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CHAPTER 6: SMOOTH BORDISM

JOHN ROGNES

See [Tho54], [Ati61], [CF64], [Sto68], [MS74], [MM79, Ch. 1], [May99, Ch. 25].

1. Bordism classes of manifolds

Definition 1.1. Let M and N be closed, smooth d-manifolds. A bordism from M
to N is a compact, smooth (d+ 1)-manifold W such that

∂W ∼= M tN .

If such a bordism exists, we say that M and N are cobordant. This defines an
equivalence relation. Let Nd = ΩOd be the set of cobordism classes of closed,
smooth d-manifolds, and let N∗ = ΩO∗ denote the associated graded set.

Lemma 1.2. The disjoint union and Cartesian product of manifolds make N∗ =
ΩO∗ a graded commutative F2-algebra.

Proof. The sum and product are given by [M ] + [N ] = [M t N ] and [M ] · [N ] =
[M × N ]. Let I = [0, 1]. Since ∂(M × I) ∼= M tM we have [M ] + [M ] = 0 for
each M . �

Theorem 1.3 (Thom (1954)). N∗ ∼= F2[ãi | i 6= 2j − 1] = F2[ã2, ã4, ã5, ã6, ã8, . . . ]
with |ãi| = i.

We may also consider manifolds with additional structure, such as an orientation,
an almost complex structure, or a stable framing. We assume that the boundary
of such a manifold again has such a structure, with

∂(M × I) ∼= M t (−M) .

Here −M denotes the opposite structure of that of M . Moreover, we assume that
the disjoint union and Cartesian product of two such structured manifolds again
has this structure.

Example 1.4. An orientation of a d-manifold M is equivalent to an orientation of the
tangent Rd-bundle τM , or of the normal Rn-bundle νM for any choice of embedding
M → Rd+n. Here

E(νM )x = Rd+n/TxM .

Any two choices of embeddings become isotopic for n sufficiently large, so the stable

class of νM ∈ K̃O(M) is well-defined. An orientation of νM amounts to a lift of

Date: May 11th.

1
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the classifying map M → BO(n) through EO(n)/SO(n) ' BSO(n).

BSO(n)

����
M

f
//

g
;;

BO(n)

We write Ωd = ΩSOd for the group of cobordism classes of closed, oriented, smooth
d-manifolds, with additive inverse −[M ] = [−M ], and Ω∗ = ΩSO∗ for the associated
graded commutative ring.

Theorem 1.5 (Thom, Milnor, Averbuch). Ω∗[
1
2 ] ∼= Z[ 1

2 ][yi | i ≥ 1] with |yi| = 4i.

The precise structure of the 2-torsion was determined by Wall (1960).

Example 1.6. An almost complex structure on a manifold M is given by a complex
structure on the normal bundle νM , for any choice of embedding M → Rd+n. Here
n = 2m must be even, so νM = r(η) = ηR for some Cm-bundle η over M . A complex
structure on νM corresponds to a lift of the classifying map M → BO(2m) through
EO(2m)/U(m) ' BU(m).

BU(m)

r
����

M
f
//

g
;;

BO(2m)

We write ΩUd for the group of cobordism classes of almost complex d-manifolds, and
ΩU∗ for the associated graded commutative ring. Every (smooth, closed) complex
manifold is almost complex, but the converse does not hold for d = 4. Shing-Tung
Yau has conjectured that for even d ≥ 6 each almost complex d-manifold admits a
complex structure. This is unknown for M = S6.

Theorem 1.7 (Milnor (1960), Novikov (1960)). ΩU∗
∼= Z[xi | i ≥ 1] with |xi| = 2i.

In particular, each odd-dimensional almost complex manifold is a boundary.

Example 1.8. A stable framing of M is given by a trivialization νM ∼= εnM of the
normal bundle of any embedding M → Rd+n. This is equivalent to giving a stable
trivialization τM ⊕ εn ∼= εd+n for some n. A stable framing of M is equivalent to
giving a nullhomotopy of the classifying map M → BO(n), or a lift through the
contractible space EO(n) ' B{e}.

EO(n)

π
����

M
f
//

g
<<

BO(n)

We write Ωfr
d for the group of cobordism classes of stably framed d-manifolds, and

Ωfr
∗ for the associated graded commutative ring.

Theorem 1.9 (Pontryagin (1936/1950)). Ωfr
∗
∼= π∗(S) = (Z,Z/2,Z/2, . . . ).

((ETC: Other bordism theories. h- and s-cobordism theorems. Exotic spheres.))
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2. Bordism theories

Following Atiyah (1961) we can realize the rings ΩO∗ , ΩSO∗ , ΩU∗ , Ωfr
∗ etc. as coef-

ficient rings of multiplicative homology theories ΩO∗ (−), ΩSO∗ (−), ΩU∗ (−), Ωfr
∗ (−) =

πS∗ ((−)+) etc.

Definition 2.1. For a space X, consider maps

σ : M −→ X and τ : N −→ X

from closed, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that (M,σ) is cobordant to (N, τ) if
there exists a map

φ : W −→ X

from a compact, smooth (d + 1)-manifold unoriented (resp. oriented, almost com-
plex, stably framed, etc.) W to X, such that ∂W ∼= M tN and φ|∂W ∼= σt τ . Let
ΩOd (X) (resp. ΩSOd (X), ΩUd (X), Ωfr

d (X), etc.) be the set of cobordism classes [M,σ]
of such maps σ : M → X. Given f : X → Y let f∗ : ΩOd (X) → ΩOd (Y ) map [M,σ]
to [M,fσ].

For a pair (X,A) consider maps of pairs

σ : (M,∂M) −→ (X,A) and τ : (N, ∂N) −→ (X,A)

from compact, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that these are cobordant if there exists
a map of pairs

φ : (W,∂W ) −→ (X,A)

where ∂W ∼= M∪∂MV ∪∂NN with φ|∂W ∼= σ∪ψ∪τ . Let ΩOd (X,A) (resp. ΩSOd (X,A),
ΩUd (X,A), Ωfr

d (X,A), etc.) be the set of cobordism classes of such maps of pairs.
Given f : (X,A) → (Y,B) let f∗ : ΩOd (X,A) → ΩOd (Y,B) map [M,σ] to [M,fσ].
Let ∂ : ΩOd (X,A) → ΩOd−1(A) map the bordism class of σ : (M,∂M) → (X,A) to
the bordism class of σ|∂M : ∂M → A.

Proposition 2.2. The functor (X,A) 7→ ΩO∗ (X,A) (resp. ΩSOd (X,A), ΩUd (X,A),
Ωfr
d (X,A), etc.) defines a multiplicative homology theory, called unoriented (resp. ori-

ented, almost complex, stably framed, etc.) bordism.

Proof. The operations [M,σ] + [N, τ ] = [M t N, σ t τ ] and −[M,σ] = [−M,σ]
give ΩOd (X) a group structure. To prove homotopy invariance use W = M × I.
Transversality for smooth maps implies that there is a natural isomorphism

ΩOd (X,A) ∼= ΩOd (X ∪ CA, ∗) ,

which implies excision.
For τ : N → Y the operation [M,σ] · [N, τ ] = [M × N, σ × τ ] defines a bilinear

pairing ΩOd (X) × ΩOe (Y ) → ΩOd+e(X × Y ). In the case Y = ∗, this makes ΩO∗ (X)

a (right or left) ΩO∗ -module. There are also relative pairings, compatible with the
boundary homomorphisms, making ΩO∗ (−) a multiplicative homology theory.

The oriented, almost complex, stably framed, etc. cases work the same way. �
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3. Thom spectra

Recall that Th(ξ) = D(ξ)/S(ξ) denotes the Thom complex of a Euclidean vector
bundle ξ : E → X, and that

Th(ξ × η) ∼= Th(ξ) ∧ Th(η)

if η : F → Y is a second Euclidean vector bundle. In the special case η = ε1 over
Y = ∗ we have ξ × η = ξ ⊕ ε1 and Th(η) = D1/S0 ∼= S1, so

Th(ξ ⊕ ε1) ∼= Th(ξ) ∧ S1 = Σ Th(ξ) .

For a bundle map

E(ξ)
f̂ //

��

E(η)

��
X

f // Y ,

with ξ ∼= f∗η, we write Th(f) : Th(ξ) → Th(η) for the induced map of Thom
complexes.

Definition 3.1. Let γn = γnR denote the tautological Rn-bundle

π : E(γn) = EO(n)×O(n) Rn −→ BO(n) .

Recall that γn+1|BO(n) ∼= γn ⊕ ε1, where we view ι : BO(n) → BO(n + 1) as the
inclusion of a subspace. Let

MO(n) = Th(γn) =
EO(n)×O(n) D

n

EO(n)×O(n) Sn−1
∼= EO(n)+ ∧O(n) S

n .

Here O(n) acts on Dn/Sn−1 ∼= Sn as on the one-point compactification Rn ∪ {∞}.
Let MO denote the unoriented Thom spectrum, with n-th space MOn = MO(n)
and n-th structure map ΣMOn →MOn+1 given by the composite

σ : Σ Th(γn) ∼= Th(γn ⊕ ε1) ∼= Th(γn+1|BO(n))
Th(ι)−→ Th(γn+1) .

Definition 3.2. Let γ̃n denote the tautological oriented Rn-bundle

π : E(γ̃n) = ESO(n)×SO(n) Rn −→ BSO(n) .

Let

MSO(n) = Th(γ̃n) ∼= ESO(n)+ ∧SO(n) S
n .

Let MSO denote the oriented Thom spectrum, with n-th space MSOn = MSO(n)
and n-th structure map ΣMSOn →MSOn+1 given by the composite

σ : Σ Th(γ̃n) ∼= Th(γ̃n ⊕ ε1) ∼= Th(γ̃n+1|BSO(n))
Th(ι)−→ Th(γ̃n+1) .

Definition 3.3. Let γn = γnC denote the tautological Cn-bundle

π : E(γn) = EU(n)×U(n) Cn −→ BU(n) .

Recall that γn+1|BU(n) ∼= γn ⊕ ε1, where ε1 = ε1C and we view ι : BU(n) →
BU(n+ 1) as the inclusion of a subspace. Let

MU(n) = Th(γn) =
EU(n)×U(n) D

2n

EU(n)×U(n) S2n−1
∼= EU(n)+ ∧U(n) S

2n .
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Here U(n) acts onD2n/S2n−1 ∼= S2n as on the one-point compactification Cn∪{∞}.
Let MU denote the complex Thom spectrum, with 2n-th space MU2n = MU(n),
(2n+1)-th space MU2n+1 = ΣMU(n), 2n-th structure map the identity ΣMU2n =
MU2n+1, and (2n + 1)-th structure map ΣMU2n+1 = Σ2MU2n → MU2n+2 given
by the composite

σ : Σ2 Th(γn) ∼= Th(γn ⊕ ε1) ∼= Th(γn+1|BU(n))
Th(ι)−→ Th(γn+1) .

Definition 3.4. The tautological Rn-bundle over B{e} = ∗ is π : Rn → ∗, with
Thom complex Dn/Sn−1 ∼= Sn. The framed bordism Thom spectrum M{e} has
n-th space M{e}n = Sn and n-th structure map ΣM{e}n → M{e}n+1 equal to
the identity ΣSn = Sn+1. Hence M{e} = S is equal to the sphere spectrum.

The Thom spectrum MO (resp. MSO, MU , S, etc.) defines a reduced homology
theory MO∗(−) by

M̃Od(X) = colim
n

πd+n(MOn ∧X) ,

where the colimit is formed over the homomorphisms

πd+n(MOn ∧X)
Σ−→ πd+n+1Σ(MOn ∧X)

∼= πd+n+1(ΣMOn ∧X)
σ∗−→ πd+n+1(MOn+1 ∧X) .

The suspension isomorphism ΣM̃Od(X) ∼= M̃Od+1(ΣX) is given by

colim
n

πd+n(MOn ∧X)
∼=−→ colim

n
πd+n+1Σ(MOn ∧X)

∼= colim
n

πd+1+n(MOn ∧ ΣX) .

The associated unreduced homology theory is defined by MOd(X) = M̃Od(X+)

and MOd(X,A) = M̃Od(X ∪ CA).
The bundle map

E(γn)× E(γm)
µ̂n,m //

��

E(γn+m)

��
BO(n)×BO(m)

µn,m // BO(n+m)

induces a pairing

MOn ∧MOm = Th(γn) ∧ Th(γm)
Th(µn,m)−→ Th(γn+m) = MOn+m

that makes MO into a ring spectrum.
Likewise, the Thom spectra MSO, MU , M{e} = S, etc. are ring spectra that

define multiplicative homology theories MSO∗(−), MU∗(−), S∗(−), etc. Note that

Sd(X) = colim
n

πd+n(Sn ∧X+) ∼= πSd (X+) ,

so that S∗(−) is given by the unreduced stable homotopy groups.
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4. The Pontryagin–Thom construction and transversality

Theorem 4.1. There are natural isomorphisms of multiplicative homology theories

ΩO∗ (X,A) ∼= MO∗(X,A)

ΩSO∗ (X,A) ∼= MSO∗(X,A)

ΩU∗ (X,A) ∼= MU∗(X,A)

Ωfr
∗ (X,A) ∼= S∗(X,A)

etc. In particular

N∗ = ΩO∗
∼= π∗(MO)

Ω∗ = ΩSO∗
∼= π∗(MSO)

ΩU∗
∼= π∗(MU)

Ωfr
∗
∼= π∗(S) .

The case of framed bordism is due to Pontryagin (ca. 1936), that of unoriented
and oriented bordism is due to Thom [Tho54].

Proof. We discuss the case (X,A) = (∗, ∅) for complex bordism.
Let [M ] ∈ ΩUd be represented by an almost complex d-manifold M ⊂ Rd+2n. Its

normal bundle νM is classified by a map g : M → BU(n), which is covered by a
bundle map

E(νM )
ĝ //

��

E(γn)

��
M

g // BU(n) .

The disc bundle can be embedded as a tubular neighborhood D(νM ) ⊂ Rd+2n ⊂
Sd+2n of M . Let

Sd+2n ℘−→ Sd+2n

Sd+2n \ (D(νM ) \ S(νM ))
∼=
D(νM )

S(νM )
= Th(νM )

be the Pontryagin–Thom collapse map, taking the complement of the open disc
bundle D(νM ) \ S(νM ) to the base point. The composite

Sd+2n ℘−→ Th(νM )
Th(g)−→ Th(γn) = MU2n

determines a homotopy class in

πd(MU) = colim
n

πd+2nMU2n .

Conversely, let [f ] ∈ πd(MU) be represented by a map f : Sd+2n → MU2n =
Th(γn). It may be deformed slightly to become transverse to the zero-section

z = qs0 : BU(n)
s0−→ D(γn)

q−→ Th(γn) ,

whose normal bundle is isomorphic to γn. Let

M = f−1(BU(n)) ⊂ Rd+2n ⊂ Sd+2n
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be the preimage of this zero-section, which is then a closed, smooth d-manifold (by
a generalization of the regular level set theorem). Moreover, there is a bundle map

E(νM )
f̂ //

��

E(γn)

��
M

f |M // BU(n) ,

which implies that νM ∼= (f |M)∗(γn) has a complex structure. Hence M is almost
complex, and determines a bordism class in ΩUd .

To complete the proof, one verifies that these two constructions define mutual
inverses

ΩUd
∼=←→ πd(MU) .

�

Remark 4.2. Thom worked with smooth (DIFF) manifolds, in order to have transver-
sality available. For piecewise-linear (PL) manifolds, or topological (TOP) mani-
folds in dimension d 6= 4, transversality will hold in sufficiently large codimension
by results of Williamson (1966) and Kirby–Siebenmann (1977).

See [Swi75, Lem. 14.40] or [May99, §25.5] for the proof that ℘ has degree 1,
which we can state as follows. (In the unoriented case, this must be interpreted
with F2-coefficients.)

Proposition 4.3. The Hurewicz image of the Pontryagin–Thom collapse map cor-
responds under the Thom isomorphism to the fundamental class of M :

πd+2n(Th(νM ))
h−→ H̃d+2n(Th(M))

Φν∼= Hd(M)

[℘] 7−→ Φνh([℘]) = [M ] .

5. Unoriented bordism

To calculate the commutative F2-algebra N∗ = ΩO∗
∼= π∗(MO), Thom compared

the homology of MO with the homology of spectra X such that π∗(X) is known,
namely (wedge sums of suspensions of) Eilenberg–MacLane spectra. The argument
was streamlined by Liulevicius, using the multiplicative structure. Note that [Liu62,
(3.27)] is corrected in [Liu68, Prop. 9] and improved by [Swi73, Thm. 1(i)].

Recall that A∗ = F2[ζk | k ≥ 1] with |ζk| = 2k − 1. Let

H∗(MO;F2) = colim
n

H∗+n(MOn;F2) ,

with the induced A∗-coaction. The F2-linear dual

H∗(MO;F2) = lim
n
H∗+n(MOn;F2)

has the dual A -action.

Theorem 5.1 ([Tho54], [Liu62]). The A∗-comodule algebra

H∗(MO;F2) ∼= F2[am | m ≥ 1]

is isomorphic to A∗ ⊗ PH∗(MO;F2), where PH∗(MO;F2) ⊂ H∗(MO;F2) is the
subalgebra of A∗-comodule primitives. Here

PH∗(MO;F2) ∼= F2[ãm | m 6= 2k − 1] ,
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with ãm ≡ am modulo algebra decomposables for all m 6= 2k − 1.

Proof. Recall that

H∗(BO;F2) = F2[am | m ≥ 1]

is generated as a commutative algebra by the images of the additive generators αm
of H̃∗(BO(1);F2) = F2{αm | m ≥ 1} under the inclusion RP∞ ' BO(1) → BO.
The colimit over n of the Thom isomorphisms

Uγn ∩ − : H̃∗+n(MOn;F2) = H̃∗+n(Th(γn);F2)
∼=−→ H∗(BO(n);F2)

defines a stable Thom isomorphism

Φ: H∗(MO;F2)
∼=−→ H∗(BO;F2) .

We first calculate the A∗-coaction on H̃∗+1(MO1;F2). Note that S(γ1) =
EO(1)×O(1) S

0 ∼= EO(1) ' ∗ is contractible, so in the homotopy cofiber sequence

S(γ1)
π−→ BO(1)

z−→ Th(γ1) = MO1

the zero-section z is a homotopy equivalence. It follows that z∗ maps αm+1 ∈
H̃m+1(BO(1);F2) to the generator z∗(αm+1) of H̃m+1(MO1;F2) that corresponds
to αm ∈ Hm(BO(1);F2) under the Thom isomorphism Uγ1∩−, and which therefore
stabilizes to am ∈ Hm(MO;F2).

H̃∗+1(BO(1);F2)
z∗
∼=
// H̃∗+1(MO1;F2)

Uγ1∩−
∼=
//

��

H∗(BO(1);F2)

��
H̃∗+n(MOn;F2)

Uγn∩−
∼=
//

��

H∗(BO(n);F2)

��
H∗(MO;F2)

Φ
∼=

// H∗(BO;F2)

From [Swi73], see Chapter 2, Lemma 8.3, we know that ν : H∗(BO(1);F2) →
A∗ ⊗H∗(BO(1);F2) satisfies

ν(αm+1) =

m∑
n=0

(Zn+1)m−n ⊗ αn+1 ,

where Z = 1+ζ1+ζ2+. . . is a formal sum in A∗. This implies that ν : H∗(MO;F2)→
A∗ ⊗H∗(MO;F2) satisfies

ν(am) =

m∑
n=0

(Zn+1)m−n ⊗ an ,

where a0 = 1. Modulo decomposable products, this equals

ν(am) ≡

{
ζk ⊗ 1 + 1⊗ am if m = 2k − 1,

1⊗ am otherwise.

Let f : H∗(MO;F2)→ F2[ām | m 6= 2k−1] be the algebra homomorphism given by

f(am) =

{
0 if m = 2k − 1,

ām otherwise.
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The composite

φ : H∗(MO;F2)
ν−→ A∗ ⊗H∗(MO;F2)

1⊗f−→ A∗ ⊗ F2[ām | m 6= 2k − 1]

is then a left A∗-comodule algebra homomorphism

F2[am | m ≥ 1] −→ F2[ζk | k ≥ 1]⊗ F2[ām | m 6= 2k − 1]

satisfying

φ(am) ≡

{
ζk ⊗ 1 if m = 2k − 1,

1⊗ ām otherwise

modulo decomposables, and is therefore an isomorphism. Let

PH∗(MO;F2) = {x ∈ H∗(MO;F2) | ν(x) = 1⊗ x}
be the subalgebra of A∗-comodule primitives. It maps isomorphically by Pφ to

P (A∗ ⊗ F2[ām | m 6= 2k − 1]) = F2[ām | m 6= 2k − 1] ,

hence has the form

PH∗(MO;F2) = F2[ãm | m 6= 2k − 1] ⊂ H∗(MO;F2)

where ãm ≡ am modulo decomposables, for each m 6= 2k − 1. �

Corollary 5.2. H∗(MO;F2) ∼= A ⊗ PH∗(MO;F2)∨ is a free A -module of finite
type, with basis dual to the monomial basis for PH∗(MO;F2) = F2[ãm | m 6= 2k−1].

Theorem 5.3 ([Tho54]). The mod 2 Hurewicz homomorphism

h : π∗(MO) −→ H∗(MO;F2)

maps the F2-algebra π∗(MO) ∼= ΩO∗ isomorphically to

PH∗(MO;F2) = F2[ãm | m 6= 2k − 1] .

Proof. Let {ãI}I be the monomial basis for PH∗(MO;F2), and let {ã∨I }I be the
dual basis, corresponding to an A -module basis for H∗(MO;F2). For each I let
|I| denote the degree of ã∨I , and let

gI : MO −→ Σ|I|HF2

be a map of spectra representing ã∨I . Let∏
I

gI : MO −→
∏
I

Σ|I|HF2

be the product of these maps. Since there are only finitely many basis elements
below any given degree, the inclusion∨

I

Σ|I|HF2
'−→

∏
I

Σ|I|HF2

is an equivalence of spectra. The resulting chain of maps

g : MO −→
∏
I

Σ|I|HF2 '
∨
I

Σ|I|HF2

induces an isomorphism of A -modules

H∗(g;F2) :
⊕
I

H∗(Σ|I|HF2) ∼=
∏
I

H∗(Σ|I|HF2) = H∗(
∨
I

Σ|I|HF2;F2)

g∗−→ H∗(MO;F2) ,
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and can therefore be shown to be an equivalence. It must therefore also induce an
isomorphism in homotopy

π∗(g) : π∗(MO)
∼=−→ π∗(

∨
I

Σ|I|HF2)

∼=
⊕
I

π∗(Σ
|I|HF2) = F2{ãI}I = PH∗(MO;F2) .

�

6. Complex bordism

To calculate the graded commutative ring ΩU∗ = π∗(MU), Milnor [Mil60] and
Novikov [Nov60] again compared the homology of MU with the homology of spec-
tra X such that π∗(X) is known. More precisely, they follow Adams [Ada58] and
resolve MU by a tower of spectra

. . .
α−→ Ys+1

α−→ Ys
α−→ . . .

α−→ Y0 'MU

such that each cofiber

Ys+1
α−→ Ys

β−→ Ks
γ−→ ΣYs+1

is a wedge sum of suspensions of Eilenberg–MacLane spectra. This leads to a
case of the Adams spectral sequence. A posteriori, this amounts to a comparison
with (wedge sums of suspensions of) the Brown–Peterson spectra BP , one for each
prime p.

We discuss the odd-primary case (the case p = 2 is similar), so that

A∗ = Λ(τi | i ≥ 0)⊗ Fp[ξi | i ≥ 1]

with |τi| = 2pi − 1 and |ξi| = 2pi − 2. Note that

E∗ = Λ(τi | i ≥ 0)

is a primitively generated quotient bialgebra of A∗, and

P∗ = Fp[ξi | i ≥ 1] = A∗ �E∗ Fp
is a sub bialgebra of A∗. Dually,

E = Λ(Qi | i ≥ 0)

is a primitively generated sub bialgebra of A , and

P = A ⊗E Fp
is a quotient bialgebra, sometimes denoted P = A //E . The classes Qi ∈ E ⊂ A
are called the Milnor primitives, and can be iteratively defined by Q0 = β (the
Bockstein homomorphism) and

Qi+1 = [P p
i

, Qi] = P p
i

Qi −QiP p
i

for i ≥ 0.
Let

H∗(MU ;Fp) = colim
n

H∗+n(MUn;Fp)

with the induced A∗-coaction. The Fp-linear dual

H∗(MU ;Fp) = lim
n
H∗+n(MUn;Fp)

has the dual A -action.
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Theorem 6.1. The A∗-comodule algebra

H∗(MU ;Fp) ∼= Fp[bm | m ≥ 1]

is isomorphic to P∗ ⊗ PH∗(MU ;Fp), where PH∗(MU ;Fp) ⊂ H∗(MU ;Fp) is the
subalgebra of A∗-comodule primitives. Here

PH∗(MU ;Fp) ∼= Fp[b̃m | m 6= pk − 1] ,

with b̃m ≡ bm modulo algebra decomposables for all m 6= pk − 1.

Proof. Recall that
H∗(BU ;Fp) = Fp[bm | m ≥ 1]

is generated as a commutative algebra by the images of the additive generators βm
of H̃∗(BU(1);Fp) = Fp{βm | m ≥ 1} under the inclusion CP∞ ' BU(1) → BU .
The colimit over n of the Thom isomorphisms

Uγn ∩ − : H̃∗+2n(MU2n;Fp) = H̃∗+2n(Th(γn);Fp)
∼=−→ H∗(BU(n);Fp)

defines a stable Thom isomorphism

Φ: H∗(MU ;Fp)
∼=−→ H∗(BU ;Fp) .

We first calculate the A∗-coaction on H̃∗+2(MU2;Fp). Note that S(γ1) =
EU(1)×U(1) S

1 ∼= EU(1) ' ∗ is contractible, so in the homotopy cofiber sequence

S(γ1)
π−→ BU(1)

z−→ Th(γ1) = MU2

the zero-section z is a homotopy equivalence. It follows that z∗ maps βm+1 ∈
H̃2m+2(BU(1);Fp) to the generator z∗(βm+1) of H̃2m+2(MU2;Fp) that corresponds
to βm ∈ H2m(BU(1);Fp) under the Thom isomorphism Uγ1∩−, and which therefore
stabilizes to bm ∈ H2m(MU ;Fp).

H̃∗+2(BU(1);Fp)
z∗
∼=
// H̃∗+2(MU2;Fp)

Uγ1∩−
∼=
//

��

H∗(BU(1);Fp)

��
H̃∗+2n(MU2n;Fp)

Uγn∩−
∼=
//

��

H∗(BU(n);Fp)

��
H∗(MU ;Fp)

Φ
∼=

// H∗(BU ;Fp)

From [Swi73, Thm. 1(ii)] we know that ν : H∗(BU(1);Fp)→ A∗⊗H∗(BU(1);Fp)
satisfies

ν(βm+1) =

m∑
n=0

(Xn+1)2m−2n ⊗ βn+1 .

where X = 1+ξ1 +ξ2 + . . . . This implies that ν : H∗(MU ;Fp)→ A∗⊗H∗(MU ;Fp)
satisfies

ν(bm) =

m∑
n=0

(Xn+1)2m−2n ⊗ bn ,

where b0 = 1. Modulo decomposable products, this equals

ν(bm) ≡

{
ξk ⊗ 1 + 1⊗ bm if m = pk − 1,

1⊗ bm otherwise.
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In particular, the A∗-coaction factors as

H∗(MU ;Fp)
ν̃−→P∗ ⊗H∗(MU ;Fp) ⊂ A∗ ⊗H∗(MU ;Fp) ,

making H∗(MU ;Fp) a P∗-comodule algebra.
Let f : H∗(MU ;Fp)→ Fp[b̄m | m 6= pk − 1] be the algebra homomorphism given

by

f(bm) =

{
0 if m = pk − 1,

b̄m otherwise.

The composite

φ : H∗(MU ;Fp)
ν̃−→P∗ ⊗H∗(MU ;Fp)

1⊗f−→P∗ ⊗ Fp[b̄m | m 6= pk − 1]

is then a left P∗-comodule algebra homomorphism

Fp[bm | m ≥ 1] −→ Fp[ξk | k ≥ 1]⊗ Fp[b̄m | m 6= pk − 1]

satisfying

φ(bm) ≡

{
ξk ⊗ 1 if m = pk − 1,

1⊗ b̄m otherwise

modulo decomposables, and is therefore an isomorphism. Let

PH∗(MU ;Fp) = {x ∈ H∗(MU ;Fp) | ν(x) = 1⊗ x}

be the subalgebra of A∗-comodule primitives, which is equal to the subalgebra of
P∗-comodule primitives. It maps isomorphically by Pφ to

P (P∗ ⊗ Fp[b̄m | m 6= pk − 1]) = Fp[b̄m | m 6= pk − 1] ,

hence has the form

PH∗(MU ;Fp) = Fp[b̃m | m 6= pk − 1] ⊂ H∗(MU ;Fp)

where b̃m ≡ bm modulo decomposables, for each m 6= pk − 1. �

Recall that P = A ⊗E Fp = A //E is a cyclic A -module algebra.

Corollary 6.2. H∗(MU ;Fp) ∼= P ⊗ PH∗(MU ;Fp)∨ is a free P-module of finite

type, with basis dual to the monomial basis for PH∗(MU ;Fp) = Fp[b̃m | m 6= pk−1].

Theorem 6.3.

π∗(MU∧p ) ∼= Zp[vi | i ≥ 1]⊗Zp Zp[b̃m | m 6= pk − 1]

where |vi| = 2pi − 2 for each i ≥ 1, and the mod p Hurewicz homomorphism
h : π∗(MU)→ H∗(MU ;Fp) maps π∗(MU∧p ) onto PH∗(MU ;Fp).

Proof. This is easiest seen using the mod p Adams spectral sequence. Let {b̃I}I be

the monomial basis for PH∗(MU ;Fp), and let {b̃∨I }I be the dual basis. We obtain
isomorphisms of A∗-comodule algebras

H∗(MU ;Fp)
∼=−→

⊕
I

Σ|I|P∗

and of A -module coalgebras⊕
I

Σ|I|P
∼=−→ H∗(MU ;Fp) .
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Hence the Adams spectral sequence, in its homological form

Es,t2 = Exts,tA∗
(Fp, H∗(MU ;Fp)) =⇒s πt−s(MU∧p )

or its cohomological form

Es,t2 = Exts,tA (H∗(MU ;Fp),Fp) =⇒s πt−s(MU∧p )

is an algebra spectral sequence with E2-term

E∗,∗2 = Ext∗,∗A∗
(Fp,P∗)⊗ PH∗(MU ;Fp) ∼= Ext∗,∗A (P,Fp)⊗ PH∗(MU ;Fp) .

Since A is a bialgebra and E a sub bialgebra, [MM65, Thm. 4.4, Thm. 4.7] imply
that A is free a left E -module, and A∗ is cofree as a left E∗-comodule, so there are
change-of-rings isomorphisms

Ext∗,∗A∗
(Fp,P∗) = Ext∗,∗A∗

(Fp,A∗ �E∗ Fp) ∼= Ext∗,∗E∗
(Fp,Fp)

Ext∗,∗A (P,Fp) = Ext∗,∗A (A //E ,Fp) ∼= Ext∗,∗E (Fp,Fp) .

Since E∗ = Λ(τi | i ≥ 0) and E∗ = Λ(Qi | i ≥ 0), standard homological algebra
shows that

Ext∗,∗E∗
(Fp,Fp) = Ext∗,∗E (Fp,Fp) = Fp[qi | i ≥ 0]

with qi ∈ Ext1,2pi−1(Fp,Fp) representing an extension detected by Qi. Hence

E∗,∗2
∼= Fp[qi | i ≥ 0]⊗ PH∗(MU ;Fp)

is concentrated in even topological degrees t−s. There is therefore no room for non-
zero differentials, since these decrease the topological degree by 1. Hence E∗,∗2 =
E∗,∗∞ . Since the E∞-term is free as a graded commutative Fp-algebra, there can only
be additive extensions, with multiplication by p in the abutment being represented
by multiplication by q0 in the E∞-term, and it follows that

π∗(MU∧p ) ∼= Zp[vi | i ≥ 1]⊗Zp Zp[b̃m | m 6= pk − 1]

with vi in degree |vi| = 2pi − 2 being detected by qi, for each i ≥ 1. �

Note that as a Zp-algebra, π∗(MU∧p ) has one polynomial generator in each pos-

itive even degree 2m, which is of the form vi if 2m = 2pi − 2, and of the form b̃m
otherwise. Serre proved that π∗(S)⊗Q ∼= Q, so

π∗(MUQ) = π∗(MU)⊗Q ∼= H∗(MU ;Q) ∼= H∗(BU ;Q) ∼= Q[bk | k ≥ 1]

is also polynomial on one generator in each positive even degree. Further work with
the arithmetic square

MU //

��

MUQ

��
MU∧ // (MU∧)Q ,

whereMUQ = MU [1/2, . . . , 1/p, . . . ] denotes the rationalization ofMU andMU∧ =∏
pMU∧p denotes its profinite completion, leads to the following integral result.

Theorem 6.4 ([Mil60], [Nov60]).

ΩU∗ = π∗(MU) ∼= Z[xi | i ≥ 1]

where |xi| = 2i for each i ≥ 1.



14 JOHN ROGNES

Theorem 6.5. The Hurewicz homomorphism

h : π∗(MU) −→ H∗(MU)

satisfies

h(xm) ≡

{
pbm if m = pi − 1 for some prime p,

bm otherwise,

modulo decomposables, for each m ≥ 1.

Note that m+ 1 ≥ 2 can be equal to a prime power pi for at most one prime p.

7. Framed bordism

The A∗-comodule algebra H∗(S;Fp) = Fp has the trivial coaction (via the coaug-
mentation η : Fp → A∗), and dually the A -module coalgebra H∗(S;Fp) = Fp has
the trivial action (via the augmentation ε : A → Fp).

Theorem 7.1. The mod p Adams spectral sequence

Es,t2 = Exts,tA∗
(Fp,Fp) = Exts,tA (Fp,Fp) =⇒s πt−s(S

∧
p )

converges to the p-completion of Ωfr
∗ = π∗(S).

This spectral sequence is only partially understood.
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