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The classical Adams spectral sequence

I The classical mod p Adams spectral sequence

Es,t
2 = Exts,t

A (H∗(Y ),H∗(X )) =⇒s [X ,Y∧p ]t−s

aims to study the abelian group

[X ,Y ] = Ho(SpO)(X ,Y )

of stable morphisms f : X → Y .
I It takes as input the A-modules H∗(X ) and H∗(Y ) and the

derived functors of HomA, where A denotes the mod p
Steenrod algebra and H = HFp.

I It was introduced by Adams in [Ada58].



Homological formulation

I There is also a homological formulation

Es,t
2 = Exts,t

A∗(H∗(X ),H∗(Y )) =⇒s [X ,Y∧p ]t−s

of the Adams spectral sequence.
I It is defined in terms of the dual mod p Steenrod algebra

A∗ and the A∗-comodules H∗(X ) and H∗(Y ).
I This is a little more generally applicable than the

cohomological version.



The Adams–Novikov spectral sequence

The generalization to the study of [X ,Y ] by means of
I the E∗E-modules E∗(X ) and E∗(Y ), or
I the E∗E-comodules E∗(X ) and E∗(Y ),

for a suitable ring spectrum E , is known as
I the Adams–Novikov spectral sequence (principally for

E = MU [Nov67] and E = BP), or as
I the E-based Adams spectral sequence

Es,t
2 = Exts,t

E∗E (E∗(X ),E∗(Y )) =⇒s [X ,Y∧E ]t−s .
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The degree of a map

The degree deg(f ) of a map f : Mn → Nn of closed, connected,
oriented n-manifolds with fundamental classes [M] and [N] is
the integer satisfying

f∗([M]) = deg(f )[N]

in Hn(N;Z) ∼= Z. The d-invariant is defined to detect similar
information.



The homological d-invariant

I Let the (mod p homology) d-invariant be the
homomorphism

d : [X ,Y ]∗ −→ Hom∗A∗(H∗(X ),H∗(Y ))

[f ] 7−→ f∗ .

I [X ,Y ]n = [Sn ∧ X ,Y ] denotes the degree n morphisms
X → Y in the stable category.

I Homn
A∗(M,N) = HomA∗(ΣnM,N) denotes the A∗-comodule

homomorphisms M → N of homological degree n, for
(graded) A∗-comodules M and N.

I Hence d maps the homotopy class of f : Sn ∧ X → Y to the
induced homomorphism
f∗ : ΣnH∗(X ) ∼= H∗(Sn ∧ X )→ H∗(Y ).



The cohomological d-invariant

I For spectra X and Y , let the (mod p cohomology)
d-invariant be the homomorphism

d : [X ,Y ]∗ −→ Hom∗A(H∗(Y ),H∗(X ))

[f ] 7−→ f ∗ .

I Homn
A(M,N) = HomA(M,ΣnN) denotes the A-module

homomorphisms M → N of cohomological degree −n, for
(graded) A-modules M and N.

I Hence d maps the homotopy class of f : Sn ∧ X → Y to the
induced homomorphism
f ∗ : H∗(Y )→ H∗(Sn ∧ X ) ∼= ΣnH∗(X ).



Maps from spheres

When X = S, the homology d-invariant specializes to a
homomorphism

d : π∗(Y ) −→ Hom∗A∗(Fp,H∗(Y )) ,

while the cohomology d-invariant specializes to

d : π∗(Y ) −→ Hom∗A(H∗(Y ),Fp) .



Dualization

Lemma
The cohomology d-invariant is obtained by dualization from the
homology d-invariant, in the sense that it equals the
composition

[X ,Y ]∗
d−→ Hom∗A∗(H∗(X ),H∗(Y ))

D−→ Hom∗A(H∗(Y ),H∗(X )) .

The dualization homomorphism D is an isomorphism whenever
H∗(Y ) is bounded below and of finite type over Fp.



H-injective spectra

The d-invariant is particularly sensitive for maps to spectra of
the form

W = H ∧ T ,

where T is an arbitrary spectrum.
These are the H-injective spectra of [Mil81], and can be
expressed as sums or products of suspensions of
Eilenberg–MacLane spectra.

Lemma
Let W∗ = H∗(T ). There are isomorphisms

H ∧ T
∼=←−

∨
n

ΣnH(Wn)
∼=−→

∏
n

ΣnH(Wn)

in the stable category, each inducing the identity map of Wn on
πn for n ∈ Z.



Proof

I Choose a basis for Wn = Hn(T ) as an Fp-vector space,
and represent its elements by morphisms fα : Sn → H ∧ T .

I Use the product µ : H ∧ H → H to extend these to
morphisms

f̄α = (µ ∧ 1)(1 ∧ fα) : ΣnH ∼= H ∧ Sn → H ∧ T ,

and form their sum

gn : ΣnH(Wn) ∼=
∨
α

ΣnH −→ H ∧ T .



Proof (cont.)

I The sum
g :

∨
n

ΣnH(Wn) −→ H ∧ T

over n ∈ Z then induces the isomorphism
g∗ : W∗

∼=−→ H∗(T ) in homotopy, hence is a stable
equivalence.

I The canonical map∨
n

ΣnH(Wn) −→
∏

n

ΣnH(Wn)

induces the identity of W∗ on graded homotopy groups,
hence is also a stable equivalence.



A d-isomorphism

Proposition
In the case W ∼= H ∧ T , the homological d-invariant

d : [X ,W ]∗
∼=−→ Hom∗A∗(H∗(X ),H∗(W ))

is an isomorphism.

If, furthermore, W is bounded below with mod p homology of
finite type, then the cohomological d-invariant

d : [X ,W ]∗
∼=−→ Hom∗A(H∗(W ),H∗(X ))

is an isomorphism.



Proof

I By the Künneth theorem, the homology smash product

∧ : H∗(H)⊗ H∗(T )
∼=−→ H∗(H ∧ T )

is an isomorphism.
I Here H∗(H) ∼= A∗, and the source has the diagonal

A∗-coaction.
I By the untwisting isomorphism

A∗ ⊗ H∗(T ) ∼= A∗ ⊗ UH∗(T )

this is isomorphic to the extended A∗-comodule on the
underlying graded Fp-vector space of H∗(T ).



Proof (cont.)

I By adjunction, there is an isomorphism

Hom∗A∗(H∗(X ),A∗ ⊗ UH∗(T )) ∼= Hom∗(UH∗(X ),UH∗(T )) .

I Omitting the forgetful functor U from the notation, the
composite homomorphism

[X ,H∧T ]∗
d−→ Hom∗A∗(H∗(X ),H∗(H∧T )) ∼= Hom∗(H∗(X ),H∗(T ))

defines a morphism of cohomology theories for (spaces or)
spectra X , since H∗(T ) is automatically injective as a
graded Fp-vector space.

I Moreover, this morphism is an isomorphism for X = S.
Hence it, and d , is an isomorphism for every
spectrum X .
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Towers in SpO

By a tower Y? of (orthogonal) spectra we mean a diagram of
the form

. . . −→ Ys+1
α−→ Ys −→ . . . −→ Y1

α−→ Y0

in SpO. We write

Ys,r = C(αr : Ys+r → Ys) = Ys ∪ CYs+r

for the mapping cone of αr : Ys+r → Ys, so that we have a
homotopy cofiber sequence

Ys+r
αr
−→ Ys −→ Ys,r −→ ΣYs+r

for each s ≥ 0 and r ≥ 0.



Chains of homotopy cofiber sequences

In particular, when r = 1 we have a Puppe sequence

Ys+1
α−→ Ys

β−→ Ys,1
γ−→ ΣYs+1 ,

for each s ≥ 0. We often display the tower, and the homotopy
cofiber sequences for r = 1, as follows.

. . . // Ys+1
α // Ys //

β

��

. . . // Y2
α // Y1

α //

β

��

Y0

β

��

Ys,1

γ

bb

Y1,1

γ

aa

Y0,1

γ

bb

Here the dashed arrows refer to maps to the suspension of the
indicated target, i.e., of degree −1.



Maps of towers
By a (strict) map of towers φ? : Y? → Z? we mean a sequence
of maps φs : Ys → Zs such that each square

Ys+1
α //

φs+1
��

Ys

φs

��

Zs+1
α // Zs

commutes in SpO.
There are then well-defined maps φs,r : Ys,r → Zs,r for all s ≥ 0
and r ≥ 0, making the diagrams

Ys+r
αr
//

φs+r

��

Ys //

φs

��

Ys,r //

φs,r

��

ΣYs+r

Σφs+r

��

Zs+r
αr
// Zs // Zs,r // ΣZs+r

commute.



Resolutions in Ho(SpO)

These chains have the following images in the stable category.

By a resolution (Y?,Y?,1) in the stable category, we mean a
diagram of the form

. . . // Ys+1
α // Ys //

β

��

. . . // Y2
α // Y1

α //

β

��

Y0

β

��

Ys,1

γ

bb

Y1,1

γ

aa

Y0,1

γ

bb

in Ho(SpO), where each triangle

Ys+1
α−→ Ys

β−→ Ys,1
γ−→ ΣYs+1

is distinguished.



Maps of resolutions

By a (weak) map of resolutions φ? : (Y?,Y?,1)→ (Z?,Z?,1) we
mean sequences of morphisms

φs : Ys −→ Zs

φs,1 : Ys,1 −→ Zs,1

in Ho(SpO), such that the diagrams

Ys+1
α //

φs+1
��

Ys
β
//

φs

��

Ys,1
γ
//

φs,1
��

ΣYs+1

Σφs+1
��

Zs+1
α // Zs

β
// Zs,1

γ
// ΣZs+1

commute in the stable category.



Maps of resolutions (cont.)

Here is a different view of a map of resolutions.

. . . // Ys+1
α //

φs+1

��

Ys //

φs

��

β}}

. . . // Y2
α //

φ2

��

Y1
α //

φ1

��

β}}

Y0

φ0

��

β}}

Ys,1

γ

cc

φs,1

��

Y1,1

γ

aa

φ1,1

��

Y0,1

γ

aa

φ0,1

��

. . . // Zs+1
α // Zs //

β}}

. . . // Z2
α // Z1

α //

β}}

Z0

β}}

Zs,1

γ

cc

Z1,1

γ

aa

Z0,1

γ

aa



The homotopy exact couple
The homotopy exact couple (A,E) associated to a spectrum X
and a resolution (Y?,Y?,1) is the diagram

. . . // [X ,Ys+2]∗
α // [X ,Ys+1]∗

α //

β

��

[X ,Ys]∗
α //

β

��

[X ,Ys−1]∗ //

β

��

. . .

[X ,Ys+1,1]∗

γ

ff

[X ,Ys,1]∗

γ

ff

[X ,Ys−1,1]∗

γ

ff

,

where

· · · → [X ,Ys+1]n
α−→ [X ,Ys]n

β−→ [X ,Ys,1]n
γ−→ [X ,Ys+1]n−1 → . . .

is a long exact sequence for each s ≥ 0. The bigraded abelian
groups A and E are given by

As,t = [X ,Ys]t−s = [St−s ∧ X ,Ys]

Es,t = [X ,Ys,1]t−s = [St−s ∧ X ,Ys,1] .



The homotopy spectral sequence

The homotopy spectral sequence

(Er ,dr )r≥1

associated to X and (Y?,Y?,1) is the spectral sequence
associated to the homotopy exact couple, with

Es,t
1 = [X ,Ys,1]t−s = [St−s ∧ X ,Ys,1]

and
ds,t

1 = βγ : Es,t
1 −→ Es+1,t

1

for all s ≥ 0 and t ∈ Z. The dr -differentials

ds,t
r : Es,t

r −→ Es+r ,t+r−1
r

then have (s, t)-bidegree (r , r − 1), for each r ≥ 1.



Remark on grading

I We treat the total degree t − s as a homological grading,
so that the differentials have total degree −1, which means
that the internal degree t is homological and the filtration
degree s is cohomological.

I Since the filtration degree s interacts most directly with the
term number r for the spectral sequence, we write Es

r for
the filtration s part of the Er -term.

I It is then traditional to write Es,t
r for the internal degree t

part of this graded group, even if (Es
r )t might have been

more consistent.



The target for convergence

Definition
The abutment of the homotopy exact couple of X and Y? is the
graded abelian group [X ,Y0]∗ with the descending, exhaustive
filtration

· · · ⊂ F s+1[X ,Y0]∗ ⊂ F s[X ,Y0]∗ ⊂ · · · ⊂ F 0[X ,Y0]∗ = [X ,Y0]∗

given by
F s[X ,Y0]∗ = im([X ,Ys]∗

αs
−→ [X ,Y0]∗)

for s ≥ 0.



Degreewise discrete convergence

I There are injective homomorphisms

F s[X ,Y0]n
F s+1[X ,Y0]n

//
ζ
// Es,s+n
∞

for all s ≥ 0 and n ∈ Z.
I If for each n the groups [X ,Ys]n vanish for all sufficiently

large s, then the filtration (F s[X ,Y0]∗)s is degreewise
discrete, and the homotopy spectral sequence

Es,t
r =⇒s [X ,Y0]t−s

converges (strongly), so that each ζ is an isomorphism.



The case of homotopy groups

When X = S, the homotopy exact couple of (Y?,Y?,1) is the
diagram

. . . // π∗(Ys+2)
α // π∗(Ys+1)

α //

β

��

π∗(Ys)
α //

β

��

π∗(Ys−1) //

β

��

. . .

π∗(Ys+1,1)

γ

ff

π∗(Ys,1)

γ

ff

π∗(Ys−1,1)

γ

ff

,

where

· · · → πn(Ys+1)
α−→ πn(Ys)

β−→ πn(Ys,1)
γ−→ πn−1(Ys+1)→ . . .

is a long exact sequence for each s ≥ 0.



The case of homotopy groups (cont.)

The bigraded abelian groups A and E = E1 are given by

As,t = πt−s(Ys)

Es,t = Es,t
1 = πt−s(Ys,1)

and ds,t
1 = βγ : Es,t

1 → Es+1,t
1 equals the composite

πt−s(Ys,1)
γ−→ πt−s−1(Ys+1)

β−→ πt−s−1(Ys+1,1) .



The case of homotopy groups (cont.)

Definition
The abutment of the homotopy exact couple of Y? is the graded
abelian group π∗(Y0) with the descending, exhaustive filtration
given by

F sπ∗(Y0) = im(π∗(Ys)
αs
−→ π∗(Y0))

for s ≥ 0.



The case of homotopy groups (cont.)

I There are injective homomorphisms

F sπn(Y0)

F s+1πn(Y0)
//
ζ
// Es,s+n
∞

for all s ≥ 0 and n ∈ Z.
I If the connectivity of the spectra Ys increases to infinity

with s, then the filtration (F sπ∗(Y0))s is degreewise
discrete and the homotopy spectral sequence

Es,t
r =⇒s πt−s(Y0)

converges (strongly), so that each ζ is an isomorphism.



Adams grading

• • • •

s + r • Es+r ,t+r−1
r • •

• • • •

s • • Es,t
r •

• • • •

s/t−s t−s−1 t−s

//

OO

We use (t − s, s)-coordinates for homotopy spectral
sequences, placing each group Es,t

r at the position with
horizontal coordinate t − s and vertical coordinate s.



Adams differentials

• • • •

s + r • Es+r ,t+r−1
r • •

• • • •

s • • Es,t
r

dr

[[

•

• • • •

s/t−s t−s−1 t−s

//

OO

The dr -differentials then have (t − s, s)-bigrading (−1, r),
mapping one column to the left and r rows up.



Vertical filtrations

s + r Es+r ,t+r
∞

...

s Es,t
∞

0 E0,n
∞

s/t−s t−s−1 t−s

//

OO

The associated graded groups of the filtration (F s[X ,Y0]n)s lie
in the column with t − s = n.



Tower of extensions
There is then a tower of short exact sequences

. . .
��

��

F s+1[X ,Y0]n // //

��

��

F s+1[X ,Y0]n
F s+2[X ,Y0]n

∼= Es+1,s+1+n
∞

F s[X ,Y0]n // //

��

��

F s[X ,Y0]n
F s+1[X ,Y0]n

∼= Es,s+n
∞

F s−1[X ,Y0]n // //

��

��

F s−1[X ,Y0]n
F s[X ,Y0]n

∼= Es−1,s−1+n
∞

. . .

mapping down and across, ending with an edge
homomorphism induced by β : Y0 → Y0,1.

[X ,Y0]n // //
[X ,Y0]n

F 1[X ,Y0]
∼= E0,n

∞ // // E0,n
1 = [X ,Y0,1]n



Cartan–Eilenberg systems

I We can associate an extended Cartan–Eilenberg system
(π∗, η, ∂) to a spectrum X and a tower of spectra Y?.

I We set Y∞ = ∗ and Ys = Y0 for −∞ ≤ s ≤ 0, and consider
the graded groups

π∗(s, s + r) = [X ,Ys,r ]∗

for r ≥ 0.
I The exact couple underlying this Cartan–Eilenberg system

is the same as the homotopy exact couple of (the
resolution in the stable category associated to) the tower of
spectra.
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Adams resolutions

Let Y be an (orthogonal) spectrum. A mod p Adams resolution
of Y is a resolution

. . . // Ys+1
α // Ys //

β

��

. . . // Y2
α // Y1

α //

β

��

Y0

β

��

Ys,1

γ

bb

Y1,1

γ

aa

Y0,1

γ

bb

in Ho(SpO), with a stable equivalence Y ∼ Y0, such that
1. Ys,1 is H-injective, and
2. α∗ : H∗(Ys+1)→ H∗(Ys) is zero,

for each s ≥ 0.



Remarks

I A spectrum W is H-injective if it has the form H ∧ T for
some spectrum T , which means that it is stably equivalent
to a wedge sum of suspensions of Eilenberg–MacLane
spectra.

I In view of the long exact sequences

· · · → H∗(Ys+1)
α∗−→ H∗(Ys)

β∗−→ H∗(Ys,1)
γ∗−→ H∗−1(Ys+1)→ . . .

· · · → H∗−1(Ys+1)
γ∗−→ H∗(Ys,1)

β∗−→ H∗(Ys)
α∗−→ H∗(Ys+1)→ . . .

and the universal coefficient theorem, the condition that α∗
is zero is equivalent to each of the following: that β∗ is
injective, γ∗ is surjective, α∗ is zero, β∗ is surjective or γ∗ is
injective.



Adams towers

A mod p Adams tower for Y is a diagram

. . . −→ Ys+1
α−→ Ys −→ . . . −→ Y1

α−→ Y0

in SpO, with a stable equivalence Y ∼ Y0, such that the
associated resolution (with Ys,1 = C(α : Ys+1 → Ys)) is an
Adams resolution.



The Adams spectral sequence

Definition
The mod p Adams spectral sequence for [X ,Y ]∗ is the
homotopy spectral sequence

Es,t
1 = [X ,Ys,1]t−s =⇒s [X ,Y ]t−s

associated to a mod p Adams resolution (Y?,Y?,1) of Y .
In the case X = S we write

Es,t
1 (Y ) = πt−s(Ys,1) =⇒s πt−s(Y )

for this spectral sequence.



Remarks

I As stated, this depends on a choice of Adams resolution.
I We now show that Adams resolutions exist, that they are

quasi-uniquely defined and natural, and that we can give
algebraic descriptions of the E1- and E2-terms of the
associated homotopy spectral sequences.

I In particular, the E2-term will be seen to be independent of
the choice of Adams resolution.



The mod p Hurewicz map and its cofiber

Definition
Let H = HFp, with unit map h : S → H and ring spectrum
multiplication µ : H ∧ H → H, and let

S h−→ H i−→ H̄
q−→ S1

be the Puppe sequence generated by h, with
H̄ = Ch = H ∪h CS.

Here h induces the stable mod p Hurewicz homomorphism
π∗(X )→ H∗(X ), hence the notation.



The canonical Adams resolution

The canonical Adams resolution of Y

. . . // Y3
α // Y2

α //

β

��

Y1
α //

β

��

Y

β

��

H ∧ Y2

γ

cc

H ∧ Y1

γ

ee

H ∧ Y

γ

ee

is defined inductively by setting Y0 = Y and, for s ≥ 0, letting

Ys
β−→ Ys,1

γ−→ ΣYs+1
−Σα−→ ΣYs

be equal to

S ∧ Ys
h∧1−→ H ∧ Ys

i∧1−→ H̄ ∧ Ys
q∧1−→ S1 ∧ Ys .

This implicitly defines α : Ys+1 → Ys in Ho(SpO), since Σ is an
equivalence of categories.



The canonical Adams resolution (cont.)

I Equivalently,

ΣsYs = H̄∧s ∧ Y

ΣsYs,1 = H ∧ H̄∧s ∧ Y

for each s ≥ 0, with β, γ and −Σα induced by h, i and q,
respectively.

I The canonical Adams resolution of Y equals the canonical
Adams resolution

. . . // Σ−3H̄∧3 α // Σ−2H̄∧2 α //

β

��

Σ−1H̄ α //

β

��

S

β

��

H ∧ Σ−2H̄∧2

γ

ee

H ∧ Σ−1H̄

γ

ee

H
γ

ee

of S, smashed with Y .



Existence of Adams resolutions

Lemma
I The canonical Adams resolution (Y?,Y?,1) is an Adams

resolution of Y = Y0.
I If Y is bounded below with mod p homology of finite type,

then each Ys,1 is also bounded below with mod p
homology of finite type.



Proof

I Each spectrum Ys,1 = H ∧Ys is H-injective by construction.
I Furthermore, each homomorphism

β∗ : H∗(Ys) −→ H∗(Ys,1)

is induced by the unit inclusion

H ∧ Ys ∼= H ∧ S ∧ Ys
1∧h∧1−→ H ∧ H ∧ Ys ,

which is split by the ring spectrum multiplication

H ∧ H ∧ Ys
µ∧1−→ H ∧ Ys .

I Hence β∗ is (split) injective and α∗ = 0.
I (This only uses that µ(1 ∧ h) = 1 in the stable category.)



Proof (cont.)

I Note that H and H̄ are bounded below, with H∗(H) ∼= A∗
and H∗(H̄) ∼= J(A∗) both being of finite type.

I It follows from the proposition on the connectivity of smash
products that if Y is bounded below, then so is each Ys,1.

I If Y furthermore has mod p homology of finite type, then
the Künneth formula

H∗(Ys,1) ∼= A∗ ⊗ J(A∗)⊗s ⊗ H∗(Y )

shows that each Ys,1 also has this property.



Homological variance

The homological image of an Adams resolution begins as
follows.

. . . H∗(Σ2Y2)
��

β∗
��

H∗(ΣY1)
��

β∗
��

H∗(Y )
��

β∗
��

H∗(Σ2Y2,1)

γ∗

dddd

H∗(ΣY1,1)

γ∗

gggg

H∗(Y0,1)

γ∗

ffff



The Adams (E1,d1)-term

Proposition
Let
I X be a spectrum and
I (Y?,Y?,1) be an Adams resolution of Y .

The Adams spectral sequence

Es,t
1 = [X ,Ys,1]t−s =⇒s [X ,Y ]t−s

satisfies:
1. The d-invariant

d : Es,t
1

∼=−→ Homt
A∗(H∗(X ),H∗(ΣsYs,1))

is an isomorphism.



The Adams (E1,d1)-term (cont.)

2. The diagram

Es,t
1

d
∼=

//

ds,t
1
��

Homt
A∗(H∗(X ),H∗(ΣsYs,1))

Hom(1,β∗γ∗)
��

Es+1,t
1

d
∼=
// Homt

A∗(H∗(X ),H∗(Σs+1Ys+1,1))

commutes.
3. The A∗-comodule complex

. . .← H∗(Σs+1Ys+1,1)
β∗γ∗←− H∗(ΣsYs,1)

β∗γ∗←− . . .

. . .
β∗γ∗←− H∗(ΣY1,1)

β∗γ∗←− H∗(Y0,1)
β∗←− H∗(Y )← 0

is exact, and each H∗(ΣsYs,1) is an extended A∗-comodule.
Hence this is an injective A∗-comodule resolution of H∗(Y ).



Proof

Claim (1) follows from the proposition on the d-isomorphism,
using the identification

Homt−s
A∗ (H∗(X ),H∗(Ys,1)) ∼= Homt

A∗(H∗(X ),H∗(ΣsYs,1)) ,

since each ΣsYs,1 is H-injective, i.e., has the form H ∧ T .



Proof (cont.)

Claim (2) follows from the commutative diagram below, since
ds,t

1 = β∗γ∗.

Es,t
1

γ∗

��

d
∼=

// Homt
A∗(H∗(X ),H∗(ΣsYs,1))

Hom(1,γ∗)
��

[X ,Σs+1Ys+1]t

β∗
��

d // Homt
A∗(H∗(X ),H∗(Σs+1Ys+1))

Hom(1,β∗)
��

Es+1,t
1

d
∼=

// Homt
A∗(H∗(X ),H∗(Σs+1Ys+1,1))



Proof (cont.)

Claim (3) follows by splicing together the sequences

0← H∗(Σs+1Ys+1)
γ∗←− H∗(ΣsYs,1)

β∗←− H∗(ΣsYs)← 0

for all s ≥ 0. These are all short exact, because α∗ = 0. Since
each ΣsYs,1 has the form H ∧ T for some spectrum T , the
Künneth formula and untwisting isomorphism show that

H∗(ΣsYs,1) ∼= H∗(H)⊗ H∗(T ) ∼= A∗ ⊗ H∗(T )

is an extended A∗-comodule, for each s ≥ 0.



The Adams E2-term

Theorem
The Adams spectral sequence for [X ,Y ]∗ has E2-term

Es,t
2 = Exts,t

A∗(H∗(X ),H∗(Y )) ,

which only depends on the A∗-comodules H∗(X ) and H∗(Y ).
In the special case X = S, we write

Es,t
2 (Y ) = Exts,t

A∗(Fp,H∗(Y ))

for this E2-term.



Proof

I Let Is
∗ = H∗(ΣsYs,1), δs = β∗γ∗ : Is

∗ → Is+1
∗ and

η = β∗ : H∗(Y )→ I0
∗ .

I Then

. . .← Is+1
∗

δs
←− Is

∗ ←− . . .←− I1
∗

δ0
←− I0

∗
η←− H∗(Y )← 0

is an injective A∗-comodule resolution of H∗(Y ).
I Hence the cohomology groups of the cochain complex

. . .← Homt
A∗(H∗(X ), Is+1

∗ )
Hom(1,δs)←− Homt

A∗(H∗(X ), Is
∗)

Hom(1,δs−1)←− Homt
A∗(H∗(X ), Is−1

∗ )← . . .

are by definition the A∗-comodule Ext-groups
Exts,t

A∗(H∗(X ),H∗(Y )), for all s ≥ 0 and t .



Proof (cont.)

I Since this cochain complex is isomorphic to

. . .← Es+1,t
1

ds,t
1←− Es,t

1
ds−1,t

1←− Es−1,t
1 ← . . . ,

these cohomology groups are precisely the components
Es,t

2 of the Adams spectral sequence E2-term.



Cohomological variance

The cohomological image of an Adams resolution begins as
follows.

. . .
$$

γ∗
$$

H∗(Σ2Y2)
''

γ∗
''

H∗(ΣY1)
&&

γ∗
&&

H∗(Y )

H∗(Σ2Y2,1)

β∗
OOOO

H∗(ΣY1,1)

β∗
OOOO

H∗(Y0,1)

β∗
OOOO



The Adams (E1,d1)-term

Proposition
Let X and Y be spectra, and suppose that (Y?,Y?,1) is an
Adams resolution of Y with each Ys,1 bounded below and of
finite type mod p. The Adams spectral sequence

Es,t
1 = [X ,Ys,1]t−s =⇒s [X ,Y ]t−s

satisfies
1. The d-invariant

d : Es,t
1

∼=−→ Homt
A(H∗(ΣsYs,1),H∗(X ))

is an isomorphism.



The Adams (E1,d1)-term

2. The diagram

Es,t
1

d
∼=

//

ds,t
1
��

Homt
A(H∗(ΣsYs,1),H∗(X ))

Hom(γ∗β∗,1)

��

Es+1,t
1

d
∼=
// Homt

A(H∗(Σs+1Ys+1,1),H∗(X ))

commutes.
3. The A-module complex

· · · → H∗(Σs+1Ys+1,1)
γ∗β∗−→ H∗(ΣsYs,1)

γ∗β∗−→ . . .

. . .
γ∗β∗−→ H∗(ΣY1,1)

γ∗β∗−→ H∗(Y0,1)
β∗−→ H∗(Y )→ 0

is exact, and each H∗(ΣsYs,1) is an extended A-module.
Hence this is a projective A-module resolution of H∗(Y ).



The Adams E2-term

Theorem
Let X and Y be spectra, with Y bounded below and of finite
type mod p. The Adams spectral sequence for [X ,Y ]∗ has
E2-term

Es,t
2
∼= Exts,t

A (H∗(Y ),H∗(X )) ,

which only depends on the A-modules H∗(X ) and H∗(Y ).
In the special case X = S, we write

Es,t
2 (Y ) = Exts,t

A (H∗(Y ),Fp)

for this E2-term.



Proof

I Let P∗s = H∗(ΣsYs,1), ∂s = γ∗β∗ : P∗s → P∗s−1 and
ε = β∗ : P∗0 → H∗(Y ).

I Then

· · · → P∗s+1
∂s+1−→ P∗s

∂s−→ . . .
∂2−→ P∗1

∂1−→ P∗0
ε−→ H∗(Y )→ 0

is a projective A-module resolution of H∗(Y ).
I Hence the cohomology groups of the cochain complex

. . .← Homt
A(P∗s+1,H

∗(X ))
Hom(∂s+1,1)←− Homt

A(P∗s ,H
∗(X ))

Hom(∂s,1)←− Homt
A(P∗s−1,H

∗(X ))← . . .

are by definition the A-module Ext-groups
Exts,t

A (H∗(Y ),H∗(X )), for all s ≥ 0 and t .



Proof (cont.)

I Since this cochain complex is isomorphic to

. . .← Es+1,t
1

ds,t
1←− Es,t

1
ds−1,t

1←− Es−1,t
1 ← . . . ,

these cohomology groups are precisely the components
Es,t

2 of the Adams spectral sequence E2-term.



Filtration zero and the degree invariant

Lemma
The Adams spectral sequence edge homomorphism

[X ,Y ]n −→ E0,n
∞ ⊂ E0,n

2 = Homn
A∗(H∗(X ),H∗(Y ))

is equal to the mod p homological d-invariant.

If Y is bounded below and of finite type mod p, then the edge
homomorphism

[X ,Y ]n −→ E0,n
∞ ⊂ E0,n

2 = Homn
A(H∗(Y ),H∗(X ))

is equal to the mod p cohomological d-invariant.



Proof

I The E1-edge homomorphism [X ,Y ]∗ → [X ,Y0,1]∗ = E0,∗
1 is

induced by β : Y → Y0,1, and factors through the inclusion
E0,∗

2 ⊂ E0,∗
1 of the kernel of β∗γ∗.

I The lower row in the commutative diagram

[X ,ΣY1,1]∗

d ∼=
��

[X ,Y0,1]∗
β∗γ∗

oo

d ∼=
��

[X ,Y ]∗
β∗

oo

d
��

HomA∗(H∗(X ), I1
∗ ) HomA∗(H∗(X ), I0

∗ )
δ0
∗oo HomA∗(H∗(X ),H∗(Y ))

η∗
oo 0oo

is exact.
I Therefore the E2-edge homomorphism corresponds under

the middle isomorphism d to the right hand
homomorphism d .



The Hopf–Steenrod invariant
For f ∈ [X ,Y ]n satisfying d(f ) = 0, then the mod p
Hopf–Steenrod invariant

e(f ) ∈ Ext1
A∗(H∗(Σ1+nX ),H∗(Y )) = Ext1,1+n

A∗ (H∗(X ),H∗(Y ))

is defined to be the class of the A∗-comodule extension

0← H∗(Σ1+nX )
q∗←− H∗(Cf )

i∗←− H∗(Y )← 0 .

If Y is bounded below and of finite type mod p, then this equals
the class

e(f ) ∈ Ext1
A(H∗(Y ),H∗(Σ1+nX )) = Ext1,1+n

A (H∗(Y ),H∗(X ))

of the A-module extension

0→ H∗(Σ1+nX )
q∗−→ H∗(Cf )

i∗−→ H∗(Y )→ 0 .



Filtration one and the Hopf–Steenrod invariant

Proposition
The Adams spectral sequence near-edge homomorphism

F 1[X ,Y ]n −→ E1,1+n
∞ ⊂ E1,1+n

2 = Ext1,1+n
A∗ (H∗(X ),H∗(Y ))

equals the mod p Hopf–Steenrod invariant, mapping f with
d(f ) = 0 to e(f ).



Proof

A morphism f ∈ [X ,Y ]n = [ΣnX ,Y ] satisfies d(f ) = 0 precisely
if βf = 0, in which case there exist morphisms f1 : ΣnX → Y1
and Cf → Y0,1 making the following diagram commute.

ΣnX f //

f1
��

Y i //

=

��

Cf
q
//

��

Σ1+nX

Σf1
��

Y1
α // Y0

β
// Y0,1

γ
// ΣY1

Σβ
$$

ΣY1,1



Proof (cont.)

Passing to homology, we get a commutative diagram

0 // H∗(Y )
i∗ //

=

��

H∗(Cf )
q∗
//

��

H∗(Σ1+nX ) //

Σ(βf1)∗
��

0

0 // H∗(Y )
η

// I0
∗

δ0
// I1
∗

δ1
// I2
∗

of A∗-comodules. Here the (well-defined) cohomology class

e(f ) ∈ Ext1
A∗(H∗(Σ1+nX ),H∗(Y ))

of
Σ(βf1)∗ ∈ HomA∗(H∗(Σ1+nX ), I1

∗ )

corresponds both to the A∗-comodule extension given by
H∗(Cf ), and to the class in E1,1+n

∞ ⊂ E1,1+n
2 detecting f in the

Adams spectral sequence.
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Comparison of resolutions

Proposition

I Let (Y?,Y?,1) and (Z?,Z?,1) be resolutions such that
1. α∗ : H∗(Ys+1)→ H∗(Ys) is zero and
2. Zs,1 is H-injective

for each s ≥ 0.
I Let φ0 : Y0 → Z0 be any morphism in Ho(SpO).

I Then there exists a map of resolutions φ? that extends φ0.
I Moreover, if ψ? is a second map of resolutions

extending φ0 = ψ0, then αφs = αψs for each s ≥ 1 and
φsα = ψsα for each s ≥ 0.



Proof

Suppose, by induction, that φ0, φ0,1, . . . , φs−1,1 and φs have
been compatibly constructed. Consider the diagram below, with
horizontal distinguished triangles.

Ys+1

α

!!

Ys
β
//

φs

��

Ys,1
γ
//

φs,1
��

ΣYs+1
−Σα

//

Σφs+1
��

ΣYs

Σφs

��

Zs
β
// Zs,1

γ
// ΣZs+1

−Σα
// ΣZs

We claim that βφsα : Ys+1 → Zs,1 is zero in the stable category.



Proof (cont.)

The isomorphism

d : [Ys+1,Zs,1]
∼=−→ HomA∗(H∗(Ys+1),H∗(Zs,1))

maps βφsα to zero because α∗ = 0. By exactness of the
sequence

[ΣYs+1,Zs,1]
γ∗−→ [Ys,1,Zs,1]

β∗−→ [Ys,Zs,1]
α∗−→ [Ys+1,Zs,1]

there exists an extension φs,1 : Ys,1 → Zs,1 of βφs over β, and
by the fill-in axiom for triangulated categories there exists a
morphism Σφs+1 : ΣYs+1 → ΣZs+1 making all three squares
commute, in Ho(SpO).

The proof of quasi-uniqueness is similar.



Well-defined Adams E2-spectral sequence

Theorem
I Let X and Y be spectra.
I When viewed as an E2-spectral sequence, the Adams

spectral sequence

Es,t
2 = Exts,t

A∗(H∗(X ),H∗(Y )) =⇒s [X ,Y ]t−s

does not depend on the choice of Adams resolution for Y .



Proof

By the previous proposition, for any morphism φ0 : Y0 → Z0 and
any two Adams resolutions (Y?,Y?,1) and (Z?,Z?,1) there is a
map φ? : Y? → Z? of resolutions that extends φ0, and this
induces a map

. . . H∗(ΣY1,1)
δ1
oo

φ1,1∗
��

H∗(Y0,1)
δ0
oo

φ0,1∗
��

H∗(Y0)
η
oo

φ0∗
��

0oo

. . . H∗(ΣZ1,1)
δ1
oo H∗(Z0,1)

δ0
oo H∗(Z0)

η
oo 0oo

of injective A∗-comodule resolutions. When φ0 is the composite
of two stable equivalences Y0 ∼ Y ∼ Z0 then this chain map is
a chain homotopy equivalence, well-defined up to chain
homotopy, which induces a canonical isomorphism of Adams
E2-terms.



Cohomological variant

Theorem
I Let X and Y be spectra, with Y bounded below and of

finite type mod p.
I When viewed as an E2-spectral sequence, the Adams

spectral sequence

Es,t
2 = Exts,t

A (H∗(Y ),H∗(X )) =⇒s [X ,Y ]t−s

does not depend on the choice of Adams resolution for Y .



Proof

For any morphism φ0 : Y0 → Z0 and any two Adams resolutions
(Y?,Y?,1) and (Z?,Z?,1) there is a map φ? : Y? → Z? of
resolutions that extends φ0, and this induces a map

. . .
∂2 // H∗(ΣY1,1)

∂1 // H∗(Y0,1)
ε // H∗(Y0) // 0

. . .
∂2 // H∗(ΣZ1,1)

∂1 //

φ∗1,1

OO

H∗(Z0,1)
ε //

φ∗1,1

OO

H∗(Z0) //

φ∗

OO

0

of projective A-module resolutions. When φ0 is the composite
of two stable equivalences Y0 ∼ Y ∼ Z0 then this chain map is
a chain homotopy equivalence, well-defined up to chain
homotopy, which induces a well-defined isomorphism of Adams
E2-terms.



The homotopy limit of a tower
For any Adams resolution (Y?,Y?,1) of Y , let

Y∞ = holim
s

Ys

be the sequential homotopy limit of the underlying tower

· · · → Ys+1
α−→ Ys → · · · → Y0 ,

and write α∞ : Y∞ → Y0 ' Y for the evident map.

This homotopy limit, or microscope, can be defined as the
homotopy equalizer of two maps

∏
s Ys

1 //

α
//

∏
s Ys ,

where 1 denotes the identity map and α is the product of the
maps α : Ys+1 → Ys for s ≥ 0.



The Bousfield H-nilpotent completion

There is a natural short exact lim-Rlim sequence

0→ Rlim
s

πn+1(Ys) −→ πn(holim
s

Ys) −→ lim
s
πn(Ys)→ 0

for each n. Hence Y∞ ∼ ∗ if and only if lims π∗(Ys) = 0 and
Rlims π∗(Ys) = 0.

The Bousfield H-nilpotent completion Y∧H of Y is defined so that
there is a homotopy cofiber sequence

Y∞
α∞−→ Y −→ Y∧H −→ ΣY∞ ,

and Y∞ ∼ ∗ if and only if Y → Y∧H is a stable equivalence.



Invariance of the homotopy limit
Proposition
The stable homotopy type of Y∞ = holims Ys does not depend
on the choice of Adams resolution (Y?,Y?,1).

Proof.
I Let (Y?,Y?,1) and (Z?,Z?,1) be Adams resolutions of

Y0 ∼ Y ∼ Z0.
I We have maps of resolutions φ? : Y? → Z? and
ψ? : Z? → Y?, such that ψsφsα = α : Ys+1 → Ys and
φsψsα = α : Zs+1 → Zs in the stable category, for all s ≥ 0.

I It follows that

(π∗(φs))s : (π∗(Ys))s −→ (π∗(Zs))s

(π∗(ψs))s : (π∗(Zs))s −→ (π∗(Ys))s

are mutually inverse pro-isomorphisms of towers.



Proof (cont.)
I Hence they induce isomorphisms

φ∗ : lim
s
π∗(Ys)

∼=−→ lim
s
π∗(Zs)

φ∗ : Rlim
s

π∗(Ys)
∼=−→ Rlim

s
π∗(Zs) .

I The map

0 // Rlims πn+1(Ys) //

φ∗
��

πn(Y∞) //

φ∗
��

lims πn(Ys) //

φ∗
��

0

0 // Rlims πn+1(Zs) // πn(Z∞) // lims πn(Zs) // 0

of lim-Rlim short exact sequences then implies that

φ∗ : π∗(Y∞)
∼=−→ π∗(Z∞)

is an isomorphism, so that Y∞ and Z∞ are stably
equivalent.



Conditional convergence, after Boardman

Definition
For any exact couple (A,E), let

A−∞ = colim
s

As

A∞ = lim
s

As

RA∞ = Rlim
s

As .

We say that (A,E) converges conditionally to the colimit A−∞ if
A∞ = 0 and RA∞ = 0 are both trivial.

If Es = 0 for all s < 0, as is the case for each homotopy exact
couple associated to an (Adams) resolution, then
A0 ∼= A−1 ∼= . . . ∼= A−∞.



Conditional convergence for the homotopy exact
couple

Lemma
I Let (Y?,Y?,1) be an Adams resolution of Y .
I The homotopy exact couple of X and Y , with

As,∗ = [X ,Ys]∗ and Es,∗ = [X ,Ys,1]∗, converges
conditionally to [X ,Y ]∗ if and only if [X ,Y∞]∗ = 0.

I This holds for every X if (and only if) Y∞ ∼ ∗.

Proof.
This follows from the short exact sequence

0→ Rlim
s

[X ,Ys]n+1 −→ [X , holim
s

Ys]n −→ lim
s

[X ,Ys]n → 0 .



The RE∞-term, after Boardman

Definition
For any spectral sequence (Er ,dr ), let

RE∞ = Rlim
r

Zr

denote the right derived E∞-term, where

· · · ⊂ Zr+1 ⊂ Zr ⊂ · · · ⊂ Z1 = E1 .

is the descending chain of r -th order cycles.

If Es
r = 0 for s < 0, then Es

r+1 ⊂ Es
r for all r > s, and

Rlim
r

Z s
r
∼=−→ R lim

r
Es

r ,

which partially justifies the notation RE∞ (rather than RZ∞).



Vanishing criteria

I Consider a bidegree (s, t).
I If (Er ,dr ) stabilizes in that bidegree (so that Es,t

r = Es,t
∞ for

all sufficiently large r ), then REs,t
∞ = 0.

I This is always the case of Es,t
r is finite for some r .

I Hence if (Er ,dr ) stabilizes in each bidegree, then
RE∞ = 0.

I More generally, it suffices that (Es,t
r )r satisfies the

Mittag–Leffler condition in each bidegree.



Complete Hausdorff filtrations
Definition
A filtration

· · · ⊂ F s+1G ⊂ F sG ⊂ · · · ⊂ G

of (graded) abelian groups is Hausdorff if

lim
s

F sG = 0

and it is complete if
Rlim

s
F sG = 0 .

Lemma
A filtration (F sG)s is Hausdorff and complete if and only if the
canonical map

G
∼=−→ lim

s

G
F sG

is an isomorphism.



Strong convergence

Definition
A spectral sequence (Er ,dr ) converges strongly to a filtration
(F sG)s of a (graded) abelian group G if there are isomorphisms

ζ :
F sG

F s+1G
∼=−→ Es

∞

for each s, and the filtration is exhaustive, Hausdorff and
complete.

If the spectral sequence arises from an exact couple, we
always assume that the isomorphism ζ is the preferred
homomorphism introduced earlier.



Reconstruction of the abutment

Strong convergence, together with solutions to all of the finite
extension problems

0→ Es
∞ −→

F aG
F s+1G

−→ F aG
F sG

→ 0

is precisely sufficient to reconstruct the (graded) abelian
group G by passage to algebraic colimits and limits.

Lemma
If (F sG)s is complete Hausdorff and exhaustive, then there are
isomorphisms

colim
a

lim
s

F aG
F sG

∼= G ∼= lim
s

colim
a

F aG
F sG

.



A criterion for strong convergence

Theorem ([Boa99])
Let (A,E) be an exact couple with Es = 0 for s < 0, so that
A0 ∼= A−∞. Any two of the following conditions implies the third.

1. The exact couple converges conditionally to the colimit A0.
2. RE∞ = 0.
3. The spectral sequence converges strongly to A0, with the

filtration F sA0 = im(αs : As → A0).

Hence, for a conditionally convergent Adams spectral
sequence, the vanishing of RE∞ is equivalent to strong
convergence.
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Adams filtration

Definition
I The abutment of the Adams spectral sequence for X and

Y with Adams resolution (Y?,Y?,1), is [X ,Y ]∗, with the
decreasing, exhaustive filtration given by

F s[X ,Y ]∗ = im(αs : [X ,Ys]∗ → [X ,Y ]∗) .

I We call this the Adams filtration of [X ,Y ]∗.
I The elements of F s[X ,Y ]∗ have Adams filtration ≥ s.
I The elements of F s[X ,Y ]∗ \ F s+1[X ,Y ]∗ have Adams

filtration exactly s.



Independence of resolution
Lemma
The Adams filtration is independent of the choice of Adams
resolution.

Proof.
For any other choice of Adams resolution (Z?,Z?,1) we have a
map of resolutions φ∗ : Y? → Z? making the diagram

Ys
αs
//

φs
��

Y

=

��

Zs
αs
// Y

commute, so

im(αs : [X ,Ys]∗ → [X ,Y ]∗) ⊂ im(αs : [X ,Zs]∗ → [X ,Y ]∗) .

Reversing the roles of the two resolutions gives the opposite
inclusion. Hence the two image filtrations agree.



Maps that induce zero in mod p (co-)homology

The Adams filtration can be characterized in terms of maps that
induce zero in mod p (co-)homology.

Proposition
A morphism f ∈ [X ,Y ]n has Adams filtration ≥ s if and only if it
can be factored as a composite f1 ◦ · · · ◦ fs of s morphisms

ΣnX = Xs
fs−→ Xs−1

fs−1−→ . . .
f2−→ X1

f1−→ X0 = Y ,

each of which (for 1 ≤ i ≤ s) induces the zero homomorphism
fi∗ : H∗(Xi)→ H∗(Xi−1) in mod p homology.



Proof

I If f = αsg with g : ΣnX → Ys, then f admits the
factorization

ΣnX = Xs
αg−→ Ys−1

α−→ . . .
α−→ Y1

α−→ Y0 = Y

where (αg)∗ = 0 and α∗ = 0 (in mod p homology) in each
case.

I Conversely, if f = f1 ◦ · · · ◦ fs+1 with fi∗ = 0 for each i , then
we may inductively assume that f1 ◦ · · · ◦ fs : Xs → Y factors
as

f1 ◦ · · · ◦ fs = αs ◦ g

for some g : Xs → Ys.



Proof (cont.)

Xs+1
fs+1

//

g′

��

Xs

g
��

f1◦···◦fs

��

Ys+1
α // Ys

β

��

αs
// Y

Ys,1

Then gfs+1 : Xs+1 → Ys followed by β induces zero in
homology, and has target the H-injective spectrum Ys,1, hence
is null-homotopic. By exactness of the sequence

[Xs+1,Ys+1]
α∗−→ [Xs+1,Ys]

β∗−→ [Xs+1,Ys,1]

it follows that gfs+1 = αg′ for some g′ : Xs+1 → Ys+1, which
proves that f has Adams filtration ≥ s + 1.



A tower of Moore spaces

Definition
Let (S1/pv )v≥1 be the tower of Moore spaces given by the
Puppe sequences

...

p

��

...

=

��

...

r
��

...

p

��

S1 p3
//

p
��

S1 i //

=

��

S1/p3 q
//

r
��

S2

p
��

S1 p2
//

p
��

S1 i //

=

��

S1/p2 q
//

r
��

S2

p
��

S1 p
// S1 i // S1/p

q
// S2

and let (S/pv )v≥1 be its desuspension, with S/pv = F1S1/pv .



Completion of spectra

I The p-completion of a spectrum Y is the sequential
homotopy limit

Y∧p = holim
v

Y ∧ S/pv

of the tower

. . . −→ Y ∧ S/p3 1∧r−→ Y ∧ S/p2 1∧r−→ Y ∧ S/p .

I Let κ : Y → Y∧p denote the completion map, induced by the
compatible maps i : S → S/pv .



Higher Bockstein maps

I We use the abbreviation

Y/pv = Y ∧ S/pv

for the homotopy cofiber of pv : Y → Y .
I There is a distinguished triangle

Y/p e−→ Y/pv+1 r−→ Y/pv βv−→ ΣY/p

for each v , where βv is the v -th order Bockstein map.



Completion of abelian groups

I For an abelian group G, let

G∧p = lim
v

G/pv

denote its p-completion.
I In particular, let Zp = Z∧p denote the ring of p-adic integers.
I We say that G is p-complete if the canonical

homomorphism
κ : G −→ G∧p

is an isomorphism.
I If G is finite, then κ is the surjection mapping all torsion of

order prime to p to zero, which maps the p-Sylow subgroup
of G isomorphically to G∧p .



Completion of spectra of finite type

Lemma
If Y has finite type, then there are natural isomorphisms

π∗(Y∧p )
∼=←→ π∗(Y )∧p = lim

v
π∗(Y )/pv ∼=←− π∗(Y )⊗ Zp .

If, furthermore, π∗(Y ) is p-complete in each degree, then
κ : Y → Y∧p is a stable equivalence.



Proof

I Let pv G = ker(pv : G→ G).
I The tower of universal coefficient short exact sequences

0→ πn(Y )/pv −→ πn(Y/pv ) −→ pvπn−1(Y )→ 0

induces an exact sequence

0→ πn(Y )∧p −→ lim
v
πn(Y/pv ) −→ lim

v pvπn−1(Y ) .

I The right hand limit is trivial because πn−1(Y ) is finitely
generated.

I Hence the left hand arrow is an isomorphism.



Proof (cont.)

I In the Milnor short exact sequence

0→ Rlim
v

πn+1(Y/pv ) −→ πn(Y∧p ) −→ lim
v
πn(Y/pv )→ 0

each group πn+1(Y/pv ) is finite, because πn(Y ) and
πn+1(Y ) are finitely generated, so the Rlim term vanishes
and the right hand arrow is an isomorphism.

I For any finitely generated abelian group G the canonical
map

G ⊗ Zp −→ lim
v

G ⊗ Z/pv ∼= lim
v

G/pv

is an isomorphism, since this holds for each cyclic group G.
I (The left hand side commutes with sums, the right hand

side commutes with products, and finite sums and finite
products agree.)



Completion is a mod p equivalence

Proposition
There are stable equivalences

κ : Y/p ∼−→ (Y/p)∧p

κ/p : Y/p ∼−→ (Y∧p )/p

and an isomorphism

κ∗ : H∗(Y )
∼=−→ H∗(Y∧p )

in mod p homology (and cohomology).



Proof

I There is a homotopy (co-)fiber sequence

F (S[1/p],Y ) −→ Y κ−→ Y∧p

where S[1/p] is the homotopy colimit (= telescope) of the
sequence

S
p−→ S

p−→ S
p−→ S → . . . .

I Since p : S[1/p]→ S[1/p] is a stable equivalence, it
follows that F (S[1/p],Y/p) ' F (S[1/p],Y )/p ' ∗, so that
κ : Y/p → (Y/p)∧p and κ/p : Y/p → (Y∧p )/p are stable
equivalences.

I Applying integral homology to the second of these, and
noting that HZ ∧ S/p ' H, we deduce that
κ∗ : H∗(Y )→ H∗(Y∧p ) is an isomorphism.



The integral Hurewicz map and its cofiber

I Let
S h−→ HZ i−→ HZ q−→ S1

be the Puppe sequence generated by the unit map
h : S → HZ of the integral Eilenberg–MacLane ring
spectrum.

I Note that h is 1-connected (= 2-connective).
I Hence HZ is also 1-connected (= 2-connective).



The canonical HZ-Adams resolution

For each spectrum Y let

. . . // Y ′3
α // Y ′2

α //

β

��

Y ′1
α //

β

��

Y ′0

β

��

Y ′2,1

γ

``

Y ′1,1

γ

aa

Y ′0,1

γ

aa

be the canonical HZ-Adams resolution of Y , with Y ′0 = Y and

Y ′s
β−→ Y ′s,1

γ−→ Y ′s+1
−Σα−→ S1 ∧ Y ′s

equal to

S ∧ Y ′s
h∧1−→ HZ ∧ Y ′s

i∧1−→ HZ ∧ Y ′s
q∧1−→ S1 ∧ Y ′s .



The canonical HZ-Adams resolution (cont.)

I Hence

ΣsY ′s = HZ∧s ∧ Y

ΣsY ′s,1 = HZ ∧ HZ∧s ∧ Y

for all s ≥ 0.
I Note that (Y ′?,Y ′?,1) is generally not a mod p Adams

resolution, since the spectra Y ′s,1 are not of the form H ∧ T .



Degreewise discrete convergence for Y/p
Proposition

I Let Y be any spectrum. The canonical HZ-Adams
resolution ((Y/p)′?, (Y/p)′?,1) of Y/p is a mod p Adams
resolution.

I If Y/p is `-connective, then (Y/p)′s is (s + `)-connective for
each s ≥ 0, so the homotopy exact couple

. . . // π∗((Y/p)′2)
α // π∗((Y/p)′1)

α //

β
��

π∗(Y/p)

β
��

π∗((Y/p)′1,1)
γ

ii

π∗((Y/p)′0,1)
γ

ii

is degreewise discrete, the Adams E1-term is concentrated
in the region t − s ≥ s + `, and

Es,t
2 = Exts,t

A∗(Fp,H∗(Y/p)) =⇒s πt−s(Y/p)

is strongly convergent.



Proof
I Each spectrum

Σs(Y/p)′s,1 = HZ ∧ HZ∧s ∧ Y/p

has the form H ∧ T with T = HZ∧s ∧ Y , in view of the
stable equivalence HZ ∧ S/p ' H.

I Each homomorphism

β∗ : H∗((Y/p)′s) −→ H∗((Y/p)′s,1)

is induced by the unit inclusion

H ∧ (Y/p)′s
∼= H ∧ S ∧ (Y/p)′s

1∧h∧1−→ H ∧ HZ ∧ (Y/p)′s ,

which is split by the right module action

H ∧ HZ ∧ (Y/p)′s
ρ∧1−→ H ∧ (Y/p)′s

of HZ upon H.



Proof (cont.)

I Suppose that Y/p is `-connective.
I Since HZ is 2-connective, the smash products

Σs(Y/p)′s = (HZ)∧s ∧ Y/p

Σs(Y/p)′s,1 = HZ ∧ (HZ)∧s ∧ Y/p

are (2s + `)-connective.
I Hence

As,t = πt−s((Y/p)′s)

Es,t = πt−s((Y/p)′s,1)

are trivial for t − s < s + `, which implies that the terms of
the Adams spectral sequence are concentrated on and
below the line t − s = s + ` in the (t − s, s)-plane.



The region t − s ≥ s + `

0 0 0 0 • •

n − ` 0 0 0 • • •

0 0 • • • •

0 0 • • • •

VV

•

s/t−s ` n

//

OO



Proof (cont.)

I Hence the Adams spectral sequence converges (strongly)
to a degreewise discrete filtration of π∗(Y/p).

I In particular, there are canonical isomorphisms

Es,t
∞
∼=

F sπt−s(Y/p)

F s+1πt−s(Y/p)

for all s ≥ 0 and t , where

0 = F n−`+1πn(Y/p) ⊂ F n−`πn(Y/p) ⊂ · · · ⊂ F 1πn(Y/p) ⊂ πn(Y/p)

for all n ≥ `.



Vanishing homotopy limit

Corollary
If Y/p is bounded below, then (Y/p)∞ ∼ ∗

Proof.
I We can calculate (Y/p)∞ using the canonical HZ-Adams

resolution of Y/p.
I If Y/p is `-connective, then πn((Y/p)′s) = 0 for n < s + `,

so lims πn((Y/p)′s) = 0 and Rlims πn+1((Y/p)′s) = 0.
I Together these imply that πn((Y/p)∞) = 0 for all n.



Conditional convergence to [X ,Y ∧p ]∗

Theorem
If Y/p is bounded below, then the Adams spectral sequence

Es,t
2 = Exts,t

A∗(H∗(X ),H∗(Y∧p )) =⇒s [X ,Y∧p ]t−s

for X and Y∧p is conditionally convergent (to the achieved
colimit).

Proof.
The smash product of a fixed Adams resolution of S with the
tower

Y → · · · → Y/pv+1 r−→ Y/pv → . . .

gives a tower of Adams resolutions, as on the next page.



Tower of Adams resolutions
. . . // Y2

α //

κ

��

Y1

βvv

α //

κ

��

Y0

βvv
κ

��

Y1,1
γ

hh

κ

��

Y0,1
γ

hh

κ

��

. . . // (Y2)∧p
α //

��

(Y1)∧p

βww

α //

��

(Y0)∧p

βww

��

(Y1,1)∧p
γ

gg

��

(Y0,1)∧p
γ

gg

��

. . .

��

. . .

��

. . .

��

. . .

��

. . .

��

. . . // Y2/pv+1 α //

r

��

Y1/pv+1

βww

α //

r

��

Y0/pv+1

βww

r

��

Y1,1/pv+1
γ

gg

r

��

Y0,1/pv+1
γ

gg

r

��

. . . // Y2/pv α // Y1/pv

βvv

α // Y0/pv

βvv

Y1,1/pv
γ

hh

Y0,1/pv
γ

hh



Proof (cont.)

I The homotopy limit over v of the lower part of the diagram
gives a resolution ((Y?)∧p , (Y?,1)∧p ), which we claim is also
an Adams resolution.

I Each H-injective Ys,1 has the form H ∧ T ' (HZ ∧ T )/p,
which implies that κ : Ys,1 → (Ys,1)∧p is a stable
equivalence. Hence (Ys,1)∧p is H-injective.

I Likewise, the completion homomorphisms κ∗ in the
commutative square

H∗(Ys+1)
α∗ //

κ∗ ∼=
��

H∗(Ys)

κ∗ ∼=
��

H∗((Ys+1)∧p )
α∗ // H∗((Ys)∧p )

are isomorphisms, so the vanishing of the upper α∗ implies
the vanishing of the lower α∗. This confirms the claim.



Proof (cont.)

I We shall prove that

holim
s

(Ys)∧p ∼ ∗ ,

so that the homotopy exact couple for X and Y∧p is
conditionally convergent.

I First, since (Y?/p,Y?,1/p) is an Adams resolution of Y/p,
and Y/p is bounded below, we know that

holim
s

Ys/p ∼ (Y/p)∞ ∼ ∗ .



Proof (cont.)

I Second, we have homotopy cofiber sequences

holim
s

Ys/p
e−→ holim

s
Ys/pv+1 r−→ holim

s
Ys/pv βv−→ holim

s
ΣYs/p

for all v ≥ 1, so
holim

s
Ys/pv ∼ ∗

in each case, by induction on v .
I This implies that

holim
s

(Ys)∧p = holim
s

holim
v

Ys/pv ∼ holim
v

holim
s

Ys/pv ∼ ∗ ,

by the interchange rule for homotopy limits.



Strong convergence to [X ,Y ∧p ]∗
Theorem
Let X and Y be spectra, with Y/p bounded below. The Adams
spectral sequence

Es,t
2 = Exts,t

A∗(H∗(X ),H∗(Y∧p )) =⇒s [X ,Y∧p ]t−s

is strongly convergent if and only if RE∞ = 0. In this case, there
are isomorphisms

F s[X ,Y∧p ]n

F s+1[X ,Y∧p ]n
∼= Es,s+n

∞

[X ,Y∧p ]n ∼= lim
s

[X ,Y∧p ]n

F s[X ,Y∧p ]n

for all s ≥ 0 and n.

Proof.
This is a special case of Boardman’s theorem on conditional
and strong convergence.



Sufficient conditions for strong convergence

I Suppose that Y/p is bounded below.
I The condition RE∞ = 0 holds if the spectral sequence

terms Es,t
r stabilize in each bidegree, which in turn holds if

Es,t
r is eventually finite in each bidegree.

I In particular, this holds if Es,t
2 is finite in each bidegree, and

this holds if H∗(X ) is bounded above and finite in each
degree and H∗(Y ) is (bounded below and) finite in each
degree.

I For example, it suffices for strong convergence that X is
finite and Y/p is bounded below and of finite type.



Strong convergence to π∗(Y ∧p )

The special case X = S is worth emphasizing.

Theorem
Let Y/p be bounded below of finite type. The mod p Adams
spectral sequence

Es,t
2 = Exts,t

A∗(Fp,H∗(Y ))

= Exts,t
A (H∗(Y ),Fp) =⇒s πt−s(Y∧p )

is strongly convergent, meaning that there are isomorphisms

F sπn(Y∧p )

F s+1πn(Y∧p )
∼= Es,s+n

∞ and πn(Y∧p ) ∼= lim
s

πn(Y∧p )

F sπn(Y∧p )

for all s ≥ 0 and n.
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Ext over the Steenrod algebra

I Suppose that Y/p is bounded below and of finite type.
I To calculate the Adams E2-term

E2 = ExtA(H∗(Y ),Fp)

we consider a free, hence projective, A-module resolution

· · · → P2
∂2−→ P1

∂1−→ P0
ε−→ H∗(Y )→ 0

of H∗(Y ).
I The group Es,t

2 is then given by the cohomology in
degree s of the cochain complex

. . .← Homt
A(P2,Fp)

δ1
←− Homt

A(P1,Fp)
δ0
←− Homt

A(P0,Fp)← 0

with δs = Hom(∂s+1,1) for each s ≥ 0.



Minimal resolutions
The passage to cohomology takes no effort if the resolution is
minimal, in the following sense.

Definition
Let I(A) ⊂ A denote the augmentation ideal. A resolution
(P∗, ∂) of an A-module M is minimal if ∂s+1(Ps+1) ⊂ I(A)Ps for
each s ≥ 0.

Lemma
If (P∗, ∂) is minimal, then δs = 0 for each s ≥ 0, so that

Exts,t
A (M,Fp) = Homt

A(Ps,Fp)

for all s ≥ 0 and t.

Proof.
Any A-module homomorphism f : Ps → ΣtFp maps I(A)Ps to
zero, so δs(f ) = ±f∂s+1 : Ps+1 → ΣtFp will be zero when the
resolution is minimal.



Existence of minimal resolutions

Lemma
Each bounded below A-module M admits a minimal resolution
(P∗, ∂). If M has finite type, then so does each Ps.

Proof.
I Choose an Fp-linear section to the projection

M → Fp ⊗A M, and let

ε : P0 = A⊗ (Fp ⊗A M) −→ M

be left adjoint to this section, where P0 is the free
A-module induced up from Fp ⊗A M.

I Then 1⊗ ε : Fp ⊗A P0 → Fp ⊗A M is an isomorphism, and ε
is surjective, since Fp ⊗A cok(ε) = 0 and cok(ε) is bounded
below.



Proof (cont.)

I Inductively, for s ≥ 0 let Zs = ker(∂s), which must be
interpreted as ker(ε) when s = 0.

I Choose a section to Zs → Fp ⊗A Zs, and let

∂̃s+1 : Ps+1 = A⊗ (Fp ⊗A Zs) −→ Zs

be left adjoint to the section.
I Then 1⊗ ∂̃s+1 : Fp ⊗A Ps+1 → Fp ⊗A Zs is an isomorphism,

and ∂̃s+1 is surjective.
I Let ∂s+1 : Ps+1 → Ps be its composite with the inclusion

Zs ⊂ Ps.



Proof (cont.)

I The condition that 1⊗ ∂̃s is an isomorphism is equivalent
to the condition that ∂s+1(Ps+1) ⊂ I(A)Ps, as can be seen
by chasing the following diagram with exact rows.

Ps+1

∂̃s+1
����

∂s+1

&&
0 // Zs //

����

Ps
∂̃s //

����

Zs−1 //

����

0

Fp ⊗A Zs // Fp ⊗A Ps
1⊗∂̃s // Fp ⊗A Zs−1 // 0

I If M has finite type, then P0 is finitely generated and free
over A, hence it and Z0 are of finite type.

I Inductively, if Zs is of finite type for s ≥ 0, then so are Ps+1
and Zs+1.



Robert R. Bruner’s program ext

I For any finitely presented A-module M, at the prime p = 2,
Bruner’s program ext calculates a minimal resolution
(P∗, ∂) of M, in a finite range of bidegrees s ≤ smax and
t ≤ tmax.

I In essence, it calculates Zs = ker(∂s) and chooses a
minimal generating set for this A-module, which is then a
basis for Ps+1.

I In cohomological (= filtration) degree s ≥ 0, we write

Ps = A{s∗0, s∗1, . . . , s∗g , . . . }

for the free A-module Ps, so that s∗g denotes the g-th
generator in degree s, counting from g = 0.



Bruner’s program ext (cont.)

I In concrete cases we substitute numbers for s and g in this
notation, leading to expressions such as 0∗0, 1∗4 or 5∗13.

I The program records the internal degree t of each
generator s∗g .

I Furthermore, it records the boundary homomorphism
∂s+1 : Ps+1 → Ps by giving its value on each basis element
in Ps+1 as an A-linear combination∑

g

θgs∗g

in Ps, where the θg ∈ A.



Bruner’s program ext (cont.)

I By minimality,

Exts,∗
A (M,F2) = HomA(Ps,F2) ∼= F2{s0, s1, . . . , sg , . . . } ,

where sg : Ps → F2 denotes the dual of s∗g .
I In other words, sg takes the value 1 on s∗g , and 0 on the

other A-module basis elements of Ps.
I In the concrete cases above, we write 00, 14 and 513 for

these elements in ExtA(M,F2).
I The cohomological degree of sg is s, while its internal

(homological, or homotopical) degree t is equal to the
internal (cohomological) of s∗g .



The Adams E2-term for S

I We consider Y = S at p = 2 with M = F2.
I A quick machine calculation with smax = 12 and tmax = 28

suffices to compute

Ext∗,∗A (F2,F2) = F2{00} ⊕ F2{sg | s ≥ 1,g ≥ 0}

in the range 0 ≤ s ≤ 12 and 0 ≤ t ≤ 28.
I This includes the rectangular region 0 ≤ s ≤ 12 and

0 ≤ t − s ≤ 16 in the (t − s, s)-plane shown on the next
page.

I A filled circle labeled “g” in bidegree (t − s, s) represents
the Ext-generator sg , dual to the A-module generator s∗g in
the minimal resolution, both of which have internal
degree t .



Vector space basis for Es,t
2 (S) = Exts,tA (F2,F2)

0 4 8 12 16
0

4

8

12

0

0 1 2 3 4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

0 1 2 3 4

0 1 2 3 4
5

0 1 2 3 4 5

0 1 2 3

0 1

0

0

0

0



Bigraded basis

I In this range, most groups Es,t
2 have dimension 0 or 1 as

F2-vector spaces, but in bidegree (t − s, s) = (15,5),
corresponding to (s, t) = (5,20), there are two generators
54 and 55, which means that

E5,20
2 (S) = Ext5,20

A (F2,F2) ∼= F2{54,55}

is 2-dimensional.
I The program ext makes a deterministic choice of basis for

this F2-vector space, but other methods of calculation
might lead to a different choice of basis, so care is needed
when comparing different approaches.



Filtration zero and one

I The minimal resolution starts

· · · → A{2∗g | g ≥ 0} ∂2−→ A{1∗i | i ≥ 0} ∂1−→ A{0∗0}
ε−→ F2 → 0

with ε(0∗0) = 1 and

∂1(1∗i ) = Sq2i
0∗0

for each i ≥ 0.
I This way im(∂1) = I(A) = ker(ε), which is minimally

generated as an A-module by the Sq2i
for i ≥ 0.



Filtration two

I Less obviously,

∂2(2∗0) = Sq1 1∗0
∂2(2∗1) = Sq3 1∗0 + Sq2 1∗1
∂2(2∗2) = Sq4 1∗0 + Q1 1∗1 + Sq1 1∗2 ,

which correspond to the following Adem relations.

Sq1Sq1 = 0

Sq3Sq1 + Sq2Sq2 = 0

Sq4Sq1 + Q1Sq2 + Sq1Sq4 = 0

I Here Q1 = Sq3 + Sq2Sq1 = Sq(0,1) is the Milnor
primitive, dual to ξ2 in the Milnor basis for A∗.



Comodule primitives and module indecomposables

Definition
I For an A∗-comodule M∗, with coaction ν : M∗ → A∗⊗M∗, let

PA∗(M∗) = {x ∈ M∗ | ν(x) = 1⊗ x}

be the subspace of A∗-comodule primitives.
I For an A-module M, let

QA∗(M) = Fp ⊗A M

be the quotient space of A-module indecomposables.

These should not be confused with the (coalgebra) primitives
P(C) of a coaugmented coalgebra and the (algebra)
indecomposables Q(A) of an augmented algebra.



Filtration zero and comodule primitives

Lemma
For any A∗-comodule M∗, there are natural isomorphisms

Ext0,∗
A∗ (Fp,M∗) ∼= Fp �A∗ M∗ ∼= PA∗(M∗)

and

Ext0,∗
A (M,Fp) ∼= HomA(M,Fp) ∼= Hom(QA(M),Fp) .

In particular,

Ext0,∗
A∗ (Fp,Fp) ∼= Ext0,∗

A (Fp,Fp) ∼= Fp{1} .



Filtration one and coalgebra primitives

Lemma
There are natural isomorphisms

Ext1,∗
A∗ (Fp,Fp) ∼= Ext1,∗

A (Fp,Fp) ∼= P(A∗) ∼= Hom(Q(A),Fp)

where
P(A∗) = F2{ξ2i

1 | i ≥ 0}

for p = 2.

Definition
For p = 2 let

hi ∈ Ext1,2i

A (F2,F2)

denote the class of ξ2i

1 , dual to Sq2i ∈ Q(A), for each i ≥ 0.



Labels, vanishing

I In the sg-notation of ext, the generator in E0,0
2 (S) is

1 = 00, while the generator in E1,2i

2 (S) is hi = 1i for each
i ≥ 0.

I These classes are labeled on the next page.
I The calculation shows that Es,t

2 (S) appears to vanish
above a line of slope 1/2 in the (t − s, s)-plane, except for
t − s = 0.

I This is indeed the case, as was proved by Adams, and
confirms that there are no other classes in Es,t

∞ (S) for
0 < t − s ≤ 16 than the ones shown.



Generators 1 and hi in Es,t
2 (S)

0 4 8 12 16
0

4

8

12

0 1

0

h0
1

h1
2

h2
3

h3
4

h4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

0 1 2 3 4

0 1 2 3 4
5

0 1 2 3 4 5

0 1 2 3

0 1

0

0

0

0



Adams vanishing theorem

Theorem ([Ada66])
For p = 2, the groups Es,t

2 (S) are trivial for

0 < t − s <


2s − 1 for s ≡ 0 mod 4,
2s + 1 for s ≡ 1 mod 4,
2s + 2 for s ≡ 2 mod 4,
2s + 3 for s ≡ 3 mod 4.

Adams’ proof uses the structure of A as a union of finite sub
Hopf algebras A(n), and some initial calculations.



Possible differentials

Recall that the r -th Adams differential

ds,t
r : Es,t

r −→ Es+r ,t+r−1
r

has (t − s, s)-bidegree (−1, r). The first possibly nonzero
Adams differentials for S are the following.

1. ds−1(h1) ∈ {0, s0} for s ≥ 3;
2. d2(25) ∈ {0,41};
3. d2(h4) ∈ {0,35}.



Possible differentials in Es,t
r (S) (actual diff’s in red)
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The 0- and 1-stem

I Since this spectral sequence converges to
π∗(S∧2 ) ∼= π∗(S)∧2 , and we know that

π1(S) = Z/2{η} 6= 0 ,

it follows that 11 = h1 must survive to E∞ and
detect η : S1 → S.

I Hence each class s0 ∈ Es,s
2 also survives to E∞.

I We shall see that it detects 2s, so that the groups
Es,s
∞ (S) ∼= F2{s0} give the associated graded of the 2-adic

filtration

· · · ⊂ 2s+1Z2 ⊂ 2sZ2 ⊂ · · · ⊂ 2Z2 ⊂ Z2 .

on
π0(S)∧2

∼= Z2 .



Stems 2 through 6

I It also follows that

π2(S)∧2
∼= Z/2 ,

with a generator detected by 21, and that π3(S)∧2 has order
23 = 8.

I However, the group structure of π3(S)∧2 remains to be
determined.

I Moreover,

π4(S)∧2 = 0 and π5(S)∧2 = 0 ,

since the E2- and E∞-terms contain only trivial groups in
these total degrees.

I Furthermore, π6(S)∧2
∼= Z/2, with a generator detected by

23.



Stems 7 and 8

I If d2(25) = 0, which turns out to be the case, then π7(S)∧2
has order 24 = 16 and π8(S)∧2 has order 22 = 4.

I If, on the other hand, d2(25) = 41 were nonzero, then
π7(S)∧2 would have order 23 = 8 and π8(S)∧2

∼= Z/2.
I To decide between these two cases we must calculate this

Adams d2-differential.



Stems 9 through 14

I Continuing, π9(S)∧2 has order 23 = 8, π10(S)∧2 = Z/2,
π11(S)∧2 has order 23 = 8, π12(S)∧2 = 0 and π13(S)∧2 = 0.

I We can also see that π14(S)∧2 has order dividing 25 = 32,
but here there is room for many differentials from
topological degree 15.

I To proceed, we will use that the ring spectrum structure
on S makes the associated Adams spectral sequence an
algebra spectral sequence.

I This severely limits the possible differential patterns that
can be present in the spectral sequence.
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Monoidal structure

For spectra X ′, X ′′, Y ′ and Y ′′, with smash products
X = X ′ ∧ X ′′ and Y = Y ′ ∧ Y ′′ there are Adams spectral
sequences

′E2 = ExtA∗(H∗(X
′),H∗(Y ′)) =⇒ [X ′,Y ′]∗

′′E2 = ExtA∗(H∗(X
′′),H∗(Y ′′)) =⇒ [X ′′,Y ′′]∗

E2 = ExtA∗(H∗(X ),H∗(Y )) =⇒ [X ,Y ]∗ .



Smash product of morphisms

I The smash product of morphisms induces a pairing

∧ : [X ′,Y ′]n ⊗ [X ′′,Y ′′]m −→ [X ,Y ]n+m

that takes f : ΣnX ′ → Y ′ and g : ΣmX ′′ → Y ′′ to the
composite

Σn+mX = Sn∧Sm∧X ′∧X ′′ 1∧τ∧1−→ Sn∧X ′∧Sm∧X ′′
f∧g−→ Y ′∧Y ′′ = Y .

I It preserves the Adams filtrations, in the sense that
F s[X ′,Y ′]∗ ⊗ F u[X ′′,Y ′′]∗ is mapped into F s+u[X ,Y ]∗.

I If f = f1 ◦ · · · ◦ fs and g = g1 ◦ · · · ◦ gu, with H∗(fi) = 0 and
H∗(gj) = 0, then f ∧ g is the composite of s + u maps of the
form fi ∧ 1 and 1 ∧ gj , each of which induces zero in mod p
homology.



Internal product in A∗-comodule Ext

I For Hopf algebras, the tensor product of two (co-)modules
is again a (co-)module, using the diagonal (co-)action.

I Since A∗ is a Hopf algebra, there is an internal product

∧ : ExtA∗(M
′,N ′)⊗ExtA∗(M

′′,N ′′) −→ ExtA∗(M
′⊗M ′′,N ′⊗N ′′) .

I It is given by choosing injective A∗-comodule resolutions
(′Is
∗ , δ)s and (′′Iu

∗ , δ)u of N ′ and N ′′, respectively, and
forming their tensor product (Iσ∗ , δ)σ with

Iσ∗ =
⊕

s+u=σ

′Is
∗ ⊗ ′′Iu

∗

and δ = δ ⊗ 1 + 1⊗ δ, which is an injective A∗-comodule
resolution of N ′ ⊗ N ′′.



Internal product (cont.)
I Given s- and u-cocycles

f : M ′ −→ ′Is
∗ and g : M ′′ −→ ′′Iu

∗

the internal product of the cohomology classes [f ] and [g]
is the class of the composite (s + u)-cocycle

M ′ ⊗M ′′
f⊗g−→ ′Is

∗ ⊗ ′′Iu
∗ ⊂ Is+u

∗ .

I If we have given A∗-comodule homomorphisms
M → M ′ ⊗M ′′ and N ′ ⊗ N ′′ → N then we can further
internalize the product to obtain a pairing

∧ : ExtA∗(M
′,N ′)⊗ ExtA∗(M

′′,N ′′) −→ ExtA∗(M,N) .

I If M is an A∗-comodule coalgebra and N is an
A∗-comodule algebra, this makes ExtA∗(M,N) an
Fp-algebra.



Internal product in A-module Ext

I Dually, since A is a Hopf algebra there is an internal
product

∧ : ExtA(M ′,N ′)⊗ExtA(M ′′,N ′′) −→ ExtA(M ′⊗M ′′,N ′⊗N ′′)

I It is given by choosing projective A-module resolutions
(′P∗s , ∂)s and (′′P∗u , ∂)u of M ′ and M ′′, respectively, and
forming their tensor product (P∗σ, ∂)σ with

P∗σ =
⊕

s+u=σ

′P∗s ⊗ ′′P∗u

and ∂ = ∂ ⊗ 1 + 1⊗ ∂, which is a projective A-module
resolution of M ′ ⊗M ′′.



Internal product (cont.)
I Given s- and u-cocycles

f : ′P∗s −→ N ′ and g : ′′P∗u −→ N ′′

the internal product of the cohomology classes [f ] and [g]
is the class of the composite (s + u)-cocycle

P∗σ → ′P∗s ⊗ ′′P∗u
f⊗g−→ N ′ ⊗ N ′′ .

I If we have given A-module homomorphisms M → M ′ ⊗M ′′

and N ′ ⊗ N ′′ → N then we can further internalize the
product to obtain a pairing

∧ : ExtA(M ′,N ′)⊗ ExtA(M ′′,N ′′) −→ ExtA(M,N) .

I If M is an A-module coalgebra and N is an A-module
algebra, this makes ExtA(M,N) an Fp-algebra. See
[ML63].



Pairing of Adams spectral sequences

Theorem
(a) For spectra X ′, X ′′, Y ′ and Y ′′, with X = X ′ ∧ X ′′ and
Y = Y ′ ∧ Y ′′, there is a natural pairing

∧r : (′Er ,
′′Er ) −→ Er

of Adams spectral sequences, with abutment the
filtration-preserving pairing

∧ : [X ′,Y ′]∗ ⊗ [X ′′,Y ′′]∗ −→ [X ,Y ]∗

mapping f ⊗ g to f ∧ g.



Theorem (cont.)
(b) The pairing of E2-terms

∧2 : ExtA∗(H∗(X
′),H∗(Y ′))⊗ ExtA∗(H∗(X

′′),H∗(Y ′′))

−→ ExtA∗(H∗(X ),H∗(Y ))

is the internal product.

(c) If Y ′/p and Y ′′/p are bounded below of finite type, then the
E2-pairing

∧2 : ExtA(H∗(Y ′),H∗(X ′))⊗ ExtA(H∗(Y ′′),H∗(X ′′))

−→ ExtA(H∗(Y ),H∗(X ))

is the internal product (followed by the pairing
µ : H∗(X ′)⊗ H∗(X ′′)→ H∗(X )).



The case of homotopy groups

I There is a natural pairing

∧r : (Er (Y ′),Er (Y ′′)) −→ Er (Y ′ ∧ Y ′′)

of Adams spectral sequences, with abutment the
filtration-preserving pairing

· : π∗(Y ′)⊗ π∗(Y ′′) −→ π∗(Y ′ ∧ Y ′′) .

I The pairing of E2-terms is the internal product

∧ : ExtA∗(Fp,H∗(Y ′))⊗ExtA∗(Fp,H∗(Y ′′)) −→ ExtA∗(Fp,H∗(Y )) .

I If Y ′/p and Y ′′/p are bounded below of finite type, then
this equals the internal product

∧ : ExtA(H∗(Y ′),Fp)⊗ExtA(H∗(Y ′′),Fp) −→ ExtA(H∗(Y ),Fp) .



Homotopy of ring spectra
I If E is a ring spectrum (up to homotopy) with multiplication
µ : E ∧ E → E , then there is a pairing

µr : (Er (E),Er (E)) −→ Er (E)

of Adams spectral sequences making Er (E) an algebra
spectral sequence, with abutment the filtration-preserving
graded ring product given by the composition

π∗(E)⊗ π∗(E)
·−→ π∗(E ∧ E)

µ∗−→ π∗(E) .

I The pairing of E2-terms is the internal product

µ∗∧ : ExtA∗(Fp,H∗(E))⊗ExtA∗(Fp,H∗(E)) −→ ExtA∗(Fp,H∗(E)) .

I If E/p is bounded below of finite type, then this equals the
internal product

µ∗∧ : ExtA(H∗(E),Fp)⊗ExtA(H∗(E),Fp) −→ ExtA(H∗(E),Fp) .



Homotopy of module spectra
I If M is an E-module ring spectrum (up to homotopy) with

action λ : E ∧M → M, then there is a pairing

λr : (Er (E),Er (M)) −→ Er (M)

of Adams spectral sequences making Er (M) an
Er (E)-module spectral sequence, with abutment the
filtration-preserving module action given by the
composition

π∗(E)⊗ π∗(M)
·−→ π∗(E ∧M)

λ∗−→ π∗(M) .

I The pairing of E2-terms is the internal product

λ∗∧ : ExtA∗(Fp,H∗(E))⊗ExtA∗(Fp,H∗(M)) −→ ExtA∗(Fp,H∗(M)) .

I If E/p and M/p are bounded below of finite type, then this
equals the internal product

λ∗∧ : ExtA(H∗(E),Fp)⊗ExtA(H∗(M),Fp) −→ ExtA(H∗(M),Fp) .



Module structure over Er(S)

In particular, Er (S) is a (graded commutative) algebra spectral
sequence, and each Adams spectral sequence Er (Y ) is a
(right) Er (S)-module spectral sequence.

µr : Er (S)⊗ Er (S) −→ Er (S)

ρr : Er (Y )⊗ Er (S) −→ Er (Y )
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Composition product of morphisms

I For spectra X , Y and Z the composition of morphisms
defines a pairing

◦ : [Y ,Z ]n ⊗ [X ,Y ]m −→ [X ,Z ]n+m

that takes g : ΣnY → Z and f : ΣmX → Y to the composite

g ◦ Σnf : Σn+mX = ΣnΣmX Σnf−→ ΣnY
g−→ Z .

I It preserves Adams filtrations, in the sense that
F s[Y ,Z ]∗ ⊗ F u[X ,Y ]∗ is mapped into F s+u[X ,Z ]∗.

I The combined composite of s and u maps, each of which
induces zero in mod p homology, is obviously a composite
of s + u such maps.



Yoneda product

I For any algebra A and (left) A-modules L, M and N there is
a natural Yoneda composition product

◦ : Exts
A(M,N)⊗ Extu

A(L,M) −→ Exts+u
A (L,N) .

I To define it, let

· · · → Ps
∂s−→ Ps−1 → · · · → P1

∂1−→ P0
ε−→ M → 0

and

· · · → Qu
∂u−→ Qu−1 → · · · → Q1

∂1−→ Q0
ε−→ L→ 0

be projective A-module resolutions.



Yoneda product (cont.)
I Given cocycles

g : Ps −→ N and f : Qu −→ M

choose a chain map f∗ : Q∗+u → P∗ of degree −u lifting f .

. . . // Qs+u //

fs
��

. . . // Qu //

f0
��

f

  

. . . // Q0 // L

. . . // Ps //

g
��

. . . // P0 // M

N

I The composite g ◦ fs is a cocycle, and its cohomology class

[g] ◦ [f ] = [g ◦ fs] ∈ Exts+u
A (L,N)

defines the composition product.



Yoneda’s Proposition

In the case of modules over a Hopf algebra B, the interior and
composition products are related as follows.

Proposition ([Yon58])
For

x ′ ∈ Exts′
B (M ′,N ′) y ′ ∈ Extu′

B (L′,M ′)

x ′′ ∈ Exts′′
B (M ′′,N ′′) y ′′ ∈ Extu′′

B (L′′,M ′′)

the identity

(x ′ ◦ y ′) ∧ (x ′′ ◦ y ′′) = (−1)s′′u′(x ′ ∧ x ′′) ◦ (y ′ ∧ y ′′)

holds in Exts′+u′+s′′+u′′
B (L′ ⊗ L′′,N ′ ⊗ N ′′).



Corollary

I Let B a Hopf algebra over k .
I For x ∈ Exts

B(k ,N) and y ∈ Extu
B(L, k) the identity

x ∧ y = (x ∧ 1) ◦ (1 ∧ y) = x ◦ y

holds in Exts+u
B (k ⊗ L,N ⊗ k) ∼= Exts+u

B (L,N).
I The identity

(−1)suy ∧ x = (1 ∧ x) ◦ (y ∧ 1) = x ◦ y

holds in Extu+s
B (L⊗ k , k ⊗ N) ∼= Extu+s

B (L,N).
I In particular, the interior and composition products

Exts
B(k , k)⊗ Extu

B(k , k) −→ Exts+u
B (k , k)

agree, and make Ext∗B(k , k) a graded commutative
k -algebra.



Composition products

I For spectra X , Y and Z consider the Adams spectral
sequences

′E2 = ExtA(H∗(Y ),H∗(Z )) =⇒ [Y ,Z ]∗
′′E2 = ExtA(H∗(X ),H∗(Y )) =⇒ [X ,Y ]∗

E2 = ExtA(H∗(X ),H∗(Z )) =⇒ [X ,Z ]∗ .

I The interaction between the composition product in Ext
and the composition in the stable category was determined
by Michael Moss.



Theorem ([Mos68])

I There is a natural pairing of Adams spectral sequences

◦r : (′Er ,
′′Er ) −→ Er

with abutment the filtration-preserving pairing

◦ : [Y ,Z ]∗ ⊗ [X ,Y ]∗ −→ [X ,Z ]∗

mapping g ⊗ f to g ◦ Σ|g|f .
I If Y/p and Z/p are bounded below of finite type, then the

E2-pairing

◦2 : ExtA(H∗(Z ),H∗(Y ))⊗ExtA(H∗(Y ),H∗(X )) −→ ExtA(H∗(Z ),H∗(X ))

is the twisted composition product, mapping y ⊗ x to
(−1)|x ||y |x ◦ y, where |x | = v − u and |y | = t − s for
x ∈ ′′Eu,v

2 and y ∈ ′Es,t
2 .



The sphere case
Corollary

I There is a natural pairing of Adams spectral sequences

◦r : (Er (S),Er (S)) −→ Er (S)

with abutment the filtration-preserving pairing

◦ : π∗(S)⊗ π∗(S) −→ π∗(S)

mapping g ⊗ f to g ◦ Σ|g|f = g ∧ f .
I The E2-pairing

◦2 : ExtA(Fp,Fp)⊗ ExtA(Fp,Fp) −→ ExtA(Fp,Fp)

is the twisted composition product, mapping y ⊗ x to
(−1)|x ||y |x ◦ y = y ∧ x, where |x | = v − u and |y | = t − s for
x ∈ ′′Eu,v

2 (S) and y ∈ ′Es,t
2 (S).
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Products in the Adams spectral sequence for S
I In the case X = Y = S, the mod p Adams spectral

sequence for the sphere spectrum is a graded
commutative algebra spectral sequence

E2(S)s,t = Exts,t
A (Fp,Fp) =⇒s πt−s(S)∧p

with differentials

ds,t
r : Es,t

r (S) −→ Es+r ,t+r−1
r (S) .

I The multiplication on the E2-term is given by the internal
product

∧ : Exts,t
A (Fp,Fp)⊗ Extu,v

A (Fp,Fp) −→ Exts+u,t+v
A (Fp,Fp) ,

and converges to the smash product pairing

∧ : πn(S)∧p ⊗ πm(S)∧p −→ πn+m(S)∧p

giving the graded commutative ring structure on π∗(S)∧p .



Computation of products

I Yoneda’s proposition shows that the internal product
pairing is equal to the composition product in Ext, and that
the smash product pairing is equal to the composition
product in π∗(S)∧p .

I For p = 2, Bruner’s program ext can calculate the Yoneda
(composition) products in Ext, by lifting cocycles to chain
maps and evaluating their composites.



hi-multiplications

I The computation of products

hi : Exts,t
A (M,F2) −→ Exts+1,t+2i

A (M,F2)

with the Hopf–Steenrod classes hi is particularly simple,
and can be read off from the boundary homomorphism

∂s+1 : Ps+1 −→ Ps

in a minimal resolution for M.
I In the case M = F2, the multiplications by hi for 0 ≤ i ≤ 3

in ExtA(F2,F2) are shown in the figure on the next page.



E2(S) with hi-multiplications
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Legend

I Each nonzero multiplication by h0 ∈ E1,1
2 (S) is shown by a

line connecting x in bidegree (t − s, s) to h0x in
bidegree (t − s, s + 1), i.e., by a vertical line of unit length.

I Each nonzero multiplication by h1 ∈ E1,2
2 (S) is shown by a

line connecting x in bidegree (t − s, s) to h1x in
bidegree (t − s + 1, s + 1), i.e., by a line of slope +1.

I Each nonzero multiplication by h2 ∈ E1,4
2 (S) is shown by a

dashed line connecting x in bidegree (t − s, s) to h2x in
bidegree (t − s + 3, s + 1), i.e., by a dashed line of slope
+1/3.

I Each nonzero multiplication by h3 ∈ E1,8
2 (S) is shown by a

dotted line connecting x in bidegree (t − s, s) to h3x in
bidegree (t − s + 7, s + 1), i.e., by a dotted line of slope
+1/7.



Algebra generators for E2(S)

Lemma
In the range t − s ≤ 16, the F2-algebra E∗,∗2 (S) is generated by
the following classes.

x h0 h1 h2 h3 c0 Ph1 Ph2 d0 h4 Pc0

t − s 0 1 3 7 8 9 11 14 15 16

s 1 1 1 1 3 5 5 4 1 7

The relation c2
0 = h2

1d0 holds.



Proof
I The hi -multiplications can be read off from the minimal

resolution (P∗, ∂) of F2 calculated by ext.
I The classes hi in filtration s = 1 must be algebra

indecomposable for filtration degree reasons.
I The only other basis elements that are not hi -multiplies are

the classes denoted c0, d0, Ph1, Ph2 and Pc0, and these
must then be algebra decomposable for topological degree
reasons, since these all lie in degrees t − s ≥ 8.

I To calculate c2
0 = c0 · c0, we instead call on ext to lift the

cocycle f = 33 : P3 → Σ11F2 to a chain map
f∗ : P∗+3 → Σ11P∗, and then to evaluate the composite

P6
f3−→ Σ11P3

f−→ Σ22F2 .

I This turns out to map 6∗5 to 1, hence equals the cocycle 65,
which we have already seen represents h2

1d0.



Nomenclature

I The prefix P refers to the periodicity operator from [Ada66].
I The notations c0,d0, . . . stem from computations in the

range t − s ≤ 70 made by May (unpublished) and
Tangora [Tan70].

I In his work on the Hopf invariant one problem, Adams
showed that there are no algebra indecomposables in
filtration s = 2 of E∗,∗2 (S) = Ext∗,∗A (F2,F2), and determined
the multiplicative relations satisfied by the generators hi in
filtrations s ≤ 3.



Adams relations

Theorem ([Ada60])
The relations

hihi+1 = 0

h2
i hi+2 = h3

i+1

hih2
i+2 = 0

hold in ExtA(F2,F2), for each i ≥ 0.

The algebra homomorphism

F2[hi | i ≥ 0]

(hihi+1,h2
i hi+2 + h3

i+1,hih2
i+2)

−→ ExtA(F2,F2)

is an isomorphism in filtration degrees s ≤ 2, and is injective in
degree s = 3.



Filtrations 0 ≤ s ≤ 3

I More explicitly,

Ext0,∗
A (F2,F2) = F2{1}

Ext1,∗
A (F2,F2) = F2{hi | i ≥ 0}

Ext2,∗
A (F2,F2) = F2{hihj | 0 ≤ i ≤ j − 2} ⊕ F2{h2

j | j ≥ 0}

I If we omit the generators hihi+1hk , hihjhj+1, hihihi+2 and
hihi+2hi+2 from

F2{hihjhk | i ≤ j ≤ k}

then the remainder maps injectively to Ext3,∗
A (F2,F2).

I The class c0 (which is part of a family of related classes ci
for i ≥ 0) shows that surjectivity fails for s = 3.
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Adams d2-differentials for S

In view of the Leibniz rule

d2(xy) = d2(x)y + xd2(y)

in E2(S), the d2-differential is determined by its values on a set
of algebra generators for this E2-term.

Proposition
In the range t − s ≤ 16, the d2-differential on the algebra
generators is given as follows.

x h0 h1 h2 h3 c0 Ph1 Ph2 d0 h4 Pc0

d2(x) 0 0 0 0 0 0 0 0 h0h2
3 0



E2(S) with d2-differentials
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Proof

I The d2-differentials on h0, h2, h3, c0, Ph1, Ph2, d0 and Pc0
land in trivial groups, hence are zero.

I The relation h0h1 = 0 and the Leibniz rule imply that
0 · h1 + h0 · d2(h1) = d2(0) = 0, so that h0d2(h1) = 0. Since
h0 · h3

0 = h4
0 6= 0, it follows that d2(h1) 6= h3

0, and d2(h1) = 0
is the only possibility.

I The final case, of d2(h4), deserves to be stated as a
separate theorem.

Theorem ([Ada58])
d2(h4) = h0h2

3.



Proof
I The class h0 ∈ E1,1

2 (S) detects the homotopy class
2 ∈ π0(S)∧2 .

I The class h3 ∈ E1,8
2 (S) must survive to E∞(S) since dr (h3)

lies in a trivial group for all r ≥ 2. Hence it detects a
homotopy class σ ∈ π7(S)∧2 .

I By multiplicativity of the Adams spectral sequence for S, it
follows that 2σ2 = 2 · σ · σ is detected by h0h2

3 = h0 · h3 · h3

in F 3π∗(S)∧2 /F
4π∗(S)∧2

∼= E3,∗
∞ .

I However, by the graded commutativity of π∗(S)∧2 , we have

σ · σ = −σ · σ ,

since |σ| = 7 is odd. Thus 2σ2 = 0, which implies that
h0h2

3 = 0 in E∞(S).
I This can only happen because h0h2

3 ∈ E2(S) is the
boundary of a differential, and d2(h4) = h0h2

3 is the only
possibility.



No map of Hopf invariant one

This recovers a result of Toda, first proved by secondary
composition methods.

Corollary ([Tod55])
There is no stable map S15 → S of Hopf–Steenrod invariant
one. Hence there is no map S31 → S16 of Hopf invariant one,
no H-space structure on S15, and no division algebra structure
on R16.

Proof.
Such a map would be detected by h4, which would have to
survive to the E∞-term, but the nonzero differential
d2(h4) = h0h2

3 shows that this is not the case.



E2(S) with d2-differentials
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E3(S) = H(E2(S),d2)
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The Adams E3-term for S

I Passing to cohomology with respect to the d2-differential,
we can calculate E3(S) in our range, and determine its
algebra indecomposables.

I Note that h0h4 and h1h4 were decomposable on E2(S), but
are indecomposable in E3(S).

Lemma
For t − s ≤ 16, the F2-algebra E∗,∗3 (S) is generated by the
following classes.

x h0 h1 h2 h3 c0 Ph1 Ph2 d0 h0h4 h1h4 Pc0

t − s 0 1 3 7 8 9 11 14 15 16 16

s 1 1 1 1 3 5 5 4 2 2 7

The hi -multiplications are visible in the previous figure, and the
remaining products in this range are zero.



E3(S) with d3-differentials
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Adams d3-differentials for S

Proposition
In the range t − s ≤ 16, the d3-differential on the algebra
generators is given as follows.

x h0 h1 h2 h3 c0 Ph1 Ph2 d0 h0h4 h1h4 Pc0

d3(x) 0 0 0 0 0 0 0 0 h0d0 0 0

Proof.
I The d3-differentials on h0, h2, h3, c0, Ph1, Ph2, d0 and Pc0

land in trivial groups, hence are zero. In particular, d3
commutes with multiplication by any of these elements.



Proof (cont.)
I The differential on h1 vanishes by h0-linearity, since

h0d3(h1) = d3(h0h1) = d3(0) = 0 ,

while h0h4
0 6= 0, so d3(h1) 6= h4

0.
I By h0-linearity, d3(h1h4) is h0-torsion, hence lies in
{0,h1d0}. By calculating ExtA(F2,F2) in a larger range, we
can show that d0 · h1h4 = 0, while
d0 · h1d0 = h1d2

0 = 99 6= 0 in E9,9+29
2 (S). Moreover, we

claim that h1d2
0 remains nonzero in E3(S). This follows

from d2(k) 6= 0, which implies d2(h0k) 6= 0, d2(r) = 0 and
d2(h0r) = 0. Hence

d0 · d3(h1h4) = d3(d0 · h1h4) = d3(0) = 0

and d0 · h1d0 6= 0 in E3(S) imply that d3(h1h4) 6= h1d0. The
only remaining possibility is d3(h1h4) = 0.

I The final case, d3(h0h4) = h0d0, deserves a separate
theorem.



Theorem
d3(h0h4) = h0d0.

Proof.
((ETC: This can be proved by comparison with the Adams
spectral sequence for Cσ, or using the split surjectivity (Adams
conjecture) of the Adams e-invariant
e : π15(S)∧2 → π15(j)∧2 ∼= Z/32 based on real K -theory.))

The Leibniz rule for d3 implies that d3(h2
0h4) = h2

0d0. Passing to
cohomology with respect to the d3-differential, we can calculate
E4(S) in our range, and determine its algebra
indecomposables.



E3(S) with d3-differentials
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E4(S) = H(E3(S),d3)
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The Adams E4-term for S

Lemma
For t − s ≤ 16, the F2-algebra E∗,∗4 (S) is generated by the
following classes.

x h0 h1 h2 h3 c0 Ph1 Ph2 d0 h3
0h4 h1h4 Pc0

t − s 0 1 3 7 8 9 11 14 15 16 16

s 1 1 1 1 3 5 5 4 4 2 7

The hi -multiplications are visible in the previous figure, and the
remaining products in this range are zero.



Collapse at the E4-term

Proposition
All dr -differentials for r ≥ 4 are zero in the range t − s ≤ 16.
Hence E4(S) = E∞(S) in this range.

Proof.
I This is clear for all of the algebra generators other than h1

and h1h4.
I We see that dr (h1) = 0 in each case by h0-linearity, since

hr+1
0 6= 0 in Er (S) by induction.

I Likewise, dr (h1h4) = 0 for r ∈ {4,5} by h0-linearity.
I The only remaining case is d6(h1h4) ∈ {0,h7

0h4}. ((ETC:
This can be deduced by Maunder’s theorem, or by the
construction of a homotopy class η∗ detected by h1h4,
using the quadratic construction D2(S7).))
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Toda’s notation I

We adopt the following notations from Toda’s book [Tod62].

I η ∈ π1(S) is the stable class of the complex Hopf fibration,
detected by h1 ∈ E∞(S) in bidegree (t − s, s) = (1,1).

I ν ∈ π3(S) is the stable class of the quaternionic Hopf
fibration, detected by h2 ∈ E∞(S) in
bidegree (t − s, s) = (3,1).

I σ ∈ π7(S) is the stable class of the octonionic Hopf
fibration, detected by h3 ∈ E∞(S) in
bidegree (t − s, s) = (7,1).

I ε ∈ π8(S)∧2 is the unique homotopy class detected by
c0 ∈ E∞(S) in bidegree (t − s, s) = (8,3).

I µ ∈ π9(S)∧2 is the unique homotopy class detected by
Ph1 ∈ E∞(S) in bidegree (t − s, s) = (9,5).



Toda’s notation, II

I ζ ∈ π11(S)∧2 is detected by Ph2 ∈ E∞(S) in
bidegree (t − s, s) = (11,5). This determines ζ up to an
odd multiple. (A definite choice can be made using the
J-homomorphism.)

I κ ∈ π14(S)∧2 is the unique homotopy class detected by
d0 ∈ E∞(S) in bidegree (t − s, s) = (14,4).

I ρ ∈ π15(S)∧2 is detected by h3
0h4 ∈ E∞(S) in

bidegree (t − s, s) = (15,4). This determines ρ up to an
odd multiple, modulo ηκ. (A definite choice can be made
using the J-homomorphism.)

I η∗ ∈ π16(S)∧2 is detected by h1h4 ∈ E∞(S) in
bidegree (t − s, s) = (16,2). This determines η∗ modulo
ηρ. (A definite choice can be made using the Adams
e-invariant.)



The associated graded of πn(S) for 0 ≤ n ≤ 16
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Hidden extensions

Let Y be an S-module, so that the Adams spectral sequence
Er (Y ) is an Er (S)-module spectral sequence converging to
π∗(Y ).

Definition
Let α ∈ π∗(S) be detected by a ∈ E∞(S), and consider nonzero
classes b and c ∈ E∞(Y ). We say that there is an α-extension
from b to c if there exists a β ∈ π∗(Y ) such that
I β is detected by b,
I αβ is detected by c, and
I there is no class β′ ∈ π∗(Y ) of higher Adams filtration

than β for which αβ′ is detected by c.
This is a hidden α-extension if ab = 0.



Remarks

I In the definition of (hidden) α-extensions, c should be
viewed as being defined modulo the classes (in the same
bidegree) detecting products αβ′ with β′ of higher Adams
filtration than β.

I More generally, we can consider maps f : X → Y and
compare the filtrations

· · · ⊂ f∗(F sπ∗(X )) ⊂ · · · ⊂ f∗(π∗(X ))

· · · ⊂ F uπ∗(Y ) ⊂ · · · ⊂ π∗(Y )

to form the bifiltration Φs,u = f∗(F sπ∗(X )) ∩ F uπ∗(Y ). The
group

Φs,u

Φs+1,u + Φs,u+1

measures filtration shifts by f∗ from s to u.



A hidden η-extension

Proposition
ηρ ∈ π16(S)∧2 is detected by Pc0 ∈ E∞(S) in
bidegree (t − s, s) = (16,7), while η2κ = 0. Hence there is a
hidden η-extension from h3

0h4 to Pc0.

Proof.
((ETC: This can be deduced using the e-invariant to the
image-of-J spectrum, or perhaps by a comparison with the
Adams spectral sequence for Cη.))



The associated graded of πn(S) for 0 ≤ n ≤ 16
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The notation {a} ⊂ G for a ∈ E∞

Definition
I When a spectral sequence (Er ,dr ) converges to G, and

a ∈ Es
∞ is a nonzero class, we write {a} ⊂ G for the set of

α ∈ G that are detected by a.
I This is the coset of F s+1G in F sG that corresponds to a

under the isomorphism F sG/F s+1G ∼= Es
∞.

I When F s+1G = 0 in the total degree of a, this is a single
element and we write α = {a}.

We next summarize these initial findings about the graded
commutative ring π∗(S)∧2 , in degrees ∗ ≤ 16. We write Z/n{α}
for the cyclic group of order n generated by a class α.



The graded ring π∗(S), I

Theorem

0. π0(S)∧2
∼= Z2;

2s ∈ {hs
0} for s ≥ 0.

1. π1(S)∧2
∼= Z/2{η};

η = {h1}.

2. π2(S)∧2
∼= Z/2{η2};

η2 = {h2
1}.

3. π3(S)∧2
∼= Z/8{ν};

ν ∈ {h2}, 2ν ∈ {h0h2}, 4ν = {h2
0h2};

η3 = 4ν.

4. π4(S)∧2 = 0.



The graded ring π∗(S), II

Theorem

5. π5(S)∧2 = 0.

6. π6(S)∧2 = Z/2{ν2};
ν2 = {h2

2}.

7. π7(S)∧2 = Z/16{σ};
σ ∈ {h3}, 2σ ∈ {h0h3}, 4σ ∈ {h2

0h3}, 8σ = {h3
0h3}.

8. π8(S)∧2 = Z/2{ε} ⊕ Z/2{ησ};
ησ ∈ {h1h3}, ε = {c0}.

9. π9(S)∧2 = Z/2{µ} ⊕ Z/2{ηε} ⊕ Z/2{η2σ};
η2σ ∈ {h2

1h3}, ηε ∈ {h1c0}, µ = {Ph1};
ν3 = ηε+ η2σ.



The graded ring π∗(S), III

Theorem

10. π10(S)∧2 = Z/2{ηµ};
ηµ = {h1Ph1};
η2ε = 0, νσ = 0.

11. π11(S)∧2 = Z/8{ζ};
ζ ∈ {Ph2}, 2ζ ∈ {h0Ph2}, 4ζ = {h2

0Ph2};
η2µ = 4ζ, νε = 0.

12. π12(S)∧2 = 0.

13. π13(S)∧2 = 0.



The graded ring π∗(S), IV

Theorem

14. π14(S)∧2 = Z/2{κ} ⊕ Z/2{σ2};
κ = {d0}, σ2 ∈ {h2

3};
νζ = 0.

15. π15(S)∧2 = Z/2{ηκ} ⊕ Z/32{ρ};
ρ ∈ {h3

0h4}, 2ρ ∈ {h4
0h4}, 4ρ ∈ {h5

0h4}, 8ρ ∈ {h6
0h4},

16ρ = {h7
0h4}, ηκ ∈ {h1d0};

ησ2 = 0, σε = 0.

16. π16(S)∧2 = Z/2{ηρ} ⊕ Z/2{η∗};
ηρ = {Pc0}, η∗ ∈ {h1h4}; η2κ = 0, σµ = ηρ, ε2 = 0.



The associated graded of πn(S) for 0 ≤ n ≤ 16
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Proof

In many cases, this is immediate from the algebra structure of
the E∞-term, keeping in mind that if α and β are detected by a
and b, respectively, then αβ is detected by ab if ab 6= 0, and
has higher Adams filtration than this product if ab = 0. The
following cases require additional argments.

(9) The spectral sequence algebra structure shows that ν3 is
detected by h2

2 = h2
1h3, hence equals η2σ modulo Adams

filtration ≥ 4, i.e., modulo F2{µ, ηε}. The KO-theory d- and
e-invariants, which combine to a map e : S → j to the
image-of-J spectrum, show that we must have ν3 = η2σ + ηε.

(10) The map to the image-of-J detects ηµ, but not η2ε or νσ,
so the latter two products are zero.



Proof (cont.)

(11) The image-of-J detects ζ, 2ζ and 4ζ but not νε, so the
latter product is zero.

(14) The product νζ has Adams filtration ≥ 1 + 5 = 6, hence is
zero, since the E∞-classes in total degree 14 all have lower
Adams filtration.

(15) The image-of-J shows that ησ2 and σε lie in F2{0, ηκ}.
((ETC: Justify ησ2 = 0 and σε = 0.))

(16) The relations η2κ = 0, σµ = ηρ and ε2 = 0 are all detected
in the image-of-J spectrum. Since they all lie in Adams
filtrations greater than that of η∗, they also hold in the homotopy
of S.



Toda’s relation in π9(S)

Remark
The relation ν · ν2 = η2σ + ηε shows that the (hidden or visible)
α-extensions do not completely determine the multiplicative
action by α, since there may be higher filtration terms that are
not seen by the α-extension. In this case there is a ν-extension
from h2

2 to h3
2 = h2

1h3, and ηε is the higher-filtration term.
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