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Cohomological Cartan–Eilenberg systems

We adapt Cartan–Eilenberg [CE56].

Definition
A (cohomological) finite Cartan–Eilenberg system (H∗, η, δ)
consists of

I graded abelian groups H∗(i , j) for all integers i ≤ j ,
I structure morphisms preserving degree

η : H∗(i ′, j ′) −→ H∗(i , j)

for all integers i ≤ j , i ′ ≤ j ′ with i ≤ i ′ and j ≤ j ′, and
I connecting homomorphisms

δ : H∗(i , j) −→ H∗+1(j , k)

for all integers i ≤ j ≤ k .



Definition (cont.)
These must satisfy

1. Functoriality: η : H∗(i , j)→ H∗(i , j) equals the identity, and

η ◦ η : H∗(i ′′, j ′′)→ H∗(i ′, j ′)→ H∗(i , j)

equals η : H∗(i ′′, j ′′)→ H∗(i , j) for all integers i ≤ j , i ′ ≤ j ′

and i ′′ ≤ j ′′ with i ≤ i ′ ≤ i ′′ and j ≤ j ′ ≤ j ′′.
2. Naturality: The diagrams

H∗(i ′, j ′) δ //

η

��

H∗(j ′, k ′)

η

��

H∗(i , j) δ // H∗(j , k)

commutes, for all integers i ≤ j ≤ k and i ′ ≤ j ′ ≤ k ′ with
i ≤ i ′, j ≤ j ′ and k ≤ k ′.

3. Exactness: The sequence

. . .
δ−→ H∗(j , k)

η−→ H∗(i , k)
η−→ H∗(i , j) δ−→ H∗+1(j , k)

η−→ . . .

is exact, for all integers i ≤ j ≤ k .



Extended systems
Definition
By an extended integer we mean an element of

{−∞} ∪ Z ∪ {∞} ,

linearly ordered with −∞ minimal and∞ maximal.

Definition
An extended Cartan–Eilenberg system (H∗, η, δ) is defined as a
finite Cartan–Eilenberg system, except that all references to
“integers” are replaced with “extended integers”, and subject to
the following additional condition.

4. Colimit: For each extended integer j the canonical
homomorphism

colim
i

H∗(i , j)
∼=−→ H∗(−∞, j)

is an isomorphism.
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Filtered cochain complex

I Let (F sC∗)s be a decreasing filtration of a cochain
complex C∗.

I The associated finite Cartan–Eilenberg system is given by

H∗(i , j) = H∗(F iC∗/F jC∗)

for integers i ≤ j , and η : H∗(i ′, j ′)→ H∗(i , j) is induced by
the chain map F i ′C∗/F j ′C∗ → F iC∗/F jC∗.

I The connecting homomorphism associated to the short
exact sequence

0→ F jC∗/F kC∗ −→ F iC∗/F kC∗ −→ F iC∗/F jC∗ → 0

defines δ : H∗(i , j)→ H∗+1(j , k).



Filtered cochain complex (cont.)

I Suppose also that the filtration exhausts C∗.
I Letting F−∞C∗ = C∗ and F∞C∗ = 0, the same

expressions define an extended Cartan–Eilenberg system
with H∗(s,∞) = H∗(F sC∗) and H∗(−∞,∞) = H∗(C∗).



Filtered space

I Let (Xs)s be an increasing filtration of a space X , so that
F sC∗(X ) = C∗(X ,Xs−1) defines a decreasing filtration
of C∗(X ).

I The associated finite Cartan–Eilenberg system is given by

H∗(i , j) = H∗(F iC∗(X )/F jC∗(X )) = H∗(Xj−1,Xi−1)

for integers i ≤ j , and η : H∗(i ′, j ′)→ H∗(i , j) is induced by
the inclusion of (Xj−1,Xi−1) into (Xj ′−1,Xi ′−1).

I The morphism δ : H∗(i , j)→ H∗+1(j , k) equals the
connecting homomorphism
δ : H∗(Xj−1,Xi−1)→ H∗+1(Xk−1,Xj−1) in the long exact
cohomology sequence of the triple (Xk−1,Xj−1,Xi−1).



Filtered space (cont.)

I Suppose also that Xa−1 = ∅ for some finite a, so that
F aC∗(X ) = C∗(X ).

I Letting X−∞ = ∅ and X∞ = X the same expressions define
an extended Cartan–Eilenberg system with
H∗(s,∞) = H∗(X ,Xs−1) and H∗(−∞,∞) = H∗(X ).



Associated exact couple and spectral sequence
I To each cohomological extended Cartan–Eilenberg system

(H∗, η, δ) we associate the (top) cohomological exact
couple (As,Es)s given by the diagram

. . . H∗(s,∞)
η

oo

η

��

H∗(s + 1,∞)
η

oo . . .
η
oo

H∗(s, s + 1)

δ

66

. . .

where

(As)∗ = H∗(s,∞)

(Es)∗ = H∗(s, s + 1)

with αs and βs given by η, while γs is given by δ.
I The spectral sequence (Er ,dr )r≥1 associated to (H∗, η, δ)

is the spectral sequence associated to the exact
couple (As,Es)s.



r -th cocycles and r -th coboundaries

Proposition
In the spectral sequence (Er ,dr )r≥1 associated to an extended
Cartan–Eilenberg system (H∗, η, δ) we have

Z s
r = δ−1 im(η : H∗+1(s + r ,∞)→ H∗+1(s + 1,∞))

= ker(δ : H∗(s, s + 1)→ H∗+1(s + 1, s + r))

= im(η : H∗(s, s + r)→ H∗(s, s + 1))

and

Bs
r = η ker(η : H∗(s,∞)→ H∗(s − r + 1,∞))

= im(δ : H∗−1(s − r + 1, s)→ H∗(s, s + 1))

= ker(η : H∗(s, s + 1)→ H∗(s − r + 1, s + 1)) .



Proof
For the r -th cocycles,

δ−1 im(η : H∗+1(s + r ,∞)→ H∗+1(s + 1,∞))

= δ−1 ker(η : H∗+1(s + 1,∞)→ H∗+1(s + 1, s + r))

= ker(δ : H∗(s, s + 1)→ H∗+1(s + 1, s + r))

by exactness and naturality.

H∗+1(s + 1,∞)

η

��

H∗+1(s + r ,∞)
η

oo

H∗(s, s + r)

η

��

H∗+1(s + 1, s + r) 0

H∗(s, s + 1)

δ

<<

δ

66

0



Proof (cont.)
For the r -th coboundaries,

η ker(η : H∗(s,∞)→ H∗(s − r + 1,∞))

= η im(δ : H∗−1(s − r + 1, s)→ H∗(s,∞))

= im(δ : H∗−1(s − r + 1, s)→ H∗(s, s + 1))

for the same reasons.

H∗(s − r + 1,∞) H∗(s,∞)
η

oo

η

��

H∗(s − r + 1, s + 1) H∗(s, s + 1)η
oo

H∗−1(s − r + 1, s)

δ

55

δ

;;

0



Er -term and dr -differential

Proposition
The map η induces an isomorphism

Es
r
∼=−→ im(η : H∗(s, s + r)→ H∗(s − r + 1, s + 1)) .

The dr -differential is given by

ds
r : Es

r −→ Es+r
r

[x ] 7−→ [δ(z)]

where z ∈ H∗(s, s + r), x = η(z) ∈ H∗(s, s + 1) and
δ(z) ∈ H∗+1(s + r , s + r + 1).



Proof
Considering the composition η′′ ◦ η′ (where the primes only
serve to keep the two homomorphisms apart),

H∗(s, s + r)

η′

��

H∗+1(s + 1, s + r)

H∗(s − r + 1, s + 1) H∗(s, s + 1)

δ

66

η′′
oo 0

H∗−1(s − r + 1, s)

δ

55

0

the isomorphism

η′′ : H∗(s, s + 1)/ ker(η′′)
∼=−→ im(η′′)

restricts to the asserted isomorphism

Es
r = Z s

r /B
s
r = im(η′)/ ker(η′′)

∼=−→ im(η′′ ◦ η′) .



Proof (cont.)
If x = η(z) ∈ Z s

r ⊂ H∗(s, s + 1) with z ∈ H∗(s, s + r), then
δ(x) = η(y) ∈ H∗+1(s + 1,∞) with y = δ(z) ∈ H∗+1(s + r ,∞),
by naturality. Hence η(y) = δ(z) ∈ H∗+1(s + r , s + r + 1), also
by naturality. Thus ds

r ([x ]) = [η(y)] = [δ(z)].

H∗+1(s + 1,∞) H∗+1(s + r ,∞)
η

oo

η

��

H∗+1(s + r , s + r + 1)

H∗(s, s + r)

δ

22

δ

55

η

��

H∗(s, s + 1)

δ

CC

0



Exhaustive filtration

Lemma
The colimit

G∗ = H∗(−∞,∞) ∼= colim
s

H∗(s,∞)

is exhaustively filtered by

F sG∗ = im(η : H∗(s,∞)→ H∗(−∞,∞)) .

Proof.
Easy.



Degreewise discrete filtration
Lemma
Consider an extended (H∗, η, δ) such that

. . .
η←− H∗(s,∞)

η←− H∗(s + 1,∞)
η←− . . .

is degreewise discrete. Then

Z s
∞ = ker(δ : H∗(s, s + 1)→ H∗+1(s + 1,∞))

= im(η : H∗(s,∞)→ H∗(s, s + 1))

and the filtration (F sG∗)s is degreewise discrete.

Proof.
If Hn+1(i ,∞) = 0 for i > b = b(n + 1) then

ker(Hn(s, s+1)
δ→ Hn+1(s+1,∞)) = ker(Hn(s, s+1)

δ→ Hn+1(s+1, s+r))

for all s + r > b, i.e., for all r > b − s, so (Z s
∞)n equals this

common value of (Z s
r )n.



Lemma
Consider any extended (H∗, η, δ). Then

Bs
∞ = im(δ : H∗−1(−∞, s)→ H∗(s, s + 1))

= ker(η : H∗(s, s + 1)→ H∗(−∞, s + 1)) .

Proof.
The union Bs

∞
∼= colimr Bs

r equals

colim
r

ker(η : H∗(s, s + 1)→ H∗(s − r + 1, s + 1))

∼= ker(η : H∗(s, s + 1)→ H∗(−∞, s + 1))

since H∗(−∞, s + 1) ∼= colimr H∗(s − r + 1, s + 1).



Proposition
Let (H∗, η, δ) be an extended cohomological Cartan–Eilenberg
system, with associated spectral sequence (Er ,dr )r≥1 and
filtered target G∗ = H∗(−∞,∞).

1. There is always a preferred injective homomorphism

F sG∗

F s+1G∗
//
ζ
// Es,∗
∞ ,

which is iso if Z s
∞ = im(η : H∗(s,∞)→ H∗(s, s + 1)).

2. In particular, if the sequence

. . .
η←− H∗(s,∞)

η←− H∗(s + 1,∞)
η←− . . .

is degreewise discrete, then ζ is an isomorphism and the
spectral sequence

E∗,∗r =⇒ G∗

converges.



Sketch proof.
Consider the following diagram, with G∗ = H∗(−∞,∞).

G∗ H∗(s,∞)
isoo

βs
��

H∗(s + 1,∞)
αsoo

H∗(s, s + 1)

γs

66

The maps is and βs induce isomorphisms

F sG∗

F s+1G∗
∼=←− H∗(s,∞)

im(αs) + ker(is)

∼=−→ ker(γs)

βs ker(is)

The inclusion ker(γs) ⊂ Z s
∞ and identity βs ker(is) = Bs

∞ then
give the inclusion

ker(γs)

βs ker(is)
⊂ Z s

∞
Bs
∞

= Es
∞ .



Lemma
Consider any extended (H∗, η, δ). There is a preferred
isomorphism

im(η : H∗(s,∞)→ H∗(s, s + 1))

ker(η : H∗(s, s + 1)→ H∗(−∞, s + 1))
∼=

F sG∗

F s+1G∗

for each s ∈ Z.

H∗(s,∞)

η

��

H∗(−∞, s + 1) H∗(s, s + 1)
η
oo 0

0



Outline

Cartan–Eilenberg systems
Cohomological Cartan–Eilenberg systems
Pairings of Cartan–Eilenberg systems
Filtered differential graded rings
Multiplicative Serre spectral sequence
The cohomological Wang and Gysin sequences
Rational cohomology of integral E–M spaces
First p-torsion in π∗(S3)
Cohomology of K (Z/2,2)



Pairings of finite Cartan–Eilenberg systems

We follow Douady’s presentation [Dou58] in the Cartan
seminar.

Definition
I Let (′H∗, η, δ), (′′H∗, η, δ) and (H∗, η, δ) be finite

cohomological Cartan–Eilenberg systems.
I A pairing µ : (′H∗, ′′H∗)→ H∗ of finite Cartan–Eilenberg

systems is a collection of degree-preserving
homomorphisms

µr : ′H∗(s, s + r)⊗ ′′H∗(u,u + r) −→ H∗(s + u, s + u + r)

for r ≥ 1 and s,u ∈ Z.
I These are required to satisfy the following two conditions.



Definition (cont.)

(SPP I) Each square

′H∗(s′, s′ + r ′)⊗ ′′H∗(u′,u′ + r ′)
µr ′ //

η⊗η
��

H∗(s′ + u′, s′ + u′ + r ′)

η

��
′H∗(s, s + r)⊗ ′′H∗(u,u + r)

µr
// H∗(s + u, s + u + r)

commutes, for r ≥ 1, r ′ ≥ 1, s ≤ s′, u ≤ u′, s + r ≤ s′ + r ′

and u + r ≤ u′ + r ′.



Definition (cont.)

(SPP II) In each (non-commutative) diagram

′H∗(s, s + r)⊗ ′′H∗(u,u + r)
η⊗δ
//

µr

((

δ⊗η

��

′H∗(s, s + 1)⊗ ′′H∗(u + r ,u + r + 1)

µ1

��

H∗(s + u, s + u + r)

δ

((
′H∗(s + r , s + r + 1)⊗ ′′H∗(u,u + 1)

µ1 // H∗(s + u + r , s + u + r + 1)

with r ≥ 1 and s,u ∈ Z, the diagonal composite equals the
sum of the two outer composites:

δµr = µ1(δ ⊗ η) + µ1(η ⊗ δ) .



Remark
I In terms of elements x ∈ ′H∗(s, s + r) and

y ∈ ′′H∗(u,u + r), the spectral pairing condition (SPP II)
asks that

δ(x · y) = δ(x) · η(y) + (−1)|x |η(x) · δ(y) ,

where we write · for the pairings µr and µ1, and |x | equals
the total degree of x .

I In other words, |x | = n if x ∈ ′Hn(s, s + r).
I This follows from how δ ⊗ η and η ⊗ δ are defined to act on

x ⊗ y , since η has degree 0 and δ has degree 1.



Pairing theorem

Theorem ([Dou58, Thm. II A(a,b,c)])
A pairing µ : (′H∗, ′′H∗)→ H∗ of finite Cartan–Eilenberg
systems induces a pairing µr : (′Er ,

′′Er )→ Er of the associated
spectral sequences, with

µ1 : ′Es
1 ⊗

′′Eu
1 −→ Es+u

1

equal to

µ1 : ′H∗(s, s + 1)⊗ ′′H∗(u,u + 1) −→ H∗(s + u, s + u + 1) .



Remark
This part of Douady’s theorem asserts

I

µr : ′Es
r ⊗ ′′Eu

r −→ Es+u
r

for each r ≥ 1 satisfies the Leibniz rule

drµr = µr (′dr ⊗ 1) + µr (1⊗ ′′dr )

dr (x · y) = ′dr (x) · y + (−1)|x |x · ′′dr (y)

for x ∈ ′Er and y ∈ ′′Er , and
I µr+1 is induced by µr in the sense that

µr+1([x ]⊗ [y ]) = [µr (x ⊗ y)]

in H(Er ,dr ) ∼= Er+1, where ′dr (x) = 0 and ′′dr (y) = 0.



Proof

We prove this by induction on r ≥ 1, using the diagram below.

′H∗(s, s + 1)⊗ ′′H∗(u,u + 1)
µ1

((

H∗(s + u, s + u + 1)

′H∗(s, s + r)⊗ ′′H∗(u,u + r)
η⊗δ

//

µr

((

δ⊗η

��

η⊗η

OO

′H∗(s, s + 1)⊗ ′′H∗(u + r ,u + r + 1)

µ1

��

H∗(s + u, s + u + r)

δ

((

η

OO

′H∗(s + r , s + r + 1)⊗ ′′H∗(u,u + 1)
µ1 // H∗(s + u + r , s + u + r + 1)



Proof (cont.)
I Classes [x ] ∈ ′Es

r and [y ] ∈ ′′Eu
r are represented by r -th

cocycles

x = η(z) ∈ ′Z s
r ⊂ ′H∗(s, s + 1)

y = η(w) ∈ ′′Z u
r ⊂ ′′H∗(u,u + 1) ,

with z ∈ ′H∗(s, s + r) and w ∈ ′′H∗(u,u + r).
I Then µr ([x ]⊗ [y ]) ∈ Es+u

r is the class of

µ1(x ⊗ y) ∈ Z s+u
r ⊂ H∗(s + u, s + u + 1) ,

which we can write as η(µr (z ⊗ w)) with
µr (z ⊗ w) ∈ H∗(s + u, s + u + r).

I Hence we can calculate dr (µr ([x ]⊗ [y ])) ∈ Es+u+r
r as the

class of

δ(µr (z ⊗ w)) ∈ Z s+u+r
r ⊂ H∗(s + u + r , s + u + r + 1) .



Proof (cont.)

I This equals the sum of

µ1(δ ⊗ η)(z ⊗ w) = µ1(δ(z)⊗ y)

and
µ1(η ⊗ δ)(z ⊗ w) = (−1)|z|µ1(x ⊗ δ(w)) ,

where |z| = |[x ]|.
I Here δ(z) ∈ ′H∗(s + r , s + r + 1) represents ′dr ([x ]), so
µ1(δ(z)⊗ y) represents µr (′dr ([x ])⊗ [y ]) ∈ Es+u+r

r .
I Similarly, δ(w) ∈ ′′H∗(u,u + r) represents ′′dr ([y ]), so
µ1(x ⊗ δ(w)) represents µr ([x ]⊗ ′′dr ([y ])) ∈ Es+u+r

r .



Proof (cont.)

I Hence dr (µr ([x ]⊗ [y ])) equals the sum

µr (′dr ([x ])⊗ [y ]) + (−1)|[x ]|µr ([x ]⊗ ′′dr ([y ])) ∈ Es+u+r
r ,

as claimed.
I Having proved that µ1 restricts to define µr on Er -classes

for each r ≥ 1, it follows that µr induces µr+1 upon
passage to homology with respect to dr , since both are
calculated from µ1.



Pairings of extended Cartan–Eilenberg systems

Definition
I Let (′H∗, η, δ), (′′H∗, η, δ) and (H∗, η, δ) be extended

cohomological Cartan–Eilenberg systems.
I A pairing µ : (′H∗, ′′H∗)→ H∗ of extended

Cartan–Eilenberg systems is a pairing (µr ) of the
underlying finite Cartan–Eilenberg systems, together with
degree-preserving homomorphisms

µ∞ : ′H∗(s,∞)⊗ ′′H∗(u,∞) −→ H∗(s + u,∞)

for s,u ∈ Z.
I These are required to satisfy the following additional

condition, extending (SPP I) to the case r ′ =∞ and
1 ≤ r ≤ ∞.



Definition (cont.)

(SPP III) The squares

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞

//

η⊗η
��

H∗(s + u,∞)

η

��
′H∗(s, s + r)⊗ ′′H∗(u,u + r)

µr
// H∗(s + u, s + u + r)

and

′H∗(s′,∞)⊗ ′′H∗(u′,∞)
µ∞
//

η⊗η
��

H∗(s′ + u′,∞)

η

��
′H∗(s,∞)⊗ ′′H∗(u,∞)

µ∞
// H∗(s + u,∞)

commute, for r ≥ 1, s ≤ s′ and u ≤ u′.



Pairing of target groups
Lemma
Given a pairing µ : (′H∗, ′′H∗)→ H∗ of extended
Cartan–Eilenberg systems, with filtered target groups

′G∗ = ′H∗(−∞,∞) , ′′G∗ = ′′H∗(−∞,∞) , G∗ = H∗(−∞,∞) ,

there is a unique filtration-preserving pairing
ν : ′G∗ ⊗ ′′G∗ −→ G∗ making the diagrams

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞
//

����

H∗(s + u,∞)

����

F s ′G∗ ⊗ F u ′′G∗ νs,u
//

��

F s+uG∗
��

��
′G∗ ⊗ ′′G∗ ν // G∗

commute for all s,u ∈ Z.



Proof

I The isomorphisms colims
′H∗(s,∞) ∼= ′G∗

and colimu
′′H∗(u,∞) ∼= ′′G∗ induce an isomorphism

colim
s,u

′H∗(s,∞)⊗ ′′H∗(u,∞)
∼=−→ ′G∗ ⊗ ′′G∗ .

I Hence ν is the canonical map induced by the composites

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞−→ H∗(s + u,∞) −→ G∗ ,

which are compatible by the second part of (SPP III).
I This makes the outer rectangle commute.



Proof (cont.)

I The tensor product of the defining surjections
′H∗(s,∞)→ F s ′G∗ and ′′H∗(u,∞)→ F u ′′G∗ gives the
surjection

′H∗(s,∞)⊗ ′′H∗(u,∞) −→ F s ′G∗ ⊗ F u ′′G∗

in the left hand column, whose kernel maps to zero in
F s+uG∗ ⊂ G∗.

I Hence there is a unique homomorphism νs,u making the
upper square commute.

I It follows that the lower square commutes, by the stated
surjectivity.



Convergence of pairings

Proposition ([Dou58, Thm. II A(d)])

I Let (′H∗, η, δ), (′′H∗, η, δ) and (H∗, η, δ) be extended
Cartan–Eilenberg systems with associated spectral
sequences (′Er ,

′dr ), (′′Er ,
′′dr ) and (Er ,dr ) converging to

′G∗, ′′G∗ and G∗, respectively.
I Let

µ : (′H∗, ′′H∗) −→ H∗

be a pairing of extended Cartan–Eilenberg systems.
I Then the associated spectral sequence pairing

µr : (′Er ,
′′Er ) −→ E r

converges to the filtration-preserving pairing

ν : ′G∗ ⊗ ′′G∗ −→ G∗ .



Proof
We show that the lower square in the diagram

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞
//

����

H∗(s + u,∞)

����

F s ′G∗ ⊗ F u ′′G∗ νs,u
//

����

F s+uG∗

����

F s ′G∗

F s+1′G∗
⊗ F u ′′G∗

F u+1′′G∗
ν̄s,u

//

ζ⊗ζ
��

F s+uG∗

F s+u+1G∗
��

ζ

��
′Es
∞ ⊗ ′′Eu

∞
µ∞

// Es+u
∞

commutes, where ζ is as before. The upper and middle
squares commute by the definition of νs,u and ν̄s,u, respectively.
By the surjectivity of the upper and middle left hand maps, it
suffices to prove that the outer rectangle commutes.



Proof (cont.)
In view of the construction of ζ, the outer rectangle can instead
be factored as follows.

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞
//

��

H∗(s + u,∞)

��
′Z s
∞ ⊗ ′′Z u

∞
µ1|

//

����

Z s+u
∞

����
′Es
∞ ⊗ ′′Eu

∞
µ∞

// Es+u
∞

Here the lower square defines µ∞ in terms of the restricted
pairing µ1|, and the upper square is part of the following
commutative diagram.

′H∗(s,∞)⊗ ′′H∗(u,∞)
µ∞

//

��

H∗(s + u,∞)

��
′Z s
∞ ⊗ ′′Z u

∞
µ1|

//

��

��

Z s+u
∞
��

��
′H∗(s, s + 1)⊗ ′′H∗(u,u + 1)

µ1 // H∗(s + u, s + u + 1)



Remark
In the presence of (SPP I), condition (SPP II) follows from the
stronger condition below, which appears in [Nei80].

(SPP II+) In each (non-commutative) diagram

′H∗(s, s + r)⊗ ′′H∗(u,u + r)
1⊗δ
//

µr

''

δ⊗1

��

′H∗(s, s + r)⊗ ′′H∗(u + r ,u + 2r)

µr

��

H∗(s + u, s + u + r)

δ

''
′H∗(s + r , s + 2r)⊗ ′′H∗(u,u + r)

µr
// H∗(s + u + r , s + u + 2r)

with r ≥ 1 and s,u ∈ Z, the diagonal composite equals the
sum of the two outer composites:

δµr = µr (δ ⊗ 1) + µr (1⊗ δ) .
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Tensor product of cochain complexes
Many multiplicative Cartan–Eilenberg systems, with associated
multiplicative spectral sequences, arise from filtered differential
graded rings.

Definition
The tensor product of two cochain complexes (′C∗, ′δ) and
(′′C∗, ′′δ) is the total complex

C∗ = ′C∗ ⊗ ′′C∗

with
Ck =

⊕
i+j=k

′C i ⊗ ′′C j ,

equipped with the differential δ = ′δ ⊗ 1 + 1⊗ ′′δ, given by

δ(x ⊗ y) = ′δ(x)⊗ y + (−1)|x |x ⊗ ′′δ(y) ,

where |x | = i is the total degree of x ∈ ′C i .



Symmetric monoidal structure

I The unit cochain complex is Z, concentrated in degree 0.
I The twist isomorphism

τ : ′C∗ ⊗ ′′C∗
∼=−→ ′′C∗ ⊗ ′C∗

is the chain isomorphism given by

τ(x ⊗ y) = (−1)|x ||y |y ⊗ x .

Lemma
The tensor product, unit complex and twist isomorphism define
a symmetric monoidal structure on the category of cochain
complexes.



Proof
I This means that the tensor product is associative, unital

and commutative, up to coherent isomorphisms.
I The associativity isomorphism

(′C∗ ⊗ ′′C∗)⊗ ′′′C∗ ∼= ′C∗ ⊗ (′′C∗ ⊗ ′′′C∗)

maps (x ⊗ y)⊗ z to x ⊗ (y ⊗ z).
I The unitality isomorphisms

Z⊗ C∗ ∼= C∗ ∼= C∗ ⊗ Z

identify 1⊗ x , x and x ⊗ 1.
I The commutativity isomorphism is given by the twist

isomorphism.
I The required coherence diagrams are listed in

[ML71, §VII.1 and §VII.7].



Differential graded rings
The tensor product lets us define pairings ′C∗ ⊗ ′′C∗ → C∗ of
two cochain complexes to a third. We concentrate on the case
when the three cochain complexes are the same.

Definition
A differential graded ring is a cochain complex (C∗, δ) equipped
with a unital and associative cochain homomorphism

µ : C∗ ⊗ C∗ −→ C∗ .

I µ makes (C∗, δ) a monoid in the monoidal category of
cochain complexes.

I µ maps x ⊗ y ∈ Cn ⊗ Cm to µ(x ⊗ y) = x · y ∈ Cn+m and
satisfies the Leibniz rule

δ(x · y) = δ(x) · y + (−1)|x |x · δ(y) .

I There is a cocycle 1 ∈ C0 with x · 1 = x = 1 · x for all x ,
and (x · y) · z = x · (y · z) for all x , y and z.



Diagrams

In categorical terms, associativity and unitality ask that the
diagrams

(C∗ ⊗ C∗)⊗ C∗
∼= //

µ⊗1
��

C∗ ⊗ (C∗ ⊗ C∗)

1⊗µ
��

C∗ ⊗ C∗
µ

// C∗ C∗ ⊗ C∗
µ

oo

and

Z⊗ C∗
η⊗1
//

∼=
&&

C∗ ⊗ C∗

µ

��

C∗ ⊗ Z1⊗η
oo

∼=
xx

C∗

commute, where η : Z→ C∗ maps 1 ∈ Z to 1 ∈ C∗.



Singular cochains

Example
The singular cochains C∗(X ) on a space X form a differential
graded ring, with respect to the cup product

∪ : C∗(X )⊗ C∗(X ) −→ C∗(X )

given by the Alexander–Whitney formula.



Cohomology ring

Lemma
The cohomology H∗(C∗) of a differential graded ring (C∗, δ, µ)
is a graded ring.

Proof.
For cocycles x ∈ Cn and y ∈ Cm the product of their
cohomology classes [x ] ∈ Hn(C∗) and [y ] ∈ Hm(C∗) is the
cohomology class

[x ] · [y ] = [x · y ] ∈ Hn+m(C∗)

of the product x · y = µ(x · y).
This is a cocycle by the Leibniz rule, and its cohomology class
only depends on the cohomology classes of x and y , by further
applications of the Leibniz rule.



Differential graded algebras

I If C∗ is a complex of Λ-modules for some commutative
ring Λ, and µ is Λ-bilinear, we say that C∗ is a differential
graded Λ-algebra, often abbreviated to a “DG algebra”.

I The cohomology H∗(C∗) is then a graded Λ-algebra.

I The further abbreviation “DGA” can be confusing in this
context, since a “DGA algebra” means a “differential
graded augmented algebra”, in the terminology from the
Cartan seminar.

I We will discuss augmentations later, in the context of Hopf
algebras.



Massey products

I There is more structure in the cohomology of a differential
graded ring than this graded ring structure, including a
variety of Massey products.

I If a = [x ], b = [y ] and c = [z] satisfy a · b = 0 and b · c = 0
in H∗(C∗), then we can write x · y = δ(u) and y · z = δ(v),
for some cochains u and v .

I The expression

w = u · z − (−1)|x |x · v

then defines a cocycle, since

δ(w) = δ(u) · z − x · δ(v) = (x · y) · z − x · (y · z) = 0 .



Massey products (cont.)

I Its cohomology class

[w ] = [u · z − (−1)|x |x · v ] ∈ 〈a,b, c〉

defines an element in the Massey product

〈a,b, c〉 ⊂ Hn(C∗) ,

where n = |a|+ |b|+ |c| − 1.
I Different choices of cobounding classes u and v may give

different classes [w ], and the Massey product equals the
set of all possible such values.

I NB: This is not the most standard sign convention.



Commutative DG rings

Definition
A differential graded ring (C∗, δ, µ) is commutative if the
diagram

C∗ ⊗ C∗ τ
∼=

//

µ
$$

C∗ ⊗ C∗

µ
zz

C∗

commutes, i.e., if x · y = (−1)|x ||y |y · x for all x , y ∈ C∗.

I The cohomology of a commutative differential graded ring
is a (graded) commutative ring.



Homotopy commutative DG algebras

I There are natural examples of non-commutative differential
graded rings, such as the cochains C∗(X ) on a space X ,
whose cohomology is nonetheless (graded) commutative.

I There are more flexible notions of commutativity up to
chain homotopy, and higher chain homotopies, that are
often more appropriate.

I An E∞ DG algebra satisfies “homotopy everything”
conditions.

I These lead to the construction of power operations in the
cohomology of these differential graded rings, or algebras,
of which the Steenrod operations in mod p cohomology are
prime examples.



Pairings of filtered cochain complexes

We can consider pairings of two filtered cochain complexes to a
third. We concentrate on the case when the three filtered
cochain complexes are the same.

Definition
A filtered differential graded ring is a cochain complex (C∗, δ)
equipped with a decreasing filtration (F sC∗)s and an
associative and unital cochain morphism

µ : C∗ ⊗ C∗ −→ C∗ ,

such that the product preserves the filtration.
In other words, the image of the composite

F sC∗ ⊗ F uC∗ −→ C∗ ⊗ C∗
µ−→ C∗

is contained in F s+uC∗, for all s,u ∈ Z.



Lemma
Let C∗ be a filtered differential graded ring. There is a unique
chain map µs,u making the diagram

F sC∗ ⊗ F uC∗
µs,u
//

��

F s+uC∗

��

C∗ ⊗ C∗
µ

// C∗

commute, for each pair (s,u).



Lemma (cont.)
These induce a unique chain map µr making the diagram

F sC∗ ⊗ F uC∗
µs,u

//

����

F s+uC∗

����

F sC∗

F s+r C∗
⊗ F uC∗

F u+r C∗
µr
//

F s+uC∗

F s+u+r C∗

commute, for all r ≥ 1, s and u.

Proof.
Both µs+r ,u and µs,u+r take values in F s+u+r C∗.



A pairing of filtered cochain complexes induces a pairing of
finite Cartan–Eilenberg systems and the associated spectral
sequences.

Proposition ([Mas54, §7, §9])
Let C∗ be a filtered differential graded ring, with associated
finite Cartan–Eilenberg system

H∗(i , j) = H∗(F iC∗/F jC∗)

for integers i ≤ j .
I The pairing µ induces a pairing

µr : H∗(s, s + r)⊗ H∗(u,u + r) −→ H∗(s + u, s + u + r)

of finite Cartan–Eilenberg systems, and a pairing

µr : Es
r ⊗ Eu

r −→ Es+u
r

of the associated spectral sequences, making (Er ,dr )r≥1 a
ring spectral sequence.



Proposition (cont.)

I The E1-term is given by

Es,t
1 = Hs+t (F sC∗/F s+1C∗) .

I The E1-pairing

µ1 : H∗(F sC∗/F s+1C∗)⊗ H∗(F uC∗/F u+1C∗)

−→ H∗(F s+uC∗/F s+u+1C∗)

is given by

µ1 : [π(x̃)]⊗ [π(ỹ)] 7−→ [πµs,u(x̃ ⊗ ỹ)] ,

where π : F sC∗ → F sC∗/F s+1C∗, etc.



Proposition (cont.)

I If the filtration (F sC∗)s exhausts C∗, then (µr ) and

µ∞ : H∗(s,∞)⊗ H∗(u,∞) −→ H∗(s + u,∞)

define a pairing of extended Cartan–Eilenberg systems,
with H∗(s,∞) = H∗(F sC∗).

I The pairing of spectral sequences converges to the
filtration-preserving pairing

µ : H∗(C∗)⊗ H∗(C∗) −→ H∗(C∗) ,

where Gn = Hn(C∗) is exhaustively filtered by
F sGn = im(Hn(F sC∗)→ Hn(C∗)), for s ∈ Z.



Proof
The chain homomorphism

µr : F sC∗/F s+r C∗ ⊗ F uC∗/F u+r C∗ −→ F s+uC∗/F s+u+r C∗

and the cohomology cross product induce the finite
Cartan–Eilenberg system pairing

µr : H∗(F sC∗/F s+r C∗)⊗ H∗(F uC∗/F u+r C∗)
×−→ H∗(F sC∗/F s+r C∗ ⊗ F uC∗/F u+r C∗)

µr∗−→ H∗(F s+uC∗/F s+u+r C∗) .

In the extended case we set F∞C∗ = 0 and F−∞C∗ = C∗, and
the chain homomorphism µs,u induces

µ∞ : H∗(F sC∗)⊗H∗(F uC∗) ×−→ H∗(F sC∗⊗F uC∗)
µs,u
∗−→ H∗(F s+uC∗) .

We must confirm conditions (SPP I) and (SPP II) in the finite
case, and condition (SPP III) in the extended case.



Proof (cont.)
The diagram

F s′C∗ ⊗ F u′C∗
µs′,u′

//

��

F s′+u′C∗
��

��

F sC∗ ⊗ F uC∗
µs,u

// F s+uC∗

of cochain complexes commutes, for s ≤ s′ and u ≤ u′, and
induces a commutative diagram

F s′C∗

F s′+r ′C∗
⊗ F u′C∗

F u′+r ′C∗
µr ′ //

��

F s′+u′C∗

F s′+u′+r C∗
��

��

F sC∗

F s+r C∗
⊗ F uC∗

F u+r C∗
µr

//
F s+uC∗

F s+u+r C∗

of quotient complexes, for r ≥ 1, r ′ ≥ 1, s + r ≤ s′ + r ′ and
u + r ≤ u′ + r ′. Passing to cohomology, we obtain the square
required to commute in (SPP I).



Proof (cont.)
Let x̃ ∈ F sC∗ and ỹ ∈ F uC∗ lift cocycles x ∈ F sC∗/F s+r C∗

and y ∈ F uC∗/F u+r C∗, representing classes [x ] ∈ H∗(s, s + r)
and [y ] ∈ H∗(u,u + r). Note that δ(x̃) ∈ F s+r C∗+1 and
δ(ỹ) ∈ F u+r C∗+1. The product

z̃ = µs,u(x̃ ⊗ ỹ) ∈ F s+uC∗

then lifts

z = µr (x ⊗ y) ∈ F s+uC∗

F s+u+r C∗

representing [z] = µr ([x ]⊗ [y ]) ∈ H∗(s + u, s + u + r). Its image

δ([z]) = δµr ([x ]⊗ [y ]) ∈ H∗+1(s + u + r , s + u + r + 1)

under the connecting homomorphism is then given by the class
[πδ(z̃)] of the image of the coboundary

δ(z̃) = δµs,u(x̃ ⊗ ỹ) ∈ F s+u+r C∗+1

under the projection
π : F s+u+r C∗+1 → F s+u+r C∗+1/F s+u+r+1C∗+1.



Proof (cont.)

By the Leibniz rule,

δµ(x̃ ⊗ ỹ) = µ(δ(x̃)⊗ ỹ) + (−1)|x̃ |µ(x̃ ⊗ δ(ỹ))

in C∗, so [πδ(z̃)] equals the sum of

[πµs+r ,u(δ(x̃)⊗ ỹ)] = [µ1(πδ(x̃)⊗ π(ỹ))] = µ1(δ([x ])⊗ η([y ]))

and (−1)|x̃ | = (−1)|x | = (−1)|[x ]| times

[πµs,u+r (x̃ ⊗ δ(ỹ))] = [µ1(π(x̃)⊗ πδ(ỹ))] = µ1(η([x ])⊗ δ([y ])) .

This proves that δµr = µ1(δ ⊗ η) + µ1(η ⊗ δ) when evaluated on
any [x ]⊗ [y ], as demanded by (SPP II).



Proof (cont.)

Letting F∞C∗ = 0, the proof of (SPP I) extends as stated to the
cases with r ′ =∞ and r ≥ 1 or r =∞, where we interpret
n +∞ as∞ for all integers n, and this proves (SPP III).

Remark
If we redefine π to be the canonical projection
π : F sC∗ → F sC∗/F s+r C∗, so that π(x̃) = x and π(ỹ) = y , then
the above proof of (SPP II) proves the stronger form (SPP II+)
from an earlier remark.
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Serre’s filtered DG ring
I We return to the situation of a fiber sequence

F −→ E
p−→ B .

I Serre’s original construction [Ser51] of his spectral
sequence used singular cubes σ : In → E to define a
cubical chain complex

(A∗(E), ∂)

with homology calculating H∗(E), which could be
increasingly filtered by saying that σ lies in FsA∗(E) if
pσ : In → E → B factors through the projection In → Is to
the s first coordinates.

I Dually, the cubical cochain complex

(A∗(E), δ)

calculating H∗(E) is decreasingly filtered by saying that a
cochain lies in F sA∗(E) if it vanishes on chains of filtration
≤ s − 1.



Serre’s filtered DG ring (cont.)

I There is a cup product making A∗(E) a differential graded
ring, and the decreasing filtration (F sA∗(E))s respects the
product, making A∗(E) a filtered differential graded ring.

I Hence the associated spectral sequence

Es,t
2 = Hs(B; H t (F )) =⇒s Hs+t (E) ,

which is the cohomology Serre spectral sequence for
p : E → B, is a ring spectral sequence.

I The pairings of E1- and E2-terms are given in terms of the
cup products in A∗(B), H∗(B) and H∗(F ), and the spectral
sequence pairing converges to the cup product in H∗(E).



Filtered singular cochains

I Instead of working with cubical chains and cochains, we
will filter the singular cochain complex C∗(E) by the
subcomplexes F sC∗(E) = C∗(E ,Es−1).

I These are not strictly respected by the cochain level cup
product, because the cross product of two cochains
vanishing on Es−1 and Eu−1 will vanish on all chains in
Es−1 × E and in E × Eu−1, but usually not on all chains in
Es−1 × E ∪ E × Eu−1.

I Hence C∗(E) is not a filtered differential graded ring, and
we must give a different proof of the multiplicativity of the
cohomology Serre spectral sequence.

I For this we will adapt [Whi78, §XIII.8], making use of
excision isomorphisms and the formalism of pairings of
Cartan–Eilenberg systems.



The Serre Cartan–Eilenberg system
Let p : E → B be a fibration, with B a CW complex. Let
Es = p−1(B(s)), with Es = ∅ for −∞ ≤ s < 0 and E∞ = E .
Define a cohomological extended Cartan–Eilenberg system
H∗ = H∗(p) by

H∗(i , j) = H∗(Ej−1,Ei−1)

for −∞ ≤ i ≤ j ≤ ∞, with δ : H∗(i , j)→ H∗+1(j , k) equal to the
connecting homomorphism

δ : H∗(Ej−1,Ei−1) −→ H∗+1(Ek−1,Ej−1) .

The associated spectral sequence is the cohomological Serre
spectral sequence

Es,t
r = Es,t

r (p) =⇒s Hs+t (E)

with

Es,t
1
∼= Cs

CW (B; H t (F )) and Es,t
2
∼= Hs(B; H t (F )) .



Proposition
Let p′ : E ′ → B′ and p′′ : E ′′ → B′′ be fibrations, where B′ and
B′′ are CW complexes. There is a natural pairing of extended
Cartan–Eilenberg systems

µ : (H∗(p′),H∗(p′′)) −→ H∗(p′ × p′′)

with components

µr : H∗(E ′s+r−1,E
′
s−1)⊗ H∗(E ′′u+r−1,E

′′
u−1)

×−→ H∗(E ′s+r−1 × E ′′u+r−1,E
′
s−1 × E ′′u+r−1 ∪ E ′s+r−1 × E ′′u−1)

−→ H∗((E ′ × E ′′)s+u+r−1, (E ′ × E ′′)s+u−1)

and

µ∞ : H∗(E ′,E ′s−1)⊗ H∗(E ′′,E ′′u−1)

×−→ H∗(E ′ × E ′′,E ′s−1 × E ′′ ∪ E ′ × E ′′u−1)

−→ H∗(E ′ × E ′′, (E ′ × E ′′)s+u−1) .



Proof

To simplify the notation a little we restrict to the case where
p′ = p′′ = p : E → B, but the general case is easily recovered
by working with p′ in the first factor and p′′ in the second factor
of each product.
The product B × B has the CW structure with k -skeleton

(B × B)(k) =
⋃

i+j=k

B(i) × B(j) .

We lift the skeleton filtration along p × p to define the filtration
on E × E with

(E × E)k =
⋃

i+j=k

Ei × Ej .



Proof (cont.)

We then have inclusions

(B × B)(s+u−1) ⊂ B(s−1) × B ∪ B × B(u−1)

and
(E × E)s+u−1 ⊂ Es−1 × E ∪ E × Eu−1

of subspaces of B × B and E × E , respectively.
This defines

µ∞ : H∗(E ,Es−1)⊗ H∗(E ,Eu−1)

×−→ H∗(E × E ,Es−1 × E ∪ E × Eu−1)

−→ H∗(E × E , (E × E)s+u−1)

as the composite of the cohomology cross product and the
(now) evident restriction map.



Proof (cont.)
The definition of µr for finite r ≥ 1 is a little more elaborate.
The subcomplexes

B(s+r−1) × B(u+r−1)

and
(B × B)∧s,u,r =

⋃
i+j=s+u+r−1
i < s or j < u

B(i) × B(j)

of B × B have intersection

B(s−1) × B(u+r−1) ∪ B(s+r−1) × B(u−1)

and union

B(s+r−1) × B(u+r−1) ∪ (B × B)(s+u+r−1) .

Note that (B × B)(s+u−1) ⊂ (B × B)∧s,u,r .



Proof (cont.)

Likewise, the subspaces

Es+r−1 × Eu+r−1

and
(E × E)∧s,u,r =

⋃
i+j=s+u+r−1
i < s or j < u

Ei × Ej

of E × E have intersection

Es−1 × Eu+r−1 ∪ Es+r−1 × Eu−1

and union

Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r−1 .

Furthermore, (E × E)s+u−1 ⊂ (E × E)∧s,u,r .



u−1

u

u+r−1

u+r

s−1 s s+r−1 s+r

Es+r−1 × Eu+r−1

(E × E)∧s,u,r

(E × E)s+u−1

(E × E)s+u+r−1

(E × E)s+u+r

Subspaces of E × E



Proof (cont.)
Hence there is an excision isomorphism

H∗(Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r−1, (E × E)∧s,u,r )
∼=−→ H∗(Es+r−1 × Eu+r−1,Es−1 × Eu+r−1 ∪ Es+r−1 × Eu−1) ,

and a restriction homomorphism

H∗(Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r−1, (E × E)∧s,u,r )

−→ H∗((E × E)s+u+r−1, (E × E)s+u−1) .

The pairing µr equals the composite

H∗(Es+r−1,Es−1)⊗ H∗(Eu+r−1,Eu−1)

×−→ H∗(Es+r−1 × Eu+r−1,Es−1 × Eu+r−1 ∪ Es+r−1 × Eu−1)
∼=←− H∗(Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r−1, (E × E)∧s,u,r )

−→ H∗((E × E)s+u+r−1, (E × E)s+u−1) .



Proof (cont.)

Condition (SPP I) follows by naturality of the three
homomorphisms composing to µr with respect to the inclusions

Es−1 ⊂ Es′−1

Es+r−1 ⊂ Es′+r ′−1

Eu−1 ⊂ Eu′−1

Eu+r−1 ⊂ Eu′+r ′−1

(E × E)s+u−1 ⊂ (E × E)s′+u′−1

(E × E)s+u+r−1 ⊂ (E × E)s′+u′+r ′−1

(E × E)∧s,u,r ⊂ (E × E)∧s′,u′,r ′

for s ≤ s′, u ≤ u′, s + r ≤ s′ + r ′ and u + r ≤ u′ + r ′.



Proof (cont.)

Only the last one requires comment: The inclusion

(E × E)∧s,u,r =
⋃

i+j=s+u+r−1
i < s or j < u

Ei × Ej

⊂
⋃

i ′+j ′=s′+u′+r ′−1
i ′ < s′ or j ′ < u′

Ei ′ × Ej ′ = (E × E)∧s′,u′,r ′

holds since if i < s and i + j = s + u + r − 1 then
Ei × Ej ⊂ Ei × Ej ′ with i < s′ and i + j ′ = s′ + u′ + r ′ − 1, and
similarly if j < u ≤ u′.



Proof (cont.)
Condition (SPP III) holds in the same way, setting r ′ =∞, and
noting that the excision isomorphism in the definition of µr is
the identity map of

H∗(E × E ,Es−1 × E ∪ E × Eu−1)

when r =∞.

To verify condition (SPP II) we consider the composite

H∗(Es+r−1,Es−1)⊗ H∗(Eu+r−1,Eu−1)
µr−→ H∗((E × E)s+u+r−1, (E × E)s+u−1)

δ−→ H∗+1((E × E)s+u+r , (E × E)s+u+r−1)

∼=
∏

i+j=s+u+r

H∗+1(Ei × Ej ,Ei−1 × Ej ∪ Ei × Ej−1) ,

where the final isomorphism follows from excision.



Proof (cont.)
We claim that

1. the component with (i , j) = (s + r ,u) equals

H∗(Es+r−1,Es−1)⊗ H∗(Eu+r−1,Eu−1)

δ⊗η−→ H∗+1(Es+r ,Es+r−1)⊗ H∗(Eu,Eu−1)

×−→ H∗+1(Es+r × Eu,Es+r−1 × Eu ∪ Es+r × Eu−1) ,

2. the component with (i , j) = (s,u + r) equals

H∗(Es+r−1,Es−1)⊗ H∗(Eu+r−1,Eu−1)

η⊗δ−→ H∗+1(Es,Es−1)⊗ H∗(Eu+r ,Eu+r−1)

×−→ H∗+1(Es × Eu+r ,Es−1 × Eu+r ∪ Es × Eu+r−1) ,

and
3. the remaining components are zero.

This implies the relation

δµr = µ1(δ ⊗ η) + µ1(η ⊗ δ) .



Proof (cont.)

For the first claim we use the commutative diagram in the figure
on the next page, with the following abbreviations.

X = Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r

Y = Es+r−1 × Eu+r−1 ∪ (E × E)s+u+r−1

Z = Es−1 × Eu ∪ Es+r × Eu−1

The two quadrangles containing H∗+1(X ,Y ) commute by the
naturality of δ with respect to the maps of triples

((E×E)s+u+r , (E×E)s+u+r−1, (E×E)s+u−1) ⊂ (X ,Y , (E×E)∧s,u,r )

and

(Es+r ×Eu,Es+r−1×Eu ∪Es+r ×Eu−1,Z ) ⊂ (X ,Y , (E×E)∧s,u,r ) .

The second claim follows from a similar diagram.



H∗(Es+r−1,Es−1)⊗ H∗(Eu+r−1,Eu−1)
1⊗η

//

×

��

H∗(Es+r−1,Es−1)⊗ H∗(Eu,Eu−1)

×

��

δ⊗1

��

H∗((Es+r−1,Es−1)× (Eu+r−1,Eu−1)) // H∗((Es+r−1,Es−1)× (Eu,Eu−1))

H∗(Y , (E × E)∧s,u,r )

∼=

OO

//

��

δ

++

H∗(Es+r−1 × Eu ∪ Es+r × Eu−1,Z )

∼=

OO

δ

xx

H∗((E × E)s+u+r−1, (E × E)s+u−1)

δ

��

H∗+1(X ,Y )

ss ��

H∗+1(Es+r ,Es+r−1)⊗ H∗(Eu,Eu−1)

×
ss

H∗+1((E × E)s+u+r , (E × E)s+u+r−1) // H∗+1((Es+r ,Es+r−1)× (Eu,Eu−1))

The component (i , j) = (s + r ,u) of δµr



Proof (cont.)

For the third claim we assume i + j = s + u + r with
i /∈ {s, s + r}, so that j /∈ {u,u + r}, and use the abbreviations

V = Es−1 × E ∪ E × Eu−1

W = Es−1 × E ∪ Es+r−1 × Eu+r−1 ∪ E × Eu−1

and the commutative diagram on the next page.
The quadrangle commutes by naturality of δ with respect to the
map of triples

((E×E)s+u+r ∩W , (E×E)s+u+r−1, (E×E)s+u−1) ⊂ (W ,W ,V ) .

Since H∗+1(W ,W ) is trivial, it follows that the left hand vertical
composite is zero.



H∗((Es+r−1,Es−1)× (Eu+r−1,Eu−1))

H∗(Y , (E × E)∧s,u,r )

∼=

OO

��

H∗(W ,V )
∼=oo

∼=

kk

δ

��ss

H∗((E × E)s+u+r−1, (E × E)s+u−1)

δ

��

δ

++

H∗+1(W ,W )

��

H∗+1((E × E)s+u+r , (E × E)s+u+r−1)

��

// H∗+1((E × E)s+u+r ∩W , (E × E)s+u+r−1)

ss

H∗+1((Ei ,Ei−1)× (Ej ,Ej−1))

The trivial components (i , j) of δµr



Pairing of Serre spectral sequences

The pairing

µ : (H∗(p′),H∗(p′′)) −→ H∗(p′ × p′′)

of extended Cartan–Eilenberg systems induces a pairing

(µr : (Er (p′),Er (p′′))→ Er (p′ × p′′))

of the associated cohomological Serre spectral sequences,
converging to a filtration-preserving pairing

ν : H∗(E ′)⊗ H∗(E ′′) −→ H∗(E ′ × E ′′)

of their abutments. We now make these pairing explicit.



Pairing of Serre E1-terms

Recall the isomorphism
Es,t

1 = Hs+t (Es,Es−1) ∼= Cs
CW (B; H t (F )).

Proposition
The pairing of E1-terms

Es,t
1 (p′)⊗ Eu,v

1 (p′′) = Hs+t (E ′s,E
′
s−1)⊗ Hu+v (E ′′u ,E

′′
u−1)

µ1−→ Hs+u+t+v ((E ′×E ′′)s+u, (E ′×E ′′)s+u−1) = Es+u,t+v
1 (p′×p′′)

corresponds to (−1)tu times the cross product

Cs
CW (B′; H t (F ))⊗ Cu

CW (B′′; H v (F ′))

×−→ Cs+u
CW (B′ × B′′; H t+v (F × F ′)) .



Sketch proof

Assume p′ = p′′ = p. The cohomology cross products

Hs(B(s),B(s−1); H t (F ))⊗ Hu(B(u),B(u−1); H v (F ))

×−→ Hs+u(B(s+u),B(s+u−1); H t (F )⊗H v (F ))

and
H t (F )⊗H v (F )

×−→H t+v (F × F )

combine to define the cross product of the proposition. The
sign (−1)tu arises from the factor

Hs+t ((Is
α, ∂Is

α)× Fbα)⊗ Hu+v ((Iu
β , ∂Iu

β)× Fbβ )

−→ Hs+u+t+v ((Is+u
α,β , ∂Is+u

α,β )× Fbα × Fbα)

of the pairing µ1, which sends (gs,α × fα)⊗ (gu,β × fβ) to
(−1)tugs+u,α,β × fα × fβ, where t = |fα|.



Pairing of Serre E2-terms

Lemma
The pairing of E2-terms

µ2 : Es,t
2 (p′)⊗ Eu,v

2 (p′) −→ Es+u,t+v
2 (p′ × p′′)

corresponds to (−1)tu times the cohomology cross product

Hs(B′; H t (F ′))⊗ Hu(B′′; H v (F ′′))

×−→ Hs+u(B′ × B′′; H t+v (F ′ × F ′′)) .

Proof.
We obtain µ2 from µ1 by passing to cohomology with respect to
the d1-differentials.



Pairing of Serre abutments

Lemma
The filtration-preserving pairing

ν : H∗(E ′)⊗ H∗(E ′′) −→ H∗(E ′ × E ′′)

equals the cohomology cross product.

Proof.
By definition,

µ∞ : H∗(E ′,E ′s−1)⊗ H∗(E ′′,E ′′u−1)

−→ H∗(E ′ × E ′′,E ′s−1 × E ′′ ∪ E ′ × E ′′u−1)

−→ H∗(E ′ × E ′′, (E ′ × E ′′)s+u−1)

is given by the relative cohomology cross product followed by
restriction. Passing to the colimit for s → −∞ and u → −∞
gives ν, and this colimit is achieved already for s = u = 0.



External cross to internal cup

To pass from the external cross product to the internal cup
product, we assume p′ = p′′ = p : E → B and pull back along a
filtration-preserving approximation D : E → E × E to the
diagonal map ∆: E → E × E .

∪ : H∗(E)⊗ H∗(E)
×−→ H∗(E × E)

D∗=∆∗−→ H∗(E)

Let B be a CW complex based at a 0-cell b0, let p : E → B be a
(Hurewicz) fibration, and let F = p−1(b0) be its fiber.



Proposition

I There is a homotopy

H̄ : I × B −→ B × B

with H̄(t ,b0) = (b0,b0) for all t , from the diagonal map
∆: B → B × B to a cellular map D̄ : B → B × B.

I It admits a lift
H : I × E −→ E × E

with (p × p)H = H̄(1× p), from the diagonal map
∆: E → E × E to a filtration-preserving map
D : E → E × E.

I This restricts to a homotopy

H̃ : I × F −→ F × F

from the diagonal map ∆: F → F × F to a map
D̃ : F → F × F.



Proof.
By cellular approximation, the map ∆: B → B × B is homotopic
to a cellular map D̄ : B → B × B, and we may assume that the
homotopy H̄ is stationary on {b0}, since ∆ is already cellular on
that subspace.

The diagonal map ∆: E → E × E lifts ∆p : E → B × B, so by
the homotopy lifting property for p × p we have a homotopy
H : I×E → E ×E from ∆ to D : E → E ×E with (p×p)D = D̄p.

E ∆ //

i0
��

E × E

p×p
��

I × E
1×p
//

H
55

I × B
H̄
// B × B

The restriction H|I × F then factors through F × F ⊂ E × E ,
giving the required homotopy H̃ from ∆: F → F × F to D̃.



Morphism of Cartan–Eilenberg systems

Proposition

I The filtration-preserving map D : E → E × E induces a
morphism

D∗ : H∗(p × p) −→ H∗(p)

of Cartan–Eilenberg systems and a morphism

D∗r : E∗,∗r (p × p) −→ E∗,∗r (p)

of cohomological Serre spectral sequences.
I The homomorphism D∗1 corresponds to the restriction

D̄∗ : C∗CW (B × B; H ∗(F × F )) −→ C∗CW (B; H ∗(F ))

associated to the cellular map D̄ : B → B × B and the
coefficient homomorphism
D̃∗ = ∆∗ : H ∗(F × F )→H ∗(F ).



Proposition (cont.)

I The homomorphism D∗2 corresponds to the restriction
homomorphism

D̄∗ = ∆∗ : H∗(B × B; H ∗(F × F )) −→ H∗(B; H ∗(F )) .

I The induced morphisms of filtered target groups is

D∗ = ∆∗ : H∗(p × p)(−∞,∞) = H∗(E × E)

−→ H∗(E) = H∗(p)(−∞,∞) .



Proof.
The map of pairs D : (Ej−1,Ei−1)→ ((E × E)j−1, (E × E)i−1)
induces

D∗ : H∗(p × p)(i , j) = H∗((E × E)j−1, (E × E)i−1)

−→ H∗(Ej−1,Ei−1) = H∗(p)(i , j)

for all (extended) integers i ≤ j .

The rest follows by chasing the definitions, and using the
homotopies H̄, H̃ and H to note that D̄∗ = ∆∗, D̃∗ = ∆∗

and D∗ = ∆∗, once we have passed to cohomology groups.



Multiplicative Serre spectral sequence, I

Theorem
Let p : E → B be a Hurewicz fibration, with B a CW complex.
Each choice of filtration-preserving lift D : E → E × E lifting a
(cellular) diagonal approximation D̄ : B → B × B induces a
pairing of extended Cartan–Eilenberg systems

D∗µ : (H∗(p),H∗(p)) −→ H∗(p)

and of cohomological Serre spectral sequences

D∗µr : (E∗,∗r (p),E∗,∗r (p)) −→ E∗,∗r (p) .



Multiplicative Serre spectral sequence, II

Theorem (cont.)
The pairing of E1-terms

Es,t
1 (p)⊗ Eu,v

1 (p) −→ Es+u,t+v
1 (p)

corresponds to (−1)tu times the cochain cup product

Cs
CW (B; H t (F ))⊗ Cu

CW (B; H v (F ))
∪−→ Cs+u

CW (B; H t+v (F ))

associated to D̄.



Multiplicative Serre spectral sequence, III

Theorem (cont.)
The pairing of E2-term,

Es,t
2 (p)⊗ Eu,v

2 (p) −→ Es+u,t+v
2 (p)

corresponds to (−1)tu times the cohomology cup product

Hs(B; H t (F ))⊗ Hu(B; H v (F ))
∪−→ Hs+u(B; H t+v (F )) ,

and is independent of the choice of D and D̄.

This pairing of spectral sequences converges to the cup
product pairing

H∗(E)⊗ H∗(E)
∪−→ H∗(E)

in the cohomology of the total space.



Proof.
This follows by composing the external cross product pairing µ
with the diagonal approximation morphism D∗. The composites

H t (F )⊗H v (F )
×−→H t+v (F × F )

D̃∗−→H t+v (F )

Hs(B)⊗ Hu(B)
×−→ Hs+u(B × B)

D̄∗−→ Hs+u(B)

H∗(E)⊗ H∗(E)
×−→ H∗(E × E)

D∗−→ H∗(E)

are equal to the respective cup products, in view of the
homotopies H̃ : ∆ ' D̃, H̄ : ∆ ' D̄ and H : ∆ ' D.
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Wang sequence

Theorem
Let F i→ E

p→ B be a fiber sequence, with B ' Su a
1-connected CW complex. There is a long exact sequence

· · · → Hn−1(F )
δ−→ Hn−u(F )

i !

−→ Hn(E)

i∗−→ Hn(F )
δ−→ Hn−u+1(F )→ . . .

where i∗ is a ring homomorphism and

δ(x ∪ y) = δ(x) ∪ y + (−1)|x |(u−1)x ∪ δ(y) .



Proof

I The Serre spectral sequence

Es,t
2 = Hs(B; H t (F )) =⇒s Hs+t (E)

is a ring spectral sequence with E2 = Eu and Eu+1 = E∞.
I Setting H∗(B) = Z{1,gu} we can write

du(1⊗ x) = gu ⊗ δ(x) with δ : H t (F )→ H t−u+1(F ).
I The Leibniz rule

du(1⊗x∪y) = du(1⊗x)∪(1⊗y)+(−1)|x |(1⊗x)∪du(1⊗y)

translates to the given derivation rule for δ.



Divided power and exterior algebras

I Recall the divided power algebra Γ(x) = Z{γi(x) | i ≥ 0}
with γ0(x) = 1, γ1(x) = x and

γi(x) · γj(x) = (i , j)γi+j(x) ,

graded so that |γi(x)| = i |x |.
I Here

(i , j) =
(i + j)!

i!j!
=

(
i + j

i

)
is the binomial coefficient.

I Let Λ(x) = Z{1, x} denote the exterior algebra on x , with
x2 = 0.

I Usually |x | is even in the divided power case, and odd in
the exterior case.



Loop spaces of spheres

Theorem
Let u ≥ 2. If u is odd, then

H∗(ΩSu) ∼= Γ(x)

with |x | = u − 1. If u is even, then

H∗(ΩSu) ∼= Λ(x)⊗ Γ(y)

with |x | = u − 1 and |y | = 2(u − 1).

Proof.
The Wang sequence for ΩSu → PSu → Su, with PSu

contractible, reduces to isomorphisms

δ : H̃n(F )
∼=−→ Hn−u+1(F ) .



. . . . . . . . . . . .

3(u − 1) Z

du

((

0 0 . . .

0 0 0 0

2(u − 1) Z

du

((

0 0 Z

0 0 0 0

u − 1 Z

du

((

0 0 Z

0 0 0 0

0 Z 0 0 Z

t/s 0 u
//

OO



Proof (cont.) for u odd

Suppose first that u ≥ 3 is odd. Let γ0(x) = 1 and inductively
set γi(x) ∈ H i(u−1)(ΩSu) for i ≥ 1 so that δ(γi(x)) = γi−1(x). By
induction on i and j ,

δ(γi(x) ∪ γj(x)) = γi−1(x) ∪ γj(x) + γi(x) ∪ γj−1(x)

equals (i − 1, j) + (i , j − 1) = (i , j) times

δ(γi+j(x)) = γi+j−1(x) .

This proves that γi(x) ∪ γj(x) = (i , j)γi+j(x).



Proof (cont.) for u even

Next suppose that u ≥ 2 is even. Fix x ∈ Hu−1(ΩSu) so that
δ(x) = 1. By graded commutativity, x2 = 0.

Let γ0(y) = 1 and inductively set γi(y) ∈ H2i(u−1)(ΩSu) for
i ≥ 1 so that δ(γi(y)) = xγi−1(y). Then

δ(xγi(y)) = 1 ∪ γi(y)− x ∪ xγi−1(y) = γi(y) ,

so γi(y) generates H2i(u−1)(ΩSu) while xγi(y) generates
H(2i+1)(u−1)(ΩSu). By induction on i and j ,

δ(γi(y) ∪ γj(y)) = xγi−1(y) ∪ γj(y) + γi(y) ∪ xγj−1(y)

equals (i − 1, j) + (i , j − 1) = (i , j) times

δ(γi+j(y)) = xγi+j−1(y) .

Hence γi(y) ∪ γj(y) = (i , j)γi+j(y).



Gysin sequence

Theorem
Let F i→ E

p→ B be a fiber sequence, with F ' Sv and B a
1-connected CW complex. There is a long exact sequence

· · · → Hn−v−1(B)
e∪−→ Hn(B)

p∗−→ Hn(E)

p!

−→ Hn−v (B)
e∪−→ Hn+1(B)→ . . .

where p∗ is a ring homomorphism and e = δ(1) ∈ Hv+1(B) is
the Euler class of the (oriented spherical) fibration.



v H0(B)

dv+1
**

Hs−v−1(B)

dv+1
**

Hs−v (B)

dv+1
**

. . . . . . . . .

0 0 0 0 0 0

0 H0(B) Hs−v−1(B) . . . Hv+1(B) Hs(B) Hs+1(B)

t/s 0 s − v − 1 . . . v + 1 s s + 1

//

OO



Proof
I The Serre spectral sequence

Es,t
2 = Hs(B; H t (F )) =⇒s Hs+t (E)

is a ring spectral sequence with E2 = Ev+1 and
Ev+2 = E∞.

I Setting H∗(F ) = Z{1,gv} we can write
dv+1(x ⊗ gv ) = δ(x)⊗ 1 with δ : Hs−v−1(B)→ Hs(B).

I The Leibniz rule

dv+1((1⊗ gv ) ∪ (x ⊗ 1))

= dv+1(1⊗ gv ) ∪ (x ⊗ 1) + (−1)v (1⊗ gv ) ∪ dv+1(x ⊗ 1)

translates to δ(x) = (−1)v |x |e ∪ x , since dv+1(x ⊗ 1) = 0
lies in a trivial group.

I We can replace δ with x 7→ e ∪ x without affecting the
exactness of the sequence.



Euler characteristic
Remark
The Euler class vanishes if p admits a section s : B → E . If B is
a closed, oriented (v + 1)-manifold with fundamental class

[B] ∈ Hv+1(B) ,

and E = S(TB)→ B is the unit sphere bundle in the tangent
bundle TB → B, then the Euler class

e ∈ Hv+1(B)

evaluates on [B] to the Euler characteristic of B:

〈e, [B]〉 = χ(B) .

See [MS74, Cor. 11.12].

In particular, the Euler characteristic vanishes if B admits an
everywhere nonzero vector field.



Complex Grassmannians

I Let U(k) denote the rank k unitary group.
I It acts freely on the contractible Stiefel space

Vk (C∞) = {(v1, . . . , vk ) | v∗i vj = δi,j}

of unitary k -frames in C∞ =
⋃

n Cn.
I The orbit space is the Grassmannian

Grk (C∞) = {V ⊂ C∞ | dimC(V ) = k}

of k -dimensional complex linear subspaces of C∞.



Classification of complex vector bundles

I The principal U(k)-bundle

U(k) −→ Vk (C∞) −→ Grk (C∞)

is thus universal, and Grk (C∞) ' BU(k) is a model for the
classifying space of U(k).

I We get natural bijections

VectCk (B) ∼= BunU(k)(B) ∼= [B,BU(k)] ∼= [B,Grk (C∞)]

for all CW complexes B.
I Here VectCk (B) denotes the set of isomorphism classes of

rank k complex vector bundles E → B.



The first Chern class

I When k = 1, we have V1(C∞) = S(C∞) ∼= S∞ and
Gr1(C∞) ∼= CP∞ ' K (Z,2).

I Hence

[B,BU(1)] ∼= [B,CP∞] ∼= [B,K (Z,2)] ∼= H2(B)

by the Eilenberg–Steenrod representability theorem.
I The class c1(L) ∈ H2(B) corresponding to a complex line

bundle L→ B is called the first Chern class of L, and
classifies L up to isomorphism.



Characteristic classes

I When k ≥ 2, the space BU(k) ' Grk (C∞) is not an
Eilenberg–Mac Lane space, so [B,BU(k)] is not naturally
identified with a cohomology group of B.

I However, each cohomology class c ∈ Hn(BU(k)) pulls
back along the classifying map f : B → BU(k) of any
Ck -bundle E → B to define a class

c(E) = f ∗(c) ∈ Hn(B) .

I This class c(E) depends naturally on E → B, and is called
a characteristic class.

I To determine all characteristic classes for complex vector
bundles, we calculate H∗(BU(k)).



Cohomology of complex Grassmannians

Theorem
For each k ≥ 0 there are isomorphisms

H∗(BU(k)) ∼= Z[c1, . . . , ck ]

with |ci | = 2i .



Theorem (cont.)
The Gysin sequence associated to the fiber sequence

U(k)/U(k − 1) −→ Vk (C∞)/U(k − 1)
p−→ Vk (C∞)/U(k) ,

with

F = U(k)/U(k − 1) ∼= S2k−1

E = Vk (C∞)/U(k − 1) ' BU(k − 1)

B = Vk (C∞)/U(k) = Grk (C∞) ' BU(k) ,

breaks up into short exact sequences

0→ H∗−2k (BU(k))
ck∪−→ H∗(BU(k))

p∗−→ H∗(BU(k − 1))→ 0 .

Here p∗(ci) = ci for 1 ≤ i < k, while ck ∈ H2k (BU(k)) is the
Euler class of p : E → B.



Proof

I We proceed by induction on k , hence assume that

H∗(BU(k − 1)) = Z[c1, . . . , ck−1]

where ci ∈ H2i(BU(k − 1)) has been specified for
1 ≤ i ≤ k − 1.

I We use the fiber sequence F → E → B, defined as above.
I Here U(k) acts transitively on S(Ck ) = S2k−1, with

stabilizer U(k − 1), which gives the identification
U(k)/U(k − 1) ∼= S2k−1.

I The restricted U(k − 1)-action on Vk (C∞) makes
Vk (C∞)→ Vk (C∞)/U(k − 1) = E a universal principal
U(k − 1)-bundle, so that E ' BU(k − 1).



Proof (cont.)

I Since H∗(BU(k − 1)) is trivial in odd degrees, the Gysin
sequence for F → E → B breaks up into exact sequences

0→ Hn−2k (BU(k))
e∪−→ Hn(BU(k))

p∗−→ Hn(BU(k − 1))

p!

−→ Hn−2k+1(BU(k))
e∪−→ Hn+1(BU(k))→ 0 ,

one for each even integer n.
I Induction on n proves that Hn+1(BU(k)) = 0 for n + 1 odd,

so the Gysin sequence breaks up into short exact
sequences, and H∗(BU(k)) is concentrated in even
degrees.

I Moreover, p∗ : Hn(BU(k))→ Hn(BU(k − 1)) is an
isomorphism for n < 2k , so we can uniquely define
ci ∈ H2i(BU(k)) for 1 ≤ i < k by the condition
p∗(ci) = ci ∈ H2i(BU(k − 1)).



Proof (cont.)
I Finally, we set ck = e ∈ H2k (BU(k)) to be the Euler class

of this spherical fibration, so that

d2k (1⊗ g2k−1) = ck ⊗ 1

in the cohomological Serre spectral sequence.
I To show that the resulting ring homomorphism

h : Z[c1, . . . , ck ] −→ H∗(BU(k))

is an isomorphism, we use induction on the degree ∗ and
the following vertical map of short exact sequences.

0 // Σ2kZ[c1, . . . , ck ]
ck · //

Σ2k h
��

Z[c1, . . . , ck ] //

h
��

Z[c1, . . . , ck−1] //

∼=
��

0

0 // H∗−2k (BU(k))
ck∪ // H∗(BU(k))

p∗
// H∗(BU(k − 1)) // 0



Chern classes

I We call ci ∈ H2i(BU(k)) the i-th Chern class.
I For each Ck -bundle E → B with classifying map

f : B → BU(k), we call ci(E) = f ∗(ci) ∈ H2i(B) the i-th
Chern class of the bundle.

I The Chern classes ci(E) determine the ring
homomorphism

f ∗ : H∗(BU(k)) −→ H∗(B)

ci 7−→ ci(E) .

I This is generally less information than the isomorphism
class of the vector bundle, i.e., the homotopy class of
f : B → BU(k), but characteristic classes often provide
conveniently accessible cohomological invariants of this
less accessible homotopical datum.
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Integral Eilenberg–MacLane spaces

I Let n ≥ 1. Recall that K (Z,n) is a (n − 1)-connected CW
complex, with πnK (Z,n) ∼= Z and πiK (Z,n) = 0 for i 6= n.

I Each homology group Hi(K (Z,n)) is finitely generated of
rank equal to the dimension of

Hi(K (Z,n))⊗Q
∼=−→ Hi(K (Z,n);Q)

over Q.
I The evaluation pairing induces an isomorphism

H i(K (Z,n))/(torsion)
∼=−→ Hom(Hi(K (Z,n))/(torsion),Z) .



The universal class

Definition
For n ≥ 1 let the universal class

un ∈ Hn(K (Z,n)) ∼= Hom(Hn(K (Z,n)),Z)

correspond to the inverse Hurewicz isomorphism

h−1
n : Hn(K (Z,n))

∼=−→ πn(K (Z,n)) ∼= Z .



Rational cohomology calculation

Theorem
Let n ≥ 1. If n is odd then

H∗(K (Z,n);Q) ∼= ΛQ(un) = Q{1,un}

with u2
n = 0.

If n is even then

H∗(K (Z,n);Q) ∼= Q[un] = Q{1,un,u2
n , . . . } .



Rational homology calculation

Finite type and the universal coefficient theorem imply the
following consequence, which proves the theorem used earlier.

Corollary
Let n ≥ 1. If n is odd then

Hi(K (Z,n);Q) ∼=

{
Q for i ∈ {0,n},
0 otherwise.

If n is even then

Hi(K (Z,n);Q) ∼=

{
Q for 0 ≤ i ≡ 0 mod n,
0 otherwise.



Proof of Theorem

I When n = 1, the cohomology of K (Z,1) ' S1 is
well-known to be exterior on g1 = u1 in degree 1.

I Suppose that the theorem holds for an odd n ≥ 1.
I We use the cohomology Serre spectral sequence with

rational coefficients

Es,t
2 = Hs(K (Z,n+1); H t (K (Z,n);Q)) =⇒s Hs+t (PK (Z,n+1);Q)

for the homotopy fiber sequence

K (Z,n) −→ PK (Z,n + 1)
p−→ K (Z,n + 1)

I This is isomorphic to the integral spectral sequence
tensored with Q, which is still a spectral sequence since Q
is torsion-free, hence flat, so that tensoring with it is exact.



Proof for n odd
I Since K (Z,n + 1) has finite type, we have an isomorphism

H∗(K (Z,n + 1);Q)⊗Q H∗(K (Z,n);Q)
∼=−→ E∗,∗2 = H∗(K (Z,n + 1); H∗(K (Z,n);Q)) .

I Since PK (Z,n + 1) is contractible, the abutment is Q in
total degree 0.

I The E2-term is concentrated in the two rows t = 0 and
t = n, so

dn+1 : Hn(K (Z,n);Q)
∼=−→ Hn+1(K (Z,n + 1);Q)

must be an isomorphism.
I More precisely, this transgressive differential is an integral

isomorphism mapping un to

dn+1(un) = un+1 ,

by compatibility of the Hurewicz homomorphisms with
coboundaries and pullbacks.



n Q

dn+1

##

0 0 0 Q

dn+1

%%

0 0 0 Q

dn+1

$$

0 0 0 . . .

0 0 0

0 0 0

0 Q 0 0 0 Q 0 0 0 Q 0 0 0 . . .

t/s 0 n + 1 2(n + 1)

//

OO

Es,t
2 = Hs(K (Z,n + 1); H t (K (Z,n);Q)) =⇒s Hs+t (PK (Z,n + 1);Q)



Proof for n odd (cont.)

I We now proceed as for the Gysin sequence. Suppose
inductively for a j ≥ 0 that

H i(K (Z,n+1);Q) =

{
Q{uj

n+1} for i = j(n + 1),
0 for j(n + 1) < i < (j + 1)(n + 1).

I Then
dn+1 : E i,n

2 −→ E i+n+1,0
2

must be an isomorphism for j(n + 1) ≤ i < (j + 1)(n + 1).
I Since

dn+1(uj
n+1 ∪ un) = uj

n+1 ∪ dn+1(un) = uj+1
n+1

must generate H(j+1)(n+1)(K (Z,n + 1);Q), the inductive
claim also holds for j + 1.

I This proves the theorem for n + 1 even.



Proof for n even

I Next, suppose that the theorem holds for an even n ≥ 2.
I We use the same Serre spectral sequence as above, but

now the E2-term is concentrated in the rows 0 ≤ t ≡ 0
mod n.

I Again the transgressive differential

dn+1 : Hn(K (Z,n);Q)
∼=−→ Hn+1(K (Z,n + 1);Q)

maps un to (a unit times) un+1.



. . .

dn+1

&&

. . . . . .

0 0

2n Q
dn+1

%%

0 0 Q 0 . . .

0 0

n Q
dn+1

%%

0 0 Q 0 . . .

0 0

0 Q 0 0 Q 0 . . .

t/s 0 n + 1 u
//

OO

Es,t
2 = Hs(K (Z,n + 1); H t (K (Z,n);Q)) =⇒s Hs+t (PK (Z,n + 1);Q)



Proof for n even (cont.)

I It follows from the Leibniz rule that

dn+1(uj
n) = jun+1 ∪ uj−1

n

for all j ≥ 1.
I Since we are working with rational coefficients, jun+1 ∪ uj−1

n

generates En+1,(j−1)n
2 , so that

Es,t
n+2 =

{
Q for (s, t) = (0,0),
0 otherwise, for s ≤ n + 1.



Proof for n even (cont.)

I It remains to confirm that H i(K (Z,n + 1);Q) = 0 for all
i > n + 1.

I Let u > n + 1 and suppose, inductively, that
H i(K (Z,n + 1);Q) = 0 for n + 1 < i < u.

I Then Eu,0
2
∼= Hu(K (Z,n);Q), and we must have Eu,0

∞ = 0
since the abutment is trivial in total degree n.

I The final differential

du : E0,u−1
u −→ Eu,0

u

is trivial, because E0,u−1
u ⊂ E0,u−1

n+2 = 0.



Proof for n even (cont.)

I Furthermore,

du−n−1 : En+1,u−n−2
u−n−1 −→ Eu,0

u−n−1

with u − n − 1 ≥ 2 must also be zero, because En+1,u−n−2
u−n−1

is trivial if 0 < u − n − 2 < n or if u − n − 1 ≥ n + 2.
I When u = 2(n + 1) the differential

dn+1 : En+1,n
n+1 −→ E2(n+1),0

n+1

must be zero because the source is generated by
dn+1(u2

n) = 2un+1 ∪ un and dn+1dn+1 = 0.
I Hence we can only have Eu,0

∞ = 0 of Eu,0
2 = 0, i.e., if

Hu(K (Z,n + 1);Q) = 0.
I This confirms the claim by induction on n, and proves the

theorem for n + 1 odd.



The role of the product structure

Remark
For n ≥ 2 even, the use of the Leibniz rule to calculate

dn+1 : E0,jn
n+1 −→ En+1,(j−1)n

n+1

relies essentially on knowing the cup product structure of
H∗(K (Z,n);Q) and the fact that the Serre spectral sequence
differential dn+1 is a derivation.

Furthermore, the presence of the coefficient j in

dn+1(uj
n) = jun+1 ∪ uj−1

n

means that this argument does not work integrally, since j is
usually not an integral unit.
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2-connected cover of S2

The 2-connected cover of S2 sits in the Puppe fiber sequence

K (Z,1) −→ τ≥3S2 −→ S2 g2−→ K (Z,2) .

Since ΩK (Z,2) ' K (Z,1) ' S1 we can recognize this as the
Hopf fiber sequence

S1 −→ S3 η−→ S2

and its classifying map g2 : S2 → BS1 ' CP∞.



3-connected cover of S3

The 3-connected cover of S3 is less familiar. We have a Puppe
fiber sequence

K (Z,2) −→ τ≥4S3 −→ S3 g3−→ K (Z,3) .

The cohomology of ΩK (Z,3) ' K (Z,2) ' CP∞ is well known,
and allows the following calculation.



Proposition
The Serre spectral sequence

Es,t
2 = Hs(S3; H t (K (Z,2))) =⇒s Hs+t (τ≥4S3)

has E2-term

E∗,∗2
∼= H∗(S3)⊗ H∗(CP∞) = Λ(g3)⊗ Z[y ]

with g3 ∈ H3(S3) and y = u2 ∈ H2(CP∞), and nonzero
differentials

d3(y j) = jg3y j−1

for all j ≥ 1.



Proposition (cont.)
Hence

H i(τ≥4S3) =


Z for i = 0,
Z/j for i = 2j + 1 ≥ 5,
0 otherwise,

and

Hi(τ≥4S3) =


Z for i = 0,
Z/j for i = 2j ≥ 4,
0 otherwise.

Proof.
The natural homomorphism

H∗(S3)⊗ H∗(CP∞)
∼=−→ H∗(S3; H∗(CP∞))

is an isomorphism.



Proof (cont.)
The E2 = E3-term thus appears as below, with g3 ∈ E3,0

2 and
y j ∈ E0,2j

2 .

. . .

d3

%%

. . .

0 0

4 Z
d3

$$

0 0 Z

0 0

2 Z
d3

$$

0 0 Z

0 0

0 Z 0 0 Z

t/s 0 3
//

OO



Proof (cont.)

I Since τ≥4S3 is 3-connected, the differential
d3 : Z{y} = E0,2

3 → E3,0
3 = Z{g3} is an isomorphism.

I With the right choice of identifications, this implies that

d3(y) = g3 .

I The Leibniz rule thus implies

d3(y j) = j g3 y j−1

for all j ≥ 0.



Proof (cont.)
This leaves the following E4 = E∞-term, with gy j−1 generating
a copy of Z/j in bidegree (3,2(j − 1)), for each j ≥ 2.

0 . . .

0 0

4 0 0 0 Z/3

0 0

2 0 0 0 Z/2

0 0

0 Z 0 0 0

t/s 0 3
//

OO



Proof (cont.)

This calculates

H∗(τ≥4S3) ∼= Z⊕
⊕
j≥2

Σ2j+1Z/j ,

and our finite type result and the universal coefficient theorem
then determine

H∗(τ≥4S3) ∼= Z⊕
⊕
j≥2

Σ2jZ/j .



Eη is essential

Corollary
π4(S3) ∼= Z/2 is generated by Eη.

Proof.
We have π4(τ≥4S3) ∼= H4(τ≥4S3) ∼= Z/2 by the Hurewicz
theorem, and π4(τ≥4S3) ∼= π4(S3) by the long exact sequence
in homotopy for the fiber sequence defining τ≥4S3.

We also know that E : π3(S2)→ π4(S3) is surjective, by
Freudenthal’s stability theorem, so Eη must generate
π4(S3).



First p-torsion

I Let p be a prime.
I Further arguments, with the Serre class of finite abelian

groups of order prime to p, shows that

πi(S3) ∼= πi(τ≥iS3) ∼= Hi(τ≥iS3)

for 3 < i ≤ 2p maps to

Hi(τ≥4S3)

by a homomorphism with kernel and cokernel finite groups
of order prime to p.

I Hence the p-Sylow subgroup of πi(S3) is trivial for
3 < i < 2p, and is isomorphic to Z/p for i = 2p.

I A map representing the first p-torsion in π∗(S3) is often
denoted α1 : S2p −→ S3.
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Toward π5(S3)

To proceed to calculate π5(S3) ∼= π5(τ≥5S3) we might study
H∗(τ≥5S3) using the Puppe fiber sequence

K (Z/2,3) −→ τ≥5S3 −→ τ≥4S3 −→ K (Z/2,4)

and the Serre spectral sequence

E∗,∗2 = H∗(τ≥4S3; H∗(K (Z/2,3))) =⇒ H∗(τ≥5S3) .

For this, we would need to know H∗(K (Z/2,3)), which we
might hope to deduce from H∗(K (Z/2,2)) using the loop–path
fibration

K (Z/2,2) −→ PK (Z/2,3) −→ K (Z/2,3) .



Start with K (Z/2,2)
To get started with this, we might first deduce H∗(K (Z/2,2))
from the loop–path fibration

K (Z/2,1) −→ PK (Z/2,2) −→ K (Z/2,2) ,

where the cohomology of K (Z/2,1) ' RP∞ is well known.

However, in the cohomological Serre spectral sequence with
integral coefficients

Es,t
2 = Hs(K (Z/2,2); H t (RP∞)) =⇒s Hs+t (PK (Z/2,2))

there are more classes in the E2-term than those that arise as
products of classes on the axes:

Hs(K (Z/2,2))⊗ H t (RP∞) −→ Hs(K (Z/2,2); H t (K (Z/2,1))) ,

due to the presence of Tor-terms.



Field coefficients

Hence it is more convenient to make the calculation with
coefficients in the field F2, and thereafter to use Bockstein
arguments to recover the integral information.

Here H∗(RP∞;F2) ∼= F2[a] with a = u1 ∈ H1(RP∞;F2), and the
cohomological Serre spectral sequence with F2-coefficients has
the form

Es,t
2 = Hs(K (Z/2,2); H t (RP∞;F2)) =⇒s Hs+t (PK (Z/2,2);F2)

with
Hs(K (Z/2,2);F2)⊗F2 H t (RP∞;F2)

∼=−→ Es,t
2 .



The differentials on a and a2

I As usual, the abutment H∗(PK (Z/2,2);F2) ∼= F2 is known
to vanish in positive degrees, and we seek to use this to
determine the cohomology of the base.

I Clearly K (Z/2,2) is 1-connected, and d2(a) = b with b
generating H2(K (Z/2,2);F2) ∼= F2.

I Since d2(a2) = ba− ab = 0, we must have d3(a2) = b1 for
some nonzero b1 ∈ H3(K (Z/2,2);F2).

I Furthermore, d2(ab) = b2 must be nonzero, and
d2(ab1) = bb1 must be nonzero.

I Since d3(a4) = b1a2 + a2b1 = 0 and d2(a2b1) = 0 we must
have d3(a2b1) = b2

1 nonzero.



a5

&&

. . .

4 a4

$$

a4b . . .

a3

&&

a3b

((

a3b1

))

. . .

2 a2

$$

a2b a2b1

((

a2b2 . . .

a

&&

ab

((

ab1

))

ab2

**

abb1,ab2 . . .

0 1 b b1 b2 bb1,b2 b3,b2
1

t/s 0 2 4 6

//

OO



The differential on a4

I At this point we must decide whether
I d2(ab2) = b3 is nonzero in H6(K (Z/2,2);F2), so that

d5(a4) = b2 is nonzero in H5(K (Z/2,2);F2), or
I b3 = 0 and d4(a4) = ab2.

I In fact, the former is the case.
I We can see this using the map f : K (Z,2)→ K (Z/2,2)

inducing the surjection π2(f ) : Z→ Z/2.
I Here f ∗(b) = y .
I Since y3 6= 0 in H6(K (Z,2);F2), it follows that b3 6= 0, so

that d5(a4) = b2 for some nonzero b2 ∈ H6(K (Z/2,1);F2).



The differential on a8

I We can continue this argument, up to total degree 8.
I Here we must decide whether

I b2b2
1 and bb1b2 are linearly independent in

H10(K (Z/2,2);F2), in which case d9(a8) = b3 for a nonzero
b3 ∈ H9(K (Z/2,2);F2), or

I d8(a8) is a nonzero linear combination of abb2
1 and ab1b2.

I Again, some external information in addition to the
multiplicative structure of the spectral sequence is needed.



Steenrod squares

I In the next chapter we discuss natural cohomology
operations

Sqi : Hn(X ;F2) −→ Hn+i(X ;F2)

introduced by Steenrod.
I These were used by Serre [Ser53] to calculate the mod 2

cohomology of Eilenberg–Mac Lane spaces.
I Similar results for mod p cohomology, with p an odd prime,

are due to Cartan [Car54].
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