ALGEBRAIC TOPOLOGY III SPRING 2023 CHROMATIC HOMOTOPY THEORY

CHAPTER X: THE ADAMS SPECTRAL SEQUENCE (INCOMPLETE)

JOHN ROGNES

1. The E-based Adams spectral sequence

We turn to the sequence of spectra Y_{\star} from Example 1.3 of Chapter 8, and its associated spectral sequence, namely the E-based Adams spectral sequence. Let Y be any orthogonal spectrum, let (E, η, ϕ) be a ring spectrum up to homotopy, and let $\bar{E}=C \eta$, so that we have a homotopy cofiber sequence

$$
\begin{equation*}
\Sigma^{-1} \bar{E} \longrightarrow S \xrightarrow{\eta} E \longrightarrow \bar{E} \tag{1.1}
\end{equation*}
$$

(with $I=\Sigma^{-1} \bar{E}$ and $\Sigma I=E$ in the notation of the cited example). We let $Y_{0}=Y$ and iteratively define $Y_{s+1}=\Sigma^{-1} \bar{E} \wedge Y_{s}$ for $s \geq 0$, so that we have homotopy cofiber sequences

$$
Y_{s+1} \xrightarrow{\alpha} Y_{s} \xrightarrow{\beta} E \wedge Y_{s} \xrightarrow{\gamma} \Sigma Y_{s+1}
$$

given by smashing (1.1) with Y_{s}. In particular $Y_{s, 1}=C \alpha=E \wedge Y_{s}$ and $\beta=\eta \wedge \mathrm{id}$. We also let $Y=Y_{s}$ for $s<0$, so that

$$
Y_{s}= \begin{cases}\left(\Sigma^{-1} \bar{E}\right)^{\wedge s} \wedge Y & \text { for } s \geq 0, \\ Y & \text { for } s \leq 0,\end{cases}
$$

and

$$
Y_{s, 1}=\left\{\begin{array}{lr}
E \wedge\left(\Sigma^{-1} \bar{E}\right)^{\wedge s} \wedge Y & \text { for } s \geq 0, \\
* & \text { for } s<0 .
\end{array}\right.
$$

Hence the chain of homotopy cofiber sequences

appears as follows.

Replacing Y_{s} and $Y_{s, 1}$ by $\Sigma^{s} Y_{s}$ and $\Sigma^{s} Y_{s, 1}$, respectively, we can also draw this as follows.

We think of these diagrams as spectrum level resolutions of Y by spectra of the form $E \wedge Z$ for some spectrum Z, which in a sense are injective to the eyes of E-homology, or (in good cases) projective to the eyes on E-cohomology.

Applying homotopy we obtain an unrolled exact couple

with

$$
\begin{aligned}
\pi_{*}\left(Y_{s}\right) & =\pi_{*}\left(\left(\Sigma^{-1} \bar{E}\right)^{\wedge s} \wedge Y\right) \\
\pi_{*}\left(Y_{s, 1}\right) & =\pi_{*}\left(E \wedge\left(\Sigma^{-1} \bar{E}\right)^{\wedge s} \wedge Y\right)
\end{aligned}
$$

for all $s \geq 0$. The associated spectral sequence is the E-based Adams spectral sequence, which is concentrated in the half-plane $s \geq 0$. Clearly $Y=Y_{0} \simeq Y_{-\infty}=$ $\operatorname{hocolim}_{s} Y_{s}$, so we take $G=\pi_{*}(Y)$ as the abutment of the spectral sequence, writing

$$
\mathcal{E}_{1}^{s, *}=\pi_{*}\left(Y_{s, 1}\right) \Longrightarrow{ }_{s} \pi_{*}(Y) .
$$

However, $Y_{\infty}=$ holim $_{s} Y_{s}$ will not generally be trivial, so (conditional) convergence is not guaranteed. Following Bousfield, one way to achieve this is to replace Y by its E-nilpotent completion Y_{E}^{\wedge}, defined as the homotopy cofiber of $Y_{\infty} \rightarrow Y$, and the convergence problem for the Adams spectral sequence is then to recognize this completion.

In order to obtain an algebraic description of the E-based Adams \mathcal{E}_{1-} and $\mathcal{E}_{2^{-}}$ term, we hereafter assume that E is homotopy commutative and flat, so that $E_{*} E$ is flat as a (left or right) E_{*}-module. The pair $\left(E_{*}, E_{*} E\right)$ is then a Hopf algebroid, and there is a natural left $E_{*} E$-coaction

$$
\nu: E_{*}(X) \longrightarrow E_{*} E \otimes_{E_{*}} E_{*}(X)
$$

for each spectrum X. Let $\operatorname{Hom}_{E_{*} E}^{t}\left(E_{*}, E_{*}(X)\right)$ denote the abelian group of $E_{*} E$ comodule homomorphisms $\Sigma^{t} E_{*}=E_{*}\left(S^{t}\right) \rightarrow E_{*}(X)$, for each $t \in \mathbb{Z}$, and write $\operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}(X)\right)$ for the resulting graded abelian group.

Lemma 1.1. The natural homomorphism

$$
\begin{array}{r}
\pi_{*}(X) \xrightarrow{d} \operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}(X)\right) \\
{\left[f: S^{t} \rightarrow X\right] \mapsto f_{*}: E_{*}\left(S^{t}\right) \rightarrow E_{*}(X)}
\end{array}
$$

is an isomorphism whenever $X \simeq E \wedge Z$ for some spectrum Z.
Proof. There is an equalizer diagram

$$
\operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}(X)\right) \xrightarrow{\iota} E_{*}(X) \underset{\eta_{R} \otimes \mathrm{id}}{\stackrel{\nu}{\longrightarrow}} E_{*} E \otimes_{E_{*}} E_{*}(X),
$$

where ι evaluates a homomorphism at $1 \in E_{*}$ and $\eta_{R} \otimes$ id maps x to $1 \otimes x$. Hence $\operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}(X)\right)=E_{*} \square_{E_{*} E} E_{*}(X)=P E_{*}(X)$ is the subgroup of $E_{*} E-$ comodule primitives in $E_{*}(X)$. The fork diagram

$$
\pi_{*}(X) \stackrel{\iota d}{\longrightarrow} E_{*}(X) \xrightarrow[\eta_{R} \otimes \mathrm{id}]{\stackrel{\nu}{\longrightarrow}} E_{*} E \otimes_{E_{*}} E_{*}(X),
$$

can be rewritten as
and when $X=E \wedge Z$ it extends to a split equalizer diagram

$$
\pi_{*}(E \wedge Z) \xrightarrow{\eta \wedge \mathrm{id}} \pi_{*}(E \wedge E \wedge Z) \xrightarrow[\phi \wedge \mathrm{id}]{\stackrel{\mathrm{id} \wedge \eta \wedge \mathrm{id}}{\longrightarrow}} \pi_{*}(E \wedge E \wedge E \wedge Z)
$$

as in [Mac71, §IV.5]. In particular, it is then an equalizer, so that d is an isomorphism.

Hence we can recover the homotopy groups $\mathcal{E}_{1}^{s, *}=\pi_{*}\left(Y_{s, 1}\right)=\pi_{*}\left(E \wedge Y_{s}\right)$ from the $E_{*} E$-comodules $E_{*}\left(Y_{s, 1}\right)$. To make use of this, we apply $E_{*}(-)$ to the chain of homotopy cofiber sequences, and obtain an unrolled exact couple

in the (abelian) category of $E_{*} E$-comodules. Here $\beta_{*}: E_{*}\left(Y_{s}\right) \rightarrow E_{*}\left(Y_{s, 1}\right)$ can be rewritten as

$$
\pi_{*}\left(E \wedge Y_{s}\right) \xrightarrow{\mathrm{id} \wedge \eta \wedge \mathrm{id}} \pi_{*}\left(E \wedge E \wedge Y_{s}\right)
$$

and admits the E_{*}-linear retraction

$$
\pi_{*}\left(E \wedge E \wedge Y_{s}\right) \xrightarrow{\phi \wedge \mathrm{id}} \pi_{*}\left(E \wedge Y_{s}\right)
$$

since $\phi(\mathrm{id} \wedge \eta)=\mathrm{id}$ by (right) unitality. Hence each β_{*} is injective, so by exactness $\alpha_{*}=0$ and γ_{*} is surjective, for each s. We can therefore redraw the diagram above as

consisting of the short exact sequences

$$
0 \rightarrow E_{*}\left(Y_{s}\right) \xrightarrow{\beta_{*}} E_{*}\left(Y_{s, 1}\right) \xrightarrow{\gamma_{*}} E_{*-1}\left(Y_{s+1}\right) \rightarrow 0
$$

of $E_{*} E$-comodules. Each underlying short exact sequence of E_{*}-modules is split by $\phi \wedge \mathrm{id}$, but the splitting is usually not $E_{*} E$-(co-)linear. Now we splice these short exact sequences to obtain a long exact sequence

$$
\ldots \longleftarrow E_{*}\left(\Sigma^{2} Y_{2,1}\right) \stackrel{\beta_{*} \gamma_{*}}{\longleftarrow} E_{*}\left(\Sigma Y_{1,1}\right) \stackrel{\beta_{*} \gamma_{*}}{\longleftarrow} E_{*}\left(Y_{0,1}\right) \stackrel{\beta_{*}}{\longleftarrow} E_{*}(Y) \longleftarrow 0
$$

of $E_{*} E$-comodules. By Lemma 1.1 we now have an isomorphism from the Adams spectral sequence $\left(\mathcal{E}_{1}, d_{1}\right)$-term

$$
\ldots \longleftarrow \pi_{*}\left(\Sigma^{3} Y_{3,1}\right) \stackrel{d_{1}^{2}}{\longleftarrow} \pi_{*}\left(\Sigma^{2} Y_{2,1}\right) \stackrel{d_{1}^{1}}{\longleftarrow} \pi_{*}\left(\Sigma Y_{1,1}\right) \stackrel{d_{1}^{0}}{\longleftarrow} \pi_{*}\left(Y_{1,0}\right) \longleftarrow 0
$$

to the cochain complex

$$
\begin{aligned}
& \ldots \longleftarrow \operatorname{Hom}_{E_{*}}\left(E_{*}, E_{*}\left(\Sigma^{3} Y_{3,1}\right)\right) \stackrel{\beta_{*} \gamma_{*}}{\longleftarrow} \operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}\left(\Sigma^{2} Y_{2,1}\right)\right) \\
& \beta_{*} \gamma_{*} \\
& \leftarrow \operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}\left(\Sigma Y_{1,1}\right)\right) \stackrel{\beta_{*} \gamma_{*}}{\leftarrow} \operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}\left(Y_{1,0}\right)\right) \longleftarrow 0
\end{aligned}
$$

Letting

$$
I^{s}=E_{*}\left(\Sigma^{s} Y_{s, 1}\right)=E_{*}\left(E \wedge Y_{s}\right) \cong E_{*} E \otimes_{E_{*}} E_{*}\left(Y_{s}\right)
$$

and $\delta=\beta_{*} \gamma_{*}$ we have a resolution

$$
\ldots \longleftarrow I^{3} \stackrel{\delta}{\longleftarrow} I^{2} \stackrel{\delta}{\longleftarrow} I^{1} \stackrel{\delta}{\longleftarrow} I^{0} \stackrel{\beta_{*}}{\longleftarrow} E_{*}(Y) \longleftarrow 0
$$

of the $E_{*} E$-comodule $E_{*}(Y)$ by extended $E_{*} E$-comodules. These are relatively injective, in the sense that for any diagram of $E_{*} E$-comodules

with $M_{*} \rightarrow N_{*}$ split injective in the underlying category of E_{*}-modules, there exists a dashed arrow making the triangle commute. With this notation, the Adams $\left(\mathcal{E}_{1}, d_{1}\right)$-term is isomorphic to the cochain complex

$$
\begin{aligned}
\ldots \longleftarrow \operatorname{Hom}_{E_{*}}\left(E_{*}, I^{3}\right) \stackrel{\delta}{\longleftarrow} & \operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{2}\right) \\
& \stackrel{\delta}{\longleftarrow} \operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{1}\right) \stackrel{\delta}{\longleftarrow} \operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{0}\right) \longleftarrow 0
\end{aligned}
$$

obtained by applying the functor $\operatorname{Hom}_{E_{*} E}\left(E_{*},-\right)$ the relatively injective resolution $\left(I^{s}, \delta\right)_{s}$ of $E_{*}(Y)$. By the comparison theorem in homological algebra, any two relatively injective $E_{*} E$-comodule resolutions of $E_{*}(Y)$ are chain homotopy equivalent, and give chain homotopy equivalent cochain complexes after applying $\operatorname{Hom}_{E_{*} E}\left(E_{*},-\right)$. The cohomology of this cochain complex is therefore independent of the choice of resolution, and defines the $E_{*} E$-comodule Ext-groups

$$
\operatorname{Ext}_{E_{*} E}^{s}\left(E_{*}, E_{*}(Y)\right)=H^{s}\left(\operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{*}\right), \delta\right)
$$

As usual, $\operatorname{Ext}_{E_{*} E}^{0}\left(E_{*}, E_{*}(Y)\right)=\operatorname{Hom}_{E_{*} E}\left(E_{*}, E_{*}(Y)\right)$.
Theorem 1.2. The E-based Adams spectral sequence for Y has \mathcal{E}_{2}-term

$$
\mathcal{E}_{2}^{s, *}=\operatorname{Ext}_{E_{*} E}^{s}\left(E_{*}, E_{*}(Y)\right) \Longrightarrow_{s} \pi_{*}(Y)
$$

More precisely,

$$
\mathcal{E}_{2}^{s, t}=\operatorname{Ext}_{E_{*} E}^{s, t}\left(E_{*}, E_{*}(Y)\right) \Longrightarrow_{s} \pi_{t-s}(Y)
$$

with d_{r}-differentials $d_{r}: \mathcal{E}_{r}^{s, t} \rightarrow \mathcal{E}_{r}^{s+r, t+r-1}$ of bidegree $(r, r-1)$.

The image groups

$$
F^{s} \pi_{*}(Y)=\operatorname{im}\left(\pi_{*}\left(Y_{s}\right) \longrightarrow \pi_{*}(Y)\right)
$$

define the decreasing Adams filtration

$$
\cdots \subset F^{s+1} \pi_{*}(Y) \subset F^{s} \pi_{*}(Y) \subset \cdots \subset F^{0} \pi_{*}(Y)=\pi_{*}(Y)
$$

where s is often called the Adams grading (or cohomological degree). To keep track of the grading of $\pi_{*}(Y)$, we set

$$
\begin{aligned}
\operatorname{Hom}_{E_{*} E}^{t}\left(E_{*}, I^{s}\right) & =\operatorname{Hom}_{E_{*} E}\left(\Sigma^{t} E_{*}, I^{s}\right) \\
\operatorname{Ext}_{E_{*}}^{s, t}\left(E_{*}, H_{*}(Y)\right) & =H^{s}\left(\operatorname{Hom}_{E_{*} E}^{t}\left(E_{*}, I^{s}\right), \delta\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\pi_{n}\left(Y_{s, 1}\right) & =\left[S^{n}, Y_{s, 1}\right] \cong\left[S^{n+s}, \Sigma^{s} Y_{s, 1}\right] \\
& \cong \operatorname{Hom}_{E_{*} E}\left(\Sigma^{n+s} E_{*}, E_{*}\left(\Sigma^{s} Y_{s, 1}\right)\right)=\operatorname{Hom}_{E_{*}}^{n+s}\left(E_{*}, I^{s}\right) .
\end{aligned}
$$

Letting $t=n+s$ be the internal grading (and $n=t-s$ the topological grading) we denote this group by $\mathcal{E}_{1}^{s, t}$, so that

$$
\begin{aligned}
& \mathcal{E}_{1}^{s, t}=\operatorname{Hom}_{E_{*}}^{t}\left(E_{*}, I^{s}\right) \\
& \mathcal{E}_{2}^{s, t}=\operatorname{Ext}_{E_{*}}^{s, t}\left(E_{*}, E_{*}(Y)\right)
\end{aligned}
$$

and $\zeta^{s}: F^{s} \pi_{n}(Y) / F^{s+1} \pi_{n}(Y) \rightarrow \mathcal{E}_{\infty}^{s, s+n}$. The d_{r}-differential is derived from

hence has components $d_{r}: \mathcal{E}_{r}^{s, t} \rightarrow \mathcal{E}_{r}^{s+r, t+r-1}$, of (s, t)-bidegree $(r, r-1)$, for all s and t.

It is traditional to show the Adams spectral sequence in the $(t-s, s)$-plane, called Adams bigrading, and in these coordinates the d_{r}-differential has $(t-s, s)$-bidegree $(-1, r)$. This is an upper half-plane spectral sequence with entering differentials. Here is the $\left(\mathcal{E}_{1}, d_{1}\right)$-term, with $\mathcal{E}_{1}^{s, t}=\pi_{t-s}\left(Y_{s, 1}\right) \cong \operatorname{Hom}_{E_{*} E}^{t}\left(E_{*}, I^{s}\right)$.

Next is the $\left(\mathcal{E}_{2}, d_{2}\right)$-term, with $\mathcal{E}_{2}^{s, t} \cong \operatorname{Ext}_{E_{*}}^{s, t}\left(E_{*}, E_{*}(Y)\right)$, writing Hom in place of Ext ${ }^{0}$.

Eventually we come to the \mathcal{E}_{∞}-term, showing $\mathcal{E}_{\infty}^{s, t}$ in bidegree $(t-s, s)$.

$$
n=0
$$

$$
n=1
$$

$$
n=2
$$

Regarding topological degree n, we find the groups $\mathcal{E}_{\infty}^{s, n-s}$ in the n-th column, for $s \geq 0$. When we have convergence, so that each $\zeta^{s}: F^{s} \pi_{n}(Y) / F^{s+1} \pi_{n}(Y) \cong \mathcal{E}_{\infty}^{s, n-s}$ is an isomorphism, that column shows the associated graded of the Adams filtration of $\pi_{n}(Y)$, with the lower filtrations s near the bottom of the chart. The extension problem in degree n is to inductively determine the group extensions

$$
0 \rightarrow \mathcal{E}_{\infty}^{s, n-s} \longrightarrow \frac{\pi_{n}(Y)}{F^{s+1} \pi_{n}(Y)} \longrightarrow \frac{\pi_{n}(Y)}{F^{s} \pi_{n}(Y)} \rightarrow 0
$$

When we have strong convergence, that filtration is complete and Hausdorff, so that $\pi_{n}(Y)=\lim _{s} \pi_{n}(Y) / F^{s} \pi_{n}(Y)$ can be recovered from the finite stage extensions.

The edge homomorphism

$$
\pi_{n}(Y)=F^{0} \pi_{n}(Y) \rightarrow F^{0} \pi_{n}(Y) / F^{1} \pi_{n}(Y) \xrightarrow{\zeta^{0}} \mathcal{E}_{\infty}^{0, n} \subset \mathcal{E}_{2}^{0, n}=\operatorname{Hom}_{E_{*} E}^{n}\left(E_{*}, E_{*}(Y)\right)
$$

is precisely the natural homomorphism d from Lemma 1.1.

2. Pairings of Adams spectral sequences

Given a pairing $\mu: Y \wedge Y^{\prime} \rightarrow Y^{\prime \prime}$ of orthogonal spectra there is a natural pairing

$$
\mu_{r}: \mathcal{E}_{r}(Y) \otimes \mathcal{E}_{r}\left(Y^{\prime}\right) \longrightarrow \mathcal{E}_{r}\left(Y^{\prime \prime}\right)
$$

of Adams spectral sequences, given at the \mathcal{E}_{2}-term by the algebraic pairing

$$
\mu_{2}: \operatorname{Ext}_{E_{*} E}\left(E_{*}, E_{*}(Y)\right) \otimes \operatorname{Ext}_{E_{*} E}\left(E_{*}, E_{*}\left(Y^{\prime}\right)\right) \longrightarrow \operatorname{Ext}_{E_{*} E}\left(E_{*}, E_{*}\left(Y^{\prime \prime}\right)\right),
$$

and with target the pairing

$$
\mu_{*}: \pi_{*}(Y) \otimes \pi_{*}\left(Y^{\prime}\right) \longrightarrow \pi_{*}\left(Y^{\prime \prime}\right) .
$$

To justify this, we assume that the canonical Adams towers Y_{\star} and Y_{\star}^{\prime} of Y and Y^{\prime} have been cofibrantly replaced (the projective stable model structure on such towers), so that each Y_{s} and $Y_{s^{\prime}}^{\prime}$ is a cell spectrum, and each map $Y_{s+1} \rightarrow Y_{s}$ and $Y_{s^{\prime}+1}^{\prime} \rightarrow Y_{s^{\prime}}^{\prime}$ is a composite of cell attachments. We may then assume that $Y_{-\infty}=\bigcup_{s} Y_{s}=\operatorname{colim}_{s} Y_{s}$ and $Y_{-\infty}^{\prime}=\bigcup_{s^{\prime}} Y_{s^{\prime}}^{\prime}=\operatorname{colim}_{s^{\prime}} Y_{s^{\prime}}^{\prime}$. Then the convolution product $\left(Y \wedge Y^{\prime}\right)_{\star}$ is the tower with

$$
\left(Y \wedge Y^{\prime}\right)_{s^{\prime \prime}}=\bigcup_{s+s^{\prime} \geq s^{\prime \prime}} Y_{s} \wedge Y_{s^{\prime}}^{\prime}=\underset{s+s^{\prime} \geq s^{\prime \prime}}{\operatorname{colim}} Y_{s} \wedge Y_{s^{\prime}}^{\prime} \subset Y_{-\infty} \wedge Y_{-\infty}^{\prime}
$$

This is again cofibrant, with filtration quotients

$$
\left(Y \wedge Y^{\prime}\right)_{s^{\prime \prime}, 1}=\bigvee_{s+s^{\prime}=s^{\prime \prime}} Y_{s, 1} \wedge Y_{s^{\prime}, 1}^{\prime},
$$

and the diagram

is an Adams resolution of $\left(Y \wedge Y^{\prime}\right)_{0} \simeq Y \wedge Y^{\prime}$, in a more general sense than the canonical Adams resolutions we have discussed so far. ((ETC/BEWARE: This appears to assume that $E_{*}\left(Y \wedge Y^{\prime}\right) \cong E_{*}(Y) \otimes_{E_{*}} E_{*}\left(Y^{\prime \prime}\right)$, which holds if $E_{*}(Y)$ or $E_{*}\left(Y^{\prime}\right)$ is flat over $\left.\left.E_{*}.\right)\right)$ This uses that each spectrum $\left(Y \wedge Y^{\prime}\right)_{s^{\prime \prime}, 1}$ has the form $E \wedge Z$, and that the cochain complex

$$
\ldots \longleftarrow E_{*}\left(\Sigma^{2}\left(Y \wedge Y^{\prime}\right)_{2,1}\right) \stackrel{\beta_{*} \gamma_{*}}{\leftrightarrows} E_{*}\left(\Sigma\left(Y \wedge Y^{\prime}\right)_{1,1}\right) \stackrel{\beta_{*} \gamma_{*}}{\leftarrow} E_{*}\left(\left(Y \wedge Y^{\prime}\right)_{0,1}\right) \longleftarrow 0
$$

is the tensor product $I^{*} \otimes_{E_{*}} I^{*}$ over E_{*} of the E_{*}-split $E_{*} E$-comodules resolutions $I^{*} \simeq E_{*}(Y)$ and $I^{*} \simeq E_{*}\left(Y^{\prime}\right)$, with cohomology $E_{*}\left(Y \wedge Y^{\prime}\right)$ concentrated in degree $s^{\prime \prime}=0$. This is equivalent to the condition that $\alpha_{*}: E_{*}\left(\left(Y \wedge Y^{\prime}\right)_{s+1}\right) \rightarrow E_{*}((Y \wedge$ $\left.\left.Y^{\prime}\right)_{s}\right)$ is zero for each $s \geq 0$.

Moreover, there is a weak map of Adams towers $\left(Y \wedge Y^{\prime}\right)_{\star} \rightarrow Y_{\star}^{\prime \prime}$, making the diagram

commute up to homotopy. This is constructed inductively, by noting that

$$
\left(Y \wedge Y^{\prime}\right)_{s^{\prime \prime}+1} \xrightarrow{\alpha}\left(Y \wedge Y^{\prime}\right)_{s^{\prime \prime}} \longrightarrow Y_{s^{\prime \prime}}^{\prime \prime} \xrightarrow{\beta} Y_{s^{\prime \prime}, 1}^{\prime \prime}=E \wedge Y_{s^{\prime \prime}}^{\prime \prime}
$$

is null-homotopic by a generalization of Lemma 1.1.
The strict pairing of towers then gives a pairing of spectral sequences

$$
\mathcal{E}_{r}(Y) \otimes \mathcal{E}_{r}\left(Y^{\prime}\right) \longrightarrow \mathcal{E}_{r}\left(Y \wedge Y^{\prime}\right)
$$

as before, while the weak map of towers gives a map of spectral sequences

$$
\mathcal{E}_{r}\left(Y \wedge Y^{\prime}\right) \rightarrow \mathcal{E}_{r}\left(Y^{\prime \prime}\right)
$$

which combine to the desirect pairing of Adams spectral sequences. The spectral sequence $\mathcal{E}_{r}\left(Y \wedge Y^{\prime}\right)$ is more general than the canonical Adams spectral sequences we have discussed here, but it agrees with the canonical Adams spectral sequence for $Y \wedge Y^{\prime}$ from the \mathcal{E}_{2}-term and onward.

The first pairing of \mathcal{E}_{1}-terms can be identified with the pairing

$$
\operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{s}\right) \otimes \operatorname{Hom}_{E_{*} E}\left(E_{*}, I^{s^{\prime}}\right) \longrightarrow \operatorname{Hom}_{E_{*} E}\left(E_{*},\left(I^{*} \otimes^{\prime} I^{*}\right)^{s+s^{\prime}}\right)
$$

that induces the external pairing

$$
\operatorname{Ext}_{E_{*} E}^{s}\left(E_{*}, E_{*}(Y)\right) \otimes \operatorname{Ext}_{E_{*} E} s^{\prime}\left(E_{*}, E_{*}\left(Y^{\prime}\right)\right) \longrightarrow \operatorname{Ext}_{E_{*} E}^{s+s^{\prime}}\left(E_{*}, E_{*}\left(Y \wedge Y^{\prime}\right)\right)
$$

of \mathcal{E}_{2}-terms. The weak map of Adams towers then induces the standard homomorphism

$$
\operatorname{Ext}_{E_{*} E}^{s^{\prime \prime}}\left(E_{*}, E_{*}\left(Y \wedge Y^{\prime}\right)\right) \longrightarrow \operatorname{Ext}_{E_{*} E}^{s^{\prime \prime}}\left(E_{*}, E_{*}\left(Y^{\prime \prime}\right)\right)
$$ and these combine to the expected pairing of Adams \mathcal{E}_{2}-terms.

((ETC: I believe this result cannot be justify purely within the stable homotopy category.))

3. The cobar resolution

Suppose, until further notice, that E is an orthogonal ring spectrum. The Amitsur complex is the coaugmented cosimplicial diagram

of orthogonal spectra, i.e., a functor $\Delta_{\eta} \rightarrow \mathcal{S} p^{\oplus}$ where Δ_{η} is the simplex category Δ together with an initial object $[-1]$. The functor maps $[q]=\{0<1 \cdots<q\}$ to $E \wedge \cdots \wedge E$ with $1+q$ copies of E, the face operators/monomorphisms $[p] \rightarrow[q]$ induce maps invoving the unit $\eta: S \rightarrow E$, and the degeneracy operators/epimorphisms $[p] \rightarrow[q]$ induce maps involving the product $\phi: E \wedge E \rightarrow E$. More precisely $\delta^{i}:[q-1] \rightarrow[q]$ for $0 \leq i \leq q$ is given by $\mathrm{id}^{\wedge i} \wedge \eta \wedge \mathrm{id}^{q-i}: E^{\wedge q} \rightarrow E^{\wedge 1+q}$, while $\sigma^{j}:[q+1] \rightarrow[q]$ for $0 \leq j \leq q$ is given by $\mathrm{id}^{\wedge j} \wedge \phi \wedge \mathrm{id}^{q-j}: E^{\wedge 1+q+1} \rightarrow E^{\wedge 1+q}$.

The homotopy limit (or totalization) of the unaugmented part of the diagram, i.e., with $q \geq 0$, is called an E-adic completion S_{E}^{\wedge} of S, and we obtain a completion map $\eta: S \rightarrow S_{E}^{\wedge}$.

We can smash the diagram (from the right, say) with any given orthogonal spectrum Y and obtain an Amitsur complex

$$
Y \longrightarrow \quad \eta \wedge \mathrm{id}) E \wedge Y \underset{\rightleftarrows}{\rightleftarrows} E \wedge E \wedge Y \underset{\rightleftarrows}{\stackrel{\longleftrightarrow}{\rightleftarrows}}
$$

with homotopy limit Y_{E}^{\wedge}, together with a completion map $\eta_{Y}: Y \rightarrow Y_{E}^{\wedge}$ lifting $\eta \wedge$ id. If we smash either one of these diagrams (from the left, say) with E, then the product ϕ equips the resulting diagram with an extra degeneracy operator σ^{-1}, or cosimplicial contraction, given by $\phi \wedge \mathrm{id}^{\wedge q} \wedge \mathrm{id}: E^{\wedge 2+q} \wedge Y \rightarrow E^{\wedge 1+q} \wedge Y$ for $q \geq 0$.

This implies that $E \wedge Y \rightarrow(E \wedge Y)_{E}^{\wedge}$ is an equivalence.
The corresponding construction at the level of homotopy groups provides a resolution of $\pi_{*}(E \wedge Y)=E_{*}(Y)$ by extended $E_{*} E$-comodules. To effect this, we allow E to be a ring spectrum up to homotopy, but assume that it is flat, so that $\left(E_{*}, E_{*} E\right)$ is a Hopf algebroid. For each $q \geq-1$ let

$$
\begin{aligned}
& C^{q}=C_{E_{*} E}^{q}\left(E_{*} E, E_{*}(Y)\right)=E_{*} E \otimes_{E_{*}} \cdots \otimes_{E_{*}} E_{*} E \otimes_{E_{*}} E_{*}(Y) \\
& \cong \\
& \pi_{*}(E \wedge E \wedge \cdots \wedge E \wedge Y)
\end{aligned}
$$

with $1+q$ copies of $E_{*} E$, and $2+q$ copies of the spectrum E. Note that $C^{-1}=$ $E_{*}(Y)$. We get coface operators $\delta^{i}: C^{q-1} \rightarrow C^{q}$ for $0 \leq i \leq q$, given by id ${ }^{\otimes i} \otimes \psi \otimes$ $\mathrm{id}^{\otimes q-i}$ for $0 \leq i<q$, while δ^{q} is given by id ${ }^{\otimes q} \otimes \nu$. Here $\psi: E_{*} E \otimes_{E_{*}} E_{*} E$ is the Hopf algebroid coproduct, and $\nu: E_{*}(Y) \rightarrow E_{*} E \otimes_{E_{*}} E_{*}(Y)$ is the coaction.

$$
E_{*}(Y) \xrightarrow{\delta^{0}} E_{*} E \otimes_{E_{*}} E_{*}(Y) \xrightarrow[\delta^{1}]{\stackrel{\delta^{0}}{\longrightarrow}} E_{*} E \otimes_{E_{*}} E_{*} E \otimes_{E_{*}} E_{*}(Y) \xrightarrow[\delta^{2}]{\stackrel{\delta^{0}}{-\delta^{1} \rightarrow}} \ldots
$$

((ETC: Get a cosimplicial graded abelian group, an extra codegeneracy, giving a cosimplicial contraction.))

For each $q \geq 0$ we can form the alternating sum

$$
d=\sum_{i=0}^{q}(-1)^{i} \delta^{i}: C^{q-1} \longrightarrow C^{q}
$$

Note that $d: C^{-1} \rightarrow C^{0}$ is $\nu: E_{*}(Y) \rightarrow E_{*} E \otimes_{E_{*}} E_{*}(Y)$, while $d: C^{0} \rightarrow C^{1}$ is $\psi \otimes \mathrm{id}-\mathrm{id} \otimes \nu$. The (cosimplicial) relations satisfied by the coface operators imply that $d \circ d=0$, so that we obtain a cochain complex

$$
0 \rightarrow E_{*}(Y) \xrightarrow{\eta} C^{0} \xrightarrow{d} C^{1} \xrightarrow{d} C^{2} \longrightarrow \ldots
$$

Here each C^{q} with $q \geq 0$ is an extended, hence relatively injective, $E_{*} E$-comodule. ((ETC: Get a cochain contraction.))
((ETC: Taking into account the codegeneracies, we may pass to the normalized sub-cocomplex where each of the inner q copies of $E_{*} E$ is replaced by $\operatorname{ker}\left(\epsilon: E_{*} E \rightarrow\right.$ $\left.E_{*}\right)$.))

More generally, $C_{\Gamma}^{*}(M, N)$ can be defined for any (flat) Hopf algebroid (A, Γ), right Γ-comodule M and left Γ-comodule N.
((ETC: Might prefer to say all this in terms of monad actions, or comonad coactions.))
((ETC: Give cobar resolution and cobar complex for calculating $\operatorname{Ext}_{E_{*} E}^{*, *}\left(E_{*}, M_{*}\right)$ of any $E_{*} E$-comodule M_{*}.

4. The classical Adams spectral sequence

((ETC: Specialize to $E=H \mathbb{F}_{p}$, with

$$
\operatorname{Ext}_{\mathscr{A}_{*}}\left(\mathbb{F}_{p}, H_{*}\left(Y ; \mathbb{F}_{p}\right)\right) \cong \operatorname{Ext}_{\mathscr{A}}\left(H^{*}\left(Y ; \mathbb{F}_{p}\right) ; \mathbb{F}_{p}\right)
$$

where $\operatorname{Ext}_{\mathscr{A}}\left(M, \mathbb{F}_{p}\right)$ is formed in the category of \mathscr{A}-modules, as usual, by applying $\operatorname{Hom}_{\mathscr{A}}\left(-, \mathbb{F}_{p}\right)$ to any projective \mathscr{A}-module resolution $P_{*} \rightarrow M$ and passing to cohomology.))

5. The Adams-Novikov spectral sequence

((ETC: Specialize to $E=M U$, with

$$
\operatorname{Ext}_{M U_{*} M U}\left(M U_{*}, M U_{*}(Y)\right) \Longrightarrow \pi_{*}(Y)
$$

where Ext is formed in the category of $M U_{*} M U$-comodules.))

References

[Ada58] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214, DOI 10.1007/BF02564578. MR96219
[AH61] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7-38. MR0139181
[Boa99] J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49-84, DOI 10.1090/conm/239/03597. MR1718076
[CE56] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR0077480
[HR19] Gard Olav Helle and John Rognes, Boardman's whole-plane obstruction group for Cartan-Eilenberg systems, Doc. Math. 24 (2019), 1855-1878. MR4369361
[Mac71] Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR0354798
[Mau63] C. R. F. Maunder, The spectral sequence of an extraordinary cohomology theory, Proc. Cambridge Philos. Soc. 59 (1963), 567-574, DOI 10.1017/s0305004100037245. MR150765
[Mas52] W. S. Massey, Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56 (1952), 363-396, DOI 10.2307/1969805. MR52770
[Mas54] _, Products in exact couples, Ann. of Math. (2) 59 (1954), 558-569, DOI 10.2307/1969719. MR60829
[Nov67] S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951 (Russian). MR0221509

Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no

