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1 Introduction

In this paper we will discuss an algebraic version (Theorem 1.6) of the thick sub-
category theorem of Hopkins-Smith [HS] (Theorem 1.4). The former is stated
as Theorem 3.4.3 in [Rav92|, but the proof given there is incorrect. (A list of
errata for [Rav92] can be obtained by email from the third author.)

First we recall the nilpotence theorem in its p-local version. Let BP be
the Brown-Peterson spectrum at the prime p, which satisfies:

W*(BP) ~ BP, Z(p)[vl,vz, .. '], |'Ul| = 2(pi — 1).
Theorem 1.1 (Nilpotence theorem) [DHS88]

(i) Let R be a p-local ring spectrum. The kernel of the BP Hurewicz homo-
morphism BP, : m.(R) — BP.(R) consists of nilpotent elements.
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(i) Let f: F — X be a map from a p-local finite spectrum to an arbitrary
spectrum. If BP A f is null homotopic, then f is smash nilpotent; i.e. the
i-fold smash product f = f A--- A f is null for i sufficiently large.

(ii) Let --- — X, ELN X1 thaas: Xpio — -+ be a sequence of p-local
spectra with X,, c,-connected. Suppose that ¢, > mn+ b for some m and

b. If BP, f,, = 0 for all n then hocolimX,, is contractible.

The Baas-Sullivan theory of bordism with singularities allows one to define
ring spectra K(n) and P(n) for 0 < n < oo satisfying [Rav86]:

m(K(n)) 2 K(n). = Fplvg, v, ']

m(P(n)) = P(n). = Fylvn, vni1,- -]

as BP,-algebras. We also set P(0) = BP and K(0) = HQ, the rational
Eilenberg-Mac Lane spectrum. K (n) is known as the n'" Morava K-theory at
the prime p. The following corollary of the nilpotence theorem will be proved
in §2. This is stated in [Rav92] as Corollary 5.1.5, but again the proof given
there is incorrect.

Corollary 1.2 Let W, X and Y be p-local finite spectra and f : X — Y.
Then W A £ is null homotopic for k> 0 if K(n).(W A f) =0 for alln > 0.

Now let CPy be the homotopy category of finite p-local spectra and let
CP, C CPy be the full subcategory of K(n — 1).-acyclics. In [Rav84] it was
shown that the CP,, fit into a sequence:

~+ CCPpy1 CCP, C--- CCPy.
Moreover all the inclusions are strict [Mit85].
Definition 1.3 A full subcategory C of CPyq is thick if:

(i) An object weakly equivalent to an object in C is in C.

(it) If X —Y — Z is a cofibration in CPy and two of {X,Y,Z} are in C
then so s the third.

(iii) A retract of an object in C is in C.

Corollary 1.2 is the form of the nilpotence theorem needed to prove the
thick subcategory theorem (see §5.3 of [Rav92]):

Theorem 1.4 (Thick subcategory theorem) IfC is a thick subcategory of
CPy, then there exists an integer k such that C = CPy.



Before we state an algebraic version of Theorem 1.4 let us fix some nota-
tion. Let BPg be the abelian category of B P, (BP)-comodules finitely presented
as BP,-module [Lan76]. A typical object in BPg is BP.(X) for X in CPy. We
denote by BPy, the full subcategory of BPy whose objects M satisfy v,;_llM =0
(we set vg = p). Results of Johnson-Yosimura [JY80] (see also [Lan79] for a
more algebraic proof) show that:

-+ C BPgy1 C BPy C -+ C BPy.

Definition 1.5 Let A be an abelian category. A full subcategory C of A is
thick if it satisfies the following condition:
If

0— M — M -—M"—0

is a short exact sequence in A, M belongs to C if and only if M’ and M"

belong to C. (It means that C is stable under subobjects, quotient objects and
extensions.)

The classification of the thick subcategories of BPy is now the following;
see §3 for the proof.

Theorem 1.6 (Algebraic thick subcategory theorem) IfC is a thick sub-
category of BPy, then there exists an integer k such that C = BPy,.

Let us conclude the introduction with some remarks.

e Theorem 3.4.2 of [Rav92] is the analog of Theorem 1.6 stated in a different
category, CT', which is defined in terms of MU rather than BP.

e The BP-homology functor, BP,(-) : CPy — BPg sends the category
CPy. into BPy. This comes from the fact [Rav84] that if X € CPq then

K(n)«.(X)=0 <= v,'BP.(X)=0.

e Theorem 1.6 can be generalized to the abelian category of P(n).(P(n))-
comodules, finitely presented over P(n)., which we denote by P(n). Sim-
ilarly as for BPy we can define the subcategories P(n); and prove the
following.

Theorem 1.7 If C is a thick subcategory of P(n), then there exists an integer
k > n such that C = P(n)y.

A further generalization of Theorem 1.6 can be obtained in the follow-
ing setting. Let I, be a commutative P(n).-algebra such that E, ®p(,), — is
an exact functor on P(n). In [Lan76] the second author gave sufficient condi-
tions for exactness. (The necessity of these conditions was shown by Rudyak
in [Rud86].) Define

E*(E) =E, ®P(n)* P(n)*(P(n)) ®P(n)* Ey;



It can be made into a Hopf algebroid by extending the structure maps for
P(n)«(P(n)). Moreover E,(FE) is a flat E,-module because P(n).(P(n)) is a
flat P(n).-module and if N is a F,-module then

E.(E)®p, N 2 E, ®p(n). (P(n).(P(n)) ®p(n). N).

If M is an object of P(n) then E, ®p(,), M is an E,(E)-comodule via
the F,-extension of the composite:

M —  P(n).(P(n) @pg, M
1
E.(E)®pmy, M — EJ(E)®p. (B. ®p(ny, M).

Let £ be the category whose objects are E. ®p(,), M with M € P(n) and
morphisms E, ® f: E, @ My — E, ® My with f: M; — M in P(n); then
£ is an abelian category equipped with an exact functor:

E, Qpn), — ! P(TL) — €&,
The image of the subcategory P(n)y, written &, satisfies:

e Cépp1 CEC-CEL=E.

We are no longer claiming that the inclusions are strict. The thick subcategories
of £ can be described as follow:

Theorem 1.8 If C is a thick subcategory of £, then there exists an integer
k > n such that C = &}.

It should be emphasized that under the above assumption on FE,, the functor
E.®p(n), P(n)«(-) is a homology theory [Lan76] taking its values in the category
& as far as finite spectra are concerned.

2 The proof of Corollary 1.2

Let D : CPy — CPo be the anti-equivalence induced by the Spanier-
Whitehead duality [Ada74]. If X € CPy and Y is any spectrum, the graded
group [X, Y], is isomorphic to m. (DX AY'). We say that the maps f : "X —
Y and f: S™ — DX AY are adjoint if they correspond to each other un-
der the above isomorphism of groups. In particular the adjoint of the identity
X — Xisamape: S° — DX A X. Recall that X is a notation for the
i-fold smash product X A -+ A X.

Set R = DW AW, aring spectrum whose unit is e and whose multiplication
is the composite



DW ADeANW
ey

RANR=DWAWANDW AW DW AS° AW = R.

The map f: X — Y is adjoint to f: SO — DX AY and WA f is
adjoint to the composite

SO'—?>DX/\Y eADXAY

RADXANY,
which we denote by g. Set F = RA DX AY. The map W A £ is adjoint to

the composite

§0 2% P& — RO A DX AYD . RADXD AV,

the latter map being induced by the multiplication in R.

We want to show that W A f) is null for large k; by adjointness it
suffices to prove that ¢(¥) is null for large k. The second statement of Theorem
1.1 implies that we only need to show that BP A g(¥ is null for large i, so we
can take k to be an appropriate multiple of i. Let T; = R A DX A Y and
let T be the direct limit of

g0 g T T1/\J/‘\ T TzAf

Ty — oo

The desired conclusion will follow from showing that BP AT is contractible.

At this point we need to use the theory of Bousfield classes. Recall that
the Bousfield class of a spectrum X (denoted (X)) is the collection of spectra
Z for which X A Z is not contractible. In [Rav84] it was shown that

(BP) = (K(0)) V(K(1))V --- V(K(n)) V (P(n+1)).

By assumption, K (n) AT is contractible for all n. Therefore it suffices to show
that P(m) A T is contractible for large m.

Since we are concerned only with finite spectra, we have for large enough
m:

K(m).(WAf) = K(m).op, H(W A f:F,)
P(m).(WAf) = P(m).®p, H.(W A f:F,).

Our hypothesis implies that both of these homomorphisms are trivial, so the
smash product P(m) AT is contractible as required.

3 The proof of Theorem 1.6

The proof of Theorem 1.6 is a consequence of the filtration theorem of Landwe-
ber, namely



Theorem 3.1 [Lan73] Each object M € BPy has a filtration
O=Ms;C---CMyCMy=M

in the category BPg, so that for 0 < i < s —1 the quotient M;/M;,1 is stably
isomorphic to BP,./I,, in BPy, where I,, = (p,v1,--,Un,—1) are invariant
prime ideals of BP,. (Stably isomorphic means isomorphic after a dimension

shift.)
For M € BPy define Spec(M) = {m > 1: v;' \M = 0} |J{0} (set as

usual vg = p). If M # 0 then Spec(M) is a finite subset of N and is of the
form:

Spec(M) ={0,1,---,Np}

Let C be a thick subcategory of BPg. Define an integer k by:

() Spec(M) ={0,1,--,k}.

Mec

From the definition of k, one has C C BPy and C ¢ BPki1. Let M in C be
such that
vk:llM =0 and vk_lM £ 0,

and let
0O=M;C---CMyCMy=M

be a Landweber filtration of M. As C is thick and M € C, all the M;’s belong
to C as well as all the quotients M;/M; 1 & BP,/I,,.
Localization being an exact functor, all the vk:llMi are null and hence

v,;_llMi/MZ-H o v,;_llBP*/Ini = 0. Therefore
n;, >k for 0<i<s—1. (3.2)
On the other hand, U;lM # 0 implies the existence of a j for which
v, ' BP, /I, # 0, which forces
nj <k forsomej, 0<j<s—1. (3.3)
From (3.2) and (3.3) we obtain that n; = k for some j, 0 < j < s—1, hence

BP, /I, € C. Now it is fairly easy to prove by induction that BP,/Ij1; € C for
all [ > 0. Consider the exact sequence in BPg

0 — BP, /Iy —* BP,/Ijo; — BP,/Ij1141 — 0



where the first morphism is multiplication by wvg4;. The subcategory C being
thick, BP, /I;.; € C implies BP, /I;1;+1 € C.

We are now ready to show the inclusion BPj C C. Let N be an object in
BP, and 0 = Ny C --- C Ny C N9 = N be a Landweber filtration of N. We
have seen that vlz_llN = 0 implies n; > k for all 0 < i < s — 1 with, as usual,
n; such that N;/N;11 & BP,/I,,. By downward induction on i we prove that
N, € C. This works as follows.

First N;, = 0 € C. Second, the short exact sequence in BPy

0—>Ni+1 —>NZ—>BP*/IRZ — 0

is such that N;;1 € C (by the inductive assumption) and BP,/I,, € C as
n; > k. From the thickness of C we obtain that N; € C. For i = 0 we have
N € C and so BPj, = C, as required.
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