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CHAPTER 10: THE HEIGHT FILTRATION

JOHN ROGNES

To understand the Hopf algebroid (L,LB) ∼= (MU∗,MU∗MU) corepresenting
the moduli prestackMfgl of formal group laws and strict isomorphisms, we make a
closer study of the latter. Since (L,LB) is defined over Z, we may look at the fibers
over the closed points i : Spec(Fp)→ Spec(Z), where p ranges over all primes, and
the open point j : Spec(Q)→ Spec(Z).

Mfgl ⊗Q //

��

Mfgl

��

Mfgl ⊗ Fpoo

��
Spec(Q)

j // Spec(Z) Spec(Fp)
ioo

It can also be convenient to work locally at a single prime, i.e., over Spec(Z(p)), or
completed at that prime, i.e., over Spec(Zp).

Formal group laws in characteristic 0 are canonically isomorphic, via their log-
arithm, to the additive formal group law. In classical terms they correspond to
addition theorems. The classification of formal groups in prime characteristic p is
much richer. Each such has a height n ∈ {1, 2, . . . ,∞}, and over separably closed
fields the height is a perfect invariant.

1. Logarithms

For a formal group law F (y1, y2) = y1 + y2 +
∑
i,j≥1 ai,jy

i
1y
j
2 and homomor-

phism h(y) = b0y +
∑
k≥1 bky

k+1 (with no condition on b0) let us write

F1(y1, y2) =
∂F (y1, y2)

∂y1
= 1 +

∑
i,j≥1

ai,jiy
i−1
1 yj2

for the formal partial derivative with respect to the first variable, and

h′(y) =
∂h(y)

∂y
= b0 +

∑
k≥1

bk(k + 1)yk

for the formal derivative.

Lemma 1.1. Let h : F → F ′ be a homomorphism of formal group laws over R. If
h′(0) = 0, then h′(y) = 0.
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Proof. Apply ∂
∂y1

∣∣∣
(0,y)

to h(F (y1, y2)) = F ′(h(y1), h(y2)) to obtain

h′(y)F1(0, y) = F ′1(0, h(y))h′(0) .

Since F1(0, y) ≡ 1 mod y has a multiplicative inverse in R[[y]], the lemma follows.
�

Proposition 1.2. Suppose Q ⊂ R and let F be a formal group law over R. Then

logF (y) =

∫ y

0

dt

F1(0, t)

is the unique strict isomorphism logF : F → Fa to the additive formal group law
over R. Hence ∫ y1

0

dt

F1(0, t)
+

∫ y2

0

dt

F1(0, t)
=

∫ F (y1,y2)

0

dt

F1(0, t)
.

By analogy with the theory for Lie groups, the expression

d logF (y) =
dy

F1(0, y)

can be interpreted as an invariant differential (= 1-form) on the underlying formal
group of F . (The following arguments are probably quite close to those of Euler
and Abel, verifying an identity by first passing to derivatives.)

Proof. In order to have a strict isomorphism h : F → Fa we must have h(F (y1, y2)) =
h(y1) + h(y2). Applying ∂

∂y1
we obtain

h′(F (y1, y2))F1(y1, y2) = h′(y1) .

Setting y1 = 0 this gives.

h′(y2)F1(0, y2) = h′(0) = 1 .

Hence h′(y2) = 1/F1(0, y2), and we must have

h(y) =

∫ y

0

h′(y2) dy2 =

∫ y

0

dy2

F1(0, y2)
,

as claimed.

Conversely, apply ∂
∂y0

∣∣∣
(0,y1,y2)

to F (F (y0, y1), y2) = F (y0, F (y1, y2)) to obtain

F1(y1, y2)F1(0, y1) = F1(0, F (y1, y2)) .

Hence h′(y) = 1/F1(0, y) implies

h′(F (y1, y2))F1(y1, y2) = h′(y1) ,

and applying
∫ y

0
(−) dy1 we recover

h(F (y1, y2)) = h(y1) + h(y2) .

We need Q ⊂ R in order to be able to formally integrate, since this will typically
introduce denominators. �

We write expF = log−1
F : Fa → F for the inverse strict isomorphism.
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Example 1.3. If F = Fm defined over Q[u] with F (y1, y2) = y1 + y2 + uy1y2 then
Fm,1(0, y2) = 1 + uy2 and

logFm
(y) =

∫ y

0

dt

1 + ut
= u−1 log(1 + uy) = y +

∑
k≥1

(−1)k
uk

k + 1
yk+1 ,

while

expFm
(y) = u−1(exp(uy)− 1) = y +

∑
k≥1

uk

(k + 1)!
yk+1 .

Example 1.4. If F = FL defined over L⊗Q then

logFL
(y) = logMU (y) = y +

∑
k≥1

mky
k+1

and

expFL
(y) = expMU (y) = y +

∑
k≥1

bky
k+1

with bk,mk ∈ H∗(MU) ⊂ H∗(MU ;Q) ∼= L⊗Q.

The fact that every formal group law over a ring R ⊃ Q admits a unique loga-
rithm (or exponential) has the following interpretation in terms of classifying ob-
jects.

Corollary 1.5. The function

m(y) = y +
∑
k≥1

mky
k+1 7−→ F (y1, y2) = m−1(m(y1) +m(y2))

is corepresented by ~ : L ∼= π∗(MU) → H∗(MU) = Z[mk | k ≥ 1](= Z[bk | k ≥ 1]),
and becomes an isomorphism

L⊗Q
∼=−→ H∗(MU ;Q)

after rationalization.

An equivalence of Hopf algebroids is defined precisely so as to corepresent a
natural equivalence of groupoids, see [Mor85, §1.2] and [Bau08, §2]. It will then
induce an equivalence of comodule categories and an isomorphism of comodule Ext
groups. ((ETC: Spell this out.))

Proposition 1.6. For each commutative Q-algebra R the inclusion

∗ = {id : Fa → Fa}
'−→ FGLs(R)

is an equivalence of groupoids. Hence there is an equivalence of Hopf algebroids

(Q,Q)
'←− (L⊗Q, LB ⊗Q)

and of moduli prestacks

Spec(Q)
'−→Mfgl ⊗Q .
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2. Endomorphism rings

Let F be a formal group law defined over R. Recall that the formal negative
i(y) is characterized by F (y, i(y)) = 0.

Definition 2.1. The set of homomorphisms h : F → F defined over R forms the
(generally non-commutative) endomorphism ring

End(F/R) = {h : F → F with h(y) ∈ R[[y]]} .

Here

(h1 + h2)(y) = F (h1(y), h2(y)) = h1(y) +F h2(y)

−h(y) = i(h(y))

(h1h2)(y) = h1(h2(y)) .

Note that

Aut(F/R) = {h ∈ End(F/R) | h′(0) ∈ R×}
Auts(F/R) = {h ∈ End(F/R) | h′(0) = 1} .

Definition 2.2. The ring homomorphism

Z −→ End(F/R)

n 7−→ [n]F (y)

defines the n-series [n]F (y) ≡ ny mod y2 for each integer n, so that [0]F (y) = 0
and

[n]F (y) = y +F · · ·+F y

[−n]F (y) = i(y) +F · · ·+F i(y)

with n copies of y or i(y), for each n > 0.

For example, [2]F (y) = F (y, y) and [−1]F (y) = i(y). For any homomorphism
h : F → F ′ the diagram

F
h //

[n]F

��

F ′

[n]F ′

��
F

h // F ′

commutes.

Lemma 2.3. Suppose Q ⊂ R. Then

End(F/R)
∼=−→ R

h(y) 7−→ h′(0)

is a ring isomorphism, so that Auts(F/R) = {id} is trivial.

Proof. It is clear that this is a ring homomorphism. To check that it is an isomor-
phism, we may conjugate by logF and assume F = Fa, in which case h(y) = ry
defines an endomorphism Fa → Fa with h′(y) = r, for each r ∈ R. This character-
izes h by Lemma 1.1, since h′(y) = 0 implies h(y) = 0 when Q ⊂ R. �
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Example 2.4. Let F = Fm be the multiplicative formal group law defined over Z[u].
Its n-series satisfies

1 + u[n]Fm
(y) = (1 + uy)n =

∑
i≥0

(
n

i

)
(uy)i

so that

[n]Fm
(y) = ny +

∑
k≥1

(
n

k + 1

)
ukyk+1 .

If we base change to Zp[u], this formula extends to all p-adic integers n ∈ Zp, since
for each k and e the residue class of

(
n
k+1

)
modulo pe only depends on the residue

class of n modulo some (other) power of p. The extended ring homomorphism

Zp
∼=−→ End(Fm/Zp[u])

n 7−→ [n]Fm

is an isomorphism. This follows since

j∗ : End(Fm/Zp[u]) ⊂ End(Fm/Qp[u])

∼= End(Fa/Qp[u]) ∼= Qp .

Here n ∈ Qp corresponds to the endomorphisms [n]Fa
(y) = ny : Fa → Fa and

[n]Fm(y) = expFm
(n logFm

(y)) = u−1((1 + uy)n − 1) : Fm → Fm, both defined
over Qp[u], and the latter is defined over Zp[u] if and only if n ∈ Zp.

The base change homomorphism

i∗ : End(Fm/Zp[u]) −→ End(Fm/Fp[u])

is injective, because if [n]Fm
(y) ≡ y mod p then n ≡ 1 mod p and

(
n
k+1

)
≡ 0

mod p for each k ≥ 1, which implies n = 1 by Lucas’ theorem. ((ETC: Justify that
i∗ is also surjective.)) It follows that

Aut(Fm/R) ∼= Z×p and Auts(Fm/R) ∼= 1 + pZp

for R = Zp[u] = π∗(ku
∧
p ) and Fp[u] = π∗(ku/p), and likewise over R = Zp[u±1] =

π∗(KU
∧
p ) and Fp[u±1] = π∗(KU/p). Lazard [Laz55, Prop. 9] proves that this holds

of Fp is replaced by any field of characteristic p, i.e., that there are no further
automorphisms of Fm with coefficients outside of Fp.

3. The height of a formal group law

Definition 3.1. Let p be a prime and suppose that Fp ⊂ R. Let σ : R→ R denote

the Frobenius (ring) homomorphism, with σ(x) = xp. We write F (1) = σ∗F for the
pullback

F (1)(y1, y2) = y1 + y2 +
∑
i,j≥1

api,jy
i
1y
j
2

of F (y1, y2) = y1 + y2 +
∑
i,j≥1 ai,jy

i
1y
j
2 along σ : Spec(R) → Spec(R). More

generally, let F (n) = (σn)∗F be the pullback along σn : Spec(R)→ Spec(R).

((ETC: In the graded case, σ is not degree-preserving, which may cause some
confusion here. We only use the copy of R over which F is defined to explicitly
grade the coefficients of formal group laws and homomorphisms.))
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Lemma 3.2. Let F be a formal group law defined over R containing Fp. The for-
mula ϕ(y) = yp ∈ R[[y]] defines a (relative) Frobenius (formal group law) homomor-
phism ϕ : F → F (1) = σ∗F . More generally, ϕn(y) = yp

n

defines a homomorphism
ϕn : F → F (n) = (σn)∗F .

Proof. The identity

F (y1, y2)p = (y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2)p

= yp1 + yp2 +
∑
i,j≥1

api,jy
ip
1 y

jp
2 = F (1)(yp1 , y

p
2)

in R[[y1, y2]] shows that ϕ(y) = yp satisfies ϕ(F (y1, y2)) = F (1)(ϕ(y1), ϕ(y2)). �

Definition 3.3. Consider F and F ′ defined over R containing Fp. For n ≥ 0 we
say that a homomorphism h : F → F ′ has height ≥ n if it admits a factorization

h = h(n) ◦ ϕn : F −→ F (n) = (σn)∗F −→ F ′

through ϕn. It has height ∞ if it has height ≥ n for all n ∈ N.

...

σ

��

...
...

Spec(R)

σ
��

R

σ

OO

F (n)

ϕ

OO

h(n)

��

...

σ

��

...

σ

OO

...

ϕ

OO

Spec(R)

σ

��

R

σ

OO

F (1)

ϕ

OO

Spec(R) R

σ

OO

F

ϕ

OO

h
// F ′

In particular, we say that a formal group law F (defined over R ⊃ Fp) has height
≥ n if its p-series [p]F : F → F has height ≥ n. In a factorization

F (n)

[p]
(n)
F

!!
F

ϕn
==

[p]F // F

we call ϕn : F → F (n) the (n-th) relative Frobenius and [p]
(n)
F : F (n) → F the (n-th)

Verschiebung, often denoted F = F(n) and V = V(n), respectively.

Lemma 3.4. Assume Fp ⊂ R. A homomorphism h : F → F ′ factors through

ϕ : F → F (1) if and only if h′(0) = 0.
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Proof. Let h(y) = b0y +
∑
k≥1 bky

k+1 with b0 = h′(0). By Lemma 1.1, h′(0) = 0

implies h′(y) = 0 in R[[y]]. This means that bk(k + 1) = 0 ∈ R for all k ≥ 0, so
that bk = 0 unless p | k + 1. Hence

h(y) =
∑
i≥1

bip−1y
ip = h(1)(ϕ(y)) = h(1)(yp)

for

h(1)(y) =
∑
i≥1

bip−1y
i .

Here h(1) : F (1) → F ′ is a homomorphism because

h(1)(F (1)(yp1 , y
p
2)) = h(1)(F (y1, y2)p) = h(F (y1, y2))

= F ′(h(y1), h(y2)) = F ′(h(1)(yp1), h(1)(yp2))

in R[[yp1 , y
p
2 ]] ⊂ R[[y1, y2]], which implies that

h(1)(F (1)(y1, y2)) = F ′(h(1)(y1), h(1)(y2)) .

Conversely, ϕ′(y) = pyp−1 = 0, so h = h(1)ϕ only if h′(y) = 0. �

It follows that the height of a formal group law F defined over R ⊃ Fp is never
zero, since [p]F (y) ≡ py mod y2 = 0 mod y2 in R[[y]].

Corollary 3.5. Let F be defined over R ⊃ Fp. If F has height ≥ n ≥ 1, then

[p]F (y) = h(n)(ϕn(y)) = h(n)(yp
n

) = vn(F )yp
n

+ · · · ∈ R[[y]]

where

h(n)(y) = vn(F )y + . . .

for a uniquely determined element

vn(F ) ∈ R

of degree 2pn − 2. Moreover, F has height ≥ n + 1 if and only if h(n) : F (n) →
F admits a further factorization through ϕ : F (n) → F (n+1), i.e., if and only if
vn(F ) = 0.

Definition 3.6. Let F be defined over R ⊃ Fp. We say that F has height equal
to n if it has height ≥ n and vn(F ) is a unit in R. This implies that F does not
have height ≥ n+ 1, and is equivalent to it if R is a graded field.

Example 3.7. The additive formal group law Fa(y1, y2) = y1 + y2 over R ⊃ Fp has
height ∞, since [p]Fa

(y) = py = 0.

Example 3.8. The multiplicative formal group law Fm(y1, y2) = y1 + y2 + uy1y2

over R ⊃ Fp[u] has height ≥ 1, since

1 + u[p]Fm
(y) = (1 + uy)p = 1 + upyp

implies

[p]Fm
(y) = up−1yp ,

so that v1(Fm) = up−1 6= 0. It has height equal to 1 over R ⊃ Fp[u±1].
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Example 3.9. Let C be an elliptic curve defined over a field R ⊃ Fp. A choice of

coordinate on the associated formal group Ĉ defines an elliptic formal group law
FC over R, which has height 1 if C is ordinary and height 2 if C is supersingular.
(The projective closure in P2 ⊃ A2 of) the curve

y2 + y = x3

defined over F2 is an example of a supersingular elliptic curve.

Example 3.10. The formal Brauer group [Art74], [AM77] of a K3 surface is a
commutative formal group (law) of height n ∈ {1, 2, . . . , 9, 10,∞}.

4. The height filtration

Recall that FL denotes the universal formal group law defined over the Lazard
ring L ∼= Z[xi | i ≥ 1].

Definition 4.1. Fix a prime p and let v0 = p ∈ L. Suppose by induction on n ≥ 1
that

v1 ∈ L/(p)
v2 ∈ L/(p, v1)

. . .

vn−1 ∈ L/(p, v1, . . . , vn−2)

have been defined so that
Fn = π∗nFL

has height ≥ n, where

πn : L −→ L/(p, v1, . . . , vn−1)

is the n-th canonical projection. Then

[p]Fn(y) = vny
pn + . . .

for a well-defined class vn ∈ L/(p, v1, . . . , vn−1). Moreover, Fn+1 = π∗n+1FL has
height ≥ n + 1, where πn+1 : L → L/(p, v1, . . . , vn−1, vn) is the next canonical
projection, and the induction continues.

It follows that |vn| = 2pn − 2 for each n ≥ 0. Let

In = Ip,n = (p, v1, . . . , vn−1) ⊂ L
be the ideal generated by the n first classes v0 = p, . . . , vn−1, so that Fn is defined
over L/In. Also let

I∞ = Ip,∞ = (p, v1, . . . , vn, . . . ) ⊂ L
be the ideal generated by all of the p-primary vn-classes.

Example 4.2. For the Lazard formal group law we have

[2](y) = 2y + a1,1y
2 + 2a1,2y

3 + (2a1,3 + a2,2)y4 + . . .

and
[3](y) = 3y + 3a1,1y

2 + (a2
1,1 + 8a1,2)y3 + . . . .

With the conventions from ((ETC: Chapter 9, Remark 3.9)) it follows that v1 =
a1,1 = x1 mod (2) and v2 = a2,2 ≡ x3 mod (2, v1) for p = 2, while v1 = a2

1,1 +

8a1,2 ≡ a2
1,1 − a1,2 = x2

1 − x2 mod (3) for p = 3.
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L/In+1 F
(n+1)
n+1

��

L/In // L/In+1

σ

OO

F
(n)
n

Y 7→vnY+...

  

F
(n)
n+1

ϕ

OO

##
L

πn // L/In

σn

OO

// L/In+1

σn

OO

Fn

ϕn

OO

[p]Fn

// Fn Fn+1

ϕn

OO

[p]Fn+1

// Fn+1

Lemma 4.3. (a) A formal group law F defined over R ⊃ Fp has height ≥ n if and
only if the classifying ring homomorphism g : L → R factors over πn : L → L/In
as g = ḡπn, i.e., if and only if

g(p) = g(v1) = · · · = g(vn−1) = 0

in R, in which case ḡ(vn) = vn(F ).
(b) It has height = n if and only if ḡ : L/In → R factors further over jn : L/In →

v−1
n L/In as ḡ = ¯̄gjn, i.e., if and only if vn(F ) is a unit in R.

L
πn //

g
!!

L/In
jn //

ḡ

��

v−1
n L/In

¯̄gyy
R

Proof. (a) We use induction on n. Base change of [p]Fn
(y) = vny

pn + · · · ∈ L/In[[y]]
along ḡ : L/In → R gives [p]F (y) = ḡ(vn)yp

n

+ · · · ∈ R[[y]], so that ḡ(vn) = vn(F ).
Hence F has height ≥ n+ 1 if and only if vn(F ) = 0 if and only if ḡ maps vn to 0
if and only if g factors over πn+1.

Claim (b) is straightforward. �

Lemma 4.4. A formal group law F of height ≥ n, classified by g : L→ L/In → R,
admits a restriction k∗F of height = n if vn(F ) ∈ R is not nilpotent. It admits a
restriction k∗F of height ≥ n+ 1 if vn(F ) ∈ R is not a unit.

Proof. The intersection of all prime ideals in R is the nilradical Nil(R), consisting
of the nilpotent elements in R. The union of the maximal ideals is the set R \R×
of nonunits in R. Hence there is a ring homomorphism k : R→ T with k(vn(F )) a
unit if and only if vn(F ) /∈ Nil(R), and a nonzero ring homomorphism k : R → T
with k(vn(F )) = 0 if and only if vn(F ) /∈ R×. �

Remark 4.5. There are various strategies (due to Hazewinkel, Araki and others)
for specifying elements vn ∈ L or vn ∈ L(p) = L ⊗ Z(p) that reduce mod In to the
elements defined above. Note that the ideals In ⊂ L are well-defined, even without
a further specification of such choices.

Definition 4.6. (a) For each prime p, height n ∈ {1, 2, . . . ,∞} and commutative
ring R ⊃ Fp let

FGL≥n(R) = FGLp,≥n(R) ⊂ FGL(R)
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be the full subcategory generated by the formal group laws F defined over R of
height ≥ n. Let

FGL≥ns (R) ⊂ FGL≥ni (R) ⊂ FGL≥n(R)

be the subcategories of strict isomorphisms, and all isomorphisms, in FGL≥n(R).
These are both groupoids.

(b) Let FGLn(R) ⊂ FGL≥n(R) be the full subcategory generated by the F of
height = n, and let FGLns (R) ⊂ FGLni (R) ⊂ FGLn(R) be the subcategories of
strict isomorphisms, and all isomorphisms. Again the latter two are groupoids.

Proposition 4.7. (a) The height ≥ n formal group law Fn = π∗nFL over L/In is
universal, in the sense that

CAlgFp
(L/In, R)

∼=−→ objFGL≥n(R)(
ḡ : L/In → R

)
7−→ ḡ∗Fn

defines a natural bijection for all (graded) commutative Fp-algebras R. Hence Fn
represents an isomorphism of sheaves

Spec(L/In)
∼=−→ objFGL≥n .

(b) The height = n formal group law Fn = j∗nπ
∗FL over v−1

n L/In is universal,
in the sense that

CAlgFp(v−1
n L/In, R)

∼=−→ objFGLn(R)(
¯̄g : v−1

n L/In → R
)
7−→ ¯̄g∗Fn

defines a natural bijection for all (graded) commutative Fp-algebras R. Hence Fn
represents an isomorphism of sheaves

Spec(v−1
n L/In)

∼=−→ objFGLn .
�

Lemma 4.8. (a) Let 1 ≤ n ≤ ∞. Any base change of a formal group law of height
≥ n has height ≥ n, so

FGL≥ns : CAlgFp
−→ Gpd

R 7−→ FGL≥ns (R)

defines a subfunctor of FGLs restricted to CAlgFp ⊂ CRing. Equivalently, this
defines a presheaf

M≥nfgl = FGL≥ns : (Aff/Spec(Fp))op −→ Gpd

Spec(R) 7−→ FGL≥ns (R)

of small groupoids (in fact, a prestack), which is a sub-presheaf (or sub-prestack)
of Mfgl ⊗ Fp, i.e., of Mfgl = FGLs restricted to Aff/Spec(Fp).

(b) Any base change of a formal group law of height = n has height = n, so

FGLns : CAlgFp −→ Gpd
R 7−→ FGLns (R)

defines a subfunctor of FGL≥ns . Equivalently, this defines a presheaf

Mn
fgl = FGLns : (Aff/Spec(Fp))op −→ Gpd

Spec(R) 7−→ FGLns (R)
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of small groupoids (in fact, a prestack), which is a sub-presheaf (or sub-prestack)

of M≥nfgl = FGL≥ns .

Remark 4.9. For each prime p the chain of ideals

(0) ⊂ I1 = (p) ⊂ I2 = (p, v1) ⊂ · · · ⊂ In = (p, v1, . . . , vn−1) ⊂ · · · ⊂ I∞
in L corresponds to a tower of ring homomorphisms

L −→ L/p −→ L/(p, v1) −→ . . . −→ L/In −→ . . . −→ L/I∞

and a sequence of closed subschemes

Spec(L) ⊃ Spec(L/p) ⊃ Spec(L/(p, v1)) ⊃ · · · ⊃ Spec(L/In) ⊃ · · · ⊃ Spec(L/I∞)

which is isomorphic to the sequence of subsheaves

objFGL ⊃ objFGL≥1 ⊃ objFGL≥2 ⊃ · · · ⊃ objFGL≥n ⊃ · · · ⊃ objFGL∞ .

This defines the height filtration on formal group laws. For each n ≥ 1, the closed
subsheaves Spec(L/In+1) ⊂ Spec(L/In) and objFGL≥n+1 ⊂ objFGL≥n are divi-
sors cut out by the condition vn = 0. The subsheaves Spec(v−1

n L/In) ⊂ Spec(L/In)

and objFGLn ⊂ objFGL≥n are the open complements of these divisors. This
means that

Spec(L/In)(R) ∼= Spec(v−1
n L/In)(R)

∐
Spec(L/In+1)(R)

as sets if R is a (graded) field, but not for more general R, cf. Lemma 4.4.
((ETC: Add figure of finite codimension subschemes of Spec(L/p) over Spec(Fp) ⊂

Spec(Z), with ordinary and supersingular elliptic formal group laws at heights 1
and 2, and heights≥ 3 at higher codimension. Also show geometric points Spec(Hn)
covering Mfgl ⊗ Fp.))

Next, we shall see that the sequence of groupoid presheaves

FGLs ⊃ FGL≥1
s ⊃ · · · ⊃ FGL

≥n
s ⊃ · · · ⊃ FGL∞s ,

also known as the sub-prestacks

Mfgl ⊃Mfgl ⊗ Fp =M≥1
fgl ⊃ · · · ⊃ M

≥n
fgl ⊃ · · · ⊃ M

∞
fgl ,

is corepresented by a tower of Hopf algebroids

(L,LB) −→ (L/p, LB/p) −→ . . . −→ (L/In, LB/In) −→ . . . −→ (L/I∞, LB/I∞)

so that each inclusion of prestacksM≥n+1
fgl ⊂M≥nfgl is in fact a closed inclusion. Its

open complement Mn
fgl is corepresented by the localized Hopf algebroid

(v−1
n L/In, v

−1
n LB/In) .

Again, this means that

FGL≥ns (R) ∼= FGLns (R)
∐
FGL≥n+1

s (R)

as groupoids when R is a graded field, but not in general. After stackification, we
obtain the p-primary height filtration

Mfg ⊃M≥1
fg ⊃ · · · ⊃ M

≥n
fg ⊃ · · · ⊃ M

∞
fg

of the moduli stack of formal groups, withMn
fg the complement inM≥nfg ofM≥n+1

fg .

One may say that Mfg ⊗ Fp = M≥1
fg is cut out as an effective Cartier divisor in
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Mfg ⊗ Z(p) ⊂ Mfg by p, while M≥n+1
fg is cut out as an effective Cartier divisor

in M≥nfg by vn.

Lemma 4.10. Let h : F → F ′ be a strict isomorphism of height ≥ n formal group
laws defined over R ⊃ Fp. Then vn(F ) = vn(F ′) ∈ R. Hence strictly isomor-
phic formal group laws have the same height, and vn(F ) ∈ R only depends on the

underlying formal group ĜF of F .

Proof. Let h(y) = b0y +
∑
k≥1 bky

k+1 specify any isomorphism h : F
∼=−→ F ′. The

diagram

F
[p]F //

h

��

F

h

��
F ′

[p]F ′ // F ′

commutes, so

[p]F ′(y) = h([p]F (h−1(y))) ≡ h(vn(F )h−1(y)p
n

)

≡ b0vn(F )(b−1
0 y)p

n

= b1−p
n

0 vn(F )yp
n

mod (yp
n+1) .

Hence vn(F ′) = b1−p
n

0 vn(F ). When h is strict, so that b0 = 1, this is equal to
vn(F ). �

Recall the universal strict isomorphism ι∗h : η∗LFL
∼=−→ η∗RFL defined over LB.

Definition 4.11. Let

LB/In = LB ⊗L L/In
and define ηR : L/In → LB/In and ε : LB/In → L/In by the pushout squares

L
ηR //

πn

��

LB
ε //

πn

��

L

πn

��
L/In

ηR // LB/In
ε // L/In

of graded commutative rings.

Lemma 4.12. There are unique ring homomorphisms

ηL : L/In −→ LB/In

ψ : LB/In −→ LB/In ⊗L/In LB/In
χ : LB/In −→ LB/In

making the diagrams

L
ηL //

πn

��

LB

πn

��
L/In

ηL // LB/In

LB
ψ //

πn

��

LB ⊗L LB

πn⊗πn

��
LB/In

ψ // LB/In ⊗L/In LB/In

LB
χ //

πn

��

LB

πn

��
LB/In

χ // LB/In

commute. In particular

LB/In
∼=−→ L/In ⊗L LB ⊗L L/In .
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Proof. This follows from Lemma 4.10, since in each case one needs to extend some
ring homomorphism g : L → R over πn : L → L/In, and this lemma ensures that
the formal group law in question has height ≥ n. �

Remark 4.13. The defining property of ηL : L/In → LB/In can be rewritten as

L
ν //

πn

��

LB ⊗L L

id⊗πn

��
L/In

ν // LB ⊗L L/In ,

saying that L → L/In is a quotient LB-comodule, or that In ⊂ L is a sub LB-
comodule of L. We also say that In is an invariant ideal of L.

Proposition 4.14. (a) The pair (L/In, LB/In), with structure maps as above, is

a Hopf algebroid corepresenting the functor FGL≥ns .
(b) The localized pair (v−1

n L/In, v
−1
n LB/In) is a Hopf algebroid corepresent-

ing FGLns .

Proof. (a) We know that L/In corepresents formal group laws of height ≥ n, and
ring homomorphisms g : LB/In = LB⊗LL/In → R corepresent strict isomorphisms
h : F → F ′ with F ′ of height ≥ n, which is the same as strict isomorphisms with
both F and F ′ of height ≥ n. These are the morphisms in FGL≥ns .

(b) This follows from the isomorphism

v−1
n LB/In ∼= v−1

n L/In ⊗L LB ⊗L v−1
n L/In ,

with the right hand side corepresenting strict isomorphisms F → F ′ where both F
and F ′ have height = n. �

Remark 4.15. We can topologically realize the ring L/In (resp. v−1
n L/In) as E∗

for a flat ring spectrum E = MU/In (resp. E = v−1
n MU/In) in the homotopy

category. Replacing MU by BP this ring spectrum is denoted P (n) = BP/In
(resp. B(n) = v−1

n BP/In). The ring LB/In (resp. v−1
n LB/In) is then a subring

of E∗E, but the latter will also contain (at least for p odd) an exterior algebra
Λ(τ̄0, . . . , τ̄n−1), with τ̄i, arising from reducing modulo vi twice, cf. [JW75], [Wür77]
and [Nas02]. The topological realization is thus in a sense richer than the algebraic
model, only recovering the latter by reduction modulo nilpotent elements. ((ETC:
The construction of MU/In, v−1

n MU/In, P (n) and B(n) used to rely on the Baas–
Sullivan theory of bordism with singularities, but is easy in the modern categories
of MU -module spectra.))

5. Infinite height

Lazard showed that any formal group law F (y1, y2) of height ≥ n, defined over
R ⊃ Fp, is strictly isomorphic to one that agrees with Fa(y1, y2) = y1 + y2 modulo

(yi1y
j
2 | i+ j ≥ pn). The following is a special case.

Proposition 5.1 ([Laz55, Prop. 6]). Let F be a formal group law defined over
R ⊃ Fp. The following are equivalent.

(1) F is strictly isomorphic to Fa.
(2) [p]F = 0.
(3) F has infinite height.
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In these cases the ring homomorphism Z→ End(F/R) factors through Z→ Z/p,
so we may call such a formal group (law) a formal Z/p-module.

Lemma 5.2. Let R ⊃ Fp. The general homomorphism h : Fa → Fa defined over R
has the form

h(y) =
∑
i≥0

tiy
pi = t0y + t1y

p + t2y
p2 + . . .

with ti ∈ R for each i ≥ 0. Hence

End(Fa/R) ∼= CAlgFp
(Fp[ti | i ≥ 0], R)

and

Auts(Fa/R) ∼= CAlgFp
(T,R) ,

where T = Fp[ti | i ≥ 1] with |ti| = 2pi−2. The composition of strict automorphisms
is corepresented by the coproduct

ψ : T −→ T ⊗Fp T

ψ(tk) =
∑
i+j=k

ti ⊗ tp
i

j ,

where t0 = 1, making T a Hopf algebra over Fp.

Proof. For h(y) =
∑
k≥0mky

k+1 we have h(y1 + y2) = h(y1) + h(y2) if and only

if
(
k+1
i

)
mk = 0 in R for all 0 < i < k + 1, which is equivalent to mk = 0 for all

k + 1 not a power of p. ((ETC: There is a lemma here about the greatest common
divisor of these binomial coefficients.)) �

Remark 5.3. This formula for the coproduct in T should be compared with Milnor’s
formula

ψ(ξ̄k) =
∑
i+j=k

ξ̄i ⊗ ξ̄p
i

j

for the coproduct on ξ̄k = χ(ξk) in the dual Steenrod algebra A∗ at an odd prime p,
cf. Chapter 2, Theorem 8.8. The exterior generators τ̄k = χ(τk) are not as easy to
interpret in terms of formal group laws.

We can identify the full subcategory of FGL∞s (R) generated by Fa with the
one-object groupoid BAuts(Fa/R).

Proposition 5.4. For each commutative Fp-algebra R the inclusion

BAuts(Fa/R)
'−→ FGL∞s (R)

is an equivalence of groupoids. Hence there is an equivalence of Hopf algebroids

(Fp, T )
'←− (L/I∞, LB/I∞)

and of moduli prestacks

BAuts(Fa)
'−→M∞fgl .

Proof. All objects in the groupoid FGL∞s (R) are isomorphic, so the displayed in-
clusion is fully faithful and essentially surjective, hence an equivalence. �

In fact, a natural inverse equivalence FGL∞s (R)→ BAuts(Fa/R) can be chosen,
as follows.
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Proposition 5.5 ([Qui71, Prop. 7.3], [Mit83, Prop. 1.2]). Every formal Z/p-
module F over R ⊃ Fp admits a unique (normalized) logarithm nogF : F → Fa
of the form

nogF (y) = y +
∑
k≥1

nky
k+1

with nk = 0 whenever k + 1 = pi is a power of p.

Proof. To each formal power series `(y) =
∑
k≥0mky

k+1 defined over R ⊃ Fp we
assign its “p-typification”

`(y) =
∑
j≥0

mpj−1y
pj = m0y +mp−1y

p +mp2−1y
p2 + . . . ,

which is an endomorphism ¯̀: Fa → Fa. For any other endomorphism h(y) =∑
i≥0 tiy

pi of Fa we have h` = h`, since the summands in

h(`(y)) =
∑
i≥0

ti(
∑
k≥0

mky
k+1)p

i

=
∑
i,k≥0

tim
pi

k y
pi(k+1)

where pi(k + 1) is a power of p are the same as those where k + 1 is a power of p,
so that

h`(y) =
∑
i,j≥0

tim
pi

pj−1y
pi+j

= h(`(y)) .

Letting ` : F → Fa be any strict isomorphism, we let nog = `
−1
` : F → Fa, so

that ` = `nog.

F
nog //

` ��

Fa

`~~
Fa

Then ` = `nog = `nog, which implies nog = id. This makes nog a normalized
logarithm, as claimed.

If ` : F → Fa is another strict isomorphism with ` = id then ` = hnog for some
h : Fa → Fa, and id = ` = hnog = hnog = h id, so that h = id and ` = nog. Hence
nogF = nog is uniquely defined. �

Proposition 5.6. Let N = Fp[nk | k + 1 6= pi], and define

nog(y) = y +
∑
k≥1

k+16=pi

nky
k+1

and

FN (y1, y2) = nog−1(nog(y1) + nog(y2))

over N , so that FN has infinite height and nog : FN → Fa is its normalized loga-
rithm. Then the classifying homomorphism

ḡ : L/I∞
∼=−→ N

is an isomorphism.
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Proof. For each R ⊃ Fp, the function

ḡ∗ : CAlgFp
(N,R) −→ CAlgFp

(L/I∞, R)

is the bijection, implied by the previous proposition, from the formal group laws
over R with a normalized logarithm to the formal group laws over R of infinite
height. �

Corollary 5.7. For any choices of lifts ṽn ∈ L and ñk ∈ L with ṽn 7→ vn ∈ L/In
and ñk 7→ nk ∈ L/I∞ ∼= N , we have

Z(p)[ṽn, ñk | n ≥ 1, k + 1 6= pi]
∼=−→ L(p) .

Proof. It suffices to check that the induced homomorphism of Z(p)-algebra inde-
composables

Z(p){ṽn, ñk | n ≥ 1, k + 1 6= pi} −→ Z(p){xi | i ≥ 1}
is an isomorphism, and we know this is true after reduction mod p. �

((ETC: This justifies thinking of the ṽn as coordinates on Spec(L/p)→Mfg⊗Fp,
so that the Spec(L/In) are codimension n linear subspaces, rather than more general
(higher degree) subvarieties.))

((ETC: Explain how this lets us concentrate on Z(p)[ṽn | n ≥ 1] ⊂ L(p).))
((ETC: Note parallel, for p = 2, with Thom’s calculation of N∗ = π∗MO.))

Remark 5.8. The normalized logarithm is somewhat related to the Artin–Hasse
exponential

Ep(y) = exp
(
y +

∑
j≥1

yp
j

pj

)
,

defined over Z(p), where
∑
j≥0 y

pj/pj is the p-typification of
∑
k≥0 y

k+1/(k + 1) =

− log(1− y). See also [Hon70, §5.4].

6. Finite height

Fix a prime p and a height 1 ≤ n < ∞, i.e., a finite height. Let Fp[vn] denote
the polynomial ring over Fp on a generator in degree |vn| = 2pn−2. Its localization
Fp[v±1

n ] is a graded field.

Lemma 6.1. There exists a formal group law Fn defined over Fp[vn] with p-series

[p]Fn
(y) = vny

pn + . . . ,

where the remaining terms lie in (y2pn).

Proof. With the notation from Corollary 5.7, let

g : L ⊂ L(p)
∼= Z(p)[ṽm, ñk | m ≥ 1, k + 1 6= pi] −→ Fp[vn]

be given by mapping ṽn 7→ vn and sending the other polynomial generators to 0.
Then g factors through πn : L → L/In and classifies a formal group law Fn with
p-series as claimed. �

Hence Fn has height ≥ n, but not height ≥ n+ 1, and its base change to Fp[v±1
n ]

has height = n. Taira Honda gave a more refined construction, of a formal group
law Hn defined over Fp with p-series exactly [p]Hn(y) = yp

n

. We state the graded
version of his result, introducing the power of vn needed to make the degrees match.
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Theorem 6.2 ([Hon68, Thm. 2]). Fix a prime p and a finite height n.
(a) Let

logH̃n
(y) =

∑
j≥0

v
pjn−1
pn−1
n

pj
yp

jn

= y +
vn
p
yp

n

+
vp

n+1
n

p2
yp

2n

+
vp

2n+pn+1
n

p3
yp

3n

+ . . .

and

H̃n(y1, y2) = log−1

H̃n
(logH̃n

(y1) + logH̃n
(y2))

= y1 + y2 −
vn
p

pn−1∑
i=1

(
pn

i

)
yi1y

pn−i
2 + . . . .

Then H̃n is a formal group law defined over Z[vn], and logH̃n
: H̃n → Fa is a strict

isomorphism defined over Z[1/p, vn].

(b) Let Hn = π∗H̃n be the base change along π : Z[vn]→ Fp[vn]. Then

[p]Hn(y) = vny
pn .

Honda proves that H̃n is in fact defined over Z[vn], not just over Z[1/p, vn],
and that [p]H̃n

(y) ≡ vny
pn mod (p). ((ETC: Is Hn uniquely determined by being

p-typical with the given p-series?))

Remark 6.3. The localization Fp[v±1
n ] is a graded field. The n-th Morava K-theory

spectrumK(n) will be defined to be a complex oriented ring spectrum withK(n)∗ =
Fp[v±1

n ] and associated formal group law FK(n) = Hn. By convention, K(0) = HQ
andK(∞) = HFp, with associated formal group laws Fa = H0 over Q and Fa = H∞
over Fp.

Theorem 6.4 ([Laz55, Thm. IV]). Two formal group laws F and F ′ over the same
separably closed (graded) field of characteristic p are isomorphic if and only if they
have the same height.

We have already seen that isomorphic formal group laws have the same height,
and that any formal group law over R ⊃ Fp of infinite height is strictly isomor-
phic to Fa. The new assertion is thus that any two formal group laws of finite
height = n become isomorphic after base change to a separably closed (graded)
field. To construct such an isomorphism F ∼= F ′, Lazard needs to solve algebraic
equations [Laz55, (4.29)] over the base ring, which can always be done when the
base is algebraically closed. These equations are ((ETC: apparently)) always sepa-
rable, so it suffices that the base field is separably closed.

Proposition 6.5. For each separably closed (graded) Fp-algebra R the inclusion

BAuts(Hn/R)
'−→ FGLns (R) =Mn

fgl(R)

is an equivalence of groupoids, for each n ≥ 1, so that

M≥1
fgl (R) = FGL≥1

s (R) '
∐

1≤n≤∞

BAuts(Hn/R) .

((ETC: Can we state this as an equivalence of prestacks, restricted to the subcate-
gory of separably closed R ⊃ F̄p?))
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7. Morava stabilizer groups

This leads us to study Auts(Hn/R) ⊂ End(Hn/R) for (graded) Fp-algebras R.
It turns out that the case R = Fpn [vn] is the most interesting. We follow Morava’s
summary [Mor85, §2.1.2].

Remark 7.1. Let Qp = Zp[1/p] denote the field of p-adic numbers. The field exten-
sion Qp ⊂ Qp(ω) given by adjoining a primitive (pn − 1)-th root of unity ω is an
unramified cyclic Galois extension of degree n. The extension of valuation rings

Zp ⊂ Zp[ω] = W (Fpn)

is given by the ring of Witt vectors of the finite field Fpn , the ideal (p) remains prime
in this extension, and Zp[ω]/(p) = W (Fpn)/(p) ∼= Fpn . In particular, the group
homomorphism Zp[ω]× = W (Fpn)× → F×pn is split surjective, with ω mapping to a

generator of F×pn ∼= Z/(pn−1), which we also denote as ω. The n Galois conjugates

{ω, σ(ω) = ωp, . . . , σn−1(ω) = ωp
n−1

}
generate Zp[ω] = W (Fpn) as a free Zp-module, and their images give a basis for
Fpn as an Fp-vector space.

Lemma 7.2. Consider the base change of H̃n along Z → Zp[ω] = W (Fpn), and
the related base change of Hn along Fp → Fpn , and their graded analogues. The
identity

logH̃n
(ωy) = ω logH̃n

(y)

holds over W (Fpn)[vn], so
[ω]H̃n

(y) = ωy

defines an endomorphism [ω]H̃n
: H̃n → H̃n over W (Fpn)[vn]. Its base change de-

fines an endomorphism
[ω] = [ω]Hn

: Hn −→ Hn

over Fpn [vn].

Proof.

logH̃n
(ωy) =

∑
j≥0

v
pjn−1
pn−1
n

pj
(ωy)p

jn

= ω logH̃n
(y)

since ωp
jn

= ω inW (Fpn) for all j ≥ 0. It follows that the homomorphism ωy : Fa →
Fa defined over W (Fpn) corresponds to the endomorphism

[ω]H̃n
(y) = log−1

H̃n
(ω logH̃n

(y)) = ωy

of H̃n. �

This defines a ring homomorphism

Zp[ω] = W (Fpn) −→ End(Hn/Fpn [vn])

ω 7−→ [ω] ,

extending the usual homomorphism from Zp given by the m-series m 7−→ [m] =
[m]Hn

.
Since Hn is defined over Fp[vn], it is equal to its (ring) Frobenius pullback

σ∗Hn = H
(1)
n along σ = id: Fp → Fp, so that the (formal group law) Frobenius ho-

momorphism ϕ : Hn → H
(1)
n = Hn given by ϕ(y) = yp is in fact an endomorphism.
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Lemma 7.3.

ϕ ◦ [ω] = [ωp] ◦ ϕ and [p] = ϕn

in End(Hn/Fpn [vn]).

Proof. (ωy)p = ωpyp and [p]Hn
(y) = yp

n

. �

Theorem 7.4. (a) Fix a prime p and finite height n. The natural homomorphisms

W (Fpn){1, ϕ, . . . , ϕn−1}
∼=−→ End(Hn/Fpn)

is an isomorphism of Zp-algebras, where the (noncommutative) multiplication in
the source is given as in Lemma 7.3, so that ϕ · w = wp · ϕ and p = ϕn, for each
root of unity w ∈ Zp[ω] = W (Fpn).

(b) For any field R containing Fpn , such as the algebraic closure F̄p, the inclusion

End(Hn/Fpn)
∼=−→ End(Hn/R)

is an isomorphism. Hence Auts(Hn/Fpn) ∼= Auts(Hn/R).

Morava [Mor85, §2.1.2] cites Frölich [Frö68, II §2 Prop. 3] for this fact. Ravenel
cites Dieudonné and Lubin, and gives a proof in [Rav86, A2.2.17]. Part (a) says
that the endomorphisms we have constructed so far give the whole story over Fpn ,
while part (b) says that no new endomorphisms appear if the base field is extended
further. This is in contrast to the case n =∞, where Auts(Fa/R) ∼= CAlgFp

(T,R)
varies with R.

Definition 7.5. The profinite group Sn = Aut(Hn/Fpn) is called (in topological
circles) the Morava stabilizer group at the prime p and finite height n. The subgroup
S0
n = Auts(Hn/Fpn) is the strict Morava stabilizer group.

1→ S0
n −→ Sn −→ F×pn → 1 .

Definition 7.6. Let

Dn = Qp(ω){1, ϕ, . . . , ϕn−1}
where ω is a primitive (pn − 1)-th root of unity, ϕω = ωpϕ and ϕn = p. Then
Dn is the central simple Qp-algebra of Hasse invariant 1/n ∈ Q/Z ∼= Br(Qp). Its
left action on itself, with respect to the basis displayed above, defines a faithful
representation by n × n matrices over Qp(ω) = W (Fpn)[1/p]. Its determinant
defines the (multiplicative, surjective) reduced norm homomorphism

Nrd: Dn −→ Qp .

Then On = Nrd−1(Zp) is the maximal Zp-order in Dn.

Lemma 7.7. (a) Nrd(p) = pn, Nrd(ϕ) = (−1)n−1p and

On = Nrd−1(Zp) = W (Fpn){1, ϕ, . . . , ϕn−1} .
(b)

O×n = Nrd−1(Z×p ) = W (Fpn)×{1} ⊕W (Fpn){ϕ, . . . , ϕn−1}
is the group of units in the maximal Zp-order. It is a profinite group, i.e., a filtered
limit of finite groups.

(c)

D×n = Nrd−1(Q×p ) = Dn \ {0}
is the group of (all) units in Dn.
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Proposition 7.8. (a)

End(Hn/Fpn) ∼= On = Nrd−1(Zp)

is isomorphic as a Zp-algebra to the maximal Zp-order in Dn.
(b) The Morava stabilizer group

Sn = Aut(Hn/Fpn) ∼= O×n = Nrd−1(Z×p )

is isomorphic to the (profinite) group of units in the maximal Zp-order in Dn.
(c) The strict Morava stabilizer group

S0
n = Auts(Hn/Fpn) ∼= Nrd−1(1 + pZp)

= (1 + pW (Fpn)){1} ⊕W (Fpn){ϕ, . . . , ϕn−1}
is a pro-p-group, i.e., a filtered limit of finite p-groups.

Remark 7.9. The analysis of Sn and S0
n continues [Rav76, Thm. 2.10] by letting

S1
n = Nrd−1(1) = ker(S0

n → 1 + pZp), so that there are short exact sequences

0

��

0

��
0 // S1

n
// S0
n

//

��

1 + pZp //

��

0

0 // S1
n

// Sn //

��

Z×p //

��

0

F×p

��

F×p

��
0 0 .

If p is odd then 1 + pZp ∼= Zp, while if p = 2 then 1 + 2Z2 = Z×2 ∼= Z/2⊕ Z2.

Definition 7.10. Consider the category with objects (k,Γ) where k is a field of
characteristic p and Γ is a formal group law of height n defined over k. In this
“extended” category a morphism (g, h) : (k,Γ)→ (k′,Γ′) is a pair (g, h) consisting
of a ring homomorphism g : k′ → k and a formal group law homomorphism h : Γ→
g∗Γ′. Its composite with a second morphism (g′, h′) : (k′,Γ′) → (k′′,Γ′′) is (g ◦
g′, g∗h′ ◦ h). The extended automorphism group Aut(k,Γ) thus consists of pairs
(g, h) with g : k → k a ring automorphism and h : Γ → g∗Γ a formal group law
isomorphism. We get a short exact sequence

1→ Aut(Γ/k) −→ Aut(k,Γ) −→ Gal(k/Fp)→ 1

(g, h) 7−→ g−1 .

When Γ is defined over Fp, this sequence is split by g 7→ (g−1, id), and

Aut(k,Γ) ∼= Aut(Γ/k) o Gal(k/Fp)

is the semidirect product for the left action of Gal(k/Fp) on Aut(Γ/k) given by
g · h = g∗h.
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Definition 7.11. The profinite group

Gn = Aut(Fpn , Hn)

is called the extended Morava stabilizer group (at the prime p and finite height n).
The short exact sequence

1→ Sn −→ Gn −→ Gal(Fpn/Fp)→ 1

is split, so that Gn ∼= Sn o Gal(Fpn/Fp), where Gal(Fpn/Fp) ∼= Z/n acts on h ∈
Sn ⊂ Fpn [[y]] by pullback, i.e., via the Galois action on Fpn . We may also consider
the fully extended group

Gnr
n = Aut(F̄p, Hn) ∼= Sn o Gal(F̄p/Fp) ,

where Gal(F̄p/Fp) ∼= Ẑ is the group of profinite integers.

Remark 7.12. The profinite group Gnr
n is in a sense the absolute (unramified = non

ramifié) Galois group of the K(n)-local sphere spectrum. Devinatz–Hopkins [DH04]
constructed a K(n)-local Gnr

n -pro-Galois extension LK(n)S → Enr
n , in the sense of

the author [Rog08]. In particular, continuous homotopy fixed points can be defined
so that

LK(n)S ' EhGn
n ' (Enr

n )hG
nr
n

and there is a homotopy fixed point spectral sequence

Es,t2 = Hs
c (Gn;πt(En)) =⇒s πt−s(E

hGn
n ) ∼= πt−s(LK(n)S) .

The group action here is discussed in [DH95]. Baker–Richter [BR08] proved that
no further connected Galois extensions of Enr

n exist (at least for p odd). This
has recently been strengthened into a “chromatic Nullstellensatz” by Burklund–
Schlank–Yuan [BSY], for Lubin–Tate spectra such as Enr

n .

Enr
n

En

nẐ
99

E
hZ/n
n

Z/n
::

(Enr
n )hSn

Sn

OO

EhSnn

Sn

OO

nẐ

::

LK(n)S

OO

Gn

II

Z/n

::

(The dashed arrow is not Galois.)

Let ordp : Q×p → Z denote the p-order homomorphism.
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Proposition 7.13 ([Mor85, §2.1.3]). There is a vertical map of split extensions

1 // Nrd−1(Z×p ) //

∼=
��

D×n
ordp Nrd //

ϕ7→σ

��

Z //

17→σ
��

0

1 // Sn // Gn // Gal(Fpn/Fn) // 1 ,

inducing an isomorphism

D×n /pZ
∼=−→ Gn

that extends the isomorphism Nrd−1(Z×p ) ∼= Aut(Hn/Fpn) = Sn by the surjection
Z→ Z/n ∼= Gal(Fpn/Fn).

Proof. The composite ordp Nrd is split by 1 7→ ϕ, sending n to ϕn = p, and the

conjugation action in D×n by ϕ on Nrd−1(Z×p ) corresponds to the Galois action by

σ on Sn, which is the same as the conjugation action in Gn by σ. ((ETC: Does σ−1

appear?)) �

Remark 7.14. It follows that Gnr
n is the profinite completion of the unit group D×n ,

hence plays the role of a non-abelian Weil group, analogous to how the group of
units L× in a p-adic number field L ⊃ Qp is dense in the absolute Galois group
Gal(L̄/L), by local class field theory.

Example 7.15. When n = 2,

D2 =

(
p, ω

Qp

)
∼= Qp(ω){1, ϕ}

is the quaternion algebra over Qp. Here ω is a primitive (p2 − 1)-th root of unity.
When also p = 2, this is

D2
∼= Q2{1, i, j, k}

with i2 = j2 = −1 and ij = k = −ji. The maximal Z2-order is the Z2-algebra of
Hurwitz integers

End(H2/F4) ∼= Z2

{
1, i, j,

1 + i+ j + k

2

}
,

which contains Z{1, i, j, k} as a submodule of index 2. The Morava stabilizer group
S2 = Aut(H2/F4) is the profinite group of units in this ring. It has a maximal finite

subgroup Q8 o Z/3 ∼= SL2(F3) ∼= Â4 of order 24 given by the Hurwitz units

Â4 =
{
±1,±i,±j,±k, ±1± i± j ± k

2

}
∼= A4 ×SO(3) Spin(3) ,

also known as the binary tetrahedral group, since it is the double cover of the group
A4 ⊂ SO(3) of orientation-preserving isometries of the regular tetrahedron. This is
also the automorphism group of the unique supersingular elliptic curve over a field
of characteristic 2, namely y2+y = x3+x. Let G48 = Â4oZ/2 be the corresponding
maximal finite subgroup of the extended stabilizer group G2 = S2 o Z/2, where in
both cases Z/2 = Gal(F4/F2). Hopkins–Miller defined the higher real K-theory
spectrum

EO2 = EG48
2
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to be the homotopy fixed points for its action on the Lubin–Tate spectrum E2, and
identified this with the K(2)-local topological modular forms spectrum

EO2 ' LK(2) TMF .

The homotopy fixed point spectral sequence

Es,t2 = Hs
gp(G48;πt(E2)) =⇒ πt−s(EO2) = πt−s(LK(2) TMF)

is more manageable than that for the full S2- or G2-action, and has been analyzed by
Henn. ((ETC: Many other contributions along these lines should be mentioned.))

E2

E
hZ/2
2

Z/2
::

EhÂ4
2

Â4

OO

EO2

OO
G48

DD

Z/2

;;

EhS22

OO

LK(2)S

OO
Z/2

;;

(The dashed arrows are not Galois.)

Remark 7.16. The Morava stabilizer groups S0
n ⊂ Sn contain an element of order pm

if and only if pm−1(p − 1) divides n. If p − 1 | n then H2∗
c (S0

n;Fp) has Krull
dimension 1, hence is unbounded. If p − 1 - n then Sn has finite p-cohomological
dimension, and is in fact a Poincaré duality group. See [Mor85, §2.2]. This is
analogous to properties of absolute Galois groups for global and local number fields.

8. Closed and open substacks

Fix a prime p, and consider the base changeMfg⊗Z(p) classifying formal group

laws over commutative Z(p)-algebras R. For n ≥ 1 the closed substack M≥nfg is

presented by the Hopf algebroid (L/In, LB/In). A map Spec(R) → Mfg factors
through the closed inclusion

i : M≥nfg −→Mfg ⊗ Z(p)

if and only if the classifying homomorphism g : L→ R extends over πn : L→ L/In,

i.e., if and only if RIn = 0. Note that M≥nfg is covered by a single affine chart

Spec(L/In)→M≥nfg .

Let the open substack M≤nfg of Mfg ⊗ Z(p) be the complement of M≥n+1
fg . A

map Spec(R)→Mfg ⊗ Z(p) factors through the open inclusion

j : M≤nfg −→Mfg ⊗ Z(p)

if and only if the base change L/In+1 ⊗L R = R/RIn+1 of R along πn+1 : L →
L/In+1 is zero, i.e., if and only if RIn+1 = R. In other words, the images of
p, v1, . . . , vn generate the unit ideal in R. The collection of affine charts

Fm : Spec(v−1
m L/Im) −→M≤nfg
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for 0 ≤ m ≤ n covers M≤nfg . The collection of affine charts

Hm : Spec(Fp[v±1
m ]) −→M≤nfg

for 0 ≤ m ≤ n also covers each (geometric) point of M≤nfg . For n ≥ 1 there

is not a canonical (single) affine chart covering this open substack, but there are
non-canonical choices.

((ETC: Discuss how Spec(E(n)∗) → M≤nfg is a cover, or presentation, where

E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] is the Johnson–Wilson form of Morava’s E-theory.))
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