U) = <G&AI WC11).^)

(all of which beeing independent up to isomorphism of presheaves of the choice of Ex
(see section 1)). We shall denote %(^ x) the sheaf associated to the presheaf ^(JT, x)

and an^ (J^T, x) the sheaf associated to the presheaf n^ (J%", x). Note that (^(J^T, x) is
isomorphic to the sheaf associated to the presheaf TC (̂J%", x) of "naive" homotopy

groups. We say that J%" is A1-connected if CT() (^} is the constant sheaf pt. The
following obvious result is a version of the Whitehead theorem in our setting.

Proposition 2.14. — Let f: (J%^ x) —>• (^,y) be a morphism of A}-connected pointed
simplicial sheaves. Then the following conditions are equivalent:

1. f is an A^-weak equivalence;

2. for any i^ 0 the morphism of the presheaves ofA1 -homotopy groups n^ (J^T, x) —>

S (^^J^) ts an isomorphism;

3. for any i > 0 the morphism of the sheaves ofA1 -homotopy groups an^ (J%", x) —>'

OKi (^,y) is an isomorphism.

Spheres, suspensions and Thorn spaces

Consider the following objects in A^Shv^Sm/S).:

S^ the constant simplicial sheaf corresponding to the simplicial circle A1/^1 pointed
in the obvious way;

S^ the sheaf represented by A1 — {0} pointed by 1;
T the quotient sheaf A1/(A1 — {0}) pointed by the image of A1 — {0}.
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The first two of them play the role of two circles in the homotopy theory of
schemes over S. We will use the following notations:

S^=(S,1)^
S^=(S^
T'w — T^Aw

s^=sr'As^.
Observe that the last one makes sense only for p ^ q ^ 0.

Lemma 2.15. — There is a canonical isomorphism in ^ ,̂(S) of the form

S,1 A S,1 ^ T.

Proof. — Consider an object J%" given by the cocartesian square

S; -^ (A',{1})

1 1
A,1 A S,1 ——> ^T.

Projecting A^ A S^ to the point we get a pointed morphism J^T —> T. Projecting
(A1 ; {1}) to the point we get a morphism J%" —^ S^ A S^. By Lemma 2.11 we
conclude that both morphisms are A1-weak equivalences (in fact the first one is a
simplicial weak equivalence).

We define three suspension functors on ^Shv^Sm/S). setting:

£,(J ;̂ x) = S,1 A {J^, x)

2^ x) = S,1 A ( ,̂ x)
ZT(^^)=TA(^;4

We will also use the obvious notations Z^, 2^, Z^ and S .̂ By Lemma 2.13 these
suspension functors define functors on 3^ ,(»S) and by Lemma 2.15 on the level of
A1-homotopy categories we have a canonical isomorphism of functor ZT r= ̂ s °^t-

Definition 2.16. — Let X be a smooth scheme over S and S be a vector bundle over X.
The Thorn space of S' is the pointed sheaf

Th{^) = TA(^/X) = ̂ /(^ - i(X))

z^A^ z': X —» ̂  £$• ̂  ^^ro section of S7.
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For any vector bundle S over X denote by P(^) -> X the corresponding
projective bundle over X.

Proposition 2.17.

1. Let <^p ^ ^ vector bundles on smooth ^-schemes Xi and ̂  respectively. Then there is
a canonical isomorphism of pointed sheaves Th(^ x ^/Xi x X^) = TA(^/Xi) A Th{^/X^).

2. Let ̂  ^ the trivial vector bundle of dimension n on X. Then there is a canonical
isomorphism of pointed sheaves Th(^) =S^X+.

3. Let S be a vector bundle over X and P(^) —^ P{^ © ̂ ) be the (closed) embedding
at infinity. Then the canonical morphism of pointed sheaves: P(^ © ̂ /P^) —> Th(S) is an
A}-weak equivalence.

Proof. — The only statement which may require a detailed proof is the last one.
Consider the open covering of P(^ © ̂ ) of the form

P(^ © ̂ ) = ̂  U (P(^ © ̂ ) - X)

where the closed embedding of X into P(^ © ̂ ) is the composition of the embedding
of S with the zero section.

It gives a cocartesian square of sheaves in the usual way such that in particular
we get an isomorphism of pointed sheaves of the form

TA(^) = P(^ © ̂ )/(P(^ © ̂ ) - X).

As the embedding "at infinity95 factors through P(^©^)-X, we thus get the required
morphism:

P(^ © ̂ )/P(^) ̂  Th(S\

In view of Lemma 2.11 it is sufficient to show that the embedding P(^) —>
P(^ © ^) - X is an A1-weak equivalence. But from [14, §8] we know that this
embedding is isomorphic to the zero section embedding of P(^) into the total space
of the canonical vector bundle of rank one over P(^). The proposition then follows
from 2.2.

Corollary 2.18. — The canonical morphism of pointed sheaves Pn/pn-^ ^ T" is an f^-weak
equivalence. In particular one has (P1, *) ^ T.

Remark 2.19. — In the above corollary the projective line was pointed by oo. Of
course one may use one of the three canonical base points oo, 0, 1 of the projective
line because the corresponding pointed projective lines are isomorphic.
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Example 2.20. — Another example of a sphere in our theory is, for each n ^ 1,
A" — {0, ...,0}. One can show easily that there is a canonical isomorphism (in J^,(S))
of the form

A' - {0,.., 0} ̂  (S,1)'-1 A (S,1)" = S2'-15'.

Gluing, homotopy purity and the blow-up square

All the results proven so far about S^ (S) would also hold (with some obvious
changes) if we were to consider Zariski topology instead of the Nisnevich one. The
results of this section require the topology to be at least as strong as the Nisnevich
one. The first of them (Theorem 2.21) also uses in an essential way the fact that we
are working with the category of smooth schemes over S.

Recall that S is a Noetherian scheme of finite dimension. Let i : Z —> S be
a closed embedding and j : U —^ S be the complimentary open embedding. For any
simplicial sheaf JK" we have a canonical commutative square in the simplicial homotopy
category of the form

(Lj#)/^ ——> ^i i
U ——. 4Lz*(^T).

This square is the simplicial analog of the sequence

0-^,/F^F^fF^O

the exactness of which for sheaves of abelian groups on small sites plays major role
in the gluing theory for such sheaves. Analogous to this exactness property would be
the property of our square to be (homotopy) cocartesian - however, one can easily
see that this square is not homotopy cocartesian in ^^{Sm/S)^s). The problem has
nothing to do with the fact that we are working with simplicial sheaves and not with
sheaves of abelian groups but comes instead from the fact that we are working with
big sites and not with the small ones. If we were to consider simplicial sheaves on
the small Nisnevich site Sj^s it would disappear, i.e. the corresponding square would
be (homotopy) cocartesian. The following Gluing Theorem shows that this problem
disappears once we pass to the A1-homotopy category. Observe that this theorem is
very sensitive to the choices which one makes to define 3^ (S). It would become false
if we were to take Zariski topology instead of the Nisnevich or if we were to consider
the category of all schemes of finite type over S instead of the category of smooth
ones.
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Theorem 2.21. — For any simplicial sheaf J^ the square

(L/#)/JT —. jr
[ [u -^ ww

is homotopy cocartesian in S^ (S).

Proof. — It is clearly sufficient (using resolution lemmas) to show that for a smooth
scheme X over S the canonical morphism of sheaves X UxxsU U —> ^(X Xs Z) is an
A1-weak equivalence. By Lemma 2.16 it is sufficient to verify that for a smooth scheme
Y over S and a section Y —^ ^(X Xs Z) the projection (X UxxgU U) Xz.(XxsZ) Y —> Y is
an A1-weak equivalence.

A section of ^(X Xs Z) over Y is by definition a morphism (|) : Y Xs Z —> X over
S. Consider the sheaf 0(xxsY,<t)) on (6'w/Y)^ such that O(XXSY,(I))(W/Y) is the subset
of the set of morphism W —> (X Xs Y) over Y whose restriction to W Xy (Z Xs Y)

coincides with W x g Z - ^ Y x s Z - ^ X . If j&y : Y -> X is the canonical morphism
then O&Y)#(O(XXSY,(|))) is isomorphic to the fiber product Xx^(xxsZ)Y and the morphism
(X UxxsU U) Xi,(XxsZ) Y —> Y is isomorphic to the (py)# of the canonical morphism

^(XxsY, ̂  UxxsUxsY (U Xs Y) -^ Y

in {Sm/Y)^. By Proposition 1.26 the functor Lj# coincides with j# and in particular
j# preserves A1-weak equivalences. Thus it remains to show that the morphism
^(XxsY,^) UxxsUxgY (U Xs Y) —» Y is an A^weak equivalence over Y.

For simplicity of notations we may assume now that Y = S. Denote the sheaf
^pe,^) Uxu U by ^(x,())). We want to show that the canonical morphism ^(x,^ —> S
is an A1-weak equivalence for any smooth X over S. The following lemma follows
immediately from the fact that we are using Nisnevich topology and therefore it is
sufficient to compare the sets of sections of our sheaves over henselian local schemes.

Lemma 2.22. — Let p : X —> X' be an etale morphism such that the map
J^OW^))) —> <!>(Z) is a bijection. Then the morphism of sheaves ^(x,^ —> ^(x',^) on
{Sm/S)j^is is an isomorphism.

We can clearly assume now that S is henselian. Then, (|) can be extended to a
point x : S —> X of X and since (X, x : S —> X) is a smooth pair there exists an etale
morphism p : X -^ A^ such that p~\{0}z)=^(Z). By Lemma 2.22 we conclude that

^(x,^ is isomorphic to ^V^n ̂ )==Y^ It remains to observe that ^i ^ $^1 o) in

J%'(S) and the latter sheaf is strictly A^homotopy equivalent to the point.
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Theorem 2.23. — Let i''. Z —^ X be a closed embedding of smooth schemes over S. Denote
by Nx,z —>> Z ̂  normal vector bundle to i. Then there is a canonical isomorphism in ^?,(S) of
the form

X/(X-i(Z))^7%(Nx,z).

Proof. — Denote by px, z : B(X, Z) -^ X x A1 the blow-up of i(Z) x {0} in X x A1.
We have a canonical closed embedding ̂ z : Z x A1 —^ B(X, Z) which splits j&x^z
over z(Z) x A1 and a canonical closed embedding ̂ z ^ X —^ B(X, Z) which splits j&x^z
over X x {1}. There is a canonical isomorphism p~\i(Z) x {0}) ^ P(N © ̂ ) which
induces an isomorphism (p~\i{T) x {0}) -/(Z x {0})) ^ P(N © ̂ ) - P(^) and thus
an isomorphism of pointed sheaves

TA(N) ^-'(^(Z) x {O^/r^Z) x {0}) -/(Z x {0}))

(we ommited the index (X, Z) for simplicity of the notations). Since we have

^X)n/(ZxA')=^-(Z))
j&-'(i(Z) x {0}) n/(Z x A') =/(Z x {0})

we get two monomorphisms:

]x,z : X/(X - Z) -^ B(X, Z)/(B(X, Z) -/(Z x A1))
ax,z : 7%(Nx,z) ̂  B(X, Z)/(B(X, Z) -/(Z x A1)).

Theorem 2.23 is then a consequence of the following:

Proposition 2.24. — Let i'.: Z —^ X 6^ a ^foW embedding of smooth schemes over S. TA^z

^ fe^o morphisms g^,z ^d o^x,z fl^ A}-weak equivalences.

To prove this proposition, we proceed in several steps. Let's recall first some well
known facts. Let X be a smooth S-scheme and X —> Ax the zero section. Then the
blow-up of X in A^ is isomorphic to the total space E(X,^ )=(A" — {0})x XomA 1 of
the canonical line bundle Ax over P^ ; indeed almost by construction, this blow-
up, denoted Y, is isomorphic to the closed subscheme of A" X P""1 X X given by
the equations Xi.yj = xj.yi where ^ are the coordinate functions of A^ and jj are the
standard sections of the canonical vector bundle of rank one over P"^ . Then the
obvious morphism

E^x'^A'xP"-1 x X

is seen to be an isomorphism. One easily deduces:



116 FABIEN MOREL, VLADIMIR VOEVODSKY

Lemma 2.25. — For any smooth S-scheme X and any n ̂  1^ ^o^ by p : E —> Ax ̂

blow-up o^X ZTZ Ax (where X ^ embedded via the ^ero section). Then the canonical morphism
q '. E —>• P^ Aaj the following properties:

1. &^ z : Ax —^ E be the closed embedding which corresponds by the universal property of
blow-ups to the embedding Ax —)> Ax of the form t ^—> (0^...^0^ ^). TA^z the following square is
cartesian

A^ —^ E

1 1
„ (0, . . . ,0 ,1) n-\X ————> FX

(%^ the left vertical arrow is the canonical projection and the right one is q);
2. the restriction of q to p^fX) coincides with the canonical isomorphism ̂ (X) —> P^~ .

In order to prove Proposition 2.24 let's first prove a particular case.

Lemma 2.26. — For any smooth ^-scheme X and any n ^ 0 the Proposition 2.24 holds
for the closed embedding X —> A^ corresponding to the (ft, ...,Q)-section.

Proof — Consider the projection B(A^, X) —> P^ given by the identification of
B(A^ X) with E(^) (see above). By the first point of Lemma 2.25 above, it maps
B(A^5 X) — {0,..., 0} X Ax to P^ — X^ and both of these maps are projections from a
vector bundle and thus A1-weak equivalences by Example 2.2. Therefore the morphism

q : B(A^ X)/(B(A^ X) - {0,.., 0} x Ax) ̂  PX/(P^ - X)

is an A1-weak equivalence. It is then clear that c/ o a is the canonical isomorphism of
sheaves so that a is an A1-weak equivalence.

On the other hand composing our projection with the immersion g : Ax —>
B(AX,X) we get the canonical (open) embedding A^ —> P^ which takes { O ^ . - . ^ O } to
the class of {0,...,0, 1}. Thus by Lemma 1.6 the corresponding morphism

A^/(A^-{0,..,0}x)-P^/(P^-X)

is an isomorphism which proves that g is also an A1-weak equivalence (in fact we have
proven that c/ o g and q' o a are both isomorphisms).

Let (|) : U —> X be an etale morphism. Denote (^(Z) by Zu. Since all our
constructions commute with base changes along etale morphisms for any such (|) we
have a commutative diagram
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^U,ZTJ «U ZTT
U/(U-Uz) ——. B(U,Zu)/(B(U,Zu)-/(ZuxA1)) ^ Th(N^,^)1 . 1 i
X/(X-Z) ^ B(X,Z)/(B(X,Z)-/(ZxA1)) ^ 7%(N^ ̂

and one can verify immediately that the following statement holds.

Lemma 2.27. — Let ^ : U —> X be an etale morphism such that the morphism Zy —> Z
is an isomorphism. Then the vertical arrows in the diagram presented above are isomorphisms. In
particular proposition 2.24 holds for Z —^ X if and only if it holds for Zy —> U.

Lemma 2.28. — Let i '. Z —» X ^ a closed embedding such that there exists an etak
morphism q : X -> A^ J^A ̂  i{Z)=q~\An~c x {0,.... 0})^r jw^? c. 77^ Proposition 2.24
holds for i.

Proof. — Consider the fiber product X x^n (Z x A^) where the morphism
Z x A' -^ A" is (^ o i) x Id. The fiber of the projection X x^n (Z x A') -^ A" over
A^x {(),...,()} is the closed subscheme Zx^n-cZ ofXx^(ZxA^). Since the morphism
Z —» A""^ is etale, this fiber is disjoint union of the image of the diagonal embedding
A : Z —> Zx^n-cZ and a closed subscheme Y (which is thus also closed in Xx^ZxA^)).
Set U = X x^n (Z x A') — Y. We have two etale projections

pr^ : U -^ X
pr^ '. U -^ Z x A'

such that pr^(i(Z)) —> i{Z) and pr^\Z x {0}) —> Z x {0} are isomorphisms. The
statement of the lemma follows now from Lemmas 2.27, 2.26.

To prove the general case we proceed as follows. Fisrt of all since Z —> X is a
closed embedding of smooth schemes there exists a finite Zariski open covering X = UU^
such that for any i the embedding Z HU,• —> U^ satisfies the condition of Lemma 2.28.
Note also that if this condition holds for Z —> X it also holds for Z H U —>- U where
U is any open subset of X. In particular, it holds for all intersections of the form
U^ n ... nU^. Consider the simplicial sheaf J^ with terms of the form (UU,)^1. It
maps to X and by Lemma 1.15 this map is a simplicial weak equivalence. We also
have a simplicial sheaf ̂  with terms (UCU^nZ))^1 and we can form a simplicial sheaf
^ applying the construction of B(X, Z) termwise to the closed embedding ̂  —> ̂ .
It gives us a commutative diagram
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jr/(JT-^) ̂  ^/{J9-f{S. xA 1 ) ) ^ TA(N^^)

I ^ 1 ^ !'
X/(X-Z) ^ B(X,Z)/(B(X,Z)-/(ZxA1)) ^ 7%(Nx,z)

where the vertical arrows are simplicial weak equivalences by Lemma 2.11 and the
upper horizontal ones are A*-weak equivalences by Lemma 2.28 and Proposition 2.14.
Therefore the lower horizontal arrows are A*-weak equivalences, which finishes the
proof of Proposition 2.24.

Proposition 2.29. — Let i : Z —r X be a closed embeding of smooth schemes over S,
p : Xz -> X be the blow-up ofi(Z) in X and V =X - i(Z) =Xz - p~\i{T)\ Then the square

p-\Z) -^ Xz/U

1 1
Z ——> X/U

is homotopy cocartesian, ie. the morphism (Xz/U)!]^-^)7 —> x/u is an ^-weak equivalence.

Proof. — Applying the same technique as in the proof of Theorem 2.23 one
reduces the problem to the case of the embedding S —> A^ corresponding to the point
(0,...,0). Then our result follows from Lemma 2.25.

Remark 2.30. — We do not know whether or not under the assumptions of
Proposition 2.29 the square

^-i(Z) —— Xzi \
Z ——> X

is homotopy cocartesian. However, Proposition 2.29 does imply that the following
diagram of pointed simplicial sheaves is homotopy cocartesian

^-'(Z)^ ——. 2,((Xz)+)

1 1
£,(Z^) ——. Z,(X+).
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3.3. Some realisation junctors

G-equivariant homotopy categories of spaces

Let G be a finite group and A°^(G — Sets) be the category of simplicial G-sets.
Define two types of weak equivalences in A°^(G — Sets) as follows:

- a coarse weak equivalence is a G-equivariant morphism which is a weak
equivalence in A^Sets,

- a fine weak equivalence is a G-equivariant morphism/: X —> Y such that for
any subgroup H of G the morphism X" -> Y11 is a weak equivalence in A^Sets.

The localizations of A^(G — Sets) with respect to these two types of weak equiv-
alences are called the coarse and fine G-equivariant homotopy categories respectively
and are denoted by ^(G) and J^ (G). Clearly for G = e the two types of weak
equivalences coincide and the resulting homotopy categories are both equivalent to the
usual homotopy category ̂  .

We are going to show now how the categories ,̂(G) and S^r (G) can be
described as homotopy categories of appropriate sites with intervals.

Definition 3.1. — Let T be a topological G-space. We say that an open covering T = UU,
is good if all the open subsets U^ are G-invariant and for any i the map Vi —> TCo(U^) is a
G-homotopy equivalence. We say that a G-space T is good if any covering of T by G-invariant
open subsets has a good refiniment.

Denote the category of good G-spaces and G-equivariant continuous maps by
G — Tic. We define the coarse (c) and fine (f) topologies on G — Tic as follows:

— a coarse covering is a G-equivariant morphism X —> Y such that for any point jy of
Y there exists an open neighborhood U ofy in Y such that the projection XxyU —> U
splits as a morphism of topological spaces;

— a fine covering is a G-equivariant morphism X —f Y such that for any point y
of Y there exists a G-invariant open neighborhood U o f ^ i n Y and a G-equivariant
splitting of the projection X Xy U —> U.

Example 3.2. — The morphism G —> pt is a coarse covering but a fine covering
only for G the trivial group.

In the case when G = e the fine and coarse topologies coincide and are equivalent
to the usual open topology We denote in this case the category G — Tic by Tic and
the topology by Op. Note that Tic is precisely the category of locally contractible
topological spaces.
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Proposition 3.3. — Let G be a finite group and I1 be the unit interval which we consider
as a G-space with trivial G-action. Then there are canonical equivalences of homotopy categories

^((G-T/^I^J^G)

^ ((G - T%, I1) ̂  ̂  (G).

Proof. — Every G-set may be considered as a topological space with the discrete
topology which gives us functors

7i* : A^(G - Sets) -^ ^(Shv,(G - Tic))
TC* : A^(G - Sets) -^ ^(Shvf (G - Tic))

(where the latter one is just the composition of the former one with the embedding
^(Shv,(G - Tic)) -^ ^{Shvf (G - Tfc))). One can check easily that the first functor
takes coarse weak equivalences to simplicial weak equivalences in ^(Shv^G — Tic))
and the second one takes fine weak equivalences to simplicial weak equivalences in
A°^Sfoy-(G—Tfc)). We claim that they define the required equivalences. In what follows
we consired only the case of the fine topology. The coarse topology is analized similarly.
Note first that any object in the image of 7l* is I1-local and that the functor

TC* : ̂ (G) -^ ^,{Shvf{G - Tic))

is a full embedding. Thus, the only thing we have to show is that any simplicial sheaf
on Shvf (G — Tic) is I ̂ weakly equivalent to a simplicial sheaf which belongs to the
image of TC*.

Our definition of a good G-space together with Lemma 1.16 implies that any
simplicial sheaf J%" on (G — Tfe)y is simplicially weakly equivalent to a simplicial sheaf
jy whose terms are direct sums of sheaves represented by G-spaces Ua such that
Ua —^ 7Co(Ua) is a G-homotopy equivalence. Applying the functor KQ to J K ' ' termwise
we get a new simplicial sheaf 7l;o(^0 which clearly belongs to the image of TC*. On
the other hand the morphism ^ ' —^ 7Co(^0 is an I1-weak equivalence termwise and
therefore an I1-weak equivalence "globaly55 by Lemma 2.14 which finishes the proof
of the proposition.

C-realizations - definition and examples

Consider the category Sm/C of smooth schemes over C. The functor ̂ { : X\—>
X(C) defines a continuous map of sites (|)c : (Tlc)op —> {Sm/C)^.

Lemma 3.4. — The map of sites ^c : (Tfc)^ —^ {Sm/C)^ is reasonable (see Definition
1.55).

Proof. — Follows easily from Proposition 1.16.
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Since A^C) is contractible and the functor ̂  commutes with products (|)c is
a reasonable continuous map of sites with intervals (Definition 3.16) ((Tfc)^,!1) —>
((&n/C)^, A1). By Proposition 3.17 we conclude that there exists the functor of total
inverse image L(|>c which we denote by t°. By Proposition 3.3 it takes values in the
usual homotopy category S^S .

More generally for any base scheme S and a C-point x : Spec{C) —> S we have a
functor of C-realization

t° :J^(S)^J^

defined as the composition 1° o Ly*. Using Proposition 1.57(2) one can easily see
that for any simplicial scheme ^T on Sm/S the value of t0 on S^ is the class of
the geometrical realization of the simplicial toplogical space ^(C) in S^ . Note in
particular that one has canonical isomorphisms in S^ of the form

(̂S,1) ^ S1

^) ̂  S1

and

^(BG)^B(G(C))

for any smooth group scheme G over S.

R-realization — definition and examples

Consider the category Sm/'R of smooth schemes over R.

Lemma 3.5. — Let X be a smooth scheme over R. Then the topological space X(C)
considered as a Z/2-space with respect to the complex conjugation action is good (see 3.1).

Lemma 3.5 shows that we have a functor ^ : Sm/T^ —> Z/2 — Tic which
takes a smooth variety X over R to the space X(C) where Z/2 acts by the complex
conjugation.

Lemma 3.6. — The junctor ^ defines a reasonable continuous map of sites (|)R :
{Z/2-Tlc)^{Sm/K)Ms.

Proof. — To show that (|)R is indeed a continuous map of sites, i.e. that for any
sheaf F on (Z/2 — Tfe)y the presheaf ((|)R^ on Sm/S is a Nisnevich sheaf it is sufficient
to verify that for an elementary distinguished square as in 1.3 the corresponding
morphism U(C)I_[V(C) —> X(C) is a covering in the fine topology This is an easy
exercise. The fact that (|)R is reasonable follows from Proposition 1.16.
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Since A^R) is contractible and the functor ̂  commutes with products (|)R is a
reasonable continuous map of sites with intervals (Definition 3.16) ((Z/2 — Tfc)y, I1) —>
((kSw/R)^, A1). By Proposition 3.17 we conclude that there exists the functor of total
inverse image L(|)R which we denote by ^R. Bt Proposition 3.3 it takes values in the
fine Z/2-equivariant homotopy category J%.(Z/2).

More generally for any base scheme S and an R-point x : Spec(JK) —> S we have
a functor of R-realization

^:^(S)^J^(Z/2)

defined as the composition ^oL^*. Using Proposition 1.57(2) one can easily see that
for any simplicial scheme 3F on Sm/S the value of t0 on ^ is the class of the
diagonal simplicial set of the bisimplicial set Sing{jy(C)) in J^r(Z/2).

4. Classifying spaces of algebraic groups

This section may be considered as an illustration of how one applies the general
technique developed above. Its main results are Proposition 2.6, Theorem 3.13 and
Proposition 3.14. Proposition 2.6 provides in particular a geometrical construction of
a space which represents in S^S (S) the functor H^(— 5 G) for etale group schemes G
of order prime to char(S). Theorem 3.13 shows that algebraic K-theory of a regular
scheme S can be described in terms of morphisms in J%7 (S) with values in the
infinite Grassmannian. Finally Proposition 3.14 shows how one can use A1-homotopy
theory together with basic functoriality for simplicial sheaves on smooth sites to give a
definition of Quillen-Thomason K-theory for all Noetherian schemes.

4.1. Generalities

Classifying "spaces" of groups and monoids

In this section we prove some general results on the classifying spaces of sheaves
of groups and monoids on a fixed site T.

If jy is a simplicial sheaf (of sets) we denote by ^Mon(^} (resp. F(^)) the free
sheaf of simplicial monoids on J%"'. We say that a simplicial sheaf of monoids M is
termwise free if any term M^ is a free monoid on a sheaf of sets. The same terminology
is used for sheaves of simplicial groups.

We denote the category of sheaves of monoids (resp. groups) on T by Mon(T)
(resp. Gr(T)) and M ̂  ]VT, A^Mw(T) -» A^G^T) the group completion functor, left
adjoint to the inclusion A^Gf(T) -^ A^M<T).

Using the same technique as in the proof of 1.16 (applied to the class of free
monoids on representable sheaves) one gets:
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Lemma 1 .1 . — There exists a junctor

<S>Mon : Mon^Shv^)) -^ Mon^Shv^T))

and a natural transformation 0>Mon —^ Id such that for any sheaf of simplicial monoids M one has:

1. for any i ^ 0 the sheaf of monoids OM (̂M)̂ - ^ freely generated by a direct sum of
representabk sheaves (in particular <Î (M) is termwise free);

2. the morphism <I>,̂ z(M) —> M is a trivial local fibration (as a morphism of simplicial
sheaves).

More generally, any morphism g : F —^ M of simplicial sheaves of monoids, with F
termwise freely generated by a direct sum of representabk sheaves, admits a functorial factorisation:

F -^ ^Mon(g) -^ M such that:

1. for any i ^ 0 the sheaf of monoids ^>Mon(g)i ls fr^ly generated by a direct sum of
representabk sheaves;

2. the morphism pg : ^Mon(g) —> M u a trivial local fibration (as a morphism of simplicial
sheaves).

(Observe that the first part is a particular case of the second one by setting
$M.(M):=OM.(0-^M).)

Let M be a sheaf of simplicial monoids on T. We define the classifying space
BM of M as the diagonal simplicial sheaf of the bisimplicial sheaf which maps U to the
bisimplicial set BM(U) : n i—> N(M^), where N(M^) is the nerve of the category associated
to the monoid M^. It has terms (M^ for i ^ 0 (with the convention that (Mo)° =pt)
and faces and degeneracy morphisms defined in the usual way using diagonals and
product ([27]).

There is a canonical morphism of pointed simplicial sheaves of sets Sj(M) —> BM
which defines a morphism:

M-^(BM)

where ^(—) is the right adjoint to S/—). This morphism is seen to be a weak
equivalence when M is a simplicial sheaf of groups, using points of T and the
corresponding fact in the category of simplicial sets. We denote RI2^(—) the total
right derived functor of ^(—) which is right adjoint to the suspension functor in the
pointed simplicial homotopy category. R^(-) is thus the functor ^,(T) —^ J^,(T)
induced by the functor ̂  o Ex (which preserves weak equivalences).

Lemma 1.2. — Let M be a termwise free sheaf simplicial monoids. Then the morphism

BM -^ B(M^



124 FABIEN MOREL, VLADIMIR VOEVODSKY

is a weak equivalence. Thus, there is a canonical isomorphism in J^,(T) of the form

M^ ^ Ra^BM.

Proof. — Using the fact that the morphism is the diagonal of an (obvious)
morphism of bisimplicial sheaves with terms of the form: B(M^) —> B(M^•)+ one easily
reduces to the case M is simplicially constant which follows, using points of T, from
the analogous statement for simplicial monoids of sets.

The following proposition is nontrivial because the functor of total inverse image
does not commute in general with the loop space functor.

Proposition 1.3. — Letf'. T\ —> T^ be a reasonable morphism of sites. Assume in addition
that T2 has products (but not fiber products!) and that the junctor f~{ commutes with them. Let
further M be a sheaf of simplicial monoids on T^ such that all the terms M, of M considered as
sheaves of sets are direct sums of representable sheaves. Then there is a natural (in ^A.) isomorphism
in J^,(Ti) of the form

L/*(R(^)(BM)) -^ R(^)B(T(M)).

Proof. — Using Lemma 1.1 and Proposition 1.57(2) we may assume that each
term of M is the sheaf of monoids freely generated by a direct sum of representable
sheaves of sets. Since f~^ commutes with products of representable sheaves /*(M)
is again a monoid with the same property. By Lemma 1.2 it remains to define an
isomorphism L/*^) -^ (TW'. We clearly have ^(M))"" ̂ (M-") which means by
Proposition 1.52 that all we have to show is that M^ is admissible with respect to/
(see Definition 1.49). This follows from Proposition 1.54 and the lemma below.

Lemma 1.4. — Let U be a direct sum of representable sheaves. Then the free group F(U)
generated by U is admissible with respect to f.

Proof. — We are going to prove our result inductively using Lemma 1.53. Let /N
be the subsheaf in F(U) which consists of words of length less than or equal to N5 i.e.
/N is the image of the canonical morphism

U U'1 x U71 x ... x V^ x LP- -^ F(U)
(^'iJi.-.w'J

where the coproduct is taken over all sequences such that 4,j/ > 0 and ̂ i\ +^Ji ^ N
for N > 0 and IQ =pt.

Using Lemma 1.53(1) we see that it is sufficient to prove that for each N the
sheaf /N is admissible with respect to / We already now that it is true for N = 0. For
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N= 1 we have /N=^UU]JU which is admissible. Consider the diagram

/N-I x U /N_i x U
/ \ / \

/N X U /N /N X U

\ ^ ^ \ ^

^N+1 ^N+1

\ ^

^N+1

where ̂  and ^+1 are defined by the condition that the corresponding squares are
cocartesian, /N_i —> /N+i is the obvious inclusion and two morphisms /N-I X U —> /N+i
are given by {x, a) ̂  m and {x, a) ̂  xa~1 respectively One can easily see that for
any N > 1 the lower square is also cocartesian (which is equivalent to the fact that
VL xa^yb~^ then there exists a word w of length ^ N — 1 such that x= wa~^,_y=wb).
Under our assumption on / the functor of the inverse image commutes with products
it thus follows easily from 1.52 that the product of any admissible simplicial sheaf
with U is still admissible. Thus by induction and Lemma 1.53(2) it suffices to verify
that/*(/N-i) —^/^N) is a monomorphism which can be easily done using the same
diagram.

Lemma 1.5. — Let i : A —> B be a monomorphism of simplicial sheaves which is a
(simplicial) weak equivalence. Then F^(z) (resp. ¥{i)} is a simplicial weak equivalence. Moreover
given any morphism of simplicial monoids FM^(A) —> M the morphism of simplicial monoids
M —> £ from M to the amalgamated sum I. of M and FM^(B) over FM^(A) is also a weak
equivalence.

The analogous statement holds for simplicial sheaves of groups instead of simplicial sheaves of
monoids.

Using points, it is sufficient to check it for T = Sets in which case it is not difficult,
using the results of [26, 11.4].

As was shown byjardine ([18, Lemma 2.4]) there exists a subset Bo in C DW,
such that a simplicial sheaf ^ is simplicially fibrant if and only if the projection
^T —> pt has the right lifting property with respect to morphisms in Bo. Using
the standard transfinite analogue of the small object argument (see the method after
Corollary 2.18) and previous Lemma one gets:

Lemma 1.6. — There is a functor £^(-) : A^M<T) -^ A^M<T) (resp.
Ex^-) : A^G^T) -^ ^Gr(T)) and a natural transformation 9^ : Id -^ ExMon (resp.
Q^ : Id -^ Ex^) such that for any M G A^M<T) (resp. € A^T)J then £^(M) (resp.
£^(M); is a fibrant simplicial sheaf and '̂(M) (resp. ^(M); a (simplicial) weak equivalence.
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Assume now that I is an interval on T (3). Using the previous Lemma, the fact
that the functor Sing^ preserves finite products 3 and the same method as in the proof
of Lemma 3.21 one obtains:

Lemma 1.7. — There is a functor Ex^0^-) : ^Mon(T) -^ A^Mw(T) (resp.
Ex^(-) : A^GT<T) -^ ^GT(T)) and a natural transformation 9^ : Id -^ Exf' (resp.
9^ : Id -^ Ex^) such that for any M G A^M<T) (resp. € A°^T)J then Exf'fM) (resp.
Ex^(M)} is afibrant 1-local simplicial sheaf and Q^^M) (resp. Q^(M)} an 1-weak equivalence.

Group completion of graded pointed simplicial monoids

Definition 1.8. — A pointed simplicial sheaf of monoids (on T) is a pair (M_, a) consisting
of a simplicial sheaf of monoids M on T and a morphism a: N —> M (in ^Mon^Shv^!))). A
graded pointed simplicial sheaf of monoids is a triple (M, a,/) consisting of a pointed simplicial
sheaf of monoids (M, a) together with a morphism (in ^ Mon[Shv^T))) f: M —^ N such that
foa=Id.

Let (M, a, /) be a graded pointed simplicial sheaf of monoids. Set M^ =f~l(n).
Multiplication with a(l) gives morphisms M^ —> Mn+\ and we set Moo to be the colimit
of the corresponding system.

The triple (<&Mw(oc), a,/oj^) is also a graded pointed simplicial sheaf of monoids.
For simplicity, let % denote from now on the simplicial sheaf of monoids ^MonW- Each
of the morphisms pn : Sin —^ M^ being the pull-back of a trivial local fibration is again
a trivial local fibration and thus the obvious morphism Ktoo —> M^ is a colimit of
weak equivalences and therefore a weak equivalence 2.13. Consider now the group
completion M'̂  and let q: Moo x Z —> 'S/L^' be the map

(xn,m) ̂ a^x

where Xn € f^n and m € Z. We have the following diagram:

Moo x Z ——> ^i i
Moo x Z R^B(M)

where the vertical arrows are simplicial weak equivalences (the right hand side
one by Lemma 1.2) and therefore we get a canonical morphism of the form
Moo x Z —> Rt^B(M) in the pointed simplicial homotopy category of T.

Proposition 1.9. — Let (M^ a^/) be a graded pointed simplicial sheaf of monoids and
assume in addition that



A1-HOMOTOPY THEORY OF SCHEMES 127

1- %(/) : %(M) —^ N z.5- a bijection;
2. M ZJ commutative in ^ (̂T).

7%^z ̂  canonical morphism Moo x Z —^ RQ^B(M) zj a simplicial weak equivalence.

Proof. — Clearly, we may assume that M is termwise free. Using our assumption
that T has enough points we reduce the problem to the case of simplicial sets. The
first condition of the lemma implies that one has

H,(Moo x Z) = H,(M)[a-1] = H,(M)[7Co(M)-1]

and the second one implies that H^M) is a commutative ring. Therefore, by [12,
Theorem Q4, p. 97] the map Moo x Z —> M4' gives an isomorphism on homology
groups. On the other hand the condition that M is commutative implies that Moo has
a (possibly non associative) multiplication as an object of the homotopy category. Since
it is connected (by our first condition) we conclude that an^ of Moo is abelian and acts
trivially on all the higher homotopy groups which implies that the required map is a
weak equivalence by Whitehead theorem.

Now we go back to our A1-homotopy theory of smooth scheme over a noetherian
scheme of finite dimension S, in the Nisnevich topology (in fact the result which follows
may hold in the more general context of site with interval).

Theorem 1.10. — Let (M, a,f) be a graded pointed simplicial sheaf of monoids and assume
that the following two conditions hold:

1. the map OKQ (/) : an^ (M) —> N is a bijection
2. M is a commutative monoid in S^S (S)

Then the canonical morphism Moo x Z —» R^B(M) is an A}-weak equivalence.

Proof. — We apply Lemma 2.36 to the A^weak equivalence M -> £^(M)
given by 1.7. Observe that N :=Ex^n(M) is graded (because its KQ is N) and obviously
pointed. Thus each morphism M^ —^ N^ is an A1-weak equivalence (because a sum
of morphisms is an A1-weak equivalence if and only if each member is an A1-weak
equivalence). It follows (from 2.13) that Moo —> N00 is also an A1-weak equivalence.
The theorem follows now from Proposition 1.9.

Homotopical classification of G-torsors

Let T be a site and G be a sheaf of simplicial groups on a site T. A right (resp.
left) action of G on a simplicial sheaf ^ is a morphism a : J%" x G —> SK" (resp.
a : G x J%" —> ^T) such that the usual diagrams commute. A (left) action is called
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(categorically) free if the morphism G x ̂  -^ ̂  x J^ of the form (g, x) ̂  (a(g, x), x)
is a monomorphism.

For any right action of G on ^ define the quotient J^/G as the coequilizer
of the morphisms pr^ and a from S^ x G to J^.

A principal G-bundle (or equivalently a G-torsor) over S^ is a morphism
^ -^ ^ together with a free (right) action of G on ^ over ^ such that the
canonical morphism ^/G -> ̂  is an isomorphism. Denote the set of isomorphism
classes of principal G-bundles over ^T by P(JT, G). This set is pointed by the trivial
G-bundle G x ̂  -^ J^. If ^ ' -^ ^ is a morphism of simplicial sheaves and
^f —^ ̂  is a principal G-bundle over S^ then ^< Xjy ^ ' has a canonical structure
of a principal G-bundle over ^ ' which makes the correspondence S^ ^-> P(J^, G)
into a contravariant functor from A^A^T) to the category of pointed sets.

Example 1.11. — Let X be a sheaf of sets on T. Denote by E(X) the simplicial
sheaf of sets whith n-th term X"4'1 and with faces (resp. degeneracies) induced by partial
projections (resp. diagonals). It has the characteristic property that for any simplicial
sheaf ̂  the map:

ffom^w^ E(X)) -^ Homs^{^, X)

is bijective.
When G is a sheaf of groups then E(G) becomes a simplicial sheaf of groups

(by functoriality observe that one has natural isomorphisms E(X x Y) ^ E(X) x E(Y)),
whose subgroup of vertices is G; in particular it gets right and left action by G. The
morphism

E(G) -> B(G)
(?0, gi, ...,&) 1-^ (?0^r1 ? g^g2\ "^gn-ign1, gn)

obviously induces an isomorphism:

E(G)/G ^ B(G).

If G is a simplicial sheaf of groups, then taking the diagonal of the bisimplical
group (72, m) ̂  E{Gn)m defines a sheaf of simplicial groups denoted E(G) which again
contains G as a subgroup.

Again the diagonal of the above morphism defines a morphism E(G) —» B(G)
which induces an isomorphism E(G)/G ^ B(G). This G-torsor E(G) -^ B(G) is called
the universal G-torsor over B(G).

Lemma 1.12. — Let G be a simplicial sheaf of groups, and let S a G-torsor over a
simplicial sheaf ̂ . Then there is a trivial local fibration ̂  —> J^ and a morphism ̂ f —> B(G)
such that the pull-back of S3 to ̂  is isomorphic to the pull-back ofE(G) to ̂ .
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Proof. — Let ̂ ^ be the quotient of the product S x E(G) by the (right) diagonal
action of G. The obvious projection p^ : ̂ ^ —^ S^ is clearly a trivial local fibration
(it is a local fibration with "fibers55 the locally fibrant and weakly contractible simplicial
sheaf E(G)). But clearly by construction the pull-back of S to ̂  via p^ is isomorphic
to the pull-back of E(G) via the obvious morphism f^ : ̂  —^ B(G).

Lemma 1.13. — Assume that G has simplicial dimension ^ero and f: J^ —> ̂  is a
trivial local fibration. Then the corresponding map P(^ G) —> P(^ G) is a bijection.

Proof. — First recall that on the category of simplicial sets over a given simplicial
set B, one can define the relative KQ functor, 7l;o(—), as follows. Let/: E —> B be a map.
Define 7i;o(/) as the simplicial set over X which sends n to the set ^(E^ x ^ B^) of

connected components of the fiber product E^ x^n Bn. There is an obvious surjective
map E —> Ko{f) of simplicial sets over B.

I f j & i s a principal covering over X for a group G, and/: X —> Y a trivial Kan
fibration, one checks immediatly that the action of G on the simplicial set 7Co(/oA)
over Y makes 7Co(/°^) into a principal covering over Y with group G.

By sheafifying this process, we get the relative Ko(—) functor, from the category
of simplicial sheaves over JK" to itself. Given any principal G-bundle p : S —> JK"
over ̂  and a trivial local fibration/: ̂  —> ̂  it follows from what we said above
(using points) that the action of G on 7Co(/) define the structure of a G-torsor on the
^-simplicial sheaf 7Co(/), and this yields a map:

P(JT, G) -> P(^, G)
which is the required inverse.

Using the same method as in the previous proof, one gets:

Lemma 1.14. — Assume that G has simplicial dimension ^ero, then for any simplicial
sheaf jy, the map P(^\ G) —^ P(^ x A1, G) is a bijection. In particular, the functor P(-, G)
is homotopy invariant.

Using Proposition 1.13 and the construction used in the proof of 1.12 one gets
a natural transformation of pointed sets

P(^T, G) ̂  Hom^^{^ BG)
S ^/^o^)-1.

Let BG —> ̂ G be a trivial cofibration such that JSG is fibrant. Lemmas 1.14, 1.13,
together with Proposition 1.13 easily imply, using the standard technique, the following
result:
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Proposition 1.15. — For any G of simplicial dimension ^ero the natural map

P(̂  G) -> Hom^^W BG)

is a bisection. Thus, there exists a principal G-bundle S^G —> ^G such that for any J%" the map

Hom{^ J^G) -^ P(̂ ; G)

given by f\—>f^{?^G —> ^G) defines a bijection

Hom^^{^ ̂ G)) ^ P(^ G).

The following results are then clear.

Proposition 1.16. — For any G of simplicial dimension ^ero and any object U ofT one has

(H^G^P^G) for i=0
TC^G(U) , *) = G(U) for i = 1

0 for i > 0.

Proposition 1.17. — Under the assumption of Proposition 1 . 1 5 two morphismsf, g: J^ —>
J^?G coincide in ^'y(T) if and only if there exists a morphism H : 31? —> (S'Gx S'G)/G such
that pr\ oH =fand j&^oH =g where pr\y pr^ are the two canonical projections (^TGx ^G)/G ̂
^G.

The etale classifying space B^G

From now on, S denotes a noetherian scheme of finite Krull dimension.
Let G be a sheaf of groups on {Sm/S)^is. Using the etale topology and the pair of

adjoint functors between the simplicial homotopy categories associated with the obvious
morphism of sites

n : {Sm/S\t -^ {Sm/S)^s

(see Proposition 1.47) we may define for any such G the object

B^G=R^7C*(BG)

of ^((5m/S)^). Note that if ^G is a fibrant model for B(G^) in the category of

simplicial etale sheaves, then B^(G) ^ ^efi (wllere ^efi ls now considered as a (fibrant)
simplicial Nisnevich sheaf). By Proposition 1.16 for any sheaf of groups G on [Sm/S)j^s
and any smooth scheme U over S one has:

rH^(U,G) f o r « = 0

^^;((^/s)JW' (BG' *))- G^ for "= }

[ 0 for n > 1
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rH^(U,G) for^O

^ .̂Ws)^^ - (B^ *))= G^ for ^ = z

l 0 f o r y z > l .

In particular we have the following criterion for the morphism BG —^ B^G to be an
isomorphism in <^^((5m/S)^).

Lemma 1.18. — The canonical morphism BG —> B^G ^ <m isomorphism (in
^^{Sm/S)j^)} if and only if G is a sheaf in the etak topology and one of the following
equivalent conditions holds:

1. for any smooth scheme U over S one has HĴ (U^ G) =H^(U^ G);
2. for any smooth scheme X over S and a point xofY^ one has

H^.(<,),G)=*.

In some cases the object B^G of J^( (&n/S)^) has an "explicit55 model in
A^Shv^Sm/S). Let F be an etale sheaf on Sm/S with a free G-action (as Nisnevich
sheaf). Then G acts freely on E(F) (see 1.11) and we set B(F, G)^ to be the quotient
simplicial sheaf E(F)/G^ where et means that we consider the quotient in the etale
topology. For any such F the morphism E(F) —> B(F, G\t is clearly an etale principal
G,rbundle. If ^^G is a fibrant model for B(G^) (in the category of simplicial etale
sheaves) we have (by Proposition 1.15) a cartesian square (in the category of simplicial
etale sheaves and thus also in the category of simplicial Nisnevich sheaves) of the form:

E(F) —— ^Gi i
B(F,G),, -^ ^G

where (|) is well defined up to a simplicial homotopy. Note also that (|) becomes
an isomorphism in J^y((6m/S)^) for any F such that the morphism F —> pt is an
epimorphism (in the etale topology). Moreover one has the following result.

Lemma 1.19. — For any etak sheaf'F with a free G-action the morphism ^ : B(F^ G)^ —)•
B^G==J^G is a monomorphism in J^((5m/S)^).

Proof, — By Proposition 1.13 it is sufficient to show that for any two morphisms
f,g : J^ -> B(F,G),, in ^Shvj^{Sm/S) such that ^of=(^og in J<^((&n/S)^) we
have/=^ in ^^((iS^/S)^). Propositions 1.17 and 1.15 imply that for any such/and
g there exists a morphism H : J^ —^ ((E(F) x E(F) )/G)^ such that pr\ o H =f and
j&r2 o H=g where pr^.pr^ are the canonical projections ((E(F) x E(F))/G)^ —> B(F, G)^.
Thus what we have to show is that pr\ =pr^ in J^((&n/S)^). In order to do it
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it is sufficient to show that there exists a G-equivariant simplicial homotopy connecting
two projections from E(F) x E(F) to E(F). Using the observation that for any J%" one
has Hom(Jy, E(F)) ^ Hom{JK'Q, F), the existence of such a homotopy is clear.

The following proposition gives a necessary and sufficient condition on F for (|)
to be an isomorphism in ^^( (<Sm/S)^).

Proposition 1.20. — Let G be an etale sheaf of groups on Sm/S and F 6^ ̂  ^& sheaf
with a free G-action. Then the following conditions are equivalent:

1. the morphism ^ : B(F^ G)̂  —^ B^G ^ ^ isomorphism in the homotopy category
^({Sm/S)Ms);

2. for any smooth scheme X over S aW an etale principal G-bundk E —> X ̂  canonical
morphism ((E x F)/G)^ -—>• X zj ^72 epimorphism in the Nisnevich topology.

Proof. — To prove that the first condition implies the second, what we have to
show is that if S is henselian local and E —> S is an etale principal G-bundle over
S then the morphism ((E x F)/G)^ —^ S splits. In order to find such a splitting it is
sufficient to find a G-equivariant morphism E —> F. Since B(F, G)^ is isomorphic to
B^G in J^((.Sm/S)^) Proposition 1.15 implies that there exists a cartesian square of
the form

E ——> E(F, G)i i
S ——, B(F,G),,

where the upper horizontal arrow is G-equivariant. Since (E(F,G))o=F this is the
required morphism.

Assume now that the second condition holds. First observe that to prove
0 is an isomorphism in J^y((6m/S)^) it is sufficient to show that for any etale
simplicial sheaf JK" and an etale principal G-bundle E —>• JK" there exists a weak
equivalence J^T' —> J%T in the Nisnevich topology and a G-equivariant morphism
from E'=jr' x^ E to E(F). Indeed, this implies that there is a section s to 0 in
^^( (5'm/S)^y); but this fact together with lemma 1.19 does imply formally that 0 is
an isomorphism in J^y( (6m/S)^y).

To prove the assertion below, let J%" be an etale simplicial sheaf and E —> ̂
an etale principal G-bundle. Consider the restriction EQ —^ J%^ of E to J%^- Since
F satisfies the second condition of the proposition the morphism of sheaves in etale
topology po : J^Q : =(Eo XG F)^ —> ^o is seen to be an epimorphism in Nisnevich
topology. Moreover, there is an obvious G-equivariant morphism J^TQ x^o ^o "̂  E-
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Our result follows now from the Lemma 1.18 and the observation that for any ̂
one has Hom{^ E(F)) = Hom{^, F).

4.2. Geometrical models/or B^G in ̂  (S)

Let G be a linear algebraic group over S i.e. a closed subgroup in GL^ over S for
some n. For a fixed (closed) embedding i': G —> GL^ define the geometric classifying space
B^(G, z) of G with respect to i as follows. For m ̂  1 let U^ be the open subscheme of
A^ where the diagonal action of G determined by i is free (U^ is the open subset in
A^ consisting of points x € A^ such that the action of the action of G defines a closed
immersion G^) —^ A^)). Let A^/G be the quotient S-scheme of the (diagonal) action
of G on A^, \rn be the image of U^ in A^/G, an open subscheme; the projection
U^ —^ \rn defines \rn as the quotient scheme of U^ by the free action of G and V^ is
thus a smooth S-scheme.

We have closed embeddings Vm —> U^+i and V^ —> Vm+\ corresponding to the
embeddings Id x {0} : A^ —^ A^ x A" and we set

E (̂G, i)=colim^V^

B^(G, i) = colim^^Vm

where the colimit is taken in the category of sheaves on (iSm/S)jvy (or (6m/S)^).
In this section we will show that the etale sheaf with G-action E^(G, i) satisfies

the conditions of Proposition 1.20 and that moreover as an object of the A^homotopy
category, the geometrical classifying space B^(G, i) for G is isomorphic to B^(G), and
in particular, does not depend on the choice of embedding i : G —> GL^. This will
allow us to relate H^(—, G) with the functor represented by B^(G, i).

An A^contractibility result
The goal of this section is to prove the Proposition 2.3 which will be used below

to give a geometric construction of objects in 3^ (S) representing the classifying spaces
B^G for subgroups G in GL^.

Definition 2.1. — Let X be a smooth scheme over S. An admissible gadget over X is a
sequence (^ U^^)^i where ^T are vector bundles over X^ U^ are open subschemes in ^T and fi
are monomorphisms Vi —> Vi+\ over X such that the following conditions hold:

1. for any point x : Spec(K) —^X<9/ 'X there exists i ^ 1 such that U, Xx Spec(k) has a
k-rational point;

2. let Z^ be the closed subset ̂  — Vi in ̂  then for any i there exists j > i such that the
c\ n

morphism U^ = <^ — Z, —> ^.: — Zj = Uj factors through the morphism ^T- — Z^ —» ̂  — Z^ of
the form v ^—> {0, v).

For an admissible gadget (^, U^,^) we denote by Uoo the inductive limit of
sheaves represented by U^ with respect to morphisms^.
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Example 2.2. — If i: G —^ GL^ is a closed embedding of some algebraic S-group
as a subgroup of GL^ then with the notations as in the introduction above one checks
that (A^s, U^, U^ —^ U^+i)^i is an admissible gadget over S.

Proposition 2.3. — Let (8^ U,,/) &? an admissible gadget over a smooth ^-scheme X.
Then the canonical morphism Uoo —^ X is an A1 -w^A; equivalence.

Proof. — Let j& : X —^ S be the canonical morphism. Then j&#(Uoo/X)=Uoo/S
and j&#(X/X)=X/S and therefore by Proposition 2.9 it is sufficient to show that the
morphism Uoo —> X is an A1-weak equivalence of sheaves over X. In other words we
may assume that X=S. Consider the simplicial sheaf Sing^V^). By Lemma 3.8 the
morphism s : Uoo —> Sing^(U^) is an A1-weak equivalence. Thus in order to prove the
proposition it is sufficient to show that the canonical morphism Sing^(\J^) —> pt is an
A1-weak equivalence.

By definition for any smooth scheme V over S we have

&%(Uoc)(V) = colim^Hom^ x A\ U,).

We will show that it is in fact a simplicial weak equivalence. Using the characterization
of simplicial weak equivalences given in Lemma 1.11 and the fact that all our
constructions commute with smooth base changes we see that it is sufficient to verify
that if S a henselian local scheme then Sing^V^)(S) is a contractible simplicial set.
Since the U^s are smooth over S the first condition of our proposition implies that if
S is a henselian local scheme then for some i there exists an S-point x : S —» U,of U,
and therefore 6m§^(Uoo)(S) is nonempty.

In order to prove that it is contractible it is sufficient to show that for any n ^ 1
any morphism <9A" —^ Sing^V^)(S) can be extended to a morphism A" -> Smg^^)(S)
(the case n=0 corresponds to the fact, already checked, that it is non empty). Let
<9A^i be the subscheme in A^1 given by the equation x^... XnQ^^ ^ x,•- 1) = 0. Then the
set Hom(9^n, &^(Uoo)(S)) coincides with the inductive limit of the sets of morphisms
from (<9A^i to U, and similarly Hom{^, Sing^oo)(S)) coincides with the inductive limit
of sets of morphisms from A^ =A"i to U^.

Since S is affine the morphism 9^\ —^ A^ induces a surjective map
Hom{A^ ^) -^ Hom(Q^, ^) for any vector bundle S on S. Let then/: <9A^ -^ U,

be a morphism. From what we just said,/can be extended to a morphism/' : A^ —^ S:
Let Z,i be the closed subset ^ — U; which we consider as a reduced closed subscheme
in ^-. Since (/'^(Z,) n <9A^ =0 there exists a morphism (|) : A^ —> .̂ which is

the constant morphism corresponding to 0 on (9A^i and is the constant morphism

corresponding to the point x of U, on (/'^(Z,). The product (|) x/' : A^ —^ ̂  takes
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values in the complement to Z? and coincides on <9A^i with the composition of/with
the morphism {0} x I d : ̂  —> ̂  which finishes the proof of the proposition.

A geometric construction of B^G

Let G be an etale sheaf of groups on Sm/S and U be a smooth scheme over
S with G-action. For a class e in H^(S, G) represented by an etale principal G-bundle
E -^ S over S define U, as the (etale) sheaf ((E x U)/G)^.

Definition 2.4. — Let (^ U^/) be an admissible gadget over S. A nice action of G on
(^, Vi,f) is a sequence of homomorphisms G —> GL(̂ ) such that the following conditions hold:

1. for each i ^ I, U,is G-invariant open subschemes in ̂  the morphismsf is G-equivariant
and the factorisations required in Definition 2.1(2) can be chosen in the class of G-equivariant
morphisms;

2. the action of G on U^ is free;

3. for any smooth scheme X over S and class e G H (̂X, G) there exists i such that the
morphism (U^ X s X)<, —^X is an epimorphism in the JVisnevich topology.

The following lemma is an immediate corollary of our definition and Proposi-
tion 1.20.

Lemma 2.5. — Let G be an etale sheaf of groups over S and (^ Vi,f) be an admissible
gadget over S with a nice G-action. Then the canonical morphism

B(U^G)^B,,G

is an isomorphism in ^^(Sm/^)j^s).

Proposition 2.6. — Let G be an etak sheaf of groups and (^T, U,,̂ ) be an admissible
gadget over S with a nice G-action. Then there is a canonical isomorphism in <^(S) of the form

(Uoo/G),, ̂  B,,G.

Remark 2.7. — It follows that for any linear algebraic group G over S the
geometric classifying space defined above using an embedding into some GLn over S
doesn't depend on this embedding (up to isomorphism in ^ (S)) and moreover is
isomorphic to its etale classifying space B^(G).

Proof. — We start with the following lemmas.

Lemma 2.8. — Let E —^ S be an etale principal G-bundle. Then the sheaves ((E x ^)/G)^
are representabk by vector bundles ^T/ over S, the sheaves ((E x U^)/G)^ by some open subschemes
V\ in ^T/ and (^/, V^f') is again an admissible gadget over S.
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Proof. — This follows immediately from the standard etale descent theory for
vector bundles and our definitions.

Lemma 2.9. — Let X be a scheme with free G-action. Then the morphism of sheaves

((U^xX)/G),^(X/G)^

7.5- an A}-weak equivalence.

Proof. — Let Y be a smooth scheme over S and Y —> (X/G)^ be a morphism. By
Lemma 2.16 it is sufficient to verify that the projection ((Uoo x X)/G)^ X(X/G) Y —> Y

is an A1-weak equivalence. Let Y=Y X(X/G) X- Then Y is a principal etale G-bundle

over Y and ((Uoo x X)/G)^ X(X/G) Y is isomorphic over Y to ((£/oo x ^)/G)^ which
implies the result we need by Lemma 2.8 and Proposition 2.3.

By Lemma 2.5 we have an isomorphism in ^ .̂( (Sm/S)^) of the form

B(U^G)^B,,G.

We have an obvious morphism u : (Uoo/G)^ —> B(Uoo? G^) such that Un : (Uoo/G)^ —>
(U^/G)^ is the diagonal morphism and it remains to show that this morphism is
an A1-weak equivalence. By Proposition 2.14 it is sufficient to show that each Un is
an A1-weak equivalence. In order to do it it is sufficient to show that the projection
(U^1 /G)et —> (U^/G)^ is an A1-weak equivalence for any n > 0 which follows from
Lemma 2.9.

It follows from Lemma 2.8 that in the case when all the residue fields of S
are infinite the last condition of Definition 2.4 is automatically satisfied. The following
example shows that in the case when finite field may be present it is not so.

Example 2.10. — Let S=Spec(F^) and Z be the closed subset in A2 which is
the union of the line x~=^y with the closed subset Zo of dimension zero given by the
equations

x+jy= 1
xy= 1

Set ^ = (A2)2, U, = A21 - Z1 and let^ be the embeddings of the form x ̂  (0, x). Then
(^, Uo^) is an admissible gadget over Fs. Consider the action of Z/2 on A2 of the
form a(x,y) = {y , x). The corresponding action of Z/2 on (^T, U-,^) satisfies the first
two conditions of the definition of a nice action. Let now e be the only nontrivial
element in H^(F2 5 Z/2). Then (A^ — Z)^ is the complement to Z^ which is the union of
the line x=jy with two rational points (1,0) and (0, 1). In particular it means that for
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any i the scheme (U^), = A2' — (Z,y has no F2-rational points which means that the last
condition of Definition 2.4 is not satisfied.

4.3. Examples

etale group schemes

Proposition 3.1. — Let G be a finite etale group scheme over S of order prime to the
characteristic ofS. Then the object B^G in A^Shv^Sm/S) is A1 -local.

Proof. — By definition B^G=RTT,(BG) where n : (Sm/S),t -^ {Sm/S)^ is the
obvious morphism of sites. Since the third condition of Lemma 3.15 clearly holds
for n so does the first and therefore it is sufficient to show that BG is A1-local in
A^Shv^Sm/S). Let ^G be a simpliciaUy fibrant model for BG. Using Lemma 2.8(2)
we see that it is sufficient to show that for any strictly henselian local scheme S and a
finite etale group scheme G over S of order prime to char(S) the map of simplicial sets
^G(S) —> ^G(A§) is a weak equivalence. Since S is strictly henselian G is just a finite
group. In particular we obviously have G(S)=G(A^). We also have H^(S, G)=* and
H^(A§, G) = * where the second equality holds because of the homotopy invariance of
the completion of n[ outside of characteristic ([13]) and therefore our map is a weak
equivalence by Proposition 1.16.

Corollary 3.2. — Let G be a finite etale group scheme over S of order prime to the
characteristic ofS. Then for any smooth scheme U over S one has, for m, n ̂  0:

Hom^^m^(V^,^G^))=

fH^(U.G) fo rm, 72=0
G(U) for m=0, n= 1

^<H^((A1 - {0})s, G) ̂  H^(S, G)) for m= 1, n=0
0 otherwise.

Proof. —Use Propositions 3.17, 3.1, 1.16.

Proposition 3.3. — Let k be afield ofcharactersitic p > 0 and G be an etale p-group scheme
over Spec(K). Then B,,G ̂  pt in ̂  {Spec(k}\

Remark 3.4. — If k is a field of characteristic p > 0 and G is a finite etale group
over k whose order is divisible by p but not equal to a power of p the structure of
B^G in S^ (S) may be rather nontrivial.

We also have the following simple result which we give without a proof since we
never use it.
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Proposition 3.5. — Let G be a finite etale group scheme over S. Then the object BG in
^Shv^(Sm/S) is A1 -local.

GL^ GLoo and algebraic K-theory

Let us start with the following obvious analog of Hilbert's Theorem 90.

Lemma 3.6. — For any Noetherian scheme S and any n > 0 the canonical maps

H^(S, GL,) -. H^(S, GL,) -^ H^S, GL,)

are bzjections.

Let Vn,i be the linear space of linear morphisms ̂  —> ^§ over S and Vn i
be the open subscheme of monomorphisms in Vn,i' Denote by Zn,i the complement
to Vn,i in V^-. For any i we have a closed embedding Vn,i —> Vn,i+\ of the form
<|) '-> {0} ©()). For any n ^ 0 the sequence (V^-, Vn,i,J!) is an admissible gadget over S
and the natural action ofGL^ on it is nice. Note that (U^/GL^ is representable by the
Grassmannian G(n, i) and correspondingly (U^oo/GL^ by the infinite Grassmannian
G{n, oo). Gombining Proposition 2.6 with Lemmas 1.18 and 3.6 we get the following
result.

Proposition 3.7. — There are canonical isomorphisms in ^%?(S) of the form

BGL, ̂  B,,GL, ̂  G(n, oo).

In the case when n = 1 we have BG^ ^ P00 and using the homotopy invariance
of ^* and Pic on regular schemes and the same argument as in the proof of
Proposition 3.1 we get the following result.

Proposition 3.8. — Let S be a regular scheme. Then for any smooth scheme U over S one
has

(Pic{U) form,n=0
^*(U) for m=0, 7 2 = 1

I/Z-^WT T /T»00 . \ \ I ^ ^ 5^m^^^ru.^p00,*))^^Ĥ°(U,Z) form=l,n=\
0 otherwise.

For 72 > 1 the objects BGL^=B^GL^ in J^( (.Sm/S)^) are not known to be A1-
local and it is not clear in general how to compute morphisms to BGL^ in S^ (S) for
1 < 72 < oo. In the stable case of GLoo these morphisms are closely related to algebraic
K-theory.

Consider the simplicial sheaf ]J^()BGL^. We have natural group homomorphisms
GLn x Gi,m —)> G^n+m which make this coproduct into a (non-commutative) monoid.
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Let BQJ^o BGL^) be its classifying space. The following proposition is not much more
than a reformulation of [SO, Theorem 10.8]. As above, let us denote Ri2y(—) the right
adjoint to the suspension: E, : J^,((5'm/S)^) -^ ^^{{Sm/S)^).

Proposition 3.9. — For any Noetherian base scheme S of finite dimension, smooth scheme X
over S and n ̂  0 one has a canonical isomorphism

Hom^^/^^ (R^)B(IIBGL,,)) ^ K^(X)
n^O

where K^(X) is the K-theory of perfect complexes (see [30, Definition 3.1]/ In particular ^X has
an ample family of line bundles (say, is quasi-projective over an ajfine scheme) we have

Hom^^/^^' (R^)B(UBGL,,)) ̂  K^X)
n^Q

where K^—) is the Quillen's Y^-theory.

Proof. — The second part of the proposition follows from the first one by [30,
Corollary 3.9]. Let P(X) be the category of vector bundles and isomorphisms on
a scheme X and N(P(X)) be the nerve of this category. The symmetric monoidal
structure on P(X) given by © defines a structure of a monoid on N(P(X)) (we ignore
the fact that in order to make this statement precise one has first to replace P(X)
by an equivalent small category with a strictly associative monoidal structure). If X
is affine then 7i,+i(B(N(P(X) ) ) ,* )= : K^pC) = K,(X). We have a canonical morphism
^ : BQJ^o BGL^)(X) —^ B(N(P(X))) which corresponds to the inclusion of the category
of trivial bundles to the category of all bundles. Since any vector bundle is locally
trivial in the Zariski and therefore the Nisnevich topology we conclude that (|) is a
simplicial weak equivalence in A^Shv^Sm/S). The statement of the proposition follows
now in a formal way from [30, Theorem 10.8].

Consider the canonical morphism of the form

BGLoo x Z -^ R^B([J BGL,)^
n^O

in ^^((&n/S)^) (see the discussion before Proposition 1.9).

Proposition 3.10. — For any Noetherian scheme S of finite dimension the canonical morphism
BGLoo x Z -» RQ^BQJ^oBGL^ is an A1-weak equivalence.

Proof. — Our result follows from Proposition 1.10 and the following two lemmas.

Lemma 3.11. — CT^(BGL^) =*.
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Proof. — This follows from the fact that 7Co(BGL^) = * and Corollary 3.22.

Lemma 3.12. The simplicial monoid ]JBGL^ is commutative in J%?(S).

Proof. — Follows easily from Proposition 3.7 by constructing explicit A1-
homotopies for Grassmannians.

Theorem 3.13. — For any smooth scheme X over a regular scheme S and any n, m ^ 0
one has a canonical isomorphism

Hom^^^, (BGL^ x Z, *)) =K,_,(X)

where for n < m the groups K.n-m ̂  ^r()-

Proqf. — For m= 0 this follows immediately from Propositions 3.9, 3.10, homotopy
invariance of algebraic K-theory over regular schemes and Proposition 3.19 applied to
a fibrant model of (R^)B(U^oBGL^). For m > 0 one has to use [30, Theorem 7.5(b)].

When S is not regular the situation becomes more complicated since Quillen's
K-theory is not A1-homotopy invariant on Sm/S and therefore the object (R^)
B(U^>oBGL^) is not A1-local anymore. Nevertheless, it turns out to be possible, as
the following proposition shows, to describe nonnegative algebraic K-theory of any
Noetherian scheme of finite dimension purely in terms of basic functoriality of the
simplicial homotopy categories and the A1-homotopy theory.

Proposition 3.14. — Let S be a Noetherian scheme of finite dimension and ps : S —> Spec(Z)
be the canonical morphism. Let further Ex^\(G(oo, oo)) be an A1 -local model of the infinite
Grassmannian G(oo, oo) in the simplicial homotopy category ^^(Sm/Spec^)}^}. Then for any
smooth scheme X over S and any n ̂  0 one has a canonical isomorphism

K,(X)=Hom^^^X,, L^(&A'(G(OO, oo)) x Z, *))

Proof. — By homotopy invariance of algebraic K-theory on regular schemes and
Proposition 3.19 applied to a fibrant model of(R^)B(]_[^oBGL^) we conclude that this
object is A1-local and thus by Proposition 3.10 it is an A1-local model for G(oo, oo)xZ.
Our result follows now from Propositions 3.9 and 1.3.

Remark 3.15. — For a scheme S which is not regular the object

L^(£^i(G(oo^).*))

which represents by the previous proposition the algebraic K-theory over S is not
A1-local anymore and the theory it represents as an object ofJ^(S) is different from



A1-HOMOTOPY THEORY OF SCHEMES 141

the one it represents as an object of the simplicial homotopy category. This theory is
some version of the homotopy invariant K-theory KH^ introduced in [33], but it is
not clear whether or not it coincides with KH^ for an arbitrary S.

Finally let us mention the following result which shows that over regular
base schemes one may replace Ex^\ (G(oo ,00)) by the more "accessible55 object
^(G(oo,oo)).

Proposition 3.16. — Let S be a regular scheme. Then the canonical morphism

Sing^G(oQ, oo)) —^ Ex^i(G{oo, oo))

is a simplicial weak equivalence.

Proof. — We will only give a sketch. As usually we may assume that S is local
henselian and by Proposition 3.13 we have to show that the maps

7c,((6m^(G(oo, oo)) x Z)(S), *) -^ K,(S)

are isomorphisms. Observe first that for any affine scheme S one has

7Co((5m^(G(oo, oo)) x Z)(S), *) = coeq(Ko(S x A1) =: Ko(S))

where the two arrows are restrictions to points 0 and 1. This proves the isomorphism
for i=0. It is also not hard to show that for any affine S the simplicial set
Sing^(G(oo, oo))(S) is fibrant. Thus we may compute its homotopy groups by taking
naive homotopy classes of maps from <9A^. As was remarked at the end of the proof
of Proposition 2.3 such classes correspond to A1-homotopy classes of maps from the
affine scheme 9A^i over S to G(oo, oo). Combining these facts together we conclude
that for any affine S and any i > 0 we have

7i,<6^(G(oo, oo))(S), *)=^Ko(aA^ x A1) ^ &o(9A^))

where Ko means that we consider the direct summand which consists of elements
whose restriction to the distinguished point of 9^.\ is zero. If S is regular and affine

then one has a canonical isomorphisms K,(S) = Ko(9A^1) ([8, 2.3]) which together with
the homotopy invariance over regular schemes finishes the proof of the proposition.
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