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CHAPTER 9: FORMAL GROUP LAWS

JOHN ROGNES

See Adams [Ada74, Part II] for an early but standard exposition of Quillen’s
work on formal group laws and complex bordism. The appendix [Rav86, A2] is
another standard reference on formal group laws for algebraic topologists.

For many ring spectra E the computation of the cohomology rings E∗(CPm),
E∗(CP∞), E∗(BU(n)) and E∗(BU), and of the homology algebras E∗(BU) and
E∗(MU), follow the same lines as in the case of ordinary cohomology, and the
results carry no additional information beyond the coefficient ring π∗(E). However,
the map m : CP∞ × CP∞ → CP∞ classifying the tensor product of complex line
bundles, induced by the (abelian) group multiplication U(1)× U(1)→ U(1), often
induces a completed Hopf algebra structure

m∗ : E∗(CP∞) −→ E∗(CP∞) ⊗̂E∗ E∗(CP∞) ,

and it is an insight of Novikov and Quillen that this carries significant additional
information about the ring spectrum E. These completed Hopf algebras will corep-
resent commutative one-dimensional formal groups, and can, with a choice of co-
ordinate, be presented as formal group laws. We can thus draw on the algebraic
theory of formal groups to shed light on stable homotopy theory.

1. Complex oriented cohomology theories

((ETC: Cite seminar by Dold.)) Let E be a ring spectrum in the homotopy
category, with E∗ graded commutative. An E-orientation of a Cn-bundle ξ : E → X
is a class

Uξ ∈ Ẽ∗+2n(Th(ξ)) ∼= E∗+2n(D(ξ), S(ξ))

that, for each x ∈ X, restricts to a generator of

E∗+2n(D(ξ)x, S(ξ)x) ∼= Ẽ∗+2n(S2n) ∼= E∗

as a free E∗-module, i.e., as a unit of the graded commutative ring E∗. If X is
connected, it suffices to verify this for one x ∈ X. If the universal line bundle
γ1 : E(γ1)→ CP∞ = BU(1) admits an E-orientation

Uγ1 ∈ Ẽ∗(Th(γ1)) = Ẽ∗(MU(1))

then so does each other complex line bundle, by pullback, and it turns out that this
also determines an E-orientation of each finite-dimensional complex vector bundle.
The composite

S2 ∼= CP 1 ⊂ CP∞ z−→ Th(γ1)
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is homotopic to the inclusion of a slice S2 ∼= D(γ1)x/S(γ1)x → Th(γ1), since
the Euler class e(γ1) generates H2(CP∞). Moreover, the zero-section map z is a
homotopy equivalence, since S(γ1) = S∞ ' ∗. Hence an E-orientation of γ1 is the
same as a Thom class

yE ∈ Ẽ∗+2(CP∞)

whose restriction to

Ẽ∗+2(CP 1) ∼= Ẽ∗+2(S2) ∼= E∗

is a unit in E∗. Some authors, including Adams [Ada74, §II.2], take this to be
the definition of a complex orientation yE of the cohomology theory E. We shall
instead work with strict complex orientations, where we assume that the unit in
E∗ is the unit element 1 ∈ E0.

Definition 1.1. Let E be a ring spectrum up to homotopy, with E∗ graded com-
mutative. A (strict) complex orientation of E is a choice of class

yE ∈ Ẽ2(CP∞)

whose restriction to Ẽ2(CP 1) ∼= E0 is the unit element 1 ∈ E0. A complex oriented
ring spectrum is a pair (E, yE) as above. A ring spectrum is complex orientable if
it admits a complex orientation.

Example 1.2. LetR be a commutative ring. Ordinary cohomology withR-coefficients
has a unique complex orientation

yHR ∈ H̃2(CP∞;R) ∼= H̃2(CP 1;R) ∼= H̃2(S2;R)

corresponding to Σ2(1) ∈ H̃2(S2;R).

Example 1.3. Let KU denote complex K-theory. The class

[γ1]− 1 ∈ K̃U
0
(CP∞)

restricts to the generator

u = [γ11 ]− 1 ∈ K̃U
0
(CP 1) ∼= Z{u}

and would hence give a complex orientation of KU in the lax sense. We instead
normalize it, by setting

yKU = u−1([γ1]− 1) ∈ K̃U
2
(CP∞) ,

which restricts to the unit u−1u = 1 in K̃U
2
(CP 1) ∼= Z.

Example 1.4. Let MU denote complex bordism. The identity Th(γ1) = MU(1) =
MU2 has left adjoint

ω : Σ−2CP∞ ' Σ−2MU(1) = Σ∞2 MU(1) −→MU

whose restriction to S ' Σ−2CP 1 is homotopic to the unit map η : S → MU . Its
homotopy class defines a tautological class

yMU = [ω] ∈MU0(Σ−2MU(1)) ∼= M̃U
2
(CP∞)

whose restriction to M̃U
2
(CP 1) ∼= MU0 is the ring unit.
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Example 1.5. Any even ring spectrum, i.e., one with E∗ concentrated in even de-
grees, admits a complex orientation, since the Atiyah–Hirzebruch spectral sequence

Es,t2 = Hs(CP∞;Et) =⇒s E
s+t(CP∞)

collapses at the E2-page for degree reasons. Any choice of class yE ∈ E2(CP∞)

detected by y ∈ E2,0∞ = E2,02 = H2(CP∞;E0) is then a complex orientation.

Example 1.6. The sphere spectrum S, the real K-theory spectrum KO, and the
image-of-J-spectrum J∧p , are not complex orientable. This is because in CP 2 the

4-cell is attached to the 2-cell by the Hopf fibration η : S3 → S2, which is detected
by a nontrivial Sq2 in H̃∗(Cη;F2) = H̃∗(CP 2;F2) = F2{y, y2}, and η is detected
in π1(S), π1(KO) and π1(J∧2 ), so there is a nonzero Atiyah–Hirzebruch differential

d2(y) = y2η

in each of these cases. Hence y does not survive to E∞, and cannot detect a complex
orientation yE . For odd primes p the 2p-cell in CP p is (stably only) attached to
the 2-cell by a map α1 : S2p−1 → S2, which is detected by a nontrivial P 1 in
H̃∗(CP p;Fp) → H̃∗(Cα1;Fp) = Fp{y, yp}, and α1 is detected in π2p−3(S) and
π2p−3(J∧p ), so there is a nonzero Atiyah–Hirzebruch differential

d2p−2(y) = ypα1

in both of these cases. Hence y does not survive to E∞ and cannot detect a complex
orientation of (S or) J∧p .

Proposition 1.7. Let (E, yE) be complex oriented. The Atiyah–Hirzebruch spectral
sequences

E∗,∗2 = H∗(CPm;E∗) = Z[y]/(ym+1)⊗ E∗ =⇒ E∗(CPm)

E∗,∗2 = H∗(CP∞;E∗) = Z[y]⊗ E∗ =⇒ E∗(CP∞)

E∗,∗2 = H∗(CPm × CPn;E∗) = Z[y1, y2]/(ym+1
1 , yn+1

2 )⊗ E∗ =⇒ E∗(CPm × CPn)

E∗,∗2 = H∗(CP∞ × CP∞;E∗) = Z[y1, y2]⊗ E∗ =⇒ E∗(CP∞ × CP∞)

E∗,∗2 = H∗(BU(1)n;E∗) = Z[y1, . . . , yn]⊗ E∗ =⇒ E∗(BU(1)n)

E∗,∗2 = H∗(BU(n);E∗) = Z[c1, . . . , cn]⊗ E∗ =⇒ E∗(BU(n))

E∗,∗2 = H∗(BU ;E∗) = Z[ck | k ≥ 1]⊗ E∗ =⇒ E∗(BU)

collapse at the E2-term, and converge strongly to

E∗(CPm) ∼= E∗[yE ]/((yE)m+1)

E∗(CP∞) ∼= E∗[[yE ]]

E∗(CPm × CPn) ∼= E∗[yE1 , y
E
2 ]/((yE1 )m+1, (yE2 )n+1)

E∗(CP∞ × CP∞) ∼= E∗[[yE1 , y
E
2 ]]

E∗(BU(1)n) ∼= E∗[[yE1 , . . . , y
E
n ]]

E∗(BU(n)) ∼= E∗[[cE1 , . . . , c
E
n ]]

E∗(BU) ∼= E∗[[cEk | k ≥ 1]] .

Proof. Consider the case of CP∞, withH∗(CP∞) = Z[y]. The class yE ∈ Ẽ2(CP∞)

is detected by y⊗1 ∈ E2,02 , which is therefore an infinite cycle (so that dr(y⊗1) = 0
for all r ≥ 2). The spectral sequence algebra structure implies that ym ⊗ 1 is also
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an infinite cycle, for all m ≥ 0. Since these generate the E2-term as an E∗-module,
and the differentials are E∗-linear, it follows that dr = 0 for all r ≥ 2, and the
spectral sequence collapses. We then prove by induction on m that

E∗(CP∞)

F 2m+1E∗(CP∞)
∼= E∗[yE ]/((yE)m+1)

so that

E∗(CP∞) = lim
m

E∗(CP∞)

F 2m+1E∗(CP∞)
∼= lim

m
E∗[yE ]/((yE)m+1) = E∗[[yE ]] .

In the case of BU(n), recall that

i∗n : H∗(BU(n)) = Z[c1, . . . , cn] −→ H∗(BU(1)n) = Z[y1, . . . , yn]

is injective (with image the symmetric polynomials). Hence in : BU(1)n → BU(n)
induces a morphism of Atiyah–Hirzebruch spectral sequences

E∗,∗2 = H∗(BU(n);E∗) = Z[c1, . . . , cn]⊗ E∗

−→ ′E∗,∗2 = H∗(BU(1)n;E∗) = Z[y1, . . . , yn]⊗ E∗

that is injective at the E2-term. Since dr = 0 for all r ≥ 2 in the target spectral
sequence, it follows by induction on r that the same holds in the source spectral
sequence, so also the Atiyah–Hirzebruch spectral sequence for BU(n) collapses at
the E2-term. ((ETC: Does it follow that we can choose cEk ∈ E2k(BU(n)) to map
to the k-th elementary symmetric polynomial in yE1 , . . . , y

E
n ∈ E∗(BU(1)n)?)) �

The E-cohomology Chern class cEn ∈ E2n(BU(n)) lifts to an orientation class

UEγn ∈ Ẽ2n(MU(n)), hence provides natural E-(co-)homology Thom isomorphisms

ΦEξ : E∗(X)
∼=−→ Ẽ∗+2n(Th(ξ))

ΦEξ : Ẽ∗+2n(Th(ξ))
∼=−→ E∗(X)

for all Cn-bundles ξ.

Corollary 1.8. Let (E, yE) be complex oriented. The Atiyah–Hirzebruch spectral
sequences

E2∗,∗ = H∗(CP∞;E∗) = Z{βk | k ≥ 0} ⊗ E∗ =⇒ E∗(CP∞)

E2∗,∗ = H∗(BU ;E∗) = Z[bk | k ≥ 1]⊗ E∗ =⇒ E∗(BU)

E2∗,∗ = H∗(MU ;E∗) = Z[bk | k ≥ 1]⊗ E∗ =⇒ E∗(MU)

collapse at the E2-term, and converge strongly to

E∗(CP∞) ∼= E∗{βEk | k ≥ 0}
E∗(BU) ∼= E∗[b

E
k | k ≥ 1]

E∗(MU) ∼= E∗[b
E
k | k ≥ 1] .

Here 〈(yE)i, βEj 〉 = δij and βEk 7→ bEk under E∗(CP∞) → E∗(BU) ∼= E∗(MU).

Equivalently, βEk+1 7→ bEk under Ẽ∗+2(CP∞) ∼= Ẽ∗+2(MU(1))→ E∗(MU).

Remark 1.9. When (E, yE) is complex oriented, the tower of graded commutative
E∗-algebras

E∗ = E∗(CP 0)←− . . .←− E∗(CPm)←− . . .←− E∗(CP∞)
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corepresents a sequence of affine schemes

Spec(E∗) −→ . . . −→ Spec(E∗(CPm)) −→ . . . −→ Spec(E∗(CP∞))

over Spec(E∗), where

Spec(E∗(CPm))(R) = CAlgE∗(E∗(CPm), R)

∼= CAlgE∗(E∗[y]/(ym+1), R) = {y ∈ R | ym+1 = 0}
for each R ∈ CAlgE∗ . The colimit of this sequence, in sheaves, is the formal scheme

Spf(E∗(CP∞)) = colim
m

Spec(E∗(CPm))

given by

Spf(E∗(CP∞))(R) = colim
m

Spec(E∗(CPm))(R)

= colim
m
{y ∈ R | ym+1 = 0} = {y ∈ R | y is nilpotent} .

This formal scheme maps to, but is not isomorphic to the scheme Spec(E∗(CP∞)).
See Strickland’s notes [Str] for (much) more on formal schemes. By passing to
(pre-)sheaves we extend the category of affine schemes by building in additional
colimits. Only the colimits given by covers in the topology are preserved.

The affine line A1 over Spec(E∗) is the affine scheme Spec(E∗[y]). The ideal
I = (y) ⊂ E∗[y] corresponds to the closed subscheme

Spec(E∗[y]/I) ∼= Spec(E∗) ,

which is viewed as the origin (or zero-section) 0 ∈ A1. The ideal Im+1 = (ym+1) ⊂
E∗[y] then corresponds to the m-th order infinitesimal neighborhood

Spec(E∗[y]/Im+1) ∼= Spec(E∗(CPm))

of the origin in A1. The formal colimit

colim
m

Spec(E∗[y]/Im+1) ∼= Spf(E∗(CP∞))

is the union of all of the m-th order infinitesimal neighborhoods, and is called the
formal neighborhood Â1 of 0 in A1 over Spec(E∗). Hence a choice of complex
orientation defines an isomorphism

Spf(E∗(CP∞)) ∼= Â1

over Spec(E∗), expressing Spf(E∗(CP∞)) as a formal line over this base.

A complex orientable ring spectrum E will typically admit multiple different
choices of complex orientations. Let

y, y′ ∈ Ẽ2(CP∞)

be two such choices. We can then use y to calculate the right hand side, and write
y′ in terms of this answer. We find

Ẽ∗(CP∞) = (y) = yE∗[[y]]

inside E∗(CP∞) = E∗[[y]], and

y′ =
∑
k≥0

bky
k+1

for some sequence of coefficients bk ∈ E∗. Considering degrees, we find that bk ∈
E−2k = E2k for each k. The condition that y′ (and y) restricts to the unit element
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in Ẽ2(CP 1) ∼= E0 is equivalent to the condition b0 = 1, but otherwise the sequence
{bk ∈ E2k}k≥1 can be freely chosen. We will often write

y′ = h(y) = y +
∑
k≥1

bky
k+1 .

2. Formal group laws

Definition 2.1. Let R be a (graded) commutative ring. A (commutative, one-
dimensional) formal group law over R is a formal power series

F (y1, y2) ∈ R[[y1, y2]] ,

satisfying

(1) F (0, y) = y = F (y, 0),
(2) F (y1, y2) = F (y2, y1),
(3) F (F (y1, y2), y3) = F (y1, F (y2, y3)).

It can be denoted
F (y1, y2) = y1 + y2 +

∑
i,j≥1

ai,jy
i
1y
j
2

with ai,j = aj,i for all i, j ≥ 1, but further relations between the ai,j are required
to ensure that the series will satisfy (3). If R is graded we assume that y1, y2 and
F (y1, y2) are all homogeneous of cohomological degree 2, in which case ai,j has
cohomological degree 2(1− i− j), or homological degree 2(i+ j−1). We sometimes
write

y1 +F y2 = F (y1, y2)

for the sum of y1 and y2 with respect to F .

The group multiplication U(1) × U(1) → U(1) induces a map m : BU(1) ×
BU(1) ∼= B(U(1)×U(1))→ BU(1). It classifies the tensor product of complex line
bundles, so that m∗(γ1) ∼= γ1 ⊗̂ γ1, and can also be written as m : CP∞×CP∞ →
CP∞.

Proposition 2.2. Let (E, yE) be a complex oriented ring spectrum. The homo-
morphism

E∗[[y]] ∼= E∗(CP∞)
m∗−→ E∗(CP∞ × CP∞) ∼= E∗[[y1, y2]]

maps y = yE to a formal group law

m∗(y) = FE(y1, y2) ∈ E∗[[y1, y2]]

over E∗.

If need be, we write F(E,y) for this formal group law.

Proof. The external tensor product of complex line bundles is unital, commutative
and associative up to isomorphism, so m is unital, commutative and associative
up to homotopy. This implies that FE(y1, y2) satisfies the conditions for being a
formal group law. �

Lemma 2.3. For each formal group law F (y1, y2) over R there exists a unique
formal power series i(y) = iF (y) ∈ R[[y]] with F (y, i(y)) = 0, called the formal
negative. It satisfies i(y) ≡ −y mod (y2). We sometimes write

−F y = iF (y)
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for the negative of y with respect to F .

Example 2.4. For a commutative ring R, let y = yHR be the unique complex
orientation. Then

FHR(y1, y2) = m∗(y) = y1 + y2

in H2(CP∞ × CP∞;R) = R{y1, y2}. Each ai,j = 0 for i, j ≥ 0, since these live in
trivial groups. This is equal to the additive formal group law

Fa(y1, y2) = y1 + y2

over R. It expresses addition in coordinates near 0.

Example 2.5. With E = KU , recall that yKU = y = u−1(γ1−1), so that γ1 = 1+uy
(with implicit passage to isomorphism classes). Hence

m∗(γ1) = γ1 ⊗̂ γ1 = (1 + uy)⊗ (1 + uy) = 1 + uy1 + uy2 + u2y1y2

in KU0(CP∞ × CP∞), and

FKU (y1, y2) = m∗(y) = u−1(m∗(γ1)− 1)

= u−1(1 + uy1 + uy2 + u2y1y2 − 1) = y1 + y2 + uy1y2

in KU2(CP∞ × CP∞). Here a1,1 = u, while the remaining ai,j are zero. This
equals the multiplicative formal group law

Fm(y1, y2) = y1 + y2 + uy1y2

defined over KU∗ = Z[u±1]. It expresses multiplication in coordinates near 1.

Example 2.6. With the notation e(x) = ex − 1, the rewriting e(x1 + x2) = e(x1) +
e(x2) + e(x1)e(x2) of ex1+x2 = ex1ex2 is equivalent to the addition formula∫ y1

0

dt

1 + t
+

∫ y2

0

dt

1 + t
=

∫ F (y1,y2)

0

dt

1 + t
,

for `(y) =
∫ y
0
dt/(1 + t) = log(1 + y), with

F (y1, y2) = y1 + y2 + y1y2

equal to the multiplicative formal group law.
The addition formula

sin(x1 + x2) = sin(x1)

√
1− sin2(x2) + sin(x2)

√
1− sin2(x1)

(for x1 and x2 with non-negative cosine) is equivalent to the addition formula∫ y1

0

dt√
1− t2

+

∫ y2

0

dt√
1− t2

=

∫ F (y1,y2)

0

dt√
1− t2

for arcsin(y) =
∫ y
0
dt/
√

1− t2, with

F (y1, y2) = y1

√
1− y22 + y2

√
1− y21

= y1 + y2 −
1

2
(y21y2 + y1y

2
2) + . . . .

Euler (written 1751, published 1761) obtained a similar addition theorem∫ y1

0

dt√
1− t4

+

∫ y2

0

dt√
1− t4

=

∫ F (y1,y2)

0

dt√
1− t4
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for the elliptic integral
∫ y
0
dt/
√

1− t4 (related to arc length on ellipses), with

F (y1, y2) =
y1
√

1− y42 + y2
√

1− y41
1 + y21y

2
2

= y1 + y2 −
1

2
(y41y2 + y1y

4
2)− (y31y

2
2 + y21y

3
2) + . . . .

The formal power series expansions of the latter two expressions F (y1, y2) define
formal group laws over Q. The latter is an example of an elliptic formal group law.
Addition theorems for general elliptic integrals, and even more general hyperelliptic
integrals, were among the famous achievements of Abel (ca. 1827), sometimes in
competition with Jacobi.

Definition 2.7. Let R be a (graded) commutative ring, and let F (y1, y2) and
F ′(y1, y2) be formal group laws defined over R. A homomorphism

h : F −→ F ′

defined over R is a formal power series h(y) ∈ R[[y]] satisfying

(1) h(0) = 0,
(2) h(F (y1, y2)) = F ′(h(y1), h(y2)).

It can be written

h(y) =
∑
k≥0

bky
k+1

with |bk| = 2k. We can rewrite (2) as

h(y1 +F y2) = h(y1) +F ′ h(y2) .

The identity homomorphism id: F → F is the formal power series id(y) = y. The
composite h′ ◦ h = h′h of two homomorphisms h : F → F ′ and h′ : F ′ → F ′′ is the
composite formal power series h′(h(y)) ∈ R[[y]].

Lemma 2.8. Let R be a (graded) commutative ring. The formal group laws defined
over R are the objects of a small category FGL(R), with morphisms from F to F ′

given by the homomorphisms defined over R.

objFGL(R) = {F (y1, y2) ∈ R[[y1, y2]] | F is a formal group law}
FGL(R)(F, F ′) = {h(y) ∈ R[[y]] | h : F → F ′ is a homomorphism} .

Lemma 2.9. A homomorphism h : F → F ′ over R, with h(y) =
∑
k≥0 bky

k+1, is

an isomorphism if and only if b0 = h′(0) is a unit in R. In this case F and F ′

mutually determine one another, by

F ′(y1, y2) = h(F (h−1(y1), h−1(y2)))

F (y1, y2) = h−1(F ′(h(y1), h(y2))) .

Here h′(0) denotes the formal derivative of h at y = 0.

Definition 2.10. A strict isomorphism h : F → F ′ is a homomorphism with
h′(0) = 1, so that h(y) ≡ y mod (y2). Let

FGLs(R) ⊂ FGLi(R) ⊂ FGL(R)

be the subcategories of all strict isomorphisms, and all isomorphisms, in FGL(R).
These are both groupoids. ((ETC: These notations are not standardized.))
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Proposition 2.11. Let y and y′ be two (strict) complex orientations of the same
ring spectrum E, with y′ = h(y). Let F (y1, y2) = m∗(y) and F ′(y′1, y

′
2) = m∗(y′) be

the associated formal group laws. Then h : F → F ′ is a strict isomorphism defined
over E∗.

If need be, we can spell out this strict isomorphism as

h : F(E,y)

∼=−→ F(E,h(y)) .

Proof. We saw earlier that h(y) = y +
∑
k≥1 bky

k+1 with bk ∈ E−2k. We calculate

h(F (y1, y2)) = h(m∗(y)) = m∗(h(y))

= m∗(y′) = F ′(y′1, y
′
2) = F ′(h(y1), h(y2)) ,

using that m∗ is a continuous ring homomorphism. �

3. The Lazard ring

We now consider the functorial dependence of complex orientations on the ring
spectrum E, and of formal groups and their homomorphisms on the ring R.

Definition 3.1. Let g : R→ T be a homomorphism of (graded) commutative rings.
For each formal group law

F (y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

defined over R we define the pullback g∗F to be the formal group law

(g∗F )(y1, y2) = y1 + y2 +
∑
i,j≥1

g(ai,j)y
i
1y
j
2

defined over T . For each homomorphism h : F → F ′ between formal group laws
defined over R, with

h(y) = y +
∑
k≥1

bky
k+1 ,

we define g∗h : g∗F → g∗F ′ to be the homomorphism

(g∗h)(y) = y +
∑
k≥1

g(bk)yk+1 .

Here g(ai,j), g(bk) ∈ T denote the respective images of ai,j , bk ∈ R under g. The
terminology and notation is that of algebraic geometry, where we think of g as a
map g : Spec(T ) → Spec(R), so that g∗F is obtained by pulling back an object
over Spec(R) along g to give an object over Spec(T ), and similarly for g∗h.

Lemma 3.2. Pullback along any ring homomorphism g : R→ T defines a function

g∗ : objFGL(R) −→ objFGL(T ) .

Pullback along the identity induces the identity, and

k∗ ◦ g∗ = (kg)∗ : objFGL(R) −→ objFGL(U)

for any second ring homomorphism k : T → U , so

objFGL : CRing −→ Set

R 7−→ objFGL(R)
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is a covariant functor. Writing Aff = CRingop, it defines a presheaf

objFGL : Affop −→ Set

Spec(R) 7−→ objFGL(R) .

Proof. This says that g∗F is again a formal group law, that id∗ F = F , and that
k∗(g∗(F )) = (kg)∗(F ), all of which are obvious. �

Passing from sets to small groupoids, we have the following extension of Lemma 3.2,
which also accounts for the strict isomorphisms between formal group laws.

Lemma 3.3. Pullback along any g : R→ T defines a functor

g∗ : FGLs(R) −→ FGLs(T )

F 7−→ g∗F

h 7−→ g∗h .

Pullback along the identity induces the identity, and

k∗ ◦ g∗ = (kg)∗ : FGL(R) −→ FGL(U)

for any k : T → U , so

FGLs : CRing −→ Gpd
R 7−→ FGLs(R)

is a covariant functor.

Proof. This says that g∗h is again a strict isomorphism, that g∗(h′h) = (g∗h′)(g∗h),
that id∗ h = h, and that k∗(g∗(h)) = (kg)∗(h), all of which are obvious. �

Definition 3.4. Identifying CRing withAffop, the functor FGLs defines a presheaf
of small groupoids

Mfgl = FGLs : Affop −→ Gpd
Spec(R) 7−→ FGLs(R) ,

which we call the moduli prestack of formal group laws.

Remark 3.5. To say that FGLs is a prestack means that for any two formal group
laws F and F ′ over the same base the set of strict isomorphisms F → F ′ satisfies
descent. It is not a stack because a local system of formal group laws may not glue
together to a global formal group law. We write

Mfgl = FGLs

when we think of this presheaf of groupoids as a moduli prestack. For each graded
commutative ring R the prestack 1- and 2-morphisms

Spec(R) −→Mfgl

constitute the groupoid FGLs(R) of formal group laws and strict isomorphisms
over R. ((ETC: Working in the ungraded context, one would allow all isomor-
phisms.))
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The pullback function appears naturally in topology. Given a map g : D → E of
ring spectra up to homotopy with D∗ and E∗ graded commutative, with induced
ring homomorphism g : D∗ → E∗, and given a complex orientation y ∈ D̃2(CP∞)
of D, the image

gy = g∗(y) ∈ Ẽ2(CP∞)

is a complex orientation of E. Here, if y is the homotopy class of Σ−2CP∞ → D,
then gy is the class of the composite

Σ−2CP∞ y−→ D
g−→ E .

Example 3.6. Let n ∈ Z×p . The Adams operation ψn : KU∧p → KU∧p is a map of

ring spectra, taking the complex orientation y = yKU = u−1(γ1 − 1) to

ψny = (nu)−1((1 + uy)n − 1) ,

which in this case is a second complex orientation y′ = hn(y) of the same ring
spectrum. This defines a strict isomorphism hn : Fm → ψnFm. When composed
with the isomorphism ny : ψnFm → Fm it corresponds to the n-series automorphism

[n]Fm
(y) = u−1((1 + uy)n − 1)

of Fm over KU∗ = Zp[u±1].

Lemma 3.7. Let F (y1, y2) = m∗(y) be the formal group law over D∗ associated
to (D, y). Then the formal group law over E∗ associated to (E, gy) is equal to the
pullback (g∗F )(y1, y2).

If y′ = h(y) is a second complex orientation of D, then the strict isomorphism
over E∗ associated to the two complex orientations gy and gy′ of E is equal to the
pullback (g∗h)(y). �

If need be, we can spell out these identifications as

F(E,gy) = g∗F(D,y) and (g∗h : F(E,gy)
'→ F(E,gy′)) = g∗(h : F(D,y)

'→ F(D,y′)) .

Following Lazard [Laz55], it is not so difficult to see that the set-valued functor

objFGL : R 7−→ {formal group laws F over R}

from Lemma 3.2 is corepresentable, i.e., equal to Spec(L) for a suitable graded
commutative ring L, so that objFGL(R) ∼= CRing(L,R).

Definition 3.8. Let L̃ = Z[ãi,j | i, j ≥ 1] and

F̃ (y1, y2) = y1 + y2 +
∑
i,j≥1

ãi,jy
i
1y
j
2 ∈ L̃[[y1, y2]] ,

define coefficients bi,j,k ∈ L̃ by

F̃ (F̃ (y1, y2), y3)− F̃ (y1, F̃ (y2, y3)) =
∑

i,j,k≥0

bi,j,ky
i
1y
j
2y
k
3 ∈ L̃[[y1, y2, y3]] ,

and let Ĩ ⊂ L̃ be the ideal generated by ãi,j − ãj,i for all i, j ≥ 1 and bi,j,k for

all i, j, k ≥ 0. The ring L̃ is homologically graded with |ãi,j | = 2(i + j − 1),

and Ĩ is a homogeneous ideal with ãi,j − ãj,i in degree 2(i + j − 1) and bi,j,k in
degree 2(i+ j + k − 1). Let

L = L̃/Ĩ = Z[ãi,j | i, j ≥ 1]/Ĩ
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be the (evenly graded) quotient ring, let ai,j ∈ L be the image of ãi,j under the
canonical projection, and define

FL(y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

to be the image of F̃ (y1, y2) in L[[y1, y2]]. Then FL(y1, y2) is a formal group law
defined over L. If y1 and y2 have homological degree −2 (and cohomological de-
gree 2), then so does FL(y1, y2). We call L the Lazard ring, and FL(y1, y2) the
Lazard formal group law.

Proposition 3.9. The Lazard formal group law FL over the Lazard ring L is
universal, in the sense that

CRing(L,R)
∼=−→ objFGL(R)(

g : L→ R
)
7−→ g∗FL

defines a natural bijection for all (graded) commutative rings R. Hence FL repre-
sents an isomorphism of sheaves

Spec(L)
∼=−→ objFGL .

Proof. This asserts that for each formal group law

F (y1, y2) = y1 + y2 +
∑
i,j≥1

āi,jy
i
1y
j
2 ∈ R[[y1, y2]]

over a ring R there exists a unique ring homomorphism g : L → R such that F =
g∗FL. It is obviously given by mapping ãi,j ∈ L̃ to the given āi,j ∈ R, and noting
that this descends to a ring homomorphism g : L → R because the generators of
the ideal Ĩ all map to zero, since F is assumed to be a formal group law. The ring
homomorphism g thus classifies the formal group law F . �

Remark 3.10. Direct calculation shows that

Ĩ = (ã1,2 − ã2,1, ã1,3 − ã3,1, 2ã1,1ã1,2 + 3ã1,3 − 2ã2,2, . . . )

so that in degrees ∗ ≤ 6 the Lazard ring is freely generated by x1 = a1,1, x2 = a1,2
and x3 = a2,2− a1,3. These calculations quickly become complicated. Nonetheless,
Lazard was able to determine the structure of L.

Theorem 3.11 ([Laz55]). There exists an isomorphism

L ∼= Z[xi | i ≥ 1]

of graded commutative rings, with |xi| = 2i.

A proof, following Frölich (1968), is given in [Ada74, Thm. II.7.1]. See also
Pstragowski (2021), “Finite height chromatic homotopy theory”, Thm. 6.8. We
will comment on the proof later, in connection with the Hurewicz homomorphism
~ : π∗(MU)→ H∗(MU).



FORMAL GROUP LAWS 13

4. Moduli of formal group laws

A strict isomorphism h : F → F ′ of formal group laws over R is uniquely de-
termined by the formal group law F (y1, y2) and the strict isomorphism h(y), since
F ′(y1, y2) = h(F (h−1(y1), h−1(y2)) as in Lemma 2.9, so the set-valued functor

morFGL : R 7−→ {strict isomorphisms h : F → F ′ over R}

implicit in Lemma 3.3 is also corepresentable.

Definition 4.1. Let

B = Z[bk | k ≥ 1]

LB = L[bk | k ≥ 1] ∼= L⊗B

be homologically graded with |bk| = 2k, with canonical inclusions ηL : L→ LB and
ι : B → LB, and let

h(y) = y +
∑
k≥1

bky
k+1 ∈ B[[y]] .

Let

η∗LFL(y1, y2) = y1 + y2 +
∑
i,j≥1

ηL(ai,j)y
i
1y
j
2 ∈ LB[[y1, y2]]

and

ι∗h(y) = y +
∑
k≥1

ι(bk)yk+1 ∈ LB[[y]]

be the base changes to LB of FL and h.

Lemma 4.2. The target of the strict isomorphism ι∗h : η∗LFL → F ′ is a formal
group law defined over LB, hence is equal to η∗RFL for a well-defined ring homo-
morphism

ηR : L −→ LB .

Proof. We require that

η∗RFL(y1, y2) = (ι∗h)−1(η∗LFL((ι∗h)(y1), (ι∗h)(y2))) .

Omitting ηL and ι from the notation, this asks that

η∗RFL(y1, y2) = h−1(FL(h(y1), h(y2))) .

Hence ηR : L → LB must map ai,j to the coefficient of yi1y
j
2 in the formal power

series expansion of the right hand side. �

Remark 4.3. With x1, x2 and x3 as before, one finds

ηR(x1) = x1 + 2b1

ηR(x2) = x2 + x1b1 + (3b2 − 2b21)

ηR(x3) = x3 + (2x2 + x21)b1 + x1(4b2 − b21) + (2b3 + 2b1b2 − 2b31) .

Again, these calculations quickly become complicated.
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Proposition 4.4. The strict isomorphism ι∗h : η∗LFL → η∗RFL over LB is univer-
sal, in the sense that

CRing(LB,R)
∼=−→ morFGLs(R)(

g : LB → R
)
7−→

(
g∗ι∗h : g∗η∗LFL → g∗η∗RFL

)
=
(
g∗h : g∗FL → g∗η∗RFL

)
defines a natural bijection for all (graded) commutative rings R. Hence h : FL →
η∗RFL represents an isomorphism of sheaves

Spec(LB)
∼=−→ morFGLs .

Proof. Given a strict isomorphism h : F → F ′ over R there are unique ring homo-
morphisms g0 : L→ R and g1 : B → R classifying F and h, so that

F (y1, y2) = y1 + y2 +
∑
i,j≥1

g0(ai,j)y
i
1y
j
2

h(y) = y +
∑
k≥1

g1(bk)yk+1 .

Then g : LB → R is characterized by gηL = g0 and gι = g1. �

The series expansion h′(h(y)) of the composite h′h : F → F ′′ of two strict iso-
morphisms h : F → F ′ and h′ : F ′ → F ′′ of formal group laws can be calculated
without reference to F , F ′ or F ′′. Hence B corepresents a functor to groups, and B
acquires the structure of a Hopf algebra.

Definition 4.5. Set b0 = 1. Let

εB : B −→ Z
ψB : B −→ B ⊗B
χB : B −→ B

be the ring homomorphisms sending bk to the coefficient of yk+1 in id(y) = y,
h′′(h′(y)) and h−1(y), respectively, where h′(y) =

∑
i≥0(bi ⊗ 1)yi+1, h′′(y) =∑

j≥0(1⊗ bj)yj+1, and h(y) =
∑
k≥0 bky

k+1.

Lemma 4.6 ([Ada74, Prop. II.7.5, Thm. II.11.3]). εB(bk) = 0 for k ≥ 1,

ψB(bk) =
∑
j≥0

(∑
i≥0

bi

)j+1

2(k−j)
⊗ bj

and

χB(bk) =
1

k + 1

(∑
i≥0

bi

)−k−1
2k

,

where (−)mn denotes the degree n homogeneous component of (−)m.

Proof. See the proofs in [Ada74, Part II]. �

Remark 4.7. Direct calculation shows that

ψ(b1) = b1 ⊗ 1 + 1⊗ b1
ψ(b2) = b2 ⊗ 1 + 2b1 ⊗ b1 + 1⊗ b2
ψ(b3) = b3 ⊗ 1 + (b21 + 2b2)⊗ b1 + 3b1 ⊗ b2 + 1⊗ b3
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and

χ(b1) = −b1
χ(b2) = 2b21 − b2
χ(b3) = −5b31 + 5b1b2 − b3 .

Note that this coproduct is different from that on the bipolynomial Hopf algebra
H∗(BU), and that the conjugation takes integral values, in spite of the division
by k + 1.

Proposition 4.8. The pair (L,LB) is a Hopf algebroid corepresenting the functor

FGLops : CRing −→ Gpd
R 7−→ FGLs(R)op .

The left and right units

ηL : L −→ LB and ηR : L −→ LB

corepresent the source (= opposite target) and target (= opposite source) of

ι∗h : η∗LFL
∼=−→ η∗RFL .

The augmentation

ε = id⊗εB : LB −→ L

corepresents the identity homomorphism. The coproduct

ψ = id⊗ψB : LB = L⊗B −→ L⊗B ⊗B ∼= LB ⊗L LB

corepresents composition. The conjugation

χ : LB −→ LB

satisfies χηL = ηR and χι = ιχB, and corepresents the inverse.

Remark 4.9. This kind of Hopf algebroid is said to be split. It is formed as a semi-
direct or twisted tensor product, from a Hopf algebra B and a right B-comodule
algebra L, with G = Spec(B) a group scheme acting from the right on the scheme
X = Spec(L), so that (L,LB) corepresents the “translation” groupoid scheme
B(X,G) from Chapter 3.

Remark 4.10. Writing h • h′ = h′ ◦ h for the opposite composition, the moduli
prestack Mfgl = FGLs : Affop → Gpd is an affine groupoid scheme, with object
scheme Spec(L), morphism scheme Spec(LB) and structure maps

Spec(L) id // Spec(LB)
soo

t
oo

i

��

Spec(LB)×Spec(L) Spec(LB)
•oo

dual to the graded commutative rings and homomorphisms

L

ηL //

ηR
//
LBεoo

ψ
//

χ

��

LB ⊗L LB .
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((ETC: To avoid the passage to the opposite category, it might be better to corep-
resent the homomorphism h−1 : F ′ → F with h−1(y) = y +

∑
k≥1mky

k+1, where

mk = χ(bk).))
The R-valued points of the canonical map

π : Spec(L) −→Mfgl

is the inclusion objFGLs(R)→ FGLs(R), viewing the object set as a subgroupoid
with only identity morphisms. There is a 2-categorical pullback square

Spec(LB)
t //

s

��

Spec(L)

π

��

Spec(L)
π
//

4<

Mfgl

and the corresponding diagram of nerves (which are simplicial sets, or spaces) is a
homotopy pullback square.

5. Quillen’s theorem

Recall the tautological complex orientation yMU ∈ M̃U
2
(CP∞) represented by

the composite
ω : Σ−2CP∞ ' Σ−2MU(1) −→MU .

It defines a formal group law FMU (y1, y2) over MU∗ = MU−∗. Quillen showed that
MU∗ (together with the formal group law FMU ) has the same universal property
in (graded) commutative rings as the Lazard ring.

Theorem 5.1 ([Qui69], [Qui71]). The ring homomorphism

q0 : L
∼=−→MU∗

classifying the formal group law FMU is an isomorphism. Hence FMU over MU∗
is the universal formal group law.

Adams showed that MU (together with the complex orientation yMU ) also has
a universal property, this time in the category of ring spectra up to homotopy, i.e.,
of monoids in (Ho(Sp), S,∧).

Lemma 5.2 ([Ada74, Lem. II.4.6]). Let E be a ring spectrum up to homotopy, with
E∗ graded commutative. The function

{ring spectrum maps g : MU → E}
∼=−→ {complex orientations y ∈ Ẽ2(CP∞)}

g 7−→ gyMU

is a bijection. Hence each complex orientation of E comes from unique ring spec-
trum map MU → E in the stable homotopy category.

Proof. If E is not complex orientable, then both of these sets are empty. Otherwise,
E∗(MU) ∼= E∗[bk | k ≥ 1] is free as a left E∗-module, which implies ((ETC: via the
universal coefficient theorem or Ext-spectral sequence)) that

[MU,E] ∼= HomE∗(E∗(MU), E∗)

(degree-preserving homomorphisms). Similarly, [S,E] ∼= HomE∗(E∗, E∗) and

[MU ∧MU,E] ∼= HomE∗(E∗(MU)⊗E∗ E∗(MU), E∗) ,
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from which it follows that

{ring spectrum maps MU → E} ∼= AlgE∗(E∗(MU), E∗)

∼= AlgE∗(E∗[bk | k ≥ 1], E∗)

∼= HomE∗(E∗{bk | k ≥ 1}, E∗)

⊂ HomE∗(E∗(Σ
−2CP∞), E∗) ∼= Ẽ2(CP∞)

corresponds to the subset of (strict) complex orientations of E. Here we use that
yMU : Σ−2CP∞ ' Σ−2MU(1)→ MU induces Σ−2βk+1 7→ bk in E-homology, and
E∗(Σ

−2CP∞) = E∗{Σ−2βk+1 | k ≥ 0}. �

Let (E, yE) be a complex oriented ring spectrum, temporarily let ηL = id∧η : E ∼=
E ∧ S → E ∧MU and ηR = η ∧ id : MU ∼= S ∧MU → E ∧MU , and let

yL = ηLy
E : Σ−2CP∞ yE−→ E

ηL−→ E ∧MU

yR = ηRy
MU : Σ−2CP∞ yMU

−→ MU
ηR−→ E ∧MU

be two complex orientations of E ∧ MU . Recall the classes bEk ∈ E2k(MU) =
(E ∧ MU)2k, coming from βEk ∈ E2k(CP∞) → E2k(BU) ∼= E2k(MU), or from

βEk+1 ∈ Ẽ2k+2(CP∞) ∼= Ẽ2k+2(MU(1))→ E2k(MU).

Lemma 5.3 ([Ada74, Lem. II.6.3]). In (E ∧MU)2(CP∞) we have yR = h(yL)
where

h(y) = y +
∑
k≥1

bEk y
k+1 ∈ (E ∧MU)∗[[y]] .

Hence h is a strict isomorphism

h : F(E∧MU,yL)

∼=−→ F(E∧MU,yR)

of formal group laws over (E ∧MU)∗ = E∗(MU).

Sketch proof. Chase yE and yMU through the diagram

[CP∞, E]∗
(ηL)∗

//

∼=
��

[CP∞, E ∧MU ]∗

∼=
��

[CP∞,MU ]∗
(ηR)∗

oo

tt

HomE∗(E∗(CP∞), E∗)
(ηL)∗
// HomE∗(E∗(CP∞), E∗(MU)) .

�

We apply this in the case E = MU . Then ηL : MU →MU∧MU and ηR : MU →
MU ∧MU induce the homomorphisms previously denoted ηL : MU∗ → MU∗MU
and ηR : MU∗ →MU∗MU .

Theorem 5.4. The ring homomorphism

q : LB
∼=−→MU∗MU

classifying the strict isomorphism

h : η∗LFMU

∼=−→ η∗RFMU

is an isomorphism. Hence h over MU∗MU is the universal strict isomorphism
between formal group laws.
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Proof. Since the source of h is η∗LFMU , the restriction of q over ηL is Quillen’s
isomorphism q0 : L → MU∗ ⊂ MU∗MU . Moreover, by Lemma 5.3 (in the case
E = MU), q restricts over ι to the homomorphism

q1 : B −→ Z[bMU
k | k ≥ 1] ⊂MU∗MU

bk 7−→ bMU
k ,

which is obviously an isomorphism. This implies that q is an isomorphism. �

Remark 5.5. With this, we have recovered the calculation of the MU -based Steen-
rod algebra AMU = MU∗(MU) due to Novikov [Nov67] and Landweber [Lan67],
in the dual form of the Hopf algebroid (MU∗,MU∗MU) ∼= (L,LB) recommended
by Adams, reaching the conclusion that it is the Hopf algebroid corepresenting the
functor R 7→ FGLs(R)op taking any commutative ring to (the opposite of) the
groupoid of formal group laws and strict isomorphisms defined over R.

The explicit formulas are hard to work with. There is a p-local version of the
theory, for each fixed prime p, involving the Brown–Peterson spectrum BP with
H∗(BP ;Fp) = A //E = P and p-typical formal group laws, for which more man-
ageable (but still recursive) formulas for ηR, ψ and χ are available.

In the special case E = HZ, Adams’ lemma shows that the universal formal
group law FMU over MU∗ becomes strictly isomorphic to the additive formal group
law when base changed along the Hurewicz homomorphism ~ : MU∗ → H∗(MU) ∼=
H∗(BU) = Z[bk | k ≥ 1]. This gives a fairly explicit formula for ~∗FMU , and
since ~ : MU∗ → H∗(MU) is injective, this formula determines FMU (y1, y2) ∈
MU∗[[y1, y2]].

Lemma 5.6. The formal power series

expMU (y) = y +
∑
k≥1

bky
k+1 ∈ H∗(MU)[[y]]

defines a strict isomorphism

expMU : Fa
∼=−→ ~∗FMU

over H∗(MU). Letting

logMU (y) = exp−1MU (y) = y +
∑
k≥1

mky
k+1

denote its inverse, it follows that

~∗FMU (y1, y2) = expMU (logMU (y1) + logMU (y2))

in H∗(MU)[[y1, y2]].

Proof. This is the case E = HZ of Lemma 5.3, noting that FHZ = Fa remains the
additive formal group law after base change to H∗(MU). The logarithm coefficients
mk = χ(bk) were calculated in Lemma 4.6. �

Remark 5.7. To prove Lazard and Quillen’s theorems, one uses the formula

F ′(y1, y2) = exp(log(y1) + log(y2)) ,
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with exp(y) = y +
∑
k≥1 bky

k+1 and log(y) = exp−1(y), to define a formal group

law F ′ over B = Z[bk | k ≥ 1], which is classified by a ring homomorphism g : L→
B. The discussion for MU and HZ ∧MU gives a commutative square

L
g

//

q0

��

B

q′

��

MU∗
~ // H∗(MU) .

Letting I ⊂ L and J ⊂ B be the augmentation ideals (= the positive-degree classes),
Lazard proves that

Z{xk | k ≥ 1} = I/I2
g−→ J/J2 = Z{bk | k ≥ 1}

is given by

xk 7−→

{
pbk if k + 1 is a power of p,

bk otherwise.

Quillen shows that q′ is an isomorphism, and compares with Milnor’s calculation
of ~ to deduce that q0 is also an isomorphism.

Example 5.8. The complex orientation yH = y ∈ H̃2(CP∞) corresponds to the ring
spectrum map MU → τ≤0MU ' HZ. The induced homomorphism MU∗ = L→ Z
corepresents the additive formal group law

Fa(y1, y2) = y1 + y2

over Z.

The complex orientation yKU = u−1(γ1 − 1) ∈ K̃U
2
(CP∞) is represented by a

map yKU : Σ−2CP∞ −→ KU , corresponding to a ring spectrum map g : MU −→
KU in the stable homotopy category. (Both yKU and g factor uniquely over
the connective cover ku = τ≥0KU → KU .) The induced ring homomorphism
g : MU∗ ∼= L −→ KU∗ corepresents the multiplicative formal group law

Fm(y1, y2) = y1 + y2 + uy1y2

over KU∗ = Z[u±1]. Here

g(ai,j) =

{
u for (i, j) = (1, 1),

0 otherwise.

Following up on Lemma 5.6, we have the commutative diagram

HZ
ηL // HZ ∧MU

id∧g
��

MU
ηRoo

g

��

HZ
ηL //

��

HZ ∧KU

'
��

KU
ηRoo

HQ
ηL // HQ ∧KU KU

ηRoo

of ring spectra. Adams shows ((ETC: Reference?)) that the Bott map u : Σ2ku→
ku induces a nilpotent homomorphism u∗ : H∗(Σ

2ku;Fp) → H∗(ku;Fp) in mod p

homology. (In fact up−1∗ = 0, for each prime p.) Passing to the colimit along

ku
u−→ Σ−2ku

u−→ Σ−4ku −→ . . . −→ KU
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we deduce that H∗(KU ;Fp) = 0, so that multiplication by p on H∗(KU) is in-
vertible. Hence H∗(KU) is already rational and HZ ∧ KU → HQ ∧ KU is an
equivalence. The strict isomorphism

expMU : Fa
∼=−→ ~∗FMU

over H∗(MU) base changes along H∗(MU)→ H∗(KU) to a strict isomorphism

g∗ expMU : Fa
∼=−→ Fm

defined over H∗(KU) ∼= HQ∗(KU) = KU∗ ⊗ Q = Q[u±1]. Over any Q-algebra
there is a unique strict isomorphism from the additive to the multiplicative formal
group law, namely

g∗ expMU (y) =
euy − 1

u
= y +

∑
k≥1

uk

(k + 1)!
yk+1 .

Its formal inverse is

g∗ logMU (y) =
log(1 + uy)

u
= y +

∑
k≥1

(−1)k
uk

k + 1
yk+1 .

Hence g : H∗(MU)→ H∗(KU) is given by

g(bk) =
uk

(k + 1)!
and g(mk) = (−1)k

uk

k + 1

for each k ≥ 1.

((ETC: Relate KU → HZ ∧ KU ' HQ ∧ KU '
∏
i∈Z Σ2iHQ to the Chern

character ch: KU0(X) → Hev(X;Q) =
∏
iH

2i(X;Q). Relate ch ◦g : MU →
KU →

∏
i∈Z Σ2iHQ to the Todd genus. Mention Mischenko’s theorem ±[CP k] =

(k + 1)mk, the Conner–Floyd theorem KU∗(X) ∼= KU∗ ⊗MU∗ MU∗(X), and the
Hattori–Stong theorem on KU∗(MU).))

6. Formal groups

To each complex orientable ring spectrum E we have assigned the graded com-
mutative E∗-algebra

E∗(CP∞) ∼= lim
m
E∗(CPm)

with its augmentation ε : E∗(CP∞)→ E∗ and completed coproduct

m∗ : E∗(CP∞) −→ E∗(CP∞ × CP∞) ∼= E∗(CP∞) ⊗̂E∗ E∗(CP∞) .

The corepresented sheaf

ĜE = Spf(E∗(CP∞)) = colim
m

Spec(E∗(CPm))

over Spec(E∗) is an abelian group object in this category, with neutral element

Spec(E∗)
Spf(ε)−→ Spf(E∗(CP∞)) = ĜE

and multiplication

ĜE ×Spec(E∗) ĜE = Spf(E∗(CP∞))×Spec(E∗) Spf(E∗(CP∞))

Spf(m∗)−→ Spf(E∗(CP∞)) = ĜE .

This is an example of a formal group (not formal group law) over Spec(E∗).
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Only when we fix a choice of complex orientation y ∈ Ẽ2(CP∞) do we spec-
ify an isomorphism E∗(CP∞) ∼= E∗[[y]] and obtain a formal group law m∗(y) =
FE(y1, y2) ∈ E∗(CP∞×CP∞) ∼= E∗[[y1, y2]]. Different choices of complex orienta-
tions give formal group laws that only agree up to (canonical) strict isomorphism.
We therefore want each formal group law to specify a formal group, but also want
strictly isomorphic formal group laws to specify the same formal group. A formal
group is therefore, roughly, what we obtain from a formal group law by forgetting
the choice of coordinate.

Definition 6.1. Let R be a (graded) commutative ring. A (commutative, one-

dimensional) formal group Ĝ over Spec(R) is an abelian group object in sheaves
over Spec(R) whose underlying object pointed at the unit is locally isomorphic to
Spf(R[[y]]) pointed at y = 0.

Here “locally isomorphic” means that Spec(R) is covered by Zariski open sub-

schemes Spec(T ) such that Ĝ(T ) ∼= Spf(T [[y]]) is the underlying formal group of a
formal group law over T , but also that the local choices of coordinates y need not
extend to a global coordinate over R. This means that a formal group over Spec(R)
is a locally defined notion, as is required for these to form the R-valued points of
a stack (not prestack) of formal groups. See Naumann [Nau07, Thm. 33(i)] and
Goerss [Goe, Thm. 2.34] for expositions of this and related stacks of relevance to
algebraic topology.

Theorem 6.2. The stackMfg of formal groups is the stackification of the prestack
Mfgl presented by the Hopf algebroid (L,LB).

The canonical morphism Mfgl →Mfg extends the class of objects, since not all
formal groups admit a global coordinate, and identifies some strictly isomorphic
formal group laws by forgetting the choice of coordinate.

We obtain the following diagram of categories and functors, where U : (E, y) 7→ E
forgets the complex orientation, V maps F (y1, y2) ∈ R[[y1, y2]] to the formal scheme
Spf(R[[y]]) with the associated group structure, F : (E, y) 7→ FE(y1, y2) = m∗(y)

is the associated formal group law over E∗, and Ĝ : E 7→ ĜE = Spf(E∗(CP∞)) is
the (Quillen) formal group over Spec(E∗). Each even ring spectrum E is complex
orientable, since the Atiyah–Hirzebruch spectral sequence for E∗(CP∞) collapses.

even ring spectra

��

complex oriented ring spectra
U //

F

��

complex orientable ring spectra

Ĝ
��

formal group laws
V // formal groups

The right hand objects are more intrinsic, while the left hand objects may be more
amenable to calculation.

It is an interesting question to ask which formal groups can be realized as the
Quillen formal group of a complex orientable ring spectrum. A sufficient crite-
rion will be given by Landweber’s exact functor theorem [Lan76]. One source of

(commutative, one-dimensional) formal groups are the formal completions Ĉ of the
(commutative, one-dimensional) group schemes given by elliptic curves C. These
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are quite often Landweber exact, and are then realized by complex orientable ring
spectra known as elliptic cohomology theories [LRS95].

Other sources of (commutative, one-dimensional) formal groups are given by
formal deformations of Brauer groups of K3-surfaces, or more general cohomology
groups of higher-dimensional Calabi–Yau varieties [Art74], [AM77]. The resulting
K3-cohomology [Szy10], [Szy11] and Calabi–Yau cohomologies seem not to be well
understood.

A more refined question asks which diagrams of formal groups can be realized
by diagrams (of the same shape) of complex orientable ring spectra, and whether
this realization can take place in ring spectra up to homotopy, orthogonal ring
spectra, or commutative orthogonal ring spectra. This includes questions about
group actions, since a G-action corresponds to a BG-shaped diagram. Theorems
of Hopkins–Miller and Goerss–Hopkins resolve the second and third forms of this
question in interesting cases. It is then possible to form the limit of the resulting
diagram of (commutative) orthogonal ring spectra, which has led to the construction
of topological modular forms and other higher real K-theories.
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