MAT9580: Spectral Sequences
 Chapter 7: The Steenrod Algebra

John Rognes

University of Oslo, Norway

May 4, 2021

Outline

The Steenrod algebra
Cohomology operations Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

A universal class

Eilenberg and Mac Lane proved a representability theorem for cohomology.
Definition
For $n \geq 1$ and G any abelian group let the universal class

$$
u_{n} \in H^{n}(K(G, n) ; G) \cong H o m\left(H_{n}(K(G, n)), G\right)
$$

correspond to the inverse Hurewicz isomorphism

$$
h_{n}^{-1}: H_{n}(K(G, n)) \xrightarrow{\cong} \pi_{n}(K(G, n)) \cong G .
$$

For $n=0$, with $K(G, 0)=G$, we let $u_{0} \in \tilde{H}^{0}(K(G, 0) ; G)$ be the class of the 0 -cocycle that takes $g \in K(G, 0)$ to $g \in G$.

Representability of cohomology

Recall that $[X, Y]$ denotes the based homotopy classes of base-point preserving maps from a CW complex X to a space Y.

Theorem (Eilenberg-MacLane, [Hat02, Thm. 4.57])
There is a natural isomorphism

$$
\begin{aligned}
& {[X, K(G, n)] } \cong \\
& {[f] } \tilde{H}^{n}(X ; G) \\
& f^{*}\left(u_{n}\right)
\end{aligned}
$$

for all based CW complexes X.

Sketch proof

Fix a homotopy equivalence

$$
\tilde{\sigma}: K(G, n) \xrightarrow{\simeq} \Omega K(G, n+1)
$$

and let

$$
\sigma: \Sigma K(G, n) \longrightarrow K(G, n+1)
$$

be the adjoint map.
We define a generalized cohomology theory M on CW pairs (X, A) by

$$
M^{n}(X, A)=[X / A, K(G, n)]
$$

with $\delta: M^{n}(A) \longrightarrow M^{n+1}(X, A)$ sending the homotopy class of $f: A \rightarrow K(G, n)$ to the homotopy class of the composite

$$
X / A \simeq X \cup C A \longrightarrow \Sigma A \xrightarrow{\Sigma f} \Sigma K(G, n) \xrightarrow{\sigma} K(G, n+1) .
$$

Proof (cont.)

The abelian group structure on $M^{n}(X, A)$, and the additivity of δ, can be deduced from the fact that $K(G, n) \simeq \Omega^{2} K(G, n+2)$ is a double loop space.

The coexactness of the Puppe cofiber sequence

$$
A \longrightarrow X \longrightarrow X \cup C A \longrightarrow \Sigma A \longrightarrow \ldots
$$

proves exactness, while homotopy invariance, excision and additivity are straightforward.

Proof (cont.)

The coefficients groups of this cohomology theory are $M^{t}=M^{t}($ point $)=\left[S^{0}, K(G, t)\right]$, which equals G for $t=0$ and 0 for $t \neq 0$.

Hence the hypotheses of the Eilenberg-Steenrod uniqueness theorem are satisfied, and $M^{*}(X, A) \cong H^{*}(X, A ; G)$.
For based CW complexes X we deduce that there is a natural isomorphism

$$
[X, K(G, n)]=M^{n}\left(X,\left\{x_{0}\right\}\right) \cong H^{n}\left(X,\left\{x_{0}\right\} ; G\right) \cong \tilde{H}^{n}(X ; G) .
$$

By the Yoneda lemma, the isomorphism must be induced by the class

$$
y_{n} \in \tilde{H}^{n}(K(G, n) ; G)
$$

that corresponds to the identity map of $X=K(G, n)$, and more careful check of definitions shows that $y_{n}=u_{n}$ is the universal class.

Cohomology operations

A cohomology operation is a natural transformation between (possibly generalized) cohomology groups. We concentrate on the case of ordinary cohomology theories.

Definition

A cohomology operation of type ($G, n ; G^{\prime}, n^{\prime}$) is a natural transformation

$$
\theta_{X}: \tilde{H}^{n}(X ; G) \longrightarrow \tilde{H}^{n^{\prime}}\left(X ; G^{\prime}\right)
$$

of functors from CW complexes to sets.
The sum (or difference) of two cohomology operations of type ($G, n ; G^{\prime}, n^{\prime}$) is another cohomology operation of the same type, so the set of such cohomology operations is an abelian group.

Cohomology classification of operations

Lemma
The abelian group of cohomology operations of type $\left(G, n ; G^{\prime}, n^{\prime}\right)$ is isomorphic to

$$
\left[K(G, n), K\left(G^{\prime}, n^{\prime}\right)\right] \cong \tilde{H}^{n^{\prime}}\left(K(G, n) ; G^{\prime}\right)
$$

Proof.

This is the Yoneda lemma classifying natural transformations from a represented functor.

A map $\theta: K(G, n) \rightarrow K\left(G^{\prime}, n^{\prime}\right)$ corresponds to the natural transformation θ with components θ_{X} taking the homotopy class of $f: X \rightarrow K(G, n)$ to the homotopy class of $\theta f: X \rightarrow K\left(G^{\prime}, n^{\prime}\right)$.
Conversely, the natural transformation θ corresponds to the homotopy class of a map $\theta: K(G, n) \rightarrow K\left(G^{\prime}, n^{\prime}\right)$ representing $\theta_{K(G, n)}\left(u_{n}\right)$ in $\tilde{H}^{n^{\prime}}\left(K(G, n) ; G^{\prime}\right)$.

k-th power operations

Computing the cohomology of $K(G, n)$ is thus equivalent to determining the cohomology operations from $H^{n}(X ; G)$.
By the Hurewicz theorem, there are only nontrivial cohomology operations of type ($G, n ; G^{\prime}, n^{\prime}$) when $n^{\prime} \geq n$.

Example

For $k \geq 1$ and R a commutative ring, let the k-th power operation

$$
\xi^{k}=\xi_{x}^{k}: H^{n}(X ; R) \longrightarrow H^{k n}(X ; R)
$$

be the cohomology operation of type ($R, n ; R, k n$) given by

$$
\xi^{k}(x)=x^{k}=x \cup \cdots \cup x
$$

(with k copies of x).
This operation is additive if $k=p$ is a prime and $p=0$ in R.

Outline

The Steenrod algebra
Cohomology operations

Steenrod operations

The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Reduced power operations

- Let p be a prime. Steenrod [Ste47], [Ste52], [Ste53] introduced cohomology operations in mod p cohomology, i.e., cohomology with coefficients in the field $\mathbb{F}_{p}=\mathbb{Z} / p$. which in a sense generate all other such cohomology operations.
- These are "reduced power operations", meaning that they are linked to the p-th power operation

$$
\xi^{p}: H^{n}\left(X ; \mathbb{F}_{p}\right) \longrightarrow H^{p n}\left(X ; \mathbb{F}_{p}\right)
$$

but generally land in $H^{n^{\prime}}\left(X ; \mathbb{F}_{p}\right)$ with $n \leq n^{\prime} \leq p n$.

- See Steenrod-Epstein [Ste62], May [May70] and Hatcher [Hat02, §4.L] for more detailed expositions.

Steenrod squares

We start with $p=2$, when the reduced power operations are called reduced squaring operations, or Steenrod squares.
The following theorem can be taken as the basis for an axiomatic development of the theory.

Theorem ([Ste62, §I.1])

There are natural transformations

$$
S q^{i}: \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right) \longrightarrow \tilde{H}^{n+i}\left(X ; \mathbb{F}_{2}\right)
$$

for all $i \geq 0$ and $n \geq 0$. These satisfy

1. $S q^{0}(x)=x$ for all x;
2. $S q^{n}(x)=x \cup x$ for $n=|x|$;
3. $S q^{i}(x)=0$ for $i>|x|$;
4.

$$
S q^{k}(x \cup y)=\sum_{i+j=k} S q^{i}(x) \cup S q^{j}(y)
$$

Remarks

- Note that $S q^{i}$ increases cohomological degree by i.
- By the first three items, the only "new" operations are the $S q^{i}(x)$ for $0<i<n$.
- The fourth item

$$
S q^{k}(x \cup y)=\sum_{i+j=k} S q^{i}(x) \cup S q^{j}(y)
$$

is the Cartan formula from [Car50].

Definition of the $S q^{i}$

- To define the $S q^{i}(x)$ for $x \in \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right)$ represented by the homotopy class of a map $f: X \rightarrow K\left(\mathbb{F}_{2}, n\right)$, we will construct maps

$$
\mathbb{R} P_{+}^{\infty} \wedge X \xrightarrow{1 \wedge t} \mathbb{R} P_{+}^{\infty} \wedge K_{n} \xrightarrow{1 \wedge \Delta} S_{+}^{\infty} \wedge c_{2} K_{n} \wedge K_{n} \xrightarrow{\theta} K_{2 n} .
$$

- Here $\mathbb{R} P^{\infty}=S^{\infty} / C_{2}$ and we write $K_{n}=K\left(\mathbb{F}_{2}, n\right)$ and $K_{2 n}=K\left(\mathbb{F}_{2}, 2 n\right)$ to simplify the notation.
- The homotopy class of the composite represents an element

$$
y=[\theta(1 \wedge \Delta)(1 \wedge f)] \in \tilde{H}^{2 n}\left(\mathbb{R} P_{+}^{\infty} \wedge X ; \mathbb{F}_{2}\right) .
$$

Definition of the $S q^{i}$ (cont.)

- By the Künneth theorem,

$$
\tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty} \wedge X ; \mathbb{F}_{2}\right) \cong H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \otimes \tilde{H}^{*}\left(X ; \mathbb{F}_{2}\right)
$$

where $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}[a]$ with $|a|=1$.

- Hence we can write

$$
y=\sum_{i=0}^{n} a^{n-i} \otimes S q^{i}(x)
$$

for a unique sequence of elements $S q^{i}(x) \in \tilde{H}^{n+i}\left(X ; \mathbb{F}_{2}\right)$.

- This defines the (potentially) nonzero $S q^{i}(x)$.

The quadratic construction

- To explain θ, we must first introduce the quadratic construction

$$
D_{2}(X)=S_{+}^{\infty} \wedge_{c_{2}} X \wedge X
$$

- Here $C_{2}=\{e, t\}$ is the group of order 2, with unit element e.
- It acts freely from the right on the unit sphere $S^{\infty}=S\left(\mathbb{R}^{\infty}\right)$, with $v \cdot t=-v$ for each unit vector v, and the orbit space is $S^{\infty} / C_{2}=\mathbb{R} P^{\infty}$.

Balanced smash product

- For a based CW complex X the group C_{2} acts from the left on the smash product

$$
X \wedge X=\frac{X \times X}{X \vee X}
$$

by the twist isomorphism $\tau: X \wedge X \longrightarrow X \wedge X$, with
$t \cdot(x \wedge y)=y \wedge x$.

- The quadratic construction is the balanced product

$$
S_{+}^{\infty} \wedge c_{2} X \wedge X=\left(S_{+}^{\infty} \wedge X \wedge X\right) /(\sim)
$$

where \sim denotes the relation

$$
(-v, x \wedge y)=(v \cdot t, x \wedge y) \sim(v, t \cdot(x \wedge y))=(v, y \wedge x)
$$

for $v \in S^{\infty}, x \in X$ and $y \in Y$.

Filtration of the quadratic construction

- Let $S^{i}=S\left(\mathbb{R}^{i+1}\right) \subset S^{\infty}$.
- The action of C_{2} respects this subspace, so we can filter $D_{2}(X)$ by the subspaces

$$
\cdots \subset D_{2}^{i-1}(X) \subset D_{2}^{i}(X)=S_{+}^{i} \wedge c_{2} X \wedge X \subset \cdots \subset D_{2}(X) .
$$

- There are homeomorphisms $X \wedge X \cong S_{+}^{0} \wedge c_{2} X \wedge X=D_{2}^{0}(X)$ and

$$
I_{+} \wedge X \wedge X /(\sim) \cong S_{+}^{1} \wedge c_{2} X \wedge X=D_{2}^{1}(X)
$$

where $(0, x \wedge y) \sim(1, y \wedge x)$ at the left hand side.

- Hence there is a long exact cohomology sequence
$\rightarrow \tilde{H}^{*-1}\left(X \wedge X ; \mathbb{F}_{2}\right) \xrightarrow{\delta} \tilde{H}^{*}\left(D_{2}^{1}(X) ; \mathbb{F}_{2}\right) \rightarrow \tilde{H}^{*}\left(X \wedge X ; \mathbb{F}_{2}\right) \xrightarrow{1-\tau} H^{*}\left(X \wedge X ; \mathbb{F}_{2}\right) \rightarrow$

The extension θ_{1}

- We now specialize to the case $X=K_{n}=K\left(\mathbb{F}_{2}, n\right)$ and degree $*=2 n$.
- By the Künneth theorem, $K_{n} \wedge K_{n}$ is $(2 n-1)$-connected, and

$$
\tilde{H}^{2 n}\left(K_{n} \wedge K_{n} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left\{u_{n} \wedge u_{n}\right\}
$$

where $u_{n} \in \tilde{H}^{n}\left(K_{n} ; \mathbb{F}_{2}\right)$ is the universal class.

- Furthermore,

$$
(1-\tau)\left(u_{n} \wedge u_{n}\right)=u_{n} \wedge u_{n}-(-1)^{n^{2}} u_{n} \wedge u_{n}=0
$$

since we are working with \mathbb{F}_{2}-coefficients, so $\theta_{0}=u_{n} \wedge u_{n}$ admits a unique extension $\theta_{1} \in \tilde{H}^{2 n}\left(D_{2}^{1}\left(K_{n}\right) ; \mathbb{F}_{2}\right)$.

The extension θ

- Moreover, $D_{2}^{1}\left(K_{n}\right) \rightarrow D_{2}\left(K_{n}\right)$ is $(2 n+1)$-connected, so the restriction homomorphism

$$
\tilde{H}^{2 n}\left(D_{2}\left(K_{n}\right) ; \mathbb{F}_{2}\right) \xrightarrow{\cong} \tilde{H}^{2 n}\left(D_{2}^{1}\left(K_{n}\right) ; \mathbb{F}_{2}\right)
$$

is an isomorphism, and θ_{1} admits a unique extension $\theta \in \tilde{H}^{2 n}\left(D_{2}\left(K_{n}\right) ; \mathbb{F}_{2}\right)$.

- It is represented by a map

$$
\theta: D_{2}\left(K_{n}\right)=S_{+}^{\infty} \wedge c_{2} K_{n} \wedge K_{n} \longrightarrow K_{2 n}
$$

whose restriction

$$
\theta_{0}: D_{2}^{0}\left(K_{n}\right) \cong K_{n} \wedge K_{n} \longrightarrow K_{2 n}
$$

represents the smash product
$\wedge: \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right) \otimes \tilde{H}^{n}\left(Y ; \mathbb{F}_{2}\right) \rightarrow \tilde{H}^{2 n}\left(X \wedge Y ; \mathbb{F}_{2}\right)$.

The extended diagonal map

- The (reduced) diagonal map $\Delta: X \rightarrow X \wedge X$ satisfies $t \cdot \Delta(x)=\Delta(x)=x \wedge x$, hence induces a map

$$
1 \wedge \Delta: \mathbb{R} P_{+}^{\infty} \wedge X \longrightarrow S_{+}^{\infty} \wedge_{C_{2}} X \wedge X=D_{2}(X)
$$

sending $([v], x)$ to $[v \wedge x \wedge x]$, for $v \in S^{\infty}$ and $x \in X$.

- Its restriction to $v \in S^{0} \subset S^{\infty}$ is identified with the diagonal map

$$
\Delta: X \cong \mathbb{R} P_{+}^{0} \wedge X \longrightarrow D_{2}^{0}(X) \cong X \wedge X
$$

Given a class $x \in \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right)$, represented by a map $f: X \rightarrow K_{n}$, we can form the following commutative diagram.

Definition of $S q^{i}$

- The composite

$$
\theta(1 \wedge \Delta)(1 \wedge f)=\theta(1 \wedge f \wedge f)(1 \wedge \Delta): \mathbb{R} P_{+}^{\infty} \wedge X \longrightarrow K_{2 n}
$$

defines the cohomology class we write as
$\sum_{i=0}^{n} a^{n-i} \otimes S q^{i}(x) \in H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \otimes \tilde{H}^{*}\left(X ; \mathbb{F}_{2}\right) \cong \tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty} \wedge X ; \mathbb{F}_{2}\right)$.

- Its restriction to $\tilde{H}^{*}\left(X ; \mathbb{F}_{2}\right)$, corresponding to $i=n$, is the pullback along Δ of $x \wedge x \in \tilde{H}^{2 n}\left(X \wedge X ; \mathbb{F}_{2}\right)$, represented by $\theta_{0}(f \wedge f)$, which equals $x^{2}=x \cup x \in \tilde{H}^{2 n}\left(X ; \mathbb{F}_{2}\right)$.
- This defines the natural transformations $S q^{i}$, satisfying conditions (2) and (3) in the theorem.

The Cartan formula, I

The Cartan formula (4) can be deduced from the following diagram.

It commutes up to homotopy, as can be verified by comparing the two composites after restriction to
$\left(K_{n} \wedge K_{m}\right) \wedge\left(K_{n} \wedge K_{n}\right)=D_{2}^{0}\left(K_{n} \wedge K_{m}\right)$.

The Cartan formula, II

If $f: \underset{\tilde{H}}{X} \rightarrow K_{n}$ and $g: Y \rightarrow K_{m}$ represent $x \in \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right)$ and $y \in \tilde{H}^{m}\left(Y ; \mathbb{F}_{2}\right)$, respectively, then the composite

$$
\mathbb{R} P_{+}^{\infty} \wedge X \wedge Y \xrightarrow{1 \wedge \Delta} D_{2}(X \wedge Y) \xrightarrow{D_{2}(f \wedge g)} D_{2}\left(K_{n} \wedge K_{m}\right) \longrightarrow K_{2(n+m)}
$$

can be expanded in two ways, to yield the identity
$\sum_{k=0}^{n+m} a^{n+m-k} \otimes S q^{k}(x \wedge y)=\sum_{i=0}^{n} \sum_{j=0}^{m} a^{n-i} \cup a^{m-j} \otimes S q^{i}(x) \cup S q^{j}(y)$.
Comparing terms gives the Cartan formula.

Cup, smash and cross

By naturality, the Cartan formula also holds for relative and unreduced cohomology, as well as for the external smash product and cross product pairings.
For example,

$$
S q^{k}(x \wedge y)=\sum_{i+j=k} S q^{i}(x) \wedge S q^{j}(y)
$$

in $\tilde{H}^{*}\left(X \wedge Y ; \mathbb{F}_{2}\right)$.

$S q^{0}$ is the identity

- Property (1), that $S q^{0}(x)=x$, is not obvious.
- The statement for $n=1$ follows by naturality from the case $x=u_{1} \in H^{1}\left(K_{1} ; \mathbb{F}_{2}\right)$, which is an assertion about the composite

$$
\mathbb{R} P_{+}^{\infty} \wedge K_{1} \xrightarrow{1 \wedge \Delta} S_{+}^{\infty} \wedge c_{2} K_{1} \wedge K_{1} \xrightarrow{\theta} K_{2} .
$$

- By naturality with respect to $g_{1}: S^{1} \rightarrow K_{1}$, it suffices to check that

$$
\mathbb{R} P_{+}^{1} \wedge S^{1} \xrightarrow{1 \wedge \Delta} S_{+}^{1} \wedge c_{2} S^{1} \wedge S^{1}
$$

induces the nonzero homomorphism (an isomorphism) in $H^{2}\left(-; \mathbb{F}_{2}\right)$, which can be seen from an explicit cellular model. See [Hat02, p. 505].

- This shows that $S q^{0}\left(g_{1}\right)=g_{1}$ in $\tilde{H}^{*}\left(S^{1} ; \mathbb{F}_{2}\right)$.
- When combined with the Cartan formula for $\Sigma X=S^{1} \wedge X$, it follows that each reduced squaring operation commutes with the suspension isomorphisms

$$
\sigma: \tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right) \xrightarrow{\cong} \tilde{H}^{n+1}\left(\Sigma X ; \mathbb{F}_{2}\right)
$$

given by $\sigma(x)=g_{1} \wedge x$, since

$$
S q^{i}\left(g_{1} \wedge x\right)=S q^{0}\left(g_{1}\right) \wedge S q^{i}(x)=g_{1} \wedge S q^{i}(x) .
$$

- It then follows, by naturality with respect to $X \cup C A \rightarrow \Sigma A$, that each $S q^{i}$ commutes with the connecting homomorphisms

$$
\delta: H^{n}\left(A ; \mathbb{F}_{2}\right) \longrightarrow H^{n+1}\left(X, A ; \mathbb{F}_{2}\right) .
$$

- It also follows that each $S q^{i}$ is additive, i.e., is an \mathbb{F}_{2}-linear homomorphism.

End of proof of theorem

- Finally, to verify that $S q^{0}(x)=x$ for $x \in H^{n}\left(X ; \mathbb{F}_{2}\right)$ it suffices, by naturality, to check the case $x=u_{n} \in H^{n}\left(K_{n} ; \mathbb{F}_{2}\right)$.
- Since $g_{n}: S^{n} \rightarrow K_{n}$ induces an isomorphism $g_{n}^{*}: H^{n}\left(K_{n} ; \mathbb{F}_{2}\right) \rightarrow H^{n}\left(S^{n} ; \mathbb{F}_{2}\right)$, it suffices to treat the case $x=g_{n} \in H^{n}\left(S^{n} ; \mathbb{F}_{2}\right)$.
- This now follows from the case $x=g_{1} \in H^{1}\left(S^{1} ; \mathbb{F}_{2}\right)$, by commutation of $S q^{0}$ with the suspension isomorphism. $\quad \square$

Bockstein homomorphisms

The operation $S q^{1}$ had also been previously considered.
Definition
Let

$$
0 \rightarrow G^{\prime} \longrightarrow G \longrightarrow G^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of abelian groups. The induced short exact sequence

$$
0 \rightarrow C^{*}\left(X ; G^{\prime}\right) \longrightarrow C^{*}(X ; G) \longrightarrow C^{*}\left(X ; G^{\prime \prime}\right) \rightarrow 0
$$

of cochain complexes induces a long exact sequence in cohomology, with connecting homomorphisms

$$
\beta: H^{n}\left(X ; G^{\prime \prime}\right) \longrightarrow H^{n+1}\left(X ; G^{\prime}\right)
$$

called the cohomology Bockstein homomorphism associated to the extension $0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0$.

Bockstein composition

The Bockstein homomorphism is a cohomology operation of type ($G^{\prime \prime}, n ; G^{\prime}, n+1$).
Lemma
Let $0 \rightarrow G^{\prime} \rightarrow G_{1} \rightarrow G^{\prime \prime} \rightarrow 0$ and $0 \rightarrow G^{\prime \prime} \rightarrow G_{2} \rightarrow G^{\prime \prime \prime} \rightarrow 0$ be extensions of abelian groups. Then the composite of Bockstein homomorphisms

$$
H^{n}\left(X ; G^{\prime \prime \prime}\right) \xrightarrow{\beta_{2}} H^{n+1}\left(X ; G^{\prime \prime}\right) \xrightarrow{\beta_{1}} H^{n+2}\left(X ; G^{\prime}\right)
$$

is zero.

Proof

There exists a commutative diagram

with exact rows and columns. The Bockstein for $G^{\prime \prime} \rightarrow G_{2} \rightarrow G^{\prime \prime \prime}$ factors as

$$
\beta_{2}=j \beta: H^{n}\left(X ; G^{\prime \prime \prime}\right) \xrightarrow{\beta} H^{n+1}\left(X ; G_{1}\right) \xrightarrow{j} H^{n+1}\left(X ; G^{\prime \prime}\right)
$$

and the composite

$$
\beta_{1} j: H^{n+1}\left(X ; G_{1}\right) \xrightarrow{j} H^{n+1}\left(X ; G^{\prime \prime}\right) \xrightarrow{\beta_{1}} H^{n+2}\left(X ; G^{\prime}\right)
$$

is zero.

$S q^{1}$ is the Bockstein

Proposition

$S q^{1}=\beta: H^{n}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{n+1}\left(X ; \mathbb{F}_{2}\right)$ equals the cohomology
Bockstein for the extension

$$
0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2 \rightarrow 0 .
$$

In particular, $S q^{1} S q^{1}=\beta \beta=0$.
Proof.

- By naturality it suffices that $S q^{1}\left(u_{n}\right)=\beta\left(u_{n}\right) \in H^{n+1}\left(K_{n} ; \mathbb{F}_{2}\right)$ for $u_{n} \in H^{n}\left(K_{n} ; \mathbb{F}_{2}\right)$.
- Consider the Moore space $M_{n}=S^{n} \cup_{2} e^{n+1}$, which admits an $(n+1)$-connected map $f: M_{n} \rightarrow K_{n}$.
- Since $f^{*}: H^{n+1}\left(K_{n} ; \mathbb{F}_{2}\right) \rightarrow H^{n+1}\left(M_{n} ; \mathbb{F}_{2}\right)$ is an isomorphism, it suffices to check that $S q^{1}(a)=\beta(a)$ for $a=[f]$.

Proof (cont.)

- Since Sq 1 and β both commute with suspension isomorphisms, it suffices to verify this when $n=1$ and $M_{1}=S^{1} \cup_{2} e^{2} \cong \mathbb{R} P^{2}$.
- Here $S q^{1}(a)=a^{2}$ generates $H^{2}\left(\mathbb{R} P^{2} ; \mathbb{F}_{2}\right)$, and a direct calculation with $\tilde{H}^{*}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 4\right)$ shows that $\beta(a)=a^{2}$.
- The composite $\beta \beta$ is trivial, by the previous lemma with $G^{\prime}=G^{\prime \prime}=G^{\prime \prime \prime}=\mathbb{Z} / 2, G_{1}=G_{2}=\mathbb{Z} / 4$ and $G=\mathbb{Z} / 8$.

Steenrod squares on powers

Lemma
The Steenrod squares on the powers of any $a \in H^{1}\left(X ; \mathbb{F}_{2}\right)$ are given by

$$
S q^{i}\left(a^{j}\right)=\binom{j}{i} a^{i+j}
$$

The binomial coefficient can be read mod 2 , since the expression takes place in $H^{*}\left(X ; \mathbb{F}_{2}\right)$. Hence Lucas' theorem (see below) is helpful.

Lucas' theorem

Binomial coefficents $\bmod p$ can be conveniently calculated from base p expansions. See [Ste62, Lem. 2.6] or [Hat02, Lem. 3C.6] for a proof.
Lemma (Lucas)
Let p be a prime, and write $n=\sum_{i} n_{i} p^{i}$ and $k=\sum_{i} k_{i} p^{i}$ with $n_{i}, k_{i} \in\{0,1, \ldots, p-1\}$. Then

$$
\binom{n}{k} \equiv \prod_{i}\binom{n_{i}}{k_{i}} \bmod p .
$$

For $p=2$, this reduces the calcuation of $\binom{n}{k}$ to the cases
$\binom{0}{0}=\binom{1}{0}=\binom{1}{1}=1$ and $\binom{0}{1}=0$.
Hence $\binom{n}{k} \equiv 0 \bmod 2$ if and only if there is a 1 below a 0 when n and k are written in base 2.

Proof of lemma

Let the inhomogeneous sum

$$
S q(x)=\sum_{i} S q^{i}(x) \in \bigoplus_{n} H^{n}\left(X ; \mathbb{F}_{2}\right)
$$

denote the total squaring operation on x. The Cartan formula then reads

$$
S q(x y)=S q(x) S q(y)
$$

and $S q(a)=a+a^{2}=a(1+a)$ in $H^{*}\left(X ; \mathbb{F}_{2}\right)$. Hence

$$
S q\left(a^{j}\right)=S q(a)^{j}=\left(a+a^{2}\right)^{j}=a^{j}(1+a)^{j}
$$

so that

$$
S q^{i}\left(a^{j}\right)=a^{j} \cdot\binom{j}{i} a^{i}=\binom{j}{i} a^{i+j}
$$

for $0 \leq i \leq j$, and $S q^{i}\left(a^{j}\right)=0$ otherwise.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Steenrod square composites

Let $S q^{i} S q^{j}$ denote the composite operation

$$
\tilde{H}^{n}\left(X ; \mathbb{F}_{2}\right) \xrightarrow{S q^{j}} \tilde{H}^{n+j}\left(X ; \mathbb{F}_{2}\right) \xrightarrow{S a^{i}} \tilde{H}^{n+i+j}\left(X ; \mathbb{F}_{2}\right) .
$$

These satisfy the Adem relations.
Theorem ([Ade52], [Ste62, §l.1])
The identity

$$
S q^{i} S q^{j}=\sum_{k=0}^{[i / 2]}\binom{j-k-1}{i-2 k} S q^{i+j-k} S q^{k}
$$

holds, for $i<2 j$.

Sample relations

- The binomial coefficients can be read mod 2.
- The summation limits can be omitted, given the convention that $\binom{n}{k}=0$ for $k<0$ and $k>n$.
- In particular,

$$
\begin{aligned}
S q^{1} S q^{2 j} & =S q^{2 j+1} \\
S q^{1} S q^{2 j+1} & =0 \\
S q^{2 j+1} S q^{j+1} & =0
\end{aligned}
$$

for all $j \geq 0$.

Adem relations in degrees $* \leq 8$

$S q^{1} S q^{1}=0$
$S q^{1} S q^{3}=0$
$S q^{1} S q^{4}=S q^{5}$
$S q^{3} S q^{2}=0$
$S q^{2} S q^{4}=S q^{6}+S q^{5} S q^{1}$
$S q^{1} S q^{6}=S q^{7}$
$S q^{3} S q^{4}=S q^{7}$
$S q^{1} S q^{7}=0$
$S q^{3} S q^{5}=S q^{7} S q^{1}$
$S q^{5} S q^{3}=0$
$S q^{1} S q^{2}=S q^{3}$
$S q^{2} S q^{2}=S q^{3} S q^{1}$
$S q^{2} S q^{3}=S q^{5}+S q^{4} S q^{1}$
$S q^{1} S q^{5}=0$
$S q^{3} S q^{3}=S q^{5} S q^{1}$
$S q^{2} S q^{5}=S q^{6} S q^{1}$
$S q^{4} S q^{3}=S q^{5} S q^{2}$
$S q^{2} S q^{6}=S q^{7} S q^{1}$
$S q^{4} S q^{4}=S q^{7} S q^{1}+S q^{6} S q^{2}$

Adem relations in degrees $9 \leq * \leq 11$

$S q^{1} S q^{8}=S q^{9}$
$S q^{3} S q^{6}=0$
$S q^{5} S q^{4}=S q^{7} S q^{2}$
$S q^{2} S q^{8}=S q^{10}+S q^{9} S q^{1}$
$S q^{4} S q^{6}=S q^{10}+S q^{8} S q^{2}$
$S q^{6} S q^{4}=S q^{7} S q^{3}$
$S q^{2} S q^{9}=S q^{10} S q^{1}$
$S q^{4} S q^{7}=S q^{11}+S q^{9} S q^{2}$
$S q^{6} S q^{5}=S q^{9} S q^{2}+S q^{8} S q^{3}$
$S q^{2} S q^{7}=S q^{9}+S q^{8} S q^{1}$
$S q^{4} S q^{5}=S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}$
$S q^{1} S q^{9}=0$
$S q^{3} S q^{7}=S q^{9} S q^{1}$
$S q^{5} S q^{5}=S q^{9} S q^{1}$
$S q^{1} S q^{10}=S q^{11}$
$S q^{3} S q^{8}=S q^{11}$
$S q^{5} S q^{6}=S q^{11}+S q^{9} S q^{2}$
$S q^{7} S q^{4}=0$

Biquadratic construction

We consider the universal case of $S q^{i} S q^{j}(x)$ for $x=u_{n}$ in $H^{n}\left(X ; \mathbb{F}_{2}\right)$ with $X=K_{n}$, and apply the quadratic construction twice.

Here

$$
D_{2}\left(D_{2}(X)\right)=S_{+}^{\infty} \wedge_{C_{2}}\left(S_{+}^{\infty} \wedge_{C_{2}} X^{\wedge 2}\right)^{\wedge 2} \cong\left(S^{\infty} \times\left(S^{\infty}\right)^{2}\right)_{+} \wedge_{C_{2} \ltimes\left(C_{2}\right)^{2}} X^{\wedge 4}
$$

where $C_{2} \ltimes\left(C_{2}\right)^{2}$ denotes the semi-direct product.

Sketch proof

In the upper part of the diagram,

$$
(1 \wedge \Delta)^{*} \theta^{*}\left(u_{4 n}\right)=\sum_{k} a^{2 n-k} \otimes S q^{k}\left(u_{2 n}\right)
$$

in $\tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty} \wedge K_{2 n} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[a] \otimes \tilde{H}^{*}\left(K ; \mathbb{F}_{2}\right)$, which maps to

$$
\begin{aligned}
z=(1 \wedge 1 \wedge \Delta)^{*} & (1 \wedge \theta)^{*}\left(\sum_{k} a^{2 n-k} \otimes S q^{k}\left(u_{2 n}\right)\right) \\
& =\sum_{k} a^{2 n-k} \otimes(1 \wedge \Delta)^{*} \theta^{*}\left(S q^{k}\left(u_{2 n}\right)\right) \\
& =\sum_{k} a^{2 n-k} \otimes S q^{k}\left(\sum_{\ell} b^{n-\ell} \otimes S q^{\ell}\left(u_{n}\right)\right) \\
& =\sum_{i, j} a^{2 n-i-j} \otimes \sum_{\ell} S q^{i}\left(b^{n-\ell}\right) \otimes S q^{j}\left(S q^{\ell}\left(u_{n}\right)\right) \\
& =\sum_{i, j, \ell}\binom{n-\ell}{i} a^{2 n-i-j} \otimes b^{n+i-\ell} \otimes S q^{j} S q^{\ell}\left(u_{n}\right)
\end{aligned}
$$

in $\tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty} \wedge \mathbb{R} P_{+}^{\infty} \wedge K_{n} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[a] \otimes \mathbb{F}_{2}[b] \otimes \tilde{H}^{*}\left(K_{n} ; \mathbb{F}_{2}\right)$.

Proof (cont.)

- We claim that z is invariant under the twist map $\tau \wedge 1$ that interchanges the two copies of $\mathbb{R} P_{+}^{\infty}$.
- This implies an identity among the composite operations $S q^{j} S q^{\ell}\left(u_{n}\right)$, for varying j and ℓ
- The Adem relations can be extracted from this with some effort.
- See [Ste62, p. 119] or [Hat02, p. 508].

Proof of claim

- To prove the claim, we use the extended power

$$
D_{4}(X)=E \Sigma_{4+} \wedge \Sigma_{4}(X \wedge X \wedge X \wedge X)
$$

where Σ_{4} denotes the symmetric group on four letters and $p: E \Sigma_{4} \rightarrow B \Sigma_{4}$ is a universal principal Σ_{4}-bundle.

- The group Σ_{4} acts freely from the right on $E \Sigma_{4}$, and acts from the left on $X^{\wedge 4}=X \wedge X \wedge X \wedge X$ by permuting the factors.
- When $X=K_{n}$ the map $\theta_{0}^{\prime}: K_{n}^{\wedge 4} \rightarrow K_{4 n}$ representing the fourfold smash product extends, uniquely up to homotopy, to a map $\theta^{\prime}: D_{4}\left(K_{n}\right) \rightarrow K_{4 n}$.
- An inclusion $G=C_{2} \ltimes\left(C_{2} \times C_{2}\right) \subset \Sigma_{4}$ induces $\beta: D_{2}\left(D_{2}(X)\right) \rightarrow D_{4}(X)$, so that $\theta^{\prime} \beta \simeq \theta D_{2}(\theta)$.

Proof of claim (cont.)

- The diagonal map $\Delta: K_{n} \rightarrow K_{n}^{\wedge 4}$ is Σ_{4}-equivariant, and leads to the map $1 \wedge \Delta: B \Sigma_{4+} \wedge K_{n} \rightarrow D_{4}\left(K_{n}\right)$.
- The inclusion
$1 \times \Delta: H=C_{2} \times C_{2} \subset C_{2} \ltimes\left(C_{2} \times C_{2}\right)=G \subset \Sigma_{4}$ now induces $\mathbb{R} P_{+}^{\infty} \wedge \mathbb{R} P_{+}^{\infty} \cong B\left(C_{2} \times C_{2}\right)_{+} \rightarrow B \Sigma_{4+}$ and the left hand vertical map, making the whole diagram commute up to homotopy.
- Hence z can also be calculated as the pullback of $(1 \wedge \Delta)^{*}\left(\theta^{\prime}\right)^{*}\left(u_{4 n}\right) \in H^{*}\left(B \Sigma_{4} ; \mathbb{F}_{2}\right) \otimes \tilde{H}^{*}\left(K_{n} ; \mathbb{F}_{2}\right)$.
- There is an inner automorphism of Σ_{4} that maps $H=C_{2} \times C_{2}$ to itself by the twist map τ.
- Since inner automorphisms induce the identity map on group cohomology, i.e., on $H^{*}\left(B \Sigma_{4} ; \mathbb{F}_{2}\right)$, the claim that z is invariant under τ follows.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Generators and relations

Definition

The mod 2 Steenrod algebra is the graded (unital and associative) \mathbb{F}_{2}-algebra

$$
A=\mathscr{A}(2)
$$

generated by the symbols $S q^{i}$ for $i \geq 0$, subject to the Adem relations

$$
S q^{i} S q^{j}=\sum_{k}\binom{j-k-1}{i-2 k} S q^{i+j-k} S q^{k}
$$

for $i<2 j$, and $S q^{0}=1$.

Natural representations

Lemma
For each space X the mod 2 cohomology $H^{*}\left(X ; \mathbb{F}_{2}\right)$ is naturally a graded left A-module, where $A=\mathscr{A}(2)$.

Proof.
For $p=2$, each symbol $S q^{i}$ in A acts on $H^{*}\left(X ; \mathbb{F}_{2}\right)$ as the Steenrod operation of the same name. This defines a left action by A, since the Steenrod operations satisfy the Adem relations and $S q^{0}$ acts as the identity.

Length, degree, admissibility

- Let $I=\left(i_{1}, i_{2}, \ldots, i_{\ell}\right)$ be a finite sequence of positive integers.
- We call $\ell=\ell(I)$ the length of I,
- write

$$
|I|=\sum_{s=1}^{\ell} i_{s}
$$

for the degree of l,

- and say that I is admissible if

$$
i_{s} \geq 2 i_{s+1}
$$

for each $1 \leq s<\ell$.

- Let

$$
S q^{\prime}=S q^{i_{1}} S q^{i_{2}} \cdot \ldots \cdot S q^{i_{\ell}}
$$

denote the product in A, as well as the corresponding composite of Steenrod operations.

Admissible basis

Theorem ([Ste62, Thm. I.3.1])
The admissible monomials $S q^{\prime}$ form a vector space basis for $A=\mathscr{A}(2)$.

Sketch proof.

- The monomials $S q^{\prime}$ clearly generate A.
- If I is not admissible, meaning that $i_{s}<2 i_{s+1}$ for some s, then we can rewrite $S q^{\prime}$ by means of the Adem relation for $S q^{i_{s}} S q^{i_{s+1}}$.
- This replaces I with sequences of lower moment $\sum_{s=1}^{\ell} s i_{s}$, so the process eventually halts.
- This proves that the admissible monomials generate A.

Proof (cont.)

- To prove that the admissible monomials form a basis, recall the action

$$
S q^{i}\left(a^{j}\right)=\binom{j}{i} a^{i+j}
$$

of the Steenrod operations on $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[a]$.

- By the Cartan formula, this determines the action of $S q^{\prime}$ on

$$
H^{*}\left(\mathbb{R} P^{\infty} \times \cdots \times \mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[a_{1}, \ldots, a_{n}\right]
$$

where the product contains n copies of $\mathbb{R} P^{\infty}$.

- A proof by induction on n shows that the elements

$$
S q^{\prime}\left(a_{1} \cdot \ldots \cdot a_{n}\right) \in \mathbb{F}_{2}\left[a_{1}, \ldots, a_{n}\right]
$$

for I admissible of degree $|I| \leq n$ are linearly independent.

- Since n can be chosen to be arbitrarily large, this proves that the admissible $S q^{\prime}$ are linearly independent.

Admissible basis for A in degrees $* \leq 11$

0. 1
1. $S q^{1}$
2. $S q^{2}$
3. $S q^{3}, S q^{2} S q^{1}$
4. $S q^{4}, S q^{3} S q^{1}$
5. $S q^{5}, S q^{4} S q^{1}$
6. $S q^{6}, S q^{5} S q^{1}, S q^{4} S q^{2}$
7. $S q^{7}, S q^{6} S q^{1}, S q^{5} S q^{2}, S q^{4} S q^{2} S q^{1}$
8. $S q^{8}, S q^{7} S q^{1}, S q^{6} S q^{2}, S q^{5} S q^{2} S q^{1}$
9. $S q^{9}, S q^{8} S q^{1}, S q^{7} S q^{2}, S q^{6} S q^{2} S q^{1}, S q^{6} S q^{3}$
10. $S q^{10}, S q^{9} S q^{1}, S q^{8} S q^{2}, S q^{7} S q^{2} S q^{1}, S q^{7} S q^{3}, S q^{6} S q^{3} S q^{1}$
11. $S q^{11}, S q^{10} S q^{1}, S q^{9} S q^{2}, S q^{8} S q^{2} S q^{1}, S q^{8} S q^{3}, S q^{7} S q^{3} S q^{1}$

Augmentation ideal and indecomposable quotient

- Let the augmentation $\epsilon: A \rightarrow \mathbb{F}_{2}$ be the graded ring homomorphism given by $\epsilon(1)=1$.
- Its kernel is the augmentation ideal

$$
I(A)=\operatorname{ker}(\epsilon)
$$

which equals the positive degree part of A.

- The classes in the image $I(A)^{2} \subset I(A)$ of the pairing

$$
I(A) \otimes I(A) \subset A \otimes A \longrightarrow A
$$

are said to be decomposable.

- The quotient

$$
Q(A)=I(A) / I(A)^{2}
$$

is the graded vector space of (algebra) indecomposables of A.

Indecomposables of A

Theorem ([Ade52, Thm. 1.5], [Ste62, Thm. 4.3])
The operation $S q^{k}$ is decomposable if and only if k is not a power of 2. Hence

$$
S q^{1}, S q^{2}, S q^{4}, \ldots, S q^{2^{i}}, \ldots
$$

generate A as an algebra, and

$$
Q(A) \cong \mathbb{F}_{2}\left\{S q^{2^{2}} \mid i \geq 0\right\}
$$

Proof

- If k is not a power of 2 , we can write $k=i+2^{\ell}$ with $0<i<2^{\ell}$.
- The Adem relation

$$
S q^{i} S q^{2^{\ell}}=\binom{2^{\ell}-1}{i} S q^{i+2^{\ell}}+(\text { decomposable terms })
$$

and the case $\binom{2^{\ell}-1}{i}=1$ of Lucas' theorem show that $S q^{k}=S q^{i+2^{\ell}}$ is decomposable.

Proof (cont.)

- Conversely, to see that $S q^{k}$ is not decomposable for $k=2^{\ell}$, consider the A-module action on $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[a]$.
- From

$$
S q^{i}\left(a^{2^{\ell}}\right)= \begin{cases}a^{2^{\ell}} & \text { for } i=0 \\ a^{2^{\ell+1}} & \text { for } i=2^{\ell} \\ 0 & \text { otherwise }\end{cases}
$$

we see that any operation of degree $0<*<2^{\ell}$ acts trivially on $a^{2^{\ell}}$.

- Hence any decomposable operation of degree 2^{ℓ} must also map $a^{2^{\ell}}$ to zero.
- Since $S q^{2^{\ell}}$ instead maps $a^{2^{\ell}}$ to $a^{2^{\ell+1}}$, it cannot be decomposable.

Spaces with polynomial cohomology

Proposition

If X is a space with

$$
H^{*}\left(X ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x]
$$

or

$$
H^{*}\left(X ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x] /\left(x^{h+1}\right)
$$

with $h \geq 2$, and $|x|=n$, then n is a power of 2 .

Proof.

- Since $H^{n+i}\left(X ; \mathbb{F}_{2}\right)=0$ for $0<i<n$ the operation $S^{n}(x)$ must be trivial if $S q^{n}$ is decomposable.
- Since $S q^{n}(x)=x^{2}$ is assumed to be nontrivial, it must instead be the case that $S q^{n}$ is indecomposable.

Hopf invariant one, I

Proposition

If $f: S^{2 n-1} \rightarrow S^{n}$ has odd Hopf invariant, then n is a power of 2 .
Proof.
If f has odd Hopf invariant, then its mapping cone

$$
C f=S^{n} \cup_{f} e^{2 n}
$$

is a space with

$$
H^{*}\left(C f ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x] /\left(x^{3}\right)
$$

with $|x|=n$.

Polynomial cohomology mod 3

Using the reduced power operations for mod 3 cohomology, one can prove:

Proposition
If X is a space with

$$
H^{*}\left(X ; \mathbb{F}_{3}\right) \cong \mathbb{F}_{3}[x]
$$

or

$$
H^{*}\left(X ; \mathbb{F}_{3}\right) \cong \mathbb{F}_{3}[x] /\left(x^{h+1}\right)
$$

with $h \geq 3$, and $|x|=n$ is a power of 2 , then $n \in\{2,4\}$.

Theorem

If X is a space of finite type with

$$
H^{*}(X) \cong \mathbb{Z}[x] \quad \text { or } \quad H^{*}(X) \cong \mathbb{Z}[x] /\left(x^{h+1}\right)
$$

with $h \geq 3$, then $n=|x|$ is 2 or 4 . If

$$
H^{*}(X) \cong \mathbb{Z}[x] /\left(x^{3}\right)
$$

then $n=2^{i} \geq 2$ is a power of 2 .
Proof.

- The finite type assumption ensures that $H^{*}\left(X ; \mathbb{F}_{p}\right) \cong H^{*}(X) \otimes \mathbb{F}_{p}$.
- Suppose that $H^{*}(X) \cong \mathbb{Z}[x]$ or $\mathbb{Z}[x] /\left(x^{h+1}\right)$ with $h \geq 2$.
- By graded commutativity, $n=|x|$ is even.
- The case $p=2$ implies that n is a power of 2 .
- If $h \geq 3$, then the case $p=3$ implies that $n \in\{2,4\}$.

Projective spaces

- The complex and quaternionic projective spaces $\mathbb{C} P^{\infty}$, $\mathbb{C} P^{h}, \mathbb{H} P^{\infty}$ and $\mathbb{H} P^{h}$ show that $\mathbb{Z}[x]$ and $\mathbb{Z}[x] /\left(x^{h+1}\right)$ with $|x|=n$ are realized as the integral cohomology of spaces for $n \in\{2,4\}$ and any $h \geq 0$.
- The octonionic projective plane $\mathbb{O} P^{2}=S^{8} \cup_{\sigma} e^{16}$ realizes the case $n=8$ and $h=2$.
- There is no space $\mathbb{O} P^{3}$ realizing the case $n=8$ and $h=3$.

Hopf invariant one, II

- The question remains whether $\mathbb{Z}[x] /\left(x^{3}\right)$ can be realized as the cohomology of a space when $|x|=n=2^{i}$ with $i \geq 4$.
- This is equivalent to the Hopf invariant one problem, of deciding whether there exists a map $f: S^{2 n-1} \rightarrow S^{n}$ with $H^{*}(C f) \cong \mathbb{Z}[x] /\left(x^{3}\right)$.
- This was famously decided in the negative for all $i \geq 4$ by Adams [Ada60].
- The case $i=4$ was excluded earlier by Toda.
- We will see later that Adams' result corresponds to nonzero differentials in the Adams spectral sequence for the sphere spectrum.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Transgressions and Steenrod operations

Using Steenrod operations, we can resolve the question from the previous chapter about the mod 2 cohomology Serre spectral sequence for the loop-path fibration of $K(\mathbb{Z} / 2,2)$.
Lemma
The mod 2 cohomology transgression

$$
d_{n}^{0, n-1}: E_{n}^{0, n-1} \longrightarrow E_{n}^{n, 0}
$$

commutes with the Steenrod squares in $H^{*}\left(F ; \mathbb{F}_{2}\right)$ and $H^{*}\left(B ; \mathbb{F}_{2}\right)$.

Proof

- Recall that $\tau^{n}=d_{n}^{0, n-1}$ is given by the additive relation

$$
\left(q^{*}\right)^{-1} \delta: H^{n-1}\left(F ; \mathbb{F}_{2}\right) \stackrel{\delta}{\longrightarrow} H^{n}\left(E, F ; \mathbb{F}_{2}\right) \stackrel{q^{*}}{\leftrightarrows} H^{n}\left(B, b_{0} ; \mathbb{F}_{2}\right)
$$

- Any cohomology operation commutes with q^{*}, and the Steenrod operations commute with δ.
- Hence if $\tau^{n}(x)=y$ then $\tau^{n+i}\left(S q^{i}(x)\right)=S q^{i}(y)$, since $\delta\left(S q^{i}(x)\right)=S q^{i}(\delta(x))=S q^{i}\left(q^{*}(y)\right)=q^{*}\left(S q^{i}(y)\right)$.

Cohomology of $K(\mathbb{Z} / 2,2)$

Proposition

Let $M_{i}=\left(2^{i-1}, 2^{i-2}, \ldots, 2,1\right)$ for $i \geq 1$. Then

$$
H^{*}\left(K(\mathbb{Z} / 2,2) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[b, b_{1}, b_{2}, \ldots\right]
$$

with $b=u_{2}$ and $b_{i}=S q^{M_{i}}(b) \in H^{2^{i}+1}\left(K(\mathbb{Z} / 2,2) ; \mathbb{F}_{2}\right)$ for $i \geq 1$.
The Serre spectral sequence

$$
\begin{aligned}
E_{2}^{*, *} & \cong H^{*}\left(K(\mathbb{Z} / 2,2) ; \mathbb{F}_{2}\right) \otimes H^{*}\left(K(\mathbb{Z} / 2,1) ; \mathbb{F}_{2}\right) \\
& \cong \mathbb{F}_{2}\left[b, b_{1}, b_{2}, \ldots\right] \otimes \mathbb{F}_{2}[a] \Longrightarrow H^{*}\left(P K(\mathbb{Z} / 2,2) ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}
\end{aligned}
$$

has transgressive differentials $d_{2}(a)=b$ and

$$
d_{2^{i}+1}\left(a^{2^{i}}\right)=b_{i}
$$

for each $i \geq 1$.

Transgressive differentials for $K(\mathbb{Z} / 2,2)$

Sketch proof

- By induction on i, we have $S q^{M_{i}}(a)=a^{2^{i}}$, for each $i \geq 1$.
- Hence each $a^{2^{i}}$ is transgressive, with $d_{2^{i}+1}\left(a^{2^{i}}\right)=d_{2^{i}+1}\left(S q^{M_{i}}(a)\right)=S q^{M_{i}}\left(d_{2}(a)\right)=S q^{M_{i}}(b)=b_{i}$.
- It follows by an induction on $u \geq 0$, using a theorem of Borel, that the \mathbb{F}_{2}-algebra homomorphism

$$
\mathbb{F}_{2}\left[b, b_{i} \mid i \geq 1\right] \otimes \mathbb{F}_{2}[a] \longrightarrow H^{*}\left(K(\mathbb{Z} / 2,2) ; \mathbb{F}_{2}\right) \otimes \mathbb{F}_{2}[a] \cong E_{2}^{*, *}
$$

is an isomorphism in base degrees $s \leq u$.

Excess

This was generalized by Serre to calculate $H^{*}\left(K(G, n)\right.$; $\left.\mathbb{F}_{2}\right)$ for all finitely generated abelian G.
The role of the collection $\left\{M_{i}\right\}_{i}$ is replaced by a condition on the excess of an admissible sequence.

Definition

If $I=\left(i_{1}, \ldots, i_{\ell}\right)$ is an admissible sequence, so that $i_{s} \geq 2 i_{s+1}$ for each $1 \leq s<\ell$, we define its excess to be

$$
e(I)=\left(i_{1}-2 i_{2}\right)+\cdots+\left(i_{\ell-1}-2 i_{\ell}\right)+i_{\ell}=i_{1}-i_{2}-\cdots-i_{\ell}=2 i_{1}-|I| .
$$

This is a non-negative integer. The only admissible sequence with $e(I)=0$ is $I=()$, and the only admissible sequences with $e(I)=1$ are the M_{i} for $i \geq 1$.

Cohomology of mod 2 Eilenberg-MacLane spaces

Theorem ([Ser53, Thm. 2])
Suppose $n \geq 1$. Then

$$
H^{*}\left(K(\mathbb{Z} / 2, n) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[S q^{\prime}\left(u_{n}\right) \mid e(I)<n\right] .
$$

The mod 2 cohomology of $K(\mathbb{Z} / 2, n)$ is the polynomial algebra generated by the classes $S q^{\prime}\left(u_{n}\right)$, where I ranges over all admissible sequences of excess less than n.

Stable range cohomology, I

Serre's result includes the following stable range calculation.
Corollary
The homomorphism

$$
\begin{aligned}
\Sigma^{n} A & \longrightarrow \tilde{H}^{*}\left(K(\mathbb{Z} / 2, n) ; \mathbb{F}_{2}\right) \\
\Sigma^{n} S q^{\prime} & \longmapsto S q^{\prime}\left(u_{n}\right)
\end{aligned}
$$

is an isomorphism in degrees $*<2 n$, i.e., for $|I|<n$.

Proof.

- Each admissible I of degree $|I|<n$ has excess $e(I)<n$.
- Hence the $S q^{\prime}\left(u_{n}\right)$ with I admissible of degree $|I|<n$ range over the algebra generators of $H^{*}\left(K(\mathbb{Z} / 2, n) ; \mathbb{F}_{2}\right)$ in degrees $*<2 n$.
- There are no decomposables in that range of degrees.

Cohomology of integral Eilenberg-MacLane spaces

Let $\bar{u}_{n} \in H^{n}\left(K(\mathbb{Z}, n) ; \mathbb{F}_{2}\right)$ denote the unique nonzero class.
Note that $\beta\left(\bar{u}_{n}\right)=0$, so that $S q^{1}\left(\bar{u}_{n}\right)=0$.
Theorem ([Ser53, Thm. 3])
Suppose $n \geq 2$. Then

$$
H^{*}\left(K(\mathbb{Z}, n) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[S q^{\prime}\left(\bar{u}_{n}\right) \mid e(I)<n, i_{\ell}>1\right] .
$$

The mod 2 cohomology of $K(\mathbb{Z}, n)$ is the polynomial algebra generated by the classes $S q^{\prime}\left(\bar{u}_{n}\right)$, where $I=\left(i_{1}, \ldots, i_{\ell}\right)$ ranges over all admissible sequences of excess less than n, except those with final term $i_{\ell}=1$.

Stable range cohomology, II

Corollary
Let $n \geq 2$. The homomorphism

$$
\begin{gathered}
\Sigma^{n} A / A S q^{1} \longrightarrow \tilde{H}^{*}\left(K(\mathbb{Z}, n) ; \mathbb{F}_{2}\right) \\
\Sigma^{n} S q^{\prime} \longmapsto S q^{\prime}\left(\bar{u}_{n}\right)
\end{gathered}
$$

is an isomorphism in degrees $*<2 n$, i.e., for $|\||<n$.
Proof.

- By $A S q^{1}$ we mean the left ideal in A generated by $S q^{1}$.
- It has a basis consisting of the admissible $S q^{\prime}$ with $I=\left(i_{1}, \ldots, i_{\ell}\right)$ where $i_{\ell}=1$.
- Hence the $S q^{\prime}\left(\bar{u}_{n}\right)$ with $/$ admissible of degree $|\||<n$ and $i_{\ell}>1$ (if $\ell \geq 1$) range over the algebra generators of $H^{*}\left(K(\mathbb{Z}, n) ; \mathbb{F}_{2}\right)$ in degrees $*<2 n$.
- There are no decomposables in that range of degrees.

Example

Write $H^{*} X=H^{*}\left(X ; \mathbb{F}_{2}\right)$. The exact Serre sequence

$$
\begin{aligned}
0 & \rightarrow H^{n} K(\mathbb{Z} / 2, n) \xrightarrow{i^{*}} H^{n} K(\mathbb{Z}, n) \xrightarrow{\tau^{n+1}} H^{n+1} K(\mathbb{Z}, n+1) \xrightarrow{p^{*}} \ldots \\
& \ldots \xrightarrow{\tau^{2 n}} H^{2 n} K(\mathbb{Z}, n+1) \xrightarrow{p^{*}} H^{2 n} K(\mathbb{Z} / 2, n) \xrightarrow{i^{*}} H^{2 n} K(\mathbb{Z}, n)
\end{aligned}
$$

associated to the homotopy fiber sequence

$$
K(\mathbb{Z}, n) \xrightarrow{i} K(\mathbb{Z} / 2, n) \xrightarrow{p} K(\mathbb{Z}, n+1)
$$

satisfies $i^{*}\left(u_{n}\right)=\bar{u}_{n}$, so that $i^{*}\left(S q^{\prime}\left(u_{n}\right)\right)=S q^{\prime}\left(\bar{u}_{n}\right)$, by naturality. Hence i^{*} is surjective, and $\tau^{m}=0$ for $n<m \leq 2 n$, It follows that $p^{*}\left(\bar{u}_{n+1}\right)=S q^{1} u_{n}$, since this is the only nonzero class in its degree, so that $p^{*}\left(S q^{1} \bar{u}_{n+1}\right)=S q^{l} S q^{1} u_{n}$.

Example (cont.)

In particular, the Serre sequence splits up into the short exact sequences

$$
0 \rightarrow \Sigma^{n+1} A / A S q^{1} \xrightarrow{p^{*}} \Sigma^{n} A \xrightarrow{i^{*}} \Sigma^{n} A / A S q^{1} \rightarrow 0
$$

in degrees $n \leq *<2 n$. Here

$$
p^{*}\left(\Sigma^{n+1} S q^{\prime}\right)=\Sigma^{n} S q^{\prime} S q^{1}
$$

while

$$
i^{*}\left(\Sigma^{n} S q^{\prime}\right)=\Sigma^{n} S q^{\prime} \bmod A S q^{1}
$$

This is a (nontrivial) extension of A-modules.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Stable operations

The Steenrod operations $S q^{\prime}$ are stable, in the following sense.
Definition
A stable cohomology operation $\theta=\left(\theta_{k}\right)_{k}$ of type $\left(G ; G^{\prime}, n\right)$ is a sequence of cohomology operations θ_{k} of type $\left(G, k ; G^{\prime}, n+k\right)$ such that each diagram

$$
\begin{aligned}
& \tilde{H}^{k}(X ; G) \xrightarrow{\theta_{k}} \tilde{H}^{n+k}\left(X ; G^{\prime}\right) \\
& \begin{array}{cc}
\underset{\sigma}{\downarrow} \cong & \xlongequal{\cong} \\
\tilde{H}^{k+1}(\Sigma X ; G)
\end{array} \xrightarrow{\theta_{k+1}} \tilde{H}^{n+k+1}\left(\Sigma X ; G^{\prime}\right)
\end{aligned}
$$

commutes, where σ denotes the suspension isomorphism.

Cohomology suspensions

Definition
The cohomology suspension

$$
\omega: \tilde{H}^{m+1}\left(Y ; G^{\prime}\right) \longrightarrow \tilde{H}^{m}\left(\Omega Y ; G^{\prime}\right)
$$

maps the homotopy class of $f: Y \rightarrow K\left(G^{\prime}, m+1\right)$ to the homotopy class of $\Omega f: \Omega Y \rightarrow \Omega K\left(G^{\prime}, m+1\right) \simeq K\left(G^{\prime}, m\right)$.

Remark

The standard notation for the cohomology suspension is σ, not ω, but for this argument is seems clearer to reserve $\tilde{\sigma}$ to denote the equivalence $K(G, k) \simeq \Omega K(G, k+1)$ and the suspension isomorphism represented by it.

Lemma
A sequence $\left(\theta_{k}\right)_{k}$ of cohomology operations is stable if and only if

$$
\omega\left(\theta_{k+1}\right)=\theta_{k}
$$

for each k, where

$$
\omega: \tilde{H}^{n+k+1}\left(K(G, k+1) ; G^{\prime}\right) \longrightarrow \tilde{H}^{n+k}\left(K(G, k) ; G^{\prime}\right)
$$

is the cohomology suspension.

Proof.

Each condition is equivalent to asking that

$$
\begin{gathered}
K(G, k) \xrightarrow{\theta_{k}} K\left(G^{\prime}, n+k\right) \\
\simeq \tilde{\sigma} \mid \simeq \\
\Omega K(G, k+1) \xrightarrow{\Omega \theta_{k+1}} \Omega K\left(G^{\prime}, n+k+1\right)
\end{gathered}
$$

commutes up to homotopy, for each k.

Stable operations as a limit

In other words, the abelian group of stable cohomology operations of type $\left(G ; G^{\prime}, n\right)$ is isomorphic to the sequential limit

$$
\lim _{k} \tilde{H}^{n+k}\left(K(G, k) ; G^{\prime}\right)
$$

of the tower
$\ldots \xrightarrow{\omega} \tilde{H}^{n+k+1}\left(K(G, k+1) ; G^{\prime}\right) \xrightarrow{\omega} \tilde{H}^{n+k}\left(K(G, k) ; G^{\prime}\right) \xrightarrow{\omega} \ldots$.

Stable operations as a graded ring

- The composite of a stable operation of type ($G ; G^{\prime}, n$) followed by a stable operation of type ($G^{\prime} ; G^{\prime \prime}, m$) is a stable operation of type ($G ; G^{\prime \prime}, n+m$)
- The collection of all stable cohomology operations of type (G; G, n) for $n \in \mathbb{Z}$ forms a graded (usually non-commutative) ring.
- When $G=\mathbb{F}_{2}$, this ring is the mod 2 Steenrod algebra, as we can now deduce from the calculations of Serre.

The Steenrod operations give all stable operations

Proposition

Let $A^{n} \subset A=\mathscr{A}(2)$ denote the degree n part of the mod 2 Steenrod algebra. The homomorphism

$$
\begin{aligned}
A^{n} & \cong \lim _{k} \tilde{H}^{n+k}\left(K\left(\mathbb{F}_{2}, k\right) ; \mathbb{F}_{2}\right) \\
\theta & \longmapsto\left(\theta\left(u_{k}\right)\right)_{k}
\end{aligned}
$$

is an isomorphism. Hence A is isomorphic to the graded ring of stable cohomology operations of type $\left(\mathbb{F}_{2} ; \mathbb{F}_{2}, n\right)$ for arbitrary n.

Proof

- The homomorphisms

$$
\begin{aligned}
\Sigma^{k} A^{n} & \longrightarrow \tilde{H}^{n+k}\left(K\left(\mathbb{F}_{2}, k\right) ; \mathbb{F}_{2}\right) \\
\Sigma^{k} \theta & \longmapsto \theta\left(u_{k}\right)
\end{aligned}
$$

are compatible with the cohomology suspensions ω, and are isomorphisms for $k>n$.

- Hence they combine to map A^{n} isomorphically to the group of compatible sequences $\left(\theta_{k}\right)_{k}$.
- In particular, each morphism ω (in the earlier tower) is an isomorphism, for $k>n$.
- The product in A corresponds to the composition of (stable) cohomology operations.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces Stable cohomology operations

Hopf algebras

The dual Steenrod algebra

Milnor's view on the Cartan formula

- The mod 2 cohomology of any space $H^{*}\left(X ; \mathbb{F}_{2}\right)$, is naturally an A-module and a commutative \mathbb{F}_{2}-algebra, satisfying the Cartan formula

$$
S q^{k}(x \cup y)=\sum_{i+j=k} S q^{i}(x) \cup S q^{j}(y)
$$

and the instability condition $\operatorname{Sq}^{i}(x)=0$ for $i>|x|$.

- Following Milnor [Mil58, Lem. 1], there is an algebra homomorphism

$$
\begin{aligned}
& \psi: A \longrightarrow A \otimes A \\
& S q^{k} \longmapsto \sum_{i+j=k} S q^{i} \otimes S q^{j}
\end{aligned}
$$

and each $A \otimes A$-module can be viewed as an A-module by restriction along ψ.

Milnor's view on the Cartan formula (cont.)

- The Cartan formula then says that the cup product

$$
H^{*}\left(X ; \mathbb{F}_{2}\right) \otimes H^{*}\left(X ; \mathbb{F}_{2}\right) \xrightarrow{\cup} H^{*}\left(X ; \mathbb{F}_{2}\right)
$$

is an A-module homomorphism, where the A-module structure in the source is obtained by restriction in this way.

- We also say that $H^{*}\left(X ; \mathbb{F}_{2}\right)$ is a A-module algebra.
- The coproduct ψ makes A a cocommutative Hopf algebra, and we shall now review this algebraic structure.
- The paper [MM65] by Milnor and Moore is a standard reference.

Closed structure on graded R-modules

- Let R be a commutative ring, which will be the field \mathbb{F}_{2} in our main application.
- For R-modules L and M we write $L \otimes M=L \otimes_{R} M$ for the tensor product over R and $\operatorname{Hom}(M, N)=\operatorname{Hom}_{R}(M, N)$ for the R-linear homomorphisms.
- If L, M and N are (homologically) graded, then

$$
(L \otimes M)_{k}=\bigoplus_{i+j=k} L_{i} \otimes M_{j}
$$

and

$$
\operatorname{Hom}(M, N)_{i}=\prod_{i+j=k} \operatorname{Hom}\left(M_{j}, N_{k}\right)
$$

Closed symmetric monoidal structure (cont.)

- The twist isomorphism

$$
\tau: L \otimes M \longrightarrow M \otimes L
$$

maps $x \otimes y$ to $(-1)^{i j} y \otimes x$, for $x \in L_{i}$ and $y \in N_{j}$.

- There is a natural isomorphism

$$
\operatorname{Hom}(L \otimes M, N) \cong \operatorname{Hom}(L, \operatorname{Hom}(M, N))
$$

taking $f: L \otimes M \rightarrow N$ to $g: L \rightarrow \operatorname{Hom}(M, N)$, with $f(x \otimes y)=g(x)(y)$.

- Here f is left adjoint to g and g is right adjoint to f.

Adjunction counit and unit

- The natural evaluation homomorphism (= adjunction counit)

$$
\epsilon: \operatorname{Hom}(M, N) \otimes M \longrightarrow N
$$

is left adjoint to the identity on $\operatorname{Hom}(M, N)$.

- The natural homomorphism (= adjunction unit)

$$
\eta: L \longrightarrow \operatorname{Hom}(M, L \otimes M)
$$

is right adjoint to the identity on $L \otimes M$.

- We say that (graded) R-modules form a closed symmetric monoidal category, cf. [ML63, §VII.7].

Algebras

A (graded) R-algebra is a (graded) R-module A with a product $\phi: A \otimes A \rightarrow A$ and a unit $\eta: R \rightarrow A$ such that

commute. It is commutative if the diagram

commutes.

Tensor product of algebras

- The ring R is the initial R-algebra.
- The product $\phi: R \otimes R \rightarrow R$ is the canonical isomorphism and the unit $\eta: R \rightarrow R$ is the identity.
- The tensor product of two R-algebras A and B is the R-algebra $A \otimes B$ with product given by the composite

$$
A \otimes B \otimes A \otimes B \xrightarrow{1 \otimes \tau \otimes 1} A \otimes A \otimes B \otimes B \xrightarrow{\phi \otimes \phi} A \otimes B
$$

and unit

$$
R \cong R \otimes R \xrightarrow{\eta \otimes \eta} A \otimes B
$$

- In the full subcategory of commutative R-algebras, the tensor product is the categorical sum.

Augmented algebras

- An R-algebra (A, ϕ, η) is augmented if it comes equipped with an algebra morphism $\epsilon: A \rightarrow R$.
- Let

$$
I(A)=\operatorname{ker}(\epsilon: A \rightarrow R)
$$

be the augmentation ideal.

- Let the R-module of indecomposables $Q(A)$ be the cokernel

$$
I(A) \otimes I(A) \xrightarrow{\phi} I(A) \xrightarrow{\pi} Q(A) \rightarrow 0
$$

of the restricted product.

Indecomposables and generators

- A subset $S \subset I(A)$ that generates A as an R-algebra will map to a subset $\pi(S) \subset Q(A)$ that generates $Q(A)$ as an R-module.
- The converse often holds.
- If $A=R[[x]]$ is a formal power series algebra, with $\epsilon(x)=0$, then $Q(A) \cong R\{x\}$, but x does not generate A algebraically.
- The elements in $I(A)^{2}=\phi(I(A) \otimes I(A))$ are said to be (algebra) decomposable, and an element $x \in I(A)$ with $\pi(x) \neq 0$ is (algebra) indecomposable.

Left modules

Definition

A left A-module is a (graded) R-module M with a pairing $\lambda: A \otimes M \rightarrow M$ such that

and

$$
R \otimes M \xrightarrow{\eta \otimes 1} A \otimes M
$$

commute.

Right modules

Definition
A right A-module is a (graded) R-module L with a pairing $\rho: L \otimes A \rightarrow L$ such that

and

commute.

Tensor and Hom over A

Given a right A-module L and a left A-module M, the tensor product $L \otimes_{A} M$ is the coequalizer

$$
L \otimes A \otimes M \xrightarrow[\rho \otimes 1]{\stackrel{1 \otimes \lambda}{\longrightarrow}} L \otimes M \xrightarrow{\pi} L \otimes_{A} M
$$

where $1 \otimes \lambda$ and $\rho \otimes 1$ are given by the left and right action maps, respectively.

Given two left A-modules M and N, the R-module of A-linear homomorphisms $\operatorname{Hom}_{A}(M, N)$ is the equalizer

$$
\operatorname{Hom}_{A}(M, N) \xrightarrow{\iota} \operatorname{Hom}(M, N) \xrightarrow[\lambda_{*}]{\stackrel{\lambda^{*}}{\longrightarrow}} \operatorname{Hom}(A \otimes M, N),
$$

where $\lambda^{*}(f)=f \lambda: A \otimes M \rightarrow N$ and
$\lambda_{*}(f)=\lambda(1 \otimes f): A \otimes M \rightarrow N$ for $f: M \rightarrow N$.

Pontryagin product

Example

Let G be a topological group, with multiplication $m: G \times G \rightarrow G$. The Pontryagin product

$$
\phi: H_{*}(G ; R) \otimes H_{*}(G ; R) \xrightarrow{\times} H_{*}(G \times G ; R) \xrightarrow{m_{*}} H_{*}(G ; R)
$$

and the homomorphisms $\eta: R \rightarrow H_{*}(G ; R)$ and $\epsilon: H_{*}(G ; R) \rightarrow R$ induced by $\{e\} \subset G$ and $G \rightarrow\{e\}$ make $H_{*}(G ; R)$ an augmented R-algebra.
Likewise, if X is a topological space with a left G-action, then $M=H_{*}(X ; R)$ is a left $H_{*}(G ; R)$-module.

Cup product

Example

For any space X the cup product

$$
\cup: H^{*}(X ; R) \otimes H^{*}(X ; R) \xrightarrow{\times} H^{*}(X \times X ; R) \xrightarrow{\Delta^{*}} H^{*}(X ; R)
$$

and the homomorphism $\eta: R \rightarrow H^{*}(X ; R)$ induced by $X \rightarrow\left\{x_{0}\right\}$ make $H^{*}(X ; R)$ a (graded) commutative R-algebra.

A choice of base point $x_{0} \in X$ determines an augmentation $\epsilon: H^{*}(X ; R) \rightarrow R$, induced by $\left\{x_{0}\right\} \subset X$.

Extended modules

- If V is an R-module, then the left action

$$
\lambda: A \otimes A \otimes V \xrightarrow{\phi \otimes 1} A \otimes V
$$

makes $A \otimes V$ a left A-module, known as an extended A-module.

- There is a natural isomorphism

$$
\operatorname{Hom}_{A}(A \otimes V, N) \cong \operatorname{Hom}(V, U N),
$$

where N is any A-module and $U N$ its underlying R-module.

- Hence the extended A-module functor $V \mapsto A \otimes V$ is left adjoint to the forgetful functor U from left A-modules to R-modules.

Coalgebras

The dual theory of coalgebras and comodules is developed in [MM65] and [EM66].
Definition
A (graded) R-coalgebra is a (graded) R-module C with a coproduct $\psi: \boldsymbol{C} \rightarrow \boldsymbol{C} \otimes \boldsymbol{C}$ and a counit $\epsilon: C \rightarrow R$ such that

and

commute.

Cocommutativity

Definition (cont.)

It is cocommutative if the diagram

commutes.

Notation for coproducts

We can write

$$
\psi(x)=\sum_{\alpha} x_{\alpha}^{\prime} \otimes x_{\alpha}^{\prime \prime}
$$

for suitable $x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime} \in C$. Then

$$
\sum_{\alpha, \beta}\left(x_{\alpha}^{\prime}\right)_{\beta}^{\prime} \otimes\left(x_{\alpha}^{\prime}\right)_{\beta}^{\prime \prime} \otimes x_{\alpha}^{\prime \prime}=\sum_{\alpha, \beta} x_{\alpha}^{\prime} \otimes\left(x_{\alpha}^{\prime \prime}\right)_{\beta}^{\prime} \otimes\left(x_{\alpha}^{\prime \prime}\right)_{\beta}^{\prime \prime}
$$

by coassociativity, and

$$
\sum_{\alpha} \epsilon\left(x_{\alpha}^{\prime}\right) x_{\alpha}^{\prime \prime}=x=\sum_{\alpha} x_{\alpha}^{\prime} \epsilon\left(x_{\alpha}^{\prime \prime}\right)
$$

by counitality. Cocommutativity asks that

$$
\sum_{\alpha} x_{\alpha}^{\prime} \otimes x_{\alpha}^{\prime \prime}=\sum_{\alpha}(-1)^{\left|x_{\alpha}^{\prime}\right|\left|x_{\alpha}^{\prime \prime}\right|} x_{\alpha}^{\prime \prime} \otimes x_{\alpha}^{\prime}
$$

Notation (cont.)

We often omit the summation indices in these formulas, and write

$$
\begin{aligned}
\psi(x) & =\sum x^{\prime} \otimes x^{\prime \prime} \\
\sum\left(x^{\prime}\right)^{\prime} \otimes\left(x^{\prime}\right)^{\prime \prime} \otimes x^{\prime \prime} & =\sum x^{\prime} \otimes\left(x^{\prime \prime}\right)^{\prime} \otimes\left(x^{\prime \prime}\right)^{\prime \prime} \\
\sum \epsilon\left(x^{\prime}\right) x^{\prime \prime} & =x=\sum x^{\prime} \epsilon\left(x^{\prime \prime}\right) \\
\sum x^{\prime} \otimes x^{\prime \prime} & =\sum(-1)^{\left|x^{\prime}\right|\left|x^{\prime \prime}\right|} x^{\prime \prime} \otimes x^{\prime} .
\end{aligned}
$$

Tensor product of coalgebras

- The ring R is the terminal R-coalgebra.
- The coproduct $\psi: R \rightarrow R \otimes R$ is the inverse of the canonical isomorphism and the counit $\epsilon: R \rightarrow R$ is the identity.
- The tensor product of two R-coalgebras C and D is the R-coalgebra $C \otimes D$ with coproduct given by the composite

$$
C \otimes D \xrightarrow{\psi \otimes \psi} C \otimes C \otimes D \otimes D \xrightarrow{1 \otimes \tau \otimes 1} C \otimes D \otimes C \otimes D
$$

and counit

$$
C \otimes D \xrightarrow{\epsilon \otimes \epsilon} R \otimes R \cong R .
$$

- In the full subcategory of cocommutative R-coalgebras, the tensor product is the categorical product.

Coaugmented coalgebras

- An R-coalgebra (C, ψ, ϵ) is coaugmented if it comes equipped with a coalgebra morphism $\eta: R \rightarrow C$.
- Let

$$
J(C)=\operatorname{cok}(\eta: R \rightarrow C)
$$

be the coaugmentation coideal, also known as the unit coideal.

- Let the R-module of primitives $P(C)$ be the kernel

$$
0 \rightarrow P(C) \xrightarrow{\iota} J(C) \xrightarrow{\psi} J(C) \otimes J(C)
$$

of the corestricted coproduct.

- In terms of elements,

$$
P(C) \cong\{x \in C \mid \psi(x)=x \otimes 1+1 \otimes x\}
$$

and an element $x \in C$ with $\psi(x)=x \otimes 1+1 \otimes x$ is said to be (coalgebra) primitive.

Notation (revisited)

Remark

In the coaugmented case, we can write

$$
\psi(x)=x \otimes 1+\sum_{\alpha} x_{\alpha}^{\prime} \otimes x_{\alpha}^{\prime \prime}+1 \otimes x
$$

for $x \in I(C)=\operatorname{ker}(\epsilon) \cong J(C)$, with $x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime} \in I(C)$, and this often gets abbreviated to

$$
\psi(x)=x \otimes 1+\sum x^{\prime} \otimes x^{\prime \prime}+1 \otimes x .
$$

Left comodules

Definition

A left C-comodule is a (graded) R-module M with a coaction $\nu: M \rightarrow C \otimes M$ such that

and

commute.

Right comodules

Definition

A right C-comodule is a (graded) R-module L with a coaction $\sigma: L \rightarrow L \otimes C$ such that

and

$$
L \otimes C \underset{1 \otimes \epsilon}{\sim} L \otimes R
$$

commute.

Cotensor product

Definition

Given a right C-comodule L and a left C-comodule M, the cotensor product $L \square_{C} M$ is the equalizer

$$
L \square_{C} M \xrightarrow{\iota} L \otimes M \xrightarrow[\sigma \otimes 1]{\stackrel{1 \otimes \nu}{\longrightarrow}} L \otimes C \otimes M
$$

where $1 \otimes \nu$ and $\sigma \otimes 1$ are given by the left and right coaction maps, respectively.

Comodule Hom

Definition

Given two left C-comodules M and N, the R-module of comodule homomorphisms $\operatorname{Hom}_{C}(M, N)$ is the equalizer

$$
\operatorname{Hom}_{C}(M, N) \xrightarrow{\iota} \operatorname{Hom}(M, N) \xrightarrow[\nu_{*}]{\stackrel{\nu^{*}}{\longrightarrow}} \operatorname{Hom}(M, C \otimes N),
$$

where $\nu^{*}(f)=(1 \otimes f) \nu: M \rightarrow C \otimes N$ and
$\nu_{*}(f)=\nu f: M \rightarrow C \otimes N$ for $f: M \rightarrow N$.

Module vs. comodule Hom

- We write $\operatorname{Hom}_{B}(M, N)$ to denote
- the B-module homomorphisms $f: M \rightarrow N$ when B is an algebra and M and N are B-modules,
- and to denote the B-comodule homomorphisms $f: M \rightarrow N$ when B is a coalgebra and M and N are B-comodules.
- This will also apply to the derived functors $\operatorname{Ext}_{B}^{S}(M, N)$.
- We may say "module Ext" or "comodule Ext" to distinguish the two cases.

Pontryagin coproduct

Example

Let G be a topological group, with multiplication $m: G \times G \rightarrow G$. Suppose that $H^{*}(G ; R)$ is finitely generated and projective over R in each degree, so that the cross product

$$
H^{*}(G ; R) \otimes H^{*}(G ; R) \xrightarrow{\times} H^{*}(G \times G ; R)
$$

is an isomorphism. (Recall that $\otimes=\otimes_{R}$.) Then the Pontryagin coproduct

$$
\psi: H^{*}(G ; R) \xrightarrow{m^{*}} H^{*}(G \times G ; R) \xrightarrow{x^{-1}} H^{*}(G ; R) \otimes H^{*}(G ; R)
$$

and the homomorphisms $\epsilon: H^{*}(G ; R) \rightarrow R$ and $\eta: R \rightarrow H^{*}(G ; R)$ induced by $\{e\} \subset G$ and $G \rightarrow\{e\}$ make $H^{*}(G ; R)$ a coaugmented R-coalgebra.

Pontryagin comodule

Example

Likewise, if X is a topological space with a left G-action, then $M=H^{*}(X ; R)$ is a left $H^{*}(G ; R)$-comodule.
The hypothesis on G ensures that

$$
H^{*}(G ; R) \otimes H^{*}(X ; R) \xrightarrow{\times} H^{*}(G \times X ; R)
$$

is also an isomorphism.

Diagonal coproduct

Example

Dually, for any space X with $H_{*}(X ; R)$ flat over R in each degree, the diagonal coproduct

$$
H_{*}(X ; R) \xrightarrow{\Delta_{*}} H_{*}(X \times X ; R) \xrightarrow{x^{-1}} H_{*}(X ; R) \otimes H_{*}(X ; R)
$$

and the homomorphism $\epsilon: H_{*}(X ; R) \rightarrow R$ induced by $X \rightarrow\left\{x_{0}\right\}$ make $H_{*}(X ; R)$ a (graded) cocommutative R-coalgebra.
A choice of base point $x_{0} \in X$ determines a coaugmentation $\eta: R \rightarrow H_{*}(X ; R)$, induced by $\left\{x_{0}\right\} \subset X$.

Extended comodules

- If V is an R-module, then the left coaction

$$
\nu: C \otimes V \xrightarrow{\psi \otimes 1} C \otimes C \otimes V
$$

makes $C \otimes V$ a left C-comodule, known as an extended C-comodule.

- There is a natural isomorphism

$$
\operatorname{Hom}(U M, V) \cong \operatorname{Hom}_{C}(M, C \otimes V)
$$

where M is any C-comodule and $U M$ its underlying R-module.

- Hence the extended C-comodule functor $V \mapsto C \otimes V$ is right adjoint to the forgetful functor U from left C-comodules to R-modules.

Bialgebras

Definition

A (graded) R-bialgebra is a (graded) R-module B with

- a product $\phi: B \otimes B \rightarrow B$,
- unit $\eta: R \rightarrow B$,
- coproduct $\psi: B \rightarrow B \otimes B$ and
- counit $\epsilon: B \rightarrow R$
such that

1. (B, ϕ, η) is an R-algebra,
2. (B, ψ, ϵ) is an R-coalgebra, and
3. ψ and ϵ are R-algebra homomorphisms.

Lemma
The following are equivalent:

- ψ and ϵ are R-algebra homomorphisms.
- ϕ and η are R-coalgebra homomorphisms.

Proof

The conditions that ψ and ϵ are R-algebra homomorphisms ask that the diagrams

and

commute. These are also the conditions that ϕ and η are R-coalgebra homomorphisms.

Primitively generated bialgebras

Definition

There are natural homomorphisms

$$
P(B) \longmapsto J(B) \stackrel{\cong}{\leftrightarrows} I(B) \longrightarrow Q(B)
$$

for each bialgebra B.
If $P(B) \rightarrow Q(B)$ is surjective, then B is primitively generated.
This terminology is most appropriate when a set of module generators for $Q(B)$ also generates B as an algebra.

Hopf algebras

Definition

A Hopf algebra over R is an R-bialgebra B equipped with an R-linear conjugation $\chi: B \rightarrow B$ such that

commutes.
If $\psi(b)=\sum b^{\prime} \otimes b^{\prime \prime}$ then the condition is

$$
\sum b^{\prime} \cdot \chi\left(b^{\prime \prime}\right)=\eta \epsilon(b)=\sum \chi\left(b^{\prime}\right) \cdot b^{\prime \prime}
$$

Lemma

A bialgebra admits at most one conjugation.
Hence being a Hopf algebra is a property, not a structure, for bialgebras.

Lemma

The conjugation $\chi: B \rightarrow B$ is an anti-homomorphism of algebras, and an anti-homomorphism of coalgebras, so that

$$
\begin{aligned}
& \chi \phi=\phi \tau(\chi \otimes \chi) \\
& \psi \chi=(\chi \otimes \chi) \tau \psi .
\end{aligned}
$$

Lemma
Let B be a commutative or cocommutative Hopf algebra. Then $\chi^{2}=1$, so

$$
\chi=\chi^{-1}: B \longrightarrow B
$$

See [MM65, §8] or [DNR01, §4.2] for proofs.

Homology of topological groups

Examples studied by Heinz Hopf [Hop41]:

Example

Let G be a topological group. Suppose that $H_{*}(G ; R)$ is flat over R in each degree, so that the unit $\eta: R \rightarrow H_{*}(G ; R)$, Pontryagin product

$$
\phi: H_{*}(G ; R) \otimes H_{*}(G ; R) \longrightarrow H_{*}(G ; R)
$$

counit $\epsilon: H_{*}(G ; R) \rightarrow R$ and diagonal coproduct

$$
\psi: H_{*}(G ; R) \longrightarrow H_{*}(G ; R) \otimes H_{*}(G ; R)
$$

make $H_{*}(G ; R)$ an R-bialgebra. The inverse map $i: G \rightarrow G$ induces the conjugation

$$
\chi=i_{*}: H_{*}(G ; R) \longrightarrow H_{*}(G ; R)
$$

making $H_{*}(G ; R)$ a cocommutative Hopf algebra over R.

Cohomology of topological groups

Example

Suppose instead that $H^{*}(G ; R)$ is finitely generated and projective over R in each degree, so that the unit $\eta: R \rightarrow H^{*}(G ; R)$, cup product

$$
\phi: H^{*}(G ; R) \otimes H^{*}(G ; R) \longrightarrow H^{*}(G ; R),
$$

counit $\epsilon: H^{*}(G ; R) \rightarrow R$ and Pontryagin coproduct

$$
\psi: H^{*}(G ; R) \longrightarrow H^{*}(G ; R) \otimes H^{*}(G ; R)
$$

make $H^{*}(G ; R)$ an R-bialgebra. The inverse map $i: G \rightarrow G$ induces the conjugation

$$
\chi=i^{*}: H^{*}(G ; R) \longrightarrow H^{*}(G ; R)
$$

making $H^{*}(G ; R)$ a commutative Hopf algebra over R.

Diagonal action on \otimes_{R} of B-modules

Definition

Let B be a Hopf algebra over R. For left B-modules L and M we give the tensor product

$$
L \otimes M
$$

the "diagonal" B-module structure with left action $\lambda: B \otimes L \otimes M \rightarrow L \otimes M$ given by the composition
$B \otimes L \otimes M \xrightarrow{\psi} B \otimes B \otimes L \otimes M \xrightarrow{1 \otimes r \otimes 1} B \otimes L \otimes B \otimes M \xrightarrow{\lambda \otimes \lambda} L \otimes M$.

Margolis [Mar83, §12.1] writes $L \wedge M$ for this tensor product of B-modules.

Conjugate action on Hom_{R} of B-modules

Definition
For left B-modules M and N we give

$$
\operatorname{Hom}(M, N)
$$

the "conjugate" B-module structure with left action $\lambda: B \otimes \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}(M, N)$ given by the right adjoint of the composition

$$
\begin{aligned}
& B \otimes \operatorname{Hom}(M, N) \otimes M \xrightarrow{\psi \otimes 1 \otimes 1} B \otimes B \otimes \operatorname{Hom}(M, N) \otimes M \\
& \xrightarrow{1 \otimes \tau \otimes 1} B \otimes \operatorname{Hom}(M, N) \otimes B \otimes M \xrightarrow{1 \otimes 1 \otimes \chi \otimes 1} B \otimes \operatorname{Hom}(M, N) \otimes B \otimes M \\
& \xrightarrow{1 \otimes 1 \otimes \lambda} B \otimes \operatorname{Hom}(M, N) \otimes M \xrightarrow{1 \otimes \epsilon} B \otimes N \xrightarrow{\lambda} N .
\end{aligned}
$$

Closed symmetric monoidal structure

- There is a natural isomorphism

$$
\operatorname{Hom}_{B}(L \otimes M, N) \cong \operatorname{Hom}_{B}(L, \operatorname{Hom}(M, N))
$$

so that $f: L \otimes M \rightarrow N$ is B-linear if and only if its right adjoint $g: L \rightarrow \operatorname{Hom}(M, N)$ is B-linear.

- If B is cocommutative, then the twist isomorphism

$$
\tau: L \otimes M \longrightarrow M \otimes L
$$

is B-linear, and the left B-modules form a closed symmetric monoidal category.

Functional dual

Example

The left B-action on the functional dual $D M=\operatorname{Hom}(M, R)$ of a left B-module M is adjoint to the composition

$$
\begin{aligned}
B \otimes D M \otimes M \xrightarrow{\tau \otimes 1} & D M \otimes B \otimes M \\
& \xrightarrow{1 \otimes \chi \otimes 1} D M \otimes B \otimes M \xrightarrow{1 \otimes \lambda} D M \otimes M \xrightarrow{\epsilon} R .
\end{aligned}
$$

Explicit formulas

- For $b \in B$ with $\psi(b)=\sum b^{\prime} \otimes b^{\prime \prime}, \ell \in L$ and $m \in M$ we have

$$
b \cdot(\ell \otimes m)=\sum(-1)^{\left|b^{\prime \prime}\right||\ell|} b^{\prime} \cdot \ell \otimes b^{\prime \prime} \cdot m .
$$

- For $f \in \operatorname{Hom}(M, N)$ we have

$$
(b \cdot f)(m)=\sum(-1)^{\left|b^{\prime \prime}\right||f|} b^{\prime} \cdot f\left(\chi\left(b^{\prime \prime}\right) \cdot m\right)
$$

- In particular, for $b \in B$ and $f \in \operatorname{Hom}(M, R)$, we have

$$
(b \cdot f)(m)=(-1)^{|b||f|} f(\chi(b) \cdot m)
$$

Codiagonal coaction on \otimes_{R} of B-comodules

Definition

Let B be a Hopf algebra over R. For left B-comodules L and M we give the tensor product

$$
L \otimes M
$$

the "codiagonal" B-comodule structure with left coaction $\nu: L \otimes M \rightarrow B \otimes L \otimes M$ given by the composition

$$
L \otimes M \xrightarrow{\nu \otimes \nu} B \otimes L \otimes B \otimes M \xrightarrow{\otimes \otimes \tau \otimes 1} B \otimes B \otimes L \otimes M \xrightarrow{\phi \otimes 1 \otimes 1} B \otimes L \otimes M .
$$

If B is commutative, then the twist isomorphism $\tau: L \otimes M \rightarrow M \otimes L$ is B-colinear, and the left B-comodules form a symmetric monoidal category.

No coconjugate coaction on Hom_{R} for B-comodules

- For left B-comodules M and N we cannot generally give the R-module

$$
\operatorname{Hom}(M, N)
$$

a natural "coconjugate" B-comodule structure such that $f: L \otimes M \rightarrow N$ is B-colinear if and only if its right adjoint $g: L \rightarrow \operatorname{Hom}(M, N)$ is B-colinear.

- If $M=\operatorname{colim}_{i} M_{i}$ and $\nu_{i}: \operatorname{Hom}\left(M_{i}, N\right) \rightarrow B \otimes \operatorname{Hom}\left(M_{i}, N\right)$ is a suitable coaction, then

$$
\lim _{i} \nu_{i}: \operatorname{Hom}(M, N) \longrightarrow \lim _{i} B \otimes \operatorname{Hom}\left(M_{i}, N\right)
$$

will not generally factor through
$B \otimes \lim _{i} \operatorname{Hom}\left(M_{i}, N\right) \cong B \otimes \operatorname{Hom}(M, N)$.

Hovey's approach

- When B is flat as an R-module there is, however, a different internal function object $F(M, N)$ with a natural B-comodule structure, and a natural isomorphism

$$
\operatorname{Hom}_{B}(L \otimes M, N) \cong \operatorname{Hom}_{B}(L, F(M, N))
$$

so that $f: L \otimes M \rightarrow N$ is B-colinear if and only if $g: L \rightarrow F(M, N)$ is B-colinear.

- See Hovey's paper [Hov04, Thm. 1.3.1] for a construction, which satisfies $F(M, B \otimes V) \cong B \otimes \operatorname{Hom}(M, V)$ when $N=B \otimes V$ is a coextended B-comodule. Here V is any left R-module.
- There is a natural homomorphism $F(M, N) \rightarrow \operatorname{Hom}(M, N)$, which is injective if M is finitely generated over R, and an isomorphism if M is finitely presented over R, cf. [Hov04, Prop. 1.3.2]. We can think of $F(M, N)$ as the elements of $\operatorname{Hom}(M, N)$ with algebraic B-coaction.

Other approaches

- A second approach [Boa82] is to consider B-comodules as a subcategory of B^{*}-modules, where B^{*} is the (non-commutative) ring of (right) R-module homomorphisms $B \rightarrow R$.
- A third approach is to consider $\operatorname{Hom}(M, N)$ as a "completed" B-comodule, with coaction $\operatorname{Hom}(M, N) \rightarrow B \widehat{\otimes} \operatorname{Hom}(M, N)$ landing in a completed tensor product.

Behavior under dualization

Lemma
Let M be a graded R-module, with functional dual
$D M=\operatorname{Hom}(M, R)$.

- If M is bounded below then DM is bounded above, while if M is bounded above then DM is bounded below.
- If M is finitely generated and projective over R in each degree, then DM is also finitely generated and projective over R in each degree, and the canonical homomorphism

$$
\rho: M \longrightarrow D D M
$$

is an isomorphism.

Dual of tensor product

Lemma

Let L and M be graded R-modules.

- If L and M are both bounded below (or both are bounded above, or one of them is bounded above and below), and
- L (or M) is finitely generated projective over R in each degree,
then the canonical homomorphism

$$
D L \otimes D M \xrightarrow{\otimes} D(L \otimes M)
$$

is an isomorphism. Here

$$
(f \otimes g)(x \otimes y)=(-1)^{|g||x|} f(x) \cdot g(y)
$$

for $f \in D L, g \in D M, x \in L$ and $y \in M$.

Dual of algebra is often a coalgebra

Lemma
Let A be a graded R-algebra that is bounded below (or bounded above) and finitely generated projective over R in each degree.
Then DA with the coproduct

$$
\psi: D A \xrightarrow{D \phi} D(A \otimes A) \xrightarrow{\otimes^{-1}} D A \otimes D A
$$

and counit

$$
\epsilon: D A \xrightarrow{D \eta} D R \cong R
$$

is a graded R-coalgebra.

Dual of coalgebra is always an algebra

Lemma
If C is a graded R-coalgebra, then $D C$ with the product

$$
\phi: D C \otimes D C \xrightarrow{\otimes} D(C \otimes C) \xrightarrow{D \psi} D C
$$

and the unit

$$
\eta: R \cong D R \xrightarrow{D \epsilon} D C
$$

is a graded R-algebra.

Dual of indecomposables and primitives of dual

Lemma

Let A be an augmented graded R-algebra that is bounded below (or bounded above) and finitely generated projective over R in each degree.
Then DA is coaugmented by

$$
\eta: R \cong D R \xrightarrow{D \epsilon} D A,
$$

and the isomorphism $J(D A) \cong D I(A)$ restricts to an isomorphism

$$
P(D A) \cong D Q(A) .
$$

Dual of primitives and indecomposables of dual

Lemma
If C is a coaugmented graded R-coalgebra, then $D C$ is augmented by

$$
\epsilon: D C \xrightarrow{D \eta} D R \cong R,
$$

and the isomorphism $I(D C) \cong D J(C)$ induces a homomorphism

$$
Q(D C) \longrightarrow D P(C)
$$

If R is a field, then this is a surjection. If, furthermore, C is bounded below (or bounded above) and finitely generated over the field R in each degree, then this is an isomorphism.

Proof

Dual of module is often a comodule

Lemma
Let M be a left A-module, with A and M both bounded below (or both bounded above, or A bounded above and below), and with A finitely generated projective over R in each degree.
Then DM with the left coaction

$$
\nu: D M \xrightarrow{D \lambda} D(A \otimes M) \xrightarrow{\otimes^{-1}} D A \otimes D M
$$

is a left DA-comodule.
The result for right A-modules is similar.

Dual of comodule is always a module

Lemma
If C is a graded R-coalgebra and M is a left C-comodule, then DM with the left action

$$
\lambda: D C \otimes D M \xrightarrow{\otimes} D(C \otimes M) \xrightarrow{D_{\nu}} D M
$$

is a left DC-module.
The result for right C-comodules is similar.

Dual of tensor over A

Lemma

Let L and M be right and left A-modules, respectively, with L, M and A all bounded below (or all bounded above, or two of them bounded above and below), and with A finitely generated projective over R in each degree.
Then the isomorphism $D L \otimes D M \cong D(L \otimes M)$ restricts to an isomorphism

$$
D L \square_{D A} D M \cong D\left(L \otimes_{A} M\right)
$$

Dual of module homomorphism is often a comodule homomorphism

Lemma
Let M and N be left A-modules, with M, N and A all bounded below (or all bounded above, or A bounded above and below), and with A finitely generated projective over R in each degree.

Then $f \mapsto$ Df defines a homomorphism
$D: \operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{D A}(D N, D M)$.
If, furthermore, M and N are finitely generated projective over R in each degree, then D is an isomorphism.

Dual of comodule homomorphism is always a module homomorphism

Lemma
If M and N are left C-comodules, then $f \mapsto$ Df defines a homomorphism
$D: \operatorname{Hom}_{C}(M, N) \longrightarrow \operatorname{Hom}_{D C}(D N, D M)$.
If M, N and C are all bounded below (or all bounded above, or C is bounded above and below), and they are all finitely generated projective over R in each degree, then D is an isomorphism.

Dual of bialgebra

Proposition

Let B be a graded R-bialgebra that is bounded below (or bounded above) and finitely generated projective over R in each degree. Then DB with
product

$$
\phi: D B \otimes D B \xrightarrow{\otimes} D(B \otimes B) \xrightarrow{D \psi} D B,
$$

unit

$$
\eta: R \cong D R \xrightarrow{D \epsilon} D B,
$$

coproduct

$$
\psi: D B \xrightarrow{D \phi} D(B \otimes B) \xrightarrow{\otimes^{-1}} D B \otimes D B
$$

counit

$$
\epsilon: D B \xrightarrow{D \eta} D R \cong R
$$

is a graded R-bialgebra.

Dual of Hopf algebra

Proposition (cont.)
If B is commutative (resp. cocommutative), then DB is cocommutative (resp. commutative).
If B is a Hopf algebra, then DB is a Hopf algebra with conjugation

$$
\chi: D B \xrightarrow{D_{\chi}} D B .
$$

Example: Polynomial ring $B=\mathbb{Z}[\xi]$

- Let $R=\mathbb{Z}$. There is a bicommutative Hopf algebra $B=\mathbb{Z}[\xi]$, with underlying algebra the polynomial ring on one generator ξ in nonzero even degree.
- The product is given by $\phi\left(\xi^{i} \otimes \xi^{j}\right)=\xi^{i+j}$.
- For degree reasons, the coproduct on ξ can only be $\psi(\xi)=\xi \otimes 1+1 \otimes \xi$, which implies that

$$
\psi\left(\xi^{k}\right)=\sum_{i+j=k}(i, j) \xi^{i} \otimes \xi^{j}
$$

by the binomial theorem.

- The conjugation satisfies $\chi(\xi)=-\xi$.
- The coalgebra primitives and algebra indecomposables of B are

$$
\mathbb{Z}\{\xi\} \cong P(B) \xrightarrow{\cong} Q(B) \cong \mathbb{Z}\{\xi\}
$$

so B is primitively generated.

Example: Divided power ring $D B=\Gamma(x)$

- The dual Hopf algebra $D B=\Gamma(x)$ has underlying algebra the divided power ring on one generator x in a nonzero even degree.
- Here $\Gamma(x)=\mathbb{Z}\left\{\gamma_{k}(x) \mid k \geq 0\right\}$ with $\gamma_{0}(x)=1, \gamma_{1}(x)=x$ and $\gamma_{k}(x)$ dual to ξ^{k}.
- The product is given by $\phi\left(\gamma_{i}(x) \otimes \gamma_{j}(x)\right)=(i, j) \gamma_{i+j}(x)$, and the coproduct is given by

$$
\psi\left(\gamma_{k}(x)\right)=\sum_{i+j=k} \gamma_{i}(x) \otimes \gamma_{j}(x)
$$

- The conjugation satisfies $\chi\left(\gamma_{k}(x)\right)=(-1)^{k} \gamma_{k}(x)$.

Example: Divided power ring $D B=\Gamma(x)$ (cont.)

- The coalgebra primitives of $D B$ are

$$
P(D B)=\mathbb{Z}\{x\}
$$

while the algebra indecomposables are

$$
Q(D B) \cong \mathbb{Z}\{x\} \oplus \underset{p \text { prime }}{\bigoplus} \mathbb{Z} / p\left\{\gamma_{p^{n}}(x) \mid n \geq 1\right\}
$$

- This uses the number-theoretic fact that

$$
\operatorname{gcd}\left\{\left.\binom{k}{i} \right\rvert\, 0<i<k\right\}= \begin{cases}p & \text { if } k=p^{n} \text { with } n \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

- In other words, $\gamma_{k}(x)$ is indecomposable if and only if $k=p^{n}$ is a prime power, and in this case $p \gamma_{k}(x)$ is decomposable.

Comparison of primitives and indecomposables

The general theory ensures that

$$
\mathbb{Z}\{x\}=P(D B) \cong D Q(B) \cong D(\mathbb{Z}\{\xi\})
$$

while in this example, the homomorphism

$$
\mathbb{Z}\{x\} \oplus \bigoplus_{p, n} \mathbb{Z} / p\left\{\gamma_{p^{n}}(x)\right\} \cong Q(D B) \longrightarrow D P(B)=D(\mathbb{Z}\{\xi\})
$$

is not an isomorphism.

Homological realization of polynomial ring

- For $|\xi|=u-1 \geq 2$, the primitively generated Hopf algebra $B=\mathbb{Z}[\xi]$ is homologically realized by $B \cong H_{*}\left(\Omega S^{u}\right)$ with $D B \cong H^{*}\left(\Omega S^{u}\right)$.
- Here ΩS^{u} is equivalent as an A_{∞} space (in particular, as a homotopy associative H-space) to a topological group G.
- The problem of realizing B cohomologically is more subtle, and was discussed earlier in relation to the Hopf invariant.

Outline

The Steenrod algebra
Cohomology operations
Steenrod operations
The Adem relations
The Steenrod algebra
Cohomology of Eilenberg-MacLane spaces
Stable cohomology operations
Hopf algebras
The dual Steenrod algebra

Coproduct on A

Theorem ([Mil58, Lem. 1], [Ste62, Thm. II.1.1])
Let $A=\mathscr{A}(2)$ be the mod 2 Steenrod algebra. The assignment

$$
S q^{k} \longmapsto \sum_{i+j=k} S q^{i} \otimes S q^{j}
$$

extends uniquely to a ring homomorphism

$$
\psi: A \longrightarrow A \otimes A
$$

so that

$$
\theta(x \cup y)=\sum \theta^{\prime}(x) \cup \theta^{\prime \prime}(y)
$$

for each $\theta \in A, x, y \in H^{*}\left(X ; \mathbb{F}_{2}\right)$ and $\psi(\theta)=\sum \theta^{\prime} \otimes \theta^{\prime \prime} \in A \otimes A$.

Sketch proof

- Let R be the set of $\theta \in A$ for which there exists an element $\rho \in A \otimes A$ such that

$$
\theta \phi=\phi \rho: H^{*}\left(X ; \mathbb{F}_{2}\right) \otimes H^{*}\left(X ; \mathbb{F}_{2}\right) \longrightarrow H^{*}\left(X ; \mathbb{F}_{2}\right)
$$

for all spaces X.

- Then R is closed under sum and product in A, and contains the $S q^{k}$, hence is equal to the whole of A.
- To prove uniqueness of ρ, evaluate $\theta \phi$ on $H^{*}\left(X ; \mathbb{F}_{2}\right) \otimes H^{*}\left(X ; \mathbb{F}_{2}\right)$ for a space X that faithfully detects the action by A in a large range of degrees.
- If $|\theta|<n$, one can let $X=K(\mathbb{Z} / 2, n)$ or $X=K(\mathbb{Z} / 2,1)^{n}$.
- Letting $\psi(\theta)=\rho$ then defines the ring homomorphism ψ.

Connected algebra of finite type, I

- The admissible basis

$$
\left\{S q^{\prime} \mid I \text { admissible }\right\}
$$

shows that A is concentrated in non-negative cohomological degrees, and is finite-dimensional over \mathbb{F}_{2} in each degree.

- Moreover, $\mathbb{F}_{2}\{1\}$ equals the degree 0 part of A, so we say that A is a connected algebra.
- This implies that there is a unique augmentation $\epsilon: A \rightarrow \mathbb{F}_{2}$.

Hopf algebra structure on A

Theorem ([Mil58, Thm. 1], [Ste62, Thm. II.1.2])
The Steenrod algebra A, with the coproduct $\psi: A \rightarrow A \otimes A$ and the augmentation $\epsilon: A \rightarrow \mathbb{F}_{2}$, is a cocommutative Hopf algebra over \mathbb{F}_{2}.

Proof.
The known formula for $\psi\left(\mathrm{Sq}^{k}\right)$ implies that ψ is coassociative and counital. The existence of the conjugation χ follows from the fact that A is connected [MM65, Def. 8.4]. It satisfies

$$
\sum_{i+j=k} S q^{i} \chi\left(S q^{j}\right)=0
$$

for $k \geq 1$.

The dual Steenrod algebra A_{*}

Definition

Let the $(\bmod 2)$ dual Steenrod algebra $A_{*}=D A=\operatorname{Hom}\left(A, \mathbb{F}_{2}\right)$ be the function dual of the mod 2 Steenrod algebra.

Corollary ([Mil58, Cor. 1])
The dual Steenrod algebra A_{*} is a commutative Hopf algebra over \mathbb{F}_{2}.

Connected algebra of finite type, II

- The finite type results for A imply that A_{*} is concentrated in non-negative homological degrees, and is finite-dimensional over \mathbb{F}_{2} in each degree.
- Hence $D A_{*} \cong A$.
- Moreover, $\mathbb{F}_{2}\{1\}$ equals the degree 0 part of A_{*}, so A_{*} is connected.

Four out of eight (co-)actions

- Milnor determined the structure of A_{*} as an algebra, with product dual to the coproduct $\psi: \boldsymbol{A} \rightarrow \boldsymbol{A} \otimes \boldsymbol{A}$, as well as its coproduct, dual to the product $\phi: A \otimes A \rightarrow A$.
- Let X be any space. For brevity we set $H_{*}(X)=H_{*}\left(X ; \mathbb{F}_{2}\right)$ and $H^{*}(X)=H^{*}\left(X ; \mathbb{F}_{2}\right)$.
- There are natural left and right A-module and A^{*}-comodule structures on $H_{*}(X)$ and $H^{*}(X)$, for a total of eight combinations, as explained by Boardman in his paper [Boa82].
- Four of these were discussed by Milnor in [Mil58], and we review these below. The remaining four are then obtained by use of the conjugation $\chi: A \rightarrow A$, or its dual.

Left A-action on cohomology

First, the cup product

$$
\cup: H^{*}(X) \otimes H^{*}(X) \longrightarrow H^{*}(X)
$$

and the Steenrod operations

$$
\lambda: A \otimes H^{*}(X) \longrightarrow H^{*}(X)
$$

naturally give the cohomology $H^{*}(X)$ the structure of a (commutative) left A-module algebra.

Diagrams, I

This means that the diagrams

$$
\begin{aligned}
& A \otimes A \otimes H^{*}(X) \xrightarrow{1 \otimes \lambda} A \otimes H^{*}(X)
\end{aligned}
$$

and

commute, together with unitality conditions.

Left A_{*}-coaction on homology

Second, applying $\operatorname{Hom}\left(-, \mathbb{F}_{2}\right)$ to the left A-module action λ defines a homomorphism

$$
\operatorname{Hom}(\lambda, 1): \operatorname{Hom}\left(H^{*}(X), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}\left(A \otimes H^{*}(X), \mathbb{F}_{2}\right)
$$

When $H_{*}(X)$ has finite type, there are natural isomorphisms

$$
\begin{aligned}
& H_{*}(X) \cong \\
& A_{*} \otimes H_{*}(X) \stackrel{\cong}{\cong} \operatorname{Hom}\left(H^{*}(X), \mathbb{F}_{2}\right) \\
& \operatorname{Hom}\left(A \otimes H^{*}(X), \mathbb{F}_{2}\right)
\end{aligned}
$$

and the composite

$$
H_{*}(X) \cong \operatorname{Hom}\left(H^{*}(X), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}\left(A \otimes H^{*}(X), \mathbb{F}_{2}\right) \cong A_{*} \otimes H_{*}(X)
$$

defines a natural left A_{*}-coaction

$$
\nu: H_{*}(X) \longrightarrow A_{*} \otimes H_{*}(X)
$$

General spaces

- Using CW approximation and commutation of homology with strongly filtered colimits, one can show that the coaction ν is well-defined and natural for all spaces X, not just those with mod 2 homology of finite type.
- The cup product is dual to the homomorphism

$$
\Delta_{*}: H_{*}(X) \longrightarrow H_{*}(X \times X) \cong H_{*}(X) \otimes H_{*}(X)
$$

induced by the diagonal map $\Delta: X \rightarrow X \times X$.

- The homology $H_{*}(X)$ is naturally a (cocommutative) left A_{*}-comodule coalgebra.

Diagrams, II

It follows that the diagrams

and

commute.

Right A-action on homology

Third, we can give $H_{*}(X)$ the structure of a right A-module, with action

$$
\rho: H_{*}(X) \otimes A \longrightarrow H_{*}(X)
$$

taking $\xi \in H_{n}(X)$ and $\theta \in A^{k}$ to $\rho(\xi \otimes \theta)=\xi \cdot \theta \in H_{n-k}(X)$. Here $\xi \cdot \theta$ is characterized by the condition

$$
\langle\theta \cdot x, \xi\rangle=\langle x, \xi \cdot \theta\rangle
$$

for each $x \in H^{*}(X)$, where $\theta \cdot x=\lambda(\theta \otimes x)=\theta(x)$. In other words,

$$
\begin{aligned}
\theta \cdot: H^{*}(X) & \longrightarrow H^{*}(X) \\
x & \mapsto \theta \cdot x
\end{aligned}
$$

corresponds to the dual of the homomorphism

$$
\begin{aligned}
\cdot \theta: H_{*}(X) & \longrightarrow H_{*}(X) \\
\xi & \longmapsto \xi \cdot \theta
\end{aligned}
$$

under the identification $H^{*}(X) \cong \operatorname{Hom}\left(H_{*}(X), \mathbb{F}_{2}\right)$.

$S q_{*}^{\prime}$-notation

- It is traditional to write

$$
S q_{*}^{\prime}(\xi)=\xi \cdot S q^{\prime}
$$

for this right action.

- Beware that this means that

$$
S q_{*}^{J} S q_{*}^{I}=S q_{*}^{I J}
$$

where $I J$ denotes the concatenation of I and J.

- The homology $H_{*}(X)$ is a (cocommutative) right A-module coalgebra.

Diagrams, III

Direct calculation shows that the diagrams

$$
\begin{aligned}
& H_{*}(X) \otimes A \otimes A \xrightarrow{\rho \otimes 1} H_{*}(X) \otimes A
\end{aligned}
$$

and

commute.

Right A_{*}-coaction on cohomology

Fourth, applying $\operatorname{Hom}\left(-, \mathbb{F}_{2}\right)$ to the right A-module action ρ defines a homomorphism

$$
\operatorname{Hom}(\rho, 1): \operatorname{Hom}\left(H_{*}(X), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}\left(H_{*}(X) \otimes A, \mathbb{F}_{2}\right)
$$

The natural homomorphism
$H^{*}(X) \otimes A_{*} \cong \operatorname{Hom}\left(H_{*}(X), \mathbb{F}_{2}\right) \otimes \operatorname{Hom}\left(A, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}\left(H_{*}(X) \otimes A, \mathbb{F}_{2}\right)$
is an isomorphism if $H^{*}(X)$ is bounded above, in which case the composite
$H^{*}(X) \cong \operatorname{Hom}\left(H_{*}(X), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}\left(H_{*}(X) \otimes A, \mathbb{F}_{2}\right) \cong H^{*}(X) \otimes A_{*}$
defines a natural right A_{*}-coaction

$$
\lambda^{*}: H^{*}(X) \longrightarrow H^{*}(X) \otimes A_{*} .
$$

(The notation λ^{*} is the one used by Milnor in [Mil58, §4].)

Completed coaction

- In general, there is an isomorphism

$$
\operatorname{Hom}\left(H_{*}(X) \otimes A, \mathbb{F}_{2}\right) \cong H^{*}(X) \widehat{\otimes} A_{*},
$$

where the right hand side denotes the completed tensor product with

$$
\prod_{n} H^{n+k}(X) \otimes A_{n}
$$

in cohomological degree k.

- We then have a completed right A_{*}-coaction

$$
\lambda^{*}: H^{*}(X) \longrightarrow H^{*}(X) \widehat{\otimes} A_{*}
$$

and this is an algebra homomorphism.

- The cohomology $H^{*}(X)$ is a (commutative) completed right A_{*}-comodule algebra.

Diagrams, IV

The diagrams

$$
\begin{gathered}
H^{*}(X) \xrightarrow{\lambda^{*}} H^{*}(X) \widehat{\otimes} A_{*} \\
\downarrow^{\lambda^{*}} \downarrow \\
H^{*}(X) \widehat{\otimes} A_{*} \xrightarrow{\lambda^{*} \otimes 1} H^{*}(X) \widehat{\otimes} A_{*} \widehat{\otimes} A_{*}
\end{gathered}
$$

and

commute.

(Co-)homology of $\mathbb{R} P^{\infty}$

- Recall the admissible sequences

$$
M_{i}=\left(2^{i-1}, \ldots, 4,2,1\right)
$$

for $i \geq 1$.

- We set $M_{0}=()$.
- Recall also that $\mathbb{R} P^{\infty} \simeq K(\mathbb{Z} / 2,1)$ and

$$
H^{*}\left(\mathbb{R} P^{\infty}\right) \cong \mathbb{F}_{2}[a]
$$

with a in degree 1 corresponding to the universal class u_{1} in mod 2 cohomology.

- We let $\alpha_{j} \in H_{j}\left(\mathbb{R} P^{\infty}\right)$ be dual to a^{j}, so that $H_{*}\left(\mathbb{R} P^{\infty}\right) \cong \mathbb{F}_{2}\left\{\alpha_{j} \mid j \geq 0\right\}$.

The left A-action on $H^{*}\left(\mathbb{R} P^{\infty}\right)$

Lemma

$$
S q^{\prime}(a)= \begin{cases}a^{2^{i}} & \text { if } I=M_{i}, i \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

for I admissible.
Proof.
This follows by induction on the length of I, using the formula

$$
S q^{k}\left(a^{2^{i}}\right)=\binom{2^{i}}{k} a^{k+2^{i}}= \begin{cases}a^{2^{i}} & \text { for } k=0 \\ a^{2^{i+1}} & \text { for } k=2^{i} \\ 0 & \text { otherwise }\end{cases}
$$

The Milnor generators ξ_{i}

Definition
For $i \geq 1$ let the Milnor generator

$$
\xi_{i} \in A_{2^{i}-1}
$$

be characterized by

$$
\left\langle S q^{\prime}, \xi_{i}\right\rangle= \begin{cases}1 & \text { for } I=M_{i} \\ 0 & \text { otherwise }\end{cases}
$$

for each admissible $/$ of degree $2^{i}-1$. Furthermore, let $\xi_{0}=1$.
Remark
Milnor actually writes ζ_{i} for this class in $A_{2^{i}-1}$. Other authors instead write ζ_{i} for the conjugate $\chi\left(\xi_{i}\right)$ of this class, which can be confusing. Another notation for the conjugate is $\bar{\xi}_{i}$.

Alternative characterization of ξ_{i}

Lemma

The homomorphism

$$
\tilde{H}_{j}\left(\mathbb{R} P^{\infty}\right) \longrightarrow \operatorname{colim}_{n} \tilde{H}_{j-1+n}(K(\mathbb{Z} / 2, n)) \cong A_{j-1}
$$

with Hom-dual

$$
A^{j-1} \cong \lim _{n} \tilde{H}^{j-1+n}(K(\mathbb{Z} / 2, n)) \longrightarrow \tilde{H}^{j}\left(\mathbb{R} P^{\infty}\right)
$$

is given by

$$
\alpha_{j} \longmapsto\left\{\begin{array}{cc}
\xi_{i} & \text { for } j=2^{i}, \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof

- The homomorphism

$$
\begin{aligned}
A^{j-1} & \longrightarrow \tilde{H}^{j}\left(\mathbb{R} P^{\infty}\right) \\
\theta & \longmapsto \theta(a)
\end{aligned}
$$

maps $S q^{M_{i}}$ to a^{j} for $i \geq 0$ and $j=2^{i}$ and sends the remaining admissible $S q^{\prime}$ to zero.

- Hence the dual homomorphism $\tilde{H}_{j}\left(\mathbb{R} P^{\infty}\right) \rightarrow A_{j-1}$ maps α_{j} to ξ_{i} for $j=2^{i}$ with $i \geq 0$, and to zero for the remaining j.

A_{*} is a polynomial \mathbb{F}_{2}-algebra

Since A is cocommutative, A_{*} is a commutative \mathbb{F}_{2}-algebra.
Theorem ([Mil58, Thm. 2, App. 1])
There is an algebra isomorphism

$$
A_{*} \cong \mathbb{F}_{2}\left[\xi_{i} \mid i \geq 1\right]
$$

with $\left|\xi_{i}\right|=2^{i}-1$.

Sketch proof

- The monomials

$$
\xi^{R}=\xi_{1}^{r_{1}} \xi_{2}^{r_{2}} \cdots \cdots \xi_{\ell}^{r_{\ell}}
$$

where $R=\left(r_{1}, r_{2}, \ldots, r_{\ell}, 0, \ldots\right)$ ranges over all finite length sequences of non-negative integers, form a basis for $\mathbb{F}_{2}\left[\xi_{i} \mid i \geq 1\right]$, which maps to A_{*}.

- Milnor checks [Mil58, Lem. 8] that in each degree n, a matrix with entries

$$
\left\langle S q^{\prime}, \xi^{R}\right\rangle \in \mathbb{F}_{2}
$$

is lower triangular with no zeros on the diagonal, hence is invertible, where I ranges over the admissible sequences of degree n and R ranges over the sequences of degree $\sum_{i}\left(2^{i}-1\right) r_{i}$ equal to n.

- Since these $S q^{l}$ form a basis for A^{n}, it follows that these monomials ξ^{R} form a basis for A_{n}.

The right A_{*}-coaction on $H^{*}\left(\mathbb{R} P^{\infty}\right)$

The algebra homomorphism

$$
\lambda^{*}: H^{*}\left(\mathbb{R} P^{\infty}\right) \longrightarrow H^{*}\left(\mathbb{R} P^{\infty}\right) \widehat{\otimes} \boldsymbol{A}_{*}
$$

is determined by its value on $a \in H^{1}\left(\mathbb{R} P^{\infty}\right)$.
Proposition

$$
\lambda^{*}(a)=\sum_{i \geq 0} a^{2^{i}} \otimes \xi_{i}
$$

in $H^{*}\left(\mathbb{R} P^{\infty}\right) \widehat{\otimes} A_{*}$.

Proof

- The right A-module action

$$
H_{j}\left(\mathbb{R} P^{\infty}\right) \otimes A^{j-1} \longrightarrow H_{1}\left(\mathbb{R} P^{\infty}\right)
$$

is zero unless $j=2^{i}$, in which case

$$
\rho\left(\alpha_{2^{i}} \otimes S q^{I}\right)= \begin{cases}\alpha_{1} & \text { if } I=M_{i} \\ 0 & \text { otherwise }\end{cases}
$$

for I admissible of degree $2^{i}-1$.

- Dually, the right A^{*}-coaction

$$
H^{1}\left(\mathbb{R} P^{\infty}\right) \longrightarrow H^{j}\left(\mathbb{R} P^{\infty}\right) \otimes A_{j-1}
$$

is zero unless $j=2^{i}$, in which case it maps a to $a^{2^{i}} \otimes \xi_{i}$.

- Collecting terms for all j, we obtain the stated formula for $\lambda^{*}(a)$.

The coproduct in A_{*}

Since A is non-commutative, A_{*} is not cocommutative. The coproduct for A_{*} encodes much the same information as the Adem relations do for A, but the following formula is often easier to work with for theoretical purposes.

Theorem ([Mil58, Thm. 3, App. 1])
The coproduct $\psi: A_{*} \rightarrow A_{*} \otimes A_{*}$ is given by

$$
\psi\left(\xi_{k}\right)=\sum_{i+j=k} \xi_{i}^{2^{j}} \otimes \xi_{j}
$$

where $\xi_{0}=1$.

Proof

- The multiplicative right A_{*}-coaction λ^{*} satisfies

$$
\lambda^{*}\left(a^{2^{j}}\right)=\lambda^{*}(a)^{2^{j}}=\left(\sum_{i \geq 0} a^{2^{i}} \otimes \xi_{i}\right)^{2^{j}}=\sum_{i \geq 0} a^{2^{i+j}} \otimes \xi_{i}^{2^{j}}
$$

- It is also coassociative, so that

$$
\begin{aligned}
& \left(\lambda^{*} \otimes 1\right)\left(\lambda^{*}(a)\right)=\left(\lambda^{*} \otimes 1\right)\left(\sum_{j \geq 0} a^{2^{j}} \otimes \xi_{j}\right) \\
& =\sum_{j \geq 0} \lambda^{*}\left(a^{2^{j}}\right) \otimes \xi_{j}=\sum_{i \geq 0} \sum_{j \geq 0} a^{2^{i+j}} \otimes \xi_{i}^{2^{j}} \otimes \xi_{j}
\end{aligned}
$$

is equal to

$$
(1 \otimes \psi)\left(\lambda^{*}(a)\right)=(1 \otimes \psi)\left(\sum_{k \geq 0} a^{2^{k}} \otimes \xi_{k}\right)=\sum_{k \geq 0} a^{2^{k}} \otimes \psi\left(\xi_{k}\right)
$$

as an element in $H^{*}\left(\mathbb{R} P^{\infty}\right) \widehat{\otimes} \boldsymbol{A}_{*} \widehat{\otimes} \boldsymbol{A}_{*}$.

- Comparing coefficients of $a^{2^{k}}$ gives the stated formula for $\psi\left(\xi_{k}\right)$, for each $k \geq 0$.

Indecomposables and primitives

- The indecomposable quotient $Q(A)=\mathbb{F}_{2}\left\{S q^{2^{i}} \mid i \geq 0\right\}$ is dual to the primitives

$$
P\left(A_{*}\right)=\mathbb{F}_{2}\left\{\xi_{1}^{2^{i}} \mid i \geq 0\right\}
$$

- Furthermore, the indecomposable quotient $Q\left(A_{*}\right)=\mathbb{F}_{2}\left\{\xi_{i} \mid i \geq 1\right\}$ is dual to the primitives

$$
P(A)=\mathbb{F}_{2}\left\{Q_{j} \mid j \geq 0\right\}
$$

with Q_{j} in degree $2^{j+1}-1$ dual to ξ_{j+1}.

- Here the Milnor primitives are $Q_{0}=S q^{1}$ and

$$
Q_{j}=\left[S q^{2^{j}}, Q_{j-1}\right]=S q^{2^{j}} Q_{j-1}+Q_{j-1} S q^{2^{j}}
$$

for $j \geq 1$.
[Ada58] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214, DOI 10.1007/BF02564578. MR96219
[Ada60] \qquad , On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104, DOI 10.2307/1970147. MR141119
[Ada66] __ A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365-377, DOI 10.1017/s0305004100039955. MR194486
[Ada69] \qquad , Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1-138. MR0251716
[Ada72] John Frank Adams, Algebraic topology-a student's guide, Cambridge University Press, London-New York, 1972. London Mathematical Society Lecture Note Series, No. 4. MR0445484
[Ada74] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, III.-London, 1974. Chicago Lectures in Mathematics. MR0402720
[Ade52] José Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720-726, DOI 10.1073/pnas.38.8.720. MR50278
[Ade53] Relations on iterated reduced powers, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 636-638, DOI 10.1073/pnas.39.7.636. MR56293
[And64] D. W. Anderson, The real K-theory of classifying spaces, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 634-636.
[ABP69] D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969), 462-468, DOI 10.1007/BF02564545. MR261613
[AM69] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR0245577
[Ati61a] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208, DOI 10.1017/s0305004100035064. MR126856
[Ati61b] \qquad , Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23-64. MR148722
[AH59] M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281, DOI 10.1090/S0002-9904-1959-10344-X. MR110106
[AH61] \qquad Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7-38. MR0139181
[AS69] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geometry 3 (1969), 1-18. MR259946
[BJM84] M. G. Barratt, J. D. S. Jones, and M. E. Mahowald, Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. London Math. Soc. (2) 30 (1984), no. 3, 533-550, DOI 10.1112/jlms/s2-30.3.533. MR810962
[BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR751966
[Boa82] J. M. Boardman, The eightfold way to BP-operations or $E_{*} E$ and all that, Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 187-226. MR686116
[Boa99] J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49-84, DOI 10.1090/conm/239/03597. MR1718076
[BS58] Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97-136 (French). MR116022
[Bot59] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337, DOI 10.2307/1970106. MR110104
[BT82] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR658304
[Bou63] D. G. Bourgin, Modern algebraic topology, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR0160201
[BK72] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR0365573
[Bro69] William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186, DOI 10.2307/1970686. MR251736
[Bro62] Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467-484, DOI 10.2307/1970209. MR138104
[BMMS86] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H_{∞} ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR836132
[Bru] R. R. Bruner, An Adams Spectral Sequence Primer. http://www.rrb.wayne.edu/papers/adams.pdf.
[Car84] Gunnar Carlsson, Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189-224, DOI 10.2307/2006940. MR763905
[Car48] Henri Cartan, Sur la cohomologie des espaces où opère un groupe. Notions algébriques préliminaires, C. R. Acad. Sci. Paris 226 (1948), 148-150 (French). MR23523
[Car50] __ Une theórie axiomatique des carrés de Steenrod, C. R. Acad. Sci. Paris 230 (1950), 425-427 (French). MR35989
[Car54] \qquad Sur les groupes d'Eilenberg-MacLane. II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704-707, DOI 10.1073/pnas.40.8.704 (French). MR65161
[CE56] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR0077480
[Cla81] Mónica Clapp, Duality and transfer for parametrized spectra, Arch. Math. (Basel) 37 (1981), no. 5, 462-472, DOI 10.1007/BF01234383. MR643290
[DK01] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001. MR1841974
[DP97] C. T. J. Dodson and Phillip E. Parker, A user's guide to algebraic topology, Mathematics and its Applications, vol. 387, Kluwer Academic Publishers Group, Dordrecht, 1997. MR1430097
[DP80] Albrecht Dold and Dieter Puppe, Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, pp. 81-102. MR656721
[Dou58] Adrien Douady, La suite spectrale d'Adams : structure multiplicative, Séminaire Henri Cartan 11 (Unknown Month 1958), no. 2 (fr). talk:19.
[DNR01] Sorin Dăscălescu, Constantin Năstăsescu, and Şerban Raianu, Hopf algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, Inc., New York, 2001. An introduction. MR1786197
[DS95] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126, DOI 10.1016/B978-044481779-2/50003-1. MR1361887
[EM66] Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199-236, DOI 10.1007/BF02564371. MR203730
[ES52] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR0050886
[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR1417719
[GZ67] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR0210125
[Gys42] Werner Gysin, Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten, Comment. Math. Helv. 14 (1942), 61-122, DOI 10.1007/BF02565612 (German). MR6511
[Hal65] I. M. Hall, The generalized Whitney sum, Quart. J. Math. Oxford Ser. (2) 16 (1965), 360-384, DOI 10.1093/qmath/16.4.360. MR187245
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354
[Hat] \qquad Spectral Sequences. https://pi.math.cornell.edu/ hatcher/AT/SSpage.html.
[HW60] P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR0115161
[Hir47] Guy Hirsch, Sur les groupes d'homologie des espaces fibrés, Bull. Soc. Math. Belgique 1 (1947/48), 24-33 (1949) (French). MR31716
[Hir48] \qquad , Un isomorphisme attaché aux structures fibrées, C. R. Acad. Sci. Paris 227 (1948), 1328-1330 (French). MR29167
[Hir03] Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR1944041
[Hop41] Heinz Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. (2) 42 (1941), 22-52, DOI 10.2307/1968985 (German). MR4784
[HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1-262, DOI 10.4007/annals.2016.184.1.1. MR3505179
[Hov99] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR1650134
[Hov04] \qquad , Homotopy theory of comodules over a Hopf algebroid, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 261-304, DOI 10.1090/conm/346/06291. MR2066503
[HPS97] Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114, DOI 10.1090/memo/0610. MR1388895
[Hur55] Witold Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 956-961, DOI 10.1073/pnas.41.11.956. MR73987
[Kah69] Daniel S. Kahn, Squaring operations in the Adams spectral sequence, Bull. Amer. Math. Soc. 75 (1969), 136-138, DOI 10.1090/S0002-9904-1969-12177-4. MR236927
[KN02] Bernhard Keller and Amnon Neeman, The connection between May's axioms for a triangulated tensor product and Happel's description of the derived category of the quiver D_{4}, Doc. Math. 7 (2002), 535-560. MR2015053
[KM63] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537, DOI 10.2307/1970128. MR148075
[Kos47] Jean-Louis Koszul, Sur les opérateurs de dérivation dans un anneau, C. R. Acad. Sci. Paris 225 (1947), 217-219 (French). MR22345
[Kra71] D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363-365, DOI 10.1112/blms/3.3.363. MR300271
[Kud50] Tatsuji Kudo, Homological properties of fibre bundles, J. Inst. Polytech. Osaka City Univ. Ser. A 1 (1950), 101-114. MR42117
[Kud52] \qquad , Homological structure of fibre bundles, J. Inst. Polytech. Osaka City Univ. Ser. A 2 (1952), 101-140. MR55687
[Kud56] A transgression theorem, Mem. Fac. Sci. Kyūsyū Univ. A 9 (1956), 79-81, DOI 10.2206/kyushumfs.9.79. MR79259
[Ler46a] Jean Leray, L'anneau d'homologie d'une représentation, C. R. Acad. Sci. Paris 222 (1946), 1366-1368 (French). MR16664
[Ler46b] __ Structure de l'anneau d'homologie d'une représentation, C. R. Acad. Sci. Paris 222 (1946), 1419-1422 (French). MR16665
[Ler46c] \qquad , Propriétés de l'anneau d'homologie de la projection d'un espace fibré sur sa base, C. R. Acad. Sci. Paris 223 (1946), 395-397 (French). MR17529
[Ler46d] \qquad Sur l'anneau d'homologie de l'espace homogène, quotient d'un groupe clos par un sousgroupe abélien, connexe, maximum, C. R. Acad. Sci. Paris 223 (1946), 412-415 (French). MR17530
[Ler50] \qquad , L'anneau spectral et l'anneau filtré d'homologie d'un espace localement compact et d'une application continue, J. Math. Pures Appl. (9) 29 (1950), 1-80, 81-139 (French). MR37505
[LMSM86] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR866482
[Lim58] Elon Lages Lima, DUALITY AND POSTNIKOV INVARIANTS, ProQuest LLC, Ann Arbor, MI, 1958. Thesis (Ph.D.)-The University of Chicago. MR2611479
[Lyn48] Roger C. Lyndon, The cohomology theory of group extensions, Duke Math. J. 15 (1948), 271-292. MR25468
[ML63] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR0156879
[ML71] , Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR0354798
[MM79] lb Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, vol. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR548575
[MT67] Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349-369, DOI 10.1016/0040-9383(67)90023-7. MR214072
[MMSS01] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441-512, DOI 10.1112/S0024611501012692. MR1806878
[Mar83] H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library, vol. 29, North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category. MR738973
[Mas52] W. S. Massey, Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56 (1952), 363-396, DOI 10.2307/1969805. MR52770
[Mas53] \qquad , Exact couples in algebraic topology. III, IV, V, Ann. of Math. (2) 57 (1953), 248-286, DOI 10.2307/1969858. MR55686
[Mas54] \qquad , Products in exact couples, Ann. of Math. (2) 59 (1954), 558-569, DOI 10.2307/1969719. MR60829
[May67] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR0222892
[May70] \qquad , A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153-231. MR0281196
[May77] \qquad , E_{∞} ring spaces and E_{∞} ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave. MR0494077
[May80] J. P. May, Pairings of categories and spectra, J. Pure Appl.
Algebra 19 (1980), 299-346, DOI 10.1016/0022-4049(80)90105-X. MR593258
[May01] \qquad The additivity of traces in triangulated categories, Adv. Math. 163 (2001), no. 1, 34-73, DOI 10.1006/aima.2001.1995. MR1867203
[MP12] J. P. May and K. Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories. MR2884233
[McC85] John McCleary, User's guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR820463
[McC99] \qquad , A history of spectral sequences: origins to 1953, History of topology, North-Holland, Amsterdam, 1999, pp. 631-663, DOI 10.1016/B978-044482375-5/50024-9. MR1721118
[McC69] M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273-298, DOI 10.2307/1995173. MR251719
[Mil67] R. James Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242-250. MR208595
[Mil81] Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287-312, DOI 10.1016/0022-4049(81)90064-5. MR604321
[Mil00] Haynes Miller, Leray in Oflag XVIIA: the origins of sheaf theory, sheaf cohomology, and spectral sequences, Gaz. Math. 84, suppl. (2000), 17-34. Jean Leray (1906-1998). MR1775587
[Mil56] John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436, DOI 10.2307/1970012. MR77932
[Mil58] \qquad , The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171, DOI 10.2307/1969932. MR99653
[Mil59]_, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280, DOI 10.2307/1993204. MR100267
[Mil62] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR159327
[Mil64] \qquad Microbundles. I, Topology 3 (1964), no. suppl, suppl. 1, 53-80, DOI 10.1016/0040-9383(64)90005-9. MR161346
[MM65] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264, DOI 10.2307/1970615. MR174052
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR0440554
[MT68] Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper \& Row, Publishers, New York-London, 1968. MR0226634
[Mos68] R. M. F. Moss, On the composition pairing of Adams spectral sequences, Proc. London Math. Soc. (3) 18 (1968), 179-192, DOI 10.1112/plms/s3-18.1.179. MR220294
[Mos70] R. Michael F. Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970), 283-310, DOI 10.1007/BF01129978. MR266216
[Nee91] Amnon Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1991), no. 1, 221-255, DOI 10.1016/0021-8693(91)90292-G. MR1106349
[Nee01] \qquad Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR1812507
[Nei80] Joseph Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc. 25 (1980), no. 232, iv+67, DOI 10.1090/memo/0232. MR567801
[Nov67] S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951 (Russian). MR0221509
[Pon50] L. S. Pontryagin, Homotopy classification of the mappings of an ($n+2$)-dimensional sphere on an n-dimensional one, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 957-959 (Russian). MR0042121
[Pup67] Dieter Puppe, Stabile Homotopietheorie. I, Math. Ann. 169 (1967), 243-274, DOI 10.1007/BF01362348 (German). MR211400
[Qui67] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR0223432
[Rav86] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR860042
[Roh51] V. A. Rohlin, A three-dimensional manifold is the boundary of a four-dimensional one, Doklady Akad. Nauk SSSR (N.S.) 81 (1951), 355-357 (Russian). MR0048808
[Rud98] Yuli B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. With a foreword by Haynes Miller. MR1627486
[Sat99] Hajime Sato, Algebraic topology: an intuitive approach, Translations of Mathematical Monographs, vol. 183, American Mathematical Society, Providence, RI, 1999. Translated from the 1996 Japanese original by Kiki Hudson; Iwanami Series in Modern Mathematics. MR1679607
[SS00] Stefan Schwede and Brooke E. Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), no. 2, 491-511, DOI 10.1112/S002461150001220X. MR1734325
[SS03] Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103-153, DOI 10.1016/S0040-9383(02)00006-X. MR1928647
[Ser51] Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505, DOI 10.2307/1969485 (French). MR45386
[Ser53] , Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232, DOI 10.1007/BF02564562 (French). MR60234
[Sha14] Anant R. Shastri, Basic algebraic topology, CRC Press, Boca Raton, FL, 2014. With a foreword by Peter Wong. MR3134904
[Spa66] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR0210112
[Ste43] N. E. Steenrod, Homology with local coefficients, Ann. of Math.
(2) 44 (1943), 610-627, DOI 10.2307/1969099. MR9114
[Ste47] \qquad , Products of cocycles and extensions of mappings, Ann.
of Math. (2) 48 (1947), 290-320, DOI 10.2307/1969172. MR22071
[Ste51] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR0039258
[Ste52] N. E. Steenrod, Reduced powers of cohomology classes, Ann. of Math. (2) 56 (1952), 47-67, DOI 10.2307/1969766. MR48026
[Ste53] \qquad , Cyclic reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 217-223, DOI 10.1073/pnas.39.3.217. MR54965
[Ste62] \qquad , Cohomology operations, Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR0145525
[Ste67] \qquad , A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR210075
[Ste68] \qquad , Milgram's classifying space of a topological group,
Topology 7 (1968), 349-368, DOI
10.1016/0040-9383(68)90012-8. MR233353
[Sto68] Robert E. Stong, Notes on cobordism theory, Mathematical notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR0248858
[Str] N. P. Strickland, The category of CGWH spaces. http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf.
[Swi75] Robert M. Switzer, Algebraic topology-homotopy and homology, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212. MR0385836
[Tam99] Hirotaka Tamanoi, \mathcal{Q}-subalgebras, Milnor basis, and cohomology of Eilenberg-MacLane spaces, J. Pure Appl. Algebra 137 (1999), no. 2, 153-198, DOI 10.1016/S0022-4049(97)00177-1. MR1684268
[Tan70] Martin C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64, DOI 10.1007/BF01110185. MR266205
[Tho54] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86, DOI 10.1007/BF02566923 (French). MR61823
[Tod55] Hirosi Toda, Le produit de Whitehead et l'invariant de Hopf, C. R. Acad. Sci. Paris 241 (1955), 849-850 (French). MR72474
[Tod62] \qquad Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR0143217
[Ver96] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR1453167
[Vog70] Rainer Vogt, Boardman's stable homotopy category, Lecture Notes Series, No. 21, Matematisk Institut, Aarhus Universitet, Aarhus, 1970. MR0275431
[Wal60] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311, DOI 10.2307/1970136. MR120654
[Wan49] Hsien-Chung Wang, The homology groups of the fibre bundles over a sphere, Duke Math. J. 16 (1949), 33-38. MR28580
[Whi62] George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283, DOI 10.2307/1993676. MR137117
[Whi78] Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR516508
[Yon58] Nobuo Yoneda, Note on products in Ext, Proc. Amer. Math. Soc. 9 (1958), 873-875, DOI 10.2307/2033320. MR175957

