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1 Introduction

In this paper we will discuss an algebraic version (Theorem 1.6) of the thick sub-
category theorem of Hopkins-Smith [HS] (Theorem 1.4). The former is stated
as Theorem 3.4.3 in [Rav92], but the proof given there is incorrect. (A list of
errata for [Rav92] can be obtained by email from the third author.)

First we recall the nilpotence theorem in its p-local version. Let BP be
the Brown-Peterson spectrum at the prime p, which satisfies:

π∗(BP ) ∼= BP∗ ∼= Z(p)[v1, v2, · · ·], |vi| = 2(pi − 1).

Theorem 1.1 (Nilpotence theorem) [DHS88]

(i) Let R be a p-local ring spectrum. The kernel of the BP Hurewicz homo-
morphism BP∗ : π∗(R) −→ BP∗(R) consists of nilpotent elements.
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(ii) Let f : F −→ X be a map from a p-local finite spectrum to an arbitrary
spectrum. If BP ∧ f is null homotopic, then f is smash nilpotent; i.e. the
i-fold smash product f (i) = f ∧ · · · ∧ f is null for i sufficiently large.

(iii) Let · · · −→ Xn
fn−→ Xn+1

fn+1−→ Xn+2 −→ · · · be a sequence of p-local
spectra with Xn cn-connected. Suppose that cn ≥ mn + b for some m and
b. If BP∗fn = 0 for all n then hocolimXn is contractible.

The Baas-Sullivan theory of bordism with singularities allows one to define
ring spectra K(n) and P (n) for 0 < n < ∞ satisfying [Rav86]:

π∗(K(n)) ∼= K(n)∗ ∼= Fp[vn, v−1
n ]

π∗(P (n)) ∼= P (n)∗ ∼= Fp[vn, vn+1, · · ·]
as BP∗-algebras. We also set P (0) = BP and K(0) = HQ, the rational
Eilenberg-MacLane spectrum. K(n) is known as the nth Morava K-theory at
the prime p. The following corollary of the nilpotence theorem will be proved
in §2. This is stated in [Rav92] as Corollary 5.1.5, but again the proof given
there is incorrect.

Corollary 1.2 Let W, X and Y be p-local finite spectra and f : X −→ Y.
Then W ∧ f (k) is null homotopic for k À 0 if K(n)∗(W ∧ f) = 0 for all n ≥ 0.

Now let CP0 be the homotopy category of finite p-local spectra and let
CPn ⊂ CP0 be the full subcategory of K(n − 1)∗-acyclics. In [Rav84] it was
shown that the CPn fit into a sequence:

· · · ⊂ CPn+1 ⊂ CPn ⊂ · · · ⊂ CP0.

Moreover all the inclusions are strict [Mit85].

Definition 1.3 A full subcategory C of CP0 is thick if:

(i) An object weakly equivalent to an object in C is in C.
(ii) If X −→ Y −→ Z is a cofibration in CP0 and two of {X,Y, Z} are in C

then so is the third.

(iii) A retract of an object in C is in C.

Corollary 1.2 is the form of the nilpotence theorem needed to prove the
thick subcategory theorem (see §5.3 of [Rav92]):

Theorem 1.4 (Thick subcategory theorem) If C is a thick subcategory of
CP0, then there exists an integer k such that C = CPk.
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Before we state an algebraic version of Theorem 1.4 let us fix some nota-
tion. Let BP0 be the abelian category of BP∗(BP )-comodules finitely presented
as BP∗-module [Lan76]. A typical object in BP0 is BP∗(X) for X in CP0. We
denote by BPk the full subcategory of BP0 whose objects M satisfy v−1

k−1M = 0
(we set v0 = p). Results of Johnson-Yosimura [JY80] (see also [Lan79] for a
more algebraic proof) show that:

· · · ⊂ BPk+1 ⊂ BPk ⊂ · · · ⊂ BP0.

Definition 1.5 Let A be an abelian category. A full subcategory C of A is
thick if it satisfies the following condition:
If

0 −→ M ′ −→ M −→ M ′′ −→ 0

is a short exact sequence in A, M belongs to C if and only if M ′ and M ′′

belong to C. (It means that C is stable under subobjects, quotient objects and
extensions.)

The classification of the thick subcategories of BP0 is now the following;
see §3 for the proof.

Theorem 1.6 (Algebraic thick subcategory theorem) If C is a thick sub-
category of BP0, then there exists an integer k such that C = BPk.

Let us conclude the introduction with some remarks.

• Theorem 3.4.2 of [Rav92] is the analog of Theorem 1.6 stated in a different
category, CΓ, which is defined in terms of MU rather than BP .

• The BP -homology functor, BP∗(·) : CP0 −→ BP0 sends the category
CPk into BPk. This comes from the fact [Rav84] that if X ∈ CP0 then

K(n)∗(X) = 0 ⇐⇒ v−1
n BP∗(X) = 0.

• Theorem 1.6 can be generalized to the abelian category of P (n)∗(P (n))-
comodules, finitely presented over P (n)∗, which we denote by P(n). Sim-
ilarly as for BP0 we can define the subcategories P(n)k and prove the
following.

Theorem 1.7 If C is a thick subcategory of P(n), then there exists an integer
k ≥ n such that C = P(n)k.

A further generalization of Theorem 1.6 can be obtained in the follow-
ing setting. Let E∗ be a commutative P (n)∗-algebra such that E∗ ⊗P (n)∗ − is
an exact functor on P(n). In [Lan76] the second author gave sufficient condi-
tions for exactness. (The necessity of these conditions was shown by Rudyak
in [Rud86].) Define

E∗(E) = E∗ ⊗P (n)∗ P (n)∗(P (n))⊗P (n)∗ E∗;
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It can be made into a Hopf algebroid by extending the structure maps for
P (n)∗(P (n)). Moreover E∗(E) is a flat E∗-module because P (n)∗(P (n)) is a
flat P (n)∗-module and if N is a E∗-module then

E∗(E)⊗E∗ N ∼= E∗ ⊗P (n)∗

(
P (n)∗(P (n))⊗P (n)∗ N

)
.

If M is an object of P(n) then E∗ ⊗P (n)∗ M is an E∗(E)-comodule via
the E∗-extension of the composite:

M −→ P (n)∗(P (n))⊗P (n)∗ M

↓
E∗(E)⊗P (n)∗ M −→ E∗(E)⊗E∗

(
E∗ ⊗P (n)∗ M

)
.

Let E be the category whose objects are E∗⊗P (n)∗ M with M ∈ P(n) and
morphisms E∗⊗ f : E∗⊗M1 −→ E∗⊗M2 with f : M1 −→ M2 in P(n); then
E is an abelian category equipped with an exact functor:

E∗ ⊗P (n)∗ − : P(n) −→ E .

The image of the subcategory P(n)k, written Ek, satisfies:

· · · ⊂ Ek+1 ⊂ Ek ⊂ · · · ⊂ En = E .

We are no longer claiming that the inclusions are strict. The thick subcategories
of E can be described as follow:

Theorem 1.8 If C is a thick subcategory of E , then there exists an integer
k ≥ n such that C = Ek.

It should be emphasized that under the above assumption on E∗, the functor
E∗⊗P (n)∗P (n)∗(·) is a homology theory [Lan76] taking its values in the category
E as far as finite spectra are concerned.

2 The proof of Corollary 1.2

Let D : CP0 −→ CP0 be the anti-equivalence induced by the Spanier-
Whitehead duality [Ada74]. If X ∈ CP0 and Y is any spectrum, the graded
group [X,Y ]∗ is isomorphic to π∗(DX∧Y ). We say that the maps f : ΣnX −→
Y and f̂ : Sn −→ DX ∧ Y are adjoint if they correspond to each other un-
der the above isomorphism of groups. In particular the adjoint of the identity
X −→ X is a map e : S0 −→ DX ∧X. Recall that X(i) is a notation for the
i-fold smash product X ∧ · · · ∧X.

Set R = DW∧W, a ring spectrum whose unit is e and whose multiplication
is the composite
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R ∧R = DW ∧W ∧DW ∧W
DW∧De∧W−−−−−−−−−→ DW ∧ S0 ∧W = R.

The map f : X −→ Y is adjoint to f̂ : S0 −→ DX ∧ Y and W ∧ f is
adjoint to the composite

S0 f̂−→ DX ∧ Y
e∧DX∧Y−−−−−−−−→ R ∧DX ∧ Y,

which we denote by g. Set F = R ∧DX ∧ Y. The map W ∧ f (i) is adjoint to
the composite

S0 g(i)

−→ F (i) = R(i) ∧DX(i) ∧ Y (i) −→ R ∧DX(i) ∧ Y (i),

the latter map being induced by the multiplication in R.
We want to show that W ∧ f (k) is null for large k; by adjointness it

suffices to prove that g(k) is null for large k. The second statement of Theorem
1.1 implies that we only need to show that BP ∧ g(i) is null for large i, so we
can take k to be an appropriate multiple of i. Let Ti = R ∧DX(i) ∧ Y (i) and
let T be the direct limit of

S0 g−−−−→ T1
T1∧f̂−−−→ T2

T2∧f̂−−−→ T3 −→ · · · .

The desired conclusion will follow from showing that BP ∧ T is contractible.
At this point we need to use the theory of Bousfield classes. Recall that

the Bousfield class of a spectrum X (denoted 〈X〉) is the collection of spectra
Z for which X ∧ Z is not contractible. In [Rav84] it was shown that

〈BP 〉 = 〈K(0)〉 ∨ 〈K(1)〉 ∨ · · · ∨ 〈K(n)〉 ∨ 〈P (n + 1)〉.

By assumption, K(n)∧ T is contractible for all n. Therefore it suffices to show
that P (m) ∧ T is contractible for large m.

Since we are concerned only with finite spectra, we have for large enough
m:

K(m)∗(W ∧ f) = K(m)∗ ⊗Fp H∗(W ∧ f ;Fp)
P (m)∗(W ∧ f) = P (m)∗ ⊗Fp H∗(W ∧ f ;Fp).

Our hypothesis implies that both of these homomorphisms are trivial, so the
smash product P (m) ∧ T is contractible as required.

3 The proof of Theorem 1.6

The proof of Theorem 1.6 is a consequence of the filtration theorem of Landwe-
ber, namely
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Theorem 3.1 [Lan73] Each object M ∈ BP0 has a filtration

0 = Ms ⊂ · · · ⊂ M1 ⊂ M0 = M

in the category BP0, so that for 0 ≤ i ≤ s − 1 the quotient Mi/Mi+1 is stably
isomorphic to BP∗/Ini

in BP0, where Ini
= (p, v1, · · · , vni−1) are invariant

prime ideals of BP∗. (Stably isomorphic means isomorphic after a dimension
shift.)

For M ∈ BP0 define Spec(M) = {m ≥ 1: v−1
m−1M = 0}⋃{0} (set as

usual v0 = p). If M 6= 0 then Spec(M) is a finite subset of N and is of the
form:

Spec(M) = {0, 1, · · · , NM}
with NM ≥ 0.

Let C be a thick subcategory of BP0. Define an integer k by:
⋂

M∈C
Spec(M) = {0, 1, · · · , k}.

From the definition of k, one has C ⊂ BPk and C 6⊂ BPk+1. Let M in C be
such that

v−1
k−1M = 0 and v−1

k M 6= 0,

and let
0 = Ms ⊂ · · · ⊂ M1 ⊂ M0 = M

be a Landweber filtration of M. As C is thick and M ∈ C, all the Mi’s belong
to C as well as all the quotients Mi/Mi+1

∼= BP∗/Ini .
Localization being an exact functor, all the v−1

k−1Mi are null and hence
v−1

k−1Mi/Mi+1
∼= v−1

k−1BP∗/Ini = 0. Therefore

ni ≥ k for 0 ≤ i ≤ s− 1. (3.2)

On the other hand, v−1
k M 6= 0 implies the existence of a j for which

v−1
k BP∗/Inj 6= 0, which forces

nj ≤ k for some j, 0 ≤ j ≤ s− 1. (3.3)

From (3.2) and (3.3) we obtain that nj = k for some j, 0 ≤ j ≤ s−1, hence
BP∗/Ik ∈ C. Now it is fairly easy to prove by induction that BP∗/Ik+l ∈ C for
all l ≥ 0. Consider the exact sequence in BP0

0 −→ BP∗/Ik+l
vk+l−−−−→ BP∗/Ik+l −→ BP∗/Ik+l+1 −→ 0
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where the first morphism is multiplication by vk+l. The subcategory C being
thick, BP∗/Ik+l ∈ C implies BP∗/Ik+l+1 ∈ C.

We are now ready to show the inclusion BPk ⊂ C. Let N be an object in
BPk and 0 = Ns ⊂ · · · ⊂ N1 ⊂ N0 = N be a Landweber filtration of N. We
have seen that v−1

k−1N = 0 implies ni ≥ k for all 0 ≤ i ≤ s − 1 with, as usual,
ni such that Ni/Ni+1

∼= BP∗/Ini
. By downward induction on i we prove that

Ni ∈ C. This works as follows.
First Ns = 0 ∈ C. Second, the short exact sequence in BP0

0 −→ Ni+1 −→ Ni −→ BP∗/Ini −→ 0

is such that Ni+1 ∈ C (by the inductive assumption) and BP∗/Ini ∈ C as
ni ≥ k. From the thickness of C we obtain that Ni ∈ C. For i = 0 we have
N ∈ C and so BPk = C, as required.

References

[Ada74] J. F. Adams. Stable Homotopy and Generalised Homology. University
of Chicago Press, Chicago, 1974.

[DHS88] E. Devinatz, M. J. Hopkins, and J. H. Smith. Nilpotence and stable
homotopy theory. Annals of Mathematics, 128:207–242, 1988.

[HS] M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy
theory II. To appear in Annals of Mathematics.

[JY80] D. C. Johnson and Z. Yosimura. Torsion in Brown-Peterson homol-
ogy and Hurewicz homomorphisms. Osaka Journal of Mathematics,
17:117–136, 1980.

[Lan73] P. S. Landweber. Associated prime ideals and Hopf algebras. Journal
of Pure and Applied Algebra, 3:175–179, 1973.

[Lan76] P. S. Landweber. Homological properties of comodules over
MU∗(MU) and BP∗(BP ). American Journal of Mathematics,
98:591–610, 1976.

[Lan79] P. S. Landweber. New applications of commutative algebra to Brown-
Peterson homology. In P. Hoffman and V. Snaith, editors, Algebraic
Topology, Waterloo 1978, pages 449–460, Springer-Verlag, New York,
1979.

[Mit85] S. A. Mitchell. Finite complexes with A(n)-free cohomology. Topology,
24:227–248, 1985.

[Rav84] D. C. Ravenel. Localization with respect to certain periodic homology
theories. American Journal of Mathematics, 106:351–414, 1984.



8

[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of
Spheres. Academic Press, New York, 1986.

[Rav92] D. C. Ravenel. Nilpotence and periodicity in stable homotopy theory.
Volume 128 of Annals of Mathematics Studies, Princeton University
Press, Princeton, 1992.

[Rud86] Yu. B. Rudyak. Exactness theorems for the cohomology theories MU,
BP and P(n). Mat. Zametki, 40:115–126, 1986. English translation
in Math. Notes 40:562–569, 1986.


