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1. Preface

In this paper we begin to develop a machinery which we call A!-homotopy theory
of schemes. All our constructions are based on the intuitive feeling that if the category
of algebraic varieties is in any way similar to the category of topological spaces then
there should exist a homotopy theory of algebraic varieties where affine line plays the
role of the unit interval. For a discussion of the main ideas on which our approach is
based we refer the reader to [32].

2. Homotopy category of a site with interval

In this section we prove a number of general results about simplicial sheaves on
sites which will be later applied to our study of the homotopy category of schemes.
In the first part (Section 1) we describe the main features of the homotopy theory
of simplicial sheaves on a site. Many results of this part can be found in [20] and
[17], [18]. Surprisingly, there are some nontrivial things to be proven in relation to
basic functoriality of the homotopy categories of simplicial sheaves. This is done in
Section 1.

In Section 2 we prove a general theorem which shows that there is a “good”
way to invert any set of morphisms in the simplicial homotopy category of a site. Here
“good” means that the resulting localized category is again the homotopy category for
some model category structure on the category of simplicial sheaves. The results of this
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sections remain valid in a more general context of model categories satisfying suitable
conditions of being “locally small” but we do not consider this generalizations here.

In Section 3 we apply this localization theorem to define a model category
structure on the category of simplicial sheaves on a site with interval (see [31, 2.2]).
We show that this model category structure is always proper (in the sense of [2,
Definition 1.2]) and give examples of how some known homotopy categories can be
obtained using this construction.

All through this section we use freely the standard terminology associated with
Quillen’s theory of model categories. The notion of a model category which we use here
first appeared in [9] and is a little stronger than the one originally proposed by Quillen.
To avoid confusion we recall it here.

Definition 0.1. — A category & equipped with three classes of morphisms respectively called
weak equivalences, cofibrations and fibrations us called a model category if the following
axioms hold :

e MC1 & has all small limits and colimats;

e MC2 If f and g are two composable morphisms and two of f, g or g o f are weak
equivalences, then so is the third;

® MC3 If the morphism f is retract of g and g is a weak-equivalence, cofibration or fibration
then so is f;

o MC4 Any fibration has the right lifiing property with respect to trivial cofibrations
(cofibrations which are also weak equivalences) and any trivial fibration (a fibration which is also a
weak equivalence) has the right lifting property with respect to cofibrations;

o MC5 Any morphism f can be functorialy (in f) factorised as a composition p o i where p
is a fibration and 1 a trivial cofibration and as a composition qoj where q is a trinal fibration and
J a cofibration.

The only differences between these axioms and Quillen’s axioms CM1, ..., CM5
of a closed model category are the existence of all small limits and colimits in axiom
MCI1 instead of just finite limits and colimits, and the existence of functorial factorisations
in axiom MC5.

Recall that a site is a category with a Grothendieck topology, see [13, II.1.1.5].
All the sites we consider in this paper are essentially small (equivalent to a small
category) and, to simplify the exposition, we always assume they have enough points

(see [13]).
2.1. Homotopy theory of simplicial sheaves

Simplicial sheaves

Let T be a site. Denote by Sho(T) the category of sheaves of sets on T. We
shall usually use the same letter to denote an object of T and the associated sheaf
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because in our applications the sites we shall consider will have the property that any
representable presheaf is a sheaf, in which case the canonical functor T — Shy(T) is a
fully faithfull embedding. Let A”Shy(T) be the category of simplicial objects in Shu(T) ;
this category is a topos (¢f [13]) and in particular has all small limits and colimits and
internal function objects (the latter means that for any simplicial sheaf .%" the functor
Y — Y x & has a right adjoint & — Hom(%& , Z)).

An object & of A?Shy(T), i.e. a functor A? — Sho(T) is determined by a collection
of sheaves of sets &, n > 0, together with morphisms

n .
dj: &, - %&,_, n>1 i=0,.,n
S$: & ->F, n=20 i=0,..,n

called the faces and degeneracies which satisfy the usual simplicial relations ([22]).

To any set E one may assign the corresponding constant sheaf on T which we
also denote by E. This correspondence extends to a functor from the category A%Sets
of simplicial sets to A?Shu(T). For any simplicial set K the corresponding constant
simplicial sheaf is again denoted K.

The cosimplicial object

A5 ArS(T)
w w
n — A"

defines as usual a structure of simplicial category on A”?Shu(T) (see [26]) with the
simplicial function object S(—, —) given by

S(&, %)=H0mmﬁs1wm(~%' XA, Y).

Observe that for a simplicial sheaf %" and an object U of T the simplicial set S(U, .&")
is just the simplicial set of sections of %" over U.

For any simplicial sheaf %" and any z > 0, let %" (,feg C &', be the union of the
images of all degeneracy morphisms from %", ;| to &', i.e.

dey n—1 n—1
ZE= U, si (F_).

For any simplicial sheaf %" and any n > 0, one defines its n-th skeleton sk,(%&") C %"

as the image of the obvious morphism &, X A" — %". We extend this definition to
the case n= — 1 by setting sk_ (&) :=0. For example, (%, )1 is equal to F'°€.
The skeleton functor & +— sk,(%") has a right adjoint & — cosk,(%") which is
called the n-th coskeleton functor.
A simplicial sheaf %" is said to be of simplicial dimension < n if %, X A" — &~
is an epimorphism, or equivalently if sk,(%")=.%". We will identify sheaves of sets
with simplicial sheaves of simplicial dimension zero.
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For any n > 0, let OA" be the boundary of the n-th standard simplicial simplex.
The following straightforward lemma (which can be proven using points of T and the

corresponding lemmas for simplicial sets) provides the basis for skeleton induction and
will be used in Section 3 below.

Lemma 1.1. — For any monomorphism of simplicial sheaves f: % — % denote by sk,(f)
the union of (&) and sk(¥/ ) in %/ . Then for any n > O the square

(2, Wy e P79 X MY Uy 00000 S X 08 —— s

! |

Y, x A —  sk(f)

s cocartesian.

The simplicial model category structure

Recall that a point of a site T is a functor x* : Shy(T) — Sets which commutes
with finite limits and all colimits.

Defimition 1.2. — Let f: % — Y be a morphism of simplicial sheaves.

1. fus called a weak equivalence if for any point x of the site T the morphism of simplicial
sets x*(f) 1 x(F) = x(¥) 15 a weak equivalence;

2. fis called a cofibration if it is a monomorphism;

3. f is called a fibration if it has the right Lfting property with respect to any cofibration
which s a weak equivalence (see [26, 1.5] for the definition of the right- (or lefi-) lifting property).

Denote by W, (resp. C, F,) the class of (simplicial) weak equivalences (resp. cofibration,
(simplicial) fibrations).

Remark 1.3. — Let %" be a simplicial sheaf. One defines its n-th homotopy
sheaf IIL,(%#") as the sheaf of pointed sets over % associated to the presheaf
(% : U — &) — m, (& (U), x) (of course, it is a sheaf of groups (resp. abelian groups)
over % for n > 1 (resp. n > 2)). A morphism of simplicial sheaves f: % — % is a
weak equivalence if and only if for any n > 0 the square

(&) — I(¥)
| |
X, — Y,

is cartesian. Using this fact one can see that fis a weak equivalence if and only if x™f
is a weak equivalences for all x in a conservative set of points of T (see [13] for this
notion).
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Theorem 1.4. — For any small site T the triple (W,, C, F,) gives the category A% Sho(T)
the structure of a model category.

Progof. — It was shown in [18, Corollary 2.7] that the triple (W,, C, F,) defines a
closed model structure on A?Shy(T) in the sense of Quillen. The proof of existence of
factorizations given in [18] shows that they are functorial and therefore the stronger
axioms which we use are satisfied.

This model category structure is called the simplicial model category structure on
A?Sky(T). In the sequel, if not otherwise stated, we shall always consider the category
A?Sho(T) endowed with that model category structure. We shall sometimes use the
terminology simplicial weak equivalence (resp. fibration, cofibration) if we want to insist
that we use this model category structure.

We denote the corresponding homotopy category by . (T).

Remark 1.5. — The simplicial model category structure on A?Shu(T) is proper
(¢f [2, Definition 1.2]). This is proven in [19].

By the axiom MOC5 of model categories, we know that it is possible to find a
functor Ex : A?Sh(T) — A?Shy(T) and a natural transformation Id — Ex such that
for any %" the object Ex(#&") is fibrant and the morphism & — Ex(%) is a trivial
cofibration.

Definition 1.6. — A resolution functor on a site T is a pair (Ex, 0) consisting of a
Sunctor Ex : A?Sho(T) — A?Sho(T) and a natural transformation © : Id — Ex such that for any
G the object Ex(F") s fibrant and the morphism & — Ex(%") is a trivial cofibration.

Remark 1.7. — It is not hard to check that the functor which sends a simplicial
set to the corresponding constant simplicial sheaf preserves weak equivalences. It gives
us for any T an “augmentation” functor F# (A”?Sets) — F# (T). Any point x of T gives
a functor x*: F# (T) — F# (A” Sets) which splits this augmentation functor.

If we consider the category of simplicial sheaves on T as a symmetric monoidal
category with respect to the categorical product then it is a closed symmetric monoidal
category (¢f [21]) because of the existence of internal function objects. In more precise
terms, for any pair of objects (%, &) € (A?Shu(T))* the contravariant functor on
A?Shy(T):

& — Hompwg, (B X Y , &)
is representable by an object denoted by Hom(%/ , & ), and called the internal function
object from %/ to &. The following lemma says that, in the terminology of [16, B.3],

the model category structure we consider on A?Sh(T) is an enriched model category
structure:
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Lemma 1.8.
1. For any pair i: A — RB,j: % — Y) of cofibrations, the obvious morphism

Pl,j): (A XY ¢ x2 (BXZE)—> B XY
is a cofibration which is trivial if either @ or j is.
2. For any pair of morphisms (1 © & — Y ,p: & — A such that i is a cofibration
and p a fibration the obvious morphism

Hom(y , &) — Hm(FE' , &) X g, 58 ) Hom(Y , )

s a fibration which s trivial if either i or p 1s.
3. For any pair of morphisms (1 © & — Y ,p: & — ) such that i s a cofibration
and p a fibration the obuvious morphism of simplicial sets

S(%,g)—)S(«%A, g) Xs(,%"ﬂy?)S(%,.%)

s a Kan fibration which is trivial of either ¢ or p .

Proof — It is an easy exercise in adjointness to prove that 1) implies 2) and 3).
One proves 1) by reducing to the corresponding lemma in the category of simplicial
sets using points of T.

Remark 1.9. — Lemma 1.8 clearly implies that the model category structure on
A?Shy(T) is a simplicial model category structure : indeed, the third point in this lemma
is precisely axiom SM7 of [26, 11.2].

Lemma 1.10. — Let f: & — % be a morphism between fibrant simplicial sheaves. Then
the following conditions are equivalent:

1. fus a simplicial homotopy equivalence (i.e. there exists g: Y — & such that fo g and
go f are simplicially homotopic to identity);

2. f1s a weak equivalence;

3. for any object U € T the map of (Kan) simplicial sets:

S(U, /) : 8(U, &) — S(U, )

s a weak equivalence (in fact a homotopy equivalence).

Proof — The implication (2) = (1) is standard: one factorizes first f as a trivial
cofibration followed by a (trivial) fibration and applies [26, Cor. I1.2.5]. (1) = (3) follows
easily from the canonical isomorphism S(U, Hom(A', %)) = Hom(A', %" (U)). To prove
(3) = (2) we note from [13, IV.6.8.2] that any point x of T is associated to a pro-object
{Uq} of the category T. Then x*(f) is a filtering colimit of weak equivalences and
thus a weak equivalence.
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Local fibrations and resolution lemmas

Besides the classes of cofibrations, fibrations and weak equivalences there is
another important class of morphisms F;,, in A?Shy(T) which is called the class of local
Sfibrations.

Defimtion 1.11. — A morphism of simplicial sheaves f: & — %Y is called a local
Sibration (resp. trivial local fibration) if for any point x of T the corresponding morphism of simplicial
sets x*(&") — x*(¥) is a Kan fibration (resp. a Kan fibration and a weak equivalence).

A list of the most important properties of local fibrations can be found in [17].
We will only recall the following result. For simplicial sheaves %", %/ denote by
F&", &) the quotient of Hom(&", Y )=So(%", %) with respect to the equivalence
relation generated by simplicial homotopies, i.e. the set of connected components of
the simplicial function object S(#", %), and call it the set of simplicial homotopy classes
of morphisms from %" to %/ . One easily checks that the simplicial homotopy relation is
compatible with composition and thus one gets a category TA?Sho(T) with objects the
simplicial sheaves and morphisms the simplicial homotopy classes of morphisms. For
any simplicial sheaf . %" denote by n7Tnv/. %" the category whose objects are the trivial
local fibrations to .2 and whose morphisms are the obvious commutative triangles in
nA? Shy(T). From [6, §2] this category is filtering

Lemma 1.12. — For any simplicial sheaf %", the category nTriv/. %" is essentially small,
v.e. equivalent to a small one.

Progf. — Let’s say that a simplicial sheaf %/ is (T, .%)-bounded if for each
n > 0 and each U € T the cardinal of the set %/ ,(U) is less than or equal to that
of Supver, men#% (V). The full subcategory of (T, .#")-bounded simplicial sheaves is
clearly essentially small. Thus to prove the lemma it suffices to prove that for any
trivial local fibration f: ¥ — & there is a (T, %&")-bounded simplicial sheaf %/’ and
a morphism g: %' — %/ such that fog is a trivial local fibration. This fact is proven
as follows. Let n > 1 and & C % a sub-simplicial sheaf which is (T, .%")-bounded
and such that for each i € {0,...,n — 1} the morphism of sheaves:
Z ; — Hom(ON', Z ), X fom@i, %)y Fi

1

is an epimorphism (observe that & — %" is a trivial local fibration exactly when one
has this property for any ¢ > 0). Now there is an (T, .%")-bounded subsheaf S, C %,

whose image by the morphism

Y , — Hom(OA", Y ) X Hom(@A, &)y &
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is Hom(OA", & )o X gomonr, 2y, & ¢ this follows easily from the fact that the latter
sheaf is (T, %")-bounded (observe it is a subsheaf of (& ,_|)' x &"). Call &' the
sub-simplicial sheaf of %/ generated by & and S,. It is clear that &' is (T, .&)-
bounded and has the same property as & up to :=n By induction we get the

result.

Proposition 1.13. — For any simplicial sheaves &', Y, with Y locally fibrant, the
canonical map:

colimy, g5 1, g5 enin) o MHE' s Y ) — Homgg (%", Y )

s a byection.

For the proof see [6, §2] for sheaves on topological spaces and [18, p. 55] in the
general case.

Remark 1.14. — One of the corollaries of Proposition 1.13 is the fact that for
any pair (X,Y) of sheaves of simplicial dimension zero the map

Homg,m(X, Y) = Homgg,m(X, Y)

is bijective. In other words, the obvious functor Shy(T) — F# (T) is a full embedding,
An important class of local fibrations can be obtained as follows. Let f: X —'Y

be a morphism of sheaves of sets. Denote by C(f) the simplicial sheaf such that
CN=X"

and faces and degeneracy morphisms are given by partial projections and diagonals

respectively. Then f factors through an obvious morphism C( f) — Y which we
denote py.

Lemma 1.15. — The morphism py is a local fibration. It is a trivial local fibration if and
only if fis an eprmorphism.

Progf. — Since T has enough points, it is sufficient to prove the lemma for T
the category of sets in which case it is obvious.

The following two “resolution lemmas” will be used below to replace simplicial
sheaves by weakly equivalent simplicial sheaves of a given type.

Lemma 1.16. — Let & be a set of objects i Sho(T) such that for any U i ‘T there
exists an epimorphism ¥ — U with F being a sum of elements in . Then there exists a functor
D : A?Sh(T) — A?Sho(T) and a natural transformation ® 5 — Id such that for any Y one
has
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1. for any n > O the sheaf of sets ®(Y ), ts a direct sum of sheaves in &
2. the morphism ® (Y ) — Y s a trivial local fibration.

Progf. — For a morphism f: & — %/ define (I)(ly( f) by the cocartesian square
HHF x oA — &

| |
[[FxA — @%(f)

where the coproduct is taken over the set of all commutative squares of the form

FxoAN — &

! L

FxA — Y

with # > 0 and F in .% Let ®4(f) be the canonical morphism @4 (f) — % .
Set ®% '(f) to be D (@%(f)) and let @ '(f) be the corresponding morphism

(I>f”}1( f) — %. We get a sequence of simplicial sheaves <I>ig( f) and monomor-
phisms QIy( f — (D;}( f) and we set @ (f) to be the colimit of this sequence.
This construction gives a functorial decomposition of any morphism f of the form
X o0 (f) - Y.

One verifies easily that the functor % — ® () — %) satisfies the conditions
of the lemma by using the fact ([13, IV.6.8] that any point x of T is associated to a

pro-object {Fy} with each Fy € ..

Remark 1.17. — Lemma 1.16 applied to the class of representable sheaves shows,
using Lemma 1.1, that the smallest full subcategory of .# (T) which contains all
representable sheaves and which is closed under isomorphisms, homotopy cofiber and

direct sums is F#E (T) itself.

Lemma 1.18. — Let & be a simplicial sheaf and py : &'y — &', be an epimorphism of
sheaves. Then there exists a trivial local fibration p : &' — B such that po is the zero component

oS

Progf. — Consider py as a morphism of simplicial sheaves &', — % . Then
construct its decomposition in the same way as in the proof of Lemma 1.16 using the
inclusions U X JA" — U x A" with U running through all objects of T and n being
strictly greater than zero.
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Homotopy limits and colimits

Let J be a small category. For any functor & : J — A?Shu(T) we may define
by the usual formulas (¢f [3, XI.4.5, XII.3.7]) its homotopy limit and its homotopy
colimit which gives us functors

holimg : A?Sho(T)? — A% Shy(T)
hocolimgr : A?Sho(T)7 — A?Shy(T)
where holimsz. %" is the sheaf of the form
U — holimz(%"(U))
and hocolimz %" is the sheaf associated with the presheaf of the form
U — hocolimz(%" (U)).

Lemma 1.19. — For any functor & : T — A?Shu(T) and any simplicial sheaf Y , there
is a canonical isomorphism

Hom(hocolimg ", Y ) = holim gy Hom(%™, Y/ ),
and in particular there’s a canonical isomorphism of simplicial sets

S(hocolimg X", Y ) = holim 74 S(F", Y).
Stmalarly, there are canonical isomorphisms

Hom(Y , holimg &™) = holimg Hom(¥Y/ , &),
and

S(Y , holimg &) = holimgS(¥Y , &°).

Lemma 1.20. — For any functor & : T — A?Sh(T) and any point x of T, the
simplicial set x*(hocolimg &) is canonically isomorphic to the simplicial set hocolimgx* (&) If
is a finite category the same holds for holimg.

Corollary 1.21. — Let &, Y be functors T — A?Sho(T) and f a natural transformation
X — Y. Then:

1. if for any 1 € T the morphism f(3) is a cofibration (resp. a weak equivalence) then the
morphism hocolimg( f) s cofibration (resp. a weak equivalence);

2. if T is a night filtering category (cf [3, X11.3.5]), then the obuvious morphism:
hocolimg %" — colimg &

is a weak equivalence.
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Proof. — The first point and the third one are easy corollaries of Lemma 1.20

and [3, XII, 3.5, 4.2, 5.2]. The second point is an easy exercise in adjointness using
Lemmas 1.19, 1.10 and [3, XI, 5.5, 5.6].

Proposition 1.22. — Let %, Y be functors T — A?Sho(T) and f a natural
transformation & — Y such that all the simplicial sheaves % (3), Y (i) are pointwise fibrant
and the morphisms f (i) are fibrations. Then holim( f) ts a fibration. In particular if all the sheaves
F'(2) are fibrant then holimg %" s fibrant.

Proof. — Follows from [22, XI, 5.5, 5.6], Lemma 1.8(3) and the obvious fact that
A, holimg—) = holimg A—, —).

Unlike the theory of homotopy colimits the theory of homotopy limits for
simplicial sheaves on sites is different from the corresponding theory for simplicial
sets because the analog of Lemma 1.20 does not hold for infinite homotopy limits.
As a result holim functor may not preserve weak equivalences even between systems of
pointwise fibrant objects unless the objects are actually fibrant. An example of such a

situation for an infinite product is given below. A more sophisticated example is given
in 1.30.

Example 1.23. — Let T be a site with precanonical topology i.e. such that
any representable presheaf is a sheaf. Assume that there exists a family of coverings
pi : U; — pt of the final object of T such that for any U in T the intersection of
images of Hom(U, U;) in pt=Hom(U, pf) is empty (such a family can be found for
example In the site associated with any profinite group which is not finite). Consider
the simplicial sheaves %" i:é(Ui — pb) (see definition prior to Lemma 1.15) and
let Ex be a resolution functor on A?Shu(T). We claim that the canonical morphism
[1.%; — I1ExZ; is not a weak equivalence. Indeed, by Lemma 1.15 each of %" ’s is
weakly equivalent to the final object and therefore [] Ex%", is weakly equivalent to the
final object as well. On the other hand our condition on U;’s implies that the product

I1.%; is empty

Eilenberg-MacLane sheaves and Postnikov towers

In this section we give a reformulation of the main results of [22, Ch. V] for the
case of simplicial sheaves. In this context there are two noticeable differences between
simplicial sheaves and simplicial sets. The first is that the weak homotopy type of a
simplicial sheaf can not be recovered from the weak homotopy type of its Postnikoff
tower unless some finitness assumptions are used (Example 1.30). The second is that
a simplicial abelian group object is not necessarily weakly equivalent to the product of
Eilenberg-MacLane objects corresponding to its homotopy groups (Theorem 1.34).
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We adopt the following convention concerning complexes with values in an
abelian category .: a chain complex C, is one whose differential has degree —1 and
a cochain complex C* is whose differential has degree +1. If C, is a chain complex,
we shall denote C* its associated cochain complex with C" :=C™".

For a sheaf of simplicial abelian groups & on T denote by n(%) the presheaf
of the form U — x(%(U), 0). Similarly, for a chain complex of sheaves of abelian
groups C, denote by H (C,) the presheaf U — H,(C.(U)).

Let N(¥) be the chain complex of sheaves of abelian groups on T obtained
from a simplicial abelian group & by applying the functor of the normalized complex
(see [22, p. 93]) pointwise. Then we have (%) = H(N(¥")). The functor N has a right

adjoint " ([22, p. 95]) and we get the following result ([22, Th. 22.4]).

Proposition 1.24. — (N, ') s a pair of mutually inverse equivalences between the category
of complexes of sheaves of abelian groups A with A; =0 for 1 <O and the category of sheaves of
simplicial abelian groups.

Remark 1.25. — For a complex A which does not satisfy the condition A;=0 for
¢ <0 the composition N oI" maps A to the truncation of A of the form N oI'(A),=A;
for >0, NoTI'(A)y=ker(dy : Ao — A_;) and NoTI(A);=0 for : <0.

One defines the Eilenberg-MacLane objects associated with a sheaf of abelian
groups A as K(A, n)=T(A[r]) where A[n] is the chain complex of sheaves with the
only nontrivial term being A in dimension .

Denote the category of chain complexes of sheaves of abelian groups on T
by ComplAbShu(T)). Recall that a morphism of cochain complexes f : C, — C,
is called a quasi-isomorphism if the corresponding morphisms of homology sheaves
aH(C)) — aH(C,) are isomorphisms for all : € Z. The localization of the category
ComplAbShu(T)) with respect to quasi-isomorphisms is called the derived category of
chain complexes of sheaves on T and denoted by D(46S5hy(T)).

For any chain complex of sheaves C, let n7riv/C, be the category whose objects
are epimorphisms of complexes C, — C, which are quasi-isomorphisms and whose
morphisms are the obvious homotopy commutative triangles of complexes. The same
method as the one used in the proof of Lemma 1.12 shows that n7riv/C is a (left)
filtering category, essentially small. This implies that the derived category D(45Sh(T))
obtained from Comp(AbShy(T)) by inverting all the quasi-isomorphisms is indeed a
category, in which the set of morphisms from C, to D, is given by the colimit:

colim(p: C.,D.)

C;-»C*)enTn‘v/C.n(

where n(—, —) denotes the set of homotopy classes of morphisms of chain complexes.
Recall that the hypercohomology H*(U, C*) of an object U of T with coefficients
in a cochain complex of sheaves C* is the graded group of morphisms Hom(Z, C.)
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in the derived category of (chain) complexes of sheaves on T. The following almost
tautological result provides an interpretation of hypercohomology groups in terms of
simplicial sheaves (for a proof see [6, §3 Theorem 2]).

Proposition 1.26. — Let C* be a cochain complex of sheaves of abelian groups on
T. Then for any integer n and any object U of T one has a canonical isomorphism
H"(U, C*) =Homgg (U, T(C.[n])). In particular of C* =A s a sheaf of abelian groups we
have H'(U, A) = Homgg (U, K(A, n)).

For a simplicial sheaf %" denote by P®(%") the simplicial sheaf associated with
the presheaf U — (& (U))® where K — K" =In(K — cosk,(K)) is the functor on
simplicial sets defined in [22, p. 32]. The following result is a direct corollary of
[22, 8.2, 8.4].

Proposition 1.27. — Let & be a locally fibrant simplicial sheaf Then the sheaves P2
are locally fibrant and the morphisms

Z — PO
Prlg _ P0G

are local fibrations.

If f: & — Y is a weak equivalence of locally fibrant simplicial sheaves then for any
n> 0 the morphism PY( f) is a weak equivalence.

Remark 1.28. — Let & be a pointwise fibrant simplicial sheaf ie. a simplicial
sheaf such that for any U in T the simplicial set .%°(U) is a Kan complex. Then the
simplicial sheaf P®. %" is pointwise fibrant. For any U and T and a point x € .%(U)
one has

(PO (U), x) = (% (U), x) for i <n
(PP (U), x) = colimas _uIm(n{ % (U), x) — 7% (26 ), x)) for i=n
m(PP.% (U), x)=0 for 1>n

where the colimit in the middle row is taken over all coverings %6 ={U; — U} of U

and (%" (26 ), ¥ = [0 (U), %).

Definition 1.29. — The tower of local fibrations (P %", P"*V. %" — PO.Z") associated
to a locally fibrant simplicial sheaf % s called the Postnikov tower of % .

Functors P” do not take fibrant simplicial sheaves to fibrant simplicial sheaves.
As a result of this fact the homotopy limit holim,soExP™.%") of the tower of fibrant
objects associated to the Postnikov tower of .&" is not in general weakly equivalent to
& as shown in the following example.
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Example 1.30. — Let T be the site of finite G-sets where G =[], Z/2 is the
product of infinitely many copies of Z/2. Consider the constant simplicial sheaf &
on T which corresponds to the product of Eilenberg-MacLane spaces of the form
[150 K(Z/2, 7) (it is also the product of the corresponding Eilenberg-MacLane sheaves
in the category of sheaves). Then P”. %" is weakly equivalent to [],...o K(Z/2, 7)
and one can easily see that for any resolution functor Ex the homotopy limit
holim, 0 ExXP".%Z") is weakly equivalent to .2 = [[,5o EXK(Z/2, 1)). We claim that the
sheaf associated to the presheaf U +— 11:0(,%; (U)) is nontrivial while the corresponding
sheaf for & is clearly trivial. By Proposition 1.26 we have for any U in T

(% U) = [[H(U, 2/2)

>0

Let © be the generator of H'(Z/2,Z/2) and p; : G — Z/2 the projection to the
i-th multiple. Consider the element o= [] p!(t") in no(.%i' (p?)). This element does not
become zero on any covering of the point and therefore gives a nontrivial element in
the sections of the sheaf associated to U +— no(ﬂg‘ Q).

Defimition 1.31. — A site T s called a site of finte type if for any simplicial sheaf & on
T the canonical morphism & — holim,so EX(P™.%") is a weak equivalence.

Our next goal is to show that any site satisfying a fairly weak finiteness condition
on cohomological dimension is a site of finite type in the sense of Definition 1.31. In
order to do it we will need a description of simplicial sheaves with only one nontrivial
“homotopy group” which is also of independent interest.

Defimition 1.32. — Let & be a simplicial sheaf We say that & has only nontrivial
homotopy in dimension d > O if the following condition holds:

1. for any U in T, any x € & (U) and any n > 0, n+d the sheaf of sets on T/U
assoctated with the presheaf V /U — (%" (V), x) is tsomorphic to the point.

We say that & has only one nontrivial abelian homotopy group in dimension d > 1 if it
has only nontrivial homotopy in dimension d and for any U in T and any x € %" (U) the sheaf of
groups on T /U associated with the presheaf V /U — (% (V), x) is abelian (this condition is of
course only meaningful for d=1).

The forgetful functor from the category of sheaves of simplicial abelian groups
on T to the category of simplicial sheaves (of sets) on T has a left adjoint which we call
the functor of free abelian group and denote by Z : A?Shy(T) — A?AbShy(T). For any
simplicial sheaf .Z" the sheaf of simplicial abelian groups Z(.%") is the sheaf associated
with the presheaf U — Z(% (U)) where Z(%# (U)) is the free abelian group generated
by the simplicial set .% (U) (in [22] the functor Z is denoted by G : K — C(K)).
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Proposition 1.33. — Let % be a simplicial sheaf which has only one nontrivial abelian
homotopy group in dimension d > 1. Denote by & (&) the fiber product

F(F) — PUZE))

L
pn  — 7

Then the obvious morphism &' — & (&) s a weak equivalence.

Proof. — For any point x of T one has x*(PYZ(%")))=(Cx*%"))" (where the
right hand side is written in the notations of [22, Def. 8.1]) which shows that it is
enough to prove the proposition in the case of simplicial sets. For any simplicial set K
the homotopy groups of the simplicial abelian group G(K) are the homology groups of
K and by our assumption on %, Hurewicz Theorems ([22, Th. §13]) and the main
property of functors K +— K" ([22, Th. 8.4]) we conclude that (C(x* %)) = x* %" x Z
which implies the statement of the proposition.

For & satisfying the conditions of Definition 1.32 (2) we define a sheaf an (%) as
the sheaf associated with the presheaf U — H,(% (U); Z). Using Hurewicz Theorems
([22, Th. §13]) one can verify immediately that for any U in T such that .%"(U) is not
empty and any x € %"(U), there is a canonical isomorphism between am (%) and
the sheaf on T/U associated with the presheaf V — m (% (V), ).

The simplicial sheaf P9(Z(.%")) has a canonical structure of a sheaf of simplicial
abelian groups, the morphism PY(Z(%")) — Z is a surjective homomorphism and its
kernel is canonically weakly equivalent to I'(an,(%")[d]). Thus the complex of sheaves
N(P9Z(.%"))) has two nontrivial homology groups namely aH =Z and ¢H = an(&").
Therefore it defines a morphism in the derived category of complexes of sheaves on T
of the form Z — an (% )[d+ 1] and the projection PYZ(%")) — Z splits if and only
if this morphism is zero. Combining these observations we get the following result.

Theorem 1.34. — Let & be a simplicial sheaf whose only nontrivial homotopy group
an (&) is abelian and lies in dimension d > 1. Any such F defines a cohomology class
Ne € HYYT, an (%)) and the pair (an (%), Na) determines %" up to a weak equivalence.

If in addition %" 1s fibrant then

0 if the restriction of n,¢" to U is not zero
mo( 2 (U)) = {Hd(U, an (&) otherwise

Corollary 1.35. — Let & be a fibrant simplicial sheaf satisfying the conditions of Definition
1.32 for some d > 1 and let U be an object of T such that for any sheaf of abelian groups F on
T and any m > d one has H*(U, F) =0. Then no(%"(U)) =pt.
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Sheaves with only one nontrivial homotopy group are related to Postnikov towers
as follows.

Proposition 1.36. — Let & be a locally fibrant simplicial sheaf and p: Y — & be a
local fibration weakly equivalent to the local fibration PO%" — P4V, Then for any U in T
and any point z in & (U)o the fiber F, of p over z considered as a sheaf on T /U has only one
nontrivial homotopy group in dimension d (which s abelian iof d > 2).

Proof. — Follows by the use of points from [22, Cor. 8.7].

Theorem 1.37. — Let T be a site and suppose that there exists a family (Ay)so of classes
of objects of T such that the following conditions hold:

1. Any object U in A, has cohomological dimension < d i.e. for any sheaf F on T/U and
any m > d one has H"(U, F) =0.

2. For any object V of T there exists an integer dy such that any covering of V in T has a
refinement of the form {U; — V} with U; being in Ay, .

Then T is a site of finite type.

Proof. — Let & be a simplicial sheaf on T. Denote by p? : GPY%") —
GP (") a tower of fibrations weakly equivalent to the tower of local fibrations
POZ — PDZ. This tower is then pointwise weakly equivalent to the tower
(Ex(P?.%")) for any resolution functor Ex on simplicial sheaves and since homotopy
limits preserve pointwise weak equivalences of Kan simplicial sets and homotopy limit
of a tower of fibration is weakly equivalent to the ordinary limit we conclude that to
prove the theorem we have to show that the canonical morphism %" — lim,_, GPY.%"
is a weak equivalence. We may further assume that %" is a fibrant simplicial sheaf.

It is easy to see that our claim will follow if we show that the sheaves am (%)
and am,(lim,, GPY%") are isomorphic for all %" (to deduce the same fact for m; one
then replaces %" by the simplicial sheaf of pointed maps from any model of the
i-sphere to &").

By the second condition of the theorem any object in T has a covering consisting
of objects in A, for some d. Therefore it is sufficient to verify that for any 4 > 0 and
any U € A, the canonical map amy(%")(U) — am,(lim,,, GP?.%")(U) is an isomorphism.
By definition of P? for any i > 0 we have

a1y (PO %) = any( PO %) = a ()

which immediately implies that the map in question is a monomorphism. The fact that
it is an epimorphism follows from the standard criterion for a map of presheaves to give
an epimorphism of sheaves, Lemma 1.38 below and the exact form of condition (2)
of the theorem.
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Lemma 1.38. — Let U be an object in Ay. Then
molim GPY.%"(U)) — mo(GPY.%' (1))

20
is an isomorphism.
Progf. — Let p% : K¢ — KD ¢ > 1 be a sequence of Kan fibrations of
Kan simplicial sets and d be such that for any m > d and any x € K{’ one has
o (™ V)" (x)) =pt. Then the map m,(lim, K¥) — m(K®) is bijective. Combining this
fact with Corollary 1.35 and Proposition 1.36 we get the statement of the lemma.

Remark 1.39. — We do not know of any example of a site where each object has
a finite cohomological dimension but condition (2) of Theorem 1.37 does not hold.

For sites of finite type Corollary 1.35 has the following important generalization
which is the basis for all kinds of convergence theorems for spectral sequences build
out of towers of local fibrations on such sites.

Proposition 1.40. — Let T be a site of finte type and U be an object of T of cohomological
dimension less than or equal to d > 2. Let further %" be a fibrant simplicial sheaf on T which has
no nontrivial homotopy groups in dimension < d i.e. such that the sheaf PO is weakly equivalent
to the point. Then my(.% (U)) = pt.

Proof. — Let GP™V.%" — GPY.%" be a tower of fibrations weakly equivalent
to the tower of local fibrations P“*V. %" — PO.%". Since T is a site of finite type one
has % (U) = lim,, GPY.%"(U). By Corollary 1.35 and Proposition 1.36 the fibers F; of
the maps GP*'.%"(U) — GP'.%"(U) satisfy the condition my(F;)=pt for i > d. Therefore
mo(lim,, GPO.%(U)) = 1o(GPY.%"(U)) and the latter set is p¢ by our condition on %"

Corollary 1.41. — For any T and U as in Proposition 1.40 and any simplicial sheaf %"
one has:

1. the map mo(Ex(Z)U)) — no(Ex(P'Z)U)) is an epimorphism for i > d — 1 and an
isomorphism for 1@ > d;

2. for any x € & (U) the map my(Ex(%")(U), x) — m(Ex(P'.Z)U), ) is an epimorphism
Jor i—k>d—1 and an isomorphism for 1 — k > d.

Functoriality

We first recall briefly the standard definitions related to functoriality of sites.
Let f~! : Ty — T, be a functor between the underlying categories of sites T},
T,. Associated to any such functor we have a pair of adjoint functors between the
corresponding categories of presheaves of sets

S + PreSh(To) — PreSho(T))
fv : PreSho(T|) — PreSho(Ty)

(where £, is just the functor given by the composition with f~).
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Definition 1.42. — A continuous map of sites f: Ty — Ty is a functor f=' : Ty — T,
such that for any sheaf ¥ on Ty the presheaf f.(F) is a sheaf on T,.

If fis a continuous map of sites, the functor f,: Sho(T,) — Shy(T5) has a left adjoint
S Sh(T9) — Sho(T')) given by the composition of the inclusion Sky(Ty) C PreShu(T,) with
the functor f;, and the functor associated sheaf a: PreSho(T,) — Sho(T1).

re

Definition 1.43. — A continuous map of sites f: T\ — Ty ts called a morphism of sites if
the functor [~ : Sho(T9) — Sho(T)) commutes with finite Limats.

Remark 1.44. — If the topology on T, is defined by a pretopology ([13, IIL
Definition 1.3]) and the functor f~' commutes with fiber products then f~' defines a
continuous map of sites if and only if it takes coverings (of the pretopology on Tj) to
coverings (¢f [13, III. Proposition 1.6]). See [13, III. Exemple 1.9.3] for an example of
a functor f~! which takes coverings to coverings and which is not continuous.

Remark 1.45. — If the category T, has fiber products and any representable
presheaf on T, is a sheaf then a continuous map f'is a morphism of sites if and only
if the functor f~! commutes with fiber products. A more general statement can be

found in (¢f [13, IV.4.9.2)).

Example 1.46. — A typical example of a continuous map which is not a morphism
of sites is given by the inclusion functor Sm/S — Sch/S from the category of smooth
S-schemes of finite type to the category of all schemes of finite type over some base
scheme S considered with Zariski (or etale, flat, Nisnevich etc.) topology (¢f 1.19 below).

Let f: T) — Ty be a continuous map of sites. Then we have a pair of adjoint
functors

£ APShi(Ty) — A?Sho(T))
£ APSh(T,) — A Sh(T)

between the corresponding categories of simplicial sheaves. In general neither one of
them preserves weak equivalences.

Choose a resolution functor Ex for T (see 1.6). The functor f, o Ex : A?Shy(T)) —
A”?Shy(Ty) does preserve weak equivalences because for any weak equivalence f the
morphism Ex(f) is a simplicial homotopy equivalence (¢f 1.10) and the functor f,
clearly preserves simplicial homotopies. Let us denote by

Rf. : F (T)\) — F_ (Ty)

the functor induced by the functor f, o Ex. One can easily see that Rf, is the total right
derived of f, in the sense of [26, 1.4]; in particular it doesn’t depend on the choice of
the resolution functor Ex.
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The following simple result describes the basic functoriality of the simplicial
homotopy categories for morphisms of sites.

Proposition 1.47. — Let f:'T| — Ty be a morphism of sites. Then the functor f* preserves
weak equivalences and the corresponding functor between homotopy categories is left adjont to Rf,. If

T, =N Ty £ Ts is a composable pair of morphisms of sites then the canonical morphism of functors

Rigof). — Re. oRY,

i an somorphism.

For a site T denote by T the site with the same underlying category considered
with the trivial topology and let ®: T — T’ be the canonical morphism of sites. Then
T, is the inclusion of sheaves to presheaves, n* is the functor of associated sheaf and
we have the following refinement of Proposition 1.47.

Lemma 1.48. — In the notations given above the functor
(1) — F (1)

is a localization, the functor R, : FE (T) — FE (1) is a_full embedding and there is a canonical
isomorphism ©*Rm, = Id.

If fis not a morphism of sites it is not clear in general whether or not Rf, has
a left adjoint. There are also examples of composable pairs of continuous maps f and
g such that the natural morphism R(go f). — Rg, o Rf, is not an isomorphism. We
are going to define now a class of continuous maps called reasonable for which a left
adjoint to Rf, always exists and the composition morphisms are isomorphisms.

Recall that for simplicial sheaves %', %", the simplicial function object
S(&", &) is the simplicial set of the form

S(#F, &)y = Homppg,m(F" X A", Z).

Definition 1.49. — Let Ty — Ty be a continuous map of sites. A simplicial sheaf Y on
Ty is said to be f-admissible if for any fibrant simplicial sheaf %" on T) and any simplicial set
K the map :

MY x K, fu( ) = Homge, 1)(Y X K, f(F))

s byective.

We say that Ty has enough f-admissibles if there is a_functor ady: A Sho(Ty) — A”?Sho(T )
and a natural transformation ady — Id such that ads takes values in the full subcategory of objects
admissible with respect to f and for any Y on Ty the morphism ad(yY ) — ¥ is a weak
equivalence. We then say that the pair (ads, ads — Id) is an f-admissible resolution.
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Remark 1.50. — Observe that a simplicial sheaf %/ on T, is fadmissible if
and only if for any fibrant simplicial sheaf %" on T, and for any weak equivalence
S(FE) = &' with & fibrant the induced map of simplicial sets S(% , fi(Z")) —
S(¥ , &) is a weak equivalence.

The following two results follow immediately from the definitions (and the formal
fact that for any simplicial sheaves . %" on T}, %/ on Ty, the map (% xK, fi(&") —
o (¥ ) x K, &) is bijective).

Proposition 1.51. — Let T\ — Ty be a continuous map of sites such that Ty has enough
admissibles with respect to f and (ady, ady — Id) be an f-admissible resolution. Then the functor
S o ady preserves weak equivalences and the induced functor L f* : F (To) — FE (1)) is lfi
adjoint to Rf . (in particular this induced functor is independent of the f-admissible resolution).

Proposition 1.52. — Let T\ — Ty be a continuous map of sites such that Ty has enough
S-admissibles. Then a simplicial sheaf & on Ty s f-admissible of and only if the canonical
morphism f*(ady (&) — f*(F") is a weak equivalence.

Lemma 1.53. — Let Ty — Ty be a continuous map of sites and Ay be the class of
S-admissible simplicial sheaves on To. Then one has:

1. Ay w5 closed under sums;

Up_y

2. for any diagram of the form ¥, = Y, 4.0 Y, — ... such that Y, € Ay and
all the morphisms w,, f*(u,) are monomorphisms one has colim, %, € Ay
3. for any cocartesian square of the form

Y — Y

Y, — Y
such that Yy, ¥, Yy € Ay and both u and f*(u) are monomorphisms one has Y5 € Ay

Progf. — The first statement is obvious. The second follows from the fact that an
inverse limit of a tower of weak equivalences of simplicial sets is a weak equivalence
at least if all the morphisms in the towers are fibrations.

To prove the third one, one notes that for any fibrant &" on T, we have
a morphism of Cartesian squares of simplicial sets consisting of S(%/;, fi(%")) and
S(¥;, Ex(f.(%"))) respectively such that three out of four morphisms are weak
equivalences and all we have to show is that the fourth one is also a weak equivalence.
This follows immediately from the fact that the maps

S(Y 1/ F) = (Y, 1 F))
S(H15 EXS(F))) = (Yo, EX(So(F7)))
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induced by u are fibrations — the first one since /(%) is a monomorphism and %" is
fibrant and the second since # is a monomorphism and Ex( f,(%")) is fibrant.

Proposition 1.54. — Let Y be a simplicial sheaf on Ty such that all its terms Y, are
S-admissible. Then so s Y .

Proof. — Let & be a fibrant simplicial sheaf on T,. We have to show that the
morphism of simplicial sets S(%/ , fu(%&")) — S(% , &) is a weak equivalence for any
weak equivalence & — %" with %" fibrant. This morphism can be obtained by
applying the total space functor to the morphism of the corresponding cosimplicial
simplicial sets (¢f [3, X.3]) which is a weak equivalence in the sense of [3] by the
conditions of the proposition.

For any simplicial sheaf 4/ and any fibrant simplicial sheaf & the cosimplicial
simplicial set S(%/, &) is fibrant (in the sense of [3, X]). Since S(¥,fi(H&))=
S( f{(¥Y), &) we conclude that both cosimplicial simplicial sets we consider are
fibrant and our result follows now from [3, X.5.2].

Definstion 1.55. — A continuous map T\ — Ty s called reasonable if any representable
sheaf on Ty s _f-admissible.

Example 1.56. — One may get an “unreasonable” map of sites as follows. Let
f: T, — Ty be any continuous map which is not a morphism of sites. Consider Shu(T))
and Shy(Ts) as sites with the canonical topologies. Then the functor of inverse image
Shy(T'9) — Sho(T)) is an unreasonable continuous map. Note that this example also
confirms that the notion of a reasonable map actually depends on sites and not just
on the corresponding topoi.

Let f: T) — T, be a reasonable continuous map of sites. By Lemma 1.16 applied
to the set . of representable sheaves there exists a functor ®r, : A?Shy(T) — A?Shy(T)
and a natural transformation ®, — Id such that for any %" and any n > O the
sheaf of sets ®r,(#"), is a direct sum of representable sheaves and the morphism
O, (&)Y — & is a trivial local fibration. Proposition 1.54 then implies that T, has
enough fadmissibles. We may sum up the situation as follows using Propositions 1.51,
1.52 and keeping previous notations.

Proposition 1.57. — Let f: T} — Ty be a reasonable continuous map of sites:

1. the functor f* o @1, : A?Shu(Tg) — A?Sh(T\) preserves weak equivalences and the
induced functor Lf* : FE (Ty) — F (1) s left adjoint to Rf,;
2. if YW is a simplicial sheaf such that any term Y, of Y s a direct sum of representable
' sheaves then the canonical morphism f*(®@r,(F)) — f*(F) i a weak equivalence;
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3. T EA Ty, 5 Ts is a composable pair of reasonable continuous maps of sites then there
are canonical isomorphisms

Ligof) =Lf* oLg’
R(zo ). =Rg. o Rf,

of functors between the corresponding homotopy categories.

Remark 1.58. — An example of a reasonable continuous map f: T} — T, and

a simplicial sheaf %/ on Ty such the morphism Lf*(%) — f*(%/) is not a weak
equivalence is given in 1.22.

Godement resolutions

The main result of this section is Theorem 1.66 below which asserts that for any
site of finite type there exists a resolution functor on the category of simplicial sheaves
which commutes with finite limits and takes local fibrations to global fibrations. We do
not know whether the finite type assumption is really necessary for this result or not.

For any set of points £ of T define a functor &% from sheaves on T to
cosimplicial sheaves on T as follows. Let & be the product of £ copies of the
category of sets. A point of T is a morphism of sites Sets — T and a set of points &
defines a morphism of sites p: & — T. The corresponding adjoint pair of functors p*
and p, gives in a standard way a cosimplicial functor with terms of the form (p,p*)*!
which we denote by &% . In most places below we omit % from our notations.

Proposition 1.59. — For any local fibration of locally fibrant simplicial sheaves f: & — Y
the morphism

holimpa & °(f) : holimpa & ° %" — holimp G °* Y

i a fibration.

Progf — By definition of local fibration the functor p* takes local fibrations to
fibrations in A?Sho(&). Since direct images preserve fibrations the composition p,p*
takes local fibrations to fibrations and in particular locally fibrant sheaves to fibrant
sheaves. The statement of the proposition follows now from Proposition 1.22.

Proposition 1.60. — The functor B — holimpy & *(F") takes weak equivalences of locally
Sfibrant simplicial sheaves to weak equivalences of simplicial sheaves.

Progf. — One can easily see that the functors (p,p*)""' take weak equivalences to
pointwise weak equivalences. The statement of the proposition follows now from the
fact that holim preserves pointwise weak equivalences between pointwise fibrant sheaves
by its definition and the corresponding result for simplicial sets (see [3, XI.5.6]).
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Proposition 1.61. — Let Z&™° be a cosimplicial simplicial sheaf such that all of its simplicial
terms are locally fibrant and there exists s > O such that the canonical morphisms

R LN P(,r) "

are weak equivalences for all n > 0. Then for any point x of T the canonical morphism
x"(holimpa%5"%) — holimax™ 25"*

15 a weak equivalence.

Proof. — Let Ex® be a resolution functor on the category of cosimplicial simplicial
sets (with respect to the standard closed model structure described in [3]). Below we
use the equality sign instead of specifying explicit weak equivalences. Unless otherwise
specified functors on cosimplicial simplicial sets are extended to functors on cosimplicial

simplicial presheaves pointwise. The functor of associated sheaf is denoted by a. We
have

2" (holimp 3"*) = 5" alholimp 5"*) = x° alholimy EXX (25°*))

since the functor x*a takes pointwise weak equivalences of simplicial presheaves to weak
equivalences of simplicial sets. We have

" alholimaEXR (F*)) = " o T EX(Z*)) )

since the homotopy limit is weakly equivalent to 7ot for fibrant cosimplicial simplicial
sets. By Lemma 1.62 we have

2 A To{ER(F°))) = 2" a Toty o (EXR(F?))).

Since 7ot involves only finite limits and functors x* and @ commute with such limits
we have

x* a(Tot, ) (EX(F°))) = Tote (x" a(EXN(E°))).

The functor x*a commutes with finite limits and takes pointwise fibrations of simplicial
presheaves to Kan fibrations of simplicial sets. In addition x*¢ commutes with
pointwise PY. Therefore cosimplicial simplicial set x*a(ExX(%*)) satisfies the condition
of Lemma 1.62 and we have

Tot,s (" a(EXR(F®))) = Tot(x" a(ExXRX(°°)) ) = holima(x* a(EXR(Z°)) ).
Finally x*a takes pointwise weak equivalences to weak equivalences and therefore

holima(x" a(EXX(°°))) = holimax* a %™ = holimpx* % .
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Lemma 1.62. — Let K® be a fibrant cosimplicial simplicial set and s > O be an integer
such that for any n > 0 the map of simplicial sets K" — PYK" is a weak equivalence. Then the
canonical map

TotK®* — Tot K®

s a weak equivalence of simplicial sets.

Proof. — Let cosk,+1K* be the cosimplicial simplicial set obtained from K*® by
applying the coskeleton functor to each simplicial term. Under our assumptions on K*®
the canonical morphism K*® — cosk,+;K*® is a weak equivalence of cosimplicial simplicial
sets. In addition, the cosimplicial simplicial set cosk, K® is fibrant i.e. all the maps
cosk+1 K™ — M"cosk.1K® are fibrations (see [3]). To prove this fact observe that the
functor cosk+) commutes with finite limits which implies that M"cosk+ K® = cosk ) M"K®.
Although the coskeleton functor does not in general take Kan fibrations to Kan
fibrations the following simple result holds.

Lemma 1.63. — Let f: E — B be a Kan fibration of Kan simplicial sets and s be an
integer such that for any point x in B one has wy (B, x) =0. Then cosky (f) s again a Kan
Sfibration.

Under our assumptions on K* we have m,;(M"K®, x)=0 for any point x in
M"K*. This can be shown by induction on n using the intermediate objects M;K*
as in [3, Lemma 5.3, p. 278]. Therefore the maps cosk. K™' — cosk M"K® are
fibrations and cosk,+;. %" is fibrant.

For any cosimplicial simplicial set K® the canonical map 7of(cosk.+;K*) —
Tot+\(cosk K®) is an isomorphism of cosimplicial simplicial sets. Since both functors
Tot and 7ot preserve weak equivalences between fibrant objects we conclude that

TotK®) = Tof(cosk1 K®) = Tots (cosk,1 K®) = Tot (K®).
Lemma 1.64. — For any simplicial sheaf & the composition
P E — p(holimpy G F") — holimap™ (& °F)

is a weak equivalence of simplicial sheaves on & .

Proof. — This is a particular case of [23, Cor. 3.5]. In the notations of that paper
one takes U=1d, F=p" and T =p,p".

Recall that a set % of points of T is called conservative if any morphism
f:F — G of sheaves on T for which all the maps of sets x*(f) : x*F — x*G are
isomorphisms is an isomorphism.
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Proposition 1.65. — Let T be a site of finite type and £ be a conservative set
of pomnts of T. Then for any locally fibrant simplicial sheaf F& the canomical morphism
&x +E — holimpG*(F") is a weak equivalence.

Proof. — We will prove this fact in several steps.

1. For any s the canonical morphism PY.%" — holimy&*P9% is a weak
equivalence.

Proof. — Since % is a conservative set of points it is sufficient to show that the
morphism

PO - p* (holima T PO.Z)

is a weak equivalence. This follows from Proposition 1.61 and Lemma 1.64.
2. The canonical morphism

holima &° %" — holim,so(holima & °P.%5")

is a weak equivalence.

Progf. — By Proposition 1.59 all the simplicial sheaves holimy & *PY.%" are fibrant
and the morphisms between them are fibrations. Thus by [3, XI.4.1] the right hand
side is pointwise weakly equivalent to lim_(holimy & *P¥.%"). We further have

lim(holimp & *PY.%") = holimy lim(% *PY.%")
520 520
since holim commutes with limits. On the other hand for any n we have

lirn([)*p*)nﬂ(}’(fh%") = (p.p")"" (lim F‘)%') = (0. ") (F)

520 >0

since the towers of sheaves of sets (PY.%"); stabilize after finitely many steps for each ¢
which implies that

Im(FPOF) = %,
520
3. By step 1 holimy&*PY.F" is weakly equivalent to PY.%" and since it is
fibrant (by Proposition 1.59) it is pointwise weakly equivalent to Ex(PY.%") for any
resolution functor Ex on A%?Shy(T). Since holimo preserves pointwise weak equivalences
between pointwise fibrant objects step 2 implies that holimpy & * %" is weakly equivalent
to holimoEx(PY.%") which is weakly equivalent to %" by definition of site of finite

type.
Theorem 1.66. — Let T be a site of finite type. Then there exists a _functor
Ex” : A*Shy(T) — A%Sho(T)
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and a natural transformation Id — Ex® with the following properties:

1. Ex% commutes with finite limits and in particular takes the final object to the final object;
2. Ex¥ takes any simplicial sheaf to a fibrant simplicial sheaf:

3. Ex¥ takes local fibrations to fibrations;

4. for any I the canonical morphism B — Ex% (&) is a weak equivalence.

Proogf — For a simplicial sheaf %" denote by Ex**.%" the simplicial sheaf
associated to the simplicial presheaf of the form U +— Ex>(%’(U)) where Ex™ is
a resolution functor on the category of simplicial sets satisfying the conditions of
Lemma 1.67 below (note that when the topology on T can be defined by a pretopology
whose covering families are all finite U +— Ex*(%°(U)) is already a simplicial sheaf
since Ex™ commutes with finite limits). Let £ be a conservative set of points of T.

We set
Ex” (&) = holimy & % (Ex* ).

The properties (1)-(4) for this functor follow immediately from Propositions 1.59, 1.65
and the fact that all the functors involved in the construction of Ex¥ commute with
finite limits.

Lemma 1.67. — There exists a functor Ex® : A?Sets — A®Sets and a natural
transformation Id — Ex>° such that the following conditions hold:

1. Ex™ commutes with finite hmits and in particular takes the final object to the final object;
2. Ex™ takes Kan fibrations to Kan fibrations;

3. for any simplicial set X the map X — Ex>°X s a monomorphism and a weak equivalence
and Ex>*X is a Kan simplicial set.

Proof — A purely combinatorial construction of Ex> as a filtered colimit of func-
tors right adjoint to certain subdivision functors can be found in [11, pp. 212-215].

2.2. A localization theorem for simplicial sheaves

Basic definitions and main results

Let T be a small site and let A be a set of morphisms in & (T). Let us recall
the standard notions of A-local objects and A-weak equivalences (¢f [10] and [4, §7]).

Definition 2.1. — An object &~ of FE, (1) s called A-local if for any ¥ in FE (1)
and any [ & | — Ly in A the map

Homgg (¥ x &y, &) — Homgg (Y X &\, &)

is a byection.
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We write F#, ,(T) for the full subcategory of A-local objects in F#(T).

Definition 2.2. — A morphism f: &, — &y in A?Sh(T) is called an A-weak equivalence
if for any A-local object 9/ the map

Homgg (%, ) — Homze (%, YY)
induced by f is a byection.

Denote the class of A-weak equivalences by W, and define the class of A-
fibrations F, as the class of morphisms with the right lifting property with respect to
C N W,. Observe that for any %/ and any f: &, — &, in A the map

Y x &~ Y xX&,y
is an A-weak equivalence by definition.

Remark 2.3. — An object & is A-local if and only if for any A-weak equivalence
Ji1 & — Y the induced map Homgg 1(¥ , &) — Homgg r(H", &) is bijective.

Remark 2.4. — Let f’ be the coproduct of all member of A and A’={ f’}. Then
the notions of A'-local objects, A’-weak equivalences and A’-fibrations coincides with
the corresponding notions associated to A. So that it is always possible to assume A
has exactly one element.

The main result of this section is the following theorem.

Theorem 2.5. — For any set A the classes (Wa, Fa, C) define a model category structure
on A?Sho(T). The inclusion functor F, \(T) — FE(T) has a left adjoint Lp which identifies
G, \(T) with the localization of F (T) with respect to A-weak equivalences.

If A consists of one element f; the functor L, will also be denoted by L.

Remark 2.6. — This theorem appears in [5, Th. 4.6] for T the category of sets.
See also [10, §C. 2].

We also investigate the question of whether or not the A-model structure
(Wa, Fa, C) is proper in the sense of [2, Definition 1.2]. We do not know the answer in
general but we are able to prove the following result which is sufficient to demonstrate
properness in the case of sites with intervals. We shall give a proof of the following
result in §2.

Theorem 2.71. — For any set of morphisms A in FE (1) the closed model structure

(Wa, Fa, C) is right proper. It is left proper if there exists a set A of monomorphisms in A?Shu(T)
such that:
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1. the image of A in Mo T (T)) coincides with A “up to isomorphisms”;

2. for any & in A?Shu(T), any morphism f: Y — & in A and any morphism
p: & — & XL inFy the projection

& X(%‘X%)(%. X W)-—) &
Elementary properties of classes W, and F,

All through this section A denotes a set of monomorphisms in A%Shy(T) such
that the image of A in Mo(F# (T)) coincides with A (up to isomorphisms).

Lemma 2.8. — Let & be a simplicially fibrant object. Then the following conditions are
equivalent:

1. & s A-local;
2. forany f: Y — & in A the morphism of simplicial sheaves

Hon(& , &) — Hon( % , )

induced by f is a simplicial weak equivalence;
S.foramy f: Y — & in A the morphism of simplicial sheaves

Honl& , %) — Hon(Y , &)

induced by f1s a simplicial trival fibration;
4. for any f: Y — & in A and any object U of T the map of simplicial sets

SUx& ,%)—>SUx ¥ ,%&)
i a trivial Kan fibration.

Progf. — The equivalence of the first three conditions is clear from definitions.
The fact that the last one is equivalent to the second one follows from Lemma 1.10.

Proposition 2.9. — A morphism X — &' is an A-weak equivalence (resp. an A-weak
equivalence and a cofibration) if and only if for any simplicially fibrant, A-local 9/ the morphism :

Hom( ", %) — Hom( %", Y )
is a simplicial weak equivalence (resp. a trivnal fibration).

Progf. — This is an easy reformulation (using adjointness) of the fact that if %/
is simplicially fibrant, A-local then so is Hom(&Z , 4/) for any simplicial sheaf & .
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Lemmas 2.10 and 2.11 below which describe some basic properties of A-weak
equivalences follow immediately from the criterion given in Proposition 2.9, Theo-
rem 1.4, Remark 1.5 and standard facts about fibrations in proper model categories.

Lemma 2.10. — Consider a cocartesian square
x — Y
| |«
x = Y

where a is a monomorphism. Then if b is an A-weak equivalence so is d and if a is an A-weak
equivalence so is c.

Lemma 2.11. — Consider cocartesian squares
F; = Y,
gl L4
¥ = Y

1=1,2 such that a,, ay are monomorphisms and let fo , for ,fa ', for+ be a morphism from
the first square to the second such that f3 , fos , fa+ are A-weak equivalences. Then fo -+ is an
A-weak equivalence.

The following lemma is an easy consequence of Proposition 2.9 and Lem-

mas 1.19, 1.21.

Lemma 212, — Let T be a (small) category, &, Y be functors from T to A?Sho(T)
and f a natural transformation & — Y such that all the morphisms f; are in Wa. Then the
morphism hocolimg %" — hocolimgz Y s in Wa.

Corollary 2.13. — Let T be a right filtering (small) category, B, Y be functors
T — A?Shu(T) and f a natural transformation & — %/ . Then one has:

L. of for each morphism @ — j in T the morphism F; — K is in W, then for each

1 €T the obvious morphisms F. — cobimg & are also in Wy;

2. if for each 1 € T the morphisms f; are in W 5, then the morphism colimg : cobimgz & —
colimg¥f s in W,

Proof. — It is clear that the first point is a particular case of the second one (with
%" a constant functor). By Corollary 1.21 the morphisms hocolimg %" — colimg %" and

hocolimg 9 — colimg %/ are weak equivalences and therefore our result follows from
Lemma 2.12.
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Proposition 2.14. — Let & — Y/ be a morphism of simplicial sheaves such that for any
n > 0 the corresponding morphism of sheaves of sets f, : %, — Y, is an A-weak equivalence.
Then fis an A-weak equivalence.

Proof. — Consider #" and %/ as diagrams of simplicial sheaves of simplicial
dimension zero indexed by A?. The obvious morphisms

hocolimpn &~ — &
hocolimpw Y — Y

are weak equivalences by [3, XII.3.4] and our result follows from Lemma 2.12.

Lemma 2.15. — 1. Let & — Y be an A-weak equivalence and & a simplicial sheaf:
Then the morphism & X & — Y X & s an A-weak equivalence.

2. For any pair (1: A — B,j: I — YY) of cofibrations with either i or j in W, the

obvious morphism:
PG,): (XY ez (BXE)> BXY
s in G N Wh.

Proof. — The first point follows formally from Proposition 2.9 and the fact that
for any fibrant A-local & then Hom(& , &) is again fibrant and A-local (which in
turn follows directly from Definition 2.1). The second point is an easy exercice using
the first point and Lemma 2.10.

The following simple result will be used in computations in Section 4.

Lemma 2.16. — Let C be a set of objects of Sh(T) satisfying the condition of Lemma 1.16
and [ ¥ — G be a morphism of sheaves of sets on T such that for any X in G and any morphism
X — G the prggection F XU — X &5 an A-weak equivalence. Then f is an A-weak equivalence.

Proof. — By Lemma 1.16 we get a trivial local fibration (thus a weak equivalence)
®¢(G) — G such that each of the terms ®¢(G), is a direct sum of sheaves in C. By
the assumption the morphism F X ®¢(G) — ®¢(G) is an A-weak equivalence termwise
and thus is an A-weak equivalence by Proposition 2.14 which implies the statement of
the lemma since the morphism F X ®4(G) — F is a weak equivalence.

A-model category structure theorem

We still assume throughout this section that A denotes a set of monomorphisms
in A?Sho(T) such that the image of A in Mo F# (T)) coincides with A (up to

isomorphisms).
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For any f: %4 — & in A, any object U and 7 > 0 in T, write (U, f, n) for the
object given by the cocartesian square

Ux ¥ xoa 224 Uxz xon

| |
Ux Y xA" — (U, f, n)

and by 4y s, : (U,fin) > Ux &L X A" be the obvious monomorphism. Denote
the set of morphisms of the form iy s, by B,. Note that Lemma 2.10 implies that
B, CCNW,.

Lemma 2.17. — Let & be a fibrant simplicial sheaf Then the following conditions are
equivalent

1. & is A-local
2. the projection &= — pt has the right lifting property with respect to morphisms in B,.

Progf- — Observe that the second condition holds if and only if for any U € T
and any (f: ¥ — &) € A the morphism of simplicial sets S(U x & , &) —
SU x &, %) has the right lifting property with respect to embeddings A" — A",
i.e. if and only if this morphism is a trivial fibration of simplicial sets. Since &  is
fibrant and f is a monomorphism this morphism is always a fibration which implies
the required equivalence by Lemma 2.8.4).

Corollary 2.18. — There exists a set (as opposed to a class) B of morphisms mn G N Wy
such that for any simplicial sheaf &, if the projection I — pt has the right lifting property with
respect to morphisms in B then % is A-local.

Proof. — As was shown by Jardine ([18, Lemma 2.4]) there exists a subset Bj in
C N'W; such that & is simplicially fibrant if and only if the projection &  — pt has
the right lifting property with respect to morphisms in By. In view of Lemma 2.17 it
is sufficient to take B to be By U B;.

Let B be a set of morphisms in G N W,. For a morphism f denote by S its
source and by T its target. Define a functor @) : A?Shi(T) — A?Sho(T) such that for
a simplicial sheaf &~ the object ®}(.%") is given by the cocartesian square

erB ngHom(Sf, S — =3

! !

0
erB HgEHom(Sf,.%')Tf —  O(X)
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and denote 1y : & — d)g(.%" ) the canonical morphism. Observe that 1g is an
A-weak equivalence by 2.10.

For any ordinal number o let’s define as usual the iteration ((DOB)“’ of the previous
functor; in fact one defines a functor from the ordered set of ordinal numbers y < ®
to the “category” of functors. One proceeds by transfinite induction, requiring that if
Y=y’ + 1 then (@p)Y = ®y((@y)") and if v is a limit ordinal then (@)Y = colimy (@)Y .
Observe that for ordinals y' <7 one has a natural transformation (®3)!" — (Qg)Y whose
value on a simplicial sheaf is an A-weak equivalence (2.13).

Let o be a cardinal number and & an ordered set ; we shall write . > o if
any subset of .7 of cardinal < o has an upper bound. Denote Seg[o] the well-ordered
set consisting of ordinal numbers y whose cardinality is strictly less than o. Then if B
is a cardinal number < a the ordered set Seg[a] satisfies Seg[a] > B.

Recall [13, I. Definition 9.3] the notion of accessible object in A?Shy(T) (this notion
is stronger than the notion of s-definite object from [4, §4.2]). A simplicial sheaf &’
is called accessible if there is an cardinal number og such that for any functor
Y T — A?Shy(T), with Z an ordered set > a2, the map:

colimic 7 Hompo 17", ¥ ) — Hompw gy (F" , colimz @Y )

is bijective. Any object in A?Shy(T) is accessible by [13, I. Rem. 9.11.3]. Let ® be a
cardinal number such that, for any € B, as, < ®. Then Seg[w] > as, for any f€ B.
Set

0
Dy g, = (D).

The following result follows easily from 2.17 and from what we said above (it is
essentially a restatement of [4, Corollary 7.2]).

Proposition 2.19. — Let B be a set of morphisms satisfying the conclusion of lemma 2.18.
Then for ® as above, the functor ®p  : A?Sho(T) — A?Sho(T) takes values in the subcategory
of A-local fibrant objects and for an),) F the canonical morphism 1 1 & — Dy Wl E) 5 a
cofibration and an A-weak equivalence.

The functor @ sends an A-weak equivalence to a weak equivalence and the induced functor

Ly : F (1) — F, \(T)
is left adjoint to the inclusion FE, ,(T) — F(T).

Observe now that the functor <1>§ commutes with (filtering) colimits of functors
Y J — ATSh(T), with 7 an ordered set such that .7 > os, for any f€ B. Thus

@y , does also (as any ordinal composition of @}). Check this by transfinite induction.
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Using Proposition 2.19 and this observation, one deduces the following technical
result using an argument similar to the one in the proof of [18, Lemma 2.4] (see
also [4, 4.7]).

Corollary 2.20. — There exists a set (as opposed to a class) B’ of morphisms in G N Wy
such that a morphism & — Y s in Fa of and only if it has the right lfting property with
respect to morphisms in B’.

Theorem 2.21. — The triple Wa, C, Fa) &s a model category structure on A% Shy(T).

Progf. — The axioms MC1-MGC3 are obvious from the definitions. The (trivial
cofibration)/(fibration) part of MC4 is the definition of Fa. The (cofibration)/(trivial
fibration) part of MC5 follows immediately from the corresponding fact in the simplicial
case since an trivial fibration is a trivial A-fibration. The (trivial cofibration)/(fibration)
part of the axiom MOC5 follows by the transfinite analog of the small object
argument from Corollary 2.20 in exactly the same way as in [18, Lemma 2.5]. The
(cofibration)/(trivial fibration) part of MC4 follows from MC5 and Lemma 2.10 by
Joyal trick (see [18, p. 64]).

Theorem 2.21 finishes the proof of Theorem 2.5.

Remark 2.22. — The A-model category structure (W, G, Fa) is an enriched
structure (¢f [16, B.3]) for the monoidal structure given by the categorical product by
Lemma 2.15(1).

Properness theorem

In this section we shall prove Theorem 2.7. Again, let A be a set of
representatives for morphisms in A which satisfies the conditions of this theorem.
We begin by establishing a number of technical results describing different properties
of the classes W, and F, which are necessary for the proof of Theorem 2.7.

Proposition 2.23. — Let p: & — A be a fibration such that BB s fibrant and suppose
that for any commutative diagram of the form

Id

E — &
/| ¥
y — #

in FE (1) such that i is in W, there exists a morphism 4 — & which makes the corresponding
two triangles commutative. Then p s an A-fibration.
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Proof. — Consider a commutative square

x — &
‘| [»
Y —

in A?Shy(T) such that ¢ is in W, N C. We have to construct a morphism %/ — &
which makes the two triangles commutative. By Lemma 2.10 we may replace %/ by
the coproduct & [[g % and assume that the upper horizontal arrow is identity. By
our condition on p there exists a morphism %/ — & in F# (T) which makes the two
triangles commutative. Applying Lemma 2.24 below to the corresponding diagram in
the opposite category (A?Shy(T))? we get a morphism with the required property in
A?Shy(T).

Lemma 2.24. — Consider a commutative square in a model category & of the form

X -2 E
3l [»
B % B

such that p is a fibration, 1 is a cofibration, X s cofibrant and B s fibrant. Suppose that there exists
a morphism f: B — E in FE (&) which makes the corresponding two triangles commutative. Then
S can be represented by a morphism with the same property in & .

Progf. — It follows from our conditions that B is cofibrant and E is fibrant and
therefore f can be represented by a morphism in & . Let

xI1x ‘W i) - x

be a decomposition of the morphism Id[]Id into a cofibration and a trivial fibration
(e. OIX) is a “good cylinder” object for X, see [26]). Then there is a morphism
G : GX) — E such that the diagrams

X -5 F X -5 B

iol /G ill lg

GIX) GIX) — E
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commute (because a is, by hypothesis, homotopic to go 7). Define X’ and X” by the
cocartesian squares

X — B X —— B
N R
OIX) —— X X — X

We have a canonical morphism X' — X” — B which is a weak equivalence since
it splits the trivial cofibration B — X'. Decompose the last arrow into a cofibration
X" — X" and a trivial fibration X" — B. We have a commutative diagram

=
x|
|

X" —» B

where the composition of the two left vertical arrows is a trivial cofibration. Therefore
there exists a morphism X" — E which makes the corresponding two triangles

commutative. One can easily see now that the composition B % X” — X” — E
is a morphism in & with the required property.

Corollary 2.25. — Let p: & — B be a fibration such that the objects & , I8 are A-local
and fibrant. Then p s a A-fibration.

Proposition 2.26. — Let p: & — I8 be an Afibration. Then for any commutative diagram
in FE (1) of the form

x — &
/| ¥
y — &

such that i is in Wy there exists a morphism 9/ — & which makes the corresponding two triangles

commutative.

Proof. — Let jg : B — B’ be a trivial cofibration such that B’ is fibrant.
Taking a decomposition of jg 0 p into a trivial cofibration and a fibration we get a
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commutative square

JE

g — &'
/)l l/)’
B 2

where the vertical arrows are fibrations and the horizontal ones are trivial cofibrations.
Our diagram in F# (T) may be represented now by a diagram of the form

x L. &
/| [»
vy = B

in A?Shy(T) such that ¢ is in G N Wa. We have to construct a morphism %/ — &’ in
¥ (T) which makes the two triangles commutative. By Lemma 2.10 we may replace
% be the coproduct % [l 4 &' and thus assume that f is the identity morphism.
We may also decompose g into a trivial cofibration and a fibration and further assume
that g is a fibration. Considering the base change along the morphism jg we get the
diagram

I

& — &

! !

Id

&”’xxu%’ — g'Xﬁr%

l !

Y x5 B — B

where the right vertical arrow is p. Since A?Shy(T) is a proper model category the big
square of this diagram is isomorphic to the original one in .7 (T) and in particular the
left vertical arrow is in W,. Decomposing it into a cofibration and a trivial fibration
and using the fact that p is an A-fibration we get a morphism %/ — & in 9 (T)
with the required property.

Combining Propositions 2.23 and 2.26 we get the following corollary.

Corollary 2.27. — Let p: & — A be a fibration such that B s fibrant and suppose that
p s womorphic in FE (T) to an A-fibration. Then p s an A-fibration.

Proposition 2.28. — Let & be a fibrant simplicial sheaf. Then the following conditions are
equivalent:
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1. & s Afibrant;
2. & is A-local.

Proof. — The fact that the second condition implies the first is a particular case
of Corollary 2.25. To show that the first one implies the second it is sufficient in view
of Lemma 2.8 to verify that if we have a morphism ¢: & — % in CNW, then the
morphism Hom(%/ , &) — Hom(Z&", &) is a trivial fibration. This follows from Lemma
2.15, by adjointness. o

Let us now assume that A satisfies the conditions of theorem 2.7.

Lemma 2.29. — Let % be a simplicial sheaf and & — O(F") be a morphism in Fy.
Then the projection & Xo) & — & s in WaNC.

Progf. — Consider the class G of morphisms %" — %/ in W, NG such that for
any A-fibration & — %/ the projection &" Xg & — & is in Wy N C. This class
has the following properties:

1. if two out of three morphisms f, g, fog € CN W, are in G then so is the
third;

2. G is closed under filtering colimits (by Corollary 2.13);

3. G is closed under arbitrary direct sums;

4. G is closed under cobase change (by Lemma 2.10);

5. G contains GN'W; (since the simplicial model structure is proper and F5 C F));

6. G contains A (by assumption).
The statement of the proposition follows easily from these properties, the

construction of the functor @ and the definition of the class B given in the proof
of Corollary 2.18.

Lemma 2.30. — Let p : & — B be an A-fibration. Then there exists an A-fibration
&' — O(R) such that p is an B-deformational retract of &' X 5 D(R).
Progf. — By Theorem 2.21 we can construct a commutative square of the form

E — &'

l |

B — OF)

such that the upper horizontal arrow is in G N W, and the right vertical one is an
A-fibration. Using Lemma 2.29 we conclude immediately that the canonical morphism
5: & — &' X ) # is in GNW,. Since both objects are fibrant over % we conclude
that there is a morphism f: &' Xq. %) # — & over H such that fos=Id. Applying
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the right lifting property of the A-fibration f: &' X %) % — B to the A-acyclic
cofibration P(s, A" C A') we get a homotopy (over %) from so p to Idg: o ® (o
Lemma 2.15).

To finish the proof of Theorem 2.7 we have to show that for any cartesian
square

&, — X,
| !
&y —

such that the right vertical arrow is in F5 and the lower horizontal one is in Wy, the
upper horizontal one is also in W,. Using Lemma 2.30 we see it is sufficient to prove
the result in the case when there exists a cartesian square of the form

x, — &

! |

X, — OX,.

The morphism %5 — ®(%",) factors through the morphism ®(%";) — ®(%",) which
is a simplicial weak equivalence since both objects are A-local. Our result follows now
from the fact that the simplicial model structure is proper and Lemma 2.29.

Localization of loop spaces

Let Shy(T), (resp. A?Shy(T),) be the category of pointed sheaves (resp. simplicial
pointed sheaves) of sets on T whose objects are pairs (X, x) consisting of a sheaf (resp.
simplicial sheaf) of sets X together a morphism x: pt — X. Note that pointed sheaves
of sets and sheaves of pointed sets are two different names for the same type of objects.

Let us say that a morphism of pointed simplicial sheaves is a fibration, cofibration
or weak equivalence (simplicial) if it belongs to the corresponding class as a morphism
of sheaves without base points. This definition clearly provides us with a model category
structures which we will call the simplicial model category structures on A%?Shv;(Sm/S)..
We denote the corresponding homotopy categories by 7% J(T).

Recall that the left adjoint to the forgetfull functor A?Shy(T), — A?Shy(T) is the
functor & — %", where .&", is the simplicial sheaf %" I p¢ pointed by the canonical
embedding pt — %" 1l pt. Both functors preserve weak equivalences and thus induce a
pair of adjoint functors between .F((Sm/S)y;) and F#E ((Sm/S)us).

For pointed simplicial sheaves (&, x), (% ,) define their wedge (%", x) V(% ,)
and their smash product (%", x) A (%, ) in the usual way

('%A)x)v(%:.y)=<‘%. Hﬁ!%7x:y)
(E )N 0)=(F XY [F, )V (Y ,9), % X))
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Note that (%7, x) V (% ,) is the sheaf associated to the presheaf which takes an
object U of T to the wedge of pointed simplicial sets (%" (U), xy) and (% (U), yu) and
(&, x) AN (¥ ,) is the sheaf associated to the presheaf which takes an object U of T
to the smash product of pointed simplicial sets (%" (U), xy) and (% (U), yu).

The functor A?Shu(T)y — A?Shy(T)e, (&, x) — (&, 2) A (¥ ,») has as right
adjoint the functor (& , 2) — Hom ((% ,)), (K, 2)) whose value is the fiber over the
base point of & of the evaluation morphism y* : Hom(%/ , & ) — Hom(pt, & )= & .

Let Ss1 denote the constant pointed simplicial sheaf corresponding to the simplicial
circle A'/0A' (pointed by the image of JA!). We define the suspension functor on the
category A”Shvy;(Sm/S)e of pointed simplicial sheaves setting:

S(Z, ) =S! ANE, %)

Let Q;(—) :=Hom (S;, —) be the right adjoint to Z,(—). We denote RQ;(—) the total
right derived functor of 9:1 (=) which is given by Qi o Ex for a choosen resolution

functor Ex (1.6); it is right adjoint to the suspension functor in the pointed simplicial
homotopy category.

Let f: A — B be a morphism of simplicial sheaves. Denote by X f.) the
suspension of the pointed morphism f, : A, — B;. The proof of the following lemma
is straightforward.

Lemma 2.31. — Let & be a pointed connected fibrant simplicial sheaf. The following
conditions are equivalent:

1. & s Iy f+)-local;
2. the (pointed) simplicial sheaf Qsl(cqo” ) s f~local.

Moreover, if f is pointed, these conditions are also equivalent to the following one:

& is Z(f)-local.

As a corollary, we see that any flocal pointed connected simplicial sheaf & is
also Zf;-local. Indeed, RQJ1 (&) is again jflocal.

Lemma 2.32. — For any simplicial sheaf of groups & there is a morphism of simplicial
sheaves of groups &' — & which is a weak equivalence (as morphism of simplicial sheaves of sets)
and a morphism of simplicial sheaves of groups &' — FE which is an f-weak equivalence (as
morphism of simplicial sheaves of sets) and such that FE 1is f-local (as a simplicial sheaf of sets).

This lemma is just [10, 3 Lemma A.3] in the case T = Sets.

Remark 2.33. — The statement of the lemma could be made more functorial, as
one can see by looking at the proof.
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Progf. — Denote B(G) the bisimplicial sheaf of sets (z, m) — B(G,), (so that
B(G),,. = G"). Then applying the functor ® : =®p from Proposition 2.19 (applied

with A={f}) we get a new bisimplicial sheaf ®B(G)) with ®B(G)),, . = P(pi) weakly

equivalent to pt, and such that for each n > 2, the morphisms:

IT.

l:l,...

L 2r) : B(G),) — (@B(G))1)*

are simplicial weak equivalences because the localization functor obviously commutes
with finite products in the homotopy category. From [27, Proposition 1.5], the fact that
®(G) is a group object in the homotopy category (because the flocalization functor
commutes to finite products in the homotopy category) and the fact that the functor
RQJ1 commutes with restriction to points of the site, we get that the morphism of
simplicial sheaves

®(G) — RQ, (Diag®(B(G))))
(induced by the morphisms Z(®(G)) — Diag(®B(G))), where Diag means the diagonal

simplicial sheaf of a bisimplicial sheaf) is a simplicial weak equivalence.

Denote Gr(T) the category of sheaves of groups on T, A?Shy(T), that of
O-reduced simplicial sheaves (meaning simplicial sheaves & with & ,=p!) and
G(—) : A?Sh(T)y — A?Gr(T) the (obvious analogue of the) Kan construction func-
tor [22]. Then Diag(®B(G))) is pointed connected, thus weakly equivalent to a

0-reduced simplicial sheaf &, so that the canonical morphism B(G) — Diag(®(B(G))) is
isomorphic in the pointed homotopy category of simplicial sheaves to a (pointed) mor-
phism B(G) — .% (thus G(%") is weakly homotopy equivalent to RQ! (Diag®([B(G))))).
Moreover there is a morphism (of simplicial sheaves of groups) G(B(G)) — G which
is a weak equivalence and the induced morphism (in the pointed homotopy category)
G— R.Qs1 (Drag(®(B(G)))) is the previous one, as required.

Theorem 2.34. — For any pointed morphism f and any pointed connected simplicial sheaf
H', the simplicial sheaf Lz 7(H") is connected. From Lemma 2.31 RQ! Ly 1)(%) is thus f-local.

Then the canonical induced morphism:
LRQ|(%F)) — RQ Ly (&),
is a weak equivalence.

In the case T = Sets this theorem was proven by Bousfield and independently by
Dror [10, 3. Theorem A.I].

Progf. — One may assume % 0O-reduced and set G :=G(%"). Let G’ — G and
G’ — H be given by Lemma 2.32. From Lemma 2.31 BH is Z( f)-local and moreover,
using Lemma 2.35 below, one knows that the morphism B(G') — B(H) is a Z,( f)-weak



A'"HOMOTOPY THEORY OF SCHEMES 85

equivalence which thus gives the Z( f)-localization of B(G’), which is the same as that
of &.

Lemma 2.35. — Let f: M, — My be a homomorphism of simplicial monoids which s
a frweak equivalence as a morphism of simplicial sheaves of sets. Then the corresponding morphism

BM,) — B(My) s a I f)-weak equivalence (of simplicial sheaves of sets).

Proof. — Indeed for any monoid M the successive quotients in the skeletal
filtration of B(M) have obviously the following form:

sk,B(M)/sk,_ BM) = A"/OA" A M.

For a simplicial monoid M we thus get a functorial filtration on the bisimplicial
sheaf (p, q) — B,(M,) whose successive quotients are isomorphic for each n > 0 to
A*/OA" N MM (exterior smash-product which take two pointed simplicial sheaves to
the obvious bisimplicial sheaf). The realization of this filtration of bisimplicial sheaves
gives us a natural filtration of B(M) with quotients of the form:

A"/ON N MM
which easily implies the result.

We end with the following result:

Lemma 2.36. — Let f: M, — My be a morphism of simplicial sheaves of monoids which
is a_f-weak equivalence as a morphism of simplicial sheaves of sets. Then the corresponding morphism

RQ.B(M,) — RQ!B(M,) is a_fweak equivalence.

Proof. — Using previous lemma, we see that the morphism:

Ly 5 (BM1)) — Lx((BM2))

is a simplicial weak equivalence. The lemma follows now from Theorem 2.34.
2.3. Homotopy category of a site with interval

Definitions, examples and the main theorem

Let us first recall the definition of a site with interval given in [31, 2.2]. Let
T be site (with enough points, as usual). Write p¢ for the final object of Shy(T). An
interval in T is a sheaf of sets I together with morphisms:

p:IxI—1
o, iy pt— 1

satisfying the following two conditions:
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— let p be the canonical morphism I — p¢ then

W X 1d) = Wld X ) =1p
Wi x Id)=p(ld x &)= Id

— the morphism 4 [[7 : pt]]pt — I is a monomorphism.

Definstion 3.1. — Let (T, 1) be a site with interval. A simplicial sheaf &~ is called 1-local
if for any simplicial sheaf Y/ the map

Homgg (¥ x 1, %) — Homgg (¥ , &)

induced by 1 : pt — 1 i a byection.
A morphism f: X — Y is called an 1-weak equivalence if for any 1-local & the
corresponding map

Homgg (¥ , & ) — Homgg (%, &)

s a byection.
The homotopy category FE (T, 1) of a site with interval (T, 1) us the localization of A Sho(T)
with respect to the class of 1-weak equivalences.

Denote the class of I-weak equivalences by W; and define a class F; of
I-fibrations as the class of morphisms with the right lifting property with respect
to C N Wj. Clearly these definitions are a particular case of general definitions of
Section 2 for A={4}. We will show in the next section that the morphism i, satisfies
the conditions of Theorem 2.7, which implies the following result.

Theorem 3.2. — Let (T, 1) be a site with interval. Then the category of simplicial sheaves
on T together with the classes of morphisms (Wi, G, Fy) is a proper model category. The inclusion
of the category of 1-local objects FE (1) to FE (1) has a left adjoint Ly which identifies FE, ((T)
with the homotopy category F# (T, I).

Remark 3.3. — It is an easy exercise to show that the I-model category structure
on A?Shy(T) only depends on the object I and not on the morphism % and coincides
with the A-model category structure of Theorem 2.5 with A ={I — pt}.

Examples.

1. Let T be the standard simplicial category A with the trivial topology. Then
Shy(T) is the category of simplicial sets. If we take I to be the simplicial inter-
val A! the corresponding homotopy category is canonically equivalent to the
usual homotopy category of simplicial sets.
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2. Let T be the category of locally contractible topological spaces with the
usual open topology and I be the sheaf represented by the unit interval.
Again the corresponding homotopy category is the usual homotopy category
(¢f Proposition 3.3).

3. Let G be a finite group and T be the category of good G-spaces (see
Definition 3.1). We may consider two different topologies ¢ and f on T. A
covering in the first one is a morphism X — Y which locally splits as a morphism
of topological spaces without G-action. A covering in the second is a morphism
X — Y which has a G-equivariant splitting over a G-equivariant open covering
of Y. Take I to be the sheaf represented by the unit interval with the trivial G-
action. The category . (T, I) is equivalent to the “coarse” homotopy category
of G-spaces where a morphism f: X — Y is defined to be a weak equivalence if
and only if it is a weak equivalence of topological spaces. The category F# (T, I)
is equivalent to the “fine” homotopy category of G-spaces where a morphism
f:X — Y is defined to be a weak equivalence if and only if the corresponding
morphisms X" — Y are weak equivalences for all subgroups H of G (see
Section 3).

4. Let T be the category Sm/S of smooth schemes over a base S considered with
the Nisnevich topology (see Definition 1.2) and I be the sheaf represented by the
affine line A' over S. The corresponding homotopy category F# ((Sm/S)u;, A')
which is called the homotopy category of schemes over S is the main object we
are interested in this paper.

5. More generally, any ringed site (T, @) defines a site with interval. In particular
we may consider the homotopy category associated with any subcategory in the
category of schemes (over a base) which contains affine line.

The functor Sing,

In this section we prove that the conditions of Theorem 2.7 hold for the
morphism ¢ : pt — I in any site with interval (T, I). In order to do it we construct an
endofunctor Sing. on the category of simplicial sheaves on a site with interval together
with a natural transformation s: Id — Singl such that one has

1. Singl commutes with limits;
2. Sing' takes the morphism 4 : pt — I to a weak equivalence;

3. for any .&" the morphism sg : & — Singl (%) is a monomorphism and an
I-weak equivalence;

4. Sing takes I-fibrations to I-fibrations.

Provided that a functor Sing! satisfying these properties exists, the proof of the
required condition goes as follows. Let %" be an object of A?Shy(T) and p: & — & xI
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be a morphism in F;. We have to show that the upper horizontal arrow in the cartesian
square

& X (& xI) — &

| !

Idx iy

Z — F xI

is an I-weak equivalence. Applying the functor Sing. to this diagram we get a cartesian
square (by (1)) which is I-weak equivalent to the original one (by (4)). By (2) the
morphism Sing (p) is an I-fibration and in particular a fibration and by (3) and (1)
the morphism Sing'(Id X 7)) is a simplicial weak equivalence. Therefore the morphism
Sing (& X g (& x 1)) — Sing. (&) is a simplicial weak equivalence since the simplicial
model structure is proper.

Define a cosimplicial object A} : A — Shu(T) as follows. On objects we set A] =I".
Let f: (0, ...,n) — (O, ...,m) be a morphism in the standard simplicial category A. Define
a morphism of sets ¢(f): {1,...,m} — {0,...,n+ 1} setting

min{l € {0, ...,n}| f() > ¢} 1if this set is not empty

n+1 otherwise.

o)) = {

Denote by pr, : I" — I the k-th projection and by p : I" — pt the canonical morphism
from I" to the finial object of T. Then A7(f):I" — I" is given by the following rule

Proc) o()B € {1,..,n}
preoa(f)= lo°1> if ¢(f)(k)—n+1
nop if o(f)k=

For a simplicial sheaf & let Sing (%) be the diagonal simplicial sheaf of the
bisimplicial sheaf with terms of the form Hom(Ay, #°,). We shall often forget to
mention the interval in the previous notation and denote Singl(%") simply by Sing,(%&").
There is a canonical natural transformation s : Id — Sing, such that for any %" the
morphism sg : % — Sing. (%) is a monomorphism. We are going to show now that
the functor Sing, satisfies the conditions (1)-(4) listed above.

The first of them is obvious from the construction of Sing,. The second one
is proven in Corollary 3.5, the third one in Corollary 3.8 and the fourth one in
Corollary 3.13.

Let f,g : & —% be two morphisms of simplicial sheaves. An elementary
I-homotopy from f to g is a morphism H : & X1 — % such that Ho 4 =f
and H o4 =g Two morphisms are called I-homotopic if they can be connected by
a sequence of elementary I-homotopies. A morphism f: % —%/ is called a strict
I-homotopy equivalence if there is a morphism g: % —.%" such that fog and go f
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are I-homotopic to Idy and Idg respectively. Replacing I in these definitions by
A' one gets the corresponding notions of elementary simplicial homotopy, simplicially
homotopic morphisms and strict simplicial homotopy equivalences.

Proposition 3.4. — Let f,g : H—Y be two morphisms and H be an elementary
I-homotopy from f to g. Then there exists an elementary simplicial homotopy from Sing.( f) to
Sing.()-

Proof — Since Sing, commutes with products it is sufficient to show that
the morphisms Sing, (i), Sing.(11) : pt= Sing.(pt) — Sing.(I) are elementary simplicially
homotopic. The required homotopy is given by the morphism pt — Sing;(I) = Hom(I, I)
which corresponds to the identity of 1. o

Corollary 3.5. — For any simplicial sheaf &~ the morphism

Idx g

Sing (&™) — Sing (& x I)
i a simplicial homotopy equivalence.

Proof. — By Proposition 3.4 it is sufficient to show that the compostion

4 I . . . .
Z XA L F D & x1is elementary I-homotopic to the identity. This homotopy
is given by the morphism ld x p: & xIx1— % x L

Lemma 3.6. — Any strict 1-homotopy equivalence is an I-weak equivalence.

Proof — Let f: & —% be a strict I-homotopy equivalence and g be a
I-homotopy inverse to f We have to show that the compositions fo g and go f
are equal to the corresponding identity morphisms in the I-homotopy category. By
definition these compositions are I-homotopic to identity and it remains to show that
two elementary I-homotopic morphisms coincide in the I-homotopy category which
follows immediately from definitions.

Lemma 3.7. — For any &~ the canonical morphism & — Hom(1, &) is a strict
I-homotopy equivalence, and thus an 1-weak equivalence.

Progf. — The morphism Hom(l, &) x1 — Hom(I, .%") whose adjoint corresponds
to W defines a strict I-homotopy from Hom(p, &) o Hom(ty, &) to Idpmq, 2. Since
Hom(iy, %) o Hom(p, %)= Idg-, the lemma is proven.

Corollary 3.8. — For any %" the canonical morphism %" — Sing (&) s an 1-weak
equivalence.

Progf — One observes easily that the i -th term of the simplicial sheaf C.(%")
is isomorphic to Hom(I', %) and the canonical morphism & — Sing.(%") coincides
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termwise with the canonical morphisms %", — Hom(l', %) from Lemma 3.7. Our
result follows now from Proposition 2.14. o

It remains to show that the functor Sing, preserves I-fibrations. In order to do it
we will show that 1t has a left adjoint which preserves cofibrations (i.e. monomorphisms)
and I-weak equivalences.

For any cosimplicial object D*® in A?Shy(T) and any simplicial sheaf %" denote
by |#|ps the coend (¢f [21, p. 222]) of the functor

A? XA —  A?Sho(T)
w w

(n,m) +— &, xD"

Any morphism of cosimplicial objects D* — D’® induces in the obvious way a
morphism of realization functors | — Dre.

One can observe easily that the functor &~ +— | %"

D’_’l_

asxar 1s left adjoint to Sing,.
For a cosimplicial simplicial sheaf D* and 7 > 0 let us denote by D" the simplicial
sheaf |0A"|p.. We shall say that a cosimplicial simplicial sheaf D* is unaugmentable if the
morphism D°IID® — D! induced by the cofaces morphisms is a monomorphism. For
example, A®, A} and A® X A} are unaugmentable cosimplicial simplicial sheaves.

Lemma 3.9. — For any unaugmentable cosimplicial object D*® the obvious morphisms
0D" — D" are monomorphisms.

Lemma 3.10. — For any unaugmentable cosimplicial simplicial sheaf D* the functor | —
preserves monomorphisms.

De

Proof. — Using Lemma 1.1 one can reduce the problem to the case of
monomorphisms of the form P(#" — %/, 0A" C A") for monomorphisms & — %
of sheaves of simplicial dimension zero (see Lemma 1.8 for the notation P(—, —)).
Then |% X A'|p. is isomorphic to the simplicial sheaf %/ x D" and the morphism
|P(ZF — ¥, 0A" C AY|p. is isomorphic to the monomorphism P(#&" — %/, 0D" C
D”") which proves the lemma.

Remark 3.11. — Looking at the morphism |0A!|p. — |A'|pe one can see that the

property that the functor |—|pe preserves monomorphisms characterizes unaugmentable
cosimplicial simplicial sheaves.

Lemma 3.12. — For any &~ the morphisms
It%/.|A' xAI' - %
| &

asxar = |2 |ae
induced by the projections A* X A} — A® and A* X A} — A} are 1-weak equivalences.
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Proof. — To prove that the first type of morphisms are I-weak equivalences we
use Lemmas 1.1, Lemma 2.11 and Corollary 2.13 to reduce the problem to the case
when & is of the form %/ x A" for some %/ of simplicial dimension zero and
n > 0. Then the morphism |%/ X A" — %/ X A" is isomorphic to the projection
Y X A" x Al = Y X A" which is an I-weak equivalence by Lemma 2.15. The proof
for the second type is similar.

Corollary 3.13. — The functor Sing, preserves 1-fibrations.

Proof. — By definition of I-fibrations it is sufficient to show that the left adjoint
functor | — |A'XA1' preserves monomorphisms and I-weak equivalences. The first fact is
proven in Lemma 3.10. The second follows immediately from Lemma 3.12.

Note that the realization functor | — ar + A?Sho(T) — A”Shy(T) takes values in the
full subcategory of simplicial sheaves of simplicial dimension zero, i.e. factors through
a functor | — Ar : A?Sh(T) — Sho(T) which is left adjoint to the restriction of C,
to Shy(T). Together with Lemma 3.12 this fact can be used to obtain an alternative
description of the homotopy category F# (T, I) as follows.

Let us say that a morphism in $hy(T) is a I-weak equivalence if it is a I-weak
equivalence in A?Shy(T). Let Wy be the class of I-weak equivalences in Shy(T), C’ the
class of monomorphisms in Si(T) and Fj the class of morphisms which have the right
lifting property with respect to W; N C'. One can prove in the same way as we proved
Theorem 2.5 that the triple (Wj, G/, F}) gives Shy(T) a structure of model category.

Proposition 3.14. — The adjoint functors
Sing, : Sh(T) — A?Sho(T)
| — A A?Shy(T) — Shy(T)

take 1-weak equivalences to 1-weak equivalences and the corresponding functors between homotopy
categories are mutually inverse equivalences.

Proof. — Follows formally from Lemma 3.12.

Functoriality

We consider the functoriality of homotopy categories of sites with intervals only
in the case of reasonable continuous maps of sites (¢f 1.55). We have the following
obvious lemma.

Lemma 3.15. — Let (T, 1)), (Tq, L) be sites with intervals and f: T) — Ty be a
reasonable continuous map. Then the following conditions are equivalent:

1. Rf, takes 1,-local objects to 1y-local obyects;
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2. Lf™ takes Iy-weak equivalences to 1,-weak equivalences;
3. for any & on Ty the morphism Lf*(F X Iy) — Lf(F) is an 1;-weak equivalence.

Defimition 3.16. — A reasonable continuous map of sites with intervals
<T1: Il) - (TQ, IQ)

s a reasonable continuous map of sites f: T\ — To satisping the equivalent conditions of
Lemma 3.15.

For any reasonable continuous map of sites with intervals (T, I;) — (Ty, Iy) the
functor Lf™ induces by definition a functor on the localized categories

Lf :%(TQ,IQ)ﬁ%(TI,II)

and the functor Rf, induces (first by restriction to the subcategories F#, ((T;) defined

in Theorem 3.2, and then using the isomorphisms S#, | (T)) = % (T}, L) of the same
Theorem 3.2) a functor:

RY, : # (T, 1) — F (T,, I,).

Using Theorem 3.2, Proposition 1.57 and Lemma 3.15 we get the following result.

Proposition 3.17. — Let f: (T\,1)) — (Ty,Lo) be a reasonable continuous map of
sttes with intervals. Then the functor Lyf* : F (Tq,1o) — B (T, 1)) @ lefi adjoint to
RY, : 3 (T, 1\) = F# (Ty, Iy).

If f, g s a composable pair of reasonable continuous maps of sites with interval then there are
canonical isomorphisms of functors

Ligof)* =Ly * oLig*
Rl(gof), = Rlg, o R,

An ‘“‘explicit” I-resolution functor

Definition 3.18. — A I-resolution functor on a site with winterval (T, 1) @5 a pair (Ex;, 0)
consisting of a functor Ex; : A?Shy(T) — A?Sho(T) and a natural transformation © : Id — Ex
such that for any & the object Ex(F") is I-fibrant and the morphism & — Ex(%") s an
I-triial cofibration.

Let (T, I) be a site with interval. From theorem 2.21 we know that such
I-resolution functors do exist. The purpose of this section is to give a construction
of such an I-resolution functor which emphasizes the role of the interval. As an
application we get corollary 3.22 below.
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Proposition 3.19. — Let & be a fibrant simplicial sheaf: Then the following conditions are
equivalent:

1. & is I-local (or equivalently 1-fibrant by 2.28);

2. for any object U in T the morphism of simplicial sets & (U) — & (U x 1) i&s a weak
equivalence;

3. for any object U in ‘T and any element x € %" ((U) the homomorphisms n(%" (U), x) —
(& (U x 1), x) induced by the projection U x 1 — U are epimorphisms for all i > 0.

Proof. — The third condition is equivalent to the second one since the morphisms
in question are always monomorphisms (use the zero section of the projection
U x I — U). The equivalence of the first two conditions follows clearly from Lemma
2.8(4) and Proposition 2.28.

Choose a resolution functor (Ex, 6) (see 1.6) corresponding to the simplicial
model category structure on A?Shy(T). Thus for any simplicial sheaf .Z" the morphism
X — Ex(%") is a (simplicial) weak equivalence and Ex(%") is (simplicially) fibrant.

The composition 0os (remember 3 that s is a natural transformation Id — Sing,)
defines a natural transformation Id — Ex o Sing,. The functor Ex o Sing, can thus be
iterated to any ordinal number power (see 2).

Lemma 3.20. — For any sufficiently large ordinal number ®, the functor Ex; : =(Ex o
Sing,)® o Ex together with the canonical natural transformatin ld — Ex; form an I-resolution

Junctor.

By Lemma 2.13 and Corollary 3.8, for any & and any ordinal number ® the
canonical morphism %" — Ex(%’) is a monomorphism and an I-weak equivalence.
It thus suffices to establish:

Lemma 3.21. — For any sufficiently large ordinal number o then for any simplicial sheaf %"
the object Exy(.%") is I-local.

Proof — Choose o to be a cardinal large enough to ensure:

— any filtering colimit of (simplicially) fibrant objects indexed by the ordered set
Seg[a] is again fibrant;

— for any U € T and any functor % : Se[o] — A?Shu(T) the map
colimye suqiog ¥ LU) = colimg,ga % (U) is bijective.

(This is possible using corollary 2.18 and the fact that any object of Shx(T) is
accessible.) Then choose ® to be the smallest ordinal number of cardinality a. It is
sufficient (using 3.19) to show that for any simplicial sheaf %" the fibrant simplicial



94 FABIEN MOREL, VLADIMIR VOEVODSKY

sheaf Ex;. %" satisfies the third of the equivalent conditions of Proposition 3.19. By
construction (and the choice of ®), for any U € T one has:

(% )U) = colimye sgeq(E 0 Sing. ) (Ex(%5) (D).
Let y € Seg[o] and x be an element of (Ex o Sing,)¥(# )y(U) for some n and

B € m((Ex o Sing.)(")U x I), )

Let further By =p*5(B) where 4 means Idy X 3 : U > UxITand p: UxI — U is
the projection. It is sufficient to show that B =, in the colimit of homotopy groups.
We may assume that (Ex o Sing,)Y(#")(U x I) is a Kan simplicial set; indeed if not, we
replace v by Y+ 1 € Seg[a]. Thus B is represented by a morphism

b:UxIx 0N — (Exo Sing (&)

in A?Shy(T) and B is represented by by=P o4 o p. One can easily see that the
composition i 0p : Ux I x A" — U x I x dA" is I-homotopic to the identify.
Therefore & is I-homotopic to by and by Proposition 3.4 we conclude that B=f, in
7 (Ex o Sing )" (&)U X I), x).

Corollary 3.22. — Let & be a simplicial sheaf and & — &' be an 1-weak equivalence
with &' 1-local. Then the canonical morphism of sheaves any(F") — any(F"') is an epimorphism.
In particular, of F is connected (any(F") =pt) then so is F'.

3. The Al-homotopy category of schemes over a base

In this section we study the basic properties of A!-homotopy category of smooth
schemes over a base. Modulo the conventions of the previous section the definition of
the A'-homotopy category F# (S) of smooth schemes over a base scheme S takes one
line — .7 (S) is the homotopy category of the site with interval ((Sm/S)y;, A'), where
Sm/S is the category of smooth schemes (of finite type) over S and Ms refers to the
Nisnevich topology.

Nisnevich topology was introduced by Y. Nisnevich in [25]. We recall its
definition and some of its basic properties in Section 1. This topology is strictly
stronger (i.e. has more coverings) than the Zariski one and strictly weaker (i.e. has less
coverings) than the étale one. Miraculously, it seems to have the good properties of
both while avoiding the bad ones. Here are some examples.

e the Nisnevich cohomological dimension of a scheme of Krull dimension d is
(similar to the Zariski topology);

e algebraic K-theory has Nisnevich descent (similar to the Zariski topology);

e spectrum of a field has no notrivial Nisnevich cohomology (similar to the
Zariski topology);
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e the functor of direct image for finite morphisms is exact (similar to the étale
topology);

e Nisnevich cohomology can be computed using Cech cochains (similar to the
étale topology);

e any smooth pair (Z, X) is locally equivalent in the Nisnevich topology to a
pair of the form (A", A™) (similar to the étale topology).

In the rest of Section 1 we discuss the properties of the homotopy category of
simplicial sheaves on (Sm/S)y;. The fact that Nisnevich topology can be generated by
a set of elementary coverings of very special type implies that in many cases fibrant
simplicial sheaves can be replaced by simplicial sheaves satisfying a much weaker
condition which we call the B.G. — property after K.S. Brown and S.M. Gersten who
considered it in the context of Zariski topology in [7].

In Section 2 we first recall the most important definitions and results of Section 3
in the context of the site with interval ((Sm/S)y;, A'). We then discuss briefly the
functoriality of our constructions with respect to S.

In Section 2 we prove three theorems which play major role in further
applications of our constructions.

In the final section we discuss some examples of topological realizations functors.

3.1. Simplicial sheaves in the Nisnevich topology on smooth sites

Nisnevich topology

Let S be a Noetherian scheme of finite dimension. Denote by Sck/S (resp. Sm/S)
the category of schemes (resp. smooth schemes) of finite type over S. Let @y , (resp.

@ };(x) be the local ring (resp. the henselisation of the local ring) of x in X (¢f [15,
18.6]). One has the following proposition.

Proposition 1.1. — Let X be a scheme of finite type over S and {U;} — X a finite family
of étale morphisms in Sch/S. The following conditions are equivalent:

1. For any point x of X there is an © and a point u of U; over x such that the corresponding
morphism of residue fields is an isomorphism which maps to x with the same residue field;
2. for any point x of X, the morphism of S-schemes

IT(U; xx Spec @;'(x) — Spec @“;’(’x
admits a section.
The following definition of the Nisnevich topology on Sm/S is equivalent to the

original definition given in [25].

Definition 1.2. — The collection of families of étale morphisms {U;} — X in Sm/S
satisfying the equivalent conditions of the proposition forms a pretopology on the category Sm/S (in
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the sense of (13, 11. Definition 1.3] ). The corresponding topology s called the Nisnevich topology.
The corresponding site will be denoted (Sm/S)yi.

The presheaf on Sm/S represented by a scheme over S is always a Nisnevich sheaf
(see [13, VIL.2] or [24, 1.2.17]). In particular the canonical functor Sm/S — Sko(Sm/S)x;
is a fully faithfull embedding and we’ll often identify the category Sm/S with its image
by this functor. A familly of morphisms in $m/S satisfying the conditions of 1.1 will be
called a Nisnevich covering and we shall call a morphism in Sm/S a Nisnevich cover if the
corresponding morphism of representable sheaves is an epimorphism in the Nisnevich
topology.

The Nisnevich topology is clearly stronger than the Zariski one and weaker than
the étale. In practice, it means that it behaves as the Zariski one in some regards and
as the étale one in others.

Definition 1.3. — An elementary distinguished square in (Sm/S)y; is a cartesian square of
the form

UxxV — V

L b

U 2, X

such that p is an étale morphism, j is an open embedding and p~'(X —U) —» X — U s an
wsomorphism (we put the reduced induced structure on the corresponding closed sets).

Clearly, for any elementary distinguished square as in Definition 1.3 the
morphisms j and p form a Nisnevich covering of X. The following lemma shows
that the Nisnevich topology is generated by coverings of this form. A similar statement
holds in Zariski topology (with elementary distinguished squares being replaced by
coverings by two Zariski open subschemes) but not in the étale.

Proposition 1.4. — A presheaf of sets ¥ on Sm/S is a sheaf in the Nisnevich topology if
and only if for any elementary distinguished square as in 1.3 the square of sets

FX) —  FU)

l |
F(V) — FU xx V)

s cartesian.

Progf. — To prove the “only if” part observe first that for any elementary
distinguished square as in Definition 1.3 the pair of morphisms {U — X,V — X} is
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a Nisnevich covering of X. Thus for any Nisnevich sheaf F the square
FX) — FVIIU)

| |
FVIIU) — F(VIIU) xx(VIIU)

is cartesian. On the other hand we have

VIO xx VITU =V xx W TU xx IV xx U T[U xx U)

and, in view of the definition of an elementary distinguished square, we see that the
pair of morphisms {V A VxxV, UxxVxxV—Vxx V} is a Nisnevich covering
of V xx V. By diagram search we conclude that the square of the lemma is cartesian
for any Nisnevich sheaf.

Let now F be a presheaf such that for any elementary distinguished square the
corresponding square of sets of sections of F is cartesian. To prove that F is a Nisnevich
sheaf we have to show that for any Nisnevich covering "= {W; — X} the sequence

of sets FX) — [TFW,;) = [TFW; xx W)) is exact. A sequence of closed subsets of X
of the form

0=72,,CZ2,CZy, 1 C..CZy=X

is called a splitting sequence for a covering Z” if the morphisms (1)~ (Z; — Z+\) —
Z; — Z;, split. We are going to prove the required exactness by induction on the
minimal length of a splitting sequence for 7.

Lemma 1.5. — Let 77 be a Nisnevich covering of a noetherian scheme S. Then there exists
a sphitting sequence for X'

Progf- — Set p= 1] p;. By the definition of Nisnevich topology there exists a dense
open subset U; of X such that p splits over U;. Set Z;, =X — U,. Since p~'(Z)) — Z,
is again a Nisnevich covering there exists a dense open subset U; of Z; such that
p~Y(Z)) — Z, splits over Uy. Set Zy=Z, — U,. The sequence Z;, Zy etc. is a strictly
decreasing sequence of closed subsets of X which must stabilize since X is noetherian.

If Z has a splitting sequence of length zero this means that []p; splits as a
morphism in which case the exactess is a formality. Let (X=2Z,...,Z,, Z,1 =0) be
a splitting sequence of minimal length for 7. Let us choose a splitting s for the
morphism p~!(Z,) — Z,. Since p is étale we have a decomposition p~'(Z,)=Im(s) [[ Y
where Y is a closed subset of [[W,. Let U=X —Z, and let V=(]W,) — Y. Clearly
U and V form an elementary distinguished square over X and family of morphisms
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#" xx U — U is a Nisnevich covering of U with a splitting sequence of length n — 1.
Therefore, by induction and our assumption of F the sequences

F(X) — F(U) x F(V) = F(U xx V)
F(U) — [TFW; xx U) = [TF(W; xx W; xx U)

are exact. Since both morphisms U — X and V — X factor through [ W; this implies
the required exactness by diagram chase.

Lemma 1.6. — Any elementary distinguished square (cf Definition 1.3) s a cocartesian
square in the category Sho(Sm/S)yi. In particular, the canonical morphism of Nisnevich sheaves
V/(U xx V) — X/U is an isomorphism.

Progf. — This is a formal consequence of the fact that the morphism ULIV — X
is an epimorphism of sheaves, the fact that U — X is a monomorphism and that the
Nisnevich sheaf associated to the fibre product U xx V is indeed the fibre product in
the category of sheaves.

Remark 1.7. — Let F be a sheaf of abelian groups on the small Nisnevich site Xy
of X. If U is an object of Xy; and Zy;[U] is the sheaf of abelian groups on Xy; freely
generated by the sheaf of sets represented by U then the adjointness implies that for
any i € Z one has a canonical isomorphism Exf(Zy;[U], F)=H); (U, F). Lemma 1.6
implies that for any elementary distinguished square the sequence of sheaves of abelian
groups

0 — Z[U xx V] = Zy[U] @ Zi[V] — Zes[X] — 0

is exact. Combining this fact with the previous remark on cohomology groups we
conclude that for any F and any elementary distinguished square we have the following
“generalized” Mayer-Vietoris long exact sequence:

W= HyX, P — Hy (U, F) @ Hy(V, F) > Hy(U xx V, F)
- Hy (X, F) - ..

Proposition 1.8. — Let S be a noetherian scheme of dimension < d, then for any sheaf of
abelian groups ¥ on Sm/Sy; one has Hy, (S, F) =0 for i > d.

Proof. — (Sketch) See [30, Lemma E.6..c)] By induction assume that the
proposition is known for schemes of dimension less than d. The Leray spectral sequence
applied to the obvious morphism of sites (Sm/S)y; — (Sm/S)z, together with the
cohomological dimension theorem for Zariski topology implies that it is sufficient to
prove the proposition for local S. Let s be the closed point of S. Since the Nisnevich
sheaves associated with the cohomology presheaves H' are zero for ¢ > 0 we conclude
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that for any element a in HjVi,(S) there exists an étale morphism V — S such that
U=S—sand V form an elementary distinguished square and gy =0. It follows now
from Remark 1.7 and the inductive assumption that for ¢ > dim(S) we have a=0.
Finally let us mention the following fact.

Proposition 1.9. — For any sheaf of abelian groups F on (Sm/S)p; and any n > O the

canonical morphism F'yi(S, F) — Hy,(S, F), where the left hand side refers to the Cech cohomology
groups, is an isomorphism.

Progf. — The proof is identical to the one given in [24, III.2.17] for the
étale topology with the reference to [1, Th. 3.4(iii)] replaced by the reference to
[1, Th. 3.4(1)].

Example 1.10. — Let us give an example which shows that Proposition 1.9 is
false for Zariski topology. Let xy, x; be two closed points of A? over a field k. Let S
be the spectrum of the semilocal ring of xy, x;. Any Zariski open covering for S has a
refinement which consists of exactly two open subsets and therefore I:Ifza,(S, F)=0 for
any F and any ¢ > 1.

Let us show that there exists a sheaf F such that H?za,(S, F) 0. Choose two
irreducible curves C;, Cy on S such that C; N Cy={xp, x;} and let U=S — (C; U Cy),
V=S — {x9, x1}. Denote the open embedding U — S by j and the open embedding
U — V by j'. We clain that H*(S,;(Z)) 0. Looking at the Mayer-Vietoris exact
sequence for the covering V=(V—-VNC;)UV—-VNCQCy) we get a canonical element
in H'(V,//(Z)) (since the intersection of these two open subsets is U) and looking at
the Mayer-Vietoris exact sequence for the covering S=(S — {x})U(S — {x}) we get a
canonical element in H2(S, 5(Z)) 0 (since the intersection of these two open subsets
is V). One verifies easily that since the curves G,, Cy are irreducible this element is
not zero.

Simplicial presheaves with the B.G.-property

For any presheaf F on (Sm/S)y; and any left filtering diagram X, of smooth
schemes over S with affine transition morphisms and the limit scheme X we denote
by F(X) the set colimyF(Xy). For example, for any smooth S-scheme X and any point
x of X the set F(Spec @ ,) (resp. F(Spec @ ’)l(,x)) is the filtering colimit of the sets
F(U) over the categories of Zariski and Nisnevich neighborhoods of x respectively. The
family of functors F +— F(Spec @’;})x) parameterized by all pairs (X, x) with X € Sm/S
and x € X forms a conservative family of points of (Sm/S)y; (use [13, IV.6.5]). This
observation leads to the following “explicit” description of simplicial weak equivalences

in A% Sho( (Sm/S) ).
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Lemma 1.11. — A morphism ¥ — G of simplicial sheaves on Sm/S is a simplicial
weak equivalence if and only if for any smooth X over S and any pont x of X the map
F(Spec (@ })'(x)) — G(Spec (O ;'(x)) s a weak equivalence of simplicial sets.

Definition 1.12. — A B.G. class of objects in Sm/S is a class 4 of objects in Sm/S
such that:

1. for any X in A4 and any open immersion U — X we have U € A4;
2. any smooth S-scheme X has a Nisnevich covering (see 1.2) which consists of objects in 4.

The basic examples we have in mind is the class of quasi-affine smooth S-scheme
and that of quasi-projective smooth S-schemes. If not otherwise stated, it will always
be understood that we consider the B.G. class of quasi-affine smooth S-schemes. Let
% be any B.G. class of objects in Sm/S.

Definition 1.13. — A simplicial presheaf %" on (Sm/S)y;s s said to have the B.G.-property
with respect to A if for any elementary distinguished square as in 1.3 such that X and V belong
to A the square of simplicial sets

I%A(U) -_ l%n(U Xx V)
is homotopy cartesian.

Remark 1.14. — Note that the property of having the B.G.-property is invariant
with respect to weak equivalences of presheaves, ie. if & — &' is a morphism of
simplicial presheaves on ($m/S) such that for any U € .4 the map of simplicial sets
Z(U) — &£'(U) is a weak equivalence then %" has the B.G.-property with respect to
% if and only if %" has.

Remark 1.15. — For any simplicial sheaf %" and an elementary distinguished
square as in 1.3 the corresponding square of simplicial sets is cartesian (see Proposi-
tion 1.4). Thus if & is a simplicial sheaf such that for any open embedding U — V
with V € .4 the map of simplicial sets %" (V) — & (U) is a fibration then & has
the B.G.-property with respect to 4. For example a simplicially fibrant %" has this

property.

Proposition 1.16. — A simplicial sheaf &~ on the category (Sm/S)y;; has the B.G.-property
with respect to A if and only if for any trivial cofibration & — &' such that &' is fibrant
and any U in A4 the morphism of simplicial sets % (U) — &' (U) is a weak equivalence.
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Proof. — The “if” part is trivial (see Remarks 1.14, 1.15). To prove the “only
if” part we need an analog of [7, Theorem 1] for Nisnevich topology. Let X be a
Noetherian scheme of finite dimension. Denote by Xy; the small Nisnevich site of X
(i.e. the category of étale schemes over X considered with the Nisnevich topology).

A B.G.-functor on Xy; is a family of contravariant functors T,, ¢ > 0 from Xy; to
the category of pointed sets, together with pointed maps 9q : T+ (U xx V) — T,(X)
given for all elementary distinguished squares in Xy, such that the following two
conditions hold:

1. the morphisms O0g are natural with respect to morphisms of elementary
distinguished squares;
2. for any ¢ > 0O the sequence of pointed sets

T (U xx V) = T,(X) — T,U) x T,(V)

is exact.

Lemma 1.17. — Let (T,, Oq) be a B.G.-functor on Xy; such that the Nisnevich sheaves
associated with Ty are trivial (1.e. isomorphic to the point sheaf pt) for all q. Then T, =pt for
all q.

Proof. — Restricting T, to the small Zariski site of X we get a family of
functors satisfying the conditions of [7, Theorem 1’]. Thus it is sufficient to show
that Zariski sheaves associated to T,’s are trivial i.e. that for any point x on X we have
T (Spec(@x ) =*. Let t € T (Spec(@x ,)) be an element and let U= Spec(@y ,) — {x}.
Then dim(U) < dim(X) and by obvious induction by dimension we may assume that
T,(U)=x for all g¢. On the other hand since the Nisnevich sheaves associated to T,
are zero there exists an étale morphism p : V — Speo(@y ,) which splits over x and
such that p*() = . Shrinking V we may assume that p~!(x) — x is an isomorphism and
therefore U and V form an elementary distinguished square which implies the result
we need.

The following lemma finishes the proof of Proposition 1.16.

Lemma 1.18. — Let & — %Y be a morphism of simplicial presheaves such that the
associated morphism of simplicial sheaves is a weak equivalence and suppose that both %" and Y
have the B.G.-property with respect to 4. Then for any U in A4 the morphism of simplicial sets
Z(U) — % U) is a weak equivalence.

Proof. — Consider the (simplicial) model category structure on the category of
simplicial presheaves A”Presho(T) given by applying Theorem 1.4 to the site T’ with
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the same underlying category as T but with trivial topology. The axiom MC5 implies
that there exists a commutative square of simplicial presheaves

X — Y
| |
(%’I —_ %/

such that for any smooth scheme U over S, the maps % (U) — %"'(U) and % (U) —
%/ '(U) are weak equivalences of simplicial sets and the map & (U) —» '(U) is a
Kan fibration of Kan simplicial sets. Replacing %, % by %", %’ we may assume
that the maps & (U) — %/ (U) are Kan fibrations between Kan simplicial sets.

It is sufficient to prove that for any U in .4 and x € %/ (U) the fiber K (U)
of the map &' (U) — % (U) over x is contractible (i.e. weakly equivalent to point
and in particular non empty). The simplicial presheaf V/U +— K(V/U) on (Sm/U)y,
clearly has the B.G.-property with respect to .4/%¢4 which means that we may further
replace 4/ by pt in which case we have to show that the (Kan) simplicial set .%"(S) is
contractible.

Assume first that .2 (S) 0 and let a € .Z(S) be an element. Consider the family
of functors T; on Sy; of the form

U ﬂi(%w), d|U).

It is a B.G.-functor and the associated Nisnevich sheaves are trivial since %" — pt is
a weak equivalence. Contractibility of .#°(S) follows now from Lemma 1.17.

It remains to prove that .2 (S) is not empty. We already know that for any V/S
such that .#°(V) is not empty it is contractible. Let s be a point of S. Let us show first
that there exists an open neighborhood V of s such that % (V) (. We may clearly
assume that S is local and s is the closed point of S. Using induction by dimension of
S we may assume that & (S — s) 0. Since the map %" — pt is a weak equivalence
there exists a Nisnevich neighborhood V of s in S such that % (V) #0. Shrinking V
we may assume that the pair {S —s C S,V — S} gives an elementary distinguished
square and therefore &°(S) 0 by the corresponding homotopy cartesian square.

To finish the proof of the lemma take U to be a maximal Zariski open subset
of S such that & (U) #0 (it always exist since S is noetherian). Assume that there
is a point s € S outside U. Then there exists an open neighbourhood V of s in S
such that % (V) 0. Using the fact that %" has the B.G.-property for the elementary
distinguished square formed by U and V we conclude that %' (U U V) #0, which
contradicts the maximality of U.

Functoriality in S

For any morphism of schemes f: S; — S, the functor of base change gives a
continuous map of sites f: (Sm/S;)y; — (Sm/Se)ni;. The following example shows that
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this map is not in general a morphism of sites, i.e. the corresponding functor of the
inverse image does not have to commute with fiber products.

Example 1.19. — Let k be a field. Consider the morphism f: Spec(k) — A, which
corresponds to the point 0. Let us show that the corresponding functor of inverse
image

I 1 Shup(Sm/AY) — Sho(Sm/k)

does not commute with fiber products. Let X =A? which is considered as a smooth
scheme over A' by means of the second coordinate. Let Y., Y_ be closed subschemes
of X given by the equations x + y=0 and x — y=0 respectively. Note that there are
smooth over A'. Then Y, Xx Y_ is the sheaf on Sm/A' represented by the A!-scheme
of equation x=0, =0 in A? which is empty. On the other hand f*(Y,)=7*(Y_)=pt
and therefore f*(Y+) Xs-x) f*(Y_-)=pt which proves our claim.

(Note that the same setup may be used to show that the continuous map of sites
(Sch/K)pis — (Sm/K)p; is not a morphism of sites.)

Proposition 1.20. — For any morphism of schemes f: Sy — Sy the corresponding continuous
map of sites (Sm/S\)n; — (Sm/So)nis is reasonable (see 1.55). In particular the corresponding

functor
Rf. : FE((Sm/S\)we) = FE((Sm/Sa)wis)

has a left adoint Lf* and for a composable pair of morphisms of schemes f, g one has canonical
wsomorphisms of functors between homotopy categories of the form

Rigof). 2 Ry, oY,
L{gof)* = Lf* o Lg".

Proof. — It is clear that for any f and any simplicial sheaf & on (Sm/Si)p;
with the B.G.-property the sheaf f,(%") on (Sm/So)w; also has the B.G.-property which
implies that f is reasonable by Proposition 1.16 in view of Definition 1.49.

Remark 1.21. — One can verify easily that the statement of Propositions 1.20
also holds in the Zariski and étale topologies. A general proof working for all three
cases can be obtained using the fact that in all of them there is a notion of the small
site over a smooth scheme X (Zariski, Nisnevich or étale) which has fiber products
preserved by the base change functors for arbitrary morphisms of base schemes.

Example 1.22. — In the notations of Example 1.19 consider the quotient sheaf
F=X/(Y_ UY,). We claim that the canonical morphism Lf*({F) — f*(F) is not a
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weak equivalence. Since the morphism Y_[[Y+ — X is a monomorphism on Sm/A!
the canonical morphism cone(Y_][Y: — X) — F is a weak equivalence. By Lemma
1.53 and Proposition 1.57(2) this implies that we have an isomorphism Lf*(F) =
cone( f*(Y_-11Y+) — f*(X)) (in the homotopy category). Since f*(Y_I]Y:) — f*X) is
clearly not a monomorphism the simplicial sheaf Lf*(F) has a nontrivial &, and in
particular is not weakly equivalent to f*(F).

Proposition 1.23. — Let f: S, — Sy be a smooth morphism. Then there exists a functor
Ju @ Shoni(Sm/S)) — Shops(Sm/Sy) left adjoint to f* which has the following properties:

1. for a smooth scheme U over S, the sheaf fu(U) is represented by the smooth scheme U
over So;

2. for any sheaves ¥ on Sm/S, and G on Sm/Sq the canonical morphism fu(F X f*(G)) —
J#(®) X G 15 an somorphism.

Proof. — Let ¢~'(f): Sm/S; — Sm/S, denote the functor
(m:V =8 (fom:V— 8y

This defines a continuous map of sites O(f) : (Sm/So)y; — (Sm/Si)ns (¢f 1) because
for any sheaf F on (Sm/Sy)y; the presheaf U — F(o~!(f)(U)) is a sheaf on (Sm/S))ps
(the functor ¢~'(f) : Sm/S; — Sm/S; sends covering families to covering families).
Correspondingly we have a pair of adjoint functors (¢(f)). and (¢(f))* acting between
the corresponding categories of sheaves. One can easily see that (¢(f)).=f" and
therefore fu = (¢(f))" is left adjoint to the inverse image functor f*. The properties of
Jf« stated in the proposition follow immediately from definitions.

Corollary 1.24. — Let f: S" — S be a scheme over S which s a filtering Limit of
a diagram of smooth schemes over S with affine transition morphisms (¢f [15, 8.2]). Then
S (Sm/S e — (Sm/S)nis s a morphism of sites, and in particular (¢f 1.47) the functor f*

preserves weak equivalences.

Same argument as in the proof of Proposition 1.20 implies that the continuous
map of sites ¢( 1) : (Sm/Sa)ni; — (Sm/S1)p; associated to a smooth morphism of schemes
f:S; — Sy is reasonable (¢f 1.55). Therefore, the functor of inverse image f* = (¢(f))«
between the corresponding homotopy categories of simplicial sheaves has a left adjoint
which we denote by Lf;. Note that the continuous map ¢(f) is not a morphism of
sites unless fis an isomorphism. The following example shows that the functor fi does
not have to preserve weak equivalence.

Example 1.25. — Keep the notations of examples 1.19, 1.22. Let ¢ denote the
morphism Y. [[Y_ — X over A! and vy : cone(¢) — F the obvious morphism (of
simplicial sheaves); recall that y is a simplicial weak equivalence. Consider now the
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projection p : A! — Spec(k). The functor py commutes with colimits and therefore we
have

puE)=A?/(A' UA)
pu(cone(0)) = congA' ITA! — A?).

Thus the morphism py(y) is not a simplicial weak equivalence since px(¢) is not a
monomorphism of sheaves on Sm/Spec(k) and therefore pu(cone(9)) has a nontrivial &,
while p4(F) does not.

Proposition 1.26. — Let p : S| — Sy be an étale morphism. Then the functor py preserves
simplicial weak equivalences.

Progf. — For any site T and an object X in T the base change functor T/X — T
is a morphism of sites and the corresponding inverse image functor Shy(T) — Shu(T /X)
has a left adjoint fi which preserves simplicial weak equivalences. It remains to observe

that for an étale p we have Sm/S| = (Sm/S;)/S:.

The following proposition is a simplicial analog of the fact that the functor of
direct image for Nisnevich sheaves of abelian groups associated to a finite morphism
is exact.

Proposition 1.27. — Let f: S|, — Sy be a finite morphism. Then the functor f. preserves
weak equivalences of simplicial sheaves. Thus, for any simplicial sheaf F on (Sm/S\)n the
canonical morphism f,(%) — Rf(FE’) is a weak equivalence.

Proof. — Let a: % — %" be a weak equivalence. Let’s show that the morphism
J«(a) 1s again a weak equivalence. Let U be a smooth scheme over Sy and « be a point

of U. Consider the point (U, «)* : F — F(Spec@ {Zju) of (Sm/Sq)ns associated to the pair
(U, w). By Lemma 1.11 all we have to check is that the morphism

U, 9" (/@) : (U, " (L(H#) = (U, 9 (A(F))

is a weak equivalence of simplicial sets. Since a scheme finite over a henselian local
scheme is a disjoint union of henselian local schemes one verifies immediately that for
any simplicial sheaf %" one has (U, )*(£.(#"))=(U Xs, Sy, 0)*(#") which implies that
the morphism in question is a weak equivalence.

3.2. The A'-homotopy categories

The A'-model category structure on A?Shyy;(Sm/S)

Let us recall the basic definitions of Section 3 in the context of the site with
interval ((Sm/S)y, Al).
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Defimition 2.1. — A simplicial sheaf &~ on (Sm/S)ys is called A'-local if for any simplicial
sheaf Y the map

1
Homgy (5n)5),( &> &) = Homgy (15, (Y X AL Z)

M

induced by the projection Y x A' — Y is a bijection.
A morphism of simplicial sheaves f: & — Y s called an A'-weak equivalence if for any
A'-local, simplicially fibrant sheaf & the map of simplicial sets

S(Y, &) — S(F; )

induced by fis a weak equivalence.
A morphism of simplicial sheaves f: & — Y is called an A'-fibration if it has the right
lifting property with respect to monomorphisms which are A'-weak equivalences.

As was shown in Section 3 the classes of Al-weak equivalences, monomorphisms
and A!-fibrations form a proper simplicial model structure on the category of simplicial
sheaves on (Sm/S)y;. The corresponding homotopy category, i.e. the localization of
the category of simplicial sheaves on (Sm/S)y;, with respect to the class of A'-weak

equivalences is called the homotopy category of smooth schemes over S. We denote
this category by F# (S).

Example 2.2. — For any vector bundle & over a smooth scheme X the morphism
& — X is an A'-weak equivalence since it is a strict A'-homotopy equivalence.

Example 2.3. — Let T be a Zariski torsor for a vector bundle & over the smooth
scheme X over S. Then the morphism T — X is an A'-weak equivalence. It follows
from Lemma 2.16 applied to the class C of sheaves represented by smooth schemes
over S which are affine (over Spec(Z)), Example 2.2 and the fact that any such torsor
is trivial when the base is affine over Spec(Z). More generally any smooth morphism
Y — X of schemes which is a locally trivial fibration in the Nisnevich topology with
an Al-contractible fiber is an A'-weak equivalence.

Example 2.4. — Let X be any scheme over S which is Al-rigid in the sense
that for any smooth scheme U over S the map Homs(U, X) — Homs(U x A' X) is a
bijection. Then the (simplicial) sheaf represented by X is A!-local and for any smooth
S-scheme U the map Homs(U, X) — [U, X] is a bijection (use 1.14). For example any
smooth morphism X — S whose fibers are either smooth curves of genus > 1 or the
affine line minus a point, is A'-rigid in this sense when S is integral.

Remark 2.5. — Assume S is local henselian (for example a field). Then it follows
from corollary 3.22 that for any simplicial sheaf %7, the map % ((S) — [S, %] is
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surjective. Thus to have an S-point is a property on a simplicial sheaf & which is
invariant under A'-weak equivalences.

Let A}, be the cosimplicial object in Sm/S given by

Ay1 =S Xpazy SpecZlo, ..., 1, /O %= 1)

with usual coface and codegeneracy morphisms. As was shown in [31] it is isomorphic
to the cosimplicial object constructed from the interval A! by the procedure described
in Section 3. In particular the results of this section can be applied to the functor
Sing.(—) constructed by means of A3;.

Choose a resolution functor (Ex(—), ) (for the simplicial model category struc-
ture 1.6). Then set:

Exy1 = Ex o (Ex o Sing,)N o Ex.

By Lemma 2.13 and Lemma 3.12 for any % the canonical morphism
& — Ex (%) is a monomorphism and an A'-weak equivalence. The following
lemma shows that this functor is indeed an A'-resolution functor.

Lemma 2.6. — For any simplicial sheaf % the object Ex,1(.%") is A'-fibrant.

Observe the difference with Lemma 3.20: o is choosen to be N and one has to
compose one more time with Ex to make sure the result is fibrant.

Progf. — 1t is sufficient to check the fourth condition of Proposition 3.19. Since
the site (Sm/S)p; is Noetherian and since all the objects (Ex o Sing,)(Ex(%")) have the
B.G.-property with respect to the class Sm/S, so does &' : = (Exo Sing,)N(Ex(%")). Thus
from Proposition 1.16 it is sufficient to show that for any smooth S-scheme U and any
x:U — &' the maps m(%&"'(U), x) — m{Z'(U x A'), x) induced by the morphism
Id x {0} : U - U x A! are epimorphisms for all 7 > 0. One then finishes exactly in
the same way as in the proof of Lemma 3.21.

The following example shows that for a sheaf of sets F the simplicial sheaf
Sing.(F) does not have to be A'-local.

Example 2.7. — Let S =Spec(k) where k£ is a field. Consider the covering of
A, by two open subsets Up=A' — {0}, U =A' — {1} and let Uy =U, N U,.
Choose a closed embedding j : Uy, — A} for some n. Define F as the coproduct
F=(Up x A") Uy,, (U, x A") where the morphism Uy — U; X A" is the product of j
with the open embedding Uy, — U,. Let X be a connected smooth scheme over £.
Then

FX) = Hom(X, Uy x A" Ubton(x, Uy Hom(X, U, x A"
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and since Hom(X x A', U,)= Hom(X, U,) and the same holds for Uy, we conclude that
that Sing,(F) is weakly equivalent to the sheaf A! and therefore is not A'-local.

Let f: S; — S; be a morphism of base schemes. For any smooth scheme U
over Sy we have f*(U x Al)=f*(U) x A'. Therefore the functor Lf* preserves A!-weak
equivalences and induces a functor on A'-homotopy categories which we again denote
Lf*. We also know that the functor Rf, preserves A!-local objects and we denote the
induced functor on A'-homotopy categories by RAlf*. Proposition 3.17 gives us the
following result.

Proposition 2.8. — For any morphism f: S; — Sy the functor RAlf* is right adjoint to
Lf*. For any composable pair f, g of morphisms of base schemes there is a canonical isomorphism of
Sunctors bewteen A'-homotopy categories of the form

1 ~ 1 1
R* (gof). SR g oR* .

Proposition 2.9. — Let f: Sy — Sy be a smooth morphism of schemes. Then the functor
Lfy preserves A'-weak equivalences and the corresponding functor between A'-homotopy categories is
left adjoint to the functor Ly f* = f*. In addition in this case the functor f* preserves A'-local
objects.

Progf — The projection formula for f (1.23(2)) implies that for any simplicial
sheaf %" on S, one has f4(%& x Al)=fu(%&") x Al. Since ¢(f) is a reasonnable
continuous map of sites (¢f 3.16) Proposition 3.17 (¢f also 1.23 and 3.15) implies our
result.

Example 2.10. — Tt is not true in general that the functor Lf* takes A!-
local objects to Al-local objects. Consider for example the canonical morphism
p o Speck[e]/(€* =0)) — Spec(k). The sheaf G,, represented by A' — {0} on Sm/k
is Al-local. On the other hand Lp*(G,) = p*(G,) is the sheaf represented by
A' — {0} on Sm/Spec(k[€]/(€? =0)) which is not A'-local since @ *(Spec(k[€]/(€*>=0)))
+ O *(Spec(k[€] /(€* = 0)) x A).

The following example shows that the functors RAlf* and Rf, can be different
even for smooth morphisms £ i.e. the functor Rf, does not preserve in general A'-weak
equivalences.

Example 2.11. — Let p : §; — S be a smooth morphism. Observe that for a
simplicially fibrant sheaf %" the sheaf Rp,p*(#") is given by Hom(S,, #"). Thus to
show that the functor Rp, does not preserve A'-weak equivalences it is sufficient to
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construct an A'-weak equivalence of fibrant simplicial sheaves %", — %", such that
Hom(S:, &) — Hom(S,, %&,) is not an A'-weak equivalence. Set S, = Spec(k), S, =P,
%'y =P,. Let i: P! — {0, co} — A? be a closed embedding and

Jo: P —={0, 00} — P! — {0}
Joo : P = {0, 00} — P' — {00}
be the obvious open embeddings. Set
= (P = {0}) x A%) Ujpxijuoxi (P — {00}) x A?).
The obvious map %", — P! is an A'-weak equivalence but the map
@(Pla &) — EO_”KPI, Z)
is not since .%"| is affine and thus Hom(P', &) =.%",.

Proposition 2.12. — Let f: S, — Sy be a finite morphism. Then for any simplicial sheaf
&' on S, the canonical morphism Rf, (%) — RAlf*(.%' ) s an A'-weak equivalence.

Proof. — Tt is sufficient to show that Rf,(%") — RfA(Ex (&) is an Al-weak
equivalence. By 1.27 we may replace Rf, by f. and the right hand side is simplicially
weakly equivalent to colim,f.((Ex o Sing,)"). Using again 1.27 we see that it is sufficient
to show that for any .%" the map £.(&") — f.(Sing.(&")) is an A'-weak equivalence. By
2.14 we reduce the problem to showing that f,(&") — f.(Hom(A", %)) is an A'-weak
equivalence which follows from the fact that this morphgr;is a strict A'-homotopy
equivalence 3.7.

Consider the category A”Shoy;(Sm/S)e of pointed simplicial sheaves in the
Nisnevich topology on Sm/S. Recall from 2 that a morphism of pointed sheaves is
said to be a fibration, cofibration or weak equivalence (simplicial or A!-) if it belongs
to the corresponding class as a morphism of sheaves without base points. Clearly, this
definition provides us with model category structures which we will call respectively
the simplicial and A'-model structures on A?Shyy;(Sm/S), (see 2 for the simplicial
structure). We denote the corresponding homotopy categories by F# 5((Sm/S)y;) and
FE ,(S) respectively.

Recall that the left adjoint to the forgetful functor A”Sho;(Sm/S)e — A% Shuy;(Sm/S)
is the functor & — &', where %", is the simplicial sheaf & [[S pointed by
the canonical embedding S — %" []S. Both functors preserve weak equivalences (as
well as weak A'-equivalences) and thus induce a pair of adjoint functors between
T ((Sm/S)ni;) and FE ((Sm/S)ni) (as well as between F# ,(S) and F# (S)).

For pointed simplicial sheaves (&) x), (%), recall from Section 2 that (&, x) V
(#, ) denotes their wedge and (&), x) A (%, ) their smash-product.
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The following lemma is an obvious corollary of the basic properties of A'-weak
equivalences.

Lemma 2.13. — Let f: (F, x) — (¥,)) be a simplicial (resp. A'-) weak equivalence.
Then for any (Z, 2) the morphism f N\ ldz ) is a simplicial (resp. A'-) weak equivalence.

Lemma 2.13 implies in particular that the smash product defines a structure of
a symmetric monoidal category on F#,(S).

For any pointed simplicial sheaf (%] x) and any ¢ > 0 we get three types of
presheaves of homotopy groups (or sets):

— the naive homotopy groups (or sets) T'*(%’, x)(U) = (% (U), %)

— the simplicial homotopy group n(%, x)(U) = n(Ex(%")(U), x)

— the A'-homotopy group E?‘ (Z; %)(U) = m;(Exy (Z)(U), %)
(all of which beeing independent up to isomorphism of presheaves of the choice of Ex
(see section 1)). We shall denote am,(.%#, x) the sheaf associated to the presheaf n(.%, )
and ag?l(.%; x) the sheaf associated to the presheaf E?l(.%/; x). Note that an (%, x) is
isomorphic to the sheaf associated to the presheaf m:““(% x) of “naive” homotopy

1
groups. We say that %" is Al-connected if m_tg (%) is the constant sheaf pt. The
following obvious result is a version of the Whitehead theorem in our setting.

Proposition 2.14. — Let f: (&, x) — (¥, ) be a morphism of A'-connected pointed
simplicial sheaves. Then the following conditions are equivalent:

1. fis an A'-weak equivalence;

2. for any i > O the morphism of the presheaves of A'-homotopy groups g?l(,%" 5 X) —
1_:?1 (¥, ) is an isomorphism;

3. for any i > O the morphism of the sheaves of A'-homotopy groups @?](L%" , X) —

ag‘?l (Y, ) is an isomorphism.

Spheres, suspensions and Thom spaces

Consider the following objects in A?Shvy;(Sm/S)s:

S. the constant simplicial sheaf corresponding to the simplicial circle A' /A" pointed
in the obvious way;

S, the sheaf represented by A' — {0} pointed by 1;

T the quotient sheaf A'/(A! — {0}) pointed by the image of A' — {0}.
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The first two of them play the role of two circles in the homotopy theory of
schemes over S. We will use the following notations:

St =(S;)"

Sr = (S,

Tn — T/\n

Sr =871 A S

Observe that the last one makes sense only for p > ¢ > 0.

Lemma 2.15. — There s a canonical isomorphism in F,(S) of the form
S,AS' =T.

Progf. — Consider an object . %" given by the cocartesian square

s, — @AL{1p

! I

A'AS, — &

Projecting A' A S' to the point we get a pointed morphism %" — T. Projectin
)] g A t P g P P )) g

(A' ; {1}) to the point we get a morphism & — S! A'S,. By Lemma 2.11 we
conclude that both morphisms are A'-weak equivalences (in fact the first one is a
simplicial weak equivalence).

We define three suspension functors on A”?Shyy;(Sm/S). setting:
I(Z, )=S, AN, %)
Z(F, 2=, A (F; 2
SH(F, 9 =T A (9.
We will also use the obvious notations X!, Z;, £ and ¥**7. By Lemma 2.13 these

suspension functors define functors on F# ,(S) and by Lemma 2.15 on the level of
Al-homotopy categories we have a canonical isomorphism of functor 1 = Z, 0 X,

Definition 2.16. — Let X be a smooth scheme over S and & be a vector bundle over X.
The Thom space of & s the pointed sheaf

THE)=THE& |X)=& /(& —iX))
where 1: X — & s the zero section of & .
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For any vector bundle & over X denote by P(&) — X the corresponding
projective bundle over X.

Proposition 2.17.

1. Let &,, &, be vector bundles on smooth S-schemes X, and Xo respectively. Then there is
a canonical isomorphism of pointed sheaves TH(&| X &,/X; x Xo) = Th(&,/X1) N Th(&,/Xy).

2. Let (OF be the trivial vector bundle of dimension n on X. Then there is a canonical
isomorphism of pointed sheaves Th((Py) ==X+

3. Let & be a vector bundle over X and P(&) — P(& @ @) be the (closed) embedding
at infinity. Then the canonical morphism of pointed sheaves: P(& & @)/P(&) — THE&) is an

A'-weak equivalence.

Proof. — The only statement which may require a detailed proof is the last one.
Consider the open covering of P(& @ @) of the form

P& ©O)=& UPE & O)—X)

where the closed embedding of X into P(& @ @) is the composition of the embedding
of & with the zero section.

It gives a cocartesian square of sheaves in the usual way such that in particular
we get an isomorphism of pointed sheaves of the form

THE)=P(& & O)/P(& & @) —X).

As the embedding “at infinity” factors through P(& @ @')—X, we thus get the required
morphism:

P& @ O)/P(&) — THE).

In view of Lemma 2.11 it is sufficient to show that the embedding P(&) —
P(& @ @) — X is an Al-weak equivalence. But from [14, §8] we know that this
embedding is isomorphic to the zero section embedding of P(&) into the total space
of the canonical vector bundle of rank one over P(&). The proposition then follows
from 2.2.

Corollary 2.18. — The canonical morphism of pointed sheaves P"/P*~' = T" is an A'-weak
equivalence. In particular one has (P!, ¥) = T.

Remark 2.19. — In the above corollary the projective line was pointed by co. Of
course one may use one of the three canonical base points 0o, 0, 1 of the projective
line because the corresponding pointed projective lines are isomorphic.
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Example 2.20. — Another example of a sphere in our theory is, for each n > 1,
A" —{0,...,0}. One can show easily that there is a canonical isomorphism (in F# (S))
of the form

A’ - {03 e 0} = (Sl)n—l A (Stl)" =S¥l

§

Gluing, homotopy purity and the blow-up square

All the results proven so far about 7 (S) would also hold (with some obvious
changes) if we were to consider Zariski topology instead of the Nisnevich one. The
results of this section require the topology to be at least as strong as the Nisnevich
one. The first of them (Theorem 2.21) also uses in an essential way the fact that we
are working with the category of smooth schemes over S.

Recall that S is a Noetherian scheme of finite dimension. Let z : Z — S be
a closed embedding and j: U — S be the complimentary open embedding. For any
simplicial sheaf .%" we have a canonical commutative square in the simplicial homotopy
category of the form

L)y — E2

| |

U — 3 Li*(%&).
This square is the simplicial analog of the sequence
0= F>F—>sF—0

the exactness of which for sheaves of abelian groups on small sites plays major role
in the gluing theory for such sheaves. Analogous to this exactness property would be
the property of our square to be (homotopy) cocartesian — however, one can easily
see that this square is nmof homotopy cocartesian in F# ((Sm/S)p;). The problem has
nothing to do with the fact that we are working with simplicial sheaves and not with
sheaves of abelian groups but comes instead from the fact that we are working with
big sites and not with the small ones. If we were to consider simplicial sheaves on
the small Nisnevich site Sy; it would disappear, i.e. the corresponding square would
be (homotopy) cocartesian. The following Gluing Theorem shows that this problem
disappears once we pass to the A'-homotopy category. Observe that this theorem is
very sensitive to the choices which one makes to define .# (S). It would become false
if we were to take Zariski topology instead of the Nisnevich or if we were to consider
the category of all schemes of finite type over S instead of the category of smooth
ones.
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Theorem 2.21. — For any simphcial sheaf % the square
sl & — &

| |

U - LLF)

is homotopy cocartesian in FE (S).

Proof. — It is clearly sufficient (using resolution lemmas) to show that for a smooth
scheme X over S the canonical morphism of sheaves X Uxx,u U — 74.(X X5 Z) is an
A'-weak equivalence. By Lemma 2.16 it is sufficient to verify that for a smooth scheme
Y over S and a section Y — (X X5 Z) the projection (X Uxx,u U) X xxsz Y — Y is
an A'-weak equivalence.

A section of 7,(X XsZ) over Y is by definition a morphism ¢ : Y XgZ — X over
S. Consider the sheaf ®x,y, ¢ on (Sm/Y)y, such that ®x, v, (W/Y) is the subset
of the set of morphism W — (X XsY) over Y whose restriction to W Xy (Z XsY)

coincides with W XxgZ — Y XgZ AR 'SR py : Y — X is the canonical morphism
then (py)#(®xxgv,¢) 18 isomorphic to the fiber product X X; xx.z Y and the morphism
(X Uxxsu U) Xi,xxsz) Y = Y is isomorphic to the (py)s of the canonical morphism

Dy, 0) UxxsUxgy (U Xs Y) = Y

in (Sm/Y)p;. By Proposition 1.26 the functor Ljy coincides with j» and in particular
ju preserves A'-weak equivalences. Thus it remains to show that the morphism
Doy, 0) UxxsUxsy (U Xs Y) = Y is an A'-weak equivalence over Y.

For simplicity of notations we may assume now that Y=S. Denote the sheaf
D, 9 Uxy, U by ¥x, 9. We want to show that the canonical morphism ¥ ¢ — S
is an A'-weak equivalence for any smooth X over S. The following lemma follows
immediately from the fact that we are using Nisnevich topology and therefore it is
sufficient to compare the sets of sections of our sheaves over henselian local schemes.

Lemma 222, — Let p : X — X' be an élale morphism such that the map
P PO(Z)) — &Z) is a bijection. Then the morphism of sheaves ¥x oy — ¥ix',¢0p ON
(Sm/S)pis s an isomorphism.

We can clearly assume now that S is henselian. Then, ¢ can be extended to a
point x : S — X of X and since (X, x: S — X) is a smooth pair there exists an étale
morphism p : X — Ag such that p='({0}z) =¢(Z). By Lemma 2.22 we conclude that

n

¥x,¢) is 1somorphic to ¥ o :‘I’( Al 0) It remains to observe that ‘I‘ZA,’O) =@, () in

F (S) and the latter sheaf is strictly A'-homotopy equivalent to the point.
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Theorem 2.23. — Let 1: Z — X be a closed embedding of smooth schemes over S. Denote
by Nx 7z — Z the normal vector bundle to i. Then there is a canonical isomorphism in FE ,(S) of
the form

X/X = iZ)) = Th(Nx, z)-

Progf. — Denote by px 7 : BX,Z) — X x A! the blow-up of §Z) x {0} in X x A!.
We have a canonical closed embedding f 7z : Z x A — B(X, Z) which splits px 7
over §Z) x A' and a canonical closed embedding gx z : X — B(X, Z) which splits px 7

over X x {1}. There is a canonical isomorphism p~'({Z) x {0}) = P(N & @) which
induces an isomorphism (p~!({(Z) x {0}) — f(Z x {0})) = P(N @ @) — P(?) and thus
an isomorphism of pointed sheaves

THN) = p~'({(Z) x {0})/(p~"WZ) x {0}) = f(Z x {0}))

(we ommited the index (X, Z) for simplicity of the notations). Since we have
dX)NFZ x A)=gil2))
P~ Z) x {0}) Nf(Z x Al)=f(Z x {0})

we get two monomorphisms:

&,z X/X ~Z) = BX, Z)/BX, Z) - f(Z x A"))
ox,z : ThiNx,z) = B(X, Z)/(B(X, Z) — f(Z x A)).

Theorem 2.23 is then a consequence of the following:

Proposition 2.24. — Let i: Z — X be a closed embedding of smooth schemes over S. Then
the two morphisms gx 7 and Ox 7 are A'-weak equivalences.

To prove this proposition, we proceed in several steps. Let’s recall first some well
known facts. Let X be a smooth S-scheme and X — Aj; the zero section. Then the

blow-up of X in A% is isomorphic to the total space EA% ') = (A" — {0} )x Xgn A! of
the canonical line bundle lg(_l over P;(_l; indeed almost by construction, this blow-
up, denoted Y, is isomorphic to the closed subscheme of A" x P! x X given by
the equations x;.9;=x;.5; where x; are the coordinate functions of Ay and J; are the

. . -1
standard sections of the canonical vector bundle of rank one over Py . Then the
obvious morphism

EQL ") — A" x P! x X

is seen to be an isomorphism. One easily deduces:
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Lemma 2.25. — For any smooth S-scheme X and any n > 1, denote by p : E — Ay the
blow-up of X in Ay (where X is embedded via the zero section). Then the canonical morphism
g:E— P has the Jollowing properties:

1. let i: Ay — E be the closed embedding which corresponds by the unversal property of
blow-ups to the embedding A;( — Ay of the form t+— (0,...,0, 8. Then the following square is
cartesian

A;i — E

I !

X ©,...,0,1) PnX—l

(here the left vertical arrow 1s the canonical projection and the right one is q);
2. the restriction of q to p~'(X) coincides with the canonical isomorphism p~'(X) — Py .

In order to prove Proposition 2.24 let’s first prove a particular case.
P p p P

Lemma 2.26. — For any smooth S-scheme X and any n > O the Proposition 2.24 holds
Jor the closed embedding X — A% corresponding to the (0, ..., 0)-section.

Proof. — Consider the projection B(Ay, X) — Py given by the identification of
B(A%, X) with E(Ay) (see above). By the first point of Lemma 2.25 above, it maps

BAY, X) —{0,...,0} x A)l( to Py — X, and both of these maps are projections from a
vector bundle and thus A'-weak equivalences by Example 2.2. Therefore the morphism

¢ : B(A%, X)/(B(A%, X) — {0, ..., 0} x Ag) — Py /Px — X)

is an A'-weak equivalence. It is then clear that ¢ o & is the canonical isomorphism of
sheaves so that o is an A'-weak equivalence.

On the other hand composing our projection with the immersion g : Ay —
B(AY, X) we get the canonical (open) embedding Ay — Py which takes {0,...,0} to
the class of {0,...,0, 1}. Thus by Lemma 1.6 the corresponding morphism

Ax/(Ax —{0,...,0}x) — P& /(Px — X)

is an isomorphism which proves that g is also an A'-weak equivalence (in fact we have

proven that ¢ og and ¢ o o are both isomorphisms).

Let ¢ : U — X be an étale morphism. Denote ¢~'(Z) by Zy. Since all our
constructions commute with base changes along étale morphisms for any such ¢ we
have a commutative diagram
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Oy, z

U/(U-Uz) — B(U,Zv)/B(U, Zv) - f(Zu x A')) +— ThNuy,z,)

! | !

Ox 7

X/X-2) — BX,Z)/BX,Z)-f(ZxA")) = ThNy ,)

and one can verify immediately that the following statement holds.

Lemma 2.27. — Let ¢ : U — X be an étale morphism such that the morphism Zy — Z
is an isomorphism. Then the vertical arrows in the diagram presented above are isomorphisms. In
particular proposition 2.24 holds for Z — X if and only if it holds for Zy — U.

Lemma 2.28. — Let 1 : Z — X be a closed embedding such that there exists an étale
morphism q : X — A" such that {Z) =q (A" x {0, ...,0}) for some c. Then Proposition 2.24
holds for 1.

Progf — Consider the fiber product X X,. (Z X A°) where the morphism
Z x A" — A" is (goi) X Id. The fiber of the projection X X,. (Z X A°) — A" over
A% {0, ...,0} is the closed subscheme Z X yn—.Z of X X 4. (Z X A®). Since the morphism
Z — A" is étale, this fiber is disjoint union of the image of the diagonal embedding
A:7Z — Z X n-Z and a closed subscheme Y (which is thus also closed in X X ,.(Z X Af)).
Set U=X X, (Z X A) —Y. We have two étale projections

pnU—-X
pro i U — Z X A°

such that pr;'((Z)) — 4Z) and pr, (Z x {0}) — Z x {0} are isomorphisms. The
statement of the lemma follows now from Lemmas 2.27, 2.26.

To prove the general case we proceed as follows. Fisrt of all since Z — X is a
closed embedding of smooth schemes there exists a finite Zariski open covering X = UU;
such that for any 7 the embedding ZNU; — U; satisfies the condition of Lemma 2.28.
Note also that if this condition holds for Z — X it also holds for Z N U — U where
U is any open subset of X. In particular, it holds for all intersections of the form
U;, N...NUj,. Consider the simplicial sheaf %" with terms of the form ([] U It
maps to X and by Lemma 1.15 this map is a simplicial weak equivalence. We also
have a simplicial sheaf & with terms ([[(U;NZ))""! and we can form a simplicial sheaf
% applying the construction of B(X, Z) termwise to the closed embedding & — %4.
It gives us a commutative diagram
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Cy z

ENE -&) — FB)(F —f(& xAl)) —— TNz, z)

! I !

8X,Z X, Z

X/X-27) 24 BX,2)/BX,Z)-fZxA)) <L  ThNx2)

where the vertical arrows are simplicial weak equivalences by Lemma 2.11 and the
upper horizontal ones are A!-weak equivalences by Lemma 2.28 and Proposition 2.14.
Therefore the lower horizontal arrows are A'-weak equivalences, which finishes the
proof of Proposition 2.24.

Proposition 2.29. — Let i1 : Z — X be a closed embeding of smooth schemes over S,
p: Xz — X be the blow-up of {Z) in X and U =X — dZ) =Xz — p~'((Z)). Then the square
72y — Xg/U
Z — X/U
is homotopy cocartesian, i.e. the morphism (Xz/U)11,-17Z — X/U is an A'-weak equivalence.
Progf. — Applying the same technique as in the proof of Theorem 2.23 one

reduces the problem to the case of the embedding S — Ag corresponding to the point
(0, ...,0). Then our result follows from Lemma 2.25.

Remark 2.30. — We do not know whether or not under the assumptions of
Proposition 2.29 the square
p'2) — X
Z — X

is homotopy cocartesian. However, Proposition 2.29 does imply that the following
diagram of pointed simplicial sheaves is homotopy cocartesian

p~'(@)y) — Z{Xz))

| !

2(Z4) — E(X).
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3.3. Some realization functors

G-equivariant homotopy categories of spaces

Let G be a finite group and A?(G — Sets) be the category of simplicial G-sets.
Define two types of weak equivalences in A%?(G — Sets) as follows:

— a coarse weak equivalence is a G-equivariant morphism which is a weak
equivalence in A% Sets;

— a fine weak equivalence is a G-equivariant morphism f: X — Y such that for
any subgroup H of G the morphism X" — Y™ is a weak equivalence in A% Sets.

The localizations of A?(G — Sets) with respect to these two types of weak equiv-
alences are called the coarse and fine G-equivariant homotopy categories respectively
and are denoted by F# (G) and F, (G). Clearly for G=e¢ the two types of weak
equivalences coincide and the resulting homotopy categories are both equivalent to the
usual homotopy category F# .

We are going to show now how the categories H# (G) and F, (G) can be
described as homotopy categories of appropriate sites with intervals.

Defimition 3.1. — Let ‘T be a topological G-space. We say that an open covering T = U U;
is good if all the open subsets U; are G-invariant and for any i the map U; — mo(U,) is a
G-homotopy equivalence. We say that a G-space T s good if any covering of 'T by G-invariant
open subsets has a good refiniment.

Denote the category of good G-spaces and G-equivariant continuous maps by
G — Tlc. We define the coarse (c) and fine (f) topologies on G — Tl as follows:

— a coarse covering is a G-equivariant morphism X — Y such that for any point y of
Y there exists an open neighborhood U of y in Y such that the projection X xyU — U
splits as a morphism of topological spaces;

— a fine covering is a G-equivariant morphism X — Y such that for any point y
of Y there exists a G-invariant open neighborhood U of y in Y and a G-equivariant
splitting of the projection X xy U — U.

Example 3.2. — The morphism G — pt is a coarse covering but a fine covering
only for G the trivial group.

In the case when G =e¢ the fine and coarse topologies coincide and are equivalent
to the usual open topology. We denote in this case the category G — Tl by Tk and
the topology by Op. Note that Tlk is precisely the category of locally contractible
topological spaces.
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Proposition 3.3. — Let G be a finite group and 1' be the unit interval which we consider
as a G-space with trial G-action. Then there are canonical equivalences of homotopy categories

(G - Th),, I') 2 .5,C)
F (G — Tl ') = F, (G).

Proof. — Every G-set may be considered as a topological space with the discrete
topology which gives us functors

n* : A%G — Sets) — A?(Shu(G — Tl))
& A%G — Sets) — A?(Shuy (G — T))

(where the latter one is just the composition of the former one with the embedding
A?(Shv (G — Tl)) — A?(Shur (G — Tl))). One can check easily that the first functor
takes coarse weak equivalences to simplicial weak equivalences in A%?(Shu (G — Tl))
and the second one takes fine weak equivalences to simplicial weak equivalences in
A?(Shvr (G —Tl)). We claim that they define the required equivalences. In what follows
we consired only the case of the fine topology. The coarse topology is analized similarly.
Note first that any object in the image of n* is I'-local and that the functor

n* : F,(G) — F (Shyr (G — Tl))

is a full embedding. Thus, the only thing we have to show is that any simplicial sheaf
on Shys (G — Tk) is I'-weakly equivalent to a simplicial sheaf which belongs to the
image of m*.

Our definition of a good G-space together with Lemma 1.16 implies that any
simplicial sheaf %" on (G — Tlk); is simplicially weakly equivalent to a simplicial sheaf
%" whose terms are direct sums of sheaves represented by G-spaces Uy such that
Ug — mo(Uy) is a G-homotopy equivalence. Applying the functor my to %" termwise
we get a new simplicial sheaf my(%"') which clearly belongs to the image of ®*. On
the other hand the morphism %" — my(%"’) is an I'-weak equivalence termwise and
therefore an I'-weak equivalence “globaly” by Lemma 2.14 which finishes the proof
of the proposition.

C-realizations — definition and examples

Consider the category Sm/C of smooth schemes over C. The functor ¢61 X
X(C) defines a continuous map of sites ¢¢ : (Tlk)g, — (Sm/C)ps.

Lemma 3.4. — The map of sites ¢c : (Tl)o, — (Sm/C)yi; ts reasonable (see Definition
1.55).

Proof. — Follows easily from Proposition 1.16.
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Since A!(C) is contractible and the functor ¢g ' commutes with products ¢¢ is
a reasonable continuous map of sites with intervals (Definition 3.16) ((Tk)g, I') —
((Sm/C)xi, A1). By Proposition 3.17 we conclude that there exists the functor of total
inverse image L¢g which we denote by ¢€. By Proposition 3.3 it takes values in the
usual homotopy category F# .

More generally for any base scheme S and a C-point x : Spec(C) — S we have a
functor of C-realization

18 H () — H

x

defined as the composition ¢ o Lx*. Using Proposition 1.57(2) one can easily see
that for any simplicial scheme %" on Sm/S the value of tf on % is the class of
the geometrical realization of the simplicial toplogical space .%°(C) in F# . Note in
particular that one has canonical isomorphisms in F# of the form

and
t°(BG) = B(G(C))

for any smooth group scheme G over S.

R-realization — definition and examples

Consider the category Sm/R of smooth schemes over R.

Lemma 3.5. — Let X be a smooth scheme over R. Then the topological space X(C)
considered as a Z]2-space with respect to the complex conjugation action is good (see 3.1).

Lemma 3.5 shows that we have a functor ¢5' : Sm/R — Z/2 — Tl which
takes a smooth variety X over R to the space X(C) where Z/2 acts by the complex
conjugation.

Lemma 3.6. — The functor Ox defines a reasonable continuous map of sies Qr :
(Z/2 — Tle)r — (Sm/R) ;.

Progf — To show that ¢gr 1s indeed a continuous map of sites, i.e. that for any
sheaf F on (Z/2 — Tk)s the presheaf (¢r). on Sm/S is a Nisnevich sheaf it is sufficient
to verify that for an elementary distinguished square as in 1.3 the corresponding
morphism U(C)[] V(C) — X(C) is a covering in the fine topology. This is an easy
exercise. The fact that ¢g is reasonable follows from Proposition 1.16.
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Since A'(R) is contractible and the functor d)il commutes with products ¢g 1is a
reasonable continuous map of sites with intervals (Definition 3.16) ((Z/2 — Tlk);, I') —
((Sm/R)y;, A"). By Proposition 3.17 we conclude that there exists the functor of total
inverse image L¢j which we denote by &. Bt Proposition 3.3 it takes values in the
fine Z/2-equivariant homotopy category F# (Z/2).

More generally for any base scheme S and an R-point x : Spec(R) — S we have
a functor of R-realization

5 HS) = H(2)2)
defined as the composition & o Lx*. Using Proposition 1.57(2) one can easily see that
for any simplicial scheme %" on Sm/S the value of &£ on & is the class of the
diagonal simplicial set of the bisimplicial set Sing(.%"(C)) in F#&,(Z/2).

4. Classifying spaces of algebraic groups

This section may be considered as an illustration of how one applies the general
technique developed above. Its main results are Proposition 2.6, Theorem 3.13 and
Proposition 3.14. Proposition 2.6 provides in particular a geometrical construction of
a space which represents in 7 (S) the functor HY(—, G) for étale group schemes G
of order prime to char(S). Theorem 3.13 shows that algebraic K-theory of a regular
scheme S can be described in terms of morphisms in F# (S) with values in the
infinite Grassmannian. Finally Proposition 3.14 shows how one can use A'-homotopy
theory together with basic functoriality for simplicial sheaves on smooth sites to give a
definition of Quillen-Thomason K-theory for all Noetherian schemes.

4.1. Generalities

Classifying “spaces” of groups and monoids

In this section we prove some general results on the classifying spaces of sheaves
of groups and monoids on a fixed site T.

If & is a simplicial sheaf (of sets) we denote by F, (%) (resp. F(%") the free
sheaf of simplicial monoids on .%". We say that a simplicial sheaf of monoids M is
termwise free if any term M; is a free monoid on a sheaf of sets. The same terminology
is used for sheaves of simplicial groups.

We denote the category of sheaves of monoids (resp. groups) on T by Mon(T)
(resp. Gr(T)) and M — M", A?Mon(T) — A?Gr(T) the group completion functor, left
adjoint to the inclusion A?Gn(T) — A”? Mon(T).

Using the same technique as in the proof of 1.16 (applied to the class of free
monoids on representable sheaves) one gets:
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Lemma 1.1. — There exusts a functor
®@ypor, : Mon(A” Sho(T)) — Mon(A” Shy(T))
and a natural transformation @y, — 1d such that for any sheaf of simplicial monoids M one has:

1. for any @ > O the sheaf of monoids ®p,,(M); ts freely generated by a direct sum of
representable sheaves (in particular ®pz,,(M) s termuwise free);

2. the morphism ®@p,,(M) — M s a trivial local fibration (as a morphism of simplicial
sheaves).

More generally, any morphism g : ¥ — M of simplicial sheaves of monoids, with F
termwise freely generated by a direct sum of representable sheaves, admits a functorial factorisation:

F -?» D1(9) 2, M such that:

1. for any i > O the sheaf of monoids ®py,(g); is freely gemerated by a direct sum of
representable sheaves;

2. the morphism p, : Drgn(e) — M is a trivial local fibration (as a morphism of simplicial
sheaves).

(Observe that the first part is a particular case of the second one by setting
(DMM(I\/[) ::5M,,,L((D — M))

Let M be a sheaf of simplicial monoids on T. We define the classifying space
BM of M as the diagonal simplicial sheaf of the bisimplicial sheaf which maps U to the
bisimplicial set BM(U) : n — N(M,), where N(M,) is the nerve of the category associated
to the monoid M,. It has terms (M,)' for ¢ > O (with the convention that (M)’ = pj)
and faces and degeneracy morphisms defined in the usual way using diagonals and
product ([27]).

There is a canonical morphism of pointed simplicial sheaves of sets £(M) — BM
which defines a morphism:

M — Q!(BM)

where QJ} (=) 1s the right adjoint to Z(—). This morphism is seen to be a weak
equivalence when M is a simplicial sheaf of groups, using points of T and the
corresponding fact in the category of simplicial sets. We denote RQ;(—) the total

right derived functor of Q; (=) which 1is right adjoint to the suspension functor in the
pointed simplicial homotopy category. RQ!(—) is thus the functor 5% %(T) — %% (T)

induced by the functor QSI o Ex (which preserves weak equivalences).

Lemma 1.2. — Let M be a termuwise free sheaf simplicial monoids. Then the morphism
BM — BM")
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is a weak equivalence. Thus, there is a canonical isomorphism in F (1) of the form
M* = RQ!BM.

Proof — Using the fact that the morphism is the diagonal of an (obvious)
morphism of bisimplicial sheaves with terms of the form: B(M,) — B(M,)" one easily
reduces to the case M is simplicially constant which follows, using points of T, from
the analogous statement for simplicial monoids of sets.

The following proposition is nontrivial because the functor of total inverse image
does not commute in general with the loop space functor.

Proposition 1.3. — Let f: Ty — Ty be a reasonable morphism of sites. Assume in addition
that Ty has products (but not fiber products!) and that the functor f~' commutes with them. Let
Surther M. be a sheaf of simplicial monoids on Ty such that all the terms M; of M considered as
sheaves of sets are direct sums of representable sheaves. Then there is a natural (in M) isomorphism

i FE (1)) of the form
L R(Q)BM)) — R(Q,)B(*(M)).

Proof. — Using Lemma 1.1 and Proposition 1.57(2) we may assume that each
term of M is the sheaf of monoids freely generated by a direct sum of representable
sheaves of sets. Since /! commutes with products of representable sheaves f*(M)
is again a monoid with the same property. By Lemma 1.2 it remains to define an
isomorphism Lf*(M*) — (f*(M))*. We clearly have (f*(M))" =/*(M*) which means by
Proposition 1.52 that all we have to show is that M* is admissible with respect to f
(see Definition 1.49). This follows from Proposition 1.54 and the lemma below.

Lemma 1.4. — Let U be a direct sum of representable sheaves. Then the free group F(U)
generated by U is admissible with respect to f.

Proof. — We are going to prove our result inductively using Lemma 1.53. Let kv
be the subsheaf in F(U) which consists of words of length less than or equal to N, ie.
Ix is the image of the canonical morphism

[T U'xU!x..xU"xUr— FU)

(15J15 > Tn>Jm)
where the coproduct is taken over all sequences such that 4,7 >0 and 3 ¢+ j; <N

for N >0 and f =pt.

Using Lemma 1.53(1) we see that it is sufficient to prove that for each N the
sheaf Iy is admissible with respect to £ We already now that it is true for N=0. For
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N=1 we have ix=pt[[U]]U which is admissible. Consider the diagram

oy xU oy xU
v N v N
lN x U In hxU
N\ v N v
Koo ko
N v
b+t

where k., and I, are defined by the condition that the corresponding squares are
cocartesian, IN_; — In+1 is the obvious inclusion and two morphisms i_; X U — Iy
are given by (x, @) — xa and (r, @) — xa~' respectively. One can easily see that for
any N > 1 the lower square is also cocartesian (which is equivalent to the fact that
if xa=yb~' then there exists a word w of length < N — 1 such that x=wa™"', y = wb).
Under our assumption on f the functor of the inverse image commutes with products
it thus follows easily from 1.52 that the product of any admissible simplicial sheaf
with U is still admissible. Thus by induction and Lemma 1.53(2) it suffices to verify
that f*(In—1) — f*(Iy) is a monomorphism which can be easily done using the same
diagram.

Lemma 1.5. — Let i : A — B be a monomorphism of simplicial sheaves which is a
(simplicial) weak equivalence. Then Fap,(2) (resp. ¥(2)) s a simplicial weak equivalence. Moreover
gen any morphism of simplicial monoids Fppn(A) — M the morphism of simplicial monoids
M — Z from M to the amalgamated sum T of M and Fpp,(B) over Fppn(A) ts also a weak
equivalence.

The analogous statement holds for simplicial sheaves of groups instead of simplicial sheaves of
monouds.

Using points, it is sufficient to check it for T = Sets in which case it is not difficult,
using the results of [26, I1.4].

As was shown by Jardine ([18, Lemma 2.4]) there exists a subset By in CNW;
such that a simplicial sheaf %" is simplicially fibrant if and only if the projection
%" — pt has the right lifting property with respect to morphisms in B,. Using
the standard transfinite analogue of the small object argument (see the method after
Corollary 2.18) and previous Lemma one gets:

Lemma 1.6. — There is a functor ExM"(—) : A?Mon(T) — A?Mon(T) (resp.
Ex¢(=) : A?G(T) — A?GT)) and a natural transformation 6" : Id — ExXM™ (resp.
0% : Id — Ex°) such that for any M € A?Mon(T) (resp. € A?GHT)) then Ex""(M) (resp.
Ex®(M)) is a fibrant simplicial sheaf and 8"""(M) (resp. (M) ) a (simplicial) weak equivalence.
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Assume now that I is an interval on T (3). Using the previous Lemma, the fact
that the functor Sing, preserves finite products 3 and the same method as in the proof
of Lemma 3.21 one obtains:

Lemma 1.71. — There s a functor Ex?/!a"(—) : A?Mon(T) — A?Mon(T) (resp.
Ex(=) : A?G{T) — A?GHT)) and a natural trangformation 6™ : Id — ExX™ (resp.
0 : Id — Ex{") such that for any M € A?Mon(T) (resp. € A*GT)) then Ex\""(M) (resp.
Exlcr M) s a fibrant 1-local simplicial sheaf and 9?40"(1\/1) (resp. BIG "M)) an I-weak equivalence.

Group completion of graded pointed simplicial monoids

Definition 1.8. — A pointed simplicial sheaf of monoids (on 'T) is a parr (M, o) consisting
of a simplicial sheaf of monoids M on T and a morphism o.: N — M (in A? Mon(Shy(T)) ). A
graded pointed simplicial sheaf of monoids is a triple (M, o, f) consisting of a pointed simplicial
sheaf of monods (M, o) together with a morphism (in A Mon(Shu(T))) f: M — N such that
Sfoa=1Id

Let (M, o, f) be a graded pointed simplicial sheaf of monoids. Set M, =f~!(n).
Multiplication with a(1) gives morphisms M, — M,+; and we set M, to be the colimit
of the corresponding system.

The triple (®pp,(0r), &, f© po) 1s also a graded pointed simplicial sheaf of monoids.
For simplicity, let M denote from now on the simplicial sheaf of monoids ®y,(ct). Each
of the morphisms p, : M, — M, being the pull-back of a trivial local fibration is again

a trivial local fibration and thus the obvious morphism M, — M, is a colimit of
weak equivalences and therefore a weak equivalence 2.13. Consider now the group

completion M* and let ¢: M, x Z — M* be the map

~m—n

(%, m) = 0" "x

where x, € M, and m € Z. We have the following diagram:
M, xZ — Mt

l |
M, X Z RQ/BM)

where the vertical arrows are simplicial weak equivalences (the right hand side
one by Lemma 1.2) and therefore we get a canonical morphism of the form

M, x Z — RQ!B(M) in the pointed simplicial homotopy category of T.

Proposition 1.9. — Let M, o, f) be a graded pointed simplicial sheaf of monoids and

assume n addition that
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1. any(f) : anyM) — N s a byection;
2. M is commutative in FE (T).

Then the canonical morphism Mo, X Z — RQ! BM) s a simplicial weak equivalence.

Proof. — Clearly, we may assume that M is termwise free. Using our assumption
that T has enough points we reduce the problem to the case of simplicial sets. The
first condition of the lemma implies that one has

H.(Mo x Z)=H.(M)[e"'] = H.(M)[mo(M)~']

and the second one implies that H,(M) is a commutative ring. Therefore, by [12,
Theorem Q4, p. 97] the map M, X Z — M gives an isomorphism on homology
groups. On the other hand the condition that M is commutative implies that M, has
a (possibly non associative) multiplication as an object of the homotopy category. Since
it is connected (by our first condition) we conclude that ax, of M, is abelian and acts
trivially on all the higher homotopy groups which implies that the required map is a
weak equivalence by Whitehead theorem.

Now we go back to our A!-homotopy theory of smooth scheme over a noetherian
scheme of finite dimension S, in the Nisnevich topology (in fact the result which follows
may hold in the more general context of site with interval).

Theorem 1.10. — Let (M, o, f) be a graded pointed simplicial sheaf of monoids and assume
that the following two conditions hold:

1. the map am® (f): ax® M) — N is a bijection
2. M is a commutative monoid in F# (S)

Then the canonical morphism Mo, X Z — R.QJIB(M) is an A'-weak equivalence.

Progf. — We apply Lemma 2.36 to the A'-weak equivalence M — Exﬁ“"(l\/I)

given by 1.7. Observe that N :=Ex24,""(M) is graded (because its 7y is N) and obviously

pointed. Thus each morphism M, — N, is an A'-weak equivalence (because a sum
of morphisms is an A'-weak equivalence if and only if each member is an A!-weak
equivalence). It follows (from 2.13) that M,, — N, is also an Al!-weak equivalence.
The theorem follows now from Proposition 1.9.

Homotopical classification of G-torsors

Let T be a site and G be a sheaf of simplicial groups on a site T. A right (resp.
left) action of G on a simplicial sheaf %" is a morphism a: & X G — & (resp.
a: G X% — &) such that the usual diagrams commute. A (left) acti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>