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CHAPTER 6: SMOOTH BORDISM

JOHN ROGNES

See [Tho54], [Ati61], [CF64], [Sto68], [MS74], [MM79, Ch. 1], [May99, Ch. 25].

1. BORDISM CLASSES OF MANIFOLDS

Definition 1.1. Let M and N be closed, smooth d-manifolds. A bordism from M
to N is a compact, smooth (d + 1)-manifold W such that

oW = MUN.

If such a bordism exists, we say that M and IV are cobordant. This defines an
equivalence relation. Let Ny = Qg be the set of cobordism classes of closed,
smooth d-manifolds, and let N, = Q*O denote the associated graded set.

Lemma 1.2. The disjoint union and Cartesian product of manifolds make N, =
09 a graded commutative Fy-algebra.

Proof. The sum and product are given by [M]+ [N] = [M U N] and [M] - [N] =
[M x NJ]. Let I =[0,1]. Since 9(M x I) =2 M U M we have [M] + [M] = 0 for
each M. 0

Theorem 1.3 (ThOHl (1954)) N* = ]FQ[&Z ‘ 7 7é 2j — 1] = Fg[ag, El4, d5, d@, ds, ‘e }
We may also consider manifolds with additional structure, such as an orientation,

an almost complex structure, or a stable framing. We assume that the boundary
of such a manifold again has such a structure, with

A(M x I) = MU (~M).

Here —M denotes the opposite structure of that of M. Moreover, we assume that
the disjoint union and Cartesian product of two such structured manifolds again
has this structure.

Ezxample 1.4. An orientation of a d-manifold Mis equivalent to an orientation of the
tangent R%bundle 7/, or of the normal R™-bundle vy, for any choice of embedding
M — R, Here

E(war)e = R /T, M .

Any two choices of embeddings become isotopic for n sufficiently large, so the stable
class of vy € KO(M) is well-defined. An orientation of vy, amounts to a lift of
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the classifying map M — BO(n) through EO(n)/SO(n) ~ BSO(n).
BSO(n)

b
M —— BO(n)

We write Q4 = ng for the group of cobordism classes of closed, oriented, smooth
d-manifolds, with additive inverse —[M] = [~ M], and €, = Q© for the associated
graded commutative ring.

Theorem 1.5 (Thom, Milnor, Averbuch). Q. [1] = Z[2][y; | i > 1] with |y;| = 4.
The precise structure of the 2-torsion was determined by Wall (1960).

Example 1.6. An almost complex structure on a manifold M is given by a complex
structure on the normal bundle v, for any choice of embedding M — R4+, Here
n = 2m must be even, so vpr = r(n) = ng for some C™-bundle n over M. A complex
structure on vy corresponds to a lift of the classifying map M — BO(2m) through
EO(2m)/U(m) ~ BU(m).
BU(m)
S
M — BO(2m)

We write QY for the group of cobordism classes of almost complex d-manifolds, and
QU for the associated graded commutative ring. Every (smooth, closed) complex
manifold is almost complex, but the converse does not hold for d = 4. Shing-Tung
Yau has conjectured that for even d > 6 each almost complex d-manifold admits a
complex structure. This is unknown for M = S6.

Theorem 1.7 (Milnor (1960), Novikov (1960)). QY = Z[x; | i > 1] with |z;| = 2i.
In particular, each odd-dimensional almost complex manifold is a boundary.

Ezample 1.8. A stable framing of M is given by a trivialization vy = €}, of the
normal bundle of any embedding M — R4+, This is equivalent to giving a stable
trivialization 7as @ €® = €™ for some n. A stable framing of M is equivalent to
giving a nullhomotopy of the classifying map M — BO(n), or a lift through the
contractible space EO(n) ~ B{e}.

EO(n)
M —f/:BO(n)

We write ij for the group of cobordism classes of stably framed d-manifolds, and
Qfr for the associated graded commutative ring.

Theorem 1.9 (Pontryagin (1936/1950)). Qff = .(S) = (Z,2/2,Z/2,...).
((ETC: Other bordism theories. h- and s-cobordism theorems. Exotic spheres.))
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2. BORDISM THEORIES

Following Atiyah (1961) we can realize the rings QO, Q39 QU QI etc. as coef-

ficient rings of multiplicative homology theories Q2 (—), Q3°(-), QU (-), Qff (-) =
™ ((=)+) ete.

Definition 2.1. For a space X, consider maps

o: M — X and 7: N — X

from closed, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that (M, o) is cobordant to (N, 1) if
there exists a map

o W — X

from a compact, smooth (d + 1)-manifold unoriented (resp. oriented, almost com-
plex, stably framed, etc.) W to X, such that W = M UN and ¢|0W = oU7. Let
QF(X) (resp. 25°(X), QY (X), QF(X), etc.) be the set of cobordism classes [M, o]
of such maps o: M — X. Given f: X — Y let f.: Q9(X) — Q(Y) map [M, o]
to [M, fol.

For a pair (X, A) consider maps of pairs

o: (M,0M) — (X, A) and 7: (N,ON) — (X, A)

from compact, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that these are cobordant if there exists
a map of pairs

¢ (W, 0W) — (X, A)

where OW = MUgpVUan N with ¢|OW =2 oUypUT. Let QF (X, A) (resp. Q5°9(X, A),
QY (X, A), QIF(X, A), etc.) be the set of cobordism classes of such maps of pairs.

Given f: (X, A) — (Y, B) let f.: Q9(X,A) — QQ(Y,B) map [M, 0] to [M, fo].

Let 9: Q9(X,A) — QF ,(A) map the bordism class of o: (M,0M) — (X, A) to

the bordism class of o|0M: OM — A.

Proposition 2.2. The functor (X, A) — QZ(X, A) (resp. Q59(X, A), QY (X, A),
O (X, A), etc.) defines a multiplicative homology theory, called unoriented (resp. ori-
ented, almost complex, stably framed, etc.) bordism.

Proof. The operations [M,o] + [N,7] = [M U N,c U7] and —[M,0] = [-M, 0]
give QF(X) a group structure. To prove homotopy invariance use W = M x I.
Transversality for smooth maps implies that there is a natural isomorphism

0F(X,A) = Q9 (X UCA, %),

which implies excision.

For 7: N — Y the operation [M,c] - [N, 7] = [M x N,c x 7] defines a bilinear
pairing Q7 (X) x Q2 (Y) — QZ, (X x Y). In the case Y = x, this makes Q¢ (X)
a (right or left) Q¢-module. There are also relative pairings, compatible with the
boundary homomorphisms, making Q9(—) a multiplicative homology theory.

The oriented, almost complex, stably framed, etc. cases work the same way. [
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3. THOM SPECTRA

Recall that Th(¢) = D(§)/S(§) denotes the Thom complex of a Euclidean vector
bundle £: E — X, and that
Th(& x 1) = Th(&) A Th(n)
if n: F — Y is a second Euclidean vector bundle. In the special case = ¢! over
Y =% we have £ x n = £ @ €' and Th(n) = D'/S° = S! so
Th(¢ @ €') = Th(¢) A ST = £ Th(¢).

For a bundle map

B(¢) —~ E(n)

L,

xX—1 -y,

with £ 2 f*n, we write Th(f): Th(¢) — Th(n) for the induced map of Thom
complexes.

Definition 3.1. Let 4" = g denote the tautological R"-bundle
m: E(Y") = EO(n) xom) R" — BO(n).
Recall that y"T1|BO(n) = 4™ @ ¢!, where we view ¢: BO(n) — BO(n + 1) as the
inclusion of a subspace. Let
_ EO(n) X0(n) D"
EO(n) XO(n) Sn—1
Here O(n) acts on D™/S™~1 22 § as on the one-point compactification R™ U {oo}.

Let MO denote the unoriented Thom spectrum, with n-th space MO,, = MO(n)
and n-th structure map XMO,, - MO,,+1 given by the composite

MO(n) = Th(") =~ EO(n)y Aogm) S" -

o: S Th(y") 2 Th(y" & €') 2 Th(y"+1[BO(n)) =& Th(y"*+1).
Definition 3.2. Let 4™ denote the tautological oriented R™-bundle
m: E(7") = ESO(n) Xs0(n) R" — BSO(n).
Let
MSO(n) = Th(3") = ESO(n)+ Asom) S™ -

Let M SO denote the oriented Thom spectrum, with n-th space M .SO,, = M SO(n)
and n-th structure map XM SO,, - M SO, 1 given by the composite

ot DTh(7") = Th(3" & ') = Th(3"*|BSO()) =¥ Th(7"*").

Definition 3.3. Let 4" = ¢ denote the tautological C"-bundle
m: E(y") = EU(n) xym) C" — BU(n).

Recall that v" " BU(n) = 4™ @ €', where ¢! = ¢/ and we view ¢: BU(n) —
BU(n + 1) as the inclusion of a subspace. Let

- EU(’I’L) XU(n) D2n
- EU(n) XU(n) S2n—1

MU(n) = Th(") = EU(n)+ Augny S
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Here U(n) acts on D?"/S?"~1 22 §27 a5 on the one-point compactification C"U{oo}.
Let MU denote the complex Thom spectrum, with 2n-th space MUs,, = MU (n),
(2n+1)-th space MUy, 41 = MU (n), 2n-th structure map the identity SMUs,,, =
MUsp 41, and (2n 4 1)-th structure map XMUs, 1 = S2M U, — MUy 42 given
by the composite

o: T2 Th(y") = Th(y" @ ¢!) = Th(y"*!|BU(n)) =% Th(y"+1) .

Definition 3.4. The tautological R™-bundle over B{e} = x is m: R® — x, with
Thom complex D"/S"~1 = S". The framed bordism Thom spectrum M{e} has
n-th space M{e}, = S™ and n-th structure map M{e}, — M{e}nt+1 equal to
the identity £S5 = S"*1. Hence M{e} = S is equal to the sphere spectrum.

The Thom spectrum MO (resp. MSO, MU, S, etc.) defines a reduced homology
theory MO, (—) by

MOg(X) = colim Tgyn (MO, A X),
where the colimit is formed over the homomorphisms
Tasn(MOp A X) = Tarni1 S(MO, A X)
> Mgt 1 (MO, A X) Z5 g1 i1(MOpy A X).
The suspension isomorphism 21\7&1()( ) = ]\%dH(EX ) is given by

colim Ty (MOy, A X) — colim Tgyni1S(MO, A X)
=~ colim g4 140 (MO, ANXX).

The associated unreduced homology theory is defined by MO4(X) = ]\%d(X”
and MOd(X, A) = MOd(X U CA)
The bundle map

Hn,m

E(") x E(y™) E(y"tm)

| |

BO(n) x BO(m) 2" BO(n + m)
induces a pairing
MO, A MO, = Th(y") A Th(y™) "85 Th(yn+m) = MOy

that makes MO into a ring spectrum.
Likewise, the Thom spectra M.SO, MU, M{e} = S, etc. are ring spectra that
define multiplicative homology theories M SO, (—), MU,(—), S«(—), etc. Note that

Sa(X) = colim gy, (S™ A Xy) =75 (Xy),

so that S,(—) is given by the unreduced stable homotopy groups.
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4. THE PONTRYAGIN-THOM CONSTRUCTION AND TRANSVERSALITY
Theorem 4.1. There are natural isomorphisms of multiplicative homology theories

09(X,A) = MO, (X, A)

QSO( A) = MSO,(X, A)
07 (X, A) = MU.(X, A)
O (X, A) = 5,(X, A)
etc. In particular
N, =Qf =71, (MO)
Q. = 039 = 7, (MSO)
QY =~ 7, (MU)
Q= 7,(9).

The case of framed bordism is due to Pontryagin (ca. 1936), that of unoriented
and oriented bordism is due to Thom [Tho54].

Proof. We discuss the case (X, A) = (x,0) for complex bordism.

Let [M] € Qg be represented by an almost complex d-manifold M C R4+2", Its
normal bundle vy, is classified by a map g: M — BU(n), which is covered by a
bundle map

B(var) —L> E(y")
I
B

g U(n).

The disc bundle can be embedded as a tubular neighborhood D(vy;) C RI+2" C
S4+2n of M. Let
Sd+2n D(VM)
gaten 2, = = Th(v
ST D\ Soa)) - Star) )
be the Pontryagin—Thom collapse map, taking the complement of the open disc
bundle D(vps) \ S(var) to the base point. The composite

sd+2n 25y, ) 9 TRy = Mo,
determines a homotopy class in

mq(MU) = colim 7449, MUs,, .

Conversely, let [f] € mg(MU) be represented by a map f: S¥2" — MU,, =
Th(+™). It may be deformed slightly to become transverse to the zero-section

z = qso: BU(n) 2% D(y") % Th(y"),
whose normal bundle is isomorphic to y". Let

M= fﬁl(BU(n)) c R4+2n c Sd+2n
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be the preimage of this zero-section, which is then a closed, smooth d-manifold (by
a generalization of the regular level set theorem). Moreover, there is a bundle map

E(var) —2 B(y™)

|

M BU(n),

which implies that vy = (f|M)*(y™) has a complex structure. Hence M is almost
complex, and determines a bordism class in QY.
To complete the proof, one verifies that these two constructions define mutual
inverses N
QY «— ma(MU).
(I

Remark 4.2. Thom worked with smooth (DIFF) manifolds, in order to have transver-
sality available. For piecewise-linear (PL) manifolds, or topological (TOP) mani-
folds in dimension d # 4, transversality will hold in sufficiently large codimension
by results of Williamson (1966) and Kirby—Siebenmann (1977).

See [Swi75, Lem. 14.40] or [May99, §25.5] for the proof that e has degree 1,
which we can state as follows. (In the unoriented case, this must be interpreted
with Fao-coefficients.)

Proposition 4.3. The Hurewicz image of the Pontryagin—Thom collapse map cor-
responds under the Thom isomorphism to the fundamental class of M :
~ ®IJ
Tavon(Th(var) = Hagpan(Th(M)) = Hy(M)
[p] — uh([p]) = [M].

5. UNORIENTED BORDISM

To calculate the commutative Fo-algebra N, = Q9 = 7, (MO), Thom compared
the homology of MO with the homology of spectra X such that 7.(X) is known,
namely (wedge sums of suspensions of ) Eilenberg—MacLane spectra. The argument
was streamlined by Liulevicius, using the multiplicative structure. Note that [Liu62,
(3.27)] is corrected in [Liu68, Prop. 9] and improved by [Swi73, Thm. 1(i)].

Recall that 7, = Fy[Cx | k > 1] with |(] = 2% — 1. Let

H.(MO;F5) = colim Ho (MO Fs)
with the induced &Z.-coaction. The Fy-linear dual
H*(MO; Fy) = lim H**"(MO,; F5)
has the dual «/-action.
Theorem 5.1 ([Thob4], [Liu62]). The o -comodule algebra
H.(MO;Fy) 2 Falay, | m > 1]

is isomorphic to o ® PH,.(MO;Fy), where PH,.(MO;Fy) C H.(MO;Fs) is the
subalgebra of <, -comodule primitives. Here

PH,.(MO;Fy) = Fyla,, | m # 2~ —1],
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with @y, = @y, modulo algebra decomposables for all m # 2F — 1.

Proof. Recall that

is generated as a commutative algebra by the images of the additive generators ay,
of H.(BO(1);F3) = Fa{a,n, | m > 1} under the inclusion RP*> ~ BO(1) — BO.
The colimit over n of the Thom isomorphisms

Uyn O =1 Hayn(MOy;F2) = Hoyn(Th(y");Fa) — H.(BO(n); Fs)
defines a stable Thom isomorphism
®: H,(MO;Fy) — H,(BO;F,).
We first calculate the .o7-coaction on H,,1(MO;;Fy). Note that S(y') =
EO(1) xo(1) S% = FO(1) ~ * is contractible, so in the homotopy cofiber sequence
S(v') = BO(1) = Th(y') = MOy

the zero-section z is a homotopy equivalence. It follows that z, maps a,,+1 €
H, 1 1(BO(1);F2) to the generator z, (1) of Hy,p1(MO;;Fy) that corresponds
to a,, € Hy, (BO(1);F2) under the Thom isomorphism U,1N—, and which therefore
stabilizes to a,, € Hy,(MO;Fs).

~ Za ~ U,Y1ﬁ—
H,11(BO(1);Fy) —— H,11(MOq;Fy) —= H.(BO(1); F2)

o |

Hyin(MO,: F) “o= H.(BO(n); Fs)

| |

H,(MO;Fs) H.(BO;F»)

&

1R

From [Swi73|, see Chapter 2, Lemma 8.3, we know that v: H,(BO(1);F3) —
ot @ H.(BO(1);F2) satisfies

m

V(aerl) = Z(Zn-i_l)mfn ® Ap41,

n=0

where Z = 14+(;+(o+. .. is a formal sum in 7. This implies that v: H,(MO;Fs) —
o, ® H,(MO;TFy) satisfies

m

l/(am) = Z(ZnJrl)m,—n & an )

n=0

where ag = 1. Modulo decomposable products, this equals

(am) Gl1+1®a, ifm=2F-1,
viay) = )
1®apm, otherwise.

Let f: H.(MO;Fy) — Fsla,, | m # 2 — 1] be the algebra homomorphism given by

f(am):{o if m =2k 1,

a,, otherwise.
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The composite

¢: H (MO;Fsy) % of, @ H,(MO;F3) 2L o, @ Fyla, | m # 2% — 1]
is then a left o7.-comodule algebra homomorphism
Folam | m > 1] — Fo[C | k > 1] @ Faan, | m # 28 — 1]

¢(a7rz)5 {Ck@l ifm:Qkil’

satisfying

1® a,, otherwise
modulo decomposables, and is therefore an isomorphism. Let
PH,(MO;Fs) ={x € H(MO;Fs) |v(z) =1®x}

be the subalgebra of «7,-comodule primitives. It maps isomorphically by P¢ to

P(de @ Foldy, | m # 2% — 1)) = Fafa,, | m # 2~ —1],
hence has the form

PH,(MO;Fy) = Fyla,, | m #2F — 1) ¢ H,(MO;F,)
where @,, = a,, modulo decomposables, for each m # 2F — 1. O
Corollary 5.2. H*(MO;F,) = o @ PH*(MO;F2)V is a free &7 -module of finite
type, with basis dual to the monomial basis for PH,(MO;Fy) = Fa[a,, | m # 2F—1].
Theorem 5.3 ([Thob4]). The mod 2 Hurewicz homomorphism

h: 1.(MO) — H.(MO;F5)
maps the Fo-algebra m,(MO) =2 Q9 isomorphically to
PH.(MO;Fy) = Fafa,, | m # 2~ —1].

Proof. Let {a’}; be the monomial basis for PH,(MO;Fs), and let {ay}; be the

dual basis, corresponding to an 2/-module basis for H*(MO;Fs). For each I let
|I| denote the degree of ay, and let

gr: MO — SV HTF,

be a map of spectra representing ay. Let
[[or: MO — [[ =" HF,
I I

be the product of these maps. Since there are only finitely many basis elements
below any given degree, the inclusion

\/ =V HF, = [[ 2! HF,

I I
is an equivalence of spectra. The resulting chain of maps

g: MO — [[ 2" HF, ~ \/ S HF,
I I
induces an isomorphism of /-modules
H*(g;F2): @ H* (2 HF,) = [[ H* (Y HF2) = H*(\/ 2/ HF,; F,)
I I I

9 H*(MO;Fy),
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and can therefore be shown to be an equivalence. It must therefore also induce an
isomorphism in homotopy

7« (g): m(MO) = m(\/ SHIHF,)
I
= P . (S HF,) = Fo{a'}; = PH.(MO;Fy).
I

O

6. COMPLEX BORDISM

To calculate the graded commutative ring QY = 7, (MU), Milnor [Mil60] and
Novikov [Nov60] again compared the homology of MU with the homology of spec-
tra X such that 7,.(X) is known. More precisely, they follow Adams [Ada58] and
resolve MU by a tower of spectra

S Yo Y, S S Yo MU
such that each cofiber
Yip1 — Y SNy RN YY1

is a wedge sum of suspensions of Eilenberg—MacLane spectra. This leads to a
case of the Adams spectral sequence. A posteriori, this amounts to a comparison
with (wedge sums of suspensions of) the Brown—Peterson spectra BP, one for each
prime p.

We discuss the odd-primary case (the case p = 2 is similar), so that

=M [120)@Fp[& |1 >1]
with |7;] = 2p* — 1 and [¢;| = 2p’ — 2. Note that
E=A(111>0)
is a primitively generated quotient bialgebra of 7, and
P.=Fl& |i>1] = .0 F,
is a sub bialgebra of «7,. Dually,
E=AQ;]i>0)
is a primitively generated sub bialgebra of <7, and
P = R F)y

is a quotient bialgebra, sometimes denoted & = &7 //&. The classes Q; € & C
are called the Milnor primitives, and can be iteratively defined by Qo = S (the
Bockstein homomorphism) and

Qit1 = [P", Qi = PP Q; — Q;P"
for ¢ > 0.
Let
H,(MU;F,) = CO}LimH*J’,n(MUn;Fp)

with the induced #-coaction. The F,-linear dual
H*(MU;F,) = limH*+"(MUn;IFp)

has the dual &/-action.
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Theorem 6.1. The <, -comodule algebra

H,(MU;F,) 2 Fplby, | m > 1]
is isomorphic to &, @ PH,(MU;F,), where PH,(MU;F,) C H.(MU;F),) is the
subalgebra of o, -comodule primitives. Here

PH,(MU;F,) = IFp[l;m | m #p" - 1],

with by, = by, modulo algebra decomposables for all m # p* — 1.
Proof. Recall that

H,(BU;F,) =F,[by, | m > 1]
is generated as a commutative algebra by the images of the additive generators S,
of H,(BU(1);F,) = Fp{Bm | m > 1} under the inclusion CP>* ~ BU(1) — BU.
The colimit over n of the Thom isomorphisms

Uyn O —: Hyyon(MUsy; Fp) = Hoyon(Th(y"); F,) — H.(BU(n);F,)
defines a stable Thom isomorphism
®: H,(MU;F,) — H,(BU;F,).

We first calculate the -coaction on H,yo(MUy;F,). Note that S(y') =
EU(1) xy (1) Sl = FU(1) ~ # is contractible, so in the homotopy cofiber sequence
S(v') = BU(1) = Th(y") = MU,
tpe zero-section z is a homotopy equivalence. ~It follows that z, maps Bn+1 €
Hopy2(BU(1);F)p) to the generator z,(Bm+1) of Hapyo(MUs;F,) that corresponds

to B € Hap (BU(1);Fp) under the Thom isomorphism U,1N—, and which therefore
stabilizes to by, € Hop, (MU;F)).

Zx ~ -

~ U,
Hy12(BU(1);Fp) —— Hiyo (MU Fp) —— H.(BU(1); Fp)

]

~ U. -
H*+2n(MU2n; IFp) % H* (BU(’R), ]FP)

| |

H,.(MU;F,) H.(BU;F,)

=]

R

From [Swi73, Thm. 1(ii)] we know that v: H.(BU(1);F,) — #.QH,.(BU(1);F,)

satisfies
m

V(Bms1) = > (X" )am 20 @ Bot1 -

n=0
where X = 14+& +&+.... This implies that v: H,(MU;F,) — < @ H,(MU;F,)

satisfies
m

v(bm) = Z(XnJrl)Qm—Qn ® by,

n=0
where by = 1. Modulo decomposable products, this equals

V(bn) = ®14+1®0b, ifm=pF—1,
™) ® by, otherwise.
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In particular, the &7.-coaction factors as
H,(MU;F,) % 2, ® H.(MU;F,) C o, ® H,(MU;F,),

making H,(MU;F,) a &,-comodule algebra
Let f: H.(MU;F,) — F,[by, | m # p* — 1] be the algebra homomorphism given

by
0 ifm=pF-1,
b)) =< -
f(bm) {bm otherwise.

The composite
¢: H,(MU;F,) -2 P, @ H,(MU;F,) 24 2, @ Fp[by | m # pF — 1]
is then a left #,-comodule algebra homomorphism

Fplbm | m > 1] — Fpléx | k2 1] @ Fylbm | m # p* — 1]

®1 ifm=pF—1,
Blba) = 4% y
1® b, otherwise

satisfying

modulo decomposables, and is therefore an isomorphism. Let
H.(MU;F,) ={z € H.(MU;F,) | v(z) =1® z}

be the subalgebra of @.-comodule primitives, which is equal to the subalgebra of
Z~comodule primitives. It maps isomorphically by P¢ to

P(P, @Fplo [ m #p* —1]) = Fylbm | m # p* — 1],
hence has the form
PH.(MU;F,) = Fylby, | m # p* —1] C H.(MU;F,)
where by, = b,, modulo decomposables, for each m # p* — 1. ([
Recall that & = &7 Q¢ F, = &/ //& is a cyclic &/-module algebra.

Corollary 6.2. H*(MU;F,) =~ & ® PH*(MU;F,)" is a free Z-module of finite
type, with basis dual to the monomial basis for PH,(MU;F,) = Fpy[by, | m # p*—1].

Theorem 6.3.
T (MU) = Zplvs | i > 1] Qz, Z plbm | m # p* —1]

where |v;| = 2p' — 2 for each i > 1, and the mod p Hurewicz homomorphism
h: 1 (MU) — H.(MU;F,) maps m.(MU,') onto PH.(MU;F,).

Proof. This is easiest seen using the mod p Adarps spectral sequence. Let {51 +r be
the monomial basis for PH,(MU;F,), and let {b)}; be the dual basis. We obtain
isomorphisms of <Z,-comodule algebras

L(MU;F,) @2'”9}

and of &7-module coalgebras

PP = H (MU;F,).
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Hence the Adams spectral sequence, in its homological form
Ey' = Ext) (Fp, H.(MU;F,)) =, m—s(MU))
or its cohomological form
Ey' = Exty/ (H*(MU;Fp),Fy) =, m—s(MU))
is an algebra spectral sequence with Fs-term
Ey" = Exty) (Fp, #.) @ PH.(MU;F,) = Ext (#,F,) @ PH.(MU;F)).
Since & is a bialgebra and & a sub bialgebra, [MM65, Thm. 4.4, Thm. 4.7] imply

that & is free a left &£-module, and @ is cofree as a left &,-comodule, so there are
change-of-rings isomorphisms

EXtZZ(Fp, P,) = EthZ (Fp, o Og, Fp) = Ext*g’** (Fp,Fp)

Ext? (2,F,) = Ext}) (& /)&, Fp) = Exty" (Fp, Fp) .
Since & = A(7; |4 > 0) and & = A(Q; | i > 0), standard homological algebra
shows that

EXt}’:(vaFp) = Eth;*(vaFp) =Fplgi | i > 0]
with ¢; € Ext!?P i_l(IFp,IFp) representing an extension detected by ;. Hence

By 2 TFylg; | i > 0] ® PH.(MU;F,)

is concentrated in even topological degrees t —s. There is therefore no room for non-
zero differentials, since these decrease the topological degree by 1. Hence Ey* =
E%r*. Since the Eoo-term is free as a graded commutative F,-algebra, there can only

be additive extensions, with multiplication by p in the abutment being represented
by multiplication by ¢¢ in the Fo-term, and it follows that

T (MUD) = Zplvs | i > 1] Qg Zplbm | m # p* — 1]
with v; in degree |v;| = 2p* — 2 being detected by g¢;, for each i > 1. O

Note that as a Z,-algebra, m, (M U;\) has one polynomial generator in each pos-

itive even degree 2m, which is of the form v; if 2m = 2p’ — 2, and of the form b
otherwise. Serre proved that 7.(S) ® Q = Q, so

T (MUg) = m.(MU) ® Q = H,(MU;Q) = H,(BU;Q) = Q[by, | k > 1]

is also polynomial on one generator in each positive even degree. Further work with
the arithmetic square

MU MUg

L]

MUN —— (MUM)q,

where MUgp = MUI1/2,...,1/p,...] denotes the rationalization of MU and MU =
Hp M U;\ denotes its profinite completion, leads to the following integral result.

Theorem 6.4 ([Mil60], [Nov60]).
OV = 71,(MU) 2 Z[w; | i > 1]

where |x;| = 2i for each i > 1.
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Theorem 6.5. The Hurewicz homomorphism
h: m(MU) — H,.(MU)

satisfies

pby if m = pt — 1 for some prime p,
hxy,) =

by otherwise,

modulo decomposables, for each m > 1.

Note that m 4+ 1 > 2 can be equal to a prime power p* for at most one prime p.

7. FRAMED BORDISM

The o7 -comodule algebra H,(S;F,) = F, has the trivial coaction (via the coaug-
mentation 7: F, — &%), and dually the </-module coalgebra H*(S;F,) = F,, has
the trivial action (via the augmentation e: &/ — F,).

Theorem 7.1. The mod p Adams spectral sequence

Ey' = Ext) (Fp,Fp) = ExtS) (Fp, F,) =5 m—s(S))

converges to the p-completion of QI = 7,(S).

This spectral sequence is only partially understood.
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