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CHROMATIC HOMOTOPY THEORY

CHAPTER 12: CHROMATIC LOCALIZATION

JOHN ROGNES

1. The chromatic filtration of the stable homotopy category

Implicitly localize at a fixed prime p. The height filtration of formal group laws
leads to complementary closed and open substacks

M≥n+1
fg

i−→Mfg
j←−M≤nfg

and base change (= pullback) functors between their abelian categories of quasi-
coherent sheaves

QCoh(M≥n+1
fg )

i∗←− QCoh(Mfg)
j∗−→ QCoh(M≤nfg ) .

These admit right adjoint direct image functors

QCoh(M≥n+1
fg )

i∗−→ QCoh(Mfg)
j∗←− QCoh(M≤nfg ) ,

with the adjunction counit ε : j∗j∗ → id being an isomorphism, so that j∗ exhibits
QCoh(M≤nfg ) as a reflective subcategory of QCoh(Mfg). This makes the reflector
j∗ a localization functor, given algebro-geometrically by restriction to heights ≤ n,
ignoring all difficulties with greater heights. Any choice of Johnson–Wilson theory
E(n), with flat Hopf algebroid (E(n)∗, E(n)∗E(n)), gives an equivalence

QCoh(M≤nfg )
'−→ E(n)∗E(n)− coMod

such that the composite

Ho(Sp) MU∗(−)∼−→ QCoh(Mfg)
j∗−→ QCoh(M≤nfg ) ' E(n)∗E(n)− coMod

is equal to the composite

Ho(Sp) MU∗(−)−→ LB− coMod
E(n)∗⊗L(−)−→ E(n)∗E(n)− coMod ,

i.e., the E(n)∗E(n)-comodule valued homology theory X 7→ E(n)∗(X). The local-
ization j∗ thus annihilates (the quasi-coherent sheaf associated to) all spectra Z
with E(n)∗(Z) = 0, i.e., the E(n)-acyclic spectra. There is a full stable subcate-
gory LnSp ⊂ Sp of so-called E(n)-local spectra, and Bousfield constructed a left
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adjoint localization functor j∗ : Sp → LnSp to the inclusion functor j∗, so that j∗

annihilates precisely the E(n)-acyclic spectra.

Ho(Sp)
j∗ //

MU∗(−)

��

Ho(LnSp)

E(n)∗(−)

��
LB− coMod

E(n)∗⊗L(−) //

'

��

E(n)∗E(n)− coMod

QCoh(Mfg)
j∗ // QCoh(M≤nfg )

'

OO

Letting n vary, the resulting tower

(1.1) Ho(Sp) −→ . . . −→ Ho(LnSp) −→ Ho(Ln−1Sp) −→ . . . −→ Ho(L0Sp)

of localization functors between the full subcategories

(1.2) Ho(Sp) ⊃ · · · ⊃ Ho(LnSp) ⊃ Ho(Ln−1Sp) ⊃ · · · ⊃ Ho(L0Sp)

defines the chromatic filtration of (p-local) stable homotopy theory. Applied to a
spectrum X, this gives the chromatic tower

(1.3) X −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L0X

in Ho(Sp).

2. Closed substacks

The stackMfg and its closed substackM≥n+1
fg are corepresented by the flat Hopf

algebroids (L,LB) and (L/In+1, LB/In+1), respectively, with the closed inclusion i
corresponding to the Hopf algebroid homomorphism

π = πn+1 : (L,LB) −→ (L/In+1, LB/In+1)

and the base change i∗ corresponding to

π∗ : LB− coMod −→ LB/In+1− coMod

M 7−→ L/In+1 ⊗LM = M/In+1M .

Lemma 2.1. Let ν : M → LB⊗LM be the LB-coaction on M . Then the LB/In+1-
coaction on L/In+1 ⊗LM = M/In+1M is given by the composite

L/In+1 ⊗LM
id⊗ν−→ L/In+1 ⊗L LB ⊗LM
∼= LB/In+1 ⊗LM
∼= LB/In+1 ⊗L/In+1

L/In+1 ⊗LM .

The following diagram commutes, where U denotes the forgetful functor corre-
sponding to base change along Spec(L)→Mfg or Spec(L/In+1)→M≥n+1

fg .

LB/In+1− coMod

U

��

LB− coMod
π∗oo

U

��
L/In+1−Mod L−Mod

π∗oo
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At the level of modules, the base change π∗ admits a right adjoint

π∗ : L/In+1−Mod −→ L−Mod

N 7−→ N ,

where the L-action on π∗(N) = N is the composite

L⊗N π⊗id−→ L/In+1 ⊗N −→ N .

In other words, the L/In+1-action is restricted to an L-action along π : L→ L/In+1.
This extends to the case of comodules, where

π∗ : LB/In+1− coMod −→ LB− coMod

N 7−→ N

is right adjoint to the comodule base change functor π∗.

Lemma 2.2. Let ν : N → LB/In+1 ⊗L/In+1
N be the LB/In+1-coaction on N .

Then the LB-coaction on π∗(N) = N is given by the composite

N
ν−→ LB/In+1 ⊗L/In+1

N

∼= LB ⊗L L/In+1 ⊗L/In+1
N

∼= LB ⊗L N .

The following diagram commutes, where LB ⊗L (−) denotes the right adjoint
of U defining the extended LB-comodule associated to an L-module, and similarly
for LB/In+1 ⊗L/In+1

(−).

LB/In+1− coMod
π∗
// LB− coMod

L/In+1−Mod

LB/In+1⊗L/In+1
(−)

OO

π∗
// L−Mod .

LB⊗L(−)

OO

A categorical fact called conjugation ensures that any commuting square of left
adjoints leads to a commuting square of right adjoints.

Lemma 2.3. The adjunction counit ε : π∗π∗ → id is an isomorphism, both in the
L/In+1-module and the LB/In+1-comodule case. Hence π∗ embeds L/In+1−Mod
as a full subcategory of L−Mod, and embeds LB/In+1− coMod as a full subcategory
of LB− coMod.

These are reflective subcategories, in the following sense.

Definition 2.4. Let G : D ⊂ C be the inclusion of a full subcategory. We say that
D is a reflective subcategory of C if G admits a left adjoint F : C → D. In this case,
the adjunction counit ε : FG→ idD is a natural isomorphism. We call F a reflector.
The adjunction unit η : idC → GF defines a natural morphism `X : X → GFX for
each X in C.

The left adjoint π∗ commutes with colimits, hence is right exact, but has left
derived functors Lsπ

∗ = TorLs (L/In+1,−). ((ETC: At least for L-modules. What
happens for LB-comodules?)) The right adjoint π∗ is exact.
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3. Open substacks

The open substack M≤nfg is not affine, but is covered by affines Spec(R) where

g : L → R satisfies RIn+1 = R. Any choice of Johnson–Wilson theory E(n) is
classified by a ring homomorphism g : L = MU∗ → E(n)∗ satisfying this condition,
since vn ∈ In+1 is a unit in E(n)∗. Hence we have map

[Spec(E(n)∗) ⇔ Spec(E(n)∗E(n))]
g̃−→M≤nfg

from the stack corepresented by the flat Hopf algebroid (E(n)∗, E(n)∗E(n)), and
base change along g̃ defines a functor

QCoh(M≤nfg )
g̃∗−→ E(n)∗E(n)− coMod .

Proposition 3.1 (Naumann [Nau07, Thm. 26]).

g̃ : [Spec(E(n)∗) ⇔ Spec(E(n)∗E(n))]
'−→M≤nfg

is an equivalence of stacks, so that

g̃∗ : QCoh(M≤nfg )
'−→ E(n)∗E(n)− coMod

is an equivalence of (tensor) abelian categories.

A key point is that g : L→ E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] admits specializations

of all heights m ≤ n, via E(n)∗ → v−1
m E(n)∗/Im, so that g̃ is surjective on geometric

points. The Landweber exactness of E(n)∗, or flatness of g, ensures that its image
in Mfg is closed under generalization, from height n to all lesser heights.

The composite inclusion g = jg̃ then corresponds to the Hopf algebroid homo-
morphism

g : (L,LB) −→ (E(n)∗, E(n)∗E(n))

associated to the Landweber exact L-algebra E(n)∗, and induces a localization
functor

g∗ : QCoh(Mfg) ' LB− coMod −→ E(n)∗E(n)− coMod

M 7−→ E(n)∗ ⊗LM
that serves as a (non-canonical) replacement for j∗.

Lemma 3.2. Let ν : M → LB⊗LM be the LB-coaction on M . Then the E(n)∗E(n)-
coaction on E(n)∗ ⊗LM is given by the composite

E(n)∗ ⊗LM
id⊗ν−→ E(n)∗ ⊗L LB ⊗LM
∼= E(n)∗ ⊗L LB ⊗L L⊗LM
id⊗g⊗id−→ E(n)∗ ⊗L LB ⊗L E(n)∗ ⊗LM
∼= E(n)∗E(n)∗ ⊗LM
∼= E(n)∗E(n)⊗E(n)∗ E(n)∗ ⊗LM .

The following diagram commutes, where U denotes the forgetful functors.

LB− coMod
g∗ //

U

��

E(n)∗E(n)− coMod

U

��
L−Mod

g∗ // E(n)∗−Mod
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At the level of modules, the base change g∗ admits a right adjoint

g∗ : E(n)∗−Mod −→ L−Mod

N 7−→ N ,

where the L-action on g∗(N) = N is the composite

L⊗N g⊗id−→ E(n)∗ ⊗N −→ N .

In other words, the E(n)∗-action is restricted to an L-action along g : L→ E(n)∗.
The extension to comodules is now less obvious, but discussed in [MR77, (1.2)]

and [Hov04, Prop. 1.2.3]. The tensor product

MU∗E(n) ∼= LB ⊗L E(n)∗

is simultaneously a left LB-comodule and a right E(n)∗E(n)-comodule. For a left
E(n)∗E(n)-comodule N , the cotensor product

MU∗E(n) �E(n)∗E(n) N

is defined to be the equalizer of the two homomorphisms

MU∗E(n)⊗E(n)∗ N
ν′⊗id //

id⊗ν
// MU∗E(n)⊗E(n)∗ ⊗E(n)∗E(n)⊗E(n)∗ N .

The left LB-coaction on MU∗E(n) carries over to MU∗E(n) �E(n)∗E(n) N .

Lemma 3.3. The comodule direct image functor

g∗ : E(n)∗E(n)− coMod −→ LB− coMod

N 7−→MU∗E(n) �E(n)∗E(n) N

is right adjoint to the comodule base change functor g∗.

By conjugation the following diagram commutes, where LB ⊗L (−) denotes the
right adjoint of U defining the extended LB-comodule associated to an L-module,
and similarly for E(n)∗E(n)⊗E(n)∗ (−).

LB− coMod E(n)∗E(n)− coMod
g∗
oo

L−Mod

LB⊗L(−)

OO

E(n)∗−Mod .
g∗

oo

E(n)∗E(n)⊗E(n)∗ (−)

OO

Note that this forces the relation

g∗(E(n)∗E(n)⊗E(n)∗ N) ∼= LB ⊗L N ∼= MU∗E(n)⊗E(n)∗ N

for any E(n)∗-module N , which is indeed satisfied by the functor g∗ defined in
terms of the cotensor product.

Lemma 3.4. The adjunction counit ε : g∗g∗ → id is an isomorphism, both in the
E(n)∗-module and the E(n)∗E(n)-comodule case. Hence g∗ embeds E(n)∗−Mod
as a (full) reflective subcategory of L−Mod, and embeds E(n)∗E(n)− coMod as a
(full) reflective subcategory of LB− coMod.

Proof. This follows from E(n)∗⊗LN ∼= N for any E(n)∗-module N , and E(n)∗⊗L
MU∗E(n) �E(n)∗E(n) N ∼= N for any E(n)∗E(n)-comodule N . �
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In the case of LB-comodules, the left adjoint g∗ is exact, by Landweber’s exact
functor theorem. The right adjoint g∗ commutes with all limits, hence is left ex-
act, but has right derived functors Rsg∗ = CotorsE(n)∗E(n)(MU∗E(n),−). ((ETC:

Compare with [HS05b].))
In view of the equivalence g̃∗ from Proposition 3.1, the base change

j∗ : QCoh(Mfg) −→ QCoh(M≤nfg )

is an exact left adjoint exhibiting QCoh(M≤nfg ) as a reflective abelian subcategory

of QCoh(Mfg). In this case we call j∗ a localization functor. ((ETC: Is there a
standard general definition?))

4. Hereditary torsion theories

The localization functors

j∗ : QCoh(Mfg) −→ QCoh(M≤nfg )

g∗ : LB− coMod −→ E(n)∗E(n)− coMod

are determined up to equivalence by the full subcategories of

QCoh(Mfg) ' LB− coMod

that they annihilate, i.e.. map to the zero object. Such full subcategories of abelian
categories are known as localizing subcategories, or hereditary torsion theories, and
characterize the localization functor (if it exists) up to equivalence. See [HS05a, §1].

Definition 4.1. A localization functor of an abelian category C is an exact functor
F : C → D with fully faithful right adjoint G : D → C. We view G as the inclusion
of a reflective abelian subcategory. The adjunction counit ε : FG → idD is then a
natural isomorphism.

Definition 4.2. A Serre class in an abelian category C is a full subcategory T that
is closed under subobjects, quotient objects and extensions. In other words, for
each short exact sequence

0→M ′ −→M −→M ′′ → 0

the objects M ′ and M ′′ lie in T if and only if M lies in T . A hereditary torsion
theory in C (with arbitrary coproducts) is a Serre class T that is also closed under
coproducts.

((ETC: If C is graded, with a suspension operator, we also assume that T is
closed under this operator and its inverse.))

Definition 4.3. Let T be a hereditary torsion theory in an abelian category C. A
morphism f : X → Y in C is a T -equivalence if ker(f) and cok(f) are both in T .
An object N ∈ C is T -local if

C(f,N) : C(Y,N)
∼=−→ C(X,N)

is an isomorphism for each T -equivalence f : X → Y . Let LT C ⊂ T denote the full
subcategory of T -local objects.
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Proposition 4.4. Let F : C → D be a localization functor. Let

T = {Z ∈ C | F (Z) ∼= 0}
be (the full subcategory generated by) the class of objects annihilated by F . Then T
is a hereditary torsion theory. The composite

LT C ⊂ C
F−→ D

is an equivalence, identifying G : D → C with the inclusion LT C ⊂ C. The adjunc-
tion counit η : idC → GF defines, for each object M ∈ C, a T -equivalence

ηM : M −→ GF (M) = LTM

to a T -local object.

((ETC: Conversely, choices of T -equivalences M → LTM to T -local objects
determine the localization functor F , and are unique up to isomorphism if they
exist.))

Example 4.5. The Landweber exact base change functor

g∗ : LB− coMod −→ E(n)∗E(n)− coMod

is a localization functor, with associated hereditary torsion theory

Tn = {Z ∈ LB− coMod | E(n)∗ ⊗L Z = 0} .
The LB-comodule L/In+1 lies in Tn, since vn ∈ In+1 is a unit in E(n)∗, so that
E(n)∗ ⊗L L/In+1 = 0. ((ETC: Discuss when an LB-comodule M is T -local.))

The hereditary torsion theory Tn associated to g : L→ E(n)∗ also has a different
characterization. This coincidence in the current context of abelian categories can
be viewed, when lifted to the stable homotopy category, as leading to the (in)famous
Telescope Conjecture in [Rav84].

Proposition 4.6 ([HS05a, Prop. 3.2]). The hereditary torsion theory generated by
L/In+1 is equal to Tn, when restricted to p-local LB-comodules.

This is an application of Landweber’s work.
The short exact sequence

0→ Σ|vn|L/In −→ L/In −→ L/In+1 → 0

shows that L/In+1 lies in the (Serre class and) hereditary torsion theory generated
by L/In, so that we have the infinite chain of such full subcategories

{0} ⊂ · · · ⊂ Tn ⊂ Tn−1 ⊂ · · · ⊂ T0

inside p-local LB-comodules, which we denote as T−1. In particular, E(n)∗⊗LZ = 0
implies that E(n− 1)∗ ⊗L Z = 0.

Since Tn is the “kernel” of the Tn-localization functor

LTn : LB− coMod −→ LTn(LB− coMod)

it follows that we have a similar infinite tower of localization functors between
abelian categories

LB− coMod −→ . . . −→ LTn(LB− coMod) −→ LTn−1
(LB− coMod) −→

. . . −→ LT0(LB− coMod) ,
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equivalent to the tower

LB− coMod −→ . . . −→ E(n)∗E(n)− coMod −→ E(n− 1)∗E(n− 1)− coMod

. . . −→ E(0)∗E(0)− coMod .

Writing g = gn : L→ E(n), the diagrams

LB− coMod

g∗n
�� g∗n−1 **

E(n)∗E(n)− coMod // E(n− 1)∗E(n− 1)− coMod

and

LB− coMod

E(n)∗E(n)− coMod

gn∗

OO

E(n− 1)∗E(n− 1)− coModoo

gn−1∗
jj

commute for all n ≥ 1. We omit to write down formulas for the horizontal
functors, since we do not have a direct homomorphism (E(n)∗, E(n)∗E(n)) →
(E(n− 1)∗, E(n− 1)∗E(n− 1)) of Hopf algebroids.

Proposition 4.7 ([HS05a, Prop. 3.3]). If T is a hereditary torsion theory of p-local
LB-comodules, and L/In /∈ T , then T ⊂ Tn.

The last two propositions imply the following partial classification of hereditary
torsion theories in p-local LB-comodules, hence also of localization functors from
such LB-comodules onto reflective additive subcategories.

Theorem 4.8 ([HS05a, Thm. 3.1]). Let T be a hereditary torsion theory of p-local
LB-comodules, containing some nonzero comodule that is coherent, i.e., finitely
presented over L(p). Then T = Tn for some n ≥ −1.

In particular, any two choices of ring homomorphism g : L→ E(n)∗ specifying a
Landweber exact Johnson–Wilson theory give localization functors g∗ that annihi-
late the same hereditary torsion theory T = Tn, which implies that the associated
categories of Tn-local LB-comodules and/or E(n)∗E(n)-comodules are independent
of those choices.

More generally, for any Landweber exact g : L → E∗, Hovey–Strickland define
the height of E∗ to be the maximal n such that E∗/In 6= 0. (This is also the
maximal height of a specialization k∗FE of the formal group law FE , for a homo-
morphism k : E∗ → R to a graded field R.) Then (E∗, E∗E) is a flat Hopf algebroid,
g∗ : LB− coMod→ E∗E− coMod is a localization functor annihilating a hereditary
torsion theory TE , and L/In /∈ TE while L/In+1 ∈ TE . This implies TE = Tn, by
Theorem 4.8, so TE and g∗ only depend on the height of n.

For E = E(n)∗, of height n, this recovers our definition of Tn as TE(n).

Applied with E∗ = v−1
n L, so that E∗(X) = v−1

n MU∗(X), it shows that Tn is
the class of vn-power torsion LB-comodules, i.e., those LB-comodules M such that
for each x ∈ M there exists an N � 0 such that vNn x = 0. Moreover, each vn-
power torsion module (resp. element) is vm-power torsion for each 0 ≤ m ≤ n,
cf. [JY80, Lem. 2.3].
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Example 4.9. When n = 0, E(0) = HQ and (E(0)∗, E(0)∗E(0)) = (Q,Q), so that
an E(0)∗E(0)-comodule is the same as an E(0)∗-module, i.e., a graded Q-vector
space. The functor

Ho(Sp) −→ LB− coMod
g∗0−→ Q−Mod

X 7−→ Q⊗MU∗ MU∗(X) ∼= H∗(X;Q)

is given by rational homology.

Example 4.10. When n = 1, E(1) = L ⊂ KU(p) is the Adams summand of p-local
complex K-theory. The Hopf algebroid (KU∗,KU∗KU) was determined by Adams
and Harris, cf. [AHS71], [Ada74, Part II, §13], and can be used to recast Adams’
work [Ada66] on the e-invariant and the image-of-J , cf. [Swi75, Ch. 17, Ch. 19].
Ravenel [Rav84, Thm. 7.6] shows, for p an odd prime, that the category of p-power
torsion E(1)∗E(1)-comodules is equivalent to that of Z/(2p − 2)-graded torsion
Λ-modules, where

Λ = Zp[[S0
1]] ∼= Zp[[t]]

is the Iwasawa algebra, known from the theory of cyclotomic extensions. Here
S0

1 = 1 + pZp ⊂ Z×p is the strict Morava stabilizer group. The classification of
Λ-modules is fairly well understood.

One may now hope to obtain a gradually better understanding of the category
of LB-comodules, or quasi-coherent sheaves overMfg, by localizing along gn : L→
E(n)∗ and studying E(n)∗E(n)-comodules or quasi-coherent sheaves over M≤nfg ,
for increasing values of n.

5. Bousfield localization

We now aim to lift localizations from the abelian category of LB-comodules to
the triangulated category Ho(Sp). Recall that a triangulated subcategory must be
closed under cofibers and desuspensions.

Definition 5.1. A thick subcategory of a triangulated category C is a full trian-
gulated subcategory T that is closed under retracts. In other words, any retract of
an object in T is also an object in T . A localizing subcategory of C (with arbitrary
coproducts) is a triangulated subcategory that is also closed under coproducts.

Remark 5.2. Any localizing subcategory is thick, by the Eilenberg swindle: If X ∨
Y ∈ T with T localizing, then the distinguished triangle

X −→
∞∨
i=1

(X ∨ Y ) −→
∞∨
j=1

(Y ∨X) −→ ΣX

shows that X ∈ T .

Definition 5.3. Let T be a localizing subcategory of a triangulated category C. A
morphism f : X → Y in C is a T -equivalence if its cofiber Cf is in T . Here

X −→ Y −→ Cf −→ ΣX

is any distinguished triangle. An object N ∈ C is T -local if

C(f,N) : C(Y,N)
∼=−→ C(X,N)
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is an isomorphism for each T -equivalence f : X → Y . Equivalently, N is T -local
if C(Z,N) = 0 for each Z ∈ T . Let G : LT C ⊂ C denote (the inclusion of) the full
triangulated subcategory of T -local objects.

Definition 5.4. Let T be a localizing subcategory of a triangulated category C.
A T -localization of an object M in C is a T -equivalence η : M → N to a T -local
object N .

Example 5.5. Let E be any spectrum, and let

TE = {Z ∈ Ho(Sp) | E∗(Z) = 0}
be (the full triangulated subcategory generated by) the class of spectra Z with
E∗(Z) = 0. We call these the E∗-acyclic spectra. Then TE is a localizing subcat-
egory of the stable homotopy category. A map f : X → Y is a TE-equivalence if
and only if f∗ : E∗(X) → E∗(Y ) is an isomorphism, in which case we say that it
is an E∗-equivalence. A spectrum N is TE-local if and only if [Z,N ] = 0 for each
E∗-acyclic spectrum, in which case we say that N is E∗-local. We write

G : Ho(LESp) = LTE Ho(Sp) ⊂ Ho(Sp)
for the full triangulated subcategory of E∗-local spectra. (As the notation suggests,
LTE Ho(Sp) arises as the homotopy category of a stable model category or stable
∞-category.) A TE-localization η : M → N is an E∗-equivalence to an E∗-local
spectrum, and will be called an E∗-localization.

Lemma 5.6. If a T -localization η exists, it is a terminal T -equivalence out of M
and an initial morphism to a T -local object, hence unique up to unique isomorphism.

Proof. Any T -equivalence M → M ′ can be continued with a unique M ′ → N to
recover η, since C(M ′, N) ∼= C(M,N). Any morphism M → N ′ to a T -local N ′

extends uniquely over η since C(N,N ′) ∼= C(M,N ′). �

One might try to construct a T -localization η : M → N by forming a colimit over
E∗-equivalences out of M , or a limit of E∗-local spectra under M . The difficulty is
to show that these (co-)limits (over large indexing categories) exist and agree.

Theorem 5.7 (Bousfield [Bou79, Thm. 1.1]). Let E be any spectrum. Any spec-
trum X admits an E∗-localization

ηX : X −→ LEX .

Letting X vary, these choices assemble to a localization functor

F : Ho(Sp) −→ Ho(LESp)
left adjoint to the full inclusion G : Ho(LESp) ⊂ Ho(Sp), with adjunction unit

η : id −→ GF = LE : Ho(Sp) −→ Ho(Sp)
and adjunction counit

ε : FG
∼=−→ id .

Adams attempted to construct such localizations in [Ada74, Part III, §14], but
encountered set-theoretic issues. These were resolved by Bousfield, through work-
ing with CW spectra as a model for the stable homotopy category and making
cardinality arguments on the number of cells needed to achieve E∗-equivalences
and E∗-locality. The problem of realizing general localizing subcategories as the
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annihilators of localization functors remains closely related to large-cardinal is-
sues [CSS05].

Lemma 5.8. The functor LE is exact, idempotent (LELE ∼= LE) and lax sym-
metric monoidal. The class of spectra Z with LEZ ' ∗ is equal to the class of
E∗-acyclic spectra.

Proof. Exactness follows since the left adjoint F preserves cofiber sequences, the
right adjoint G preserves fiber sequences, and these are the same (up to sign) in
the stable homotopy category.

The spectrum ∗ is always E∗-local, so Z → ∗ is an E∗-localization if and only if
Z is E∗-acyclic.

It follows that f : X → Y induces a stable equivalence LEX → LEY if and only
if f is an E∗-equivalence. In particular, LEX → LELEX is a stable equivalence,
so LE is idempotent.

The E∗-localization X ∧ Y → LE(X ∧ Y ) extends uniquely (in the stable homo-
topy category) over the E∗-equivalences X ∧ Y → LEX ∧ Y → LEX ∧ LEY , and
(X → LEX and) the resulting map

LEX ∧ LEY −→ LE(X ∧ Y )

defines the lax symmetric monoidal structure. �

In particular, for any (commutative) ring spectrum up to homotopy R, the Bous-
field localization LER is a (commutative) ring spectrum up to homotopy, with unit
S → R→ LER and product

LER ∧ LER −→ LE(R ∧R)
LEφ−→ LER .

For any R-module spectrum M , the localization LEM is an LER-module spectrum,
in the homotopy category. The following was exhibited by Adams as an example
of the convenience of working in a good stable category.

Lemma 5.9 ([Ada71, Prop. 5.2]). If R is a ring spectrum up to homotopy, then
any R-module M is R∗-local.

Proof. If f ∈ [Z,M ], then f factors as

Z ∼= S ∧ Z η∧id−→ R ∧ Z id∧f−→ R ∧M λ−→M ,

so if R∗(Z) = 0 then it factors through R ∧ Z ' ∗ and must be zero. �

The converse does not generally hold; not everyR-local spectrum is anR-module.
For example, the image-of-J spectrum is KU -local but not a KU -module ((ETC:
However, this does hold for R = LnS. Give forward reference.))

Remark 5.10. A left Bousfield localization of a given model category (Sp,W, . . . ) of
spectra, with W the subcategory of stable equivalences, is a stable model category
(Sp,V, . . . ) with the same cofibrations as before, but with a larger class V ⊃ W
of weak equivalences. See [Hir03, §3.3]. The identity functor on Sp is then a left
Quillen functor, and induces an adjunction

F : Sp[W−1] � Sp[V−1] : G

exhibiting Sp[V−1] as a reflective subcategory of Ho(Sp) = Sp[W−1]. Taking V to
be the E∗-equivalences one recovers Bousfield’s theorem recalled above.
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We often write LE : Ho(Sp)→ Ho(LESp) for the unique factorization F of LE
through G : Ho(LESp) ⊂ Ho(Sp)

Definition 5.11. For each prime p and n ≥ 0 let

Ho(LnSp) = Ho(LE(n)Sp)
denote the E(n)∗-local stable homotopy category and

Ln = LE(n) : Ho(Sp) −→ Ho(LnSp) ⊂ Ho(Sp)
the E(n)∗-localization functor. Let

Ho(L̂nSp) = Ho(LK(n)Sp)
denote the K(n)∗-local stable homotopy category and

L̂n = LK(n) : Ho(Sp) −→ Ho(L̂nSp) ⊂ Ho(Sp)
the K(n)∗-localization functor.

The Hovey–Strickland memoir [HS99b] contains a wealth of information about

the categories Ho(LnSp) and Ho(L̂nSp) of E(n)-local and K(n)-local spectra, re-
spectively.

Lemma 5.12. The diagram

Ho(Sp) Ln //

MU∗(−)

��

!!
Ho(LnSp)

E(n)∗(−)

��

// // Ho(Sp)

MU∗MU− coMod
E(n)∗⊗MU∗ (−)// E(n)∗E(n)− coMod

commutes.

Proof. E(n)∗ ⊗MU∗ MU∗(X) ∼= E(n)∗(X) ∼= E(n)∗(LnX). �

((ETC: Any analogue for L̂nSp and K(n)∗(−)?))
The unit map S → LES is an E∗-equivalence hence so is X ∼= X ∧ S → X ∧

LES. The localization map η : X → LEX thus extends uniquely (in the homotopy
category) over X ∧ LES.

Definition 5.13 ([Rav84, Def. 1.28]). A (spectrum E or) localization functor LE
is smashing if the natural map

X ∧ LES
'−→ LEX

is an equivalence for each X.

Theorem 5.14 (Hopkins–Ravenel [Rav92, Thm. 7.5.6]). Ln = LE(n) is smashing.

This smash product theorem was proved for n = 1 in [Rav84, Thm. 8.1], conjec-
tured for all n in [Rav84, 10.6] and proved in general in [Rav92, Ch. 8] as a conse-
quence of the Devinatz–Hopkins–Smith nilpotence and thick subcategory theorems.
In contrast, L̂n = LK(n) is not smashing for n ≥ 1.

((ETC: Compare with p-localization M → M ⊗ Z(p)
∼= M(p) and p-completion

M → M ⊗ Zp → M∧p for abelian groups, keeping in mind that Z(p) ⊗ Z(p)
∼= Z(p)

while Zp ⊗ Zp 6∼= Zp.))
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6. Bousfield classes

The localization functor LE is determined by the class of E∗-acyclic spectra, and
these classes are partially ordered by (reverse) inclusion.

Definition 6.1. Two spectra D and E are Bousfield equivalent if

D∗(X) = 0 ⇐⇒ E∗(X) = 0

for all spectra X. Let 〈E〉 denote the Bousfield equivalence class of E, so that
〈D〉 = 〈E〉 means that the class of D∗-acyclic spectra is equal to the class of E∗-
acyclic spectra. We write 〈D〉 ≤ 〈E〉 if

D∗(X) = 0 ⇐= E∗(X) = 0 ,

i.e., if the class of D∗-acyclic spectra contains the class of E∗-acyclic spectra. This
defines a partial ordering on the collection of Bousfield equivalence classes.

In other words, we have a quasi-ordering on spectra, with D ≤ E if

{X | D∗(X) 6= 0} ⊂ {X | E∗(X) 6= 0} ,

and this induces a partial ordering 〈D〉 ≤ 〈E〉 on the associated isomorphism classes.
We can view the displayed collections as the support of D and E, respectively, in
which case ≤ denotes inclusion of support.

The relation 〈D〉 ≤ 〈E〉 asserts that E∗(−) is a stronger (or equivalent) homology
theory than D∗(−). The Bousfield class of ∗ is initial, while that of S is terminal.

Lemma 6.2. If D is in the localizing subcategory of Ho(Sp) generated by E, then
〈D〉 ≤ 〈E〉.

Proof. If D can be built from E by repeated passage to homotopy cofibers, desus-
pensions, retracts and coproducts, then for any X with E∗(X) = 0 we will also
have D∗(X) = 0. �

Lemma 6.3. Suppose 〈D〉 ≤ 〈E〉. Then each E∗-equivalence is a D∗-equivalence,
and each D∗-local spectrum is E∗-local. For each spectrum X the D∗-localization
map ηD : X → LDX factors as

X
ηE−→ LEX −→ LDX

for a unique morphism LEX → LDX in Ho(Sp), which is a D∗-equivalence. In
particular, LDX ' LDLEX ' LELDX.

Proof. If f : X → Y is an E∗-equivalence with homotopy cofiber Cf then E∗(Cf) =
0, so that D∗(Cf) = 0 and f is a D∗-equivalence. If N is D∗-local then [Z,N ] = 0
for each D∗-acyclic Z. In particular [Z,N ] = 0 for each E∗-acyclic Z, so that
N is E∗-local. The E∗-equivalence ηE : X → LEX is a D∗-equivalence, hence
induces a bijection η∗E : [LEX,LDX] ∼= [X,LDX], so there is a unique morphism
LEX → LDX mapping to ηD. It induces an isomorphism on D∗-homology since
both ηE and ηD have that property.

In particular, ηE : X → LEX is a D∗-equivalence and induces an equivalence
after D∗-localization. Also LDX is E∗-local so ηE : LDX → LELDX is an equiva-
lence. �
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Recall [HS05a, Def. 4.1] that the height of a Landweber exact L-module E∗ is
the maximal n such that E∗/In 6= 0. The hereditary torsion theory TE of LB-
comodules M with E∗ ⊗L M∗ = 0 is then equal to Tn, by the discussion after
Theorem 4.8. Both E(n)∗ and v−1

n MU∗ have height n.

Proposition 6.4. If D∗ and E∗ are Landweber exact of the same height, then
〈D〉 = 〈E〉.

Proof. We write D and E for the spectra representing D∗(X) = D∗⊗MU∗MU∗(X)
and E∗(X) = E∗⊗MU∗MU∗(X), respectively. If E∗ has height n, then E∗(X) = 0 if
and only if MU∗(X) ∈ TE , and TE = Tn, so this condition on X only depends on n.
It follows that if D also has height n, then D∗(X) = 0 if and only if E∗(X) = 0, so
that 〈D〉 = 〈E〉. �

Example 6.5. Any nonzero L-module E∗ ⊃ Q is Landweber exact of height 0, so
that 〈E〉 = 〈HQ〉, and LEX = L0X ' X ∧ SQ ' X ∧ HQ is the rationalization
of X, given by inverting every prime. This satisfies π∗(L0X) = π∗(X) ⊗ Q. The
map X → X ∧HQ is an HQ∗-equivalence, since HQ ' HQ∧HQ, and X ∧HQ is
HQ-local, since it is an HQ-module spectrum.

Example 6.6. Complex K-theory KU , p-local K-theory KU(p), and its Adams
summand E(1) are all Landweber exact of height 1, so that 〈KU(p)〉 = 〈E(1)〉 and
LKU(p)

X = L1X is KU -localization for p-local spectra X. Ravenel’s smash product

theorem [Rav84, Thm. 8.1] shows that

L1X ' X ∧ L1S

for all spectra X. Here the E(1)-localization of the sphere spectrum sits in a
homotopy cofiber sequence

Σ−2HQ −→ L1S −→ J(p) ,

where (for p an odd prime) the p-local image-of-J ring spectrum J(p) is the homo-

topy fiber of ψg − 1: KU(p) → KU(p) for any integer g generating (Z/p2)×, and
Z/p∞ ∼= Z[1/p]/Z ∼= Q/Z(p)

∼= Qp/Zp. Hence

πn(L1S) ∼=



Z(p) for n = 0,

0 for n = −1,

Z/p∞ for n = −2,

Z/pv+1 for n+ 1 = (2p− 2)m with v = ordp(m),

0 otherwise.

Similar, but more elaborate, results are known for p = 2.

Example 6.7. The mod p Moore spectrum S/p is not Landweber exact, but

LS/pX ' X∧p
for any spectrum X. Here

X∧p = holim
n

X/pn ' holim
n

F (S−1/pn, X) ' F (S−1/p∞, X) ,

where there is a homotopy cofiber sequence

Σ−1SZ/p∞ = S−1/p∞ −→ S −→ SZ[1/p] .
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The induced map X ' F (S,X)→ F (S−1/p∞, X) ' X∧p is a S/p-homology equiv-

alence, since S/p ∧ SZ[1/p] ' ∗, and F (S−1/p∞, X) ' X∧p is S/p-local, since

S/p ∧ Z ' ∗ implies that Z ' Z[1/p] so that Z ∧ S−1/p∞ ' ∗ and [Z,X∧p ] =

[Z,F (S−1/p∞, X)] ∼= [Z ∧ S−1/p∞, X] = 0.

Example 6.8. Mod p complex K-theory KU/p and its Adams summand K(1) are

not Landweber exact, but 〈KU/p〉 = 〈K(1)〉 and LKU/pX = L̂1X = (L1X)∧p is the
p-completion of the KU -localization. The map

X ∧ L̂1S −→ L̂1(X)

is an equivalence for finite (but not for general) spectra X, and

L̂1S ' J∧p
where (for p an odd prime) the p-complete image-of-J ring spectrum J∧p is the

homotopy fiber of ψg−1: KU∧p → KU∧p for any integer g generating (Z/p2)×. One
proof uses that

0← K(1)∗(S)← K(1)∗(KU)
(ψg−1)∗−→ K(1)∗(KU)← 0

is exact, since K(1)∗(KU) ∼= K(1)∗[[Z×p ]], and this can be used to obtain L1S, as
above. Hence

πn(L̂1S) ∼= πn(J∧p ) ∼=


Z∧p for n = 0 and n = −1,

Z/pv+1 for n+ 1 = (2p− 2)m with v = ordp(m),

0 otherwise.

Again, there are similar results for p = 2.

Proposition 6.9. (a) 〈K(n)〉 ≤ 〈E(n)〉, so there is a natural K(n)-equivalence

LnX = LE(n)X
ı̂−→ LK(n)X = L̂nX .

(b) 〈E(n− 1)〉 ≤ 〈E(n)〉, so there is a natural E(n− 1)-equivalence

LnX = LE(n)X
j−→ LE(n−1)X = Ln−1X .

Proof. (a) We can build K(n) from E(n) using homotopy cofiber sequences

Σ|vm|E(n)/Im
vm−→ E(n)/Im −→ E(n)/Im+1

for 0 ≤ m < n, so K(n) is in the (thick or) localizing subcategory generated by
E(n), and 〈K(n)〉 ≤ 〈E(n)〉. More explicitly: if E(n)∗(X) = 0 then by induction
(E(n)/Im)∗(X) = 0 for all 0 ≤ m ≤ n, using the cofiber sequences above. Since
E(n)/In = K(n) we obtain K(n)∗(X) = 0.

(b) We can build v−1
n−1E(n) from E(n) using the telescope

E(n)
vn−1−→ Σ−|vn−1|E(n)

vn−1−→ Σ−2|vn−1|E(n) −→ . . . −→ v−1
n−1E(n) ,

so v−1
n−1E(n) is in the localizing subcategory generated by E(n), and 〈v−1

n−1E(n)〉 ≤
〈E(n)〉. Here

π∗(v
−1
n−1E(n)) = v−1

n−1E(n)∗ = Z(p)[v1, . . . , vn−2, v
±1
n−1, v

±1
n ] ,

interpreted as Q[v±1
1 ] for n = 1. More explicitly: if E(n)∗(X) = 0 then by con-

struction v−1
n−1E(n)∗(X) = 0. Now we use that v−1

n−1E(n)∗ is Landweber exact of

height (n − 1), so that 〈E(n − 1)〉 = 〈v−1
n−1E(n)〉. It follows that 〈E(n − 1)〉 ≤

〈E(n)〉. �
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It follows that 〈E(n)〉 ≥ 〈E(m)〉 ≥ 〈K(m)〉 for all 0 ≤ m ≤ n.

Proposition 6.10. K(m) ∧K(n) ' ∗ for m 6= n.

Proof. We may suppose m < n. Then this follows from Chapter 11, Proposi-
tion 7.16, since E(m)∗(K(n)) = 0 and 〈E(m)〉 ≥ 〈K(m)〉 implies K(m)∗(K(n)) =
0. �

Lemma 6.11. The wedge 〈D〉 ∨ 〈E〉 = 〈D ∨ E〉 and smash 〈D〉 ∧ 〈E〉 = 〈D ∧ E〉
only depend on the Bousfield classes of D and E.

Proof. If 〈D〉 = 〈D′〉 and 〈E〉 = 〈E′〉 then (D ∨ E)∗(X) = 0 iff (D∗(X) = 0 and
E∗(X) = 0) iff (D′∗(X) = 0 and E′∗(X) = 0) iff (D′ ∨ E′)∗(X) = 0. Moreover,
(D ∧ E)∗(X) = 0 iff D∗(E ∧ X) = 0 iff D′∗(E ∧ X) = 0 iff E∗(D

′ ∧ X) = 0 iff
E′∗(D

′ ∧X) = 0 iff (D′ ∧ E′)∗(X) = 0. �

With this notation,

〈E(n)〉 ≥ 〈K(0) ∨K(1) ∨ · · · ∨K(n− 1) ∨K(n)〉
= 〈K(0)〉 ∨ 〈K(1)〉 ∨ · · · ∨ 〈K(n− 1)〉 ∨ 〈K(n)〉 .

In fact, the opposite relation also holds.

Theorem 6.12 ([Rav84, Thm. 2.1(d)]).

〈E(n)〉 =

n∨
m=0

〈K(m)〉 .

Hence E(n)∗(X) = 0 if and only if K(m)∗(X) = 0 for each 0 ≤ m ≤ n.

Proof. A prototype for this argument is given by Johnson–Wilson in [JW75, §5], and
attributed to Morava. We must show that if K(m)∗(X) = 0 for each 0 ≤ m ≤ n,
then E(n)∗(X) = 0. By an outer induction on n we may assume that E(m)∗(X) = 0
for each 0 ≤ m < n.
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Consider the tower of (left hand) distinguished triangles and (right hand) local-
ization maps, in Ho(Sp).

E(n)
p // E(n)

j //

π

��

p−1E(n)

Σ|v1|E(n)/p
v1 // E(n)/p

j //

π
��

ii

v−1
1 E(n)/p

...

π

��
Σ|vm|E(n)/Im

vm // E(n)/Im
j //

π

��

v−1
m E(n)/Im

Σ|vm+1|E(n)/Im+1

vm+1 // E(n)/Im+1
j //

π
��

ii

v−1
m+1E(n)/Im+1

...

π

��
Σ|vn−1|E(n)/In−1

vn−1 // E(n)/In−1
j //

π

��

v−1
n−1E(n)/In−1

E(n)/In = K(n)

ii

We prove by an inner, descending, induction on m that (E(n)/Im)∗(X) = 0. For
m = n this holds by the assumption K(n)∗(X) = 0. Suppose that 0 ≤ m < n and
(E(n)/Im+1)∗(X) = 0. Then

vm : Σ|vm|(E(n)/Im)∗(X)
∼=−→ (E(n)/Im)∗(X)

is an isomorphism by exactness. Hence

j : (E(n)/Im)∗(X)
∼=−→ v−1

m (E(n)/Im)∗(X)

is a colimit of isomorphisms, and is therefore also an isomorphism. Here v−1
m E(n)/Im

can be built from v−1
m E(n) using cofiber sequences, as in the proof of Proposi-

tion 6.9(a), so that 〈v−1
m E(n)/Im〉 ≤ 〈v−1

m E(n)〉. Moreover,

v−1
m E(n)∗ = Z(p)[v1, . . . , vm−1, v

±1
m , vm+1, . . . , vn−1, v

±1
n ]

is Landweber exact of height m, so that 〈v−1
m E(n)〉 = 〈E(m)〉. By the outer in-

duction on n we know that E(m)∗(X) = 0, since m < n, so v−1
m E(n)∗(X) =

0 and v−1
m (E(n)/Im)∗(X) = 0. The displayed isomorphism j now shows that

(E(n)/Im)∗(X) = 0, which completes the inner inductive step from m + 1 to m.
We conclude that E(n)∗(X) = (E(n)/I0)∗(X) = 0, as required. �
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Proposition 6.13 ([Rav84, Prop. 1.27]). LE is smashing if and only if 〈LES〉 =
〈E〉. In particular, 〈LnS〉 = 〈E(n)〉.
Proof. If LE is smashing then LES ∧ LES ' LELES ' LES (so LES is a solid
ring spectrum). Hence X → X∧LES is an LES-homology equivalence. The target
is an LES-module, hence is LES-local by Adams’ Lemma 5.9, so X ∧ LES is the
LES-homology localization of X. Since it is also the E∗-localization, it follows that
(LES)∗(X) = 0 if and only if E∗(X) = 0, so that 〈LES〉 = 〈E〉.

Conversely, if LES and E are Bousfield equivalent, then since the LES-module
X ∧LES is LES-local it is also E-local, so that the E∗-equivalence X → X ∧LES
must be the E-localization map. Hence LE is smashing. �

Proposition 6.14. K(n) ∧ Ln−1X ' ∗ for each spectrum X.

Proof. Since Ln−1X ' X ∧ Ln−1S it suffices to prove that K(n) ∧ Ln−1S ' ∗,
i.e., that (Ln−1S)∗(K(n)) = 0. Since Ln−1S and E(n − 1) are Bousfield equiva-
lent, this is equivalent to E(n − 1)∗(K(n)) = 0, which we proved in Chapter 11,
Proposition 7.16. �

7. The chromatic tower

For each spectrum X and prime p we have a chromatic tower

X −→ X(p) −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L1X −→ L0X → ∗
in Ho(Sp), where all but the first object lie in Ho(Sp(p)), and the part from LnX
and to the right lies in Ho(LnSp). The complexity of these categories appears to
increase with n, so one can hope for a more complete understanding of Ho(LnSp)
than of Ho(Sp), for gradually increasing values of n.

There is an induced tower of homotopy groups

π∗(X) −→ π∗(X)⊗ Z(p) −→ . . . −→ π∗(LnX) −→ π∗(Ln−1X) −→ . . .

. . . −→ π∗(L1X) −→ π∗(L0X) ∼= π∗(X)⊗Q

with potentially interesting behavior on the p-power torsion part of π∗(X)(p) =
π∗(X)⊗ Z(p).

Definition 7.1. The chromatic filtration of π∗(X)(p) is the descending filtration
defined by letting

Fn+1π∗(X)(p) = ker(π∗(X(p)) −→ π∗(LnX))

be the graded subgroup of homotopy classes that are not detected at height ≤ n.
The filtration quotient

Fnπ∗(X)(p)

Fn+1π∗(X)(p)

is then the subquotient detected at height = n, and represents the chromatic
height n elements of π∗(X)(p).

Remark 7.2. This is understood at height 0 by rational cohomology, at height 1
by topological K-theory and the image-of-J , but only partially at height 2 using
topological modular forms and tmf-resolutions. See work by Mark Behrens and
coauthors. The elements in π∗(S)(p) that are detected in L1S are known as the
α-family, and there is a β-family of elements detected in L2S. The non-triviality
of the γ-family at height 3 was established by Miller–Ravenel–Wilson in [MRW77].
The construction of an explicit δ-family at height 4 remains an open problem.
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Nonetheless, there is the following positive result, known as the chromatic conver-
gence theorem, which tells us that we can in principle recover X from its chromatic
localizations LnX (for all sufficiently high n).

Theorem 7.3 (Hopkins–Ravenel [Rav92, Thm. 7.5.7]). Let X be a finite p-local
spectrum. Then the natural map

X
'−→ holim

n
LnX

is an equivalence.

This is proved in [Rav92, Ch. 8] as a consequence of the smash product theorem.
It is also true for some other X, but false e.g. for any nontrivial X with π∗(X)
bounded above and rationally trivial, since for these spectra LnX = 0 for all n ≥ 0.
For n ≥ 1 this follows from the chromatic fracture square in Theorem 7.5 below,
since K(n)∗(X) = 0 and L̂nX ' ∗ whenever π∗(X) is bounded above.

One might hope to inductively obtain LnX from Ln−1X by building in the
height = n information not seen in the latter. For this, one might draw inspiration
from number theory. The square of commutative rings

Z(p)
//

��

Q

��
Zp // Qp

is (both a pushout and) a pullback. It follows that

M(p)
//

��

M ⊗Q

��
M∧p // (M∧p )⊗Q

is a pullback for each finitely generated Z(p)-module M . Here M∧p = limnM/pnM
denotes the algebraic p-completion, and satisfies M ⊗Zp ∼= M∧p when M is finitely
generated (over Z or Z(p)). This idea was carried over to (simply-connected or nilpo-
tent) spaces by Sullivan (notes from ca. 1970), and to spectra by Bousfield [Bou79,
Prop. 2.9].

Theorem 7.4. For any spectrum X the square

X(p)
//

��

L0X = X ∧HQ

��
X∧p // L0(X∧p ) = X∧p ∧HQ

is a homotopy pullback.

This arithmetic fracture square concerns the situation

Spec(Fp) ⊂ Spf(Zp)
ı̂−→ Spec(Z(p))

j←− Q
where Spf(Zp) is a formal neighborhood of the closed point i : Spec(Fp)→ Spec(Z(p)).
The corresponding result for

Mn
fg

i−→M≤nfg

j←−M≤n−1
fg
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is the following chromatic fracture square, presumably due to Hopkins, cf. [Hov95,
Proof of Thm. 4.3].

Theorem 7.5. For any spectrum X the square

LnX //

��

Ln−1X

��
L̂nX // Ln−1(L̂nX)

is a homotopy pullback.

Remark 7.6. Hopkins has formulated a chromatic splitting conjecture about the
right hand vertical map Ln−1X → Ln−1(L̂nX), which predicts how LnX is detected

by the L̂mX for 0 ≤ m ≤ n. See [Hov95] for an early paper, and [BGH22] for recent
developments.

Here is a common generalization of these theorems (as explained by Neil Strick-
land on https://mathoverflow.net/q/91057), related to [Hov95, Lem. 4.1]. Note
that

〈D〉 ≤ 〈D ∨ E〉 ≥ 〈E〉
for any spectra D and E, so we have preferred natural transformations LD∨E → LD
and LD∨E → E.

Theorem 7.7. Suppose that D∗(Z) = 0 implies D∗(LEZ) = 0. Then

LD∨EX //

��

LEX

��
LDX // LE(LDX)

is a homotopy pullback for any spectrum X.

Proof. Let f : X → P denote the map to the homotopy pullback. We must show
that P is (D ∨ E)∗-local and that f is a (D ∨ E)∗-equivalence. If (D ∨ E)∗(Z) =
D∗(Z) ⊕ E∗(Z) = 0 then [Z,LDX] = [Z,LEX] = 0 and [ΣZ,LE(LDX)] = 0, so
[Z,P ] = 0 by the Mayer–Vietoris sequence for [Z,−]∗.

The map ηD : X → LDX is a D∗-equivalence, so f : X → P is a D∗-equivalence if
and only if P → LDX is a D∗-equivalence, which by the Mayer–Vietoris sequence
for D∗(−) is equivalent to LE(ηD) : LEX → LE(LDX) being a D∗-equivalence.
The cofiber Z = CηD of ηD : X → LDX is D∗-acyclic, so by assumption LEZ is
D∗-acyclic, which implies that LE(ηD) is a D∗-isomorphism.

Finally, ηE : X → LE is an E∗-equivalence, so f : X → P is an E∗-equivalence
if and only if P → LEX is one, which by the Mayer–Vietoris sequence for E∗(−)
is equivalent to ηE : LDX → LE(LDX) being an E∗-equivalence. This is obviously
true from the definition of LE . �

Proof of Theorem 7.4. In the arithmetic case, we apply this to p-local X with D =
S/p and E = HQ, in which case 〈S/p ∨ HQ〉 = 〈S(p)〉 and (S/p)∗(Z ⊗ HQ) = 0
(with no hypothesis on Z). �

Proof of Theorem 7.5. In the chromatic case, we apply it to E(n)-local X with
D = K(n) and E = E(n − 1), so that 〈D ∨ E〉 = 〈E(n)〉 by Theorem 6.12. We
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must verify that if K(n)∗(Z) = 0, then K(n)∗(Ln−1Z) = 0. This follows from the
smash product theorem Ln−1S ∧ Z ' Ln−1Z. �

Remark 7.8. If fact, K(n)∗(Ln−1X) = 0 for all X by Proposition 6.14, but the
proof uses the smash product theorem. For n ∈ {1, 2} we can prove directly that
K(n)∗(Ln−1X) = 0 for all X. Namely, L0X is rational, so K(n)∗(L0X) = 0
for all n ≥ 1. This proves the case n = 1 of the chromatic fracture square. To
prove that K(n)∗(L1X) = 0 for all n ≥ 2 we use this square to reduce to proving

that K(n)∗(L̂1X) = 0. By the Künneth isomorphism, it suffices to prove that

K(n)∗(L̂1X ∧ S/p) = 0. The Adams self-map v1 : Σ2p−2S/p → S/p is a K(1)-

equivalence, hence induces a self-equivalence of the K(1)-local spectrum L̂1X ∧
S/p = L̂1X/p. On the other hand, it induces zero in K(n)-homology for n ≥ 2. This

proves that K(n)∗(L̂1X/p) = 0. See Bauer’s article [DFHH14, Ch. 6, Thm. 3.6] for
this argument.

8. Monochromatic fibers

Definition 8.1. For each spectrum X we define the n-th colocalization CnX and
the n-th monochromatic fiber MnX by the homotopy (co-)fiber sequences

CnX −→ X
η−→ LnX

MnX −→ LnX −→ Ln−1X .

Here L−1X = ∗, so C−1X = X and M0X = L0X.

Lemma 8.2. Let 0 ≤ m ≤ n.
(a) Both Cn and Mn are exact, i.e., preserve homotopy (co-)fiber sequences.
(b) The natural maps

LmX
'−→ LmLnX

LmX
'−→ LnLmX

are equivalences.
(c) LmCnX ' ∗ and CnLmX ' ∗.
(d) The natural maps

CmCnX
'−→ CnX

CnCmX
'−→ CnX

are equivalences.
(e) There are natural equivalences

MnX
'−→ Cn−1LnX

MnX
'−→ LnCn−1X

Proof. (a) This follows since each Ln is exact.
(b) This follows from 〈E(m)〉 ≤ 〈E(n)〉 and Lemma 6.3.
(c) The first case uses exactness of Lm, the second holds by definition.
(d) The first holds by definition, the second uses exactness of Cn.



22 JOHN ROGNES

(e) This uses the maps

MnX //

��

LnX // Ln−1X

'
��

Cn−1LnX // LnX
η // Ln−1LnX

and

MnX //

��

LnX // Ln−1X

'
��

LnCn−1X // LnX
Lnη // LnLn−1X

of homotopy cofiber sequences. �

Remark 8.3. By analogy with the associated quasi-coherent sheaves over Mfg, we
think of CnX as the part of X supported on the closed substack of height ≥ n+ 1,
and of MnX as the part of LnX over the height ≤ n open substack that is supported
on the height = n closed substack. Equivalently, it is the localization to the height
= n open substack of the part Cn−1X supported on the closed height ≥ n substack.

Taking homotopy fibers of the maps from X to the chromatic tower

MnX

��

Mn−1X

��

M1X

��

M0X

'
��

. . . // LnX // Ln−1X // . . . // L1X // L0X // ∗

(with monochromatic homotopy fibers) we obtain the geometric (= spectrum level)
chromatic filtration

. . . // CnX //

η

��

Cn−1X //

η

��

. . . // C1X //

η

��

C0X //

η

��

X

η

��
Mn+1X MnX M2X M1X M0X

of X (with monochromatic homotopy cofibers). This follows from the (partial)
braid diagram

CnX
$$

$$

X

η

%%

η

##

Ln−1X

Cn−1X

::

$$

LnX

::

MnX

;;

.

By Lemma 8.2(e), the maps to the cofibers in the chromatic filtration are the E(n)-
localization maps

η : Cn−1X −→ LnCn−1X 'MnX .
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Let C−1X = X. We can inductively describe the geometric chromatic filtration by
setting MnX = LnCn−1X and letting CnX be the homotopy fiber of the map η
displayed above, for each n ≥ 0.

Theorem 8.4 (Hovey–Strickland [HS99b, Thm. 6.19]). The natural maps

MnX
'−→MnL̂nX

L̂nMnX
'−→ L̂nLnX ' L̂nX

are equivalences. Hence Mn and L̂n induce mutually inverse equivalences of cate-
gories

Mn : Ho(L̂nSp) � Ho(MnSp) : L̂n

L̂nX ↔MnX

between the K(n)-local category and the n-monochromatic category.

Proof. The chromatic fracture square of Theorem 7.5 and the equivalence L̂nX '
LnL̂nX induce equivalences

MnX ' Cn−1L̂nX 'MnL̂nX .

The vanishing of L̂nLn−1X (which follows from Proposition 6.14) and equiva-

lence L̂nX ' L̂nLnX induce equivalences

L̂nMnX ' L̂nLnX ' L̂nX .

�

Remark 8.5. This is reminiscent of a recollement situation, giving an equivalence
between sheaves supported on a closed substack and sheaves that are complete
along that substack. See Barwick–Glasman (arXiv:1607.02064) for a discussion of
this in the context of stable ∞-categories. In their notation, the Hovey–Strickland
equivalence corresponds to X = LnSp, U = Ln−1Sp, Z∧ = L̂nSp and Z∨ = MnSp.
The inclusion j∗ : Ln−1Sp→ LnSp admits the left adjoint j∗(X) = Ln−1S∧X and
the right adjoint j×(X) = F (Ln−1S,X), so Ln−1Sp is reflective and coreflective

in LnSp. The inclusion i∧ : L̂nSp → LnSp has a left adjoint i∧ with i∧i
∧ = L̂n,

hence L̂nSp is reflective. The inclusion i∨ : MnSp → LnSp has a right adjoint i∨

with i∨i
∨ = Mn, so MnSp is coreflective. The functors i∧i∨ : MnSp → L̂nSp and

i∨i∧ : L̂nSp→MnSp lift the inverse equivalences of Theorem 8.4 to the∞-category
level.

9. The chromatic filtration for MU

For any spectrum X, the Adams–Novikov spectral sequence (or MU -based
Adams spectral sequence) has the form

Es,t2 = Exts,tLB(L,MU∗(X)) =⇒s πt−s(X) .

Here Ext∗,∗LB(L,M) denotes Ext formed in the abelian category of LB-comodules.
The spectral sequence is strongly convergent ifX is bounded below, but convergence
for more general X is more subtle. Nonetheless, to study π∗LnX we are led to study
MU∗(LnX) = π∗(MU ∧LnX) ∼= π∗(LnMU ∧X), where the isomorphism uses that
Ln is smashing.
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Definition 9.1. Let R be a ring. For an R-module M and element x ∈ R we write
ΓxM for the x-power torsion and M/x∞ for the “x-power cotorsion” of M , defined
as the kernel and the cokernel, respectively, of the localization homomorphism
β : M → x−1M = M [1/x] away from x.

0→ ΓxM −→M
β−→ x−1M −→M/x∞ → 0

Definition 9.2. Let R be a ring spectrum. For an R-module spectrum M and
element y ∈ π∗(R) we write ΓyM for the y-power torsion and M/y∞ for the “y-
power cotorsion” of M , defined as the homotopy fiber and the homotopy cofiber,
respectively, of the localization map β : M → y−1M = M [1/y] away from y.

ΓyM −→M
β−→ y−1M

M
β−→ y−1M −→M/y∞

Clearly ΣΓyM 'M/y∞.

To study the homotopy cofiber sequence

CnS −→ Cn−1S
η−→ LnCn−1S = MnS

with associated long exact sequence

· · · →MU∗(Cn−1S)
η∗−→MU∗(MnS) −→MU∗−1(CnS)→ . . .

in MU -homology, we apply MU ∧ (−) to obtain the homotopy cofiber sequence

CnMU −→ Cn−1MU −→ LnCn−1MU = MnMU

of MU -module spectra with associated long exact sequence

· · · → π∗(Cn−1MU)
η∗−→ π∗(MnMU) −→ π∗−1(CnMU)→ . . .

in homotopy. This breaks up into short exact sequences, and can be made explicit
using the cotorsion notation above.

Theorem 9.3 ([Rav84, Thm. 6.1]). For each n ≥ 0 there is an isomorphism

0

��

0

��
Σnπ∗(Cn−1MU)

∼= //

η∗

��

MU∗/(p
∞, . . . , v∞n−1)

β

��
Σnπ∗(MnMU)

∼= //

��

v−1
n MU∗/(p

∞, . . . , v∞n−1)

γ

��
Σn+1π∗(CnMU)

∼= //

��

MU∗/(p
∞, . . . , v∞n−1, v

∞
n )

��
0 0

of short exact sequences of MU∗MU -comodules.
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Proof. Let n ≥ 0 and assume by induction that π∗(Cn−1MU) is as stated. Once
we prove that E(n)-localization on the MU -module spectrum Cn−1MU induces
algebraic localization away from vn, the formulas for π∗(MnMU) and π∗(CnMU)
follow, since β is injective in each case.

For brevity, let X = Cn−1MU . We must prove that

β : X −→ v−1
n X

is an E(n)-localization. This is the colimit of many composites of (desuspensions
of) the map

X
vn−→ Σ−|vn|X ,

each of which induces the isomorphism

vn : E(n)∗(X)
∼=−→ E(n)∗+|vn|(X)

in E(n)-homology (since vn is a unit in E(n)∗). Hence β is an E(n)-equivalence. It
remains to prove that v−1

n X is E(n)-local. Let Z be a spectrum with E(n)∗(Z) = 0.
Then

F (Z, v−1
n X) ' Fv−1

n MU (v−1
n MU ∧ Z, v−1

n X)

since v−1
n X is a v−1

n MU -module spectrum. Here v−1
n MU is a Landweber exact

theory of height n, so 〈v−1
n MU〉 = 〈E(n)〉 by Proposition 6.4. Hence E(n)∗(Z) = 0

implies v−1
n MU ∧ Z ' ∗, so the function spectra displayed above are trivial. In

particular, [Z, v−1
n X] = 0, proving E(n)-locality. �

Corollary 9.4. There a short exact sequence

0→MU∗
η−→MU∗(LnS) = π∗(LnMU) −→ Σ−nMU∗/(p

∞, . . . , v∞n )→ 0

of MU∗MU -comodules for each n ≥ 0, which is split as MU∗-modules for n ≥ 1,
and as MU∗MU -comodules for n ≥ 2.

10. The chromatic spectral sequence

We use the notations

L/I∞n = L/(p∞, . . . , v∞n−1)

v−1
n L/I∞n = v−1

n L/(p∞, . . . , v∞n−1) .

The MU -homology exact couple associated to the chromatic filtration of S, or
equivalently, the homotopy exact couple associated to the chromatic filtration
of MU , is simply given by the short exact sequences

(10.1) 0→ L/I∞n
β−→ v−1

n L/I∞n
γ−→ L/I∞n+1 → 0

for each n ≥ 0, spliced together in the following diagram.

. . . L/(p∞, v∞1 )

β

��

L/p∞

β

��

L

β

��
v−1

2 L/(p∞, v∞1 )

γ

ff

v−1
1 L/p∞

γ

gg

p−1L

γ

dd

The resulting long exact sequence

0→ L
β−→ p−1L

βγ−→ v−1
1 L/p∞

βγ−→ v−1
2 L/(p∞, v∞1 )→ . . .
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of LB-comodules is the Cousin complex for L, in the sense of [Har66, Ch. IV, §2],
cf. Hopkins–Gross [HG94, Table 1].

This LB-comodule resolution of L was used by Miller–Ravenel–Wilson [MRW77]
to construct the chromatic spectral sequence. They were studying the Adams–
Novikov spectral sequence

Es,t2 = Exts,tMU∗MU (MU∗,MU∗) = Exts,tLB(L,L) =⇒s πt−s(S)

converging (strongly) to the stable homotopy groups of spheres, also known as the
MU -based Adams spectral sequence. (To be precise, they worked the the p-local
version, based on BP .) The E2-term is given by Ext groups in the category of
LB-comodules. Here

E0,∗
2 = HomLB(L,L) = Z ∼= π0(S) ,

while E1,∗
2 was calculated by Novikov [Nov67] and is closely related to π∗(Jp) (es-

pecially for odd p) and the image-of-J in π∗(S). For p = 2, π∗(J2) is not entirely

accounted for by the Novikov 1-line E1,∗
2 . However, vn-periodic phenomena do in

a sense only appear in Adams–Novikov filtrations s ≥ n, in a way we now try to
clarify.

For each n ≥ 0 the short exact sequence (10.1) of LB-modules induces a long
exact sequence

· · · → Exts,∗LB(L,L/I∞n )
β−→ Exts,∗LB(L, v−1

n L/I∞n )

γ−→ Exts,∗LB(L,L/I∞n+1)
δ−→ Exts+1,∗

LB (L,L/I∞n )→ . . .

in LB-comodule Ext. These combine to an (unrolled) exact couple

. . . // Ext∗,∗LB(L,L/I∞n+1)
α // Ext∗,∗LB(L,L/I∞n ) //

β

��

. . .

Ext∗,∗LB(L, v−1
n L/I∞n )

γ

ii

and a trigraded spectral sequence
chromEn,s,t1 = Exts,tLB(L, v−1

n L/I∞n ) =⇒n Exts+n,tLB (L,L)

called the chromatic spectral sequence. The filtration n part chromEn,∗,∗1 of its E1-
term consists of vn-periodic families, and the subquotient chromEn,∗,∗∞ that survives
to the E∞-term of the chromatic spectral sequence gives the associated graded of the
so-called vn-periodic part of Ext∗,∗LB(L,L), i.e., of the Adams–Novikov E2-term. In
turn, the corresponding subquotient of the p-local Adams–Novikov E∞-term defines
the vn-periodic part of π∗(S)(p).

In view of Theorem 9.3, the filtration n part of the chromatic E1-term is also the
Adams–Novikov E2-term for ΣnMnS:

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= Ext∗,∗LB(L,MU∗(Σ

nMnS))

=⇒ π∗(Σ
nMnS) .

((ETC: Discuss convergence, using Hovey–Sadofsky [HS99a, Thm. 5.3].))
The chromatic resolution, or Cousin complex, of L = MU∗ by LB = MU∗MU -

comodules, can be viewed as a resolution by LB-injective (co-)modules in the sense
of [JLY81], i.e., L-modules N such that Exts,∗L (M,N) = 0 for all LB-comodules M
and s > 0.
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11. The Morava change-of-rings isomorphism

Any morphism of flat Hopf algebroids (or stacks) inducing an equivalence of
categories of comodules (or quasi-coherent sheaves) will also induce an isomor-
phism between Ext-groups formed in these abelian categories. This is the basis for
the Morava change-of-rings theorem, various forms of which have been published
by Morava [Mor85, §1], Miller–Ravenel [MR77, Thm. 2.10, Thm. 3.10], Hovey–
Sadofsky [HS99a, Thm. 3.1], Hovey–Strickland [HS05a, §4] and Naumann [Nau07,
§5]. In particular, this applies to the morphism of Hopf algebroids induced by the
ring spectrum map v−1

n MU → E(n).

Theorem 11.1 (Miller–Ravenel [MR77, Thm. 3.10], Hovey–Strickland [HS05a,
(4.9)]). There is a natural isomorphism

Ext∗,∗LB(L, v−1
n M) ∼= ExtE(n)∗E(n)(E(n)∗, E(n)∗ ⊗L v−1

n M)

for each LB-comodule v−1
n M on which vn acts invertibly. In particular,

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= ExtE(n)∗E(n)(E(n)∗, E(n)∗/I

∞
n ) .

There are short exact sequences of LB-comodules

0→ v−1
n L/(p, . . . , vm, v

∞
m+1, . . . , v

∞
n−1) −→ v−1

n L/(p, . . . , vm−1, v
∞
m , . . . , v

∞
n−1)

vm−→ Σ−|vm|v−1
n L/(p, . . . , vm−1, v

∞
m , . . . , v

∞
n−1)→ 0

for 0 ≤ m < n, giving rise to long exact sequences connecting the groups

Ext∗,∗LB(L, v−1
n L/(p, . . . , vm−1, v

∞
m , . . . , v

∞
n−1))

∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/(p, . . . , vm−1, v
∞
m , . . . , v

∞
n−1))

for 0 ≤ m ≤ n. These can be viewed as a sequence of n algebraic vm-Bockstein
spectral sequences, starting with

(11.1) Ext∗,∗LB(L, v−1
n L/In) ∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/In)

for m = n and ending with the chromatic E1-term

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/I

∞
n )

for m = 0.

Remark 11.2. A Smith–Toda complex of type n is a finite spectrum V (n − 1)
with MU∗(V (n − 1)) ∼= MU∗/In. Its homology then satisfies H∗(V (n − 1);Fp) ∼=
Λ(τ0, . . . , τn−1). We have V (−1) = S and V (0) = S/p for each prime p. The
spectra V (1) exist for p ≥ 3, the spectra V (2) exist for p ≥ 5, and the spectra V (3)
exist for p ≥ 7, cf. [Smi71], [Tod71]. No spectra V (n − 1) for n ≥ 5 are known to
exist for any prime, cf. [Rav86, (5.6.13)].

When V (n) exists, there exists a map vn : Σ2pn−2V (n− 1)→ V (n− 1) inducing
multiplication by vn in MU -homology, with homotopy cofiber V (n). We write
v−1
n V (n − 1) for the mapping telescope. Since (E(n − 1)∗V (n − 1) = 0, so that)
Cn−1V (n− 1) ' V (n− 1) there is a canonical map

v−1
n V (n− 1) −→MnV (n− 1) ' LnV (n− 1) ,

inducing an isomorphism in MU -homology. The starting point (11.1) for the n
algebraic Bockstein spectral sequences is thus also the Adams–Novikov E2-term for
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v−1
n V (n− 1) and for LnV (n− 1), when these spectra exist:

Ext∗,∗LB(L, v−1
n L/In) ∼= Ext∗,∗LB(L,MU∗(v

−1
n V (n− 1)))

∼= Ext∗,∗LB(L,MU∗(LnV (n− 1))) .

Convergence to π∗(LnV (n− 1)) is known by [HS99a, Thm. 5.3], while convergence
to π∗(v

−1
n V (n − 1)) = v−1

n π∗V (n − 1) is equivalent to the telescope conjecture at
height n, which is no longer expected to hold for n ≥ 2.

In (11.1) we have E(n)∗/In = K(n)∗, and since E(n)∗E(n) is flat over E(n)∗,
there is a further change-of-rings isomorphism

Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/In) ∼= Ext∗,∗Σ(n)∗
(K(n)∗,K(n)) .

Here

Σ(n)∗ := K(n)∗(E(n)) = K(n)∗ ⊗L LB ⊗L E(n)∗ ∼= K(n)∗ ⊗L LB ⊗L K(n)∗

since In is invariant.

Definition 11.3. Let

Σ(n)∗ = K(n)∗(E(n)) ∼= K(n)∗ ⊗L LB ⊗L K(n)∗

be the n-th Morava stabilizer algebra, which is a graded commutative Hopf algebra
over K(n)∗. (This does not contain the n exterior classes present in K(n)∗(K(n)).
See Remark 11.6.) Let

Σ(n)∗ = K(n)∗(E(n)) ∼= HomK(n)∗(Σ(n)∗,K(n)∗)

be the (Cartier) dual Hopf algebra.

Using formulas from [Rav76a] for the Hopf algebroid structure maps in the p-
typical version of (L,LB), modulo the invariant prime ideal In, Ravenel made the
Hopf algebra structure of Σ(n) explicit. It is a sequential colimit of finite étale

extensions of the form A → A[ti]/(vnt
pn

i = vp
i

n ti). ((ETC: Ignoring the grading,

and setting vn = 1, this reads A→ A[ti]/(t
pn

i = ti), which is étale of degree pn.))

Proposition 11.4 (Ravenel [Rav76b, Prop. 1.3, Thm. 2.3]). There are algebra
isomorphisms

Σ(n)∗ = K(n)∗[ti | i ≥ 1]/(vnt
pn

i = vp
i

n ti)

and
Σ(n)∗ ⊗ Fpn ∼= K(n)∗[[S0

n]]⊗ Fpn
(up to grading), where S0

n is the strict Morava stabilizer group of Hn.

Remark 11.5. This can be deduced from the Devinatz–Hopkins K(n)-local pro-

Gn-Galois extension L̂nS = LK(n)S → En, since the sub-extension L̂nE(n) → En
with Galois group (Fpn)× o Gal, and its mod In reduction K(n) → Kn, gives
isomorphisms

E∗n(En) ∼= E∗n〈〈Gn〉〉
E∗n(E(n)) ∼= E∗n〈〈S0

n〉〉
K∗n(E(n)) ∼= K∗n〈〈S0

n〉〉
K(n)∗(E(n))⊗ Fpn ∼= K(n)∗[[S0

n]]⊗ Fpn .

The last step amounts to taking F×pn-invariants, and does not properly preserve the
grading.
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To summarize: The E2-term of the Adams–Novikov spectral sequence

Es,t2 = Exts,∗LB(L,L) =⇒s π∗(S)

is the abutment of the chromatic spectral sequence
chromEn,∗,∗1 = Ext∗,∗LB(L, v−1

n L/I∞n ) =⇒n Ext∗,∗LB(L,L) .

Here layer n of the E1-term is the abutment of a sequence of n Bockstein spectral
sequences starting with

Ext∗,∗LB(L, v−1
n L/In) ∼= ExtE(n)∗E(n)(E(n)∗,K(n)∗) ∼= ExtΣ(n)∗(K(n)∗,K(n)∗) ,

where Σ(n)∗ = K(n)∗E(n) is the Morava stabilizer algebra. After a small field
extension (and some regrading) this is isomorphic to the continuous group coho-
mology

Ext∗,∗Σ(n)∗
(K(n)∗,K(n)∗)⊗ Fpn ∼= H∗c (S0

n;Fpn)⊗K(n)∗

of the strict Morava stabilizer group.
((ETC: Truncating the chromatic spectral sequence to the part chromEm,∗,∗1 with

0 ≤ m ≤ n calculates the E2-term Ext∗,∗LB(L,MU∗(LnS)) of the Adams–Novikov
spectral sequence for π∗(LnS).))

Remark 11.6. Tobias Barthel and Piotr Pstragowski (arXiv:2111.06379) recently
proved conditional convergence of the K(n)-based Adams spectral sequence

Es,t2 = ExtK(n)∗K(n)(K(n)∗,K(n)∗(X)) =⇒s πt−s(L̂nX)

for all spectra X, and strong convergence for K(n)-locally (strongly) dualizable X,
including X = S.

11.1. Height one. For n = 1, S0
1 = 1 + pZp, so its group cohomology is easily

calculated, recovering Novikov’s results for p > 2 and for p = 2.

Proposition 11.7.

H∗c (S0
1;Fp) ∼= H∗c (1 + pZp;Fp) ∼=

{
Λ(ζ1) for p odd,

Λ(ζ1)⊗ F2[ρ1] for p = 2,

where ζ1 and ρ1 lie in H1
c , corresponding to homomorphisms 1 + pZp → Fp. Hence

Ext∗,∗Σ(1)∗
(K(1)∗,K(1)∗) ∼=

{
Λ(ζ1)⊗K(1)∗ for p odd,

Λ(ζ1)⊗ F2[ρ1]⊗K(1)∗ for p = 2,

with K(1)∗ = Fp[v±1
1 ], where ζ1 and ρ1 lie in Ext1,0 and v1 lies in Ext0,2p−2.

Corollary 11.8. For p odd,

π∗(L1S/p) ∼= Λ(ζ1)⊗ Fp[v±1
1 ] = Λ(α1)⊗ Fp[v±1

1 ] ∼= π∗(J/p) ,

where ζ1 has degree −1 and α1 = ζ1v1 has degree 2p− 3.

((ETC: For p = 2 there is an Adams–Novikov differential d3(v2
1) = η3 leaving

E∞ = Λ(ζ1)⊗ F2{1, η, η2} ⊗ F2{1, v1} ⊗ F2[v±4
1 ] ,

with η = ρ1v1. Draw the chart. This is the associated graded of π∗(L1S/2) ∼=
π∗(J/2). Note the difference in filtrations compared to the Adams spectral sequence
for π∗(j/2). See Chapter 5, Section 8, Figure 2.))

The passage from ExtLB(L, v−1
1 L/p) ∼= ExtΣ(1)∗(K(1)∗,K(1)∗) to

ExtLB(L, v−1
1 L/p∞) ∼= ExtE(1)∗E(1)(E(1)∗, E(1)∗/p

∞)
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ζ1v
−1
1 ζ1 . ζ1v1 ζ1v

2
1

. v−1
1 . . . 1 . . . v1 . . . v2

1

−q−1 −q −1 0 q−1 q 2q−1 2q

Figure 1. Adams–Novikov spectral sequence chart for L1S/p,
with p odd and q = 2p− 2; multiplications by α1 ∈ {ζ1v1} drawn
as solid lines

was essentially done by Novikov, suffices to determine π∗(L̂1S) and π∗(L1S), and

confirms that L̂1S ' J∧p at all primes p.

11.2. Height two. For n = 2, the cohomology of the pro-p-group S0
2 was calculated

in [Rav77, Thms. 3.2, 3.3, 3.4] for the cases p ≥ 5, p = 3 (corrected in the second
edition of Ravenel’s green book [Rav86, §6.3], following Henn), and p = 2 (up to
possible multiplicative extensions).

Proposition 11.9. For p ≥ 5,

Ext∗,∗Σ(2)∗
(K(2)∗,K(2)∗) ∼= Λ(ζ2)⊗ Fp{1, h10, h11, g0, g1, h10g1 = g0h11} ⊗K(2)∗

with K(2)∗ = Fp[v±1
2 ], where

ζ2 ∈ Ext1,0

h10 = [t1] ∈ Ext1,2p−2

h11 = [tp1] ∈ Ext1,2p2−2p

g0 = 〈h10, h11, h10〉 ∈ Ext2,2p2+2p−4

g1 = 〈h11, h10, h11〉 ∈ Ext2,4p2−2p−2

h10g1 = g0h11 ∈ Ext3,4p2−4

v2 ∈ Ext0,2p2−2 .

For odd primes p the passage from

Exts,∗LB(L, v−1
2 L/(p, v1)) ∼= Exts,∗Σ(2)∗

(K(2)∗,K(2)∗)

to
Exts,∗LB(L, v−1

2 L/(p, v∞1 )) ∼= Exts,∗E(2)∗E(2)(E(2)∗, E(2)∗/(p, v
∞
1 ))

is carried out by Miller–Ravenel–Wilson [MRW77, §5] for s = 0, and partially for
s = 1, using the LB-comodule extension

0→ v−1
2 L/(p, v1) −→ v−1

2 L/(p, v∞1 )
v1−→ Σ−|v1|v−1

2 L/(p, v∞1 )→ 0 .

The further passage to

Exts,∗LB(L, v−1
2 L/(p∞, v∞1 )) ∼= Exts,∗E(2)∗E(2)(E(2)∗, E(2)∗/(p

∞, v∞1 ))

is carried out for s = 0 in [MRW77, §6], using the LB-comodule extension

0→ v−1
2 L/(p, v∞1 ) −→ v−1

2 L/(p∞, v∞1 )
p−→ v−1

2 L/(p∞, v∞1 )→ 0 .

The case p = 2 of these calculations is carried out by Shimomura in [Shi81].
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−4 •

−3 • • •

−2 • • g0 g1

−1 ζ2 h10 h11

0 1

−1 0 q − 1 pq − 1 (2p+ 2)q − 3

Figure 2. Adams–Novikov spectral sequence chart for L2V (1),
with p ≥ 5 and q = 2p− 2, omitting K(2)∗ = Fp[v±1

2 ]; multiplica-
tions by α1 ∈ {h10} are drawn as solid lines, those by β′1 ∈ {h11}
as dashed lines

For primes p ≥ 5, Shimomura–Yabe [SY95] determine these Ext groups for all s,

which suffices to determine π∗(L̂2S) and π∗(L2S) at these primes. This amazingly
complex calculation was revisited by Behrens in [Beh12].

The paper [SW02a] by Shimomoura–Wang obtains these results for p = 3. The
paper [SW02b] by Shimomoura–Wang obtains the Adams–Novikov E2-term for
π∗(L2S) at p = 2. At p = 2, recent papers by Beaudry, Bobkova, Goerss and Henn
((ETC: and others?)) make progress towards calculating π∗(L2S/2) and π∗(L2S).

11.3. Height three. For n = 3 and p ≥ 5, the cohomology of S0
3 was additively

determined in [Rav77, Thm. 3.8]. Its algebra structure for p ≥ 3 was calculated by
Yamaguchi [Yam92]. Some deductions are made by Kato–Shimomura in [KS12].
See also Gu–Wang–Wu [GWW21].
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