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CHAPTER X: THE ADAMS SPECTRAL SEQUENCE
(INCOMPLETE)

JOHN ROGNES

1. THE E-BASED ADAMS SPECTRAL SEQUENCE

We turn to the sequence of spectra Y, from Example 1.3 of Chapter 8, and its
associated spectral sequence, namely the F-based Adams spectral sequence. Let Y
be any orthogonal spectrum, let (£, 7, ¢) be a ring spectrum up to homotopy, and
let £ = Cn, so that we have a homotopy cofiber sequence
(1.1) >»1'E—SLE-—E

(with I = X7'E and ¥ = E in the notation of the cited example). We let Yy =Y
and iteratively define Y,,; = X"!E A Y, for s > 0, so that we have homotopy
cofiber sequences

Yo -5V, 5 EAY, - NV
given by smashing (1.1) with Y;. In particular ;1 = Ca = EAY; and f =nAid.
We also let Y =Y for s < 0, so that
v - (STIEYSAY  for s >0,
)y for s <0,
and
v — EANSTIEYAY  for s >0,
1)« for s < 0.

Hence the chain of homotopy cofiber sequences

ENSTIEY2AY  EAX'EAY EAY
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2 JOHN ROGNES

Replacing Y, and Y ; by ¥°Y, and X°Y} ;, respectively, we can also draw this as
follows.

e = EBAY - s BN AY - S s EAY - -2 > Y

\ J/ﬁ\ \Lﬁ\ l’ﬁ
EANEMAY EANEAY EANY

We think of these diagrams as spectrum level resolutions of Y by spectra of the
form E A Z for some spectrum Z, which in a sense are injective to the eyes of
E-homology, or (in good cases) projective to the eyes on E-cohomology.
Applying homotopy we obtain an unrolled exact couple
o (a7

coo ——> 1 (YV3) —— . (Y2) (Y1) 1 (Yp) = me(Y)

Ay A ~
~ ~ ~ N 3
~ * ~ * *
LN A RN A Yo
N ~N ~

7(*(}/2,1) 7T>t<(Y—1,1) 77*(%,1)

Qe

with
. (Y)) = m (ST B AY)
T (Yo1) = m(EA(XTTE)MAY)
for all s > 0. The associated spectral sequence is the E-based Adams spectral

sequence, which is concentrated in the half-plane s > 0. Clearly Y =Yy~ Y_ =
hocolimg Y, so we take G = 7. (Y") as the abutment of the spectral sequence, writing

E = (Y1) =5 m(Y).

However, Y., = holim; Y, will not generally be trivial, so (conditional) convergence
is not guaranteed. Following Bousfield, one way to achieve this is to replace Y by
its E-nilpotent completion Y2, defined as the homotopy cofiber of Yo, — Y, and
the convergence problem for the Adams spectral sequence is then to recognize this
completion.

In order to obtain an algebraic description of the F-based Adams &;- and &a-
term, we hereafter assume that E is homotopy commutative and flat, so that E,F
is flat as a (left or right) E,-module. The pair (E,, E.FE) is then a Hopf algebroid,
and there is a natural left E,F-coaction

v: B, (X) — E,E®p, E,(X)

for each spectrum X. Let Homy, ;(E., E+(X)) denote the abelian group of E, E-
comodule homomorphisms X!E, = E,(S') — E.(X), for each t € Z, and write
Hompg, g(Ey, E.(X)) for the resulting graded abelian group.

Lemma 1.1. The natural homomorphism
m.(X) -4 Homp, 5(E,, E.(X))
[f: 8" —= X] = fo: Eo(S") — E«(X)
is an isomorphism whenever X ~ E N Z for some spectrum Z.
Proof. There is an equalizer diagram

Hompg, g(E., E.(X)) —— E.(X) _ _E.E®p, E.(X),
nr®id
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where ¢ evaluates a homomorphism at 1 € FE, and nr ® id maps z to 1 ® =z.
Hence Hompg, g(Ey, E«(X)) = E.Og, g F.(X) = PE.(X) is the subgroup of E,E-
comodule primitives in E,(X). The fork diagram

m(X) > E.(X) 7 E.E®p, E.(X),

nr®id

can be rewritten as
nAid id AnAid
1 —_—
(X)) —— m (B AN X) m(EANEAX),
nAid A id

and when X = E A Z it extends to a split equalizer diagram

nAid id AnAid

T (ENZ)——>m (ENENZ) " (EANEANEAZ)

PAid id AgAid

as in [Mac71, §IV.5]. In particular, it is then an equalizer, so that d is an isomor-
phism. ([

Hence we can recover the homotopy groups &7 = m,(Ys1) = m.(E A Yy) from
the E, E-comodules E, (Y} 1). To make use of this, we apply E.(—) to the chain of
homotopy cofiber sequences, and obtain an unrolled exact couple

Qs

> B(Y3) — > B, (Ys) —> B, (Y1) E.(Yy) = E.(Y)

A A ~
> g O B> 8
~N * ~ * *
LN LN Yo
N ~N ~

E*(Yé,l) E*(Yl,l) E*(}/O,l) )

in the (abelian) category of E,E-comodules. Here B.: E,(Ys) = E.(Ys1) can be
rewritten as
id AnAid

T (EANY;) — m(EANEANY;)
and admits the F.,-linear retraction
T (ENEAY) S r (ENY,),
since ¢(id An) = id by (right) unitality. Hence each B, is injective, so by exactness
a, = 0 and 7, is surjective, for each s. We can therefore redraw the diagram above
as

E,(23Y3) E,(X%Y3) E.(ZY7) E.(Yy) = E.(Y)
T X Iﬂ* ‘\ IB* Y\ IB*
Ry E.(X?Ya)) E.(XY1,1) E.(Yo1),

consisting of the short exact sequences

0= B.(Y,) 25 B (Y1) 25 Bu g (Yagr) = 0
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of F, E-comodules. Each underlying short exact sequence of E,-modules is split by
¢ Aid, but the splitting is usually not E,E-(co-)linear. Now we splice these short
exact sequences to obtain a long exact sequence

e B (5 2 B(5Y10) X B(You) & BEL(Y) +—0
of E,FE-comodules. By Lemma 1.1 we now have an isomorphism from the Adams
spectral sequence (&1, d)-term
d3 di d9
o T(B3Y31) = m(EPYo 1) - T (BY1) < Ta(Yig) +— 0

to the cochain complex

..+ Homp, p(E,, B, (S*Y31)) &2 Homp, p(E., E.(52Ya1))

L2 Homp, p(Ey, B.(SY11)) &2 Homp, g (E., B, (Y1) «— 0
Letting
I’ = E*(ZSYSJ) = E*(E A Ys) = E*E ®E* E*(YG)
and & = B,7. we have a resolution
PSS P B(Y)e—0
of the E,E-comodule E.(Y) by extended E,FE-comodules. These are relatively
injective, in the sense that for any diagram of F, F-comodules
0—— M,>——> N,
|
e
A
IS
with M, — N, split injective in the underlying category of E,-modules, there exists

a dashed arrow making the triangle commute. With this notation, the Adams
(&1, dy)-term is isomorphic to the cochain complex

...« Homp. p(E,, I*) <> Homp._p(E,, I?)

<& Homg, p(E,,I') <& Homp, p(E,, 1°) «— 0

obtained by applying the functor Hompg, g(E., —) the relatively injective resolu-
tion (I°,60)s of E.(Y). By the comparison theorem in homological algebra, any
two relatively injective F,FE-comodule resolutions of E,(Y) are chain homotopy
equivalent, and give chain homotopy equivalent cochain complexes after applying
Hompg, g(Ex, —). The cohomology of this cochain complex is therefore independent
of the choice of resolution, and defines the F,E-comodule Ext-groups

Exth p(Ey, E.(Y)) = H*(Homg, g(E.,I7),9).
As usual, Ext}, p(E,, E.(Y)) = Homg, p(E,, E.(Y)).
Theorem 1.2. The E-based Adams spectral sequence for Y has Ex-term
E5° = Exth, p(Buy Bu(Y)) =, m(Y).

More precisely,
&yt = Exty p(Bs, Bu(Y)) = m_s(Y)

with d,.-differentials d,.: £t — ESTTTL of bidegree (r,r — 1).
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The image groups
F°r, (V) = im(7m.(Ys) — m(Y))
define the decreasing Adams filtration
L C P (YY) C PR (Y) C oo C PO (Y) = (Y,

where s is often called the Adams grading (or cohomological degree). To keep track
of the grading of 7.(Y), we set

HomY, g(E.,I%) = Homp, (2B, I°)
EXt%iE(E*’ H*(Y)) = HS(HomtE*E(E*a Is)a 5) )
so that
T (Ys1) = [S™, Ys1] 2 [S"F°, %Y} 4]
= Homp, (X" E,, E.(X°Y;,1)) = Hom} 3,(E,, I°) .

Letting ¢ = n + s be the internal grading (and n = ¢t — s the topological grading)
we denote this group by £, so that

&' = Homp, p(E.,I")

€5 = Exty! p(E., E.(Y))

and (%: Fom,(Y)/F*Tin,(Y) — 55T, The d,-differential is derived from

r—1
Tt—s—1 (Ys+r) = Tt—s—1 (Ys+1)

7thsfl(yvsjbr,l) 7T-tfs(yrs,l)

hence has components d,.: £ — ESTHHT=1 of (s,t)-bidegree (r,r — 1), for all s
and t.

It is traditional to show the Adams spectral sequence in the (t—s, s)-plane, called
Adams bigrading, and in these coordinates the d,-differential has (¢ — s, s)-bidegree
(=1,7). This is an upper half-plane spectral sequence with entering differentials.
Here is the (&1, d;)-term, with Ef’t =m_s(Ys1) = HomtE*E(E*7 I?).

mo(Ys1) m1(Ys,1) m2(Ys1)
mo(Y2,1) m2(Ya,1)
7T0(Y1’1) 7T2(Y1,1)

70(Yo,1) m1(Yo,1) m2(Yo,1)

)
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Next is the (&2, do)-term, with 5 = ExtsE’iE(E*, E.(Y)), writing Hom in place of
Ext’.

Exty’(Ey, Eu(Y)) Exty'p(Ey, B.(Y)) Exty’p(Ey, B (Y))

Exty’ (B, B.(Y)) Exty’p(E., E.(Y)) Exty' (B, B.(Y))

Exty! p(Es, B (Y)) Exty’p(Ey, B.(Y)) Exty’p(Ey, B (Y))

HomY, g(E., E.(Y)) Homy, g(E., E.(Y)) Hom?, (B, E.(Y))

Eventually we come to the E,-term, showing £5 in bidegree (¢ — s, s).

3,3 3,4 3,5
&2 & &

| | |

| | |

| | |
£22 g2 g2t

| | |

| | |

| | |

1,1 1,2 1,3
&3 & &3

| | |

| | |

| | |

0,0 0,1 0,2
& €5 &3
n=>0 n=1 n=2

Regarding topological degree n, we find the groups £5;"~° in the n-th column, for
s > 0. When we have convergence, so that each (*: Fém,(Y)/F*Tim, (V) = E5n—s
is an isomorphism, that column shows the associated graded of the Adams filtration
of 7, (Y), with the lower filtrations s near the bottom of the chart. The extension
problem in degree n is to inductively determine the group extensions

T (Y) T (Y)

Frim(y)  Fomy) O

0 €57 —

When we have strong convergence, that filtration is complete and Hausdorff, so that
T (Y) = limg 7, (Y)/F*m,(Y) can be recovered from the finite stage extensions.
The edge homomorphism

0
(V) = FOr, (V) = FOmy(Y)/Flrn (V) <= €27 € £9" = Hom},_p(E., E.(Y))

is precisely the natural homomorphism d from Lemma 1.1.
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2. PAIRINGS OF ADAMS SPECTRAL SEQUENCES
Given a pairing p: Y AY’ — Y of orthogonal spectra there is a natural pairing
o E(Y) @ E,(Y) — E,(Y")
of Adams spectral sequences, given at the E-term by the algebraic pairing
pz: Extp g(Ey, Ex(Y)) @ Exte, g(Ex, Ex(Y')) — Extp, g(E., E.(Y")),
and with target the pairing
po: T (V) @ (V') — m (Y.

To justify this, we assume that the canonical Adams towers Y, and Y/ of Y and
Y’ have been cofibrantly replaced (the projective stable model structure on such
towers), so that each Y; and Y. is a cell spectrum, and each map Y,11 — Y;
and Y, ,; — Y, is a composite of cell attachments. We may then assume that
Y_oo =, Ys = colim, Yy and Y/ =, Y. = colimy Y. Then the convolution
product (Y AY’), is the tower with

YAY)ew = | YeAY] = colim YoAY] CY_ o AY' .

S+S/ZS// S+S/ZS”
This is again cofibrant, with filtration quotients

YAY)orn= \/ Yar AY,,

s+s'=s""

and the diagram

= (Y AY)s —2 > (Y AY)y —2 > (Y AY'); —2> (Y AY)g

A ~ ~
~ ~ ~
~ ~ ~
> iﬂ NG iﬁ RN \LB
~ ~ ~

(Y AY' )21 Y AY")11 Y AY)on

is an Adams resolution of (Y AY’)y ~ Y AY’, in a more general sense than the
canonical Adams resolutions we have discussed so far. ((ETC/BEWARE: This
appears to assume that E.(Y AY") 2 E, (V) ®pg, E.(Y"), which holds if E.(Y) or
E.(Y’) is flat over E,.)) This uses that each spectrum (Y AY”)ss 1 has the form
E A Z, and that the cochain complex

e B (SHY AY)01) 2 B(S(Y AY)1) Y B (Y AY o) <— 0
is the tensor product I* ® g, 'I* over E, of the E,-split E, E-comodules resolutions
I* ~ E.(Y) and 'I* ~ E.(Y’), with cohomology E.(Y AY’) concentrated in degree
s” = 0. This is equivalent to the condition that a,: E.(Y AY')sy1) = E (Y A
Y"),) is zero for each s > 0.

Moreover, there is a weak map of Adams towers (Y AY'), — Y/, making the
diagram

..*>(Y/\YI)3*Q>(Y/\Y’)2*Q>(Y/\Y/)l*a>(Y/\Y/)0

| | | |

" o " o " o 1"
v Y3 v/ 1
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commute up to homotopy. This is constructed inductively, by noting that

B

(Y/\YI)SHJrli)(Y/\Y/) " —> — //1—E/\

is null-homotopic by a generalization of Lemma 1.1.

The strict pairing of towers then gives a pairing of spectral sequences

ST(Y) ® gT(Y,) — Sr(Y A Y/)
as before, while the weak map of towers gives a map of spectral sequences
E(YANY') = E.(Y")

which combine to the desirect pairing of Adams spectral sequences. The spectral
sequence &.(Y AY”) is more general than the canonical Adams spectral sequences
we have discussed here, but it agrees with the canonical Adams spectral sequence
for Y AY’ from the E-term and onward.

The first pairing of £;-terms can be identified with the pairing

Homg, g(E., I*) © Homg, p(E., I*) — Hompg, g(E., (I* © 'T*)*"*)
that induces the external pairing
Exty p(E+, E(Y)) @ Extg, g s'(Ey, E.(Y')) — Ext”'g H(E EL(Y ANY))

of &-terms. The weak map of Adams towers then induces the standard homomor-
phism

S//

Extyy p(Be, B (Y AY')) — Extyy p(E., B.(Y")),
and these combine to the expected pairing of Adams E>-terms.
((ETC: T believe this result cannot be justify purely within the stable homotopy
category.))

3. THE COBAR RESOLUTION

Suppose, until further notice, that E is an orthogonal ring spectrum. The Amit-
sur complex is the coaugmented cosimplicial diagram

nAid A id
nAid _—
n _— <—¢Aid-
S E ENE —1dé\n/\1de- ..
id An A
id Aid An

of orthogonal spectra, i.e., a functor A, — Sp® where A, is the simplex category
A together with an initial object [—1]. The functor maps [¢g] = {0 < 1--- < ¢} to
EA---AE with 14q copies of E, the face operators/monomorphisms [p] — [¢] induce
maps invoving the unit n: S — E, and the degeneracy operators/epimorphisms
[p] — [g] induce maps involving the product ¢: E A E — E. More precisely
6 [q—1] — [q] for 0 < i < ¢ is given by id" Ap Aid?9™": BN — BN while
o7 [q+1] = [q] for 0 < j < q is given by id™ A¢ Aid? 7 : EAVatL o pAL+a,

The homotopy limit (or totalization) of the unaugmented part of the diagram,
i.e., with ¢ > 0, is called an E-adic completion Sj of S, and we obtain a completion
map 7: S — Sp.

We can smash the diagram (from the right, say) with any given orthogonal
spectrum Y and obtain an Amitsur complex

nAid -~
y — " BAY = —EAEAY ..
_— -~

-
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with homotopy limit Y7, together with a completion map ny: Y — Y2 lifting
n Aid. If we smash either one of these diagrams (from the left, say) with E, then
the product ¢ equips the resulting diagram with an extra degeneracy operator !,
or cosimplicial contraction, given by ¢ Aid"?Aid: EN?T4AY — ENHOAY for

q = 0.

PAid Aid Aid dAId Aid Add

E/\Y—>E/\E/\Y<7E/\E/\E/\Y—>

This implies that EAY — (E AY)} is an equivalence.

The corresponding construction at the level of homotopy groups provides a res-
olution of m.(E ANY) = E,(Y) by extended E,FE-comodules. To effect this, we
allow F to be a ring spectrum up to homotopy, but assume that it is flat, so that
(E., E.E) is a Hopf algebroid. For each ¢ > —1 let

c?= C%*E(E*EvE*(Y)) =E.FQg, - Qp, ExEQp, E*(Y>
= 1 (EANEN---ANENY)

with 1 4 ¢ copies of E,E, and 2 + ¢ copies of the spectrum E. Note that C~! =
E,(Y). We get coface operators §°: C7~1 — €9 for 0 < i < ¢, given by id®" @y ®
id®?™ for 0 < i < ¢, while §7 is given by id®? ®v. Here 1: E,E ®@p, E,F is the
Hopf algebroid coproduct, and v: E.(Y) — E.E ®pg, E.(Y) is the coaction.

0
5° L L>

E*(Y> — E.EQ®p, E*(Y) E.EQ®p, E.EQg, E*(Y) —t=>= ...
5t 7)

((ETC: Get a cosimplicial graded abelian group, an extra codegeneracy, giving a
cosimplicial contraction.))
For each ¢ > 0 we can form the alternating sum

d= Z Lot — e

Note that d: O~ — (C° is v: E*(Y) — E.E ®p, E.(Y), while d: C° — C! is
¥ ®id —id @v. The (cosimplicial) relations satisfied by the coface operators imply
that d o d = 0, so that we obtain a cochain complex

0— E(Y) L0 -4 ot -4 02—
Here each C'? with ¢ > 0 is an extended, hence relatively injective, F, E-comodule.
((ETC: Get a cochain contraction.))

((ETC: Taking into account the codegeneracies, we may pass to the normalized
sub-cocomplex where each of the inner ¢ copies of E, E is replaced by ker(e: E.E —
E.).)

More generally, Cf:(M, N) can be defined for any (flat) Hopf algebroid (A,T),
right I'-comodule M and left I'-comodule N.

((ETC: Might prefer to say all this in terms of monad actions, or comonad
coactions.))

((ETC: Give cobar resolution and cobar complex for calculating Exty;" (F., M.)
of any E, F-comodule M,.
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4. THE CLASSICAL ADAMS SPECTRAL SEQUENCE
((ETC: Specialize to E = HF,,, with
Exty, (Fp, H(Y;F,)) = Exty (H*(Y;F,);Fp),

where Ext, (M,F,) is formed in the category of o7-modules, as usual, by applying
Hom (—,F,) to any projective &/-module resolution P, — M and passing to
cohomology.))

5. THE ADAMS—NOVIKOV SPECTRAL SEQUENCE
((ETC: Specialize to E = MU, with
Extyu, mu(MU,, MU (Y)) = 7.(Y)
where Ext is formed in the category of MU, MU-comodules.))
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