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The Adams Spectral Sequence



The classical Adams spectral sequence

» The classical mod p Adams spectral sequence
ES' = Exty{(H*(Y), H* (X)) =5 [X, Y} i—s
aims to study the abelian group
[X. Y] = Ho(Sp%)(X, Y)

of stable morphisms f: X — Y.

» It takes as input the A-modules H*(X) and H*(Y) and the
derived functors of Hom 4, where A denotes the mod p
Steenrod algebra and H = HF .

» It was introduced by Adams in [Ada58].



Homological formulation

» There is also a homological formulation
ES" = Ext3 (Ho(X), Hi(Y)) =5 [X, Y)]i-s

of the Adams spectral sequence.

» It is defined in terms of the dual mod p Steenrod algebra
A. and the A,-comodules H.(X) and H.(Y).

» This is a little more generally applicable than the
cohomological version.



The Adams—Novikov spectral sequence

The generalization to the study of [ X, Y] by means of
» the E*E-modules E*(X) and E*(Y), or
» the E.E-comodules E.(X) and E.(Y),

for a suitable ring spectrum E, is known as

» the Adams—Novikov spectral sequence (principally for
E = MU [Nov67] and E = BP), or as

» the E-based Adams spectral sequence

E5' = Bxti g (E.(X). E(Y) = [X, YEi-s.
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The degree of a map

The degree deg(f) of amap f: M" — N" of closed, connected,
oriented n-manifolds with fundamental classes [M] and [N] is
the integer satisfying

£ ([M]) = deg(f)[N]

in Hy(N; Z) = Z. The d-invariant is defined to detect similar
information.



The homological d-invariant

» Let the (mod p homology) d-invariant be the
homomorphism

d: [X, Y], — Hom} (H.(X), H(Y))
[f] — fs.

» [X,Y]n=[S" A X, Y] denotes the degree n morphisms
X — Y in the stable category.

» Hom} (M, N) = Homgu, (X"M, N) denotes the A.-comodule
homomorphisms M — N of homological degree n, for
(graded) A.-comodules M and N.

» Hence d maps the homotopy class of f: S" A X — Y to the
induced homomorphism
fo: ZH(X) 2 H (S" A X) = H.(Y).



The cohomological d-invariant

» For spectra X and Y, let the (mod p cohomology)
d-invariant be the homomorphism

d: [X, Y]. — Homy(H*(Y), H*(X))
[f] — F*.

» Hom3(M, N) = Homa(M, X"N) denotes the A-module
homomorphisms M — N of cohomological degree —n, for
(graded) A-modules M and N.

» Hence d maps the homotopy class of f: S" A X — Y to the
induced homomorphism
¥ H*(Y) = H*(S" A X) 2 Z"H*(X).



Maps from spheres

When X = S, the homology d-invariant specializes to a
homomorphism

d: m.(Y) — Homy (Fp, H.(Y)),
while the cohomology d-invariant specializes to

d: m.(Y) — Hom(H*(Y),Fp).



Dualization

Lemma

The cohomology d-invariant is obtained by dualization from the
homology d-invariant, in the sense that it equals the
composition

X, YI. -2 Homyy (H.(X), Hu(Y)) -2 Homi(H*(Y), H*(X)).

The dualization homomorphism D is an isomorphism whenever
H.(Y) is bounded below and of finite type over Fp.



H-injective spectra

The d-invariant is particularly sensitive for maps to spectra of
the form

W=HAT,

where T is an arbitrary spectrum.

These are the H-injective spectra of [Mil81], and can be
expressed as sums or products of suspensions of
Eilenberg—MacLane specira.

Lemma
Let W, = H.(T). There are isomorphisms

HAT < \/Z"H(W,) = ] = "H(Wh)
n

n

in the stable category, each inducing the identity map of W, on
mp forn € 7.



Proof

» Choose a basis for W, = Hp(T) as an [F,-vector space,
and represent its elements by morphisms f,: S" - HA T.

» Use the product n: HA H — H to extend these to
morphisms

fo=(WAD(AAG): ST HEHAS 5 HAT,
and form their sum

gn: X"H(W, \/Z”H—)H/\T



Proof (cont.)

» The sum
g: \VE"HW,) — HAT
n

over n € Z then induces the isomorphism

g« W, = H.(T) in homotopy, hence is a stable
equivalence.

» The canonical map

\/ ZH(W,) — T ="H(W,)

induces the identity of W, on graded homotopy groups,
hence is also a stable equivalence. O]



A d-isomorphism

Proposition
In the case W = H A\ T, the homological d-invariant

d: [X, W], = Homl (H.(X), H.(W))

is an isomorphism.

If, furthermore, W is bounded below with mod p homology of
finite type, then the cohomological d-invariant

d: [X, W], = Hom(H* (W), H*(X))

is an isomorphism.



Proof

» By the Kiinneth theorem, the homology smash product
A Ho(H)® Ho(T) = H(HAT)

is an isomorphism.

» Here H,.(H) = A., and the source has the diagonal
A,.-coaction.

» By the untwisting isomorphism
A, @ H(T) =2 A, @ UH(T)

this is isomorphic to the extended A.-comodule on the
underlying graded [Fp-vector space of H,(T).



Proof (cont.)

» By adjunction, there is an isomorphism
Hom} (H.(X), A ® UH.(T)) = Hom*(UH.(X), UH.(T)).

» Omitting the forgetful functor U from the notation, the
composite homomorphism

(X, HAT]. ~L5 Homy (H.(X), Ho(HAT)) 2 Hom* (H.(X), H.(T))

defines a morphism of cohomology theories for (spaces or)
spectra X, since H,(T) is automatically injective as a
graded Fp-vector space.

» Moreover, this morphism is an isomorphism for X = S.

Hence it, and d, is an isomorphism for every
spectrum X. O
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Towers in Sp®
By a tower Y, of (orthogonal) spectra we mean a diagram of
the form
i — Yt = Ys— ... — Y15 Y,
in Sp°. We write
Yor=0C(a": Ysrr = Ys) = YsUCVYsir

for the mapping cone of o": Y5, — Y5, so that we have a
homotopy cofiber sequence

r
YS_I’_r i} YS — Ysyr — ZYSJ’_r

foreach s > 0and r > 0.



Chains of homotopy cofiber sequences

In particular, when r = 1 we have a Puppe sequence

Yort -5 Yo 25 Yoy 5 TV iq,

for each s > 0. We often display the tower, and the homotopy
cofiber sequences for r = 1, as follows.

~~-*>Ys+1 2 Ys YZK = Y1K = Yo
S
NN J{B NN lﬂ NN lﬁ
N N N
Ys.1 Y11 Yo,1

Here the dashed arrows refer to maps to the suspension of the
indicated target, i.e., of degree —1.



Maps of towers
By a (strict) map of towers ¢,: Y, — Z, we mean a sequence
of maps ¢s: Ys — Zs such that each square

Yei1 — = Ys

¢s+1J{ J‘ﬁs

s 1 — Zs

commutes in SpP.
There are then well-defined maps ¢s,: Ys, — Zs, foralls >0
and r > 0, making the diagrams

r

Ysir = Ys Ys,r Y Ysir

¢s+rl ¢SJ, ¢s,rJ( Z¢s+rl

Zsir z Zs Zs,r YZsyr

commute.



Resolutions in Ho(Sp®)

These chains have the following images in the stable category.

By a resolution ( Yy, Y, 1) in the stable category, we mean a
diagram of the form

e/ Ys+1 = Ys ce Y2 @ Y1 = YO
X K S
AN AN
| NN
N N N
Ys 1 Yiq Yo.1

in Ho(Sp?), where each triangle

Ys+1 - Ys i> Ys,1 l> ZYS—H

is distinguished.



Maps of resolutions
By a (weak) map of resolutions ¢,.: (Ys, Yi1) = (Zi, Zi 1) We
mean sequences of morphisms

Ps,1: Ys,1 — Zs,1

in Ho(Sp?), such that the diagrams

B
Yor1 —2= Vs Yo —— X Ve

¢S+1J ¢Sl (bSJJ, Z%HJ,
B

Zoy1 —2 Zs Zoy —— T Zs 1

commute in the stable category.



Maps of resolutions (cont.)

Here is a different view of a map of resolutions.

...HYS+1%YSH...—>YQ = Y1 = Yo
LS S X
AN /,6 AN /,8 AN /ﬁ
Pst1 Y371 o ¢2 Y; A o1 Y0’1 %o
?s,1 1,1 ®0,1
...*)ZS_H L)ZS‘L..‘}ZQ @ Z1 e ZO

K'y\ ~ ;//3 KV\ N ;/,8 KW\ N x/ﬁ

Zs 1 Zi 4 2y 1



The homotopy exact couple

The homotopy exact couple (A, E) associated to a spectrum X
and a resolution (Y, Y, 1) is the diagram

coo =X, Yool = [X, Ysrils —— [X, Ye]s —— [X, Ys_1]s — ...

N N

[X, Ysr1.1]s [X, Ys 1]« [X, Ys_1.1]« ,
where
S X Yerln =2 [X, Yaln -5 X, Yerln =5 [X, Yestlnot — -

is a long exact sequence for each s > 0. The bigraded abelian
groups A and E are given by

AS,t = [)(7 Ys]t_s = [St_s /\ X, Ys]
ESt = [X, YS,1]I—S = [St_s A X, YS,1] .



The homotopy spectral sequence

The homotopy spectral sequence
(Em dr)r21

associated to X and (Y., Y., 1) is the spectral sequence
associated to the homotopy exact couple, with

E1S7t = [X, Ys,1]tfs = [St_s AKX, ys,1]

and
dpt = py: EPt— EFT

forall s > 0 and t € Z. The d,-differentials
dS,t_ ES,t SN ES+f,t+f—1
r - r r

then have (s, t)-bidegree (r,r — 1), foreach r > 1.



Remark on grading

» We treat the total degree t — s as a homological grading,
so that the differentials have total degree —1, which means
that the internal degree t is homological and the filtration
degree s is cohomological.

» Since the filtration degree s interacts most directly with the
term number r for the spectral sequence, we write E; for
the filtration s part of the E,-term.

» It is then traditional to write ES' for the internal degree t

part of this graded group, even if (ES); might have been
more consistent.



The target for convergence

Definition
The abutment of the homotopy exact couple of X and Y, is the
graded abelian group [X, Yp]. with the descending, exhaustive

filtration
—oC FSYX, Yole € FSIX, Yoli C -+ € FOIX, Yol. = [X, Yo«

given by
FSIX, Yol. = im([X, Ysls <5 [X, Yol:)

for s > 0.



Degreewise discrete convergence

» There are injective homomorphisms

FIX,Yoln ¢

S,5+n
Fs+1 [X, Yo]n Es

foralls>0and nc Z.

» If for each nthe groups [X, Y|, vanish for all sufficiently
large s, then the filtration (F°[X, Yg].)s is degreewise
discrete, and the homotopy spectral sequence

EST—¢ [X, Yoli_s

converges (strongly), so that each ¢ is an isomorphism.



The case of homotopy groups

When X = S, the homotopy exact couple of (Y., Y, 1) is the
diagram

coo —— Tu(Ysur2) L>7T*(Ys—i-1) L”T*(Ys) L>7T*(YS—1) — ..

RN N

Te(Yst1.1) T(Ys1) Te(Ys-11)
where
e — 7rn(Y3+1) i) ﬂ'n(Ys) i WH(YS,‘I) l> 7Tn_1(YS+1) — ...

is a long exact sequence for each s > 0.



The case of homotopy groups (cont.)

The bigraded abelian groups A and E = E; are given by

AS,t == Wtfs(Ys)
ES' = E7' = ms(Vs1)

and d®' = gv: EP' - EST! equals the composite

mrs(Ye1) —= mros 1(Yor1) =2 mos1(Yep11)-



The case of homotopy groups (cont.)

Definition
The abutment of the homotopy exact couple of Y, is the graded
abelian group 7. (Yp) with the descending, exhaustive filtration

given by
Fom(Yo) = im(m(Ys) = m.(Y))

for s > 0.



The case of homotopy groups (cont.)

» There are injective homomorphisms

Fsﬂn(YO) C

Eg(,)s—i—n
Fs+1 7Tn( YO)

foralls>0and nc Z.

» If the connectivity of the spectra Ys increases to infinity
with s, then the filtration (F*7.(Yp))s is degreewise
discrete and the homotopy spectral sequence

Ers’t =5 mt—s( Y0)

converges (strongly), so that each ¢ is an isomorphism.



Adams grading

o o . o
S+r . EStrttr=1 3 o
o o . o
s . . ES! .
o o . o

s/t—s t—s—1 t—s

We use (t — s, s)-coordinates for homotopy spectral
sequences, placing each group E,S’t at the position with
horizontal coordinate t — s and vertical coordinate s.



Adams differentials

o . . o
S+r o EStrttr=1 3 o
[ ] [ ] o ® [ ]
s . . ES! .
o . . o

s/t—s t—s—1 t—s

The d,-differentials then have (t — s, s)-bigrading (-1, r),
mapping one column to the left and r rows up.



Vertical filtrations

S+r EgoJrl’,tJrr
s ES!
0 EO,n
s/t—s t—s—1 t-s

The associated graded groups of the filtration (F°[X, Yp]n)s lie
in the column with t — s = n.



Tower of extensions
There is then a tower of short exact sequences

FSHX, Yoln FUIX, Yobn o povtstin

Fst2[X, Yoln o

Fo[X, Yoln

F3[X, Yoln FSTIX. Yol &~ ESSHN
Fs=1[X, Y, e

mapping down and across, ending with an edge
homomorphism induced by 3: Yo — Yo 1.

X. Y,
[Xv YO]H I‘£1 [X 0)]/:)] = Egom — E%n = [X7 Y0,1]n



Cartan—Eilenberg systems

» We can associate an extended Cartan—Eilenberg system
(., m, 0) to a spectrum X and a tower of spectra Y.

» Weset Yo =xand Ys = Y, for —oo < s <0, and consider
the graded groups

W*(S,S—{— r) — [X, Ys7r]*

forr > 0.

» The exact couple underlying this Cartan—Eilenberg system
is the same as the homotopy exact couple of (the
resolution in the stable category associated to) the tower of
spectra.
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Adams resolutions

Let Y be an (orthogonal) spectrum. A mod p Adams resolution
of Y is a resolution

~~-*>Ys+1 2 Ys Y2K @ Y1K 2 Yo
S
NN J{B NN lﬂ NN lﬁ
N N N
Ys.1 Y11 Yo,1

in Ho(Sp?), with a stable equivalence Y ~ Y;, such that
1. Ys,1 is H-injective, and
2. ay: Hi(Ysi1) = Hi(Ys) is zero,

for each s > 0.



Remarks

» A spectrum W is H-injective if it has the form H A T for
some spectrum T, which means that it is stably equivalent
to a wedge sum of suspensions of Eilenberg—MaclLane
spectra.

» In view of the long exact sequences
o Ho(Yer1) 25 Ho(Ye) 25 Hu(Yet) 225 Hooq(Yest) — ..
o H N (Yey) 25 HY (Yer) 25 HY (Ye) 5 HY (Y1) — ...

and the universal coefficient theorem, the condition that a..
is zero is equivalent to each of the following: that 5. is
injective, . is surjective, o* is zero, 5* is surjective or v* is
injective.



Adams towers

A mod p Adams tower for Y is a diagram
R Ys+1 i) Ys—>—> Y1 i) Yo

in Sp®, with a stable equivalence Y ~ Yy, such that the
associated resolution (with Y51 = C(a: Ysi1 — Ys))isan
Adams resolution.



The Adams spectral sequence

Definition
The mod p Adams spectral sequence for [X, Y], is the
homotopy spectral sequence

E1s’t = [X, Ys,1]t—s =5 [X, Y]i—s

associated to a mod p Adams resolution (Y;, Y, 1) of Y.
In the case X = S we write

EPNY) = mros(Ys1) =5 m—s(Y)

for this spectral sequence.



Remarks

» As stated, this depends on a choice of Adams resolution.

» We now show that Adams resolutions exist, that they are
quasi-uniquely defined and natural, and that we can give
algebraic descriptions of the E;- and E,-terms of the
associated homotopy spectral sequences.

» In particular, the Eo-term will be seen to be independent of
the choice of Adams resolution.



The mod p Hurewicz map and its cofiber

Definition
Let H = HIFp, with unit map h: S — H and ring spectrum
multiplication u: HA H — H, and let

s H L9 s

be the Puppe sequence generated by h, with
H=Ch=HuU,CS.

Here h induces the stable mod p Hurewicz homomorphism
m(X) — H.(X), hence the notation.



The canonical Adams resolution

The canonical Adams resolution of Y

| /A V. S VA S V

HAY,  HAY, HAY
is defined inductively by setting Yy = Y and, for s > 0, letting
Yo 5 Yo -5 TVe i 28TV,
be equal to
SAYs ™V HAYs 2L A Y, 2L ST A Y.

This implicitly defines a: Y1 — Ysin Ho(Sp?), since ¥ is an
equivalence of categories.



The canonical Adams resolution (cont.)

» Equivalently,

ZS Ys — I:I/\S /\ Y
YYe1 =HAHYAY
for each s > 0, with 3, v and —~« induced by h, i and q,

respectively.

» The canonical Adams resolution of Y equals the canonical
Adams resolution

Y3 2 y2Hn2 @ 1H4>S

&\ K\
TSR]

HA Y 2HN2 HAZ 1H h

iy

of S, smashed with Y.



Existence of Adams resolutions

Lemma

» The canonical Adams resolution (Y., Y, 1) is an Adams
resolution of Y = Y.

» If'Y is bounded below with mod p homology of finite type,
then each Y 1 is also bounded below with mod p
homology of finite type.



Proof
» Each spectrum Y51 = HA Ys is H-injective by construction.
» Furthermore, each homomorphism
Bi: Hi(Ys) — Hi(Ys,1)

is induced by the unit inclusion
HAYs=HASAYs M HAHA Y,
which is split by the ring spectrum multiplication

HAHAYs "L HA Y.

» Hence g, is (split) injective and a,, = 0.
» (This only uses that (1 A h) = 1 in the stable category.)



Proof (cont.)

» Note that H and H are bounded below, with H,(H) = A.

and H.(H) = J(A.) both being of finite type.
» It follows from the proposition on the connectivity of smash
products that if Y is bounded below, then so is each Y ;.

» If Y furthermore has mod p homology of finite type, then
the Klinneth formula

H*(YS,‘I) =A@ J(A*)®s ® H*(Y)

shows that each Y; 1 also has this property. O



Homological variance

The homological image of an Adams resolution begins as
follows.

SOTSUTRUY

H.(Z2Y>1) H.(xXY11) H.(Yo.1)



The Adams (E;, d)-term

Proposition
Let

» X be a spectrum and

> (Y., Y1) be an Adams resolution of Y.
The Adams spectral sequence

E>X' =X, Yerltos =5 [X, Yi—s

satisfies:
1. The d-invariant

d: EST =5 Homly (Ho(X), Hi(Z5Ys 1))

is an isomorphism.



The Adams (E;4, di)-term (cont.)

2. The diagram

E:|S7t L) Hoqu*(H*(X), H*(ZS YS,1 ))
dfﬂ Hom(1,8.7+)
E5 % Homy (Hs(X), Ho(Z5"1 Y5 11.1))
commutes.
3. The A.-comodule complex
e Ho(E5 Yenq) B0 HA(ZS V) &2
A H(EV0) £ Ho(Yor) €5 Hl(Y) 0

is exact, and each H.(X°Ys 1) is an extended A,-comodule.
Hence this is an injective A.-comodule resolution of H.(Y).



Proof

Claim (1) follows from the proposition on the d-isomorphism,
using the identification

Homj; *(H.(X), H(Ys,1)) 2 Homj (H(X), Hi(Z°Ys4)),

since each X°Y 1 is H-injective, i.e., has the form HA T.



Proof (cont.)

Claim (2) follows from the commutative diagram below, since
d1S7t = BaYs-

Q

EPl 2 Homfy (Hi(X), Hi(Z%Ys1))

V*J( lHomU Y )

[X ZS+1 Ys+1]t 4) HomA (H ,H* ZS+ YS—H ))

B*J lHomU ,Bx)

ESTM 9 Homly (H.(X), Ho(Z5T Ysy1.1))

IR

1



Proof (cont.)

Claim (3) follows by splicing together the sequences

0« Ho(Z5 Veyq) &5 Hu(Z5Yeq) £ H(Z5Ys) « 0

for all s > 0. These are all short exact, because «, = 0. Since
each X°Y;s 1 has the form H A T for some spectrum T, the
Kinneth formula and untwisting isomorphism show that

H, (Z5Ys1) 2 Ho(H) @ Ho(T) = A, ® H(T)

is an extended A,-comodule, for each s > 0. O]



The Adams E>-term

Theorem
The Adams spectral sequence for [X, Y]. has Ex-term

Ey' = Ext! (Hd(X), Hu(Y)),

which only depends on the A.-comodules H,.(X) and H.(Y).
In the special case X = S, we write

ES'(Y) = Eth’I(IFp, H.(Y))

for this E>-term.



Proof

> Let I = H(T°Ys1), 6% = Buvs: f = I577 and
» Then

e B s P H(Y) 0
is an injective A,-comodule resolution of H.(Y).

» Hence the cohomology groups of the cochain complex

- Homly (H.(X), 1571 P20 omt, (H,(X), )

om s—1
MmO Homly (Ha(X), 1571) + ...

are by definition the A,-comodule Ext-groups
Ext'(H.(X), H.(Y)), forall s > 0 and t.



Proof (cont.)

» Since this cochain complex is isomorphic to

s+1t st1 s1t
« E E E

these cohomology groups are precisely the components
E,j” of the Adams spectral sequence E>-term.



Cohomological variance

The cohomological image of an Adams resolution begins as
follows.

H*(£2Y,) HH(Yy) H (Y)

N N e

H (22 Yy.1) H (X Y1 4) H*(Yo.1)



The Adams (E;, d)-term

Proposition

Let X and Y be spectra, and suppose that (Y, Y, 1) is an
Adams resolution of Y with each Y51 bounded below and of
finite type mod p. The Adams spectral sequence

EPN =X, Ys1lt-s =5 [X, Y]t-s

satisfies
1. The d-invariant

d: ES' =5 Homhy(H*(Z8Ys4), H (X))

is an isomorphism.



The Adams (E;, d)-term

2. The diagram

Ex —7 Hom(H*(2°Ys 1), H*(X))

o)

df’tl J{Hom('y*/a’*,ﬂ

EStH % Homb (H* (5t Ysy1.1), H* (X))

commutes.
3. The A-module complex
o HA(ES T Vet 0) B HA (5 Yeq) T L
S HEY ) TS H (Vo) S H(Y) = 0

is exact, and each H*(X°Y; 1) is an extended A-module.
Hence this is a projective A-module resolution of H*(Y).



The Adams E>-term

Theorem
Let X and Y be spectra, with Y bounded below and of finite

type mod p. The Adams spectral sequence for [ X, Y]. has
E,-term

Ex' = Exty (H*(Y), H* (X)),

which only depends on the A-modules H*(X) and H*(Y).
In the special case X = S, we write

E5'(Y) = Ext}'(H*(Y),Fp)

for this E>-term.



Proof

Let P = H*(X°Ys1), 0s = v*B*: Ps — P;_; and
e=p*: P5 — H*(Y).
Then

s P B Py % pe O pe s e(y) 50

is a projective A-module resolution of H*(Y).
Hence the cohomology groups of the cochain complex

- Homly (P, KA (X)) "o Dy

Hom(0s,1)
H

Homj(Ps, H*(X))
Hom{,(P%_y, H*(X)) «

are by definition the A-module Ext-groups
Exty'(H*(Y), H*(X)), forall s > 0 and t.



Proof (cont.)

» Since this cochain complex is isomorphic to

s+1t st1 s1t
« E E E

these cohomology groups are precisely the components
E,j” of the Adams spectral sequence E>-term.



Filtration zero and the degree invariant

Lemma
The Adams spectral sequence edge homomorphism

[X, Y]n — E%" € EJ" = Hom}_(H.(X), H.(Y))

is equal to the mod p homological d-invariant.

If Y is bounded below and of finite type mod p, then the edge
homomorphism

[X, Y]n — E%" € E2™ = HomB(H*(Y), H*(X))

is equal to the mod p cohomological d-invariant.



Proof

» The Eq-edge homomorphism [X, Y], — [X, Yp 1]« = E1°’* is
induced by 3: Y — Y, and factors through the inclusion
E)* ¢ EY* of the kernel of 8,7

» The lower row in the commutative diagram

/8* * /8*
X, ZYi 4l ——[X, Youlo ———— X, Y],

Ty

Hompy, (H.(X), I) & Hompy, (H.(X), I) & Hompa, (H«(X), H.(Y))«—0

is exact.

» Therefore the E>-edge homomorphism corresponds under
the middle isomorphism d to the right hand
homomorphism d. O



The Hopf-Steenrod invariant

For f € [X, Y], satisfying d(f) = 0, then the mod p
Hopf-Steenrod invariant

e(f) € Exth (H(Z™"X), H.(Y)) = Exty ' T"(H.(X), H.(Y))
is defined to be the class of the A.-comodule extension

0+ H(Z'7X) < H,(Cf) ¢~ H,(Y) « 0.

If Y is bounded below and of finite type mod p, then this equals
the class

e(f) € Exth(H*(Y), H*(Z*7X)) = Ext}y ' ""(H*(Y), H*(X))
of the A-module extension

0 - H (X)L H*(Cf) -5 H*(Y) > 0.



Filtration one and the Hopf—Steenrod invariant

Proposition
The Adams spectral sequence near-edge homomorphism

FUX, Y]n — EL'T" C B3 = Exty " "(Ho(X), Ho(Y))

equals the mod p Hopf—Steenrod invariant, mapping f with
d(f) =0 to e(f).



Proof

A morphism f € [X, Y], = [£"X, Y] satisfies d(f) = 0 precisely
if 5f = 0, in which case there exist morphisms f;: XX — Y;
and Cf — Y 1 making the following diagram commute.

snx oy o9 ytny
I I ]
Yi —— Yo ’ Yo1 —— LY,

BN

Y4



Proof (cont.)

Passing to homology, we get a commutative diagram

00— H(Y) o H(CF) & H(Z17X) —— 0

-| [

0— s H(Y)— 1 5p 2 2 p

*

of A,-comodules. Here the (well-defined) cohomology class
e(f) € Ext)_ (H.(Z7"X), H.(Y))

of
(1)« € Homa, (H(Z'7X), 1)

corresponds both to the A.-comodule extension given by
H.(Cf), and to the class in EX'*" ¢ E}"'*" detecting f in the
Adams spectral sequence.
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Comparison of resolutions

Proposition

» Let(Y,, Y. 1) and (Z.,Z. 1) be resolutions such that
1. au: Ho(Ysi1) = Ho(Ys) is zero and
2. Zs 1 is H-injective

for each s > 0.
» Let¢g: Yo — Zy be any morphism in Ho(Sp®).

» Then there exists a map of resolutions ¢, that extends ¢.
» Moreover, if 1, is a second map of resolutions
extending ¢qg = 19, then a¢ps = arps for each s > 1 and
¢sa = g for each s > 0.



Proof

Suppose, by induction, that ¢o, ¢g 1, . .., ¢s—1,1 and ¢s have
been compatibly constructed. Consider the diagram below, with
horizontal distinguished triangles.

Ys+ 1

N

Y, Yor — T Vo1 —5HTYe
| |
¢SJ ?s,1 | > Psiq |l Z¢SJ
<+ <
AL RS AN

We claim that S¢sa: Ysi 1 — Zs 1 is zero in the stable category.



Proof (cont.)

The isomorphism
d: [Yor1, Zog] — Homa, (Hu(Yss1), Hi(Zs))

maps S¢sa to zero because a,. = 0. By exactness of the
sequence

[ZYer1, Zoa] - [Yors Zoal 2o [Yer Zoa] 5 [Vest, Zor]

there exists an extension ¢ 1: Ys1 — Zs 1 Of 3¢5 over 3, and
by the fill-in axiom for triangulated categories there exists a
morphism X¢gy1: XYs11 — £Zs1 making all three squares
commute, in Ho(Sp®).

The proof of quasi-uniqueness is similar.



Well-defined Adams E,-spectral sequence

Theorem

» Let X and Y be spectra.

» When viewed as an E,-spectral sequence, the Adams
spectral sequence

Es' = Exty (Ho(X), Hi(Y)) =5 [X, Yi=s

does not depend on the choice of Adams resolution for Y.



Proof

By the previous proposition, for any morphism ¢q: Yy — £ and
any two Adams resolutions (Y4, Y, 1) and (Z,,Z, 1) there is a
map ¢ : Yi — Z. of resolutions that extends ¢q, and this
induces a map

o H(EY ) Ho (Vo) L H(Yo) «—0
1,14 ®0,1+ ®o«
O H(EZ14) ¢ Ho(Zo1) ¢ H(Zy) <O

of injective A.-comodule resolutions. When ¢ is the composite
of two stable equivalences Yy ~ Y ~ Z; then this chain map is
a chain homotopy equivalence, well-defined up to chain
homotopy, which induces a canonical isomorphism of Adams
E>-terms. ]



Cohomological variant

Theorem

» Let X and Y be spectra, with Y bounded below and of
finite type mod p.

» When viewed as an E-spectral sequence, the Adams
spectral sequence

ES' = Exty (H*(Y), H* (X)) =5 [X, Y]i—s

does not depend on the choice of Adams resolution for Y.



Proof

For any morphism ¢q: Yy — Zy and any two Adams resolutions
(Y4, Ye1) @and (Z,, Z, 1) thereis amap ¢,: Y, — Z, of
resolutions that extends ¢, and this induces a map

B HAE Y ) 2 HE (Yo 1) — HA(Ye) —— 0

¢T,1T ¢T,1T ¢>*T
02

I HA (20 4) 2 HY (Zo1) — HY(Zy) —— 0

of projective A-module resolutions. When ¢ is the composite
of two stable equivalences Yy ~ Y ~ Z; then this chain map is
a chain homotopy equivalence, well-defined up to chain
homotopy, which induces a well-defined isomorphism of Adams
E>-terms. O



The homotopy limit of a tower

For any Adams resolution (Y, Y, 1) of Y, let
Yoo = holim Y
be the sequential homotopy limit of the underlying tower
i Yo — Yoo - = Y,

and write a®°: Y, — Yy = Y for the evident map.

This homotopy limit, or microscope, can be defined as the
homotopy equalizer of two maps

1
Hs YS Hs YS?

where 1 denotes the identity map and « is the product of the
maps «: Ysi1 — Ysfors > 0.



The Bousfield H-nilpotent completion

There is a natural short exact lim-Rlim sequence

0— Rlsim Tnet1(Ys) — ﬂn(hoiim Ys) — Ii;n m(Ys) = 0

for each n. Hence Y, ~ x if and only if lims 7,(Ys) = 0 and

The Bousfield H-nilpotent completion Y}; of Y is defined so that
there is a homotopy cofiber sequence

Yoo 25 Y — V) — XY,

and Y, ~ = if and only if Y — Y/} is a stable equivalence.



Invariance of the homotopy limit

Proposition
The stable homotopy type of Y, = holims Ys does not depend
on the choice of Adams resolution (Y, Y, 1).
Proof.

» Let (Y., Y1) and (Z., Z. 1) be Adams resolutions of

Yo~ Y ~ 2.
» We have maps of resolutions ¢.: Y, — Z, and

Vi Ze — Yy, such that ¢s¢psa = a: Y1 — Ysand
psthsa = a: Zg 1 — Zs in the stable category, for all s > 0.

» |t follows that

(m(@s))s: (me(Ys))s — (m(Zs))s
(m(¥s))s (m(Zs))s — (m(Vs))s

are mutually inverse pro-isomorphisms of towers.



Proof (cont.)

» Hence they induce isomorphisms
Gu: Iignw*(YS)

O : Rlsim 7+(Ys)

— lim 7. (Zs)
= Rlim .(Zs)
» The map
0 —— Rlimgmp1(Ys) —— mn(Yoo) —— limg mp(Ys) —— 0
| | |
0 —— Rlimgmp11(Zs) —— mn(Zo) —— limg mp(Zs) —— 0
of lim-Rlim short exact sequences then implies that
bo: T Yoo) — mu(Zoo)

is an isomorphism, so that Y, and Z, are stably
equivalent. O



Conditional convergence, after Boardman

Definition
For any exact couple (A, E), let

A = colsim AS
A® = |lim A®
S
RA> = Rlsi:m AS.
We say that (A, E) converges conditionally to the colimit A== if
A>* = 0 and RA> = 0 are both trivial.

If ES =0 for all s < 0, as is the case for each homotopy exact
couple associated to an (Adams) resolution, then
A=A T | = A



Conditional convergence for the homotopy exact
couple

Lemma

» Let(Y,, Y. 1) be an Adams resolution of Y.

» The homotopy exact couple of X and Y, with
AS* =[X, Ye|« and ES* = [X, Y5 1]., converges
conditionally to [X, Y]. ifand only if [X, Y]« = 0.

» This holds for every X if (and only if) Yoo ~ .

Proof.
This follows from the short exact sequence

O — Rl‘ém[x, Ys]n+1 — [X, hOLIm Ys]n — |I£T1[X, Ys]n — 0

O



The RE..-term, after Boardman

Definition
For any spectral sequence (E;, d;), let
RE. = erim Z
denote the right derived E,.-term, where
- CL1CL C---CZy=Ey.
is the descending chain of r-th order cycles.
If Ef = 0fors <0, then E? 1 C Ef forallr > s, and
Rlim Z° =5 Rlim E?
r r

which partially justifies the notation RE, (rather than RZ,).



Vanishing criteria

» Consider a bidegree (s, t).

» If (E,, d;) stabilizes in that bidegree (so that ES' = E3!! for
all sufficiently large r), then RES! = 0.

» This is always the case of £ is finite for some r.

» Hence if (E;, d) stabilizes in each bidegree, then
RE. = 0.

» More generally, it suffices that (E>"), satisfies the
Mittag—Leffler condition in each bidegree.



Complete Hausdorff filtrations

Definition
A filtration
o CFT'"GC FSGc---C @G

of (graded) abelian groups is Hausdorff if

lim FSG =0
S
and it is complete if
RI;m F°G=0.
Lemma
A filtration (F°G)s is Hausdorff and complete if and only if the
canonical map
G = lim -2
S FsG

is an isomorphism.



Strong convergence

Definition
A spectral sequence (E;, d;) converges strongly to a filtration
(F°G)s of a (graded) abelian group G if there are isomorphisms
FsG =~
¢ Fst1G — B
for each s, and the filtration is exhaustive, Hausdorff and
complete.

If the spectral sequence arises from an exact couple, we
always assume that the isomorphism ( is the preferred
homomorphism introduced earlier.



Reconstruction of the abutment

Strong convergence, together with solutions to all of the finite
extension problems

FiG FaG

OHE‘;SO_)FS“G_}FSGH

0

is precisely sufficient to reconstruct the (graded) abelian
group G by passage to algebraic colimits and limits.

Lemma
If (F°G)s is complete Hausdorff and exhaustive, then there are
isomorphisms

a a

FsG:G:hgncolalm G-

colim lim
a S




A criterion for strong convergence

Theorem ([Boa99])

Let (A, E) be an exact couple with E* = 0 for s < 0, so that
A® = A=>°_ Any two of the following conditions implies the third.

1. The exact couple converges conditionally to the colimit A°.
2. RE, =0.

3. The spectral sequence converges strongly to A%, with the
filtration FSA? = im(aS: AS — AD).

Hence, for a conditionally convergent Adams spectral
sequence, the vanishing of RE., is equivalent to strong
convergence.
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Adams filtration

Definition

» The abutment of the Adams spectral sequence for X and
Y with Adams resolution ( Yy, Y, 1), is [X, Y]., with the
decreasing, exhaustive filtration given by

FOIX, Y], = im(a®: [X, Ys] = [X, YL.).

» We call this the Adams filtration of [X Y]...
» The elements of F°[X, Y]. have Adams filtration > s.

» The elements of FS[X, Y]. \ F$*'[X, Y]. have Adams
filtration exactly s.



Independence of resolution

Lemma
The Adams filtration is independent of the choice of Adams
resolution.

Proof.
For any other choice of Adams resolution (Z,, Z, 1) we have a
map of resolutions ¢..: Y, — Z, making the diagram

Yo,y

L]

Zs—=—Y
commute, so
im(a®: [X, Yel. — [X, YL.) Cim(a®: [X, Zsl — [X, Y].).

Reversing the roles of the two resolutions gives the opposite
inclusion. Hence the two image filtrations agree. O]



Maps that induce zero in mod p (co-)homology

The Adams filtration can be characterized in terms of maps that
induce zero in mod p (co-)homology.

Proposition

A morphism f € [X, Y], has Adams filtration > s if and only if it
can be factored as a composite f; o - - - o fg of § morphisms

Y'X = XS—>XS1—> —>X1—>X0_Y

each of which (for1 < i < s) induces the zero homomorphism
fi . H(Xi) — H.(Xi_1) in mod p homology.



Proof

» If f = aSgwith g: XX — Y, then f admits the
factorization

I'X =Xs 2% Ve 4Ny, Y=Y

where (ag). = 0 and a.. = 0 (in mod p homology) in each
case.

» Conversely, if f = f; o---o fg, ¢ with f;, = 0 for each /, then
we may inductively assume that fio--- o fg: Xg — Y factors
as

fo---ofs=aog

forsome g: Xs — Y.



Proof (cont.)

Xouq — Xq fromofs
S
Yo Ve Ly
Jﬁ
Ys71

Then gfs1: X511 — Y, followed by g induces zero in
homology, and has target the H-injective spectrum Yj 1, hence
is null-homotopic. By exactness of the sequence

[Xost, Yort] 25 [Xort, Yol 25 [Xopr, Yer]

it follows that gfs. 1 = ag’ for some g': X511 — Ysi1, Which
proves that f has Adams filtration > s + 1. O



A tower of Moore spaces

Definition
Let (S! /P")v>1 be the tower of Moore spaces given by the
Puppe sequences

p = r p
s
p = r p
st P,st g2 9,52

p = r p

S p S i S /p aq g2

and let (S/p¥),>1 be its desuspension, with S/p* = S /p.



Completion of spectra

» The p-completion of a spectrum Y is the sequential
homotopy limit

AN H v
Yo = ho‘l/lm YANS/p
of the tower
o YAS/PE S Yy A S/ Y A S)p.

» Letx: Y — Y, denote the completion map, induced by the
compatible maps i: S — S/p".



Higher Bockstein maps

» We use the abbreviation
Y/p"=YNS/p*

for the homotopy cofiber of p¥: Y — Y.
» There is a distinguished triangle

r

Y/p -5 v/ptt Ly e 2 sy

for each v, where 3, is the v-th order Bockstein map.



Completion of abelian groups

» For an abelian group G, let
Gp = lim G/p"

denote its p-completion.
» In particular, let Zp = ZQ denote the ring of p-adic integers.

» We say that G is p-complete if the canonical
homomorphism
k: G— GS

is an isomorphism.

» If Gis finite, then « is the surjection mapping all torsion of
order prime to p to zero, which maps the p-Sylow subgroup
of G isomorphically to Gj.



Completion of spectra of finite type

Lemma
If'Y has finite type, then there are natural isomorphisms

m(YR) ¢ m(Y)) = limm.(Y)/p" S (V)R Zp.

I, furthermore, 7. (Y) is p-complete in each degree, then
k: Y — Yp is a stable equivalence.



Proof

v

Let pvG = ker(p”: G — G).
The tower of universal coefficient short exact sequences

v

0— m(Y)/p" — mn(Y/P") — pvrp_1(Y) — 0

induces an exact sequence

0 — mn(Y)y — limap(Y/p") — lim pvp_1(Y).
p v P

v

The right hand limit is trivial because 7,_1(Y) is finitely
generated.

Hence the left hand arrow is an isomorphism.

v



Proof (cont.)

» In the Milnor short exact sequence

each group m,.1(Y/p") is finite, because 7,(Y) and
mn11(Y) are finitely generated, so the Rlim term vanishes
and the right hand arrow is an isomorphism.

» For any finitely generated abelian group G the canonical
map
GeZy —IlmGe 7/p" = lim G/p¥

is an isomorphism, since this holds for each cyclic group G.

» (The left hand side commutes with sums, the right hand
side commutes with products, and finite sums and finite
products agree.) O



Completion is a mod p equivalence

Proposition
There are stable equivalences
K Y/p = (Y/P)p
k/p:Y/P— (Y5)/p

and an isomorphism

ket Ho(Y) — H(Y))

in mod p homology (and cohomology).



Proof

» There is a homotopy (co-)fiber sequence
F(S[1/p],Y) — Y X Y[;\

where S[1/p] is the homotopy colimit (= telescope) of the
sequence

sPisPis s ...

» Since p: S[1/p] — S[1/p] is a stable equivalence, it
follows that F(S[1/p], Y/p) ~ F(S[1/p], Y)/p ~ *, so that
k:Y/p— (Y/p)yand k/p: Y/p— (Yp)/p are stable
equivalences.

» Applying integral homology to the second of these, and
noting that HZ A S/p ~ H, we deduce that
ket Ho(Y) — Hi(Yp) is an isomorphism. O



The integral Hurewicz map and its cofiber

> Let S
s Hz L HZ 4, s

be the Puppe sequence generated by the unit map
h: S — HZ of the integral Eilenberg—MacLane ring
spectrum.

» Note that his 1-connected (= 2-connective).
» Hence HZ is also 1-connected (= 2-connective).



The canonical HZ-Adams resolution

For each spectrum Y let

L =7

X N N
BN F NN La;\ lﬁ
N N N

Vi Yieo Y
be the canonical HZ-Adams resolution of Y, with Yj = Y and

v, 2 v,

-
b1 Yi = ST AY]

equal to

qn

SAYLPY A YL DS A YL ST A YL



The canonical HZ-Adams resolution (cont.)

» Hence
I, =HZ" A Y
TSV, = HZAHZ A Y
forall s > 0.
> Note that (Y, Y] ,) is generally not a mod p Adams

resolution, since the spectra Y/, are not of the form HA T.



Degreewise discrete convergence for Y/p
Proposition

» Let Y be any spectrum. The canonical HZ-Adams
resolution ((Y/p)..(Y/p), 1) of Y/p is a mod p Adams
resolution.

» If Y /p is (-connective, then (Y /p)s is (s + ¢)-connective for
each s > 0, so the homotopy exact couple

- m((Y/P)) ——m((Y/p); ) ——m(Y/p)

IR N

n (YY) ml(Y/P)y)

is degreewise discrete, the Adams E;-term is concentrated
inthe regiont — s > s+ ¢, and

ES' = Ext§! (Fp, H.(Y/p)) =5 m1—s(¥/p)

is strongly convergent.



Proof
» Each spectrum

TS(Y/p)ss = HZAHZ " A Y /p

has the form H A T with T = HZ ° A Y, in view of the
stable equivalence HZ A S/p ~ H.

» Each homomorphism

Be: HA(Y/P)s) — Ho((Y/P)s4)

is induced by the unit inclusion
HA(Y/PYs= HASA(Y/P)s 5" HAHZ A (Y /p)s.
which is split by the right module action
HAHZA (Y /p)s 25 HA (Y /p)s
of HZ upon H.



Proof (cont.)

» Suppose that Y/p is ¢-connective.
» Since HZ is 2-connective, the smash products

£5(Y/p)s = (HZ)Y'* A Y /p
(/s = HZ A (HZY* A Y /p

are (2s + ¢)-connective.
» Hence

At = s((Y/P)s)
ES' = 7Tt—S((Y/P)/s,1)
are trivial for t — s < s + £, which implies that the terms of

the Adams spectral sequence are concentrated on and
below the line t — s = s+ ¢ in the (t — s, s)-plane.



Theregiont—s>s+/

s/t—s l



Proof (cont.)

» Hence the Adams spectral sequence converges (strongly)
to a degreewise discrete filtration of m.(Y/p).

» In particular, there are canonical isomorphisms

ot a Foms(Y/P)
~ = Foim_o(Y/p)

for all s > 0 and t, where
0=F""my(Y/p) C F" “mn(Y/p) C -+ C Flan(Y/P) C wa(Y/P)

forall n > ¢. O



Vanishing homotopy limit

Corollary
If Y /p is bounded below, then (Y /p)so ~ *

Proof.

» We can calculate (Y/p)« using the canonical HZ-Adams
resolution of Y/p.

» If Y/pis ¢-connective, then 7,((Y/p);) =0forn< s+ ¢,
so limsmp((Y/p)s) = 0 and Rlims m,1((Y/p)s) = 0.

» Together these imply that 7,((Y/p)~) = 0 for all n.



Conditional convergence to [X, Y}].

Theorem
If Y /p is bounded below, then the Adams spectral sequence

E" = Exty (Hu(X), Ho(Y})) =5 [X, Y)]i-s

for X and Yﬁ;\ is conditionally convergent (to the achieved
colimit).

Proof.
The smash product of a fixed Adams resolution of S with the

tower
r

Y. Y/t Lypt -

gives a tower of Adams resolutions, as on the next page.



Tower of Adams resolutions




Proof (cont.)

» The homotopy limit over v of the lower part of the diagram
gives a resolution ((Y5)p, (Ys,1)p), which we claim is also
an Adams resolution.

» Each H-injective Y1 hasthe form HAT ~ (HZ A T)/p,

which implies that x: Ys1 — (Ys1)p is a stable
equivalence. Hence (Ys 1), is H-injective.

» Likewise, the completion homomorphisms x. in the
commutative square

Ho(Yoi1) —— Ho(Y5)

Kx l%’ H*l%

Ho((Ysr1)p) —— Hu((Ys)p)

are isomorphisms, so the vanishing of the upper «.. implies
the vanishing of the lower «... This confirms the claim.



Proof (cont.)

» We shall prove that
H AN
holslm(Ys)p ~ ok

so that the homotopy exact couple for X and Ylg\ is
conditionally convergent.

» First, since (Y./p, Y. 1/p) is an Adams resolution of Y/p,
and Y/p is bounded below, we know that

holim Ys/p ~ (Y/P)oc ~ *.



Proof (cont.)

» Second, we have homotopy cofiber sequences
holim Ys/p —» holim Ys/p**" > holim Ys/p" LN holim > Ys/p

forallv > 1, so
hoLim Ys/p¥ ~ *

in each case, by induction on v.
» This implies that

. /\ _ . . . .
ho|S|m(Ys)p = holim holim Ys/p¥ ~ holim holim Ys/p¥ ~ *,

by the interchange rule for homotopy limits. O



Strong convergence to [X, Y}.

Theorem
Let X and Y be spectra, with Y /p bounded below. The Adams
spectral sequence

Ey' = Exty! (H(X), Hi(Y5)) =>s [X, Y3 li—s

is strongly convergent if and only if RE., = 0. In this case, there
are isomorphisms

FOIX. Yoln o gssin
FS+1 [X? Ylé\]n S
[Xv Y/\]n

A ~ |
(X, Y)]n = I|gn FSIX. Y2l Y2l

for all s > 0 and n.

Proof.
This is a special case of Boardman’s theorem on conditional
and strong convergence. O



Sufficient conditions for strong convergence

» Suppose that Y/p is bounded below.

» The condition RE,, = 0 holds if the spectral sequence
terms ES' stabilize in each bidegree, which in turn holds if
ES!is eventually finite in each bidegree.

» In particular, this holds if Eg” is finite in each bidegree, and
this holds if H.(X) is bounded above and finite in each
degree and H,(Y) is (bounded below and) finite in each
degree.

» For example, it suffices for strong convergence that X is
finite and Y/p is bounded below and of finite type.



Strong convergence to (Y,

The special case X = S is worth emphasizing.

Theorem
Let Y /p be bounded below of finite type. The mod p Adams
spectral sequence

ES' = Exty!(Fp, Hi(Y))
= Exty (H*(Y),Fp) =>s m—s(Y})

is strongly convergent, meaning that there are isomorphisms

Fsﬂ-n( Y,;\) ~ S,5+n A\ ~ |:
W = Eoo and 7Tn( Yp ) & lim =

for all s > 0 and n.
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Ext over the Steenrod algebra

» Suppose that Y/p is bounded below and of finite type.
» To calculate the Adams Es-term

Ez = Exta(H*(Y),Fp)
we consider a free, hence projective, A-module resolution
s P 2Py Y Py S HA(Y) 0

of H*(Y).
» The group Eg” is then given by the cohomology in
degree s of the cochain complex

1 0
e Homf4(P2,IFp) <6— Homf4(P1,IE‘p) L Homi\(Po,Fp) «~—0

with §° = Hom(9s.1, 1) for each s > 0.



Minimal resolutions

The passage to cohomology takes no effort if the resolution is
minimal, in the following sense.

Definition

Let /(A) C A denote the augmentation ideal. A resolution

(P, 0) of an A-module M is minimal if 9s1(Ps11) C I(A)Ps for
each s > 0.

Lemma
If (Py, 0) is minimal, then 6° = 0 for each s > 0, so that

Ext5'(M,Fp) = Hom(Ps, Fp)
foralls > 0 andt.

Proof.

Any A-module homomorphism f: Ps — £'F, maps /(A)Ps to
zero, so 05(f) = £fdsy1: Psy1 — L!Fp will be zero when the
resolution is minimal. O



Existence of minimal resolutions

Lemma
Each bounded below A-module M admits a minimal resolution
(P«,0). If M has finite type, then so does each Ps.

Proof.

» Choose an Fp-linear section to the projection
M — Fp®a M, and let

e Ph=Ax (FpaM) — M

be left adjoint to this section, where Py is the free
A-module induced up from F, @4 M.

» Then 1 ®e: Fp ®a Py — Fp ®4 M is an isomorphism, and e
is surjective, since IF, @4 cok(e) = 0 and cok(e) is bounded
below.



Proof (cont.)

v

Inductively, for s > 0 let Zs = ker(9s), which must be
interpreted as ker(¢) when s = 0.

Choose a section to Zs — Fp ®4 Zs, and let
Jsi1: Psy1 = A® (Fp @4 Zs) — Zs

be left adjoint to the section.
Then1® 53+1 1 Fp ®a Psi1 — Fp ®a Zs is an isomorphism,
and O 1 is surjective.

Let 0s11: Psy1 — Ps be its composite with the inclusion
Zs C Ps.



Proof (cont.)

» The condition that 1 ® Js is an isomorphism is equivalent
to the condition that 95, 1(Psy1) C I(A)Ps, as can be seen
by chasing the following diagram with exact rows.

Ps1
5s+1l &‘
ds
0 ZS Ps ZS—1 O

L]

» If M has finite type, then P is finitely generated and free
over A, hence it and Z; are of finite type.

» Inductively, if Z is of finite type for s > 0, then so are Pg 4
and Zs, 1. O



Robert R. Bruner’s program ext

» For any finitely presented A-module M, at the prime p = 2,
Bruner’s program ext calculates a minimal resolution
(P, 0) of M, in a finite range of bidegrees s < sp.x and
tS tmax-

» In essence, it calculates Zs = ker(0s) and chooses a
minimal generating set for this A-module, which is then a
basis for Pg. 1.

» In cohomological (= filtration) degree s > 0, we write
Ps = A{sp, Sy, -, Sgs -}

for the free A-module Ps, so that sg denotes the g-th
generator in degree s, counting from g = 0.



Bruner’s program ext (cont.)

» In concrete cases we substitute numbers for s and g in this
notation, leading to expressions such as 0, 1} or 575.

» The program records the internal degree t of each
generator sj.

» Furthermore, it records the boundary homomorphism
Os+1: Psy1 — Ps by giving its value on each basis element
in Ps,1 as an A-linear combination

P
g

in Ps, where the 04 € A.



Bruner’s program ext (cont.)

» By minimality,
EXt/Sq’*(M, IFQ) = HOmA(Ps,Fg) = ]Fg{So, S1,..-,8g;--- } ,

where sq: Ps — 2 denotes the dual of s.
» In other words, sy takes the value 1 on Sy and 0 on the
other A-module basis elements of Ps.

» In the concrete cases above, we write 0g, 14 and 543 for
these elements in Exta(M, F»).

» The cohomological degree of sy is s, while its internal

(homological, or homotopical) degree t is equal to the
internal (cohomological) of s.



The Adams E,>-term for S

» We consider Y = S at p = 2 with M = F».
» A quick machine calculation with S,,.x = 12 and f,,.x = 28
suffices to compute

Exty"(F2,Fp) = F2{00} ® Fao{sy | s> 1,9 > 0}

intherange 0 < s<12and 0 <t < 28.

» This includes the rectangular region 0 < s < 12 and
0 <t—-s<16inthe (t — s, s)-plane shown on the next
page.

» Afilled circle labeled “g” in bidegree (t — s, s) represents
the Ext-generator sy, dual to the A-module generator sg in
the minimal resolution, both of which have internal
degree t.



Vector space basis for E5(S) = Ext}'(F2, F2)

12 oe



Bigraded basis

» In this range, most groups Ezs’t have dimension 0 or 1 as
[Fo-vector spaces, but in bidegree (t — s, s) = (15,5),
corresponding to (s, t) = (5,20), there are two generators
54 and 55, which means that

E>?0(S) = Exty®(Fy, Fp) = Fp{54, 55}

is 2-dimensional.

» The program ext makes a deterministic choice of basis for
this Fo-vector space, but other methods of calculation
might lead to a different choice of basis, so care is needed
when comparing different approaches.



Filtration zero and one

» The minimal resolution starts
= A{2g ]g>0} A{1*\I>O} L A{05)} —— Fo — 0
with ¢(03) = 1 and
n(17) = S¢” 0

for each i > 0.
» This way im(9y) = I(A) = ker(e), which is minimally
generated as an A-module by the Sg? for i > 0.



Filtration two

» Less obviously,
%2(25) = S' 1
92(27) = Sq° 15 + Sg* 13
02(25) = Sq* 15+ Qi 17+ Sq' 15,
which correspond to the following Adem relations.
Sq'Sq' =0
Sq°Sq" + Sq?Sq? =0
Sq*Sq' + Q1S + Sq'Sq* = 0

» Here Q; = Sq° + Sg°Sq' = Sq(0, 1) is the Milnor
primitive, dual to & in the Milnor basis for A..



Comodule primitives and module indecomposables
Definition
» For an A.-comodule M,, with coaction v: M, — A, ® M,, let
Pa, (M) ={xe M. |v(x)=1® x}

be the subspace of A.-comodule primitives.
» For an A-module M, let

Qa. (M) =Fp2a M
be the quotient space of A-module indecomposables.
These should not be confused with the (coalgebra) primitives

P(C) of a coaugmented coalgebra and the (algebra)
indecomposables Q(A) of an augmented algebra.



Filtration zero and comodule primitives

Lemma
For any A.-comodule M,, there are natural isomorphisms

Exty" (Fp, M) = Fp Oa. M, 2 Ps (M)
and
Exty™ (M, Fp) 22 Homa(M, Fp) 22 Hom(Qa(M), Fp) .
In particular,

07* ~ 0,* ~
Exty (Fp, Fp) = Exty” (Fp, Fp) = Fp{1}.



Filtration one and coalgebra primitives

Lemma
There are natural isomorphisms

Exty”(Fp, Fp) = Exty"(Fp, Fp) = P(A.) 2 Hom(Q(A), Fp)

where ,
P(A.) =TFoff | i >0}

forp = 2.

Definition
Forp=2let '
h; € Ethq’ZI(Fg, Fz)

denote the class of ¢2, dual to Sq? € Q(A), for each i > 0.



Labels, vanishing

> In the sy-notation of ext, the generator in E2°(S) is
1 = 0, while the generator in E21’2i(8) is h; = 1, for each
i>0.

» These classes are labeled on the next page.

» The calculation shows that Eg’t(S) appears to vanish
above a line of slope 1/2 in the (t — s, s)-plane, except for
t—s=0.

» This is indeed the case, as was proved by Adams, and

confirms that there are no other classes in ES(S) for
0 < t — s < 16 than the ones shown.
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Adams vanishing theorem

Theorem ([Ada66])
For p = 2, the groups Eg’t (S) are trivial for

2s—1 fors=0 mod 4,
254+1 fors=1 mod 4,
25+2 fors=2 mod4,
2543 fors=3 mod 4.

O<t—-s<

Adams’ proof uses the structure of A as a union of finite sub
Hopf algebras A(n), and some initial calculations.



Possible differentials

Recall that the r-th Adams differential
dS,t_ ES,t — ES+I’,t+I‘71
r - r r

has (t — s, s)-bidegree (—1, r). The first possibly nonzero
Adams differentials for S are the following.

1. ds_1(h1) € {0,580} for s > 3;

2. db(25) € {0,41};

3. do(hy) € {0,35}.



Possible differentials in E2/(S) (actual diff’s in red

12 oe
\
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The 0- and 1-stem

» Since this spectral sequence converges to
m.(85) = m.(S)5, and we know that

m(S) =Z/2{n} #0,
it follows that 14 = hy must survive to E,, and
detectn: S' — S.
» Hence each class s € E5*° also survives to Ex.

» We shall see that it detects 2°, so that the groups
EXS(S) = Fo{sg} give the associated graded of the 2-adic
filtration

2517, c 250 C - C 270 C 7o

on



Stems 2 through 6

» It also follows that
m2(S); = Z/2,
with a generator detected by 21, and that 73(S)5 has order
23 =8.

» However, the group structure of m3(S)5 remains to be
determined.

» Moreover,
7r4(8)§ =0 and 7r5(S)§ =0,

since the E,- and E.-terms contain only trivial groups in
these total degrees.

» Furthermore, 75(S)5 = Z/2, with a generator detected by
23.



Stems 7 and 8

» If d>(25) = 0, which turns out to be the case, then 77(S))

has order 2* = 16 and 7g(S)5 has order 22 = 4.

» If, on the other hand, d>(25) = 41 were nonzero, then
77(S), would have order 23 = 8 and 7g(S), = Z/2.

» To decide between these two cases we must calculate this
Adams d,-differential.



Stems 9 through 14

» Continuing, m9(S)5 has order 2% = 8, m10(S)5 = Z/2,
7'&'11(8)@ has order 23 = 8, 7T12(S)é\ =0 and 7T13(S)é\ =0.

» We can also see that m14(S)5 has order dividing 2° = 32,
but here there is room for many differentials from
topological degree 15.

» To proceed, we will use that the ring spectrum structure
on S makes the associated Adams spectral sequence an
algebra spectral sequence.

» This severely limits the possible differential patterns that
can be present in the spectral sequence.
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Monoidal structure

For spectra X', X”, Y’ and Y”, with smash products
X=X AX"and Y = Y’ A Y there are Adams spectral
sequences

'Ep = Exta (Ho(X'), Ho(Y')) = [X', Y'].

"By = Exta (Ho(X"), H(Y")) = [X", Y"].
E> = Exta, (Hi(X), H(Y)) = [X, Y]..



Smash product of morphisms

» The smash product of morphisms induces a pairing
A XL Y @ X7 Y I — [X, Y]nem

that takes f: X"X’ — Y and g: X"X" — Y” to the
composite

MY — SIASTAX AX" ATAT SPAX ASTAX" I YAy — y

» It preserves the Adams filtrations, in the sense that
FSIX', Y« @ FU[X", Y], is mapped into F5TY[X, Y]..

» lff=fo---ofsand g=gjo---0ogy, with H.(f) =0 and
H.(gj) = 0, then f A g is the composite of s+ u maps of the
form f; A1 and 1 A g, each of which induces zero in mod p
homology.



Internal product in A.-comodule Ext

» For Hopf algebras, the tensor product of two (co-)modules
is again a (co-)module, using the diagonal (co-)action.
» Since A, is a Hopf algebra, there is an internal product

A: Exta, (M, N )@Exta,(M",N") —s Exta, (M'@M" ,N'@N").

» It is given by choosing injective A.-comodule resolutions
("I3,0)s and ("1¥,6), of N" and N”, respectively, and
forming their tensor product (17, §), with

=@ et
S+u=co

and ) =6 ® 1+ 1® 4, which is an injective A,-comodule
resolution of N’ @ N”.



Internal product (cont.)

» Given s- and u-cocycles
f- M —"F and g M —"

the internal product of the cohomology classes [f] and [g]
is the class of the composite (s + u)-cocycle

M oM 28 g o o,

» If we have given A.-comodule homomorphisms
M— M @ M’ and N'® N” — N then we can further
internalize the product to obtain a pairing

A: Exta, (M, N') @ Exta, (M",N") — Exta, (M, N).

» If M is an A.-comodule coalgebra and N is an
A.-comodule algebra, this makes Exta, (M, N) an
IFp-algebra.



Internal product in A-module Ext

» Dually, since A is a Hopf algebra there is an internal
product

A: Exta(M, N')®Exta(M",N") —s Exta(M' @ M",N' & N")

» |t is given by choosing projective A-module resolutions
('P%,0)s and (" Py, 0)y of M and M”, respectively, and
forming their tensor product (P, 9), with

Pi= @ 'Pio"P
S+u=co

and 9 =90® 1+ 1® 9, which is a projective A-module
resolution of M’ @ M".



Internal product (cont.)

» Given s- and u-cocycles
f:'Ps— N —and g:"P,— N'

the internal product of the cohomology classes [f] and [g]
is the class of the composite (s + u)-cocycle

P:—'Pra Py 8 N o N

» If we have given A-module homomorphisms M — M’ @ M”
and N’ ® N” — N then we can further internalize the
product to obtain a pairing

A Exta(M',N') @ Exta(M", N") —s Exta(M, N).

» If M is an A-module coalgebra and N is an A-module
algebra, this makes Exta(M, N) an Fp-algebra. See
[ML63].



Pairing of Adams spectral sequences

Theorem
(a) For spectra X', X", Y and Y", with X = X’ A X" and
Y = Y' A Y”, there is a natural pairing

/\r: (,Er,//Er) — Er

of Adams spectral sequences, with abutment the
filtration-preserving pairing

A X YL @ [X, Y — (X, Y.

mappingf@ gtofAg.



Theorem (cont.)
(b) The pairing of E,-terms

Aot Exta,(H(X'), Hi(Y")) @ Exta, (Hu(X"), H.(Y"))
— Exta, (HL(X), Hi(Y))

is the internal product.
(c) If Y'/p and Y" /p are bounded below of finite type, then the
Es-pairing
No: Exta(H*(Y'), H*(X")) @ Exta(H*(Y"), H(X"))
— Exta(H*(Y), H*(X))

is the internal product (followed by the pairing
p: H*(X') @ H*(X") — H*(X)).



The case of homotopy groups
» There is a natural pairing
Ar: (E(Y'), EX(Y")) — E(Y' A Y")

of Adams spectral sequences, with abutment the
filtration-preserving pairing

(Y @m(Y) — m(Y AY).
» The pairing of Ex-terms is the internal product
A: Exta, (Fp, H (Y"))®Exta, (Fp, H(Y")) — Exta, (Fp, Hi(Y)).

» If Y'/pand Y”/p are bounded below of finite type, then
this equals the internal product

At Exta(H*(Y'), Fp)®Exta(H*(Y"), Fp) — Exta(H*(Y),Fp).



Homotopy of ring spectra

» If E is a ring spectrum (up to homotopy) with multiplication
w: ENE — E, then there is a pairing

pr: (Er(E), E-(E)) — E/(E)

of Adams spectral sequences making E;(E) an algebra
spectral sequence, with abutment the filtration-preserving
graded ring product given by the composition

7(E) @ mo(E) — 7 (E A E) X5 7 (E).
» The pairing of Ex-terms is the internal product
ps/\: Exta, (Fp, Ho(E))®Exta, (Fp, Hi(E)) — Exta, (Fp, H(E)).

» If E/p is bounded below of finite type, then this equals the
internal product

j/\: Exta(H*(E), Fp)®Exta(H*(E), Fp) —» Exta(H*(E), Fp).



Homotopy of module spectra

» If M is an E-module ring spectrum (up to homotopy) with
action A\: E A M — M, then there is a pairing

At (EH(E), E-(M)) —s E(M)

of Adams spectral sequences making E,(M) an
E;(E)-module spectral sequence, with abutment the
filtration-preserving module action given by the
composition

T(E) @ mo(M) == 7. (E A M) 25 1. (M).
» The pairing of Ex-terms is the internal product
MA: Exta, (Fp, Hi(E))®Exta, (Fp, Hi(M)) — Exta, (Fp, Hi(M)) .

» If E/p and M/p are bounded below of finite type, then this
equals the internal product

AA: Exta(H(E), Fp)@Exta(H* (M), Fp) — Exta(H*(M),Fp).



Module structure over E,(S)

In particular, E,(S) is a (graded commutative) algebra spectral
sequence, and each Adams spectral sequence E,(Y) is a
(right) E,(S)-module spectral sequence.

1t E(S) ® EA(S) — EA(S)
pri E(Y) ® E(S) — EA(Y)
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Composition product of morphisms

» For spectra X, Y and Z the composition of morphisms
defines a pairing

o: [sz]n® [X7 Y]m — [X7Z]n+m
thattakes g: X"Y — Z and f: ¥™X — Y to the composite
goXf. xmmx —yngmy Elosny 9, 7

» It preserves Adams filtrations, in the sense that
FS[Y, Z]. ® FUY[X, Y]. is mapped into FSTY[X, Z]...

» The combined composite of s and u maps, each of which
induces zero in mod p homology, is obviously a composite
of s+ u such maps.



Yoneda product

» For any algebra A and (left) A-modules L, M and N there is
a natural Yoneda composition product

o: Extya(M, N) @ Ext4(L, M) — Ext3 (L, N).
» To define it, let
s Py Ep P R M0
and
SN WLN o RN o ML o ML SN

be projective A-module resolutions.



Yoneda product (cont.)

» Given cocycles
9g:Ps— N and f:Q,— M

choose a chain map f.: Q.+, — P, of degree —u lifting f.

e Qe Q— .. Q—— L
f{ f{ \
P, . Py M
o
N

» The composite g o fs is a cocycle, and its cohomology class
[9] o [f] = [g o fs] € Extz (L, N)

defines the composition product.



Yoneda’s Proposition

In the case of modules over a Hopf algebra B, the interior and
composition products are related as follows.

Proposition ([Yon58])

For
X' € Exty(M',N') y' € Ext4 (L', M)
X" e Extg (M" N")  y" c Ext4 (L", M")
the identity

(X oY) A (K oy") = (1) (X AX") o (¥ A y")

holds in Ext§HV+S" " (L' o L7 N' @ N”).



Corollary

» Let B a Hopf algebra over k.
» For x € Extg(k, N) and y € Extg(L, k) the identity

XAy=XA1)o(1Ay)=Xxoy

holds in Ext3"™(k ® L, N ® k) = Ext3 (L, N).
» The identity

(—1)yAx=(1AX)o(yA1)=xoy

holds in Extt(L @ k, k ® N) = Extg"5(L, N).
» In particular, the interior and composition products

Extg(k, k) ® Extg(k, k) — Ext3" (k. k)

agree, and make Extg(k, k) a graded commutative
k-algebra.



Composition products

» For spectra X, Y and Z consider the Adams spectral
sequences

"Ex = Exta(H«(Y), Hi(2)) = [Y, 2]«
"Eo = Exta(H«(X), Hi(Y)) = [X, Y]«
Eo = Exta(Hi(X), Hi(2)) = [X, 2]
» The interaction between the composition product in Ext

and the composition in the stable category was determined
by Michael Moss.



Theorem ([Mos68])
» There is a natural pairing of Adams spectral sequences
or: (E;,"E;) — E,
with abutment the filtration-preserving pairing
o: [Y,Z], @ [X, Y]« — [X, Z]«

mapping g ® f to g o X19If.
» If Y/p and Z/p are bounded below of finite type, then the
E>-pairing
og: Exta(H*(Z), H*(Y))®Exta(H*(Y), H* (X)) — Exta(H*(2), H* (X))

is the twisted composition product, mapping y ® x to
(—=1)XWix oy, where |x| = v —uand|y|=t—s for
xc"E}Y andy ¢ 'E5".



The sphere case
Corollary
» There is a natural pairing of Adams spectral sequences
or: (E(S), EA(S)) — E(S)
with abutment the filtration-preserving pairing
0: T(S) @ m(S) — m(S)

mapping g ® fto go X19If = gAf.
» The E,-pairing

is the twisted composition product, mapping y ® x to

(-1)XWixoy =y Ax, where|x| =v—uand|y| =t—s for
x € "E}Y(S) andy € 'E5(S).
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Products in the Adams spectral sequence for S

» Inthe case X = Y = S, the mod p Adams spectral
sequence for the sphere spectrum is a graded
commutative algebra spectral sequence

Eo(S)S! = Exty(Fp, Fp) = m—s(S))
with differentials
drs,f: E;‘?,t(s) N ErS+I’,f+f—1(S) ]

» The multiplication on the E,-term is given by the internal
product

A Exty (Fp, Fp) @ Exty” (Fp, Fp) — Exty 1Y (Fp, Fp),
and converges to the smash product pairing
A Fn(S);)\ ® Wm(S);; — 7Tn+m(S);)\

giving the graded commutative ring structure on 7..(S)j.



Computation of products

» Yoneda’s proposition shows that the internal product
pairing is equal to the composition product in Ext, and that
the smash product pairing is equal to the composition
product in m.(S)j.

» For p = 2, Bruner’s program ext can calculate the Yoneda
(composition) products in Ext, by lifting cocycles to chain
maps and evaluating their composites.



h;-multiplications

» The computation of products
his ExtSH (M, Fp) — ExtS 2 (M, )

with the Hopf—Steenrod classes h; is particularly simple,
and can be read off from the boundary homomorphism

as+1:Ps+1—>Ps

in a minimal resolution for M.

» In the case M = F», the multiplications by h; for0 </ <3
in Exta(IF2, F2) are shown in the figure on the next page.



E>(S) with h-multiplications

0

0




Legend

» Each nonzero multiplication by hy € EQ”(S) is shown by a
line connecting x in bidegree (f — s, s) to hyx in
bidegree (t — s, s+ 1), i.e., by a vertical line of unit length.

» Each nonzero multiplication by hy € E;’Z(S) is shown by a
line connecting x in bidegree (t — s, s) to hyx in
bidegree (t — s+ 1,5+ 1), i.e., by a line of slope +1.

» Each nonzero multiplication by h, € E,*(S) is shown by a
dashed line connecting x in bidegree (t — s, s) to hox in
bidegree (t — s+ 3,s+ 1), i.e., by a dashed line of slope
+1/8.

» Each nonzero multiplication by hs € E5®(S) is shown by a
dotted line connecting x in bidegree (t — s, s) to hsx in
bidegree (t —s+7,s+ 1), i.e., by a dotted line of slope
+1/7.



Algebra generators for Ex(S)

Lemma
In the range t — s < 16, the F>-algebra E,*(S) is generated by
the following classes.

x |h h h ks o Ph PR d hy Po
t-s|0 1 3 7 8 9 11 14 15 16
s |1 1 1 1 3 5 5 4 1 7

The relation c& = hidy holds.



Proof

» The hi-multiplications can be read off from the minimal
resolution (P, d) of Fy calculated by ext.

» The classes h; in filtration s = 1 must be algebra
indecomposable for filtration degree reasons.

» The only other basis elements that are not h;-multiplies are
the classes denoted ¢y, dy, Phy, Pho and Pcp, and these
must then be algebra decomposable for topological degree
reasons, since these all lie in degrees t — s > 8.

» To calculate cg = Cy - Cg, We instead call on ext to lift the
cocycle f = 33: P3 — X''F, to a chain map
f.: P..3 — X'"P,, and then to evaluate the composite

Ps % x11py L 522,

» This turns out to map 65 to 1, hence equals the cocycle 6s,
which we have already seen represents h12d0. O]



Nomenclature

» The prefix P refers to the periodicity operator from [Ada66].

» The notations ¢y, dy, ... stem from computations in the
range t — s < 70 made by May (unpublished) and
Tangora [Tan70].

» In his work on the Hopf invariant one problem, Adams
showed that there are no algebra indecomposables in
filtration s = 2 of E;"*(S) = Ext;"(F2,F2), and determined
the multiplicative relations satisfied by the generators h; in
filtrations s < 3.



Adams relations

Theorem ([Ada60])
The relations

hihiy1 =0
h}?hi+2 = h?+1
hih?,, =0

hold in Exta(F2,F>), foreach i > 0.
The algebra homomorphism

Folh;i | i > 0]
(hihist, Whia + h2 o, hih2 )

— EXtA(Fg,Fg)

is an isomorphism in filtration degrees s < 2, and is injective in
degree s = 3.



Filtrations 0 < s < 3

» More explicitly,
Exty*(Fa, Fa) = Fo{1}
Exty”*(Fa, F2) = Fa{h; | i > 0}
Exty"(F2,F2) = Fo{hihj | 0 < i < j—2} @ Fo{ W2 | j > 0}

» If we omit the generators h;h; 1 hk, hihjhj 4, hihih;, 2 and
hihiy2hi 2 from

Fo{hihjhy | i < j < k}

then the remainder maps injectively to Exty”*(Fz, Fy).

» The class ¢y (which is part of a family of related classes ¢;
for i > 0) shows that surjectivity fails for s = 3.
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Adams d,-differentials for S

In view of the Leibniz rule

da(xy) = da2(X)y + xda(y)
in Ex(S), the d-differential is determined by its values on a set
of algebra generators for this E>-term.
Proposition

In the range t — s < 16, the d»-differential on the algebra
generators is given as follows.

x |h m m hy o Pm Ph dy hy P
db(x)|0 0 0 0 0 0 0 0 ht 0




E»(S) with dy-differentials

12 o

a8 4




Proof

» The ds-differentials on hg, ho, hs, ¢y, Phy, Pho, dy and Pcy
land in trivial groups, hence are zero.

» The relation hyh; = 0 and the Leibniz rule imply that
0-hy+ hg - dg(h1) = dQ(O) =0, so that hodg(h1) = 0. Since
ho - hg = hg # 0, it follows that d>(hy) # h3, and d(h1) =0
is the only possibility.

» The final case, of dx(hy), deserves to be stated as a
separate theorem. O

Theorem ([Ada58])
do(hy) = hoh?.



Proof

The class hy € E;’1 (S) detects the homotopy class
2 € mp(S)5.

The class h3 € 5;78(3) must survive to E..(S) since dr(h3)
lies in a trivial group for all r > 2. Hence it detects a
homotopy class o € 7m7(S)5.

By multiplicativity of the Adams spectral sequence for S, it

follows that 202 = 2 - ¢ - ¢ is detected by hgh2 = hg - hs - hg

in F37,(S)p/F4m.(S)) = E".

However, by the graded commutativity of 7.(S)5, we have
o-0=—0-0,

since |o| = 7 is odd. Thus 202 = 0, which implies that

hoh3 = 0in Ex(S).

This can only happen because hyh3 € Ex(S) is the

boundary of a differential, and dx(hs) = hoh3 is the only
possibility. O



No map of Hopf invariant one

This recovers a result of Toda, first proved by secondary
composition methods.

Corollary ([Tod55])

There is no stable map S — S of Hopf-Steenrod invariant
one. Hence there is no map S®' — S'® of Hopf invariant one,
no H-space structure on S'°, and no division algebra structure
on RS,

Proof.

Such a map would be detected by h4, which would have to
survive to the E-term, but the nonzero differential

do(hs) = hgh3 shows that this is not the case.

O



E»(S) with dy-differentials
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The Adams Es-term for S

» Passing to cohomology with respect to the d»-differential,
we can calculate E3(S) in our range, and determine its
algebra indecomposables.

» Note that hgh4 and hy hy were decomposable on Ex(S), but
are indecomposable in E3(S).

Lemma
Fort— s < 16, the F»-algebra E;(S) is generated by the
following classes.

X ‘ ho hy ho h3 Co Phy  Pho do ho hy hihy P Co

t-s| 0 1 3 7 