ALGEBRAIC TOPOLOGY III SPRING 2023 CHROMATIC HOMOTOPY THEORY

CHAPTER 6: SMOOTH BORDISM

JOHN ROGNES

See [Tho54], [Ati61], [CF64], [Sto68], [MS74], [MM79, Ch. 1], [May99, Ch. 25].

1. Bordism classes of manifolds

Definition 1.1. Let M and N be closed, smooth d-manifolds. A bordism from M to N is a compact, smooth $(d+1)$-manifold W such that

$$
\partial W \cong M \sqcup N .
$$

If such a bordism exists, we say that M and N are cobordant. This defines an equivalence relation. Let $\mathcal{N}_{d}=\Omega_{d}^{O}$ be the set of cobordism classes of closed, smooth d-manifolds, and let $\mathcal{N}_{*}=\Omega_{*}^{O}$ denote the associated graded set.

Lemma 1.2. The disjoint union and Cartesian product of manifolds make $\mathcal{N}_{*}=$ Ω_{*}^{O} a graded commutative \mathbb{F}_{2}-algebra.

Proof. The sum and product are given by $[M]+[N]=[M \sqcup N]$ and $[M] \cdot[N]=$ $[M \times N]$. Let $I=[0,1]$. Since $\partial(M \times I) \cong M \sqcup M$ we have $[M]+[M]=0$ for each M.

Theorem $1.3(\operatorname{Thom}(1954)) . \mathcal{N}_{*} \cong \mathbb{F}_{2}\left[\tilde{a}_{i} \mid i \neq 2^{j}-1\right]=\mathbb{F}_{2}\left[\tilde{a}_{2}, \tilde{a}_{4}, \tilde{a}_{5}, \tilde{a}_{6}, \tilde{a}_{8}, \ldots\right]$ with $\left|\tilde{a}_{i}\right|=i$.

We may also consider manifolds with additional structure, such as an orientation, an almost complex structure, or a stable framing. We assume that the boundary of such a manifold again has such a structure, with

$$
\partial(M \times I) \cong M \sqcup(-M)
$$

Here $-M$ denotes the opposite structure of that of M. Moreover, we assume that the disjoint union and Cartesian product of two such structured manifolds again has this structure.

Example 1.4. An orientation of a d-manifold M is equivalent to an orientation of the tangent \mathbb{R}^{d}-bundle τ_{M}, or of the normal \mathbb{R}^{n}-bundle ν_{M} for any choice of embedding $M \rightarrow \mathbb{R}^{d+n}$. Here

$$
E\left(\nu_{M}\right)_{x}=\mathbb{R}^{d+n} / T_{x} M
$$

Any two choices of embeddings become isotopic for n sufficiently large, so the stable class of $\nu_{M} \in \widetilde{K O}(M)$ is well-defined. An orientation of ν_{M} amounts to a lift of
the classifying map $M \rightarrow B O(n)$ through $E O(n) / S O(n) \simeq B S O(n)$.

We write $\Omega_{d}=\Omega_{d}^{S O}$ for the group of cobordism classes of closed, oriented, smooth d-manifolds, with additive inverse $-[M]=[-M]$, and $\Omega_{*}=\Omega_{*}^{S O}$ for the associated graded commutative ring.

Theorem 1.5 (Thom, Milnor, Averbuch). $\Omega_{*}\left[\frac{1}{2}\right] \cong \mathbb{Z}\left[\frac{1}{2}\right]\left[y_{i} \mid i \geq 1\right]$ with $\left|y_{i}\right|=4 i$.
The precise structure of the 2-torsion was determined by Wall (1960).
Example 1.6. An almost complex structure on a manifold M is given by a complex structure on the normal bundle ν_{M}, for any choice of embedding $M \rightarrow \mathbb{R}^{d+n}$. Here $n=2 m$ must be even, so $\nu_{M}=r(\eta)=\eta_{\mathbb{R}}$ for some \mathbb{C}^{m}-bundle η over M. A complex structure on ν_{M} corresponds to a lift of the classifying map $M \rightarrow B O(2 m)$ through $E O(2 m) / U(m) \simeq B U(m)$.

We write Ω_{d}^{U} for the group of cobordism classes of almost complex d-manifolds, and Ω_{*}^{U} for the associated graded commutative ring. Every (smooth, closed) complex manifold is almost complex, but the converse does not hold for $d=4$. Shing-Tung Yau has conjectured that for even $d \geq 6$ each almost complex d-manifold admits a complex structure. This is unknown for $M=S^{6}$.

Theorem 1.7 (Milnor (1960), Novikov (1960)). $\Omega_{*}^{U} \cong \mathbb{Z}\left[x_{i} \mid i \geq 1\right]$ with $\left|x_{i}\right|=2 i$.
In particular, each odd-dimensional almost complex manifold is a boundary.
Example 1.8. A stable framing of M is given by a trivialization $\nu_{M} \cong \epsilon_{M}^{n}$ of the normal bundle of any embedding $M \rightarrow \mathbb{R}^{d+n}$. This is equivalent to giving a stable trivialization $\tau_{M} \oplus \epsilon^{n} \cong \epsilon^{d+n}$ for some n. A stable framing of M is equivalent to giving a nullhomotopy of the classifying map $M \rightarrow B O(n)$, or a lift through the contractible space $E O(n) \simeq B\{e\}$.

We write Ω_{d}^{fr} for the group of cobordism classes of stably framed d-manifolds, and Ω_{*}^{fr} for the associated graded commutative ring.

Theorem 1.9 (Pontryagin (1936/1950)). $\Omega_{*}^{\text {fr }} \cong \pi_{*}(S)=(\mathbb{Z}, \mathbb{Z} / 2, \mathbb{Z} / 2, \ldots)$.
((ETC: Other bordism theories. h - and s-cobordism theorems. Exotic spheres. $)$)

2. Bordism theories

Following Atiyah (1961) we can realize the rings $\Omega_{*}^{O}, \Omega_{*}^{S O}, \Omega_{*}^{U}, \Omega_{*}^{\mathrm{fr}}$ etc. as coefficient rings of multiplicative homology theories $\Omega_{*}^{O}(-), \Omega_{*}^{S O}(-), \Omega_{*}^{U}(-), \Omega_{*}^{\mathrm{fr}}(-)=$ $\pi_{*}^{S}\left((-)_{+}\right)$etc.

Definition 2.1. For a space X, consider maps

$$
\sigma: M \longrightarrow X \quad \text { and } \quad \tau: N \longrightarrow X
$$

from closed, smooth unoriented (resp. oriented, almost complex, stably framed, etc.) d-manifolds M and N to X, and say that (M, σ) is cobordant to (N, τ) if there exists a map

$$
\phi: W \longrightarrow X
$$

from a compact, smooth $(d+1)$-manifold unoriented (resp. oriented, almost complex, stably framed, etc.) W to X, such that $\partial W \cong M \sqcup N$ and $\phi \mid \partial W \cong \sigma \sqcup \tau$. Let $\Omega_{d}^{O}(X)\left(\right.$ resp. $\Omega_{d}^{S O}(X), \Omega_{d}^{U}(X), \Omega_{d}^{\mathrm{fr}}(X)$, etc.) be the set of cobordism classes $[M, \sigma]$ of such maps $\sigma: M \rightarrow X$. Given $f: X \rightarrow Y$ let $f_{*}: \Omega_{d}^{O}(X) \rightarrow \Omega_{d}^{O}(Y) \operatorname{map}[M, \sigma]$ to $[M, f \sigma]$.

For a pair (X, A) consider maps of pairs

$$
\sigma:(M, \partial M) \longrightarrow(X, A) \quad \text { and } \quad \tau:(N, \partial N) \longrightarrow(X, A)
$$

from compact, smooth unoriented (resp. oriented, almost complex, stably framed, etc.) d-manifolds M and N to X, and say that these are cobordant if there exists a map of pairs

$$
\phi:(W, \partial W) \longrightarrow(X, A)
$$

where $\partial W \cong M \cup_{\partial M} V \cup_{\partial N} N$ with $\phi \mid \partial W \cong \sigma \cup \psi \cup \tau$. Let $\Omega_{d}^{O}(X, A)\left(\right.$ resp. $\Omega_{d}^{S O}(X, A)$, $\Omega_{d}^{U}(X, A), \Omega_{d}^{\mathrm{fr}}(X, A)$, etc. $)$ be the set of cobordism classes of such maps of pairs. Given $f:(X, A) \rightarrow(Y, B)$ let $f_{*}: \Omega_{d}^{O}(X, A) \rightarrow \Omega_{d}^{O}(Y, B) \operatorname{map}[M, \sigma]$ to $[M, f \sigma]$. Let $\partial: \Omega_{d}^{O}(X, A) \rightarrow \Omega_{d-1}^{O}(A)$ map the bordism class of $\sigma:(M, \partial M) \rightarrow(X, A)$ to the bordism class of $\sigma \mid \partial M: \partial M \rightarrow A$.

Proposition 2.2. The functor $(X, A) \mapsto \Omega_{*}^{O}(X, A)$ (resp. $\Omega_{d}^{S O}(X, A), \Omega_{d}^{U}(X, A)$, $\Omega_{d}^{\mathrm{fr}}(X, A)$, etc.) defines a multiplicative homology theory, called unoriented (resp. oriented, almost complex, stably framed, etc.) bordism.

Proof. The operations $[M, \sigma]+[N, \tau]=[M \sqcup N, \sigma \sqcup \tau]$ and $-[M, \sigma]=[-M, \sigma]$ give $\Omega_{d}^{O}(X)$ a group structure. To prove homotopy invariance use $W=M \times I$. Transversality for smooth maps implies that there is a natural isomorphism

$$
\Omega_{d}^{O}(X, A) \cong \Omega_{d}^{O}(X \cup C A, *)
$$

which implies excision.
For $\tau: N \rightarrow Y$ the operation $[M, \sigma] \cdot[N, \tau]=[M \times N, \sigma \times \tau]$ defines a bilinear pairing $\Omega_{d}^{O}(X) \times \Omega_{e}^{O}(Y) \rightarrow \Omega_{d+e}^{O}(X \times Y)$. In the case $Y=*$, this makes $\Omega_{*}^{O}(X)$ a (right or left) Ω_{*}^{O}-module. There are also relative pairings, compatible with the boundary homomorphisms, making $\Omega_{*}^{O}(-)$ a multiplicative homology theory.

The oriented, almost complex, stably framed, etc. cases work the same way.

3. Thom spectra

Recall that $\operatorname{Th}(\xi)=D(\xi) / S(\xi)$ denotes the Thom complex of a Euclidean vector bundle $\xi: E \rightarrow X$, and that

$$
\operatorname{Th}(\xi \times \eta) \cong \operatorname{Th}(\xi) \wedge \operatorname{Th}(\eta)
$$

if $\eta: F \rightarrow Y$ is a second Euclidean vector bundle. In the special case $\eta=\epsilon^{1}$ over $Y=*$ we have $\xi \times \eta=\xi \oplus \epsilon^{1}$ and $\operatorname{Th}(\eta)=D^{1} / S^{0} \cong S^{1}$, so

$$
\operatorname{Th}\left(\xi \oplus \epsilon^{1}\right) \cong \operatorname{Th}(\xi) \wedge S^{1}=\Sigma \operatorname{Th}(\xi)
$$

For a bundle map

with $\xi \cong f^{*} \eta$, we write $\operatorname{Th}(f): \operatorname{Th}(\xi) \rightarrow \operatorname{Th}(\eta)$ for the induced map of Thom complexes.

Definition 3.1. Let $\gamma^{n}=\gamma_{\mathbb{R}}^{n}$ denote the tautological \mathbb{R}^{n}-bundle

$$
\pi: E\left(\gamma^{n}\right)=E O(n) \times_{O(n)} \mathbb{R}^{n} \longrightarrow B O(n)
$$

Recall that $\gamma^{n+1} \mid B O(n) \cong \gamma^{n} \oplus \epsilon^{1}$, where we view $\iota: B O(n) \rightarrow B O(n+1)$ as the inclusion of a subspace. Let

$$
M O(n)=\operatorname{Th}\left(\gamma^{n}\right)=\frac{E O(n) \times_{O(n)} D^{n}}{E O(n) \times_{O(n)} S^{n-1}} \cong E O(n)_{+} \wedge_{O(n)} S^{n}
$$

Here $O(n)$ acts on $D^{n} / S^{n-1} \cong S^{n}$ as on the one-point compactification $\mathbb{R}^{n} \cup\{\infty\}$. Let $M O$ denote the unoriented Thom spectrum, with n-th space $M O_{n}=M O(n)$ and n-th structure map $\Sigma M O_{n} \rightarrow M O_{n+1}$ given by the composite

$$
\sigma: \Sigma \operatorname{Th}\left(\gamma^{n}\right) \cong \operatorname{Th}\left(\gamma^{n} \oplus \epsilon^{1}\right) \cong \operatorname{Th}\left(\gamma^{n+1} \mid B O(n)\right) \xrightarrow{\operatorname{Th}(\iota)} \operatorname{Th}\left(\gamma^{n+1}\right)
$$

Definition 3.2. Let $\tilde{\gamma}^{n}$ denote the tautological oriented \mathbb{R}^{n}-bundle

$$
\pi: E\left(\tilde{\gamma}^{n}\right)=E S O(n) \times_{S O(n)} \mathbb{R}^{n} \longrightarrow B S O(n)
$$

Let

$$
M S O(n)=\operatorname{Th}\left(\tilde{\gamma}^{n}\right) \cong E S O(n)_{+} \wedge_{S O(n)} S^{n}
$$

Let $M S O$ denote the oriented Thom spectrum, with n-th space $M S O_{n}=M S O(n)$ and n-th structure map $\Sigma M S O_{n} \rightarrow M S O_{n+1}$ given by the composite

$$
\sigma: \Sigma \operatorname{Th}\left(\tilde{\gamma}^{n}\right) \cong \operatorname{Th}\left(\tilde{\gamma}^{n} \oplus \epsilon^{1}\right) \cong \operatorname{Th}\left(\tilde{\gamma}^{n+1} \mid B S O(n)\right) \xrightarrow{\operatorname{Th}(\iota)} \operatorname{Th}\left(\tilde{\gamma}^{n+1}\right)
$$

Definition 3.3. Let $\gamma^{n}=\gamma_{\mathbb{C}}^{n}$ denote the tautological \mathbb{C}^{n}-bundle

$$
\pi: E\left(\gamma^{n}\right)=E U(n) \times_{U(n)} \mathbb{C}^{n} \longrightarrow B U(n)
$$

Recall that $\gamma^{n+1} \mid B U(n) \cong \gamma^{n} \oplus \epsilon^{1}$, where $\epsilon^{1}=\epsilon_{\mathbb{C}}^{1}$ and we view $\iota: B U(n) \rightarrow$ $B U(n+1)$ as the inclusion of a subspace. Let

$$
M U(n)=\operatorname{Th}\left(\gamma^{n}\right)=\frac{E U(n) \times_{U(n)} D^{2 n}}{E U(n) \times_{U(n)} S^{2 n-1}} \cong E U(n)_{+} \wedge_{U(n)} S^{2 n}
$$

Here $U(n)$ acts on $D^{2 n} / S^{2 n-1} \cong S^{2 n}$ as on the one-point compactification $\mathbb{C}^{n} \cup\{\infty\}$. Let $M U$ denote the complex Thom spectrum, with $2 n$-th space $M U_{2 n}=M U(n)$, $(2 n+1)$-th space $M U_{2 n+1}=\Sigma M U(n), 2 n$-th structure map the identity $\Sigma M U_{2 n}=$ $M U_{2 n+1}$, and $(2 n+1)$-th structure map $\Sigma M U_{2 n+1}=\Sigma^{2} M U_{2 n} \rightarrow M U_{2 n+2}$ given by the composite

$$
\sigma: \Sigma^{2} \operatorname{Th}\left(\gamma^{n}\right) \cong \operatorname{Th}\left(\gamma^{n} \oplus \epsilon^{1}\right) \cong \operatorname{Th}\left(\gamma^{n+1} \mid B U(n)\right) \xrightarrow{\operatorname{Th}(\iota)} \operatorname{Th}\left(\gamma^{n+1}\right)
$$

Definition 3.4. The tautological \mathbb{R}^{n}-bundle over $B\{e\}=*$ is $\pi: \mathbb{R}^{n} \rightarrow *$, with Thom complex $D^{n} / S^{n-1} \cong S^{n}$. The framed bordism Thom spectrum $M\{e\}$ has n-th space $M\{e\}_{n}=S^{n}$ and n-th structure map $\Sigma M\{e\}_{n} \rightarrow M\{e\}_{n+1}$ equal to the identity $\Sigma S^{n}=S^{n+1}$. Hence $M\{e\}=S$ is equal to the sphere spectrum.

The Thom spectrum $M O$ (resp. $M S O, M U, S$, etc.) defines a reduced homology theory $M O_{*}(-)$ by

$$
\widetilde{M O}_{d}(X)=\operatorname{colim}_{n} \pi_{d+n}\left(M O_{n} \wedge X\right)
$$

where the colimit is formed over the homomorphisms

$$
\begin{aligned}
\pi_{d+n}\left(M O_{n} \wedge X\right) \xrightarrow{\Sigma} \pi_{d+n+1} & \Sigma\left(M O_{n} \wedge X\right) \\
& \cong \pi_{d+n+1}\left(\Sigma M O_{n} \wedge X\right) \xrightarrow{\sigma_{*}} \pi_{d+n+1}\left(M O_{n+1} \wedge X\right)
\end{aligned}
$$

The suspension isomorphism $\Sigma \widetilde{M O}_{d}(X) \cong \widetilde{M O}_{d+1}(\Sigma X)$ is given by

$$
\begin{aligned}
\operatorname{colim}_{n} \pi_{d+n}\left(M O_{n} \wedge X\right) \stackrel{\cong}{\cong} \operatorname{colim}_{n} \pi_{d+n+1} \Sigma\left(M O_{n}\right. & \wedge X) \\
& \cong \operatorname{colim}_{n} \pi_{d+1+n}\left(M O_{n} \wedge \Sigma X\right)
\end{aligned}
$$

The associated unreduced homology theory is defined by $M O_{d}(X)=\widetilde{M O}_{d}\left(X_{+}\right)$ and $M O_{d}(X, A)=\widetilde{M O}_{d}(X \cup C A)$.

The bundle map

induces a pairing

$$
M O_{n} \wedge M O_{m}=\operatorname{Th}\left(\gamma^{n}\right) \wedge \operatorname{Th}\left(\gamma^{m}\right) \xrightarrow{\operatorname{Th}\left(\mu_{n, m}\right)} \operatorname{Th}\left(\gamma^{n+m}\right)=M O_{n+m}
$$

that makes $M O$ into a ring spectrum.
Likewise, the Thom spectra $M S O, M U, M\{e\}=S$, etc. are ring spectra that define multiplicative homology theories $M S O_{*}(-), M U_{*}(-), S_{*}(-)$, etc. Note that

$$
S_{d}(X)=\underset{n}{\operatorname{colim}} \pi_{d+n}\left(S^{n} \wedge X_{+}\right) \cong \pi_{d}^{S}\left(X_{+}\right)
$$

so that $S_{*}(-)$ is given by the unreduced stable homotopy groups.

4. The Pontryagin-Thom construction and transversality

Theorem 4.1. There are natural isomorphisms of multiplicative homology theories

$$
\begin{aligned}
\Omega_{*}^{O}(X, A) & \cong M O_{*}(X, A) \\
\Omega_{*}^{S O}(X, A) & \cong M S O_{*}(X, A) \\
\Omega_{*}^{U}(X, A) & \cong M U_{*}(X, A) \\
\Omega_{*}^{\operatorname{fr}}(X, A) & \cong S_{*}(X, A)
\end{aligned}
$$

etc. In particular

$$
\begin{aligned}
& \mathcal{N}_{*}=\Omega_{*}^{O} \cong \pi_{*}(M O) \\
& \Omega_{*}=\Omega_{*}^{S O} \cong \pi_{*}(M S O) \\
& \Omega_{*}^{U} \cong \pi_{*}(M U) \\
& \Omega_{*}^{\mathrm{fr}} \cong \pi_{*}(S) .
\end{aligned}
$$

The case of framed bordism is due to Pontryagin (ca. 1936), that of unoriented and oriented bordism is due to Thom [Tho54].

Proof. We discuss the case $(X, A)=(*, \emptyset)$ for complex bordism.
Let $[M] \in \Omega_{d}^{U}$ be represented by an almost complex d-manifold $M \subset \mathbb{R}^{d+2 n}$. Its normal bundle ν_{M} is classified by a map $g: M \rightarrow B U(n)$, which is covered by a bundle map

The disc bundle can be embedded as a tubular neighborhood $D\left(\nu_{M}\right) \subset \mathbb{R}^{d+2 n} \subset$ $S^{d+2 n}$ of M. Let

$$
S^{d+2 n} \xrightarrow{\wp} \frac{S^{d+2 n}}{S^{d+2 n} \backslash\left(D\left(\nu_{M}\right) \backslash S\left(\nu_{M}\right)\right)} \cong \frac{D\left(\nu_{M}\right)}{S\left(\nu_{M}\right)}=\operatorname{Th}\left(\nu_{M}\right)
$$

be the Pontryagin-Thom collapse map, taking the complement of the open disc bundle $D\left(\nu_{M}\right) \backslash S\left(\nu_{M}\right)$ to the base point. The composite

$$
S^{d+2 n} \xrightarrow{\wp} \operatorname{Th}\left(\nu_{M}\right) \xrightarrow{\mathrm{Th}(g)} \operatorname{Th}\left(\gamma^{n}\right)=M U_{2 n}
$$

determines a homotopy class in

$$
\pi_{d}(M U)=\operatorname{colim}_{n} \pi_{d+2 n} M U_{2 n}
$$

Conversely, let $[f] \in \pi_{d}(M U)$ be represented by a map $f: S^{d+2 n} \rightarrow M U_{2 n}=$ $\operatorname{Th}\left(\gamma^{n}\right)$. It may be deformed slightly to become transverse to the zero-section

$$
z=q s_{0}: B U(n) \xrightarrow{s_{0}} D\left(\gamma^{n}\right) \xrightarrow{q} \operatorname{Th}\left(\gamma^{n}\right),
$$

whose normal bundle is isomorphic to γ^{n}. Let

$$
M=f^{-1}(B U(n)) \subset \mathbb{R}^{d+2 n} \subset S^{d+2 n}
$$

be the preimage of this zero-section, which is then a closed, smooth d-manifold (by a generalization of the regular level set theorem). Moreover, there is a bundle map

which implies that $\nu_{M} \cong(f \mid M)^{*}\left(\gamma^{n}\right)$ has a complex structure. Hence M is almost complex, and determines a bordism class in Ω_{d}^{U}.

To complete the proof, one verifies that these two constructions define mutual inverses

$$
\Omega_{d}^{U} \stackrel{ }{\longleftrightarrow} \pi_{d}(M U)
$$

Remark 4.2. Thom worked with smooth (DIFF) manifolds, in order to have transversality available. For piecewise-linear (PL) manifolds, or topological (TOP) manifolds in dimension $d \neq 4$, transversality will hold in sufficiently large codimension by results of Williamson (1966) and Kirby-Siebenmann (1977).

See [Swi75, Lem. 14.40] or [May99, §25.5] for the proof that \wp has degree 1, which we can state as follows. (In the unoriented case, this must be interpreted with \mathbb{F}_{2}-coefficients.)

Proposition 4.3. The Hurewicz image of the Pontryagin-Thom collapse map corresponds under the Thom isomorphism to the fundamental class of M :

$$
\begin{gathered}
\pi_{d+2 n}\left(\operatorname{Th}\left(\nu_{M}\right)\right) \stackrel{h}{\longrightarrow} \tilde{H}_{d+2 n}(\operatorname{Th}(M)) \stackrel{\Phi_{\nu}}{\cong} H_{d}(M) \\
{[\wp] \longmapsto \Phi_{\nu} h([\wp])=[M]}
\end{gathered}
$$

5. UnORIENTED BORDISM

To calculate the commutative \mathbb{F}_{2}-algebra $\mathcal{N}_{*}=\Omega_{*}^{O} \cong \pi_{*}(M O)$, Thom compared the homology of $M O$ with the homology of spectra X such that $\pi_{*}(X)$ is known, namely (wedge sums of suspensions of) Eilenberg-MacLane spectra. The argument was streamlined by Liulevicius, using the multiplicative structure. Note that [Liu62, (3.27)] is corrected in [Liu68, Prop. 9] and improved by [Swi73, Thm. 1(i)].

Recall that $\mathscr{A}_{*}=\mathbb{F}_{2}\left[\zeta_{k} \mid k \geq 1\right]$ with $\left|\zeta_{k}\right|=2^{k}-1$. Let

$$
H_{*}\left(M O ; \mathbb{F}_{2}\right)=\operatorname{colim}_{n} H_{*+n}\left(M O_{n} ; \mathbb{F}_{2}\right)
$$

with the induced \mathscr{A}_{*}-coaction. The \mathbb{F}_{2}-linear dual

$$
H^{*}\left(M O ; \mathbb{F}_{2}\right)=\lim _{n} H^{*+n}\left(M O_{n} ; \mathbb{F}_{2}\right)
$$

has the dual \mathscr{A}-action.
Theorem 5.1 ([Tho54], [Liu62]). The \mathscr{A}_{*}-comodule algebra

$$
H_{*}\left(M O ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[a_{m} \mid m \geq 1\right]
$$

is isomorphic to $\mathscr{A}_{*} \otimes P H_{*}\left(M O ; \mathbb{F}_{2}\right)$, where $P H_{*}\left(M O ; \mathbb{F}_{2}\right) \subset H_{*}\left(M O ; \mathbb{F}_{2}\right)$ is the subalgebra of \mathscr{A}_{*}-comodule primitives. Here

$$
P H_{*}\left(M O ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[\tilde{a}_{m} \mid m \neq 2^{k}-1\right],
$$

with $\tilde{a}_{m} \equiv a_{m}$ modulo algebra decomposables for all $m \neq 2^{k}-1$.
Proof. Recall that

$$
H_{*}\left(B O ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[a_{m} \mid m \geq 1\right]
$$

is generated as a commutative algebra by the images of the additive generators α_{m} of $\tilde{H}_{*}\left(B O(1) ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left\{\alpha_{m} \mid m \geq 1\right\}$ under the inclusion $\mathbb{R} P^{\infty} \simeq B O(1) \rightarrow B O$. The colimit over n of the Thom isomorphisms

$$
U_{\gamma^{n}} \cap-: \tilde{H}_{*+n}\left(M O_{n} ; \mathbb{F}_{2}\right)=\tilde{H}_{*+n}\left(\operatorname{Th}\left(\gamma^{n}\right) ; \mathbb{F}_{2}\right) \stackrel{\cong}{\Longrightarrow} H_{*}\left(B O(n) ; \mathbb{F}_{2}\right)
$$

defines a stable Thom isomorphism

$$
\Phi: H_{*}\left(M O ; \mathbb{F}_{2}\right) \stackrel{\cong}{\cong} H_{*}\left(B O ; \mathbb{F}_{2}\right)
$$

We first calculate the \mathscr{A}_{*}-coaction on $\tilde{H}_{*+1}\left(M O_{1} ; \mathbb{F}_{2}\right)$. Note that $S\left(\gamma^{1}\right)=$ $E O(1) \times_{O(1)} S^{0} \cong E O(1) \simeq *$ is contractible, so in the homotopy cofiber sequence

$$
S\left(\gamma^{1}\right) \xrightarrow{\pi} B O(1) \xrightarrow{z} \operatorname{Th}\left(\gamma^{1}\right)=M O_{1}
$$

the zero-section z is a homotopy equivalence. It follows that z_{*} maps $\alpha_{m+1} \in$ $\tilde{H}_{m+1}\left(B O(1) ; \mathbb{F}_{2}\right)$ to the generator $z_{*}\left(\alpha_{m+1}\right)$ of $\tilde{H}_{m+1}\left(M O_{1} ; \mathbb{F}_{2}\right)$ that corresponds to $\alpha_{m} \in H_{m}\left(B O(1) ; \mathbb{F}_{2}\right)$ under the Thom isomorphism $U_{\gamma^{1}} \cap-$, and which therefore stabilizes to $a_{m} \in H_{m}\left(M O ; \mathbb{F}_{2}\right)$.

$$
\begin{aligned}
& \tilde{H}_{*+1}\left(B O(1) ; \mathbb{F}_{2}\right) \xrightarrow[\cong]{z_{*}} \tilde{H}_{*+1}\left(M O_{1} ; \mathbb{F}_{2}\right) \xrightarrow[\cong]{U_{\gamma^{1} \cap-}^{\cong}} H_{*}\left(B O(1) ; \mathbb{F}_{2}\right)
\end{aligned}
$$

From [Swi73], see Chapter 2, Lemma 8.3, we know that $\nu: H_{*}\left(B O(1) ; \mathbb{F}_{2}\right) \rightarrow$ $\mathscr{A}_{*} \otimes H_{*}\left(B O(1) ; \mathbb{F}_{2}\right)$ satisfies

$$
\nu\left(\alpha_{m+1}\right)=\sum_{n=0}^{m}\left(Z^{n+1}\right)_{m-n} \otimes \alpha_{n+1},
$$

where $Z=1+\zeta_{1}+\zeta_{2}+\ldots$ is a formal sum in \mathscr{A}_{*}. This implies that $\nu: H_{*}\left(M O ; \mathbb{F}_{2}\right) \rightarrow$ $\mathscr{A}_{*} \otimes H_{*}\left(M O ; \mathbb{F}_{2}\right)$ satisfies

$$
\nu\left(a_{m}\right)=\sum_{n=0}^{m}\left(Z^{n+1}\right)_{m-n} \otimes a_{n}
$$

where $a_{0}=1$. Modulo decomposable products, this equals

$$
\nu\left(a_{m}\right) \equiv \begin{cases}\zeta_{k} \otimes 1+1 \otimes a_{m} & \text { if } m=2^{k}-1 \\ 1 \otimes a_{m} & \text { otherwise }\end{cases}
$$

Let $f: H_{*}\left(M O ; \mathbb{F}_{2}\right) \rightarrow \mathbb{F}_{2}\left[\bar{a}_{m} \mid m \neq 2^{k}-1\right]$ be the algebra homomorphism given by

$$
f\left(a_{m}\right)= \begin{cases}0 & \text { if } m=2^{k}-1 \\ \bar{a}_{m} & \text { otherwise }\end{cases}
$$

The composite

$$
\phi: H_{*}\left(M O ; \mathbb{F}_{2}\right) \xrightarrow{\nu} \mathscr{A}_{*} \otimes H_{*}\left(M O ; \mathbb{F}_{2}\right) \xrightarrow{1 \otimes f} \mathscr{A}_{*} \otimes \mathbb{F}_{2}\left[\bar{a}_{m} \mid m \neq 2^{k}-1\right]
$$

is then a left \mathscr{A}_{*}-comodule algebra homomorphism

$$
\mathbb{F}_{2}\left[a_{m} \mid m \geq 1\right] \longrightarrow \mathbb{F}_{2}\left[\zeta_{k} \mid k \geq 1\right] \otimes \mathbb{F}_{2}\left[\bar{a}_{m} \mid m \neq 2^{k}-1\right]
$$

satisfying

$$
\phi\left(a_{m}\right) \equiv \begin{cases}\zeta_{k} \otimes 1 & \text { if } m=2^{k}-1 \\ 1 \otimes \bar{a}_{m} & \text { otherwise }\end{cases}
$$

modulo decomposables, and is therefore an isomorphism. Let

$$
P H_{*}\left(M O ; \mathbb{F}_{2}\right)=\left\{x \in H_{*}\left(M O ; \mathbb{F}_{2}\right) \mid \nu(x)=1 \otimes x\right\}
$$

be the subalgebra of \mathscr{A}_{*}-comodule primitives. It maps isomorphically by $P \phi$ to

$$
P\left(\mathscr{A}_{*} \otimes \mathbb{F}_{2}\left[\bar{a}_{m} \mid m \neq 2^{k}-1\right]\right)=\mathbb{F}_{2}\left[\bar{a}_{m} \mid m \neq 2^{k}-1\right],
$$

hence has the form

$$
P H_{*}\left(M O ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[\tilde{a}_{m} \mid m \neq 2^{k}-1\right] \subset H_{*}\left(M O ; \mathbb{F}_{2}\right)
$$

where $\tilde{a}_{m} \equiv a_{m}$ modulo decomposables, for each $m \neq 2^{k}-1$.
Corollary 5.2. $H^{*}\left(M O ; \mathbb{F}_{2}\right) \cong \mathscr{A} \otimes P H^{*}\left(M O ; \mathbb{F}_{2}\right)^{\vee}$ is a free \mathscr{A}-module of finite type, with basis dual to the monomial basis for $P H_{*}\left(M O ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[\tilde{a}_{m} \mid m \neq 2^{k}-1\right]$.
Theorem 5.3 ([Tho54]). The mod 2 Hurewicz homomorphism

$$
h: \pi_{*}(M O) \longrightarrow H_{*}\left(M O ; \mathbb{F}_{2}\right)
$$

maps the \mathbb{F}_{2}-algebra $\pi_{*}(M O) \cong \Omega_{*}^{O}$ isomorphically to

$$
P H_{*}\left(M O ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[\tilde{a}_{m} \mid m \neq 2^{k}-1\right] .
$$

Proof. Let $\left\{\tilde{a}^{I}\right\}_{I}$ be the monomial basis for $P H_{*}\left(M O ; \mathbb{F}_{2}\right)$, and let $\left\{\tilde{a}_{I}^{\vee}\right\}_{I}$ be the dual basis, corresponding to an \mathscr{A}-module basis for $H^{*}\left(M O ; \mathbb{F}_{2}\right)$. For each I let $|I|$ denote the degree of \tilde{a}_{I}^{v}, and let

$$
g_{I}: M O \longrightarrow \Sigma^{|I|} H \mathbb{F}_{2}
$$

be a map of spectra representing \tilde{a}_{I}^{V}. Let

$$
\prod_{I} g_{I}: M O \longrightarrow \prod_{I} \Sigma^{|I|} H \mathbb{F}_{2}
$$

be the product of these maps. Since there are only finitely many basis elements below any given degree, the inclusion

$$
\bigvee_{I} \Sigma^{|I|} H \mathbb{F}_{2} \xrightarrow[I]{\simeq} \prod_{I} \Sigma^{|I|} H \mathbb{F}_{2}
$$

is an equivalence of spectra. The resulting chain of maps

$$
g: M O \longrightarrow \prod_{I} \Sigma^{|I|} H \mathbb{F}_{2} \simeq \bigvee_{I} \Sigma^{|I|} H \mathbb{F}_{2}
$$

induces an isomorphism of \mathscr{A}-modules

$$
\begin{aligned}
H^{*}\left(g ; \mathbb{F}_{2}\right): \bigoplus_{I} H^{*}\left(\Sigma^{|I|} H \mathbb{F}_{2}\right) \cong \prod_{I} H^{*}\left(\Sigma^{|I|} H \mathbb{F}_{2}\right)= & H^{*}\left(\bigvee_{I} \Sigma^{|I|} H \mathbb{F}_{2} ; \mathbb{F}_{2}\right) \\
& \xrightarrow{g^{*}} H^{*}\left(M O ; \mathbb{F}_{2}\right),
\end{aligned}
$$

and can therefore be shown to be an equivalence. It must therefore also induce an isomorphism in homotopy

$$
\begin{aligned}
\pi_{*}(g): \pi_{*}(M O) \stackrel{\cong}{\cong} \pi_{*}\left(\bigvee_{I} \Sigma^{|I|}\right. & \left.H \mathbb{F}_{2}\right) \\
& \cong \bigoplus_{I} \pi_{*}\left(\Sigma^{|I|} H \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left\{\tilde{a}^{I}\right\}_{I}=P H_{*}\left(M O ; \mathbb{F}_{2}\right)
\end{aligned}
$$

6. Complex bordism

To calculate the graded commutative ring $\Omega_{*}^{U}=\pi_{*}(M U)$, Milnor [Mil60] and Novikov [Nov60] again compared the homology of $M U$ with the homology of spec$\operatorname{tra} X$ such that $\pi_{*}(X)$ is known. More precisely, they follow Adams [Ada58] and resolve $M U$ by a tower of spectra

$$
\ldots \xrightarrow{\alpha} Y_{s+1} \xrightarrow{\alpha} Y_{s} \xrightarrow{\alpha} \ldots \xrightarrow{\alpha} Y_{0} \simeq M U
$$

such that each cofiber

$$
Y_{s+1} \xrightarrow{\alpha} Y_{s} \xrightarrow{\beta} K_{s} \xrightarrow{\gamma} \Sigma Y_{s+1}
$$

is a wedge sum of suspensions of Eilenberg-MacLane spectra. This leads to a case of the Adams spectral sequence. A posteriori, this amounts to a comparison with (wedge sums of suspensions of) the Brown-Peterson spectra $B P$, one for each prime p.

We discuss the odd-primary case (the case $p=2$ is similar), so that

$$
\mathscr{A}_{*}=\Lambda\left(\tau_{i} \mid i \geq 0\right) \otimes \mathbb{F}_{p}\left[\xi_{i} \mid i \geq 1\right]
$$

with $\left|\tau_{i}\right|=2 p^{i}-1$ and $\left|\xi_{i}\right|=2 p^{i}-2$. Note that

$$
\mathscr{E}_{*}=\Lambda\left(\tau_{i} \mid i \geq 0\right)
$$

is a primitively generated quotient bialgebra of \mathscr{A}_{*}, and

$$
\mathscr{P}_{*}=\mathbb{F}_{p}\left[\xi_{i} \mid i \geq 1\right]=\mathscr{A}_{*} \square_{\mathscr{E}_{*}} \mathbb{F}_{p}
$$

is a sub bialgebra of \mathscr{A}_{*}. Dually,

$$
\mathscr{E}=\Lambda\left(Q_{i} \mid i \geq 0\right)
$$

is a primitively generated sub bialgebra of \mathscr{A}, and

$$
\mathscr{P}=\mathscr{A} \otimes_{\mathscr{E}} \mathbb{F}_{p}
$$

is a quotient bialgebra, sometimes denoted $\mathscr{P}=\mathscr{A} / / \mathscr{E}$. The classes $Q_{i} \in \mathscr{E} \subset \mathscr{A}$ are called the Milnor primitives, and can be iteratively defined by $Q_{0}=\beta$ (the Bockstein homomorphism) and

$$
Q_{i+1}=\left[P^{p^{i}}, Q_{i}\right]=P^{p^{i}} Q_{i}-Q_{i} P^{p^{i}}
$$

for $i \geq 0$.
Let

$$
H_{*}\left(M U ; \mathbb{F}_{p}\right)=\operatorname{colim}_{n} H_{*+n}\left(M U_{n} ; \mathbb{F}_{p}\right)
$$

with the induced \mathscr{A}_{*}-coaction. The \mathbb{F}_{p}-linear dual

$$
H^{*}\left(M U ; \mathbb{F}_{p}\right)=\lim _{n} H^{*+n}\left(M U_{n} ; \mathbb{F}_{p}\right)
$$

has the dual \mathscr{A}-action.

Theorem 6.1. The \mathscr{A}_{*}-comodule algebra

$$
H_{*}\left(M U ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}\left[b_{m} \mid m \geq 1\right]
$$

is isomorphic to $\mathscr{P}_{*} \otimes P H_{*}\left(M U ; \mathbb{F}_{p}\right)$, where $P H_{*}\left(M U ; \mathbb{F}_{p}\right) \subset H_{*}\left(M U ; \mathbb{F}_{p}\right)$ is the subalgebra of \mathscr{A}_{*}-comodule primitives. Here

$$
P H_{*}\left(M U ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}\left[\tilde{b}_{m} \mid m \neq p^{k}-1\right]
$$

with $\tilde{b}_{m} \equiv b_{m}$ modulo algebra decomposables for all $m \neq p^{k}-1$.
Proof. Recall that

$$
H_{*}\left(B U ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[b_{m} \mid m \geq 1\right]
$$

is generated as a commutative algebra by the images of the additive generators β_{m} of $\tilde{H}_{*}\left(B U(1) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left\{\beta_{m} \mid m \geq 1\right\}$ under the inclusion $\mathbb{C} P^{\infty} \simeq B U(1) \rightarrow B U$. The colimit over n of the Thom isomorphisms

$$
U_{\gamma^{n}} \cap-: \tilde{H}_{*+2 n}\left(M U_{2 n} ; \mathbb{F}_{p}\right)=\tilde{H}_{*+2 n}\left(\operatorname{Th}\left(\gamma^{n}\right) ; \mathbb{F}_{p}\right) \stackrel{\cong}{\Longrightarrow} H_{*}\left(B U(n) ; \mathbb{F}_{p}\right)
$$

defines a stable Thom isomorphism

$$
\Phi: H_{*}\left(M U ; \mathbb{F}_{p}\right) \xrightarrow{\cong} H_{*}\left(B U ; \mathbb{F}_{p}\right)
$$

We first calculate the \mathscr{A}_{*}-coaction on $\tilde{H}_{*+2}\left(M U_{2} ; \mathbb{F}_{p}\right)$. Note that $S\left(\gamma^{1}\right)=$ $E U(1) \times_{U(1)} S^{1} \cong E U(1) \simeq *$ is contractible, so in the homotopy cofiber sequence

$$
S\left(\gamma^{1}\right) \xrightarrow{\pi} B U(1) \xrightarrow{z} \operatorname{Th}\left(\gamma^{1}\right)=M U_{2}
$$

the zero-section z is a homotopy equivalence. It follows that z_{*} maps $\beta_{m+1} \in$ $\tilde{H}_{2 m+2}\left(B U(1) ; \mathbb{F}_{p}\right)$ to the generator $z_{*}\left(\beta_{m+1}\right)$ of $\tilde{H}_{2 m+2}\left(M U_{2} ; \mathbb{F}_{p}\right)$ that corresponds to $\beta_{m} \in H_{2 m}\left(B U(1) ; \mathbb{F}_{p}\right)$ under the Thom isomorphism $U_{\gamma^{1}} \cap-$, and which therefore stabilizes to $b_{m} \in H_{2 m}\left(M U ; \mathbb{F}_{p}\right)$.

$$
\begin{aligned}
& \tilde{H}_{*+2}\left(B U(1) ; \mathbb{F}_{p}\right) \xrightarrow[\cong]{z_{*}} \tilde{H}_{*+2}\left(M U_{2} ; \mathbb{F}_{p}\right) \xrightarrow{U_{\gamma^{1} \cap} \cap} H_{*}\left(B U(1) ; \mathbb{F}_{p}\right)
\end{aligned}
$$

From [Swi73, Thm. 1(ii)] we know that $\nu: H_{*}\left(B U(1) ; \mathbb{F}_{p}\right) \rightarrow \mathscr{A}_{*} \otimes H_{*}\left(B U(1) ; \mathbb{F}_{p}\right)$ satisfies

$$
\nu\left(\beta_{m+1}\right)=\sum_{n=0}^{m}\left(X^{n+1}\right)_{2 m-2 n} \otimes \beta_{n+1}
$$

where $X=1+\xi_{1}+\xi_{2}+\ldots$. This implies that $\nu: H_{*}\left(M U ; \mathbb{F}_{p}\right) \rightarrow \mathscr{A}_{*} \otimes H_{*}\left(M U ; \mathbb{F}_{p}\right)$ satisfies

$$
\nu\left(b_{m}\right)=\sum_{n=0}^{m}\left(X^{n+1}\right)_{2 m-2 n} \otimes b_{n}
$$

where $b_{0}=1$. Modulo decomposable products, this equals

$$
\nu\left(b_{m}\right) \equiv \begin{cases}\xi_{k} \otimes 1+1 \otimes b_{m} & \text { if } m=p^{k}-1 \\ 1 \otimes b_{m} & \text { otherwise }\end{cases}
$$

In particular, the \mathscr{A}_{*}-coaction factors as

$$
H_{*}\left(M U ; \mathbb{F}_{p}\right) \xrightarrow{\tilde{\nu}} \mathscr{P}_{*} \otimes H_{*}\left(M U ; \mathbb{F}_{p}\right) \subset \mathscr{A}_{*} \otimes H_{*}\left(M U ; \mathbb{F}_{p}\right)
$$

making $H_{*}\left(M U ; \mathbb{F}_{p}\right)$ a \mathscr{P}_{*}-comodule algebra.
Let $f: H_{*}\left(M U ; \mathbb{F}_{p}\right) \rightarrow \mathbb{F}_{p}\left[\bar{b}_{m} \mid m \neq p^{k}-1\right]$ be the algebra homomorphism given by

$$
f\left(b_{m}\right)= \begin{cases}0 & \text { if } m=p^{k}-1 \\ \bar{b}_{m} & \text { otherwise }\end{cases}
$$

The composite

$$
\phi: H_{*}\left(M U ; \mathbb{F}_{p}\right) \xrightarrow{\tilde{\nu}} \mathscr{P}_{*} \otimes H_{*}\left(M U ; \mathbb{F}_{p}\right) \xrightarrow{1 \otimes f} \mathscr{P}_{*} \otimes \mathbb{F}_{p}\left[\bar{b}_{m} \mid m \neq p^{k}-1\right]
$$

is then a left \mathscr{P}_{*}-comodule algebra homomorphism

$$
\mathbb{F}_{p}\left[b_{m} \mid m \geq 1\right] \longrightarrow \mathbb{F}_{p}\left[\xi_{k} \mid k \geq 1\right] \otimes \mathbb{F}_{p}\left[\bar{b}_{m} \mid m \neq p^{k}-1\right]
$$

satisfying

$$
\phi\left(b_{m}\right) \equiv \begin{cases}\xi_{k} \otimes 1 & \text { if } m=p^{k}-1 \\ 1 \otimes \bar{b}_{m} & \text { otherwise }\end{cases}
$$

modulo decomposables, and is therefore an isomorphism. Let

$$
P H_{*}\left(M U ; \mathbb{F}_{p}\right)=\left\{x \in H_{*}\left(M U ; \mathbb{F}_{p}\right) \mid \nu(x)=1 \otimes x\right\}
$$

be the subalgebra of \mathscr{A}_{*}-comodule primitives, which is equal to the subalgebra of \mathscr{P}_{*}-comodule primitives. It maps isomorphically by $P \phi$ to

$$
P\left(\mathscr{P}_{*} \otimes \mathbb{F}_{p}\left[\bar{b}_{m} \mid m \neq p^{k}-1\right]\right)=\mathbb{F}_{p}\left[\bar{b}_{m} \mid m \neq p^{k}-1\right]
$$

hence has the form

$$
P H_{*}\left(M U ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[\tilde{b}_{m} \mid m \neq p^{k}-1\right] \subset H_{*}\left(M U ; \mathbb{F}_{p}\right)
$$

where $\tilde{b}_{m} \equiv b_{m}$ modulo decomposables, for each $m \neq p^{k}-1$.
Recall that $\mathscr{P}=\mathscr{A} \otimes_{\mathscr{E}} \mathbb{F}_{p}=\mathscr{A} / / \mathscr{E}$ is a cyclic \mathscr{A}-module algebra.
Corollary 6.2. $H^{*}\left(M U ; \mathbb{F}_{p}\right) \cong \mathscr{P} \otimes P H^{*}\left(M U ; \mathbb{F}_{p}\right)^{\vee}$ is a free \mathscr{P}-module of finite type, with basis dual to the monomial basis for $P H_{*}\left(M U ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[\tilde{b}_{m} \mid m \neq p^{k}-1\right]$.

Theorem 6.3.

$$
\pi_{*}\left(M U_{p}^{\wedge}\right) \cong \mathbb{Z}_{p}\left[v_{i} \mid i \geq 1\right] \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}\left[\tilde{b}_{m} \mid m \neq p^{k}-1\right]
$$

where $\left|v_{i}\right|=2 p^{i}-2$ for each $i \geq 1$, and the $\bmod p$ Hurewicz homomorphism $h: \pi_{*}(M U) \rightarrow H_{*}\left(M U ; \mathbb{F}_{p}\right)$ maps $\pi_{*}\left(M U_{p}^{\wedge}\right)$ onto $P H_{*}\left(M U ; \mathbb{F}_{p}\right)$.
Proof. This is easiest seen using the mod p Adams spectral sequence. Let $\left\{\tilde{b}^{I}\right\}_{I}$ be the monomial basis for $P H_{*}\left(M U ; \mathbb{F}_{p}\right)$, and let $\left\{\tilde{b}_{I}^{\vee}\right\}_{I}$ be the dual basis. We obtain isomorphisms of \mathscr{A}_{*}-comodule algebras

$$
H_{*}\left(M U ; \mathbb{F}_{p}\right) \stackrel{\cong}{\bigoplus} \bigoplus_{I} \Sigma^{|I|} \mathscr{P}_{*}
$$

and of \mathscr{A}-module coalgebras

$$
\bigoplus_{I} \Sigma^{|I|} \mathscr{P} \stackrel{\cong}{\Longrightarrow} H^{*}\left(M U ; \mathbb{F}_{p}\right)
$$

Hence the Adams spectral sequence, in its homological form

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}_{*}}^{s, t}\left(\mathbb{F}_{p}, H_{*}\left(M U ; \mathbb{F}_{p}\right)\right) \Longrightarrow_{s} \pi_{t-s}\left(M U_{p}^{\wedge}\right)
$$

or its cohomological form

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}\left(M U ; \mathbb{F}_{p}\right), \mathbb{F}_{p}\right) \Longrightarrow_{s} \pi_{t-s}\left(M U_{p}^{\wedge}\right)
$$

is an algebra spectral sequence with E_{2}-term

$$
E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}_{*}}^{*, *}\left(\mathbb{F}_{p}, \mathscr{P}_{*}\right) \otimes P H_{*}\left(M U ; \mathbb{F}_{p}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{P}, \mathbb{F}_{p}\right) \otimes P H_{*}\left(M U ; \mathbb{F}_{p}\right)
$$

Since \mathscr{A} is a bialgebra and \mathscr{E} a sub bialgebra, [MM65, Thm. 4.4, Thm. 4.7] imply that \mathscr{A} is free a left \mathscr{E}-module, and \mathscr{A}_{*} is cofree as a left \mathscr{E}_{*}-comodule, so there are change-of-rings isomorphisms

$$
\begin{aligned}
& \operatorname{Ext}_{\mathscr{A} *}^{*, *}\left(\mathbb{F}_{p}, \mathscr{P}_{*}\right)=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{p}, \mathscr{A}_{*} \square_{\mathscr{E}_{*}} \mathbb{F}_{p}\right) \cong \operatorname{Ext}_{\mathscr{E}_{*}}^{*, *}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \\
& \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{P}, \mathbb{F}_{p}\right)=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{A} / / \mathscr{E}, \mathbb{F}_{p}\right) \cong \operatorname{Ext}_{\mathscr{E}}^{*, *}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) .
\end{aligned}
$$

Since $\mathscr{E}_{*}=\Lambda\left(\tau_{i} \mid i \geq 0\right)$ and $\mathscr{E}_{*}=\Lambda\left(Q_{i} \mid i \geq 0\right)$, standard homological algebra shows that

$$
\operatorname{Ext}_{\mathscr{E}_{*}}^{* * *}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)=\operatorname{Ext}_{\mathscr{E}}^{* * *}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[q_{i} \mid i \geq 0\right]
$$

with $q_{i} \in \operatorname{Ext}^{1,2 p^{i}-1}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)$ representing an extension detected by Q_{i}. Hence

$$
E_{2}^{*, *} \cong \mathbb{F}_{p}\left[q_{i} \mid i \geq 0\right] \otimes P H_{*}\left(M U ; \mathbb{F}_{p}\right)
$$

is concentrated in even topological degrees $t-s$. There is therefore no room for nonzero differentials, since these decrease the topological degree by 1. Hence $E_{2}^{*, *}=$ $E_{\infty}^{*, *}$. Since the E_{∞}-term is free as a graded commutative \mathbb{F}_{p}-algebra, there can only be additive extensions, with multiplication by p in the abutment being represented by multiplication by q_{0} in the E_{∞}-term, and it follows that

$$
\pi_{*}\left(M U_{p}^{\wedge}\right) \cong \mathbb{Z}_{p}\left[v_{i} \mid i \geq 1\right] \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}\left[\tilde{b}_{m} \mid m \neq p^{k}-1\right]
$$

with v_{i} in degree $\left|v_{i}\right|=2 p^{i}-2$ being detected by q_{i}, for each $i \geq 1$.
Note that as a \mathbb{Z}_{p}-algebra, $\pi_{*}\left(M U_{p}^{\wedge}\right)$ has one polynomial generator in each positive even degree $2 m$, which is of the form v_{i} if $2 m=2 p^{i}-2$, and of the form \tilde{b}_{m} otherwise. Serre proved that $\pi_{*}(S) \otimes \mathbb{Q} \cong \mathbb{Q}$, so

$$
\pi_{*}\left(M U_{\mathbb{Q}}\right)=\pi_{*}(M U) \otimes \mathbb{Q} \cong H_{*}(M U ; \mathbb{Q}) \cong H_{*}(B U ; \mathbb{Q}) \cong \mathbb{Q}\left[b_{k} \mid k \geq 1\right]
$$

is also polynomial on one generator in each positive even degree. Further work with the arithmetic square

where $M U_{\mathbb{Q}}=M U[1 / 2, \ldots, 1 / p, \ldots]$ denotes the rationalization of $M U$ and $M U^{\wedge}=$ $\prod_{p} M U_{p}^{\wedge}$ denotes its profinite completion, leads to the following integral result.
Theorem 6.4 ([Mil60], [Nov60]).

$$
\Omega_{*}^{U}=\pi_{*}(M U) \cong \mathbb{Z}\left[x_{i} \mid i \geq 1\right]
$$

where $\left|x_{i}\right|=2 i$ for each $i \geq 1$.

Theorem 6.5. The Hurewicz homomorphism

$$
h: \pi_{*}(M U) \longrightarrow H_{*}(M U)
$$

satisfies

$$
h\left(x_{m}\right) \equiv \begin{cases}p b_{m} & \text { if } m=p^{i}-1 \text { for some prime } p \\ b_{m} & \text { otherwise }\end{cases}
$$

modulo decomposables, for each $m \geq 1$.
Note that $m+1 \geq 2$ can be equal to a prime power p^{i} for at most one prime p.

7. Framed bordism

The \mathscr{A}_{*}-comodule algebra $H_{*}\left(S ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}$ has the trivial coaction (via the coaugmentation $\left.\eta: \mathbb{F}_{p} \rightarrow \mathscr{A}_{*}\right)$, and dually the \mathscr{A}-module coalgebra $H^{*}\left(S ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}$ has the trivial action (via the augmentation $\epsilon: \mathscr{A} \rightarrow \mathbb{F}_{p}$).

Theorem 7.1. The mod p Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}_{*}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Longrightarrow_{s} \pi_{t-s}\left(S_{p}^{\wedge}\right)
$$

converges to the p-completion of $\Omega_{*}^{\mathrm{fr}}=\pi_{*}(S)$.
This spectral sequence is only partially understood.

References

[Ada58] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214, DOI 10.1007/BF02564578. MR96219
[Ati61] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208, DOI 10.1017/s0305004100035064. MR126856
[CF64] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR0176478
[Liu62] A. L. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962/63), 121-131, DOI 10.1007/BF02566966. MR145527
[Liu68] Arunas Liulevicius, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375-382, DOI 10.2307/1994750. MR251720
[MM79] Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, No. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR548575
[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR1702278
[Mil60] J. Milnor, On the cobordism ring Ω^{*} and a complex analogue. I, Amer. J. Math. 82 (1960), 505-521, DOI 10.2307/2372970. MR119209
[MM65] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264, DOI 10.2307/1970615. MR174052
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR0440554
[Nov60] S. P. Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Soviet Math. Dokl. 1 (1960), 717-720. MR0121815
[Sto68] Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR0248858
[Swi73] R. M. Switzer, Homology comodules, Invent. Math. 20 (1973), 97-102, DOI 10.1007/BF01404059. MR353313
[Swi75] Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR0385836
[Tho54] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86, DOI 10.1007/BF02566923 (French). MR61823
[Wal60] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292311, DOI 10.2307/1970136. MR120654

Department of Mathematics, University of Oslo, Norway
E-mail address: rognes@math.uio.no

