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CHAPTER 14: GALOIS EXTENSIONS

JOHN ROGNES

1. Lubin–Tate spectra

Let k be a perfect field of prime characteristic p 6= 0, and let Φ ∈ k[[y1, y2]] be
a formal group law over k of finite height n <∞. We will eventually focus on the
case k = Fpn and Φ = Hn, the Honda formal group law, which is defined over Fp,
with p-series [p]Hn

(y) = yp
n

.
The classifying homomorphism L → k for Φ corresponds to a point Spec(k) →

Spec(L)→Mfgl →Mfg in the moduli stack of formal group laws/groups. Lubin–
Tate [LT66] analyzed the formal neighborhood of this point, which is evenly covered
by the space of deformations of the formal group law Φ.

Let R be any complete Noetherian local ring. We write m ⊂ R for the maximal
ideal and π : R→ R/m for the canonical homomorphism to the residue field. Com-
pleteness means that R ∼= limnR/m

n. If m is nilpotent then R is an Artinian local
ring, and vice versa.

If h : F → F ′ is a homomorphism of formal group laws over R, with F, F ′ ∈
R[[y1, y2]] and h ∈ R[[y]], then the base change π∗h : π∗F → π∗F ′ is a homo-
morphism of formal group laws over R/m, with π∗F, π∗F ′ ∈ R/m[[y1, y2]] and
π∗h ∈ R/m[[y]].

Definition 1.1. By a deformation (F, i) of Φ over k to R we mean a field homo-
morphism i : k → R/m and a formal group law F over R such that i∗Φ = π∗F over
R/m.

Φ � i∗ // i∗Φ = π∗F F
�π∗

oo

k
i // R/m R

πoo

A morphism j : (F, i) → (F ′, i′) of deformations can exist only if i = i′, in which
case it is a homomorphism j : F → F ′ of formal group laws over R that satisfies
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π∗j = id: π∗F → π∗F ′. We say that j is a ?-isomorphism.

π∗F

id

F

j∼=
��

�π∗
oo

π∗F ′ F ′�π∗
oo

R/m R
πoo

Let DEF(Φ, k)(R) be the groupoid of deformations of Φ over k to R, and let

Def(Φ, k)(R) = π0DEF(Φ, k)(R)

be its set of isomorphism classes. We write [F, i] ∈ Def(Φ, k)(R) for the ?-isomorphism
class of (F, i).

Note that i = i′ implies π∗F = i∗Φ = (i′)∗Φ = π∗F ′, so that the displayed
identity morphism exists. To see that DEF(Φ, k)(R) is a groupoid, note that π∗j =
id means that j(y) ≡ y mod m[[y]], so j′(0) ≡ 1 mod m is a unit in the local ringR.

The finite height assumption has the following consequence.

Theorem 1.2 ([LT66, Thm. 3.1]). There is at most one morphism j : F → F ′

between any two deformations of Φ over k to R. Hence the groupoid DEF(Φ, k)(R)
is discrete up to homotopy, and is equivalent to the set Def(Φ, k)(R) of isomorphism
classes of deformations to R.

Example 1.3. The multiplicative formal group law F = Fm over R = Zp is a
deformation of the multiplicative formal group law Φ = Fm over k = Fp. The only
morphism j : F → F in DEF(Fm,Fp)(Zp) is the identity, because if [n]Fm(y) ≡ y
mod p, then n = 1, as we noted in Chapter 10, Example 2.4.

Remark 1.4. For each R there is a pullback square

DEF(Φ, k)(R) //

��

FGLi(R)

π∗

��
CRing(k,R/m)

i 7→i∗Φ // FGLi(R/m)

of groupoids, where the set CRing(k,R/m) is viewed as a discrete category. Passing
to nerves, we obtain a pullback square of simplicial sets. The functor π∗ induces
a Kan fibration, since for any morphism in FGLi(R/m) and any choice of lift to
FGLi(R) of its (source or) target, there exists a lifting morphism in FGLi(R) with
that (source or) target. Hence the pullback square is also a (2-categorical and)
homotopy pullback. By Theorem 1.2, each (homotopy) fiber is homotopy discrete,
so π∗ is a covering space up to homotopy.

Moreover, Lubin–Tate show that the functor

R 7−→ Def(Φ, k)(R)

is representable, i.e., that there is a universal deformation FLT = FLT (Φ,k) of Φ
over k to a complete Noetherian ring LT = LT (Φ, k) with residue field k.
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Recall that W (k) denotes the Witt vectors of k. Since k is perfect, it has the
universal property that each field homomorphism i : k → R/m admits a unique lift
ı̂ : W (k)→ R.

Theorem 1.5 ([LT66, Thm. 3.1]). There is a deformation (FLT , id) of Φ over k
to the complete Noetherian ring

LT (Φ, k) = W (k)[[u1, . . . , un−1]]

such that the natural function

CRingloc(LT (Φ, k), R)
∼=−→ Def(Φ, k)(R)

g 7−→ [g∗FLT , ḡ]

is a bijection for all complete Noetherian local rings R.

The local ringW (k)[[u1, . . . , un−1]] has maximal ideal (p, u1, . . . , un−1) and residue
field LT (Φ, k)/(p, u1, . . . , un−1) ∼= k. We suppress the latter canonical isomorphism
from the notation. By a local homomorphism g : LT (Φ, k)→ R we mean a ring ho-
momorphism mapping the maximal ideal (p, u1, . . . , un−1) to the maximal ideal m,
and we write ḡ : k → R/m for the induced homomorphism of residue fields.

Example 1.6. The Lubin–Tate deformation of Φ = Fm over Fp is defined over
LT (Fm,Fp) = W (Fp) = Zp, and is equal to FLT = Fm over Zp. Hence the formal
group law associated to the standard complex orientation of KU∧p is the universal
deformation of the formal group law associated to the standard complex orientation
of KU/p.

The universal property only specifies the Lubin–Tate deformation ring LT up
to isomorphism, and the Lubin–Tate formal group law FLT is only defined up to
?-isomorphism. In particular, the deformation parameters u1, . . . , un−1 are not
canonically defined. In the case Φ = Hn, the universal deformation FLT can be
constructed so that its p-series satisfies

[p]FLT
(y) ≡ uiyp

i

modulo terms of degree > pi, for each 1 ≤ i < n. Moreover

[p]FLT
(y) ≡ yp

n

modulo terms of degree > pn. Hence the classifying ring homomorphism g : L→ LT
from the Lazard ring satisfies vi 7→ ui modulo LT · Ii for 1 ≤ i < n and vn 7→ 1
modulo LT · In.

Definition 1.7. Let

E(Φ, k)∗ = LT (Φ, k)[u±1]

with |u| = 2, so that E(Φ, k)0 = LT (Φ, k) ∼= W (k)[[u1, . . . , un−1]]. ((ETC: For
some purposes it is better to let |u| = −2.))

There is a graded variant of the Lubin–Tate formal group law FLT , defined
over E(Φ, k)∗, such that the classifying ring homomorphism g : L = MU∗ →
E(Φ, k)∗ satisfies

vi 7−→ uiu
pi−1

vn 7−→ up
n−1
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for 1 ≤ i < n. Note that this makes E(Φ, k)∗ satisfy the Landweber exact functor
theorem.

Definition 1.8. Let E(Φ, k) be the spectrum representing the Landweber exact
homology theory

E(Φ, k)∗(X) = E(Φ, k)∗ ⊗MU∗ MU∗(X) .

In particular, π0E(Φ, k) = E(Φ, k)0 = LT (Φ, k). In the special cases k = Fpn and
Φ = Hn, the height n Honda formal group law, we let

En = E(Hn,Fpn) .

In particular, π0En = LT (Hn,Fpn) = W (Fpn)[[u1, . . . , un−1]] and

π∗En = W (Fpn)[[u1, . . . , un−1]][u±1] .

These spectra are known as Morava E-theory spectra, completed Johnson–Wilson
spectra, or Lubin–Tate spectra.

Example 1.9. E(Fm,Fp) = KU∧p = E1.

Proposition 1.10. Each Lubin–Tate spectrum E(Φ, k) is K(n)-local. In particu-
lar, En is K(n)-local.

Proof sketch. Being Landweber exact of height n, these spectra are E(n)-local.
Since LT (Φ, k) is (p, u1, . . . , un−1)-complete, so that π∗E(Φ, k) is In-complete, it
follows from [HS99, Prop. 7.10(e)] that these spectra are K(n)-local. �

Alan Robinson [Rob89] developed an obstruction theory (in terms of Hochschild
cohomology) for the existence of (associative = A∞ =) E1 ring structures on spectra,
and applied it to prove that each Morava K-theory spectrum K(n) admits such
structures.

Andy Baker [Bak91] applied the same obstruction theory to proved that the
completed Johnson–Wilson spectra E(n)∧In also admit unique E1 ring structures.
These are essentially the same as the Lubin–Tate spectra E(Hn,Fp).

An obstruction theory for diagrams of E1 ring spectra was developed by Mike
Hopkins and Haynes Miller, see [Rez98], and also shows that each Lubin–Tate
spectrum E(Φ, k) has a unique E1 ring structure.

Thereafter, an obstruction theory for diagrams of (commutative =) E∞ ring
spectra (in terms of André–Quillen cohomology) was developed by Paul Goerss
and Mike Hopkins [GH04]. In particular, this shows that each Lubin–Tate spectrum
E(Φ, k) has a unique E∞ ring structure. This is the “En is E∞” theorem.

((ETC: Also let Enr
n = E(Hn, F̄p).))

2. The stabilizer group action

The Lubin–Tate deformation FLT over LT (Φ, k) depends functorially on Φ over k.
Hence the extended Morava stabilizer group, i.e., the profinite automorphism group
Aut(Φ, k), acts on LT (Φ, k), and this action lifts to a (continuous!) action on
E(Φ, k). In particular, Gn = Aut(Hn,Fpn) = Sn o Gal(Fpn/Fp) acts on En =
E(Hn,Fpn).

((ETC: Also Gnr
n = Aut(Hn, F̄p) = Sn oGal(F̄p/Fp) acts on Enr

n = E(Hn, F̄p).))
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Definition 2.1. An automorphism (h, γ) of (Φ, k) is a field automorphism γ : k → k
and a formal group law isomorphism h : γ∗Φ→ Φ. These form the group Aut(Φ, k),
with composition law

(h1, γ1) ◦ (h2, γ2) = (h1 ◦ γ∗1h2, γ1 ◦ γ2) .

If Φ is defined over Fp ⊂ k, then γ∗Φ = Φ in each case, and

Aut(Φ, k) ∼= Aut(Φ/k) o Gal(k/Fp) .

Φ � γ∗
2 // γ∗2Φ

h2
∼=
��

� γ∗
1 // (γ1γ2)∗Φ

γ∗
1h2∼=
��

Φ
� γ∗

1 // γ∗1Φ

h1
∼=
��

Φ

k
γ2 // k

γ1 // k

Definition 2.2. Let
[F, i] = [F/R, i : k → R/m]

be a deformation of Φ over k to a complete Noetherian local ring R, and let

(h, γ) = (h : γ∗Φ→ Φ, γ : k → k)

be an automorphism of (Φ, k). The natural (right) action

Def(Φ, k)(R)×Aut(Φ, k)
·−→ Def(Φ, k)(R)

is given by
[F, i] · (h, γ) = [F ′, iγ] ,

where F ′ is the source of an isomorphism ĥ : F ′ → F over R such that i∗h = π∗ĥ.

(Such lifts ĥ(y) ∈ R[[y]] exist, since π : R → R/m is surjective. Any two choices of

lifts ĥ differ by a ?-isomorphism, so the deformation class of (F ′, iγ) is well-defined.)

Φ_

γ∗

��

� (iγ)∗ // (iγ)∗Φ = π∗F ′
_

id∗

��

F ′�π∗
oo

_

id∗

��
γ∗Φ

h∼=
��

� i∗ // (iγ)∗Φ = π∗F ′

i∗h=π∗ĥ
��

F ′�π∗
oo

ĥ∼=
��

Φ
� i∗ // i∗Φ = π∗F F

�π∗
oo

k

γ

��

iγ // R/m

id

R
πoo

id

k
i // R/m R

πoo
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((ETC: Maybe explain the action of h ∈ Aut(Φ/k) and of γ ∈ Gal(k/Fp) sepa-
rately, when Φ is defined over Fp so that γ∗Φ = Φ.))

The action of Aut(Φ, k) on Def(Φ, k)(R) ∼= CRingloc(LT,R) is natural in R,
hence must be induced by an action on the Lubin–Tate ring LT = LT (Φ, k) through
local ring homomorphisms.

More explicitly, (h, γ) ∈ Aut(Φ, k) takes the universal deformation [FLT , id] to
LT to the deformation [FLT , id] · (h, γ) = [F ′, γ] where F ′ is the source of an

isomorphism ĥ : F ′ → FLT over LT such that h = π∗ĥ over k. There is then
a unique local ring homomorphism g : LT → LT such that [g∗FLT , ḡ] = [F ′, γ].
This means that ḡ = γ (so that πg = γπ), and there is a (unique) ?-isomorphism
j : g∗FLT → F ′ over LT .

Φ � id∗
//

_

id∗

��

Φ = π∗FLT_

γ∗=ḡ∗

��

FLT
�π∗

oo
_

g∗

��
Φ � γ∗

//

id

γ∗Φ = π∗g∗FLT

id

g∗FLT
�π∗

oo

j∼=
��

Φ_

γ∗

��

� γ∗
// γ∗Φ = π∗F ′_

id∗

��

F ′�π∗
oo

_

id∗

��
γ∗Φ

h∼=
��

� id∗
// γ∗Φ = π∗F ′

h=π∗ĥ
��

F ′
�π∗

oo

ĥ∼=
��

Φ � id∗
// Φ = π∗FLT FLT

�π∗
oo

k
id

id

k

γ=ḡ

��

LT
πoo

g

��
k

γ

��

γ // k

id

LT
πoo

id

k
id

k LT
πoo

Replacing ĥ by ĥ ◦ j : g∗FLT → FLT , we may assume that j = id. To each
automorphism (h, γ) there thus exists a unique ring automorphism g : LT → LT

with ḡ = γ, and a unique formal group law isomorphism ĥ : g∗FLT → FLT with

π∗ĥ = h.

Φ � id∗
//

_

γ∗

��

Φ = π∗FLT_

γ∗=ḡ∗

��

FLT
�π∗

oo
_

g∗

��
γ∗Φ

h∼=
��

� id∗
// γ∗Φ = π∗g∗FLT

h=π∗ĥ
��

g∗FLT
�π∗

oo

ĥ∼=
��

Φ
� id∗

// Φ = π∗FLT FLT
�π∗

oo
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Theorem 2.3 ([Goe, Thm. 7.16]). Let FLT : Spf(LT (Φ, k))→Mfg denote the map
representing the Lubin–Tate formal group (law) over the Lubin–Tate ring. There
is a homotopy pullback square

Spf(LT (Φ, k))×Aut(Φ, k)
· //

pr1

��

Spf(LT (Φ, k))

FLT

��
Spf(LT (Φ, k))

FLT //Mfg .

The orbit stack Spf(LT (Φ, k))//Aut(Φ, k) is the formal neighborhood of Φ/k in
Mfg.

Sketch proof. A map from Spf(R) to the (2-categorical or) homotopy pullback cor-
responds to two deformations [F, i] and [F ′, i′] of Φ/k to R, and a formal isomor-

phism ĥ : F ′ → F . We may suppose that i and i′ are isomorphisms. Let γ = i−1i′,

so that iγ = i′, and let h : γ∗Φ → Φ be determined by i∗h = π∗ĥ. Then (h, γ) is
the unique automorphism such that [F, i] · (h, γ) = [F ′, i′]. Hence the map from
Spf(R) corresponds naturally to the pair ([F, i], (h, γ)), mapping under π1 to [F, i]
and under · to [F ′, i′]. �

For each (h, γ) ∈ Aut(Φ, k), the associated local ring homomorphism g : LT →
LT and formal group law isomorphism ĥ : g∗FLT → FLT determines a morphism

E(Φ, k)∗(X) = LT ⊗MU∗ MU∗(X)

g⊗ν−→ LT ⊗MU∗ MU∗MU ⊗MU∗ MU∗(X)

1⊗ĥ⊗1−→ LT ⊗MU∗ LT ⊗MU∗ MU∗(X)

φ⊗1−→ LT ⊗MU∗ MU∗(X) = E(Φ, k)∗(X)

of Landweber exact homology theories. (We write MU∗ and MU∗MU in place
of L and LB, to avoid notational similarity with LT = LT (Φ, k) = π0E(Φ, k).)
Here ν : MU∗(X) → MU∗MU ⊗MU∗ MU∗(X) denotes the standard MU∗MU -

coaction. The ring homomorphism ĥ : MU∗MU → LT represents the isomorphism

ĥ : g∗FLT → FLT . See [Rez98, §6.7] for a discussion of how to arrange that the

graded version of ĥ is a strict isomorphism.
This morphism of homology theories is represented by a map

(h, γ) : E(Φ, k) −→ E(Φ, k)

in the stable homotopy category. This defines an action in Ho(Sp) of Aut(Φ, k) on
E(Φ, k).

Example 2.4. Recall that Aut(Fm,Fp) = Aut(Fm/Fp) ∼= Z×p . For n ∈ Z×p the auto-
morphism [n]Fm

of Fm/Fp acts on E1 = KU∧p as the p-adic Adams operation ψn.

The principal achievement of the Hopkins–Miller and Goerss–Hopkins obstruc-
tion theories is to promote this group action in Ho(Sp) to a group action on (as-
sociative =) E1 ring spectra and (commutative =) E∞ ring spectra. The following
theorems are usually credited to Goerss–Hopkins–Miller as a group.

Theorem 2.5 (Hopkins–Miller [Rez98, Thm. 7.1]). For any two Lubin–Tate spec-
tra E(Φ, k) and E(Φ′, k′) the space of E1 ring maps E(Φ, k)→ E(Φ′, k′) is homo-
topy equivalent to the (profinite) set of morphisms (h, γ) : (Φ, k) → (Φ′, k′), where
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γ : k → k′ is a field homomorphism and h : γ∗Φ → Φ′ is a formal group law iso-
morphism.

Hence the action of Aut(Φ, k) in Ho(Sp) on E(Φ, k) lifts uniquely to a (con-
tinuous) action in the category of E1 ring spectra (= associative orthogonal ring
spectra). In particular, Gn acts (continuously) on En through E1 ring spectrum
maps.

Theorem 2.6 (Goerss–Hopkins [GH04, Cor. 7.7]). For any two Lubin–Tate spec-
tra E(Φ, k) and E(Φ′, k′) the space of E∞ ring maps E(Φ, k)→ E(Φ′, k′) is homo-
topy equivalent to the (profinite) set of morphisms (h, γ) : (Φ, k) → (Φ′, k′), where
γ : k → k′ is a field homomorphism and h : γ∗Φ → Φ′ is a formal group law iso-
morphism.

Hence the action of Aut(Φ, k) in Ho(Sp) on E(Φ, k) lifts uniquely to a (contin-
uous) action in the category of E∞ ring spectra (= commutative orthogonal ring
spectra). In particular, Gn acts (continuously) on En through E∞ ring spectrum
maps.

Remark 2.7. In each case the assertion that the action is continuous requires further
work, see work by Daniel G. Davis, Gereon Quick and collaborators. It can now
be handled by working over suitable perfect Fp-algebras in place of perfect fields,
as in Lurie’s account [Lur, §5]. An alternative is to work with “condensed sets”,
as in the work of Clausen–Scholze. As long as one considers finite (hence discrete)
subgroups of Aut(Φ, k), continuity is not an issue.

As a consequence of these theorems, any diagram of finite height formal group
laws over perfect fields of characteristic p can be lifted to a diagram of (associative
or) commutative orthogonal ring spectra. Unlike in Ho(Sp), it makes good sense
to form homotopy limits of such orthogonal ring spectra. For example, for each
subgroup H ⊂ Gn we may consider the homotopy fixed points

EhHn = F (EH+, En)H

(taking the topology on H into account). There is a conditionally convergent ho-
motopy left half-plane fixed point spectral sequence

E2
s,t = H−sc (H;πtEn) =⇒ πt−s(E

hH
n )

which is usually (always?) strongly converent.

Example 2.8. Consider n = 1 with π∗E1 = π∗KU
∧
p = Zp[u±1].

For p odd the maximal finite subgroup of G1 = Z×p is ∆ ∼= Z/(p − 1). The
homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(∆;Zp[u±1]) = Zp[u±(p−1)] =⇒ π∗(E

h∆
1 )

collapses at the E2-term, and identifies Eh∆
1 with the p-complete Adams summand

L∧p = E(1)∧p of KU∧p with π∗L
∧
p = Zp[v±1

1 ].

For p = 2 the maximal finite subgroup of G1 = Z×2 is ∆ = {±1}, which acts by
sign on π2E1 = Z2{u}. The homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(∆;Z2[u±1]) = Z2[η, u±2]/(2η) =⇒ π∗(E

h∆
1 )

has a nonzero differential d3(u2) = η3, and collapses at

E4
∗,∗ = E∞∗,∗ = Z2[η,A,B±1]/(2η, η3, ηA,A2 = 4B)
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with A = 2u2 and B = u4. This identifies Eh∆
1 with 2-completed real K-theory

KO∧2 .

For H maximal finite in Gn, the spectra

EOn = EhHn

are sometimes known as higher real K-theory spectra.

Example 2.9. Early calculations with H ∼= Z/p were made by Hopkins–Miller
for n = p − 1, written out for n = 2 and p = 3 by Goerss–Henn–Mahowald–
Rezk [GHMR05].

For n = 2 and p = 2 the extended Morava stabilizer group G2 = S2 o Z/2
has the maximal finite subgroup G48 = Â4 o Z/2 of order 48, which is also the
automorphism group of the unique supersingular elliptic curve over F4. This leads
to the equivalence

LK(2) TMF ' EO2 = EhG48
2

between K(2)-local topological modular forms and this case of higher real K-theory.
The structure of the homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(G48;π∗E2) =⇒ π∗E

hG48
2 = π∗LK(2) TMF

has ((ETC: check)) been documented by Hans–Werner Henn. Another source for
this abutment is [BR21].

Remark 2.10. The precise calculation of the action of Aut(Φ, k) on LT (Φ, k), i.e.,
of the extended Morava stabilizer group Gn on the coefficient ring π∗(En) of the
n-th Lubin–Tate ring spectrum, is a difficult task. In Devinatz–Hopkins [DH95]
the action is compared to a more explicit action on a “divided power envelope” of
π∗(En). In Hopkins–Gross [HG94] this is formulated in terms of a rigid-analytic
“crystalline period mapping” to a projective space. Partial results for the action
by finite subgroups, or simpler coefficients, are of current computational interest.

3. The Devinatz–Hopkins Galois extensions

By analogy with the Morava change-of-rings theorem and Theorem 2.3, Devinatz–
Hopkins [DH04] show that the map

h : En ∧ En −→
∏
Gn

En = F (Gn+, En)

b1 ∧ b2 7−→ (b1 · g(b2))g∈Gn

is a K(n)-local equivalence. Here the product (or function spectrum) takes the
profinite topology on Gn into account. This implies that the cosimplicial resolution
(= Amitsur complex)

S // En
//
// En ∧ En

//
//
//

oo En ∧ En ∧ En
oo
oo . . .

is K(n)-locally equivalent to the cobar construction

EhGn
n

// En
//
//
∏
Gn

En

//
//
//

oo
∏
G2

n

En
oo
oo . . .

for the homotopy fixed points EhGn
n = F (EGn+, En)Gn . (There are technical issues

here, regarding the continuity of the Gn-action on En and how to account for
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the topology on Gn in these products, which are resolved in an ad hoc manner
in [DH04].) In the framework of [Rog08], this has the following formulation.

Theorem 3.1. There is a faithful K(n)-local Gn-pro-Galois extension

L̂nS = LK(n)S ' EhGn
n −→ En

of E∞ ring spectra.

There is a bijective Galois correspondence [Rog08, Thm. 7.2.3, Thm. 11.2.2]
between the separable subextensions of En and subgroups of Gn.

Corollary 3.2. For each finite spectrum F there is a conditionally homotopy fixed
point spectral sequence

E2
s,t = H−sc (Gn;πt(En ∧ F )) =⇒ πs+tLK(n)F .

When F has type ≥ n it agrees with the E(n)-based Adams–Novikov spectral se-

quence for LnF ' L̂nF .

Example 3.3. For n = 1 and p odd, the continuous Z×p -homotopy fixed points of
KU∧p agree with the homotopy equalizer of ψg and 1, where g is a topological

generator of Z×p , so that

LK(1)S ' (KU∧p )hZ
×
p ' J∧p .

For n = 1 and p = 2, the continuous Z×2 -homotopy fixed points of KU∧2 agree with

the (1 + 4Z2)-homotopy fixed points of (KU∧2 )h{±1} ' KO∧2 , which in turn agrees
with the homotopy equalizer of ψ5 and 1, so that

LK(1)S ' (KU∧2 )hZ
×
2 ' J∧2 .

Recall the notation Enr
n = E(Hn, F̄p), with Aut(Hn, F̄p) = Gnr

n = Sn o Ẑ, where

Ẑ = Gal(F̄p/Fp). Like Theorem 3.1 above, there is a faithful K(n)-local Gnr
n -Galois

extension LK(n)S → Enr
n .

Theorem 3.4 ([BR08]). Let p be odd and n ≥ 1. Then Enr
n is separably closed, in

the sense that it admits no proper, connected K(n)-local Galois extension.

Hence the profinite completion Gnr
n of the unit group D×n (of the central simple

Qp-algebra of invariant 1/n, see Chapter 10, Remark 7.14) is realized as the absolute
Galois group of the K(n)-local sphere. It is the fundamental group of the formal
neighborhood of Hn over Fpn inMfg, with universal cover given by the Lubin–Tate
formal group law over Spf(Enr

n ).

4. ((ETC: Unfinished business))

4.1. Stable comodule categories. Too little structure in target (abelian, not
triangulated) may mean that the chromatic localization is too weak (loses too much
information) and that a finer target, giving a stronger (telescopic) localization, is
more interesting. Derived or stable ∞-categories; Hovey, Strickland.

4.2. Elliptic cohomology and topological modular forms. Map from mod-
uli stack of (generalized) elliptic curves to (finite height) formal groups. Elliptic
cohomology.

4.3. Redshift. Algebraic K-theory computations using topological cyclic homol-
ogy of telescopic (rather than chromatic) homotopy groups.
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4.4. Chromatic Nullstellensatz. Burklund–Schlank–Yuan: The chromatic Null-
stellensatz (arXiv:2207.09929).

4.5. Chromatic Fourier transform. Barthel–Carmeli–Schlank–Yanovski: The
chromatic Fourier transform (arXiv:2210.12822).
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