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CHAPTER 11: MORAVA K- AND E-THEORY

JOHN ROGNES

1. Spectral realizations

The following constructions used to rely on Baas–Sullivan theory of bordism
with singularities [Baa73a], [Baa73b], but is simplified by working in the module
category over a commutative orthogonal ring spectrum. This was first carried out
in [EKMM97, Ch. 5].

Definition 1.1. Let R be a commutative orthogonal ring spectrum and let M be
an orthogonal R-module. Let x ∈ π∗(R) = R∗ have degree |x|. Let the R-module
M/x be the homotopy cofiber of the multiplication-by-x map, so that there is a
homotopy cofiber sequence

Σ|x|M
x−→M

ix−→M/x
jx−→ Σ|x|+1M .

Given x1, . . . , x` ∈ R∗, let

M/(x1, . . . , x`) = M ∧R R/x1 ∧R · · · ∧R R/x` ,

so that there is a homotopy cofiber sequence

Σ|x`|M/(x1, . . . , x`−1)
x`−→M/(x1, . . . , x`−1)

−→M/(x1, . . . , x`) −→ Σ|x`|+1M/(x1, . . . , x`−1) .

For a general family of elements xα ∈ R∗ for α ∈ J , let M/(xα | α ∈ J) be the
colimit over finite subsets {α1, . . . , α`} ⊂ J of the R-modules M/(xα1

, . . . , xα`
).

Definition 1.2. An element x ∈ R∗ is not a zero-divisor if multiplication by x acts
injectively on R∗. A (finite or infinite) sequence (x1, x2, . . . ) of elements in R∗ is
a regular sequence if multiplication by xi acts injectively on R∗/(x1, . . . , xi−1) for
each i ≥ 1.

Lemma 1.3. If x ∈ R∗ is not a zero-divisor, then

R∗/(x) ∼= π∗(R/x) ,

where (x) = R∗x ⊂ R∗. More generally, if (x1, x2, . . . ) is a regular sequence, then

R∗/(x1, x2, . . . ) ∼= π∗(R/(x1, x2, . . . )) ,

where (x1, x2, . . . ) ⊂ R∗ is the ideal generated by the listed elements.
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Proof. By induction on `, we can assume that

R∗/(x1, . . . , xi−1) ∼= π∗(R/(x1, . . . , xi−1)) .

If xi acts injectively on this R∗-module, then the long exact sequence in homotopy
for the displayed homotopy cofiber sequence simplifies to short exact sequences

0→ Σ|xi|R∗/(x1, . . . , xi−1)
xi−→ R∗/(x1, . . . , xi−1) −→ π∗(R/(x1, . . . , xi))→ 0 .

�

Definition 1.4. Let R be a commutative orthogonal ring spectrum and let M be
an orthogonal R-module. Let y ∈ π∗(R) = R∗ have degree |y|. Let the R-module
y−1M = M [1/y] = M [y−1] be the homotopy colimit of the sequence

M
y−→ Σ−|y|M

y−→ Σ−2|y|M −→ . . . −→ y−1M .

Theorem 1.5 ([EKMM97, Thm. VIII.2.2]). The R-module y−1R is equivalent to
an essentially unique commutative R-algebra.

The commutative R-algebra in question is realized as the Bousfield localization
of R in commutative R-algebras, with respect to the homology theory in R-modules
given by y−1R.

Theorem 1.6 ([Str99, Thm. 2.6]). Let R be a commutative orthogonal ring spec-
trum with π∗(R) = R∗ concentrated in even degrees. If A∗ is a localized regular
quotient of R∗, and 1/2 ∈ A∗, then there exists a unique (strong realization) homo-
topy commutative R-ring spectrum A with π∗(A) ∼= A∗.

((ETC: Recall “strong realization”.))
For similar results about localizations of En ring spectra, see Lurie’s “Higher

Algebra” (for n = 1) and Mathew–Naumann–Noel [MNN15, App. A] (for n ≥ 2).
In general, there is extensive literature on the problem of finding A∞ = E1- or higher
En-realizations of a given (ring) spectrum, or proving that such more structured
products do not exist.

We apply Strickland’s theorem in the case R = MU , in which case R∗ = MU∗
is integral, so that no x 6= 0 divides zero.

Definition 1.7. For each prime p and height 1 ≤ n <∞ let

MU/In = MU/(p, v1, . . . , vn−1)

be the MU -module with π∗(MU/In) ∼= π∗(MU)/In ∼= L/In, and similarly for
n =∞. Let

v−1
n MU/In

be the localized MU -module with π∗(v
−1
n MU/In) ∼= v−1

n π∗(MU)/In ∼= v−1
n L/In.

By Strickland’s theorem, MU/In and v−1
n MU/In admit unique structures as

homotopy commutative MU -ring spectra, as long as p 6= 2. ((ETC: For p = 2,
there are two (opposite) structures as homotopy associative MU -ring spectra.))

Proposition 1.8. MU/In and v−1
n MU/In are flat ring spectra, with

(MU/In)∗(MU/In) ∼= LB/In ⊗ Λ(τ̄0, . . . , τ̄n−1)

and
(v−1
n MU/In)∗(v

−1
n MU/In) ∼= v−1

n LB/In ⊗ Λ(τ̄0, . . . , τ̄n−1) .

Here τ̄i in degree 2pi − 1 maps under MU/In → HFp to the class with the same
name in (HFp)∗(HFp) = A∗.



MORAVA K- AND E-THEORY 3

Remark 1.9. The flat ring spectrum D = MU/In is a spectral realization of

objFGL≥ns , but its associated Hopf algebroid (D∗, D∗D) is a nilpotent thickening of

the Hopf algebroid (L/In, LB/In) classifying FGL≥ns . Likewise, E = v−1
n MU/In is

a flat spectral realization of objFGLns , but its associated Hopf algebroid (E∗, E∗E)
is a nilpotent thickening of the Hopf algebroid (v−1

n L/In, v
−1
n LB/In) classifying

FGLns . In other words, the algebraic Hopf algebroids are the reductions (modulo
nilpotent elements) of these non-reduced topological Hopf algebroids.

2. Morava K-theory

In the early in 1970s, Morava introduced spectra K(n) giving topological real-
izations of the Honda formal group law Hn, giving the (unique) geometric point
in Mn

fg. Let

(vi, b̃m | i 6= n,m 6= pk − 1) = (p, . . . , vn−1, vn+1, . . . , b̃m | m 6= pk − 1)

be a regular sequence (ordered by degree, say) generating the kernel of the homo-
morphism L→ Fp[vn] ⊂ Fp[v±1

n ] classifying Hn.

Definition 2.1. For each prime p and height 1 ≤ n < ∞ let the n-th connective
and periodic Morava K-theory spectra be the MU -module spectra

k(n) = MU/(vi, b̃m | i 6= n,m 6= pk − 1)

and

K(n) = v−1
n k(n) = v−1

n MU/(vi, b̃m | i 6= n,m 6= pk − 1)

with

π∗k(n) ∼= Fp[vn] and π∗K(n) ∼= Fp[v±1
n ] ,

respectively. Then

H∗(k(n);Fp) ∼= Λ(τ̄j | j 6= n)⊗ Fp[ξi | i ≥ 1]

and

H∗(k(n);Fp) ∼= A //Λ(Qn) = A /A {Qn} .

By Strickland’s theorem, k(n) and K(n) admit unique structures as homotopy
commutative MU -ring spectra, as long as p 6= 2. ((ETC: For p = 2, there are two
(opposite) structures as homotopy associative MU -ring spectra.))

Robinson [Rob89, Thm. 2.3] developed an obstruction theory to show that K(n)
admits the structure of an A∞ = E1-ring spectrum, and Angeltveit [Ang11] showed
that K(n) is uniquely determined up to equivalence in this category, i.e., as an
associative orthogonal ring spectrum. For 1 ≤ n <∞ is does not admit an E2-ring
structure, as can be seen from the Dyer–Lashof operations in its homology.

When n = 1, there are splittings

ku/p '
p−2∨
i=0

Σ2ik(1) and KU/p '
p−2∨
i=0

Σ2iK(1) ,

so K(1) is a direct summand of mod p complex K-theory. By convention, we let
K(0) = HQ and K(∞) = HFp, matching the definitions of H0 and H∞.
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Remark 2.2. There are ring spectrum maps MU → K(n) inducing the ring ho-
momorphisms L ∼= MU∗ → K(n)∗ = Fp[v±1

n ] classifying the Honda formal group
law Hn. The corresponding maps

Spec(K(n)∗)
Hn−→ Spec(L) −→Mfg ,

for all p and 0 ≤ n ≤ ∞, then realize all geometric points of Mfg. In particular,
those for a fixed p realize all geometric points of Mfg ⊗ Z(p), and those for n ≥ 1

realize all geometric points of Mfg ⊗ Fp =M≥1
fg .

Morava K-theory is about as accessible to calculation as (co-)homology with
field coefficients, because of the following Künneth and universal coefficient isomor-
phisms.

Theorem 2.3. For any spectra X and Y the canonical maps

K(n)∗(X)⊗K(n)∗ K(n)∗(Y )
∼=−→ K(n)∗(X ∧ Y )

and

K(n)∗(X)
∼=−→ HomK(n)∗(K(n)∗(X),K(n)∗)

are isomorphisms.

Proof. This follows from the Tor- and Ext-spectral sequences for K(n) ∧X ∧K(n)

K(n)∧Y ' K(n)∧X ∧Y and FK(n)(K(n)∧X,K(n)) ' F (X,K(n)), since K(n)∗
is a graded field, so that each K(n)∗-module is free. �

Remark 2.4. Since K(n)∗ = Fp[v±1
n ] is a graded field, each K(n)∗-module is free, so

(for p odd) K(n) is a flat ring spectrum. ((ETC: Discuss relation of the associated
Hopf algebra (K(n)∗,K(n)∗K(n)) to the one classifying BAuts(Hn/R) over R =
F̄p. Also for E(n)∗E(n), later. Cleaner for (Kn)∗(Kn) or (En)∗(En).))

Remark 2.5. A key feature of K(n) is that its complex orientation, corresponding
to a ring spectrum map MU → K(n) in the homotopy category, defines the Honda
formal group law Hn, with p-series

[p]K(n)(y) = [p]Hn
(y) = vny

pn ∈ K(n)∗[[y]] .

This means that in the fiber sequence

BCp −→ CP∞ [p]−→ CP∞ ,

where [p] classifies (γ1)⊗p, the induced homomorphism

K(n)∗(BCp)←− K(n)∗(CP∞) ∼= K(n)∗[[y]]

maps vny
pn to zero. It follows from the Gysin sequence in K(n)-cohomology (com-

pare Chapter 4, Thm. 7.1) that

K(n)∗(BCp) ∼= K(n)∗[[y]]/(vny
pn) ∼= K(n)∗[y]/(yp

n

)

is a pn-dimensional K(n)∗-algebra. (For complex cobordism, this calculation goes
back to Stong or Landweber around 1970.) On one hand, this illustrates how the
formal group law or p-series enters in calculations. It also shows that the structure
of K(n)∗(BCp) depends on the height n, interpolating between

K(0)∗(BCp) = H∗(BCp;Q) = Q
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and

K(∞)∗(BCp) = H∗(BCp;Fp) =

{
F2[x] for p = 2,

Λ(x)⊗ Fp[y] for p odd.

3. Morava E-theory

In the early 1970s (cf. Morava: “The moduli variety for formal groups”, Novem-
ber 22, 1972), Morava interpreted the Lubin–Tate deformation theory [LT66] for
formal group laws of finite height as exhibiting a normal bundle, or formal neighbor-
hood, at the point Hn : Spec(Fp)→M≥nfg ⊂Mfg. This led to a ring spectrum E,
now called Morava E-theory, with a map

E −→ K(n)

corresponding to the inclusion of Hn in (a universal covering space of) this formal
neighborhood. Other mathematicians at the time preferred to reformulate this
in more traditional terms, leading to a version E(n) of Morava E-theory with
coefficient ring

E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ]

having K(n)∗ as a residue field at the maximal ideal In = (p, . . . , vn−1).
The later work of Devinatz–Hopkins and Goerss–Hopkins–Miller led to ver-

sion En of Morava E-theory that is an E∞ ring spectrum, i.e., a commutative
orthogonal ring spectrum, with

π∗(En) = W (Fpn)[[u1, . . . , un−1]][u±1]

having the finite extension π∗(Kn) = Fpn [u±1] of K(n)∗ as its residue field. Here
π0(En) = W (Fpn)[[u1, . . . , un−1]] is the commutative ring classifying Lubin–Tate’s
universal deformation, and Morava’s original E-theory E ' EGal

n is realized as the
homotopy fixed points for an action on En by the Galois group Gal = Gal(Fpn/Fp) ∼=
Z/n. ((ETC: Here we suppress a distinction between 2-periodic and (2pn − 2)-
periodic theories.))

Since the rings E(n)∗ can be presented using only the subset of algebra generators
for π∗(MU)(p) given by the classes vm for m ≥ 0, it is tempting to simplify the
algebra by discarding all the other algebra generators. This can be achieved using
the Brown–Peterson spectrum BP .

Recall from Chapter 6, Theorem 6.1, that

H∗(MU ;Fp) ∼= P∗ ⊗ Fp[b̃m | m 6= pk − 1]

and

π∗(MU)(p)
∼= Z(p)[vi | i ≥ 1]⊗ Z(p)[b̃m | m 6= pk − 1] ,

where

P∗ = Fp[ξi | i ≥ 1] ⊂ A∗

is the sub Hopf algebra dual to the quotient algebra P = A //E generated by the
Steenrod power operations P i for i ≥ 1, and

Fp[b̃m | m 6= pk − 1] = PH∗(MU ;Fp) ⊂ H∗(MU ;Fp)

is the subalgebra of A∗-comodule primitives. Brown–Peterson [BP66] constructed
a spectrum (now denoted) BP such that H∗(BP ;Fp) ∼= P∗ as A∗-comodules.
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Equivalently, H∗(BP ;Fp) ∼= P ∼= A //E as A -modules. We can now realize BP
as an MU -module by setting

BP = MU(p)/(b̃m | m 6= pk − 1) .

Then

BP∗ = π∗(BP ) ∼= Z(p)[v1, v2, . . . ] =: V .

It then follows that

MU(p) '
∨
b̃I

Σ|b̃
I |BP

where b̃I ranges over a monomial basis for Fp[b̃m | m 6= pk − 1]. In particular,
MU(p)∗(X) = 0 if and only if BP∗(X) = 0, for any spectrum X.

By Strickland’s theorem, BP is a homotopy commutative ring spectrum, at
least for p odd. Quillen gave a more specific construction of BP as the image of a
homotopy idempotent ring spectrum map e : MU(p) →MU(p), i.e., as the homotopy
colimit of

MU(p)
e−→MU(p)

e−→MU(p) −→ . . . −→ BP .

The ring homomorphism MU∗ →MU(p)∗ → BP∗ = π∗(BP ) classifies the universal
p-typical formal group law, in the sense of Cartier ((ETC: reference)), and BP∗ →
MU(p)∗ classifies the p-typification of the p-localized Lazard formal group law.

Basterra–Mandell [BM13] showed that BP admits a unique E4 ring structure,
hence is an orthogonal ring spectrum that is homotopy commutative, while Law-
son [Law18] and Senger ((ETC: arXiv:1710.09822)) showed that BP cannot be
realized as an E∞ ring spectrum, hence also not as a commutative orthogonal ring
spectrum.

((ETC: Discuss Hopf algebroid structure of (BP∗, BP∗BP ) ∼= (V, V T ), classi-
fying the full subgroupoid of FGLs(R) generated by p-typical formal group laws
over R, for any commutative Z(p)-algebra R. Here V = Z(p)[vi | i ≥ 1], T =

Z(p)[tk | k ≥ 1] and V T = V ⊗ T = V [tk | k ≥ 1], with |tk| = 2pk − 2.))

The followingBP -analogues ofMU/In and v−1
n MU/In were discussed by Johnson–

Wilson [JW75]. As a mnemonic, the letterB contains both P and the inverse/upside-
down P .

Definition 3.1. Let

P (n) = MU/In ∧MU BP ' BP/In
be the MU - and BP -module spectrum with

π∗P (n) ∼= Fp[vn, vn+1, . . . ] .

Then

H∗(P (n);Fp) ∼= Λ(τ̄0, . . . , τ̄n−1)⊗ Fp[ξi | i ≥ 1]

and

H∗(P (n);Fp) ∼= A //Λ(Qn, Qn+1, . . . ) .

Also let

B(n) = v−1
n MU/In ∧MU BP ' v−1

n BP/In

be the MU - and BP -module spectrum with

π∗B(n) ∼= Fp[v±1
n , vn+1, . . . ] .
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The Morava E-theory, complementary to MU → v−1
n MU/In at MU → K(n),

can also be viewed as being complementary to BP → v−1
n BP/In = B(n), and more-

or-less realized by the theory E(n) = v−1
n BP 〈n〉 discussed in [JW73] and [JY80].

Definition 3.2. Let the n-th truncated Brown–Peterson spectrum

BP 〈n〉 = BP/(vn+1, vn+2, . . . )

be an MU - and BP -module spectrum with

π∗BP 〈n〉 ∼= Z(p)[v1, . . . , vn] .

Then

H∗(BP 〈n〉;Fp) ∼= Λ(τ̄n+1, τ̄n+2, . . . )⊗ Fp[ξi | i ≥ 1]

and

H∗(BP 〈n〉;Fp) ∼= A //Λ(Q0, . . . , Qn) .

Let

E(n) = v−1
n BP 〈n〉 = v−1

n BP/(vn+1, vn+2, . . . )

be an MU - and BP -module spectrum with

π∗E(n) ∼= Z(p)[v1, . . . , vn−1, v
±1
n ] .

Again, these are homotopy commutative ring spectra by Strickland’s theorem,
except for p = 2, for which one should see [Nas02].

When n = 1, there are splittings

ku(p) '
p−2∨
i=0

Σ2iBP 〈1〉 and KU(p) '
p−2∨
i=0

Σ2iE(1) ,

and the p-local Adams summands ` = BP 〈1〉 and L = E(1) of ku(p) and KU(p) all
admit unique E∞ ring structures [BR05], [BR08].

After p-completion, Angeltveit–Lind [AL17] showed that the spectrum BP 〈n〉 is
uniquely determined by its cohomology A -module.

One should beware that there are many different possible choices of regular se-
quences (vn+1, vn+2, . . . ), so that the spectra BP 〈n〉 and E(n) are not well-defined,
especially as MU - or BP -ring spectra. ((ETC: One might speak of a “form” of
BP 〈n〉 or E(n).))

Hahn–Wilson [HW22] recently proved that for each prime p and height n there
exists an E3 BP -algebra structure on BP 〈n〉. This makes sense, because BP has
an E4 ring structure. In particular, BP 〈n〉 admits an E3 ring structure.
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In the following diagram of ring spectra, each square induces a pushout square
of (evenly graded) commutative rings after passage to homotopy rings.

MU //

&&

��

BP //

%%

��

BP 〈n〉

##

��

MU/In //

��

P (n) //

��

k(n)

��

v−1
n MU //

&&

v−1
n BP //

&&

E(n)

$$
v−1
n MU/In // B(n) // K(n)

4. Nilpotence theorems

Here are two classical theorems about π∗(S) as a graded abelian group, and as
a graded commutative ring.

Theorem 4.1 (Hurewicz, Serre [Ser51]).

πd+n(Sn) ∼=


0 for d < 0,

Z for d = 0,

Z⊕ (finite) for d = n− 1, n even

(finite) otherwise.

Hence

πd(S) ∼=


0 for d < 0,

Z for d = 0,

(finite) otherwise.

In particular the Hurewicz homomorphism π∗(S) → Z is a rational isomorphism,
with torsion kernel and trivial cokernel.

Serre’s proof uses the Serre spectral sequence for fibrations related to the White-
head covers of Sn.

Theorem 4.2 (Nishida [Nis73]). Each f ∈ πd(S) with d 6= 0 is nilpotent in π∗(S).
Hence the kernel of the Hurewicz homomorphism is the nilradical of π∗(S), so that
π∗(S)red ∼= Z.

Nishida’s proof uses the structured (H∞) commutativity of the sphere spectrum,
which shows that suitable extended j-fold powers of spheres admit a retraction to
the (ordinary) j-fold smash power of that sphere.

One way to interpret Nishida’s theorem is to say that any map f : ΣdS → S
that induces zero in integral (or rational) homology is nilpotent with respect to
composition, in the sense that

fN = f ◦ · · · ◦ f : ΣNdS −→ S

is null-homotopic for N � 0. On the other hand, Adams [Ada66] had exhibited
maps

v1 : Σ2p−2S/p −→ S/p
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for odd primes p (and v4
1 : Σ8S/2 → S/2 at p = 2) that induce zero in integral

homology, but induce nonzero isomorphisms

v∗1 : KU∗(S/p)
∼=−→ KU∗(Σ2p−2S/p) ,

in topological K-theory, and which are therefore not nilpotent with respect to
composition. (This follows, since (vN1 )∗ is a nonzero isomorphism, for each N .)

Based on calculations [MRW77] with the (MU - or BP -based) Adams–Novikov
spectral sequence, Ravenel (lecture at 1977 Evanston conference, published as
[Rav84, Conj. 10.1]) conjectured that inducing zero in complex bordism would be
sufficient to ensure that a map

f : ΣdX −→ X ,

with X a finite CW complex or spectrum, is nilpotent.
Several years later, this conjecture was famously proved by Devinatz–Hopkins–

Smith. Both of the following two statements generalize Nishida’s nilpotence theo-
rem.

Theorem 4.3 (Devinatz–Hopkins–Smith [DHS88, Thm. 1, Cor. 2]).
(a) Let R be a ring spectrum (not necessarily associative) in the homotopy cate-

gory. The kernel of the MU Hurewicz homomorphism

hMU : π∗(R) −→MU∗(R)

consists of nilpotent elements.
(b) Let f : ΣdX → X be a self-map of a finite spectrum. If MU∗(f) = 0 then f

is nilpotent.

See also [Rav92, Ch. 9].

Brief outline of thumbnail sketch of proof. Here (b) is deduced from (a) by consid-
ering the endomorphism ring spectrum

R = F (X,X) ' X ∧DX ,

where DX = F (X,S) denotes the Spanier–Whitehead dual. It suffices to prove (a)
when R is an orthogonal ring spectrum that is connective of finite type. In this
case, Devinatz–Hopkins–Smith use the Thom (E2 ring) spectra

X(n) = Th(ξ ↓ ΩSU(n))

of the virtual complex vector bundles classified by the (double loop) maps

ξ : ΩSU(n)→ ΩSU ' BU .

Here S = X(1) and X(∞) = MU , and the MU Hurewicz homomorphism factors
as a chain

π∗(R) −→ . . . −→ X(n)∗(R) −→ X(n+ 1)∗(R) −→ . . . −→MU∗(R) .

There is a Thom isomorphism

H∗(ΩSU(n)) ∼= H∗(X(n)) ∼= Z[b1, . . . , bn−1] ,

compatible with the Thom isomorphism H∗(BU) ∼= H∗(MU) ∼= Z[bk | k ≥ 1] that
we discussed in Chapter 6. Let f ∈ π∗(R). The inductive step is then to prove that
hX(n)(f) ∈ X(n)∗(R) is nilpotent if (and only if) hX(n+1)(f) ∈ X(n + 1)∗(R) is
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nilpotent. This is then addressed by interpolating between ΩSU(n) and ΩSU(n+1)
by means of homotopy pullbacks

ΩSU(n) //

��

J̃mS
2n //

��

ΩSU(n+ 1)

��
∗ // JmS2n // ΩS2n+1

over the standard filtration of the James construction model for ΩS2n+1 ' JS2n,
and letting FmX(n+ 1) = Th(ξ ↓ J̃mS2n) for 0 ≤ m ≤ ∞. Here

H∗(J̃mS
2n;Fp) ∼= H∗(FmX(n+ 1);Fp) ∼= Fp[b1, . . . , bn−1]{1, bn, . . . , bmn }

is coalgebraically best behaved when m = pk − 1 for some k ≥ 0. Note that
X(n) = F0X(n+ 1). The proof proceeds in three steps:

(1) If the image of f in X(n+1)∗(R) is nilpotent, then Fpk−1X(n+1)∧f−1R ' ∗
for k sufficiently large. This follows from a vanishing line in the X(n + 1)-based
Adams spectral sequence.

(2) If Fpk−1X(n + 1) ∧ f−1R ' ∗ then Fpk−1−1X(n + 1) ∧ f−1R ' ∗, for each
k ≥ 1. More precisely, the class of acyclic spectra for Fpk−1X(n + 1)-homology is
the same for all values of k. (This is the hard part, uses the Snaith splitting of
Ω2S2m+1, and connects to the theory of Bousfield classes.)

(3) If X(n) ∧ f−1R ' ∗ then the image of f in X(n)∗(R) is nilpotent. �

The Devinatz–Hopkins–Smith nilpotence theorem expresses how the functor
X 7→ MU∗(X) to MU∗-modules (or MU∗MU -comodules) is almost faithful on
(endo-)morphisms on the subcategory of finite spectra

Ho(Spω) ⊂ Ho(Sp) MU∗(−)−→ MU∗MU− coMod→MU∗−Mod ,

where “almost” means up to nilpotence. ((ETC: Define the full subcategory Ho(Spω) '
SW of finite spectra.))

It is often difficult to fully calculate complex bordism groups, while Morava
K-groups are easier to compute, mainly because their coefficient rings are graded
fields, leading to universal coefficient and Künneth theorems. Recall that K(0) =
HQ, K(n)∗ = Fp[v±1

n ] and K(∞) = HFp. Hence the following extension of the
nilpotence theorem can be more effective.

Theorem 4.4 (Hopkins–Smith [HS98, Thm. 3]).
(a) Let R be a p-local ring spectrum. An element f ∈ π∗(R) is nilpotent if (and

only if) hK(n)(f) ∈ K(n)∗(R) is nilpotent for each 0 ≤ n ≤ ∞.

(b) Let f : ΣdX → X be a self-map of the p-localization of a finite spectrum.
Then f is nilpotent if (and only if) K(n)∗(f) is nilpotent for each 0 ≤ n ≤ ∞.

This has the following cute consequence.

Definition 4.5. A spectral (skew-)field is a non-contractible ring spectrum R such
that R∗(X) is a free R∗-module for all spectra X.

Proposition 4.6 ([HS98, Prop. 1.9]). Let R be a spectral field. Then R has the
homotopy type of a wedge sum of suspensions of K(n) for some 0 ≤ n ≤ ∞.

Proof. Since 1 ∈ π∗(R) is not nilpotent, there exists a prime p and a height 0 ≤ n ≤
∞ such that 1 ∈ K(n)∗(R) is not nilpotent. Hence K(n) ∧ R is not contractible.



MORAVA K- AND E-THEORY 11

Since K(n) and R are spectral fields, a suspension of R is a retract of K(n) ∧ R,
which is a wedge sum of suspensions of K(n). It follows (cf. [HS98, Prop. 1.10])
that R is also such a wedge sum of suspensions. �

In the presence of sufficiently much commutativity, the additional strength of
complex bordism over ordinary homology is no longer needed. The following result
was conjectured by Peter May in [BMMS86, Conj. II.2.7]. An H∞ ring structure
is slightly weaker than an E∞ ring structure, which is essentially the same as
commutativity for orthogonal ring spectra.

Theorem 4.7 (Mathew–Naumann-Noel [MNN15, Thm. A]). Suppose that R is an
H∞ ring spectrum and f ∈ π∗(R) is in the kernel of the Hurewicz homomorphism
h = hZ : π∗(R)→ H∗(R;Z). Then f is nilpotent.

5. Quasi-coherent sheaves

Let A be a commutative ring. Each A-module M determines a quasi-coherent
sheaf M∼ over Spec(A), with sections over g : Spec(R) → Spec(A) equal to the
R-module given by the base change (= pullback)

M∼(R) = g∗(M) = R⊗AM .

Here A acts (from the right) on R via the ring homomorphism g : A → R. It
follows that for any A-algebra homomorphism k : R → T the induced T -module
homomorphism

T ⊗RM∼(R)
∼=−→M∼(T )

is an isomorphism, which is the defining condition for this module sheaf to be quasi-
coherent. Conversely, each quasi-coherent sheaf over Spec(A) is isomorphic to M∼

for an A-module M , so there is an equivalence of categories

A−Mod
'−→ QCoh(Spec(A))

M 7−→M∼ .

Both sides of this equivalence depend covariantly onA, or contravariantly on Spec(A),
so that a ring homomorphism g : A → B takes the A-module M to the B-module
B ⊗AM , and (B ⊗AM)∼ ∼= g∗(M∼).

The base change g∗ along g : Spec(B)→ Spec(A) is left adjoint to the restriction
functor g∗ : B −Mod→ A−Mod (or QCoh(Spec(B))→ QCoh(Spec(A)) taking a
B-module N to the same abelian group with the A-module structure given by the
composite

A⊗N g⊗id−→ B ⊗N λ−→ N .

The moduli prestack Mfgl represents the groupoid-valued functor

Affop −→ Gpd
Spec(R) 7−→ {Spec(R)→Mfgl} ∼= FGLs(R) .

The nerve functor C 7→ NC gives a full and faithful embedding of (categories or)
groupoids in simplicial sets, so we can also think about the simplicial set-valued
functor

Affop −→ sSet

Spec(R) 7−→ N FGLs(R) ,
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where N FGLs(R) is isomorphic to the simplicial set

Hom(L,R) // Hom(LB,R)oo
oo //

// Hom(LBB,R)
oo
oo
oo //

//
//
. . . .

oo
oo
oo
oo

It is represented by the simplicial affine scheme

Spec(L) // Spec(LB)oo
oo //

// Spec(LBB)
oo
oo
oo //

//
//
. . . .

oo
oo
oo
oo

Here some of the face operators are given by ηL : L → LB, ηR : L → LB and
ψ : LB → LB ⊗L LB = LBB, while one of the degeneracy operators is given
by ε : LB → L. The remaining operators are obtained from these by tensoring
with identity morphisms. The nerve construction takes (the moduli prestack Mfgl

or) moduli stack Mfg to the homotopy colimit of this simplicial scheme. Since
the simplicial scheme is generated by the Hopf algebroid structure maps, relating
simplicial degrees q ∈ {0, 1, 2}, this homotopy (or ∞-categorical) colimit is in fact
a 2-categorical colimit.

Passing to sheaves, we define the category

QCoh(Mfg)

of quasi-coherent sheaves onMfg to be the corresponding homotopy (or∞-categorical)
limit of the diagram of categories

QCoh(Spec(L))
//
// QCoh(Spec(LB))oo

//
//
//
QCoh(Spec(LBB))oo

oo
//
//
//
//
. . . ,

oo
oo
oo

which is in fact the 2-categorical limit. In more elementary terms, this is the limit
of the diagram of categories

L−Mod
//
// LB −Modoo

//
//
//
LBB −Modoo

oo
//
//
//
//
. . . .

oo
oo
oo

This is a cosimplicial diagram, with some of the coface operators given by base
change along ηL, ηR and ψ and one of the codegeneracy operators given by base
change along ε.

An object in this limit can be given as a sequence of objects

M0 ∈ L−Mod ,

M1 ∈ LB −Mod ,

M2 ∈ LBB −Mod , . . .

together with isomorphisms

M0 ∼= ε∗M1 ,

M1 ∼= η∗LM
0
ν̄∼= η∗RM

0 ∼= (ε⊗ id)∗M2 ∼= (id⊗ε)∗M2 ,

M2 ∼= (ηL ⊗ id)∗M1 ∼= ψ∗M1 ∼= (id⊗ηR)∗M1 , . . .

subject to coherence conditions. The key data here are the L-module M = M0 and
the LB-module isomorphism

ν̄ : η∗LM
∼=−→ η∗RM ,
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making the (L- and LBB-module) diagrams

ε∗η∗LM
ε∗ν̄ // ε∗η∗RM

M
id // M

and

(id⊗ηL)∗η∗LM
(id⊗ηL)∗ν̄ // (id⊗ηL)∗η∗RM (ηR ⊗ id)∗η∗LM

(ηR⊗id)∗ν̄

��
ψ∗η∗LM

ψ∗ν̄ // ψ∗η∗RM (ηR ⊗ id)∗η∗RM

commute. In other notation, we can write the LB-module isomorphism as

ν̄ : M ⊗L LB
∼=−→ LB ⊗LM

and the second coherence condition as

LB ⊗LM ⊗L LB
id⊗ν̄

))
M ⊗L LB ⊗L LB

ν̄⊗id
55

ψ∗ν̄ // LB ⊗L LB ⊗LM .

By the η∗L–ηL∗ adjunction, the LB-module homomorphism ν̄ corresponds to a
unique L-module homomorphism

ν : M −→ ηL∗η
∗
RM = LB ⊗LM .

Here the tensor product LB⊗LM is formed using the right unit ηR : L→ LB, and
is viewed as an L-module using the left unit ηL : L→ LB. In these terms, the two
coherence conditions are equivalent to the counitality

M
ν //

∼= $$

LB ⊗LM

ε⊗id

��
L⊗LM

and coassociativity

LB ⊗LM
id⊗ν

((
M

ν

::

ν
$$

LB ⊗L LB ⊗LM

LB ⊗LM
ψ⊗id

66

conditions required for ν to define an (L,LB)-coaction on M , i.e., an LB-comodule
structure on M .

Recall that π : Spec(L) → Mfgl → Mfg denotes a presentation of the moduli
stack of formal groups. Then, to any quasi-coherent sheaf M∼ over Mfg we can
associate the L-module M corresponding to the quasi-coherent sheaf π∗(M∼) over
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Spec(L). It comes equipped with an LB-module isomorphism ν̄ : η∗LM
∼= η∗RM ,

which is left adjoint to an LB-coaction ν : M → LB ⊗LM . This functor

QCoh(Mfg)
'−→ LB− coMod

M∼ 7−→ (M,ν)

is then the advertised equivalence. ((ETC: Explain why the left adjoint ν̄ of any
coaction ν is an isomorphism. This uses the existence of inverses in FGLs(R), or
the conjugation in B.))

The same argument applies for any Hopf algebroid.

Theorem 5.1 (Hovey [Hov02, Thm. 2.2]). Suppose (A,Γ) is a Hopf algebroid.
Then there is an equivalence of categories between Γ-comodules and quasi-coherent
sheaves over [Spec(A) ⇔ Spec(Γ)].

We now have the terminology available to formulate the basic object of study in
chromatic homotopy theory.

Definition 5.2. To each spectrum X we assign its complex bordism MU∗(X),
viewed as an (MU∗,MU∗MU) ∼= (L,LB)-comodule,

Sp −→MU∗MU− coMod ' QCoh(Mfg)

X 7−→ MU∗(X) ↔MU∗(X)∼ ,

which in turn is equivalent to a quasi-coherent sheaf MU∗(X)∼ over the moduli
stack Mfg of formal groups.

6. Invariant ideals and coherent rings

Morava and Landweber [Lan73a], [Lan73b] observed that the (quasi-)coherent
sheaves on Mfg only realize a small subset of all (quasi-)coherent sheaves on
Spec(MU∗), i.e., that the (finitely presented) MU∗MU -comodules are quite special
among the plethora of (finitely presented) MU∗-modules. After all, every count-
ably generated commutative ring arises as MU∗/I for some ideal I ⊂ MU∗, but
fortunately relatively few of these ideals are MU∗MU -comodules.

Recall the Hopf algebroid (L,LB) ∼= (MU∗,MU∗MU).

Definition 6.1. Let M be an LB-comodule, with coaction ν : M → LB ⊗L M .
We say that x is LB-comodule primitive if ν(x) = 1⊗ x, and write P (M) ⊂M for
the subgroup of LB-comodule primitives. There are canonical isomorphisms

P (M) ∼= HomLB−coMod(L,M) ∼= L�LB M .

Let Ann(x) = {λ ∈ L | λx = 0 ∈ M} ⊂ L be the annihilator ideal of x. We say
that an ideal I ⊂ L is invariant if it is an LB-subcomodule.

Lemma 6.2. I ⊂ L is invariant if and only if ηL(I) · LB = LB · ηR(I).

Proof. The ideal is an LB-subcomodule if and only if the composite ηL : L
ν−→

LB ⊗L L ∼= LB takes I into LB ⊗L I ∼= LB · ηR(I), so that ηL(I) ⊂ LB · ηR(I),
which implies ηL(I) · LB ⊂ LB · ηR(I). Applying the conjugation χ then implies
the opposite inclusion. �

Lemma 6.3. Let x ∈ M have degree d. The L-submodule ΣdL/Ann(x) ∼= Lx of
M is an LB-subcomodule if and only if x is LB-comodule primitive and Ann(x) is
invariant.
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Proof. If Lx ⊂ M is an LB-subcomodule, then ν(x) lies in LB ⊗L Lx, hence
is 1 ⊗ x for degree reasons, so x is LB-comodule primitive. Moreover, ηL(λ) ⊗
x = ν(λx) = 0 in LB ⊗L Lx ∼= ΣdLB/LB · ηR(Ann(x)) for λ ∈ Ann(x) implies
ηL(λ) ∈ LB · ηR(Ann(x)), so Ann(x) is invariant.

Conversely, if x is LB-comodule primitive then λ 7→ λx defines an LB-comodule
homomorphism ΣdL → M , which factors as such over ΣdL → Lx if Ann(x) is
invariant. �

IfM is nonzero and bounded below, then each lowest-degree class is LB-comodule
primitive. Recall the ideals Ip,n = (p, v1, . . . , vn−1) and Ip,∞ = (p, v1, . . . , vn, . . . )
in L.

Lemma 6.4. For each prime p and height 1 ≤ n ≤ ∞ the ideal Ip,n ⊂ L is an
invariant prime ideal. The zero ideal (0) ⊂ L is also invariant and prime.

Proof. For each prime p we have ηL(In) ⊂ LB ·ηR(In) by Chapter 10, Lemma 4.12,
since (strictly) isomorphic formal group laws have the same height. Hence each In
is invariant.

The quotient ring

L/In ∼= Fp[ṽm, ñk | m ≥ n, k + 1 6= pi]

is an integral domain by Chapter 10, Corollary 5.7, so each In is prime. �

Definition 6.5. Let R be a (graded) commutative ring. An R-module M is finitely
presented if there exists a short exact sequence

F1 −→ F0 −→M −→ 0

with F0 and F1 finitely generated free R-modules. The finitely presented R-
modules are the compact objects in the category of R-modules, i.e., those for which
HomR(M,−) commutes with filtered colimits.

A commutative ring R is coherent if each finitely generated ideal I ⊂ R is finitely
presented. A coherent module is a finitely generated module such that (it and) each
finitely generated submodule is finitely presented. A module over a coherent ring
is coherent if and only if it is finitely presented.

Lemma 6.6. The Lazard ring L ∼= Z[xi | i ≥ 1] ∼= MU∗ is coherent.

Proof. Each finitely generated ideal in L is generated over some subring Z[x1, . . . , xn],
and is finitely presented over that noetherian subring. The full Lazard ring is flat
over that subring, so the finite presentation can be extended up. �

Definition 6.7. We say that an LB-comodule is finitely presented if its underlying
L-module is finitely presented (= coherent). Let

LB− coModfp ⊂ LB− coMod

denote the full subcategory of finitely presented LB-comodules. ((ETC: The cat-

egory of LB-comodules is abelian, and LB− coModfp is a thick abelian subcate-
gory.)) We write

Coh(Mfg) ⊂ QCoh(Mfg)

for the corresponding full subcategory of coherent sheaves, under the equivalence

LB− coMod ∼= MU∗MU− coMod ' QCoh(Mfg) .
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Definition 6.8. Let Spω denote the category of finite spectra, i.e., the full subcat-
egory of Sp generated by spectra that are equivalent to finite cell (or CW) spectra.
Its homotopy category Ho(Spω) is equivalent to the Spanier–Whitehead category
SW of formal integer suspensions of finite CW complexes.

The superscript ω indicates the first infinite ordinal, giving the strict upper
bound for the number of cells allowed in a CW (or cell) structure on these spectra.
Each spectrum is a filtered homotopy colimit of finite spectra, but practically none
of the cohomology theories we have discussed so far are represented by finite spectra.

Proposition 6.9 (Conner–Smith [CS69, Thm. 1.3∗]). If X is a finite spectrum,
then MU∗(X) is a finitely presented MU∗-module.

This follows by induction over the number of cells in X, via standard closure
properties for coherent modules. We could also say that MU∗(X) is a finitely
presented MU∗MU -comodule, for each finite spectrum X.

7. Landweber’s exact functor theorem

Theorem 7.1 (Landweber [Lan73b, Thm. 3.3’]). Each finitely presented LB-

comodule M (an object in LB− coModfp) admits a finite length filtration

0 = M(0) ⊂M(1) ⊂ · · · ⊂M(`) = M

by finitely presented LB-subcomodules, such that

M(s)/M(s− 1) ∼= ΣdsL/J(s)

for each 1 ≤ s ≤ `, where J(s) ⊂ L is some finitely generated invariant prime ideal
and ds is some integer.

The proof uses primary decomposition, as in [AM69, Ch. 4], extended from ideals
to modules and from noetherian rings to coherent rings.

Theorem 7.2 (Morava, Landweber [Lan73a, Prop. 2.11]). The LB-comodule prim-
itives in L/Ip,n are

P (L/Ip,n) = Fp[vn] ⊂ L/Ip,n
for each prime p and height 1 ≤ n <∞.

We already know that vn is LB-comodule primitive in L/Ip,n, since vn ≡ ηR(vn)
mod Ip,n, which implies that each power of vn is LB-comodule primitive since
L/Ip,n is an LB-comodule algebra. Seeing that there are no further LB-comodule
primitives relies on the strong nontriviality of the coaction, i.e., the significant
difference between ηL : L → LB and ηR : L → LB. This requires some detailed
calculation. See also [Rav92, Thm. B.5.18]. ((ETC: I believe there are more ap-
proaches/references.))

It follows that there are no other invariant prime ideals than the ones we have
already discussed, so that the subquotients in a Landweber filtration are always of
a familiar kind.

Theorem 7.3 (Morava, Landweber [Lan73a, Prop. 2.7]). The invariant prime
ideals J ⊂ L are (precisely) the ideals Ip,n for primes p and heights 1 ≤ n ≤ ∞,
together with the zero ideal (0).



MORAVA K- AND E-THEORY 17

Proof. If J 6= (0) then J ∩ Z = (p) for some prime p ((ETC: why?)), and then
(p) = Ip,1 ⊂ J ⊂ Ip,∞. Suppose Ip,n ⊂ J but vn /∈ J for some 1 ≤ n < ∞. Then
vin /∈ J for each i ≥ 1, since J is a prime ideal. Hence J/Ip,n ⊂ L/Ip,n contains no
nonzero LB-comodule primitive elements, by Theorem 7.2, and must therefore be
zero. This proves that Ip,n = J . �

The partially ordered set of invariant prime ideals in L thus matches the set of
geometric points of Mfg, partially ordered by specialization.

Let R be a ring spectrum, with coefficient ring R∗ = π∗(R), and E∗ an R∗-
module. The functor

X 7−→ E∗ ⊗R∗ R∗(X)

is a homotopy functor with a suspension isomorphism satisfying Milnor’s wedge
axiom, but it might not be exact, since tensoring E∗ over R∗ with the long exact
sequence

. . .
∂−→ R∗(X)

i−→ R∗(Y )
j−→ R∗(Y/X)

∂−→ . . .

might not give an exact sequence. It would suffice that E∗ is a flat R∗-module, but
from this point of view the following theorem is surprising, since Z[u±1] ∼= KU∗ is
not a flat MU∗-module.

Theorem 7.4 (Conner–Floyd [CF66, Ch. II]). Let Td: MU∗ → Z[u±1] ∼= KU∗ be
the homomorphism sending the bordism class of an almost complex 2n-manifold M
to its Todd genus times un. Then there is a natural isomorphism of (multiplicative)
homology theories

KU∗ ⊗MU∗ MU∗(X) ∼= KU∗(X) .

In particular,

KU∗ ⊗MU∗ MU∗(X) ∼= KU∗(X)

for all finite spectra X.

The conclusion in cohomology follows from that in homology using Spanier–
Whitehead duality, sinceMU−∗(X) = π∗F (X,MU) ∼= π∗(MU∧DX) = MU∗(DX)
for finite X, and similarly for KU , where DX = F (X,S) is the Spanier–Whitehead
dual of X.

The key to this result is the Landweber filtration theorem, telling us that not
all MU∗-modules arise as MU∗(X), since the associated prime ideals must all be
invariant. Let Ip,0 = (0).

Definition 7.5. Let E∗ be an L-module. We say that (p, v1, v2, . . . ) is an E∗-
regular sequence if all of the homomorphisms

Σ|vn|E∗/Ip,n
vn−→ E∗/Ip,n

for n ≥ 0 are injective.

In particular, we ask that p : E∗ → E∗ is injective, v1 : Σ2p−2E∗/(p) → E∗/(p)

is injective, v2 : Σ2p2−2E∗/(p, v1) → E∗/(p, v1) is injective, and so on. If at some
stage E∗/Ip,n = 0, then all of the remaining homomorphisms are automatically
injective.

Example 7.6. If E∗ = L ⊗ Q, then p : E∗ → E∗ is an isomorphism for each p, so
E∗/Ip,1 = 0 and (p, v1, v2, . . . ) is an E∗-regular sequence for each prime p.
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Example 7.7. If E∗ = Z[u±1] with v1 acting as multiplication by up−1 for each p,
then p : E∗ → E∗ is injective, E∗/(p) = Fp[u±1], v1 : Σ2p−2Fp[u±1]→ Fp[u±1] is an
isomorphism, and E∗/Ip,2 = 0. Hence (p, v1, v2, . . . ) is an E∗-regular sequence for
each prime p.

Theorem 7.8 (Landweber [Lan76, Thm. 2.6MU ]). Let E∗ be an L-module. The
functor

LB− coModfp −→ grAb
M 7−→ E∗ ⊗LM

is exact if and only if for each prime p the sequence (p, v1, v2, . . . ) is an E∗-regular
sequence.

Proof. Let I0 = (0) and v0 = p. The short exact sequences

0→ Σ|vn|L/In
vn−→ L/In −→ L/In+1 → 0

for n ≥ 0 induce long exact sequences

· · · → TorL1 (E∗, L/In) −→ TorL1 (E∗, L/In+1)

∂−→ E∗ ⊗L Σ|vn|L/In
id⊗vn−→ E∗ ⊗L L/In → . . . .

Note that TorL1 (E∗, L) = 0. Suppose, by induction on n ≥ 0, that TorL1 (E∗, L/In) =

0. Then TorL1 (E∗, L/In+1) = 0 if (and only if) vn : Σ|vn|E∗/In → E∗/In is injective.

Hence TorL1 (E∗, L/In) = 0 for all 0 ≤ n < ∞, if (p, v1, v2, . . . ) is an E∗-regular
sequence.

Consider a Landweber filtration

0 = M(0) ⊂M(1) ⊂ · · · ⊂M(`) = M .

The short exact sequences

0→M(s− 1) −→M(s) −→ ΣdsL/J(s)→ 0 ,

with J(s) = Ins for some 0 ≤ ns <∞, induce long exact sequences

· · · → Tor1
L(E∗,M(s− 1)) −→ Tor1

L(E∗,M(s)) −→ Tor1
L(E∗,Σ

dsL/Ins
)→ . . .

for 1 ≤ s ≤ `. Clearly Tor1
L(E∗,M(0)) = 0. Suppose, by induction on 1 ≤ s ≤ `,

that Tor1
L(E∗,M(s−1)) = 0. By the assumption of E∗-regularity, Tor1

L(E∗,Σ
dsL/Ins) =

0, so that Tor1
L(E∗,M(s)) = 0. Hence Tor1

L(E∗,M) = 0.
For any short exact sequence

0→M ′ −→M −→M ′′ → 0

in LB− coModfp we have a long exact sequence

· · · → TorL1 (E∗,M
′′)

∂−→ E∗ ⊗LM ′ −→ E∗ ⊗LM −→ E∗ ⊗LM ′′ → 0 .

By Theorem 7.1, M ′′ admits a Landweber filtration, so that TorL1 (E∗,M
′′) = 0.

Hence this is in fact a short exact sequence, and E∗⊗L (−) defines an exact functor
on finitely presented LB-comodules. �

Theorem 7.9 (Landweber [Lan76, Cor. 2.7]). Let E∗ be an MU∗-module. The
functor

X 7−→ E∗(X) := E∗ ⊗MU∗ MU∗(X)
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defines a homology theory if and only if for each prime p the sequence (p, v1, v2, . . . )
is an E∗-regular sequence.

Proof. We must show that E∗(−) is exact. The composite

Spω ⊂ Sp E∗(−)−→ grAb

factors as

Spω MU∗(−)−→ LB− coModfp E∗⊗L(−)−→ grAb ,
which is exact by Theorem 7.8. Any spectrum is a filtered homotopy colimit of finite
spectra, E∗(−) maps filtered homotopy colimits to filtered colimits, and passage to
filtered colimits of graded abelian groups is an exact functor. Hence E∗(−) is also
exact. �

Remark 7.10. Miller–Ravenel [MR77, Lem. 2.11] show that each MU∗MU = LB-
comodule is a filtered colimit of finitely presented LB-comodules, so that Landwe-
ber’s Theorem 7.8 is also valid if we allow M to range over all LB-comodules,
not just the finitely presented ones. (To be precise, these authors work with
BP∗BP = V T -comodules, but the proof is the same.) Granting this, the proof
of Theorem 7.9 becomes even easier.

Remark 7.11. Consider the case where E∗ is a commutative L-algebra, via a ring
homomorphism g : L → E∗. Hopkins (see Miller [Mil19]) and Hollander [Hol09]
have explained how Landweber’s E∗-regularity condition, and exactness for M 7→
E∗ ⊗LM , are both equivalent to the algebro-geometric assertion that

Spec(E∗)
g−→ Spec(L)

π−→Mfg

is a flat morphism of stacks, even if g alone is far from flat.

Definition 7.12. If E∗ is an MU∗-module such that (p, v1, v2, . . . ) is an E∗-regular
sequence for each prime p, then we say that E∗ and the associated homology theory
X 7→ E∗(X) are Landweber exact.

Corollary 7.13. Let E∗ be Landweber exact. Then

X 7−→ E∗(X) = E∗ ⊗MU∗ MU∗(X)

is represented by a spectrum E, so that E∗(X) ∼= π∗(E ∧X). ((ETC: What more
can we say about E? Is it an MU -module spectrum? Is it unique? What is E∗ is
an MU∗-algebra?))

Lemma 7.14. If E∗ is Landweber exact, then

E∗E ∼= E∗ ⊗MU∗ MU∗MU ⊗MU∗ E∗
∼= E∗ ⊗L LB ⊗L E∗

is a flat E∗-module. Hence E is flat, if it is a homotopy commutative ring spectrum.

Proof. From

E∗(MU) ∼= E∗ ⊗MU∗ MU∗(MU)

we obtain MU∗(E) ∼= MU∗MU ⊗MU∗ E∗. Then

E∗(E) ∼= E∗ ⊗MU∗ MU∗(E) ∼= E∗ ⊗MU∗ MU∗MU ⊗MU∗ E∗ .

To show that E∗E is flat as a (right) E∗-module, we show that

M 7→ E∗E ⊗E∗ M
∼= E∗ ⊗L LB ⊗L E∗ ⊗E∗ M

∼= E∗ ⊗L (LB ⊗LM)



20 JOHN ROGNES

is exact as a functor from E∗-modules. Here M 7→ LB ⊗LM defines the extended
LB-comodule associated to the underlying L-module of M , and is exact because LB
is (free, hence) flat as a right L-module. The functor E∗⊗L (−) from LB-comodules
is exact by Landweber exactness, extended as per Remark 7.10. �

Example 7.15. Let E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] and choose a ring homomor-

phism g : L→ E(n)∗ sending (p to p and) vm ∈ L/Im to

vm ∈ E(n)∗/Im ∼= Fp[vm, . . . , vn−1, v
±1
n ]

for each 1 ≤ m ≤ n. Then (p, v1, v2, . . . ) is an E(n)∗-regular sequence, E(n)∗/In ∼=
Fp[v±1

n ] ∼= K(n)∗, and E(n)∗/In+1 = 0. Hence the Johnson–Wilson version E(n)
of Morava E-theory is Landweber exact, and can be constructed directly this way.
((ETC: Discuss E(n)∗E(n).))

Proposition 7.16. E(m) ∧K(n) ' ∗ for 0 ≤ m < n ≤ ∞.

Proof. Since

E(n)∗(MU) ∼= E(n)∗ ⊗L LB ∼= E(n)∗[bk | k ≥ 1]

is free as an E(n)∗-module, it follows by reduction modulo In that K(n)∗(MU) ∼=
K(n)∗ ⊗L LB and MU∗(K(n)) ∼= LB ⊗L K(n)∗. Hence

E(m)∗(K(n)) ∼= E(m)∗ ⊗MU∗ MU∗(K(n)) ∼= E(m)∗ ⊗L LB ⊗L K(n)∗ .

If nonzero, this ring would admit a ring homomorphism

E(m)∗ ⊗L LB ⊗L K(n)∗ −→ R

to a graded fieldR, classifying a strict isomorphism h : F → F ′ with F of height≤ m
and F ′ of height n. This is impossible for m < n, since (strictly) isomorphic formal
group laws have the same height. Thus E(m)∗(K(n)) must be the zero ring. �

((ETC: Johnson–Wilson: Only invariant prime ideal in B(n)∗ is (0), so

B(n)∗(X) ∼= B(n)∗ ⊗K(n)∗ K(n)∗(X)

is free and K(n)∗(X) = K(n)∗ ⊗B(n)∗ B(n)∗(X). Hence v−1
m (MU/Im)∗(X) = 0 iff

B(m)∗(X) = 0 iff K(m)∗(X) = 0.))
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